Calculus III

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science Lake Superior State University

LSSU Math 251

(1) Differentiation in Several Variables

- Functions of Several Variables
- Limits and Continuity in Several Variables
- Partial Derivatives
- Differentiability and Tangent Planes
- The Gradient and Directional Derivatives
- The Chain Rule
- Optimization in Several Variables
- Lagrange Multipliers

Subsection 1

Functions of Several Variables

Functions of Several Variables

- A function f of two variables is a rule that assigns to each ordered pair of real numbers (x, y) in a set \mathcal{D} a unique real number $f(x, y)$.
- The set \mathcal{D} is the domain of f and its range is the set of values that f takes on, i.e., the set $\{f(x, y):(x, y) \in \mathcal{D}\}$.
- The variables x, y are called independent variables and $z=f(x, y)$ is the dependent variable.
- If $f(x, y)$ is specified by a formula, then the domain is understood to be the set of all pairs (x, y) for which the given formula yields a well defined real number.

Finding and Graphing the Domain

- Find and graph the domain of $f(x, y)=\frac{\sqrt{x+y+1}}{x-1}$.

The domain of $f(x, y)=\frac{\sqrt{x+y+1}}{x-1}$ is specified by enforcing the following conditions:

- $x+y+1 \geq 0$, giving $y \geq-x-1$;
- $x-1 \neq 0$, giving $x \neq 1$.

Thus, the domain is $\mathcal{D}=\{(x, y)$: $y \geq-x-1$ and $x \neq 1\}$.

Another Example of a Domain

- Find and graph the domain of $f(x, y)=x \ln \left(y^{2}-x\right)$.

The domain of $f(x, y)=x \ln \left(y^{2}-x\right)$ is specified by enforcing the following condition:

$$
y^{2}-x>0, \text { giving } y^{2}>x
$$

Thus, the domain is

$$
\mathcal{D}=\left\{(x, y): y^{2}>x\right\}
$$

A Third Example of a Domain

- Find and graph the domain of $f(x, y)=\sqrt{9-x^{2}-y^{2}}$.

The domain of $f(x, y)=\sqrt{9-x^{2}-y^{2}}$ is specified by enforcing the following condition:

$$
\begin{aligned}
& 9-x^{2}-y^{2} \geq 0, \text { giving } \\
& x^{2}+y^{2} \leq 9
\end{aligned}
$$

Thus, the domain is

$$
\mathcal{D}=\left\{(x, y): x^{2}+y^{2} \leq 9\right\}
$$

Graphs of Functions of Two Variables

- If $f(x, y)$ is a function of two variables, with domain \mathcal{D}, the graph of f is the set of points

$$
\left\{(x, y, z) \in \mathbb{R}^{3}: z=f(x, y),(x, y) \in \mathcal{D}\right\}
$$

- The graphs of functions of two variables are 3-dimensional surfaces.

Example: Sketch the graph of the function $f(x, y)=6-3 x-2 y$. $3 x+2 y+z=6$ is the equation of a plane in space.
It intersects the coordinate axes at the points $(2,0,0),(0,3,0),(0,0,6)$.

A Second Graph

- Sketch the graph of the function $f(x, y)=\sqrt{9-x^{2}-y^{2}}$. Rewriting $z=\sqrt{9-x^{2}-y^{2}}$ as $x^{2}+y^{2}+z^{2}=9$, we get the equation of a sphere with center at the origin and radius 3 . But the positive square root allows only the upper hemisphere.

A Third Graph

- Sketch the graph of the function $f(x, y)=4 x^{2}+y^{2}$.

Calculating traces, we see that $z=4 x^{2}+y^{2}$ is the equation of an elliptic paraboloid.

Level Curves

- The level curves of a function $f(x, y)$ of two variables are the curves with equations $f(x, y)=c$, where c is a constant in the range of f.
Example: Sketch the level curves of the function $f(x, y)=6-3 x-2 y$ for $c=-6,0,6,12$.

Level Curves: Second Example

- Sketch the level curves of the function $f(x, y)=\sqrt{9-x^{2}-y^{2}}$ for $c=0,1,2,3$.

Level Curves: Third Example

- Sketch the level curves of the function $f(x, y)=4 x^{2}+y^{2}$ for $c=0,2,4,6$.

Functions of Three Variables

- A function of three variables $f(x, y, z)$ is a rule that assigns to each ordered triple (x, y, z) in a domain \mathcal{D} a unique real number $f(x, y, z)$. Example: What is the domain \mathcal{D} of the function

$$
f(x, y, z)=\ln (z-y)+x y \sin z ?
$$

We must have $z-y>0$, i.e., $z>y$. Thus, the domain of f is the following half-space

$$
\begin{aligned}
& \mathcal{D}=\left\{(x, y, z) \in \mathbb{R}^{3}: z>y\right\} \\
& \text { of } \mathbb{R}^{3}:
\end{aligned}
$$

Subsection 2

Limits and Continuity in Several Variables

Limits

- Suppose f is a function of two variables whose domain \mathcal{D} includes points arbitrarily close to the point (a, b).
We say that the limit of $f(x, y)$ as (x, y) approaches (a, b) is L, written

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L,
$$

if the values of $f(x, y)$ approach the number L as the point (x, y) approaches the point (a, b) along any path that stays within \mathcal{D}.

- The definition implies that, if
- $f(x, y) \rightarrow L_{1}$ as $(x, y) \rightarrow(a, b)$ along a path \mathcal{C}_{1} in \mathcal{D},
- $f(x, y) \rightarrow L_{2}$ as $(x, y) \rightarrow(a, b)$ along a path \mathcal{C}_{2} in \mathcal{D},
- $L_{1} \neq L_{2}$,
then $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ does not exist.

Example of Non-Existence

- Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ does not exist.

If $(x, y) \rightarrow(0,0)$ along the x axis, then $y=0$, whence

$$
\frac{x^{2}-y^{2}}{x^{2}+y^{2}}=\frac{x^{2}}{x^{2}} \rightarrow 1
$$

If $(x, y) \rightarrow(0,0)$ along the y axis, then $x=0$, whence

$$
\frac{x^{2}-y^{2}}{x^{2}+y^{2}}=\frac{-y^{2}}{y^{2}} \rightarrow-1
$$

Since f approaches two different values along two different paths, the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ does not exist.

Example of Non-Existence (Another Point of View)

$$
f(x)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

Another Example of Non-Existence

- Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does not exist.

If $(x, y) \rightarrow(0,0)$ along the x-axis, then $y=0$, whence

$$
\frac{x y}{x^{2}+y^{2}}=\frac{x \cdot 0}{x^{2}+0} \rightarrow 0
$$

If $(x, y) \rightarrow(0,0)$ along the line $y=x$, then

$$
\frac{x y}{x^{2}+y^{2}}=\frac{x^{2}}{x^{2}+x^{2}} \rightarrow \frac{1}{2}
$$

Since f approaches two different values along two different paths, the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does not exist;

Another Example of Non-Existence (Second Point of View)

$$
f(x)=\frac{x y}{x^{2}+y^{2}} .
$$

A More Difficult Example of Non-Existence

- Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist.

If $(x, y) \rightarrow(0,0)$ along any line $y=m x$ through the origin,

$$
\frac{x y^{2}}{x^{2}+y^{4}}=\frac{x m^{2} x^{2}}{x^{2}+m^{4} x^{4}}=\frac{m^{2} x}{1+m^{4} x^{2}} \rightarrow 0
$$

If $(x, y) \rightarrow(0,0)$ along the parabola $x=y^{2}$, then

$$
\frac{x y^{2}}{x^{2}+y^{4}}=\frac{y^{2} y^{2}}{y^{4}+y^{4}}=\frac{y^{4}}{2 y^{4}} \rightarrow \frac{1}{2}
$$

Since f approaches two different values along two different paths, $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist.

More Difficult Example (Second Point of View)

$$
f(x)=\frac{x y^{2}}{x^{2}+y^{4}}
$$

Formal Definition of Limit

- Let f be a function of two variables whose domain \mathcal{D} includes points arbitrarily close to (a, b).
The limit of $f(x, y)$ as (x, y) approaches (a, b) is L, written $\lim _{(x, y)} f(x, y)=L$, if for every number $\epsilon>0$, there exists a $(x, y) \rightarrow(a, b)$ number $\delta>0$, such that

$$
\text { if }(x, y) \in \mathcal{D} \text { and } 0<\sqrt{(x-a)^{2}+(y-b)^{2}}<\delta \text { then }|f(x, y)-L|<\epsilon
$$

Showing Existence of Limits

- Because there are many paths a point may follow to approach a fixed point, showing that a limit exists is rather difficult.
- We show formally that $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2} y}{x^{2}+y^{2}}=0$;

The Limit of the Function $f(x, y)=\frac{3 x^{2} y}{x^{2}+y^{2}}$

- Assume that the distance from $(x, y) \neq(0,0)$ to $(0,0)$ is less than δ, i.e., $0<\sqrt{x^{2}+y^{2}}<\delta$. Since $\frac{x^{2}}{x^{2}+y^{2}} \leq \frac{x^{2}}{x^{2}}=1$, we obtain

$$
\left|\frac{3 x^{2} y}{x^{2}+y^{2}}-0\right|=\frac{3 x^{2}|y|}{x^{2}+y^{2}} \leq 3|y|=3 \sqrt{y^{2}} \leq 3 \sqrt{x^{2}+y^{2}} .
$$

Thus, we have that the distance of $f(x, y)$ from 0 is

$$
\left|\frac{3 x^{2} y}{x^{2}+y^{2}}-0\right| \leq 3 \sqrt{x^{2}+y^{2}}<3 \delta
$$

This shows that we can make $|f(x, y)-0|<\epsilon$ (i.e., arbitrarily small) by taking $0<\sqrt{x^{2}+y^{2}}<\delta=\frac{\epsilon}{3}$ (i.e., (x, y) sufficiently close to
$(0,0)$) and verifies that $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2} y}{x^{2}+y^{2}}=0$.

Limit Laws

- Assume that $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ and $\lim _{(x, y) \rightarrow(a, b)} g(x, y)$ exist. Then:
(i) Sum Law:

$$
\lim _{(x, y) \rightarrow(a, b)}(f(x, y)+g(x, y))=\lim _{(x, y) \rightarrow(a, b)} f(x, y)+\lim _{(x, y) \rightarrow(a, b)} g(x, y)
$$

(ii) Constant Multiple Law: For any number k,

$$
\lim _{(x, y) \rightarrow(a, b)} k f(x, y)=k \lim _{(x, y) \rightarrow(a, b)} f(x, y) .
$$

(iii) Product Law:

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y) g(x, y)=\left(\lim _{(x, y) \rightarrow(a, b)} f(x, y)\right)\left(\lim _{(x, y) \rightarrow(a, b)} g(x, y)\right) .
$$

(iv) Quotient Law: If $\lim _{(x, y) \rightarrow(a, b)} g(x, y) \neq 0$, then

$$
\lim _{(x, y) \rightarrow(a, b)} \frac{f(x, y)}{g(x, y)}=\frac{\lim _{(x, y) \rightarrow(a, b)} f(x, y)}{\lim _{(x, y) \rightarrow(a, b)} g(x, y)}
$$

Continuity

- A function f of two variables is called continuous at (a, b) if

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)
$$

- A function f is continuous on \mathcal{D} if it is continuous at all (a, b) in \mathcal{D}. Examples:
- $f(x, y)=x^{2} y^{3}-x^{3} y^{2}+3 x+2 y$ is continuous on \mathbb{R}^{2} because it is a polynomial.
- $f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ is continuous at all $(a, b) \neq(0,0)$ as a rational function defined, for all $(a, b) \neq(0,0)$. It is discontinuous at $(0,0)$, since it is not defined at $(0,0)$.
- $f(x, y)=\left\{\begin{array}{ll}\frac{3 x^{2} y}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{array}\right.$ is continuous at all
$(a, b) \neq(0,0)$ as a rational function defined there. It is also continuous at $(a, b)=(0,0)$, since $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0=f(0,0)$.

Evaluating Limits by Substitution

- Show that $f(x, y)=\frac{3 x+y}{x^{2}+y^{2}+1}$ is continuous.

Then evaluate $\lim _{(x, y) \rightarrow(1,2)} f(x, y)$.
The function $f(x, y)$ is continuous at all points (a, b) because it is a rational function whose denominator $Q(x, y)=x^{2}+y^{2}+1$ is never zero.

Therefore, we can evaluate the limit by substitution:

$$
\lim _{(x, y) \rightarrow(1,2)} \frac{3 x+y}{x^{2}+y^{2}+1}=f(1,2)=\frac{3 \cdot 1+2}{1^{2}+2^{2}+1}=\frac{5}{6} .
$$

Product Functions

- Evaluate $\lim _{(x, y) \rightarrow(3,0)} x^{3} \frac{\sin y}{y}$.

The limit is equal to a product of limits:

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(3,0)} x^{3} \frac{\sin y}{y} & =\left(\lim _{(x, y) \rightarrow(3,0)} x^{3}\right)\left(\lim _{(x, y) \rightarrow(3,0)} \frac{\sin y}{y}\right) \\
& =3^{3} \cdot 1=27 .
\end{aligned}
$$

A Composite of Continuous Functions Is Continuous

- If
- $f(x, y)$ is continuous at (a, b),
- $G(u)$ is continuous at $c=f(a, b)$,
then the composite function $G(f(x, y))$ is continuous at (a, b).
Example: Write $H(x, y)=e^{-x^{2}+2 y}$ as a composite function and evaluate $\lim _{(x, y) \rightarrow(1,2)} H(x, y)$.
We have $H(x, y)=G \circ f$, where
- $G(u)=e^{u}$;
- $f(x, y)=-x^{2}+2 y$.

Both f and G are continuous. So H is also continuous. This allows computing the limit as follows:

$$
\lim _{(x, y) \rightarrow(1,2)} H(x, y)=\lim _{(x, y) \rightarrow(1,2)} e^{-x^{2}+2 y}=e^{-(1)^{2}+2 \cdot 2}=e^{3} .
$$

Subsection 3

Partial Derivatives

Partial Derivative With Respect to x

- If f is a function of x and y, by keeping y constant, say $y=b$, we can consider a function of a single variable x :

$$
g(x)=f(x, b)
$$

- If g has a derivative at $x=a$, we call it the partial derivative of f with respect to x at (a, b) and denote it by $f_{x}(a, b)$.
- Thus, $f_{x}(a, b)=g^{\prime}(a)$, where $g(x)=f(x, b)$.
- More formally, the partial derivative f_{x} of $f(x, y)$ is the function

$$
f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
$$

- Sometimes we write $f_{x}(x, y)=\frac{\partial f}{\partial x}=D_{1} f=D_{x} f$.

Partial Derivative With Respect to y

- If f is a function of x and y, by keeping x constant, say $x=a$, we can consider a function of a single variable y :

$$
h(y)=f(a, y)
$$

- If h has a derivative at $y=b$, we call it the partial derivative of f with respect to y at (a, b) and denote it by $f_{y}(a, b)$.
- Thus, $f_{y}(a, b)=h^{\prime}(b)$, where $h(y)=f(a, y)$.
- More formally, the partial derivative f_{y} of $f(x, y)$ is the function

$$
f_{y}(x, y)=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
$$

- Sometimes we write $f_{y}(x, y)=\frac{\partial f}{\partial y}=D_{2} f=D_{y} f$.

Computing the Partials

- To find f_{x} regard y as a constant and differentiate with respect to x. Example: If $f(x, y)=x^{3}+x^{2} y^{3}-2 y^{2}$, then $f_{x}(x, y)=3 x^{2}+2 x y^{3}$ and $f_{x}(2,1)=3 \cdot 2^{2}+2 \cdot 2 \cdot 1^{3}=16$.
- To find f_{y} regard x as a constant and differentiate with respect to y. Example: If $f(x, y)=x^{3}+x^{2} y^{3}-2 y^{2}$, then $f_{y}(x, y)=3 x^{2} y^{2}-4 y$ and $f_{y}(2,1)=3 \cdot 2^{2} \cdot 1^{2}-4 \cdot 1=8$.

Another Example of Partials

- Let $f(x, y)=4-x^{2}-2 y^{2}$.

Then $f_{x}(x, y)=-2 x$ and $f_{x}(1,1)=-2$.
Moreover, $f_{y}(x, y)=-4 y$ and $f_{y}(1,1)=-4$.

A Third Example of Partials

- Let $f(x, y)=\sin \left(\frac{x}{1+y}\right)$.

Then $\frac{\partial f}{\partial x}=\cos \left(\frac{x}{1+y}\right) \cdot \frac{\partial}{\partial x}\left(\frac{x}{1+y}\right)=\cos \left(\frac{x}{1+y}\right) \cdot \frac{1}{1+y}$ and $\frac{\partial f}{\partial y}=\cos \left(\frac{x}{1+y}\right) \cdot \frac{\partial}{\partial y}\left(\frac{x}{1+y}\right)=-\cos \left(\frac{x}{1+y}\right) \cdot \frac{x}{(1+y)^{2}}$.

Implicit Partial Differentiation

- Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if z is defined implicitly as a function of x, y by

$$
x^{3}+y^{3}+z^{3}+6 x y z=1
$$

Take partials with respect to $x: \frac{\partial}{\partial x}\left(x^{3}+y^{3}+z^{3}+6 x y z\right)=\frac{\partial(1)}{\partial x}$.
Thus, we get $3 x^{2}+3 z^{2} \frac{\partial z}{\partial x}+6 y\left(z+x \frac{\partial z}{\partial x}\right)=0$. To solve for $\frac{\partial z}{\partial x}$, we separate $\left(3 z^{2}+6 x y\right) \frac{\partial z}{\partial x}=-3 x^{2}-6 y z$ and, therefore,

$$
\frac{\partial z}{\partial x}=-\frac{x^{2}+2 y z}{z^{2}+2 x y}
$$

- Do similar work for $\frac{\partial z}{\partial y}$.

Answer: $\frac{\partial z}{\partial y}=-\frac{y^{2}+2 x z}{z^{2}+2 x y}$.

Second Order Partial Derivatives

- For a function f of two variables x, y it is possible to consider four second-order partial derivatives:
- $\left(f_{x}\right)_{x}=f_{x x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}$
- $\left(f_{x}\right)_{y}=f_{x y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}$
- $\left(f_{y}\right)_{x}=f_{y x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y}$
- $\left(f_{y}\right)_{y}=f_{y y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}$

Example: Calculate all four second order derivatives of $f(x, y)=x^{3}+x^{2} y^{3}-2 y^{2}$.

- $f_{x}=\frac{\partial f}{\partial x}=3 x^{2}+2 x y^{3}$ and $f_{y}=\frac{\partial f}{\partial y}=3 x^{2} y^{2}-4 y$.
- $f_{x x}=\frac{\partial^{2} f}{\partial x^{2}}=6 x+2 y^{3}$ and $f_{x y}=\frac{\partial^{2} f}{\partial y \partial x}=6 x y^{2}$.
- $f_{y x}=\frac{\partial^{2} f}{\partial x \partial y}=6 x y^{2}$ and $f_{y y}=\frac{\partial^{2} f}{\partial y^{2}}=6 x^{2} y-4$.

Note that $f_{x y}=f_{y x}$.

Clairaut's Theorem

Clairaut's Theorem

If f is defined on a disk \mathcal{D} containing the point (a, b) and the partial derivatives $f_{x y}$ and $f_{y x}$ are both continuous on \mathcal{D}, then

$$
f_{x y}(a, b)=f_{y x}(a, b) .
$$

Example: Show that, if $f(x, y)=x \sin (x+2 y)$, then $f_{x y}=f_{y x}$.
For the first-order partials, we have

$$
f_{x}=\sin (x+2 y)+x \cos (x+2 y), \quad f_{y}=2 x \cos (x+2 y)
$$

Therefore, we obtain

$$
f_{x y}=2 \cos (x+2 y)-2 x \sin (x+2 y),
$$

and

$$
f_{y x}=2 \cos (x+2 y)-2 x \sin (x+2 y) .
$$

Verifying Clairaut's Theorem

- If $W(T, U)=e^{U / T}$, verify that $\frac{\partial^{2} W}{\partial U \partial T}=\frac{\partial^{2} W}{\partial T \partial U}$.

$$
\begin{aligned}
\frac{\partial W}{\partial T} & =e^{U / T} \frac{\partial}{\partial T}\left(\frac{U}{T}\right)=-\frac{U}{T^{2}} e^{U / T} \\
\frac{\partial W}{\partial U} & =e^{U / T} \frac{\partial}{\partial U}\left(\frac{U}{T}\right)=\frac{1}{T} e^{U / T} ; \\
\frac{\partial^{2} W}{\partial U \partial T} & =\frac{\partial}{\partial U}\left(-\frac{U}{T^{2}}\right) e^{U / T}+\left(-\frac{U}{T^{2}}\right) \frac{\partial}{\partial U}\left(e^{U / T}\right) \\
& =-\frac{1}{T^{2}} e^{U / T}-\frac{U}{T^{3}} e^{U / T} ; \\
\frac{\partial^{2} W}{\partial T \partial U} & =\frac{\partial}{\partial T}\left(\frac{1}{T}\right) e^{U / T}+\frac{1}{T} \frac{\partial}{\partial T}\left(e^{U / T}\right) \\
& =-\frac{1}{T^{2}} e^{U / T}-\frac{U}{T^{3}} e^{U / T}
\end{aligned}
$$

Using Clairaut's Theorem

- Although Clairaut's Theorem is stated for $f_{x y}$ and $f_{y x}$, it implies more generally that partial differentiation may be carried out in any order, provided that the derivatives in question are continuous.
Example: Calculate the partial derivative $f_{z z w x}$, where $f(x, y, z, w)=x^{3} w^{2} z^{2}+\sin \left(\frac{x y}{z^{2}}\right)$.
We differentiate with respect to w first:

$$
\frac{\partial}{\partial w}\left(x^{3} w^{2} z^{2}+\sin \left(\frac{x y}{z^{2}}\right)\right)=2 x^{3} w z^{2}
$$

Next, differentiate twice with respect to z and once with respect to x :

$$
\begin{aligned}
f_{w z} & =\frac{\partial}{\partial z}\left(2 x^{3} w z^{2}\right)=4 x^{3} w z \\
f_{w z z} & =\frac{\partial}{\partial z}\left(4 x^{3} w z\right)=4 x^{3} w \\
f_{w z z x} & =\frac{\partial}{\partial x}\left(4 x^{3} w\right)=12 x^{2} w
\end{aligned}
$$

We conclude that $f_{z z w x}=f_{w z z x}=12 x^{2} w$.

Partial Differential Equations (PDEs)

- Verify that $f(x, y)=e^{x} \sin y$ is a solution of Laplace's partial differential equation $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0$.

We have

$$
f_{x}=e^{x} \sin y, \quad f_{y}=e^{x} \cos y
$$

$$
f_{x x}=e^{x} \sin y, \quad f_{y y}=-e^{x} \sin y
$$

Thus,

$$
f_{x x}+f_{y y}=0
$$

Partial Differential Equations (PDEs)

- Verify that $f(x, t)=\sin (x-a t)$ is a solution of the wave partial differential equation $\frac{\partial^{2} f}{\partial t^{2}}=a^{2} \frac{\partial^{2} f}{\partial x^{2}}$.

$$
\begin{aligned}
\frac{\partial f}{\partial t} & =-a \cos (x-a t), \\
\frac{\partial f}{\partial x} & =\cos (x-a t), \\
\frac{\partial^{2} f}{\partial t^{2}} & =-a^{2} \sin (x-a t), \\
\frac{\partial^{2} f}{\partial x^{2}} & =-\sin (x-a t) . \\
\text { Thus, } \frac{\partial^{2} f}{\partial t^{2}} & =a^{2} \frac{\partial^{2} f}{\partial x^{2}} .
\end{aligned}
$$

Subsection 4

Differentiability and Tangent Planes

Tangent Lines and Linear Approximations

- Consider the function $f(x)=\sqrt{x}$.

Calculate $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ and $f^{\prime}(4)=\frac{1}{4}$. Thus, the equation of the tangent line to f at $x=4$ is

$$
y-2=\frac{1}{4}(x-4) \quad \text { or } \quad y=\frac{1}{4} x+1
$$

- Very close to $x=4, y=\sqrt{x}$ can be very accurately approximated by $y=\frac{1}{4} x+1$.
Therefore, e.g., $1.994993734=\sqrt{3.98} \approx \frac{1}{4} \cdot 3.98+1=1.995$.

Tangent Planes and Linear Approximations

- Consider $f(x, y)$ with continuous partial derivatives.
- An equation of the tangent plane to the surface $z=f(x, y)$ at the point $P=(a, b, c)$, where $c=f(a, b)$, is

$$
z-f(a, b)=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

Example: Consider the elliptic paraboloid $f(x, y)=2 x^{2}+y^{2}$. Since $f_{x}(x, y)=4 x$ and $f_{y}(x, y)=2 y$, we have $f_{x}(1,1)=4$ and $f_{y}(1,1)=2$. Therefore, the plane

$$
\begin{aligned}
z & -3 \\
& =4(x-1)+2(y-1)
\end{aligned}
$$

is the tangent plane to the paraboloid at $(1,1,3)$.

Linearization of f at (a, b)

- Given a function $f(x, y)$ with continuous partial derivatives f_{x}, f_{y}, an equation of the tangent plane to $f(x, y)$ at $(a, b, f(a, b))$ is given by

$$
z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

- The linear function whose graph is this tangent plane

$$
L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

is called the linearization of f at (a, b). The approximation $f(x, y) \approx f(a, b)+$ $f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)$ is called the linear approximation of f at (a, b). Example: We saw for $f(x, y)=2 x^{2}+y^{2}$, that $f(x, y) \approx 3+4(x-1)+2(y-1)$ near $(1,1,3)$.

Another Example of a Linearization

- Consider the function $f(x, y)=x e^{x y}$.

We have $f_{x}(x, y)=e^{x y}+x y e^{x y}$ and $f_{y}(x, y)=x^{2} e^{x y}$.
Thus, $f_{x}(1,0)=1$ and $f_{y}(1,0)=1$.
So the linearization of $f(x, y)$ at $(1,0,1)$ is

$$
f(x, y) \approx 1+(x-1)+(y-0)=x+y
$$

Differentiability

- Assume that $f(x, y)$ is defined in a disk \mathcal{D} containing (a, b) and that $f_{x}(a, b)$ and $f_{y}(a, b)$ exist.
$f(x, y)$ is differentiable at (a, b) if it is locally linear, i.e.,

$$
f(x, y)=L(x, y)+e(x, y)
$$

where $e(x, y)$ satisfies $\lim _{(x, y) \rightarrow(a, b)} \frac{e(x, y)}{\sqrt{(x-a)^{2}+(y-b)^{2}}}=0$.
In this case, the tangent plane to the graph at $(a, b, f(a, b))$ is the plane with equation

$$
z=L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

- If $f(x, y)$ is differentiable at all points in a domain \mathcal{D}, we say that $f(x, y)$ is differentiable on \mathcal{D}.

Criterion for Differentiability

- The following theorem provides a criterion for differentiability and shows that all familiar functions are differentiable on their domains.

Criterion for Differentiability

If $f_{x}(x, y)$ and $f_{y}(x, y)$ exist and are continuous on an open disk \mathcal{D}, then $f(x, y)$ is differentiable on \mathcal{D}.

Example: Show that $f(x, y)=5 x+4 y^{2}$ is differentiable and find the equation of the tangent plane at $(a, b)=(2,1)$.
The partial derivatives exist and are continuous functions:
$f_{x}(x, y)=5, f_{y}(x, y)=8 y$. Therefore, $f(x, y)$ is differentiable for all (x, y), by the criterion.
To find the tangent plane, we evaluate the partial derivatives at $(2,1)$: $f(2,1)=14, f_{x}(2,1)=5$, and $f_{y}(2,1)=8$. The linearization at $(2,1)$ is $L(x, y)=14+5(x-2)+8(y-1)=-4+5 x+8 y$. Thus, the tangent plane through $P=(2,1,14)$ has equation $z=-4+5 x+8 y$.

Tangent Plane

- Find a tangent plane of the graph of $f(x, y)=x y^{3}+x^{2}$ at $(2,-2)$. The partial derivatives are continuous, so $f(x, y)$ is differentiable:

$$
\begin{array}{ll}
f_{x}(x, y)=y^{3}+2 x, & f_{x}(2,-2)=-4 \\
f_{y}(x, y)=3 x y^{2}, & f_{y}(2,-2)=24
\end{array}
$$

Since $f(2,-2)=-12$, the tangent plane through $(2,-2,-12)$ has equation

$$
z=-12-4(x-2)+24(y+2)
$$

This can be rewritten as $z=44-4 x+$ $24 y$.

Differentials

- For $z=f(x, y)$ a differentiable function of two variables, the differentials $d x, d y$ are independent variables, i.e., can be assigned any values.
- The differential $d z$, also called the total differential, is defined by

$$
d z=f_{x}(x, y) d x+f_{y}(x, y) d y=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y
$$

- If we set $d x=x-a$ and $d y=y-b$ in the formula for the linear approximation of f, we have

$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)=f(a, b)+d z
$$

Example: Consider $f(x, y)=x^{2}+3 x y-y^{2}$. Then $d z=f_{x}(x, y) d x+f_{y}(x, y) d y=(2 x+3 y) d x+(3 x-2 y) d y$. If x changes from 2 to 2.05 and y changes from 3 to 2.96 , then $d x=0.05, d y=-0.04$ and $(a, b)=(2,3)$, whence $d z=f_{x}(2,3) \cdot 0.05+f_{y}(2,3) \cdot(-0.04)=0.65$ and $f(2.05,2.96) \approx f(2,3)+d z=13+0.65=13.65$.

Using Differentials for Error Estimation

- If the base radius and the height of a right circular cone are measured as 10 cm and 25 cm , respectively, with possible maximum error 0.1 cm in each, estimate the max possible error in calculating the volume of the cone, given that the volume formula is $V(r, h)=\frac{1}{3} \pi r^{2} h$.
We have $d V=V_{r} d r+V_{h} d h=\frac{2}{3} \pi r h d r+\frac{1}{3} \pi r^{2} d h$.
Therefore

$$
\begin{aligned}
d V & =\frac{2}{3} \pi \cdot 10 \cdot 25 \cdot(\pm 0.1)+\frac{1}{3} \pi \cdot 10^{2} \cdot(\pm 0.1) \\
& =\left(\frac{500}{3} \pi+\frac{100}{3} \pi\right) \cdot(\pm 0.1) \\
& = \pm 20 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Application: Change in Body Mass Index (BMI)

- A person's BMI is $I=\frac{W}{H^{2}}$, where W is the body weight (in kilograms) and H is the body height (in meters). Estimate the change in a child's BMI if (W, H) changes from $(40,1.45)$ to $(41.5,1.47)$.
We have

$$
\frac{\partial I}{\partial W}=\frac{1}{H^{2}}, \quad \frac{\partial I}{\partial H}=-\frac{2 W}{H^{3}} .
$$

At $(W, H)=(40,1.45)$, we get

$$
\left.\frac{\partial I}{\partial W}\right|_{(40,1.45)}=\frac{1}{1.45^{2}},\left.\quad \frac{\partial I}{\partial H}\right|_{(40,1.45)}=-\frac{2 \cdot 40}{1.45^{3}} .
$$

The differential $d l \approx \frac{1}{1.45^{2}} d W-\frac{80}{1.45^{3}} d H$. If (W, H) changes from $(40,1.45)$ to $(41.5,1.47)$, then $d W=1.5$ and $d H=0.02$. Therefore,

$$
\Delta I \approx d I=\frac{1}{1.45^{2}} d W-\frac{2 \cdot 40}{1.45^{3}} d H=\frac{1}{1.45^{2}} \cdot 1.5-\frac{80}{1.45^{3}} \cdot 0.02
$$

Subsection 5

The Gradient and Directional Derivatives

The Gradient Vector

- The gradient of a function $f(x, y)$ at a point $P=(a, b)$ is the vector

$$
\nabla f_{P}=\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle
$$

In three variables, if $P=(a, b, c)$,

$$
\nabla f_{P}=\left\langle f_{x}(a, b, c), f_{y}(a, b, c), f_{z}(a, b, c)\right\rangle .
$$

- We also write $\nabla f_{(a, b)}$ or $\nabla f(a, b)$ for the gradient. Sometimes, we omit reference to the point P and write

$$
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle .
$$

The gradient ∇f assigns a vector ∇f_{P} to each point in the domain of f.

Examples

- Let $f(x, y)=x^{2}+y^{2}$. Calculate the gradient ∇f and compute ∇f_{P} at $P=(1,1)$.
The partial derivatives are $f_{x}(x, y)=2 x$ and $f_{y}(x, y)=2 y$. So $\nabla f=\langle 2 x, 2 y\rangle$. At $(1,1), \nabla f_{P}=\nabla f(1,1)=\langle 2,2\rangle$.
- If $f(x, y)=\sin x+e^{x y}$, compute ∇f.

$$
\nabla f(x, y)=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle=\left\langle\cos x+y e^{x y}, x e^{x y}\right\rangle
$$

- Calculate $\nabla f_{(3,-2,4)}$, where $f(x, y, z)=z e^{2 x+3 y}$.

The partial derivatives and the gradient are $\frac{\partial f}{\partial x}=2 z e^{2 x+3 y}$, $\frac{\partial f}{\partial y}=3 z e^{2 x+3 y}$, $\frac{\partial f}{\partial z}=e^{2 x+3 y}$. So $\nabla f=\left\langle 2 z e^{2 x+3 y}, 3 z e^{2 x+3 y}, e^{2 x+3 y}\right\rangle$. Finally, $\nabla f_{(3,-2,4)}=\langle 8,12,1\rangle$.

Properties of the Gradient Vector

- If $f(x, y, z)$ and $g(x, y, z)$ are differentiable and c is a constant, then:
(i) $\nabla(f+g)=\nabla f+\nabla g \quad$ (Sum Rule)
(ii) $\nabla(c f)=c \nabla f \quad$ (Constant Multiple Rule)
(iii) $\nabla(f g)=f \nabla g+g \nabla f \quad$ (Product Rule)
(iv) If $F(t)$ is a differentiable function of one variable, then

$$
\nabla(F(f(x, y, z)))=F^{\prime}(f(x, y, z)) \nabla f \quad(\text { Chain Rule }) .
$$

Using the Chain Rule

- Find the gradient of

$$
g(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{8} .
$$

The function g is a composite $g(x, y, z)=F(f(x, y, z))$, with:

- $F(t)=t^{8}$;
- $f(x, y, z)=x^{2}+y^{2}+z^{2}$.

Now we have

$$
\begin{aligned}
\nabla g & =\nabla\left(\left(x^{2}+y^{2}+z^{2}\right)^{8}\right) \\
& =8\left(x^{2}+y^{2}+z^{2}\right)^{7} \nabla\left(x^{2}+y^{2}+z^{2}\right) \\
& =8\left(x^{2}+y^{2}+z^{2}\right)^{7}\langle 2 x, 2 y, 2 z\rangle \\
& =16\left(x^{2}+y^{2}+z^{2}\right)^{7}\langle x, y, z\rangle .
\end{aligned}
$$

Chain Rule for Paths

- If $z=f(x, y)$ is a differentiable function of x and y, where $x=x(t)$ and $y=y(t)$ are differentiable functions of t, then $z=f(x(t), y(t))$ is a differentiable function of t and

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\nabla f \cdot\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle
$$

- Alternatve formulation: If $f(x, y)$ is a differentiable function of x and y and $\boldsymbol{c}(t)=\langle x(t), y(t)\rangle$ a differentiable function of t, then

$$
\frac{d}{d t} f(\boldsymbol{c}(t))=\nabla f_{\boldsymbol{C}(t)} \cdot \boldsymbol{c}^{\prime}(t)
$$

also written

$$
\frac{d}{d t} f(\boldsymbol{c}(t))=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle \cdot\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle
$$

Applying The Chain Rule for Paths

- Suppose that $f(x, y)=x^{2} y+3 x y^{4}$, where $x=\sin 2 t$ and $y=\cos t$. Compute $\frac{d z}{d t}$ at $t=0$.
We have

$$
\frac{\partial f}{\partial x}=2 x y+3 y^{4}, \frac{\partial f}{\partial y}=x^{2}+12 x y^{3}, \frac{d x}{d t}=2 \cos 2 t, \frac{d y}{d t}=-\sin t
$$

At $t=0, x=\sin 0=0, y=\cos 0=1$, whence

$$
\frac{\partial f}{\partial x}=3, \quad \frac{\partial f}{\partial y}=0, \quad \frac{d x}{d t}=2, \quad \frac{d y}{d t}=0
$$

Since $\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}$, we get, $\left.\frac{d z}{d t}\right|_{t=0}=3 \cdot 2+0 \cdot 0=6$.

Application

- The pressure P in kilopascals, the volume V in liters and the temperature T in kelvins of a mole of an ideal gas are related by the equation $P V=8.31 T$. Find the rate at which the pressure is changing when the temperature is 300 K and increasing at a rate of $0.1 \mathrm{~K} / \mathrm{sec}$ and the volume is 100 L and increasing at a rate of 0.2 L/sec.
Note, first, that $P=\frac{8.31 T}{V}$.
Thus, we have

$$
\frac{\partial P}{\partial T}=\frac{8.31}{V}, \frac{\partial P}{\partial V}=-\frac{8.31 T}{V^{2}}, \frac{d T}{d t}=0.1, \frac{d V}{d t}=0.2
$$

Moreover, since $T=300$ and $V=100$,

$$
\frac{\partial P}{\partial T}=\frac{8.31}{100}, \quad \frac{\partial P}{\partial V}=-\frac{8.31 \cdot 300}{100^{2}}
$$

Therefore, $\frac{d P}{d t}=\frac{8.31}{100} \cdot 0.1+\left(-\frac{8.31 \cdot 300}{100^{2}}\right) \cdot 0.2 \mathrm{kPa} / \mathrm{sec}$.

The Chain Rule for Paths in Three Variables

- In general, if $f\left(x_{1}, \ldots, x_{n}\right)$ is a differentiable function of n variables and $\boldsymbol{c}(t)=\left\langle x_{1}(t), \ldots, x_{n}(t)\right\rangle$ is a differentiable path, then

$$
\frac{d}{d t} f(\boldsymbol{c}(t))=\nabla f \cdot \boldsymbol{c}^{\prime}(t)=\frac{\partial f}{\partial x_{1}} \frac{d x_{1}}{d t}+\frac{\partial f}{\partial x_{2}} \frac{d x_{2}}{d t}+\cdots+\frac{\partial f}{\partial x_{n}} \frac{d x_{n}}{d t} .
$$

Example: Calculate $\left.\frac{d}{d t} f(\boldsymbol{c}(t))\right|_{t=\pi / 2}$, where $f(x, y, z)=x y+z^{2}$ and $\boldsymbol{c}(t)=\langle\cos t, \sin t, t\rangle$.
We have $\boldsymbol{c}\left(\frac{\pi}{2}\right)=\left\langle\cos \frac{\pi}{2}, \sin \frac{\pi}{2}, \frac{\pi}{2}\right\rangle=\left\langle 0,1, \frac{\pi}{2}\right\rangle$.
Compute the gradient: $\nabla f=\langle y, x, 2 z\rangle$ and $\nabla f_{\boldsymbol{C}\left(0,1, \frac{\pi}{2}\right)}=\langle 1,0, \pi\rangle$.
Then compute the tangent vector:

$$
\boldsymbol{c}^{\prime}(t)=\langle-\sin t, \cos t, 1\rangle, \quad \boldsymbol{c}^{\prime}\left(\frac{\pi}{2}\right)=\langle-1,0,1\rangle
$$

By the Chain Rule,

$$
\frac{d}{d t}\left(\left.f(\boldsymbol{c}(t))\right|_{t=\pi / 2}=\nabla f_{\boldsymbol{C}\left(\frac{\pi}{2}\right)} \cdot \boldsymbol{c}^{\prime}\left(\frac{\pi}{2}\right)=\langle 1,0, \pi\rangle \cdot\langle-1,0,1\rangle=\pi-1\right.
$$

Application

- The temperature at (x, y) is $T(x, y)=20+10 e^{-0.3\left(x^{2}+y^{2}\right)}{ }^{\circ} \mathrm{C}$. A bug carries a tiny thermometer along the path $\boldsymbol{c}(t)=\langle\cos (t-2), \sin 2 t\rangle$ (t in seconds). How fast is the temperature changing at time t ?

$$
\begin{aligned}
\frac{d T}{d t} & =\nabla T_{\boldsymbol{C}(t)} \cdot \boldsymbol{c}^{\prime}(t) ; \\
\nabla T_{\boldsymbol{C}(t)} & =\left\langle-6 x e^{-0.3\left(x^{2}+y^{2}\right)},-6 y e^{-0.3\left(x^{2}+y^{2}\right)}\right\rangle \boldsymbol{C}(t) \\
& =\left\langle-6 \cos (t-2) e^{-0.3\left(\cos ^{2}(t-2)+\sin ^{2}(2 t)\right)},\right. \\
& \left.\quad-6 \sin (2 t) e^{-0.3\left(\cos ^{2}(t-2)+\sin ^{2}(2 t)\right)}\right\rangle ; \\
\boldsymbol{c}^{\prime}(t) & =\langle-\sin (t-2), 2 \cos (2 t)\rangle .
\end{aligned}
$$

So, we get

$$
\begin{aligned}
& \frac{d T}{d t}=6 \sin (t-2) \cos (t-2) e^{-0.3\left(\cos ^{2}(t-2)+\sin ^{2}(2 t)\right)} \\
&-12 \sin (2 t) \cos (2 t) e^{-0.3\left(\cos ^{2}(t-2)+\sin ^{2}(2 t)\right)}
\end{aligned}
$$

Directional Derivatives

- The directional derivative of f at $P=(a, b)$ in the direction of a unit vector $\mathbf{u}=\langle h, k\rangle$ is

$$
D_{\mathbf{u}} f(a, b)=\lim _{t \rightarrow 0} \frac{f(a+t h, b+t k)-f(a, b)}{t}
$$

Computing Directional Derivatives Using Partials

Theorem

If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u}=\langle h, k\rangle$ and

$$
D_{\mathbf{u}} f(x, y)=f_{x}(x, y) h+f_{y}(x, y) k=\nabla f . \boldsymbol{u} .
$$

Example: What is the directional derivative $D_{\mathbf{u}} f(x, y)$ of $f(x, y)=x^{3}-3 x y+4 y^{2}$ in the direction of the unit vector with angle $\theta=\frac{\pi}{6}$? What is $D_{\mathbf{u}} f(1,2)$?
The unit vector \mathbf{u} with direction $\theta=\frac{\pi}{6}$ is
$\mathbf{u}=\langle h, k\rangle=\left\langle 1 \cos \frac{\pi}{6}, 1 \sin \frac{\pi}{6}\right\rangle=\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle$. Moreover, we have $\frac{\partial f}{\partial x}=3 x^{2}-3 y$ and $\frac{\partial f}{\partial y}=-3 x+8 y$. Therefore,

$$
D_{\mathbf{u}} f(x, y)=\frac{\partial f}{\partial x} h+\frac{\partial f}{\partial y} k=\frac{\sqrt{3}}{2}\left(3 x^{2}-3 y\right)+\frac{1}{2}(-3 x+8 y)
$$

In particular, for $(x, y)=(1,2), D_{\mathbf{u}}(1,2)=-\frac{3 \sqrt{3}}{2}+\frac{13}{2}$.

Graphical Illustration

- The graph of the function $f(x, y)=x^{3}-3 x y+4 y^{2}$.

The plane passing through $(1,2,11)$, with direction $\mathbf{u}=\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle$.
The directional derivative

$$
D_{\mathbf{u}}(1,2)=-\frac{3 \sqrt{3}}{2}+\frac{13}{2}
$$

is the slope of the tangent to the curve of intersection of the surface $z=$ $f(x, y)$ with the plane at $(1,2,11)$.

Directional Derivatives Generalized

- To evaluate directional derivatives, it is convenient to define $D_{\boldsymbol{v}} f(a, b)$ even when $\boldsymbol{v}=\langle h, k\rangle$ is not a unit vector:

$$
D_{\boldsymbol{v}} f(a, b)=\lim _{t \rightarrow 0} \frac{f(a+t h, b+t k)-f(a, b)}{t} .
$$

We call $D_{\boldsymbol{v}} f$ the derivative with respect to \boldsymbol{v}.

- We have

$$
D_{\boldsymbol{v}} f(a, b)=\nabla f(a, b) \cdot \boldsymbol{v}
$$

- It $\boldsymbol{v} \neq \mathbf{0}$, then $\boldsymbol{u}=\frac{\boldsymbol{v}}{\| \boldsymbol{v}} \|$ is the unit vector in the direction of \boldsymbol{v}, and the directional derivative is given by

$$
D_{\boldsymbol{u}} f(P)=\frac{1}{\|\boldsymbol{v}\|} \nabla f_{P} \cdot \boldsymbol{v}
$$

Example

- Let $f(x, y)=x e^{y}, P=(2,-1)$ and $\boldsymbol{v}=\langle 2,3\rangle$.
(a) Calculate $D_{\boldsymbol{v}} f(P)$.
(b) Then calculate the directional derivative in the direction of \boldsymbol{v}.
(a) First compute the gradient at $P=(2,-1)$:

$$
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle=\left\langle e^{y}, x e^{y}\right\rangle \quad \Rightarrow \quad \nabla f_{P}=\nabla f_{(2,-1)}=\left\langle\frac{1}{e}, \frac{2}{e}\right\rangle
$$

Now we get

$$
D_{\boldsymbol{v}} f_{P}=\nabla f_{P} \cdot \boldsymbol{v}=\left\langle\frac{1}{e}, \frac{2}{e}\right\rangle \cdot\langle 2,3\rangle=\frac{8}{e}
$$

(b) The directional derivative is $D_{\boldsymbol{u}} f(P)$, where $\boldsymbol{u}=\frac{\boldsymbol{v}}{\|\boldsymbol{v}\|}$. We get

$$
D_{\boldsymbol{u}} f(P)=\frac{1}{\|\boldsymbol{v}\|} D_{\mathbf{v}} f(P)=\frac{8 / e}{\sqrt{2^{2}+3^{2}}}=\frac{8}{\sqrt{13} e}
$$

Applying $D_{\boldsymbol{u}} f=\nabla f \cdot \boldsymbol{u}$ Directly

- Find the directional derivative of $f(x, y)=x^{2} y^{3}-4 y$ at the point $(2,-1)$ in the direction of the vector $\boldsymbol{v}=2 \boldsymbol{i}+5 \boldsymbol{j}$.
For the gradient vector, we have $\nabla f(x, y)=\left\langle 2 x y^{3}, 3 x^{2} y^{2}-4\right\rangle$ and, hence, $\nabla f(2,-1)=\langle-4,8\rangle$.
The unit vector \boldsymbol{u} in the direction of $\boldsymbol{v}=\langle 2,5\rangle$ is
$\boldsymbol{u}=\frac{\boldsymbol{v}}{\|\boldsymbol{v}\|}=\left\langle\frac{2}{\sqrt{29}}, \frac{5}{\sqrt{29}}\right\rangle$.
Therefore, the directional derivative $D_{\boldsymbol{u}} f(2,-1)$ of f in the direction of \boldsymbol{u} is

$$
D_{\boldsymbol{u}} f(2,-1)=\nabla f(2,-1) \cdot \boldsymbol{u}=\langle-4,8\rangle \cdot\left\langle\frac{2}{\sqrt{29}}, \frac{5}{\sqrt{29}}\right\rangle=\frac{32}{\sqrt{29}}
$$

Applying $D_{\boldsymbol{u}} f=\nabla f \cdot \boldsymbol{u}$ in Three Variables

- If $f(x, y, z)=x \sin y z$, find ∇f and the directional derivative of f at $(1,3,0)$ in the direction of $\boldsymbol{v}=\boldsymbol{i}+2 \boldsymbol{j}-\boldsymbol{k}$.
For the gradient vector, we have
$\nabla f(x, y, z)=\langle\sin y z, x z \cos y z, x y \cos y z\rangle$ and, hence,
$\nabla f(1,3,0)=\langle 0,0,3\rangle$.
The unit vector \boldsymbol{u} in the direction of $\boldsymbol{v}=\langle 1,2,-1\rangle$ is
$\boldsymbol{u}=\frac{\boldsymbol{v}}{\|\boldsymbol{v}\|}=\left\langle\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}},-\frac{1}{\sqrt{6}}\right\rangle$.
Therefore, the directional derivative $D_{\boldsymbol{u}} f(1,3,0)$ of f in the direction of \boldsymbol{u} is

$$
D_{\boldsymbol{u}} f(1,3,0)=\nabla f(1,3,0) \cdot \boldsymbol{u}=\langle 0,0,3\rangle \cdot\left\langle\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}},-\frac{1}{\sqrt{6}}\right\rangle=-\frac{3}{\sqrt{6}} .
$$

Maximum Directional Derivative

Theorem

If f is a differentiable function of two or three variables, the maximum value of $D_{\boldsymbol{u}} f(\mathbf{x})$ is $\|\nabla f(x, y)\|$ and it occurs when \boldsymbol{u} has the same direction as the gradient vector $\nabla f(x, y)$.

Example: Suppose that $f(x, y)=x e^{y}$. Find the rate of change of f at $P=(2,0)$ in the direction from P to $Q=\left(\frac{1}{2}, 2\right)$.
We have $\nabla f(x, y)=\left\langle e^{y}, x e^{y}\right\rangle$, whence $\nabla f(2,0)=\langle 1,2\rangle$. Moreover, $\overrightarrow{P Q}=\left\langle-\frac{3}{2}, 2\right\rangle$, whence the unit vector in the direction of $\overrightarrow{P Q}$ is
$\boldsymbol{u}=\frac{\overrightarrow{P Q}}{\|\overrightarrow{P Q}\|}=\left\langle-\frac{3}{5}, \frac{4}{5}\right\rangle$. Therefore, we get
$D_{\boldsymbol{u}} f(2,0)=\langle 1,2\rangle \cdot\left\langle-\frac{3}{5}, \frac{4}{5}\right\rangle=1$.
According to the Theorem, the max change occurs in the direction of $\nabla f(2,0)=\langle 1,2\rangle$ and equals $\|\nabla f(2,0)\|=\sqrt{5}$.

Example

- Let $f(x, y)=\frac{x^{4}}{y^{2}}$ and $P=(2,1)$. Find the unit vector that points in the direction of maximum rate of increase at P.
The gradient at P points in the direction of maximum rate of increase:

$$
\nabla f=\left\langle\frac{4 x^{3}}{y^{2}},-\frac{2 x^{4}}{y^{3}}\right\rangle \quad \Rightarrow \quad \nabla f_{(2,1)}=\langle 32,-32\rangle
$$

The unit vector in this direction is

$$
\boldsymbol{u}=\frac{\langle 32,-32\rangle}{\|\langle 32,-32\rangle\|}=\frac{\langle 32,-32\rangle}{32 \sqrt{2}}=\left\langle\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right\rangle
$$

Application

- If the temperature at a point (x, y, z) is given by $T(x, y, z)=\frac{80}{1+x^{2}+2 y^{2}+3 z^{2}}$ in degrees Celsius, where x, y, z are in meters, in which direction does the temperature increase the fastest at $(1,1,-2)$ and what is the maximum rate of increase?
We have that $\nabla T(x, y, z)=$
$\left\langle-\frac{160 x}{\left(1+x^{2}+2 y^{2}+3 z^{2}\right)^{2}},-\frac{320 y}{\left(1+x^{2}+2 y^{2}+3 z^{2}\right)^{2}},-\frac{480 z}{\left(1+x^{2}+2 y^{2}+3 z^{2}\right)^{2}}\right\rangle$.
Thus, $\nabla T(1,1,-2)=\left\langle-\frac{5}{8},-\frac{5}{4}, \frac{15}{4}\right\rangle$.
Therefore, the temperature increases the fastest in the direction of the vector $\nabla T(1,1,-2)=\left\langle-\frac{5}{8},-\frac{5}{4}, \frac{15}{4}\right\rangle$ and the fastest rate of increase is

$$
\|\nabla T(1,1,-2)\|=\sqrt{\frac{25}{64}+\frac{25}{16}+\frac{225}{16}}=\frac{\sqrt{25+100+900}}{4}=\frac{5 \sqrt{41}}{8}
$$

Gradient Vectors and Level Surfaces

- Consider a surface \mathcal{S}, with equation $F(x, y, z)=k$.

Let \mathcal{C} be a curve $\boldsymbol{c}(t)=\langle x(t), y(t), z(t)\rangle$ on the surface \mathcal{S}, passing through a point $\boldsymbol{c}\left(t_{0}\right)=\langle a, b, c\rangle$ on \mathcal{C}.

Recall that
$\left.\frac{d F}{d t}\right|_{t=t_{0}}=\nabla F_{\boldsymbol{C}\left(t_{0}\right)} \cdot \boldsymbol{c}^{\prime}\left(t_{0}\right)$.

Therefore, $\nabla F_{\boldsymbol{C}\left(t_{0}\right)}$ is perpendicular to the tangent vector $\boldsymbol{c}^{\prime}\left(t_{0}\right)$ to any curve \mathcal{C} on \mathcal{S} passing through $\boldsymbol{c}\left(t_{0}\right)$.

Tangent Plane to a Level Surface

- We define the tangent plane to the level surface $F(x, y, z)=k$ at $P=(a, b, c)$ as the plane passing through P, with normal vector $\nabla F(a, b, c)$.

This plane has equation

$$
F_{x}(a, b, c)(x-a)+F_{y}(a, b, c)(y-b)+F_{z}(a, b, c)(z-c)=0 .
$$

- Moreover, the normal line to \mathcal{S} at P that passes through P and is perpendicular to the tangent plane has parametric equations

$$
x=a+t F_{x}(a, b, c), y=b+t F_{y}(a, b, c), z=c+t F_{z}(a, b, c)
$$

Finding a Tangent Plane and a Normal Line

- Let us find the equations of the tangent plane and of the normal line at $P=(-2,1,-3)$ to the ellipsoid $\frac{x^{2}}{4}+y^{2}+\frac{z^{2}}{9}=3$;
We consider $F(x, y, z)=\frac{x^{2}}{4}+y^{2}+\frac{z^{2}}{9}$.
We have $F_{x}(x, y, z)=\frac{1}{2} x, F_{y}(x, y, z)=2 y, F_{z}(x, y, z)=\frac{2}{9} z$.
So, $F_{x}(-2,1,-3)=-1, F_{y}(-2,1,-3)=2$ and $F_{z}(-2,1,-3)=-\frac{2}{3}$.
Therefore, the equation of the tangent plane is $-(x+2)+2(y-1)-\frac{2}{3}(z+3)=0$, i.e., $3 x-6 y+2 z+18=0$, and the parametric equations of the normal line are

$$
\left\{\begin{array}{l}
x=-2-t \\
y=1+2 t \\
z=-3-\frac{2}{3} t
\end{array}\right\}
$$

Finding a Normal Vector and a Tangent Plane

- Find an equation of the tangent plane to the surface $4 x^{2}+9 y^{2}-z^{2}=16$ at $P=(2,1,3)$. Let $F(x, y, z)=4 x^{2}+9 y^{2}-z^{2}$. Then $\nabla F=\langle 8 x, 18 y,-2 z\rangle$ and

$$
\nabla F_{P}=\nabla F(2,1,3)=\langle 16,18,-6\rangle
$$

The vector $\langle 16,18,-6\rangle$ is normal to the surface $F(x, y, z)=16$.

So the tangent plane at P has equation

$$
16(x-2)+18(y-1)-6(z-3)=0 \text { or } 16 x+18 y-6 z=32
$$

Subsection 6

The Chain Rule

The Chain Rule

- If $z=f(x, y)$ is a differentiable function of x and y, where $x=g(s, t)$ and $y=h(s, t)$ are differentiable functions of s and t, then

$$
\frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial s}, \quad \frac{\partial f}{\partial t}=\frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t}
$$

Example: If $f(x, y)=e^{x} \sin y, x=s t^{2}, y=s^{2} t$, what are $\frac{\partial f}{\partial s}, \frac{\partial f}{\partial t}$?
We have

$$
\frac{\partial f}{\partial x}=e^{x} \sin y, \quad \frac{\partial f}{\partial y}=e^{x} \cos y
$$

We also have

$$
\frac{\partial x}{\partial s}=t^{2}, \quad \frac{\partial x}{\partial t}=2 s t, \quad \frac{\partial y}{\partial s}=2 s t, \quad \frac{\partial y}{\partial t}=s^{2}
$$

Therefore,

$$
\frac{\partial f}{\partial s}=e^{x} \sin y \cdot t^{2}+e^{x} \cos y \cdot 2 s t, \frac{\partial f}{\partial t}=e^{x} \sin y \cdot 2 s t+e^{x} \cos y \cdot s^{2}
$$

The Chain Rule: General Version

- If f is a differentiable function of the n variables $x_{1}, x_{2}, \ldots, x_{n}$ and each x_{j} is a differentiable function of the m variables $t_{1}, t_{2}, \ldots, t_{m}$, then f is a differentiable function of t_{1}, \ldots, t_{m} and, for all $i=1, \ldots, m$,

$$
\frac{\partial f}{\partial t_{i}}=\frac{\partial f}{\partial x_{1}} \cdot \frac{\partial x_{1}}{\partial t_{i}}+\frac{\partial f}{\partial x_{2}} \cdot \frac{\partial x_{2}}{\partial t_{i}}+\cdots+\frac{\partial f}{\partial x_{n}} \cdot \frac{\partial x_{n}}{\partial t_{i}} .
$$

This may be expressed using the dot product:

$$
\frac{\partial f}{\partial t_{i}}=\left\langle\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right\rangle \cdot\left\langle\frac{\partial x_{1}}{\partial t_{i}}, \frac{\partial x_{2}}{\partial t_{i}}, \ldots, \frac{\partial x_{n}}{\partial t_{i}}\right\rangle .
$$

Using the Chain Rule

- Let $f(x, y, z)=x y+z$. Calculate $\frac{\partial f}{\partial s}$, where $x=s^{2}, y=s t, z=t^{2}$. Compute the primary derivatives.

$$
\frac{\partial f}{\partial x}=y, \quad \frac{\partial f}{\partial y}=x, \quad \frac{\partial f}{\partial z}=1
$$

Next, we get

$$
\frac{\partial x}{\partial s}=2 s, \quad \frac{\partial y}{\partial s}=t, \quad \frac{\partial z}{\partial s}=0
$$

Now apply the Chain Rule:

$$
\begin{aligned}
\frac{\partial f}{\partial s} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial s} \\
& =y \cdot 2 s+x \cdot t+1 \cdot 0 \\
& =(s t) \cdot 2 s+s^{2} \cdot t=3 s^{2} t .
\end{aligned}
$$

Evaluating the Derivative

- If $f=x^{4} y+y^{2} z^{3}, x=r s e^{t}, y=r s^{2} e^{-t}$ and $z=r^{2} s \sin t$, find $\frac{\partial f}{\partial s}$ when $r=2, s=1$ and $t=0$.
Note, first, that for $(r, s, t)=(2,1,0)$, we have $(x, y, z)=(2,2,0)$.
Moreover,

$$
\frac{\partial f}{\partial x}=4 x^{3} y, \quad \frac{\partial f}{\partial y}=x^{4}+2 y z^{3}, \quad \frac{\partial f}{\partial z}=3 y^{2} z^{2}
$$

Thus, for $(r, s, t)=(2,1,0)$, we get $\frac{\partial f}{\partial x}=64, \quad \frac{\partial f}{\partial y}=16, \quad \frac{\partial f}{\partial z}=0$. Furthermore,

$$
\frac{\partial x}{\partial s}=r e^{t}, \quad \frac{\partial y}{\partial s}=2 r s e^{-t}, \quad \frac{\partial z}{\partial s}=r^{2} \sin t
$$

Thus, for $(r, s, t)=(2,1,0)$, we get $\frac{\partial x}{\partial s}=2, \quad \frac{\partial y}{\partial s}=4, \quad \frac{\partial z}{\partial s}=0$.
Therefore, $\frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial s}=64 \cdot 2+16 \cdot 4+0 \cdot 0=192$.

Polar Coordinates

- Let $f(x, y)$ be a function of two variables, and let (r, θ) be polar coordinates.
(a) Express $\frac{\partial f}{\partial \theta}$ in terms of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.
(b) Evaluate $\frac{\partial f}{\partial \theta}$ at $(x, y)=(1,1)$ for $f(x, y)=x^{2} y$.
(a) Since $x=r \cos \theta$ and $y=r \sin \theta, \frac{\partial x}{\partial \theta}=-r \sin \theta, \frac{\partial y}{\partial \theta}=r \cos \theta$.

By the Chain Rule,

$$
\frac{\partial f}{\partial \theta}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta}=-r \sin \theta \frac{\partial f}{\partial x}+r \cos \theta \frac{\partial f}{\partial y}
$$

Since $x=r \cos \theta$ and $y=r \sin \theta$, we can write $\frac{\partial f}{\partial \theta}$ in terms of x and y alone: $\frac{\partial f}{\partial \theta}=-y \frac{\partial f}{\partial x}+x \frac{\partial f}{\partial y}$.
(b) Apply the preceding equation to $f(x, y)=x^{2} y$:

$$
\begin{aligned}
\frac{\partial f}{\partial \theta} & =-y \frac{\partial}{\partial x}\left(x^{2} y\right)+x \frac{\partial}{\partial y}\left(x^{2} y\right)=-2 x y^{2}+x^{3} ; \\
\left.\frac{\partial f}{\partial \theta}\right|_{(x, y)=(1,1)} & =-2 \cdot 1 \cdot 1^{2}+1^{3}=-1 .
\end{aligned}
$$

An Abstract Example on the Chain Rule

- If $g(s, t)=f\left(s^{2}-t^{2}, t^{2}-s^{2}\right)$ and f is differentiable, show that g satisfies the PDE $t \frac{\partial g}{\partial s}+s \frac{\partial g}{\partial t}=0$.
Notice that $g(s, t)=f(x, y)$, where $x=s^{2}-t^{2}$ and $y=t^{2}-s^{2}$.
Thus, by the chain rule, we get

$$
\begin{aligned}
\frac{\partial g}{\partial s} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \\
& =2 s \frac{\partial f}{\partial x}-2 s \frac{\partial f}{\partial y} ; \\
\frac{\partial g}{\partial t} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t} \\
& =-2 t \frac{\partial f}{\partial x}+2 t \frac{\partial f}{\partial y} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
t \frac{\partial g}{\partial s}+s \frac{\partial g}{\partial t} & =t\left(2 s \frac{\partial f}{\partial x}-2 s \frac{\partial f}{\partial y}\right)+s\left(-2 t \frac{\partial f}{\partial x}+2 t \frac{\partial f}{\partial y}\right) \\
& =2 s t \frac{\partial f}{\partial x}-2 s t \frac{\partial f}{\partial y}-2 s t \frac{\partial f}{\partial x}+2 s t \frac{\partial f}{\partial y} \\
& =0 .
\end{aligned}
$$

Implicit Differentiation: $y=y(x)$

- Suppose that the equation $F(x, y)=0$ defines y implicitly as a function of x.
By the chain rule $\frac{\partial F}{\partial x} \frac{d x}{d x}+\frac{\partial F}{\partial y} \frac{d y}{d x}=0$, whence

$$
\frac{d y}{d x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}=-\frac{F_{x}}{F_{y}}
$$

Example: Find $\frac{d y}{d x}$ if $x^{3}+y^{3}=6 x y$.
We have $F(x, y)=x^{3}+y^{3}-6 x y=0$, whence

$$
\frac{\partial F}{\partial x}=3 x^{2}-6 y, \quad \frac{\partial F}{\partial y}=3 y^{2}-6 x
$$

Therefore, $\frac{d y}{d x}=-\frac{3 x^{2}-6 y}{3 y^{2}-6 x}=-\frac{x^{2}-2 y}{y^{2}-2 x}$.

Implicit Differentiation $z=z(x, y)$

- Suppose that the equation $F(x, y, z)=0$ defines z implicitly as a function of x and y.
By the chain rule $\frac{\partial F}{\partial x} \frac{\partial x}{\partial x}+\frac{\partial F}{\partial y} \frac{\partial y}{\partial x}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x}=0$.
But, we also have $\frac{\partial x}{\partial x}=1$ and $\frac{\partial y}{\partial x}=0$, whence $\frac{\partial F}{\partial x}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x}=0$, giving

$$
\frac{\partial z}{\partial x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} . \quad \text { Similarly } \quad \frac{\partial z}{\partial y}=-\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}} .
$$

Example: Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $x^{3}+y^{3}+z^{3}+6 x y z=1$.
We have $F(x, y, z)=x^{3}+y^{3}+z^{3}+6 x y z-1=0$, whence

$$
\frac{\partial F}{\partial x}=3 x^{2}+6 y z, \quad \frac{\partial F}{\partial y}=3 y^{2}+6 x z, \quad \frac{\partial F}{\partial z}=3 z^{2}+6 x y .
$$

Therefore, $\frac{\partial z}{\partial x}=-\frac{3 x^{2}+6 y z}{3 z^{2}+6 x y}=-\frac{x^{2}+2 y z}{z^{2}+2 x y}$;
$\frac{\partial z}{\partial y}=-\frac{3 y^{2}+6 x z}{3 z^{2}+6 x y}=-\frac{y^{2}+2 x z}{z^{2}+2 x y}$.

Subsection 7

Optimization in Several Variables

Maxima and Minima

- A function of two variables has a local maximum at (a, b) if $f(x, y) \leq f(a, b)$, when (x, y) is near (a, b). The z-value $f(a, b)$ is called the local maximum value.
- A function of two variables has a local minimum at (a, b) if $f(x, y) \geq f(a, b)$, when (x, y) is near (a, b). The z-value $f(a, b)$ is called the local minimum value.

Theorem

If f has a local maximum or minimum at (a, b) and the first-order partial derivatives of f exist there, then $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$.

- A point (a, b) is called a critical point of f if $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$, or if one of these partial derivatives does not exist.
- As was the case with functions of a single variable the critical points are candidates for local extrema. At a critical point the function may have a local maximum, a local minimum or neither.

Finding Critical Points

- Suppose $f(x, y)=x^{2}+y^{2}-2 x-6 y+14$. Then, we have $f_{x}(x, y)=2 x-2$ and $f_{y}=2 y-6$. Therefore, f has a critical point $(x, y)=(1,3)$. By rewriting $f(x, y)=4+(x-1)^{2}+(y-3)^{2}$, we see that $f(x, y) \geq 4=f(1,3)$. Therefore, f has an absolute minimum at $(1,3)$ equal to 4.

Another Example of Finding Critical Points

- Suppose $f(x, y)=y^{2}-x^{2}$. Then, we have $f_{x}(x, y)=-2 x$ and $f_{y}=2 y$. Therefore, f has a critical point $(x, y)=(0,0)$. Note, however, that for points on x-axis $f(x, 0)=-x^{2} \leq f(0,0)$ and for points on the y-axis $f(0, y)=y^{2} \geq f(0,0)$. Thus, $f(0,0)$ can be neither a local max nor a local min.

> The kind of point that occurs at $(0,0)$ is this case is called a saddle point because of its shape.

Second Derivative Test

- Suppose that $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$ and that f has continuous second partial derivatives on a disk with center (a, b).
Define

$$
D=D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}
$$

Then, the following possibilities may occur:

- If $D>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is a local minimum;
- If $D>0$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is a local maximum;
- If $D<0$, then $f(a, b)$ is neither a local max nor a local min;

In this case f has a saddle point at (a, b) and the graph of f crosses the tangent plane at (a, b);

- If $D=0$, the test is inconclusive;

In this case, f could have a local min, a local max, a saddle point or none of the above.

Example I

- Find the local extrema and the saddle points of $f(x, y)=\left(x^{2}+y^{2}\right) e^{-x}$.
We have $f_{x}(x, y)=2 x e^{-x}-\left(x^{2}+y^{2}\right) e^{-x}=\left(2 x-x^{2}-y^{2}\right) e^{-x}$. Moreover, $f_{x x}(x, y)=\left(2-4 x+x^{2}+y^{2}\right) e^{-x}$ and $f_{x y}(x, y)=-2 y e^{-x}$. Also $f_{y}(x, y)=2 y e^{-x}$ and $f_{y y}(x, y)=2 e^{-x}$.
We now obtain $2 y e^{-x}=0$ implies $y=0$ and, thus, $2 x-x^{2}=x(2-x)=0$. This implies $x=0$ or $x=2$.
Therefore, we get critical points $(0,0),(2,0)$. We compute

$$
\begin{aligned}
& D(0,0)=2 \cdot 2-0^{2}=4>0 \\
& f_{x x}(0,0)=2>0 \\
& D(2,0)=\frac{-2}{e^{2}} \frac{2}{e^{2}}-0^{2}=-\frac{4}{e^{4}}<0
\end{aligned}
$$

Example II

- Find the local extrema and the saddle points of
$f(x, y)=x^{4}+y^{4}-4 x y+1$.
We have $f_{x}(x, y)=4 x^{3}-4 y=4\left(x^{3}-y\right)$. Moreover, $f_{x x}(x, y)=12 x^{2}$ and $f_{x y}(x, y)=-4$.
Also $f_{y}(x, y)=4 y^{3}-4 x=4\left(y^{3}-x\right)$. Also, $f_{y y}(x, y)=12 y^{2}$.
The system $\left\{\begin{array}{l}x^{3}-y=0 \\ y^{3}-x=0\end{array}\right\}$ gives $x^{9}-x=0$, and, thus, $x\left(x^{8}-1\right)=0$. This implies $x=0$ or $x^{8}=1$, whence $x=0, x= \pm 1$. Therefore, we get critical points $(0,0),(-1,-1)$ and $(1,1)$.
We compute

$$
\begin{aligned}
& D(0,0)=0 \cdot 0-(-4)^{2}=-16<0 \\
& D(-1,-1)=12 \cdot 12-(-4)^{2}=128>0 \\
& f_{x x}(-1,-1)=12>0 \\
& D(1,1)=12 \cdot 12-(-4)^{2}=128>0 \\
& f_{x x}(1,1)=12>0
\end{aligned}
$$

Example III

- Find the shortest distance from $(1,0,-2)$ to the plane $x+2 y+z=4$. The distance of $(1,0,-2)$ from a point (x, y, z) is given by $d=\sqrt{(x-1)^{2}+y^{2}+(z+2)^{2}}$.
If the point (x, y, z) is on the plane $x+2 y+z=4$, then
$z=4-x-2 y$, whence the distance formula becomes a function of two variables only

$$
d(x, y)=\sqrt{(x-1)^{2}+y^{2}+(6-x-2 y)^{2}}
$$

We want to minimize this function. We look instead at minimizing the square function $f(x, y)=d^{2}(x, y)=(x-1)^{2}+y^{2}+(6-x-2 y)^{2}$. We compute partial derivatives and set them equal to zero to find critical points:

$$
\begin{aligned}
& f_{x}(x, y)=2(x-1)-2(6-x-2 y)=2(2 x+2 y-7)=0 \\
& f_{y}(x, y)=2 y-4(6-x-2 y)=2(2 x+5 y-12)=0
\end{aligned}
$$

Example III (Cont'd)

- We have

$$
\left\{\begin{array}{l}
2 x+2 y=7 \\
2 x+5 y=12
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
y=\frac{5}{3} \\
x=-\frac{5}{3}+\frac{7}{2}=\frac{11}{6}
\end{array}\right.
$$

We can verify using the second derivative test that at $\left(\frac{11}{6}, \frac{5}{3}\right)$ we have a minimum, but this is clear from the interpretation of $d(x, y)$.
Moreover, we can compute
$z=4-x-2 y=4-\frac{11}{6}-\frac{10}{3}=-\frac{7}{6}$.

Thus the point is $\left(\frac{11}{6}, \frac{5}{3},-\frac{7}{6}\right)$.

Example IV

- What is the max possible volume of a rectangular box without a lid that can be made of 12 square meters of cardboard?
The volume equation is $V=\ell w h$ and the equation for the amount of cardboard gives $\ell w+2 \ell h+2 w h=12$.
The latter equation solved for h gives $h=\frac{12-\ell w}{2(\ell+w)}$.
Therefore, the equation for the volume becomes $V=\frac{12 \ell w-\ell^{2} w^{2}}{2(\ell+w)}$. We compute V_{ℓ} using the quotient rule:

$$
\begin{aligned}
V_{\ell} & =\frac{\left(12 w-2 \ell w^{2}\right) 2(\ell+w)-2\left(12 \ell w-\ell^{2} w^{2}\right)}{4(\ell+w)^{2}} \\
& =\frac{\left(12 w-2 \ell w^{2}\right)(\ell+w)-\left(12 \ell w-\ell^{2} w^{2}\right)}{2(\ell+w)^{2}} \\
& =\frac{12 w \ell+12 w^{2}-2 \ell^{2} w^{2}-2 \ell w^{3}-12 \ell w+\ell^{2} w^{2}}{2(\ell+w)^{2}} \\
& =\frac{12 w^{2}-\ell^{2} w^{2}-2 \ell w^{3}}{2(\ell+w)^{2}}=\frac{w^{2}\left(12-\ell^{2}-2 \ell w\right)}{2(\ell+w)^{2}}
\end{aligned}
$$

Example IV (Cont'd)

- By symmetry, we get

$$
V_{\ell}=\frac{w^{2}\left(12-\ell^{2}-2 \ell w\right)}{2(\ell+w)^{2}}, \quad V_{w}=\frac{\ell^{2}\left(12-w^{2}-2 \ell w\right)}{2(\ell+w)^{2}} .
$$

The system $\left\{\begin{array}{l}12-2 \ell w-\ell^{2}=0 \\ 12-2 \ell w-w^{2}=0\end{array}\right\}$ gives $\ell^{2}-w^{2}=0$ or
$(\ell+w)(\ell-w)=0$, yielding (since $\ell, w>0) \ell=w$.
So $12-3 \ell^{2}=0 \Rightarrow \ell^{2}=4 \Rightarrow \ell=2$. Thus, since $h=\frac{12-\ell w}{2(\ell+w)}$, we obtain that

$$
\ell=2, \quad w=2 \quad \text { and } \quad h=1
$$

The maximum volume is, therefore, 4 cubic meters.

Extreme Value Theorem

Extreme Value Theorem: Functions of Two Variables

If f is continuous on a closed and bounded set \mathcal{D} in \mathbb{R}^{2}, then f attains an absolute maximum value $f\left(x_{1}, y_{1}\right)$ and an absolute minimum value $f\left(x_{2}, y_{2}\right)$ at some points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in \mathcal{D}.

- To find those absolute extrema in a closed and bounded set \mathcal{D}, we use

The Closed and Bounded Region Method

(1) Find the values of f at the critical points of f in \mathcal{D};
(2) Find the extreme values of f on the boundary of \mathcal{D};
(3) The largest of the values from the previous steps is the absolute maximum value and the smallest of these values is the absolute minimum value.

Finding Absolute Extrema in Closed Bounded Set

- Find the absolute extrema of $f(x, y)=x^{2}-2 x y+2 y$ on the rectangle $\mathcal{D}=\{(x, y): 0 \leq x \leq 3,0 \leq y \leq 2\}$.
Compute the partial derivatives: $f_{x}(x, y)=2 x-2 y$, $f_{y}(x, y)=-2 x+2$.
Therefore, the only critical point is $(1,1)$ and $f(1,1)=1$.
On the boundary, we have
- If $0 \leq x \leq 3, y=0$, then $f(x, 0)=x^{2}$ has $\min f(0,0)=0$ and max $f(3,0)=9$.
- If $x=3,0 \leq y \leq 2$, then $f(3, y)=9-4 y$ has $\min f(3,2)=1$ and $\max f(3,0)=9$.
- If $0 \leq x \leq 3, y=2$, then $f(x, 2)=(x-2)^{2}$ has min $f(2,2)=0$ and $\max f(0,2)=4$.
- If $x=0,0 \leq y \leq 2$, then $f(0, y)=2 y$ has $\min f(0,0)=0$ and max $f(0,2)=4$.

Illustration of $f(x, y)=x^{2}-2 x y+2 y$ on the rectangle \mathcal{D}

- Thus, on the boundary, the min value is $f(0,0)=f(2,2)=0$ and the max value is $f(3,0)=9$.
Since $f(1,1)=1$ these are also the absolute extrema on \mathcal{D}.

Application

- What is the max possible volume of a box inscribed in the tetrahedron bounded by the coordinate planes and the plane $\frac{1}{3} x+y+z=1$?

The volume equation is $V=x y z$. Since the (x, y, z) is a point on $\frac{1}{3} x+y+z=1$, we must have $z=1-\frac{1}{3} x-y$. Therefore, $V=x y\left(1-\frac{1}{3} x-y\right)=x y-\frac{1}{3} x^{2} y-x y^{2}$. We get:

$$
\begin{aligned}
& \frac{\partial V}{\partial x}=y-\frac{2}{3} x y-y^{2}=y\left(1-\frac{2}{3} x-y\right) \\
& \frac{\partial V}{\partial y}=x-\frac{1}{3} x^{2}-2 x y=x\left(1-\frac{1}{3} x-2 y\right)
\end{aligned}
$$

Therefore,

$$
\left\{\begin{array}{r}
\frac{2}{3} x+y=1 \\
\frac{1}{3} x+2 y=1
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
\frac{4}{3} x+2 y=2 \\
\frac{1}{3} x+2 y=1
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
x=1 \\
y=\frac{1}{3}
\end{array}\right\}
$$

Since the maximum cannot occur on the boundary, we get that the maximum volume is $1 \cdot \frac{1}{3}-\frac{1}{3} \cdot 1^{2} \cdot \frac{1}{3}-1 \cdot\left(\frac{1}{3}\right)^{2}=\frac{1}{9}$ cubic meters.

Subsection 8

Lagrange Multipliers

Illustration of General Idea of Lagrange Multipliers

Problem: Maximize or minimize an objective function $f(x, y, z)=(x-5)^{2}+3(y-3)^{2}$ subject to a constraint $g(x, y, z)=(x-4)^{2}+3(y-2)^{2}+4(z-1)^{2}=20=k$.

Lagrange Multipliers

- Problem: Maximize or minimize an objective function $f(x, y, z)$ subject to a constraint $g(x, y, z)=k$.
Example: Maximize the volume $V(\ell, w, h)=\ell w h$ subject to $S(\ell, w, h)=\ell w+2 \ell h+2 w h=12$.

The Method of Lagrange Multipliers

(a) Find all values of (x, y, z) and λ (a parameter called a Lagrange multiplier), such that

$$
\left\{\begin{align*}
\nabla f(x, y, z) & =\lambda \nabla g(x, y, z) \tag{1}\\
g(x, y, z) & =k
\end{align*}\right\}
$$

(b) Evaluate f at all (x, y, z) found in (a): The largest value is the max of f and the smallest value is the \min of f.

- Recall that $\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle$ and $\nabla g=\left\langle g_{x}, g_{y}, g_{z}\right\rangle$. So, the System (1) may be rewritten in the form:

$$
f_{x}=\lambda g_{x}, \quad f_{y}=\lambda g_{y}, \quad f_{z}=\lambda g_{z}, \quad g=k .
$$

Example I: Lagrange Multiplier Method

- Find the extreme values of $f(x, y)=x^{2}+2 y^{2}$ on the circle $x^{2}+y^{2}=1$.
Set $g(x, y)=x^{2}+y^{2}$ and we want $g(x, y)=1$.
We get the system

$$
\begin{aligned}
& \left\{\begin{aligned}
f_{x}(x, y) & =\lambda g_{x}(x, y) \\
f_{y}(x, y) & =\lambda g_{y}(x, y) \\
g(x, y) & =1
\end{aligned}\right\} \Rightarrow\left\{\begin{aligned}
2 x & =\lambda 2 x \\
4 y & =\lambda 2 y \\
x^{2}+y^{2} & =1
\end{aligned}\right\} \Rightarrow \\
& \left\{\begin{array}{lll}
x=0 & \text { or } & \lambda=1 \\
y=0 & \text { or } & \lambda=2
\end{array}\right.
\end{aligned}
$$

Therefore, we get for (x, y) the values $(0, \pm 1)$ and $(\pm 1,0)$.
Since $f(0, \pm 1)=2$ and $f(\pm 1,0)=1, f$ has max 2 and min 1 , subject to $x^{2}+y^{2}=1$.

Example I Illustrated

- The extreme values of $f(x, y)=x^{2}+2 y^{2}$ on the circle $x^{2}+y^{2}=1$. Max: $f(0, \pm 1)=2$ and Min: $f(\pm 1,0)=1$.

Example I Modified

- Find the extreme values of $f(x, y)=x^{2}+2 y^{2}$ on the disk $x^{2}+y^{2} \leq 1$.
Recall the method for finding extreme values on a closed and bounded region!
First, we find critical points of f : We have $f_{x}=2 x$ and $f_{y}=4 y$; Thus, the only critical point is $(x, y)=(0,0)$ and $f(0,0)=0$.
Then we compute min and max on the boundary: We did this using Lagrange multipliers and found min $f(\pm 1,0)=$ 1 and $\max f(0, \pm 1)=2$.
Therefore, on the disk $x^{2}+y^{2} \leq 1$, f has absolute $\min f(0,0)=0$ and absolute $\max f(0, \pm 1)=2$.

Example II: Lagrange Multiplier Method

- Find the extreme values of $f(x, y)=2 x+5 y$ on the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$.
Set $g(x, y)=\frac{x^{2}}{16}+\frac{y^{2}}{9}$ and we want $g(x, y)=1$.
We get the system

$$
\begin{aligned}
& \left\{\begin{array}{l}
f_{x}(x, y)=\lambda g_{x}(x, y) \\
f_{y}(x, y)=\lambda g_{y}(x, y) \\
g(x, y)=1
\end{array}\right\} \Rightarrow\left\{\begin{aligned}
2 & =\lambda \frac{x}{8} \\
5 & =\lambda \frac{2 y}{9} \\
\frac{x^{2}}{16}+\frac{y^{2}}{9} & =1
\end{aligned}\right\} \Rightarrow \\
& \left\{\begin{array}{l}
x=\frac{16}{\lambda} \\
y=\frac{45}{2 \lambda} \\
\frac{16^{2}}{16 \lambda^{2}}+\frac{45^{2}}{36 \lambda^{2}}=1
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
x=\frac{16}{\lambda} \\
y=\frac{45}{2 \lambda} \\
\frac{64}{4 \lambda^{2}}+\frac{225}{4 \lambda^{2}}=1
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
x= \pm \frac{32}{17} \\
y= \pm \frac{45}{17} \\
\lambda= \pm \frac{17}{2}
\end{array}\right.
\end{aligned}
$$

Therefore, we get for (x, y) the values $\left(\frac{32}{17}, \frac{45}{17}\right)$ and $\left(-\frac{32}{17},-\frac{45}{17}\right)$. We compute $f\left(\frac{32}{17}, \frac{45}{17}\right)=17$ and $f\left(-\frac{32}{17},-\frac{45}{17}\right)=-17$.

Example II Illustrated

- The extreme values of $f(x, y)=2 x+5 y$ on the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$. Max: $f\left(\frac{32}{17}, \frac{45}{17}\right)=17$ and Min: $f\left(-\frac{32}{17},-\frac{45}{17}\right)=-17$.

Example III: Lagrange Multiplier Method

- Find the points on the sphere $x^{2}+y^{2}+z^{2}=4$ with smallest and largest square distance from the point $(3,1,-1)$.
Set $f(x, y, z)=(x-3)^{2}+(y-1)^{2}+(z+1)^{2}$ be the square distance from (x, y, z) to $(3,1,-1)$ and $g(x, y, z)=x^{2}+y^{2}+z^{2}$ so that $g(x, y, z)=4$.
We get the system

$$
\begin{aligned}
& \left\{\begin{aligned}
& f_{x}(x, y, z)=\lambda g_{x}(x, y, z) \\
& f_{y}(x, y, z)=\lambda g_{y}(x, y, z) \\
& f_{z}(x, y, z)=\lambda g_{z}(x, y, z) \\
& g(x, y, z)=4
\end{aligned}\right\} \Rightarrow\left\{\begin{aligned}
2(x-3) & =\lambda 2 x \\
2(y-1) & =\lambda 2 y \\
2(z+1) & =\lambda 2 z \\
x^{2}+y^{2}+z^{2} & =4
\end{aligned}\right\} \\
& \Rightarrow\left\{\begin{aligned}
x & =-3 z \\
\frac{1}{\lambda-1} & =-\frac{1}{3} x \\
\frac{1}{\lambda-1} & =-y \\
\frac{1}{\lambda-1} & =z \\
x^{2}+y^{2}+z^{2} & =4
\end{aligned}\right\} \Rightarrow\left\{\begin{aligned}
& =
\end{aligned}\right\}
\end{aligned}
$$

Example III: Lagrange Multiplier Method (Cont'd)

- The system gives

$$
\left\{\begin{aligned}
x & =-3 z \\
y & =-z \\
9 z^{2}+z^{2}+z^{2} & =4
\end{aligned}\right\} \Rightarrow\left\{\begin{array}{l}
x=\mp \frac{6}{\sqrt{11}} \\
y=\mp \frac{2}{\sqrt{11}} \\
z= \pm \frac{2}{\sqrt{11}}
\end{array}\right\}
$$

Therefore, we get

$$
\begin{aligned}
& (x, y, z)=\left(\frac{6}{\sqrt{11}}, \frac{2}{\sqrt{11}},-\frac{2}{\sqrt{11}}\right) \text { or } \\
& (x, y, z)=\left(-\frac{6}{\sqrt{11}},-\frac{2}{\sqrt{11}}, \frac{2}{\sqrt{11}}\right)
\end{aligned}
$$

f has smallest value at one of those points and the largest at the other.

$$
\begin{aligned}
& f\left(\frac{6}{\sqrt{11}}, \frac{2}{\sqrt{11}},-\frac{2}{\sqrt{11}}\right)=\frac{165-44 \sqrt{11}}{11}=15-11 \sqrt{11} \\
& f\left(-\frac{6}{\sqrt{11}},-\frac{2}{\sqrt{11}}, \frac{2}{\sqrt{11}}\right)=\frac{165+44 \sqrt{11}}{11}=15+11 \sqrt{11} .
\end{aligned}
$$

Lagrange Multipliers with Two Constraints

- Problem: Maximize or minimize an objective function $f(x, y, z)$ subject to the constraints $g(x, y, z)=k$ and $h(x, y, z)=c$.

The Method of Lagrange Multipliers Revisited

(a) Find all values of (x, y, z) and λ, μ (two parameters called Lagrange multipliers), such that

$$
\left\{\begin{align*}
\nabla f(x, y, z) & =\lambda \nabla g(x, y, z)+\mu \nabla h(x, y, z) \tag{2}\\
g(x, y, z) & =k \\
h(x, y, z) & =c
\end{align*}\right\}
$$

(b) Evaluate f at all (x, y, z) resulting from (a): The largest value is the max of f and the smallest value is the \min of f.

- Since $\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle, \nabla g=\left\langle g_{x}, g_{y}, g_{z}\right\rangle$ and $\nabla h=\left\langle h_{x}, h_{y}, h_{z}\right\rangle$ the System (2) may be rewritten in the form:

$$
f_{x}=\lambda g_{x}+\mu h_{x}, \quad f_{y}=\lambda g_{y}+\mu h_{y}, \quad f_{z}=\lambda g_{z}+\mu h_{z}, \quad g=k, \quad h=c .
$$

Example IV: Lagrange Multiplier Method

- Find the extreme values of $f(x, y, z)=x+2 y+3 z$ on the plane $x-y+z=1$ and the cylinder $x^{2}+y^{2}=1$.
Set $g(x, y, z)=x-y+z$ and $h(x, y, z)=x^{2}+y^{2}$ so that $g(x, y, z)=1$ and $h(x, y, z)=1$.
We get the system

$$
\begin{aligned}
& \left\{\begin{array}{c}
f_{x}(x, y, z)=\lambda g_{x}(x, y, z)+\mu h_{x}(x, y, z) \\
f_{y}(x, y, z)=\lambda g_{y}(x, y, z)+\mu h_{y}(x, y, z) \\
f_{z}(x, y, z)=\lambda g_{z}(x, y, z)+\mu h_{z}(x, y, z) \\
g(x, y, z)=1 \\
h(x, y, z)=1
\end{array}\right\} \Rightarrow \\
& \left\{\begin{array}{c}
1=\lambda+\mu 2 x \\
2=-\lambda+\mu 2 y \\
3=\lambda \\
x-y+z=1 \\
x^{2}+y^{2}=1
\end{array}\right\} \Rightarrow
\end{aligned}
$$

Example IV: Lagrange Multiplier Method (Cont'd)

$$
\left\{\begin{array}{l}
1=\lambda+\mu 2 x \\
2=-\lambda+\mu 2 y \\
3=\lambda \\
x-y+z=1 \\
x^{2}+y^{2}=1
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
\lambda=3 \\
x=-\frac{1}{\mu} \\
y=\frac{5}{2 \mu} \\
x-y+z=1 \\
\frac{1}{\mu^{2}}+\frac{25}{4 \mu^{2}}=1
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
\lambda=3 \\
\mu= \pm \frac{\sqrt{29}}{\frac{2}{2}} \\
x=\mp \frac{\sqrt{\sqrt{29}}}{\sqrt{\sqrt{29}}} \\
y= \pm \\
z=1 \pm \frac{7}{\sqrt{29}}
\end{array}\right.
$$

Therefore, we get for (x, y, z) the values $\left(-\frac{2}{\sqrt{29}}, \frac{5}{\sqrt{29}}, 1+\frac{7}{\sqrt{29}}\right)$ and $\left(\frac{2}{\sqrt{29}},-\frac{5}{\sqrt{29}}, 1-\frac{7}{\sqrt{29}}\right)$.
The max of f occurs at the first point and is $3+\sqrt{29}$.

Example V: Lagrange Multiplier Method

- The intersection of the plane $x+\frac{1}{2} y+\frac{1}{3} z=0$ with the unit sphere $x^{2}+y^{2}+z^{2}=1$ is a great circle. Find the point on this great circle with the largest x coordinate.

Set $f(x, y, z)=x, g(x, y, z)=x+\frac{1}{2} y+\frac{1}{3} z$ and $h(x, y, z)=x^{2}+y^{2}+z^{2}$ so that $g(x, y, z)=0$ and $h(x, y, z)=1$. We get the system

$$
\left\{\begin{array}{l}
f_{x}(x, y, z)=\lambda g_{x}(x, y, z)+\mu h_{x}(x, y, z) \\
f_{y}(x, y, z)=\lambda g_{y}(x, y, z)+\mu h_{y}(x, y, z) \\
f_{z}(x, y, z)=\lambda g_{z}(x, y, z)+\mu h_{z}(x, y, z) \\
g(x, y, z)=0 \\
h(x, y, z)=1
\end{array}\right\} .
$$

Example V: Lagrange Multiplier Method (Cont'd)

- Since $f(x, y, z)=x, g(x, y, z)=x+\frac{1}{2} y+\frac{1}{3} z$ and $h(x, y, z)=x^{2}+y^{2}+z^{2}$, we get

$$
\left\{\begin{array}{l}
f_{x}(x, y, z)=\lambda g_{x}(x, y, z)+\mu h_{x}(x, y, z) \\
f_{y}(x, y, z)=\lambda g_{y}(x, y, z)+\mu h_{y}(x, y, z) \\
f_{z}(x, y, z)=\lambda g_{z}(x, y, z)+\mu h_{z}(x, y, z) \\
g(x, y, z)=0 \\
h(x, y, z)=1
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
1=\lambda+2 \mu x \\
0=\frac{1}{2} \lambda+2 \mu y \\
0=\frac{1}{3} \lambda+2 \mu z \\
x+\frac{1}{2} y+\frac{1}{3} z=0 \\
x^{2}+y^{2}+z^{2}=1
\end{array}\right\} .
$$

Note that μ cannot be zero. The second and third equations yield $\lambda=-4 \mu y$ and $\lambda=-6 \mu z$. Thus, $-4 \mu y=-6 \mu z$, i.e., since $\mu \neq 0$, $y=\frac{3}{2} z$. Applying $x+\frac{1}{2} y+\frac{1}{3} z=0$, we get $x=-\frac{13}{12} z$. Finally, we substitute into $x^{2}+y^{2}+z^{2}=1$ to get $\left(-\frac{13}{12} z\right)^{2}+\left(\frac{3}{2} z\right)^{2}+z^{2}=1$, whence $\frac{637}{144} z^{2}=1$, yielding $z= \pm \frac{12}{7 \sqrt{13}}$.
Therefore, we obtain the critical points $\left(-\frac{\sqrt{13}}{7}, \frac{18}{7 \sqrt{13}}, \frac{12}{7 \sqrt{13}}\right)$ $\left(\frac{\sqrt{13}}{7},-\frac{18}{7 \sqrt{13}},-\frac{12}{7 \sqrt{13}}\right)$. We conclude that the max x occurs at the second point and is equal to $\frac{\sqrt{13}}{7}$.

