Calculus III

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science Lake Superior State University

LSSU Math 251

(1) Functions

- Integration in Two Variables
- Double Integrals Over More General Regions
- Double Integrals in Polar Coordinates
- Triple Integrals
- Triple Integrals in Cylindric Coordinates
- Triple Integrals in Spherical Coordinates

Subsection 1

Integration in Two Variables

Approximating Volumes by Sums of Volumes of Boxes

- Consider the function of two variables $f(x, y)$.
- The elementary volume under the graph of $z=f(x, y)$ over an elementary area $\Delta A_{i j}$ that contains the point $P_{i j}=\left(x_{i j}^{*}, y_{i j}^{*}\right)$ is approximated by the volume $\Delta V_{i j}$ of a box $\Delta V_{i j}=f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A_{i j}$.

- To obtain an approximation of the entire volume we sum:

$$
V \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A_{i j} .
$$

Double Integral

- The limit of the sum as the numbers of x - and y-subintervals become infinite, or, equivalently, as the lengths Δx_{i} of each x - and Δy_{j} of each y-subinterval approach 0 is the actual volume under the curve

$$
V=\lim _{\substack{\Delta x_{i} \rightarrow 0 \\ \Delta y_{j} \rightarrow 0}} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A_{i j}
$$

- The double integral of f over a rectangle R is

$$
\iint_{R} f(x, y) d A=\lim _{\substack{\Delta x_{i} \rightarrow 0 \\ \Delta y_{j} \rightarrow 0}} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A_{i j},
$$

if the limit exists. If it does exist, we call f integrable.

- Thus, we have $V=\iint_{R} f(x, y) d A$, where V is the volume under f over the rectangle R.

Approximating a Volume via Rectangles

- Approximate roughly the volume of the solid lying above $R=[0,2] \times[0,2]$ and below $f(x, y)=16-x^{2}-2 y^{2}$ using two subintervals and right endpoints.

Each subinterval has length 1 , so each of the four rectangles formed has area $\Delta A=1 \cdot 1=1$.
Thus, we get

$$
\begin{aligned}
V & \approx f(1,1) \cdot 1+f(1,2) \cdot 1+f(2,1) \cdot 1+f(2,2) \cdot 1 \\
& =13+7+10+4=34 .
\end{aligned}
$$

A Double Integral via a Volume

- Suppose $R=[-1,1] \times[-2,2]$. Evaluate $\iint_{R} \sqrt{1-x^{2}} d A$.

The face is a semi-disk with radius 1 , so it has area

$$
A=\frac{1}{2} \pi \cdot 1^{2}=\frac{\pi}{2} .
$$

The length is equal to 4 . Thus, the volume is

$$
\begin{aligned}
V & =\iint_{R} \sqrt{1-x^{2}} d A \\
& =\frac{\pi}{2} \cdot 4=2 \pi \text { units }^{3} .
\end{aligned}
$$

The Midpoint Rule

Midpoint Rule for Double Integrals

$\iint_{R} f(x, y) d A \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(\bar{x}_{i}, \bar{y}_{j}\right) \Delta A$ where \bar{x}_{i} is the midpoint of $\left[x_{i-1}, x_{i}\right]$ and \bar{y}_{j} is the midpoint of $\left[y_{j-1}, y_{j}\right]$.

Example: Use the Midpoint Rule with $m=n=2$ to estimate the value of the integral $\iint_{R}^{2}\left(x-3 y^{2}\right) d A$, where

$$
R=\{(x, y): 0 \leq x \leq 2,1 \leq y \leq 2\}
$$

Approximating $\iint_{R}\left(x-3 y^{2}\right) d A$

$$
\begin{aligned}
\iint_{R}\left(x-3 y^{2}\right) d A & \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f\left(\bar{x}_{i}, \bar{y}_{j}\right) \Delta A \\
& =f\left(\frac{1}{2}, \frac{5}{4}\right) \frac{1}{2}+f\left(\frac{1}{2}, \frac{7}{4}\right) \frac{1}{2}+f\left(\frac{3}{2}, \frac{5}{4}\right) \frac{1}{2}+f\left(\frac{3}{2}, \frac{7}{4}\right) \frac{1}{2} \\
& =\left(-\frac{67}{16}\right) \frac{1}{2}+\left(-\frac{139}{16}\right) \frac{1}{2}+\left(-\frac{51}{16}\right) \frac{1}{2}+\left(-\frac{123}{16}\right) \frac{1}{2} \\
& =1
\end{aligned}
$$

Iterated Integrals

- Let f be a function of two variables x, y that is continuous on a rectangle $R=[a, b] \times[c, d]$.
- The notation $\int_{c}^{d} f(x, y) d y$ means that x is held fixed and $f(x, y)$ is integrated with respect to y from $y=c$ to $y=d$. This process is called partial integration with respect to y.
- The partial integral $\int_{c}^{d} f(x, y) d y$ depends on the value of x, i.e., it is a function of $x: A(x)=\int_{c}^{d} f(x, y) d y$.
- If we integrate $A(x)$ with respect to x from $x=a$ to $x=b$, we get the iterated integral

$$
\int_{a}^{b} A(x) d x=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x
$$

- In the notation, the brackets are omitted and we write

$$
\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x
$$

Example of Iterated Integral

- Compute $\int_{2}^{4} \int_{1}^{9} y e^{x} d y d x$.

$$
\begin{aligned}
\int_{2}^{4} \int_{1}^{9} y e^{x} d y d x & =\int_{2}^{4} e^{x} \int_{1}^{9} y d y d x \\
& =\int_{2}^{4} e^{x}\left(\left.\frac{y^{2}}{2}\right|_{1} ^{9}\right) d x \\
& =\int_{2}^{4} 40 e^{x} d x \\
& =\left.40 e^{x}\right|_{2} ^{4} \\
& =40\left(e^{4}-e^{2}\right)
\end{aligned}
$$

Changing the Order of Iterated Integration

- Compute $\int_{0}^{3} \int_{1}^{2} x^{2} y d y d x$.

$$
\begin{aligned}
\int_{0}^{3} \int_{1}^{2} x^{2} y d y d x & =\int_{0}^{3} x^{2} \int_{1}^{2} y d y d x \\
& =\int_{0}^{3} x^{2}\left(\left.\frac{1}{2} y^{2}\right|_{1} ^{2}\right) d x \\
& =\int_{0}^{3} \frac{3}{2} x^{2} d x \\
& =\left.\frac{1}{2} x^{3}\right|_{0} ^{3}=\frac{27}{2} .
\end{aligned}
$$

- Compute $\int_{1}^{2} \int_{0}^{3} x^{2} y d x d y$.

$$
\begin{aligned}
\int_{1}^{2} \int_{0}^{3} x^{2} y d x d y & =\int_{1}^{2} y \int_{0}^{3} x^{2} d x d y \\
& =\int_{1}^{2} y\left(\left.\frac{1}{3} x^{3}\right|_{0} ^{3}\right) d y \\
& =\int_{1}^{2} 9 y d y \\
& =\left.\frac{9}{2} y^{2}\right|_{1} ^{2} \\
& =18-\frac{9}{2}=\frac{27}{2} .
\end{aligned}
$$

Fubini's Theorem

Fubini's Theorem

If f is continuous on $R=[a, b] \times[c, d]$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

This is also true under the weaker conditions that f is bounded on R, discontinuous only on a finite number of smooth curves and the iterated integrals exist.

Example: Evaluate $\iint_{R}\left(x-3 y^{2}\right) d A$, where $R=[0,2] \times[1,2]$.

$$
\begin{aligned}
\iint_{R}\left(x-3 y^{2}\right) d A & =\int_{0}^{2} \int_{1}^{2}\left(x-3 y^{2}\right) d y d x \\
& =\left.\int_{0}^{2}\left(x y-y^{3}\right)\right|_{1} ^{2} d x \\
& =\int_{0}^{2}(2 x-8-(x-1)) d x \\
& =\int_{0}^{2}(x-7) d x \\
& =\left.\left(\frac{1}{2} x^{2}-7 x\right)\right|_{0} ^{2}=-12
\end{aligned}
$$

Double Integration through Iterated Integrals I

- Compute $\iint_{R} y \sin (x y) d A$, where $R=[1,2] \times[0, \pi]$.

$$
\begin{aligned}
& \iint_{R} y \sin (x y) d A \\
& =\int_{0}^{\pi} \int_{1}^{2} y \sin (x y) d x d y \\
& =\int_{0}^{\pi}-\left.\cos (x y)\right|_{1} ^{2} d y \\
& =\int_{0}^{\pi}(-\cos 2 y+\cos y) d y \\
& =\left.\left(-\frac{1}{2} \sin 2 y+\sin y\right)\right|_{0} ^{\pi} \\
& =0 .
\end{aligned}
$$

Double Integration through Iterated Integrals II

- Compute the volume of the solid S bounded by the elliptic paraboloid $x^{2}+2 y^{2}+z=16$, the planes $x=2$ and $y=2$ and the three coordinate planes.

$$
\begin{aligned}
& \iint_{R}\left(16-x^{2}-2 y^{2}\right) d A \\
& =\int_{0}^{2} \int_{0}^{2}\left(16-x^{2}-2 y^{2}\right) d x d y \\
& =\left.\int_{0}^{2}\left(16 x-\frac{1}{3} x^{3}-2 y^{2} x\right)\right|_{0} ^{2} d y \\
& =\int_{0}^{2}\left(\frac{88}{3}-4 y^{2}\right) d y \\
& =\left.\left(\frac{88}{3} y-\frac{4}{3} y^{3}\right)\right|_{0} ^{2} \\
& =48 \text { units }^{3} .
\end{aligned}
$$

Double Integration through Iterated Integrals III

- Calculate $\iint_{R} \frac{d A}{(x+y)^{2}}$, where $R=[1,2] \times[0,1]$.

$$
\begin{aligned}
& \iint_{R} \frac{d A}{(x+y)^{2}} \\
& =\int_{1}^{2} \int_{0}^{1} \frac{d y}{(x+y)^{2}} d x \\
& =\int_{1}^{2}\left(-\left.\frac{1}{x+y}\right|_{0} ^{1}\right) d x \\
& =\int_{1}^{2}\left(-\frac{1}{x+1}+\frac{1}{x}\right) d x \\
& =\left.(\ln x-\ln (x+1))\right|_{1} ^{2} \\
& =(\ln 2-\ln 3)-(\ln 1-\ln 2) \\
& =2 \ln 2-\ln 3=\ln \frac{4}{3} .
\end{aligned}
$$

Properties of Double Integrals

- Sum Rule:

$$
\iint_{R}[f(x, y)+g(x, y)] d A=\iint_{R} f(x, y) d A+\iint_{R} g(x, y) d A
$$

- Constant Factor Rule:

$$
\iint_{R} c f(x, y) d A=c \iint_{R} f(x, y) d A
$$

- Comparison Property: If $f(x, y) \geq g(x, y)$, for all (x, y) in R, then

$$
\iint_{R} f(x, y) d A \geq \iint_{R} g(x, y) d A
$$

Subsection 2

Double Integrals Over More General Regions

Double Integrals Over Type I Regions

- A plane region \mathcal{D} is of type I or vertically simple if it lies between the graphs of two continuous functions of x, that is

$$
\begin{aligned}
\mathcal{D}=\{(x, y) & : a \leq x \leq b \\
& \left.g_{1}(x) \leq y \leq g_{2}(x)\right\}
\end{aligned}
$$

where g_{1}, g_{2} are continuous on $[a, b]$.

- If $f(x, y)$ is continuous on a type I region \mathcal{D}, as above, then

$$
\iint_{\mathcal{D}} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

Example of Double Integral Over a Type I Region

- Evaluate $\iint_{\mathcal{D}}(x+2 y) d A$, where \mathcal{D} is the region bounded by the parabolas $y=2 x^{2}$ and $y=1+x^{2}$.
Note that \mathcal{D} is of type I :

$$
\begin{aligned}
& \mathcal{D}=\{(x, y):-1 \leq x \leq 1 \\
&\left.2 x^{2} \leq y \leq 1+x^{2}\right\} . \\
& \iint_{\mathcal{D}}(x+2 y) d A=\int_{-1}^{1} \int_{2 x^{2}}^{1+x^{2}}(x+2 y) d y d x \\
&=\left.\int_{-1}^{1}\left(x y+y^{2}\right)\right|_{2 x^{2}} ^{1+x^{2}} d x \\
&=\int_{-1}^{1}\left(x\left(1+x^{2}\right)+\left(1+x^{2}\right)^{2}-x\left(2 x^{2}\right)-\left(2 x^{2}\right)^{2}\right) d x \\
&=\int_{-1}^{1}\left(-3 x^{4}-x^{3}+2 x^{2}+x+1\right) d x \\
&=\left.\left(-\frac{3}{5} x^{5}-\frac{1}{4} x^{4}+\frac{2}{3} x^{3}+\frac{1}{2} x^{2}+x\right)\right|_{-1} ^{1}=\frac{32}{15} .
\end{aligned}
$$

Example II of Double Integral Over a Type I Region

- Evaluate $\iint_{\mathcal{D}} x^{2} y d A$, where \mathcal{D} is the region shown in the figure. Note that \mathcal{D} is of type I :

$$
\begin{aligned}
\iint_{\mathcal{D}} x^{2} y d A & =\int_{1}^{3} \int_{1 / x}^{\sqrt{x}} x^{2} y d y d x=\left.\int_{1}^{3} \frac{1}{2} x^{2}\left(y^{2}\right)\right|_{1 / x} ^{\sqrt{x}} d x \\
& =\int_{1}^{3} \frac{1}{2} x^{2}\left(x-\frac{1}{x^{2}}\right) d x=\int_{1}^{3}\left(\frac{1}{2} x^{3}-\frac{1}{2}\right) d x \\
& =\left.\left(\frac{1}{8} x^{4}-\frac{1}{2} x\right)\right|_{1} ^{3}=\left(\frac{81}{8}-\frac{3}{2}\right)-\left(\frac{1}{8}-\frac{1}{2}\right)=\frac{72}{8}=9
\end{aligned}
$$

Double Integrals Over Type II Regions

- A plane region \mathcal{D} is of type II or horizontally simple if it lies between the graphs of two continuous functions of y, that is

$$
\begin{gathered}
\mathcal{D}=\{(x, y): c \leq y \leq d \\
\left.g_{1}(y) \leq x \leq g_{2}(y)\right\}
\end{gathered}
$$

with g_{1}, g_{2} are continuous on $[c, d]$.

- If $f(x, y)$ is continuous on a type II region \mathcal{D}, as above, then

$$
\iint_{\mathcal{D}} f(x, y) d A=\int_{c}^{d} \int_{g_{1}(y)}^{g_{2}(y)} f(x, y) d x d y
$$

Example of a Double Integral Over a Type II Region

- Evaluate $\iint_{\mathcal{D}}\left(x^{2}+y^{2}\right) d A$, where \mathcal{D} is the region bounded by the line $y=2 x$ and the parabola $y=x^{2}$.
\mathcal{D} is both of type I and of type II:

$$
\begin{aligned}
\mathcal{D} & =\left\{(x, y): 0 \leq x \leq 2, x^{2} \leq y \leq 2 x\right\} \\
& =\left\{(x, y): 0 \leq y \leq 4, \frac{1}{2} y \leq x \leq \sqrt{y}\right\} .
\end{aligned}
$$

We evaluate the integral using the type II expression:

$$
\begin{aligned}
\iint_{\mathcal{D}}\left(x^{2}+y^{2}\right) d A & =\int_{0}^{4} \int_{y / 2}^{\sqrt{y}}\left(x^{2}+y^{2}\right) d x d y=\left.\int_{0}^{4}\left(\frac{1}{3} x^{3}+y^{2} x\right)\right|_{y / 2} ^{\sqrt{y}} d y \\
& =\int_{0}^{4}\left(\frac{1}{3} y^{3 / 2}+y^{5 / 2}-\frac{1}{24} y^{3}-\frac{1}{2} y^{3}\right) d y \\
& =\left.\left(\frac{2}{15} y^{5 / 2}+\frac{2}{7} y^{7 / 2}-\frac{13}{96} y^{4}\right)\right|_{0} ^{4}=\frac{216}{35} .
\end{aligned}
$$

Example II of a Double Integral Over a Type II Region

- Evaluate $\iint_{\mathcal{D}} x y d A$, where \mathcal{D} is the region bounded by the line $y=x-1$ and the parabola $y^{2}=2 x+6$.
\mathcal{D} can be written as type II:

$$
\mathcal{D}=\left\{(x, y):-2 \leq y \leq 4, \frac{1}{2} y^{2}-3 \leq x \leq y+1\right\}
$$

We evaluate the integral using type II integration:

$$
\begin{aligned}
\iint_{\mathcal{D}} x y d A & =\int_{-2}^{4} \int_{\frac{1}{2} y^{2}-3}^{y+1} x y d x d y \\
& =\left.\int_{-2}^{4}\left(\frac{1}{2} x^{2} y\right)\right|_{\frac{1}{2} y^{2}-3} ^{y+1} d y \\
& =\frac{1}{2} \int_{-2}^{4} y\left((y+1)^{2}-\left(\frac{1}{2} y^{2}-3\right)^{2}\right) d y \\
& =\frac{1}{2} \int_{-2}^{4}\left(-\frac{1}{4} y^{5}+4 y^{3}+2 y^{2}-8 y\right) d y \\
& =\left.\frac{1}{2}\left(-\frac{1}{24} y^{6}+y^{4}+\frac{2}{3} y^{3}-4 y^{2}\right)\right|_{-2} ^{4}=36 .
\end{aligned}
$$

A Double Integral Over a Type I Region

- Evaluate the volume of the tetrahedron bounded by the planes $x+2 y+z=2$, $x=2 y, x=0$ and $z=0$.
This can be expressed as the volume under $z=2-x-2 y$ and above the type I region

$$
\begin{aligned}
& \quad \mathcal{D}=\{(x, y): 0 \leq x \leq 1 \\
& \left.\frac{1}{2} x \leq y \leq 1-\frac{1}{2} x\right\} \\
& \iint_{\mathcal{D}}(2-x-2 y) d A=\int_{0}^{1} \int_{\frac{1}{2} x}^{1-\frac{1}{2} x}(2-x-2 y) d y d x \\
& =\left.\int_{0}^{1}\left(2 y-x y-y^{2}\right)\right|_{\frac{1}{2} x} ^{1-\frac{1}{2} x} d x \\
& =\int_{0}^{1}\left(2-x-x\left(1-\frac{1}{2} x\right)-\left(1-\frac{1}{2} x\right)^{2}-x+\frac{1}{2} x^{2}+\frac{1}{4} x^{2}\right) d x \\
& =\int_{0}^{1}\left(x^{2}-2 x+1\right) d x=\left.\left(\frac{1}{3} x^{3}-x^{2}+x\right)\right|_{0} ^{1}=\frac{1}{3} .
\end{aligned}
$$

Choosing the Order Carefully

- Evaluate $\iint_{\mathcal{D}} e^{y^{2}} d A$, where \mathcal{D} is the region shown in the figure.

If we attempt to integrate over a type I region $D=\left\{(x, y): 0 \leq x \leq 4, \frac{1}{2} x \leq y \leq 2\right\}$, we will fail.

$$
\iint_{D} e^{y^{2}} d A=\int_{0}^{4} \int_{x / 2}^{2} e^{y^{2}} d y d x=?
$$

Choosing the Order Carefully (Cont'd)

- So we switch and evaluate over a type II region

$\mathcal{D}=\{(x, y): 0 \leq y \leq 2,0 \leq x \leq 2 y\}$.

$$
\begin{aligned}
\iint_{\mathcal{D}} e^{y^{2}} d A & =\int_{0}^{2} \int_{0}^{2 y} e^{y^{2}} d x d y=\int_{0}^{2}\left(\left.x e^{y^{2}}\right|_{0} ^{2 y}\right) d y \\
& =\int_{0}^{2} 2 y e^{y^{2}} d y=\left.e^{y^{2}}\right|_{0} ^{2}=e^{4}-1
\end{aligned}
$$

Reversing the Order

- To compute $\int_{0}^{1} \int_{x}^{1} \sin \left(y^{2}\right) d y d x$, we must first reverse the order of integration.
But this needs care as far as limits are concerned!! Note that $\mathcal{D}=$ $\{(x, y): 0 \leq x \leq 1, x \leq y \leq 1\}=\{(x, y): 0 \leq y \leq 1,0 \leq x \leq y\}$.

$$
\begin{aligned}
& \int_{0}^{1} \int_{x}^{1} \sin \left(y^{2}\right) d y d x \\
& =\int_{0}^{1} \int_{0}^{y} \sin \left(y^{2}\right) d x d y \\
& =\left.\int_{0}^{1} x \sin \left(y^{2}\right)\right|_{0} ^{y} d y \\
& =\int_{0}^{1} y \sin \left(y^{2}\right) d y \\
& =-\left.\frac{1}{2} \cos \left(y^{2}\right)\right|_{0} ^{1} \\
& =\frac{1}{2}(1-\cos 1) .
\end{aligned}
$$

Reversing the Order II

- Sketch the domain \mathcal{D} of integration of

$$
\int_{1}^{9} \int_{\sqrt{y}}^{3} x e^{y} d x d y
$$

Then change the order of integration and evaluate.
The domain as given is $\mathcal{D}=\{(x, y): 1 \leq y \leq 9, \sqrt{y} \leq x \leq 3\}$.

This can be rewritten as $\mathcal{D}=\left\{(x, y): 1 \leq x \leq 3,1 \leq y \leq x^{2}\right\}$.

Reversing the Order Again (Cont'd)

- We got $\mathcal{D}=\left\{(x, y): 1 \leq x \leq 3,1 \leq y \leq x^{2}\right\}$.

$$
\begin{aligned}
& \int_{1}^{9} \int_{\sqrt{y}}^{3} x e^{y} d x d y \\
& =\int_{1}^{3} \int_{1}^{x^{2}} x e^{y} d y d x \\
& =\left.\int_{1}^{3}\left(x e^{y}\right)\right|_{1} ^{x^{2}} d x \\
& =\int_{1}^{3}\left(x e^{x^{2}}-e x\right) d x \\
& =\left.\frac{1}{2}\left(e^{x^{2}}-e x^{2}\right)\right|_{1} ^{3} \\
& =\frac{1}{2}\left(e^{9}-9 e\right)-0 \\
& =\frac{1}{2}\left(e^{9}-9 e\right) .
\end{aligned}
$$

Properties of Double Integrals over Regions

- $\iint_{\mathcal{D}}[f(x, y)+g(x, y)] d A=\iint_{\mathcal{D}} f(x, y) d A+\iint_{\mathcal{D}} g(x, y) d A$;
- $\iint_{\mathcal{D}} c f(x, y) d A=c \iint_{\mathcal{D}} f(x, y) d A$;
- If $f(x, y) \geq g(x, y)$, for all (x, y) in \mathcal{D}, then

$$
\iint_{\mathcal{D}} f(x, y) d A \geq \iint_{\mathcal{D}} g(x, y) d A
$$

- $\iint_{\mathcal{D}} 1 d A=A(\mathcal{D})$;
- If $m \leq f(x, y) \leq M$, for all (x, y) in \mathcal{D}, then

$$
m A(\mathcal{D}) \leq \iint_{\mathcal{D}} f(x, y) d A \leq M A(\mathcal{D})
$$

Estimating Double Integrals

- Estimate the double integral $\iint_{\mathcal{D}} e^{\sin x \cos y} d A$, where \mathcal{D} is disk with center at the origin and radius 2 .
We have

$$
\begin{aligned}
& -1 \leq \sin x \leq 1 \\
& -1 \leq \cos y \leq 1
\end{aligned}
$$

Since e^{x} is an increasing function, we get

$$
e^{-1} \leq e^{\sin x \cos y} \leq e^{1}
$$

Note, also, that $A(\mathcal{D})=\pi 2^{2}=4 \pi$.

Therefore, by the inequality above,

$$
\frac{4 \pi}{e} \leq \iint_{D} e^{\sin x \cos y} d A \leq 4 \pi e
$$

Average Value

- The average value or mean value of a function $f(x, y)$ on a domain \mathcal{D}, denoted \bar{f}, is the quantity:

$$
\begin{aligned}
\bar{f} & =\frac{1}{A(\mathcal{D})} \iint_{\mathcal{D}} f(x, y) d A \\
& =\frac{\iint_{\mathcal{D}} f(x, y) d A}{\iint_{\mathcal{D}} 1 d A}
\end{aligned}
$$

Equivalently, \bar{f} is the value satisfying

$$
\iint_{\mathcal{D}} f(x, y) d A=\bar{f} \cdot A(\mathcal{D}) .
$$

Computing Average Value

- An architect needs to know the average height \bar{H} of the ceiling of a pagoda whose base \mathcal{D} is the square $[-4,4] \times[-4,4]$ and roof is the graph of $H(x, y)=32-x^{2}-y^{2}$, where distances are in feet. Calculate \bar{H}.

Compute the integral of $H(x, y)$ over \mathcal{D} :

$$
\begin{aligned}
& \iint_{\mathcal{D}}\left(32-x^{2}-y^{2}\right) d A \\
& =\int_{-4}^{4} \int_{-4}^{4}\left(32-x^{2}-y^{2}\right) d y d x \\
& =\left.\int_{-4}^{4}\left(32 y-x^{2} y-\frac{1}{3} y^{3}\right)\right|_{-4} ^{4} d x \\
& =\int_{-4}^{4}\left(\frac{640}{3}-8 x^{2}\right) d x \\
& =\left.\left(\frac{640}{3} x-\frac{8}{3} x^{3}\right)\right|_{-4} ^{4} \\
& =\frac{4096}{3} .
\end{aligned}
$$

The area of \mathcal{D} is $8 \times 8=64$. So the average height of the pagoda's ceiling is $\bar{H}=\frac{1}{64} \cdot \frac{4096}{3}=\frac{64}{3}$ feet.

Decomposing the Domain Into Smaller Domains

- If \mathcal{D} is the union of domains $\mathcal{D}_{1}, \mathcal{D}_{2}, \ldots, \mathcal{D}_{N}$, that do not overlap except possibly on boundary curves, then

$$
\iint_{\mathcal{D}} f(x, y) d A=\iint_{\mathcal{D}_{1}} f(x, y) d A+\cdots+\iint_{\mathcal{D}_{N}} f(x, y) d A .
$$

- If $f(x, y)$ is a continuous function on a small domain \mathcal{D}, then

$$
\iint_{\mathcal{D}} f(x, y) d A \approx \underbrace{f(P)}_{\text {Function Value }} \cdot \underbrace{A(\mathcal{D})}_{\text {Area }}
$$

where P is any sample point in \mathcal{D}.

- If the domain \mathcal{D} is not small, we may partition it into N smaller subdomains $\mathcal{D}_{1}, \ldots, \mathcal{D}_{N}$ and choose sample points P_{j} in \mathcal{D}_{j}. Using both preceding properties, we get

$$
\iint_{\mathcal{D}} f(x, y) d A \approx \sum_{j=1}^{N} f\left(P_{j}\right) A\left(\mathcal{D}_{j}\right)
$$

Example of Decomposing the Domain and Approximating

- Estimate $\iint_{\mathcal{D}} f(x, y) d A$ for the domain \mathcal{D} of the figure, using the areas and function values given.

j	1	2	3	4
$\mathrm{~A}\left(\mathcal{D}_{j}\right)$	1	1	0.9	1.2
$f\left(P_{j}\right)$	1.8	2.2	2.1	2.4

$$
\begin{aligned}
\iint_{\mathcal{D}} f(x, y) d A & \approx \sum_{j=1}^{4} f\left(P_{j}\right) A\left(\mathcal{D}_{j}\right) \\
& =1.8 \cdot 1+2.2 \cdot 1+2.1 \cdot 0.9+2.4 \cdot 1.2 \\
& =8.8
\end{aligned}
$$

Subsection 3

Double Integrals in Polar Coordinates

Polar Rectangles

- Recall the formulas relating Cartesian coordinate pairs (x, y) with polar coordinate pairs (r, θ) of the same point on the plane:

$$
r^{2}=x^{2}+y^{2}, \quad x=r \cos \theta, \quad y=r \sin \theta
$$

- A polar rectangle is the set of points

$$
\mathcal{R}=\{(r, \theta): a \leq r \leq b, \alpha \leq \theta \leq \beta\}
$$

Area of Elementary Polar Sub-rectangle

- The polar subrectangle $\mathcal{R}_{i j}=\left\{(r, \theta): r_{i-1} \leq r \leq r_{i}, \theta_{j-1} \leq \theta \leq \theta_{j}\right\}$.

- Its center has polar coordinates $r_{i}^{*}=\frac{1}{2}\left(r_{i-1}+r_{i}\right), \theta_{j}^{*}=\frac{1}{2}\left(\theta_{j-1}+\theta_{j}\right)$.
- Since area of a sector of circle with radius r and central angle θ is $\frac{1}{2} r^{2} \theta$, we get for the elementary polar rectangular area:
$\Delta A_{i j}=\frac{1}{2} r_{i}^{2} \Delta \theta_{j}-\frac{1}{2} r_{i-1}^{2} \Delta \theta_{j}=\frac{1}{2}\left(r_{i}+r_{i-1}\right)\left(r_{i}-r_{i-1}\right) \Delta \theta_{j}=r_{i}^{*} \Delta r_{i} \Delta \theta_{j}$.

Approximating Volumes by Sums in Polar Coordinates

- Given a function $f(x, y)$ defined over the polar rectangle \mathcal{R}, we can approximate the volume under f over \mathcal{R} by a sum of volumes over elementary polar rectangles:

$$
\begin{aligned}
\iint_{\mathcal{R}} f(x, y) d A & \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta A_{i j} \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(r_{i}^{*} \cos \theta_{j}^{*}, r_{i}^{*} \sin \theta_{j}^{*}\right) r_{i}^{*} \Delta r_{i} \Delta \theta_{j} \\
& \approx \int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta
\end{aligned}
$$

Changing Double Integrals to Polar Coordinates

If f is continuous on polar rectangle \mathcal{R}, with $0 \leq a \leq r \leq b, \alpha \leq \theta \leq \beta$,
$\int_{\mathcal{R}} \int f(x, y) d A=\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta$.

Example I

- Evaluate $\iint_{\mathcal{R}}\left(3 x+4 y^{2}\right) d A$, where \mathcal{R} is the region in the upper half-plane bounded by the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$. The region of integration is

$$
\begin{aligned}
\mathcal{R} & =\left\{(x, y): y \geq 0,1 \leq x^{2}+y^{2} \leq 4\right\} \\
& =\{(r, \theta): 1 \leq r \leq 2,0 \leq \theta \leq \pi\}
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
\iint_{\mathcal{R}}\left(3 x+4 y^{2}\right) d A & =\int_{0}^{\pi} \int_{1}^{2}\left(3 r \cos \theta+4 r^{2} \sin ^{2} \theta\right) r d r d \theta \\
& =\int_{0}^{\pi} \int_{1}^{2}\left(3 r^{2} \cos \theta+4 r^{3} \sin ^{2} \theta\right) d r d \theta \\
& =\left.\int_{0}^{\pi}\left(r^{3} \cos \theta+r^{4} \sin ^{2} \theta\right)\right|_{1} ^{2} d \theta \\
& =\int_{0}^{\pi}\left(7 \cos \theta+15 \sin ^{2} \theta\right) d \theta \\
& =\int_{0}^{\pi}\left(7 \cos \theta+\frac{15}{2}(1-\cos 2 \theta)\right) d \theta \\
& =\left.\left(7 \sin \theta+\frac{15}{2} \theta-\frac{15}{4} \sin 2 \theta\right)\right|_{0} ^{\pi}=\frac{15}{2} \pi .
\end{aligned}
$$

Example I Illustrated

- The volume $\int_{0}^{\pi} \int_{1}^{2}\left(3 r \cos \theta+4 r^{2} \sin ^{2} \theta\right) r d r d \theta=\frac{15}{2} \pi$ units 3.

Example II

- Find the volume of the solid bounded by the plane $z=0$ and the paraboloid $z=1-x^{2}-y^{2}$.

The region of integration is

$$
\begin{aligned}
\mathcal{R} & =\left\{(x, y): x^{2}+y^{2} \leq 1\right\} \\
& =\{(r, \theta): 0 \leq r \leq 1 \\
& 0 \leq \theta \leq 2 \pi\}
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
& \iint_{\mathcal{R}}\left(1-x^{2}-y^{2}\right) d A \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(1-r^{2}\right) r d r d \theta \\
& =\left.\int_{0}^{2 \pi}\left(\frac{1}{2} r^{2}-\frac{1}{4} r^{4}\right)\right|_{0} ^{1} d \theta \\
& =\int_{0}^{2 \pi} \frac{1}{4} d \theta \\
& =\frac{1}{4} \theta \theta_{0}^{2 \pi}=\frac{\pi}{2} .
\end{aligned}
$$

Example III

- Calculate $\iint_{\mathcal{D}} \frac{1}{\left(x^{2}+y^{2}\right)^{2}} d A$, for the domain \mathcal{D} shaded in the figure.

The region of integration is

$$
\begin{aligned}
\mathcal{D}=\{(r, \theta): 0 & \leq \theta \leq \frac{\pi}{4} \\
\sec \theta & \leq r \leq 2 \cos \theta\}
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
& \iint_{\mathcal{D}} \frac{1}{\left(x^{2}+y^{2}\right)^{2}} d A=\int_{0}^{\frac{\pi}{4}} \int_{\sec \theta}^{2 \cos \theta} \frac{1}{r^{4}} r d r d \theta \\
& =\int_{0}^{\frac{\pi}{4}} \int_{\sec \theta}^{2 \cos \theta} \frac{1}{r^{3}} d r d \theta \\
& =\left.\int_{0}^{\frac{\pi}{4}}\left(-\frac{1}{2 r^{2}}\right)\right|_{\sec \theta} ^{2 \cos \theta} d \theta \\
& =\int_{0}^{\frac{\pi}{4}}\left(-\frac{1}{8} \sec ^{2} \theta+\frac{1}{2} \cos ^{2} \theta\right) d \theta \\
& =\left.\left[-\frac{1}{8} \tan \theta+\frac{1}{4}\left(\theta+\frac{1}{2} \sin 2 \theta\right)\right]\right|_{0} ^{\pi / 4} \\
& =-\frac{1}{8}+\frac{1}{4}\left(\frac{\pi}{4}+\frac{1}{2}\right)=\frac{\pi}{16} .
\end{aligned}
$$

Example III Illustrated

- The volume $\iint_{\mathcal{D}} \frac{1}{\left(x^{2}+y^{2}\right)^{2}} d A$, for the domain \mathcal{D} shaded in the figure on the left.

Double Integrals over Polar Regions Between Two Curves

Polar Integration Between Two Curves

If f is continuous on a polar region

$$
\begin{aligned}
& \qquad \mathcal{D}=\left\{(r, \theta): \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\}, \\
& \text { then } \iint_{\mathcal{D}} f(x, y) d A=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta
\end{aligned}
$$

Double Integration Between Two Curves

- Find the volume of the solid under the paraboloid $z=x^{2}+y^{2}$ above the $x y$-plane inside the cylinder $x^{2}+y^{2}=2 x$.
The region of integration is

$$
\begin{aligned}
& \quad \mathcal{D}=\left\{(x, y):(x-1)^{2}+y^{2} \leq 1\right\} \\
& =\left\{(r, \theta):-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}, 0 \leq r \leq 2 \cos \theta\right\} . \\
& \iint_{\mathcal{D}}\left(x^{2}+y^{2}\right) d A \\
& =\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2 \cos \theta} r^{2} r d r d \theta \\
& =\left.\int_{-\pi / 2}^{\pi / 2} \frac{1}{4} r^{4}\right|_{0} ^{2} \cos \theta d \theta \\
& =4 \int_{-\pi / 2}^{\pi / 2} \cos ^{4} \theta d \theta \\
& =8 \int_{0}^{\pi / 2}\left(\frac{1+\cos 2 \theta}{2}\right)^{2} d \theta \\
& =2 \int_{0}^{\pi / 2}\left(1+2 \cos 2 \theta+\frac{1}{2}(1+\cos 4 \theta)\right) d \theta \\
& =2\left[\frac{3}{2} \theta+\sin 2 \theta+\frac{1}{8} \sin 4 \theta\right]_{0}^{\pi / 2} \\
& =\frac{3}{2} \pi .
\end{aligned}
$$

Double Integration Between Two Curves Ilustrated

- The volume of the solid under the paraboloid $z=x^{2}+y^{2}$ above the $x y$-plane inside the cylinder $x^{2}+y^{2}=2 x$.

Subsection 4

Triple Integrals

Triple Integrals

- The triple integral of $f(x, y, z)$ over a box \mathcal{B} is defined by

$$
\iiint_{\mathcal{B}} f(x, y, z) d V=\lim _{\substack{\Delta x_{i} \rightarrow 0 \\ \Delta y_{j} \rightarrow 0 \\ \Delta z_{k} \rightarrow 0}} \sum_{i=1}^{\ell} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right) \Delta V_{i j k}
$$

Fubini's Theorem for Triple Integrals

Fubini's Theorem

If f is continuous on the rectangular box $\mathcal{B}=[a, b] \times[c, d] \times[r, s]$, then

$$
\iiint_{\mathcal{B}} f(x, y, z) d V=\int_{r}^{s} \int_{c}^{d} \int_{a}^{b} f(x, y, z) d x d y d z
$$

Example: Evaluate the integral $\iiint_{\mathcal{B}} x y z^{2} d V$, where \mathcal{B} is the rectangular box given by

$$
\begin{aligned}
\mathcal{B}= & \{(x, y, z): 0 \leq x \leq 1 \\
& -1 \leq y \leq 2,0 \leq z \leq 3\}
\end{aligned}
$$

Computing the Triple Integral

$$
\begin{aligned}
\iiint_{\mathcal{B}} x y z^{2} d V & =\int_{0}^{3} \int_{-1}^{2} \int_{0}^{1} x y z^{2} d x d y d z \\
& =\left.\int_{0}^{3} \int_{-1}^{2}\left(\frac{1}{2} x^{2} y z^{2}\right)\right|_{0} ^{1} d y d z \\
& =\int_{0}^{3} \int_{-1}^{2} \frac{1}{2} y z^{2} d y d z \\
& =\left.\int_{0}^{3} \frac{1}{4} y^{2} z^{2}\right|_{-1} ^{2} d z \\
& =\int_{0}^{3} \frac{3}{4} z^{2} d z \\
& =\left.\frac{1}{4} z^{3}\right|_{0} ^{3} \\
& =\frac{27}{4}
\end{aligned}
$$

Computing Another Triple Integral

- Compute the integral $\iiint_{\mathcal{B}} x^{2} e^{y+3 z} d V$, where $\mathcal{B}=[1,4] \times[0,3] \times[2,6]$.

$$
\begin{aligned}
\iiint \int_{\mathcal{B}} x^{2} e^{y+3 z} d V & =\int_{1}^{4} \int_{0}^{3} \int_{2}^{6} x^{2} e^{y+3 z} d z d y d x \\
& =\int_{1}^{4} \int_{0}^{3} \int_{2}^{6} x^{2} e^{y} e^{3 z} d z d y d x \\
& =\left.\int_{1}^{4} \int_{0}^{3} \frac{1}{3} x^{2} e^{y}\left(e^{3 z}\right)\right|_{2} ^{6} d y d x \\
& =\int_{1}^{4} \int_{0}^{3} \frac{1}{3} x^{2} e^{y}\left(e^{18}-e^{6}\right) d y d x \\
& =\left.\int_{1}^{4} \frac{1}{3} x^{2}\left(e^{18}-e^{6}\right)\left(e^{y}\right)\right|_{0} ^{3} d x \\
& =\int_{1}^{4} \frac{1}{3} x^{2}\left(e^{18}-e^{6}\right)\left(e^{3}-1\right) d x \\
& =\left.\frac{1}{9}\left(e^{18}-e^{6}\right)\left(e^{3}-1\right)\left(x^{3}\right)\right|_{1} ^{4} \\
& =\frac{1}{9}\left(e^{18}-e^{6}\right)\left(e^{3}-1\right) \cdot 63 \\
& =7\left(e^{18}-e^{6}\right)\left(e^{3}-1\right) .
\end{aligned}
$$

Triple Integrals Over Type I Solid Regions

- A solid region \mathcal{W} is said to be of type I if it lies between the graphs of two continuous functions of x and y, i.e., if it is of the form

$$
\mathcal{W}=\left\{(x, y, z):(x, y) \in \mathcal{D}, u_{1}(x, y) \leq z \leq u_{2}(x, y)\right\}
$$

- For a type I region \mathcal{W},

$$
\iiint_{\mathcal{W}} f(x, y, z) d V=\iint_{\mathcal{D}} \int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z d A
$$

Two Special Cases of Type I Solid Regions

- If the projection \mathcal{D} of \mathcal{W} on the $x y$-plane is a type I plane region $\mathcal{D}=\left\{(x, y): a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}$, then

$$
\mathcal{W}=\left\{(x, y, z): a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x), u_{1}(x, y) \leq z \leq u_{2}(x, y)\right\}
$$

and

$$
\iiint_{\mathcal{W}} f(x, y, z) d V=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}} \int_{u_{1}(x, y)}^{g_{2}(x) u_{2}(x, y)} f(x, y, z) d z d y d x
$$

- If the projection \mathcal{D} of \mathcal{W} on the $x y$-plane is a type II plane region $\mathcal{D}=\left\{(x, y): c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\}$, then

$$
\mathcal{W}=\left\{(x, y, z): c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y), u_{1}(x, y) \leq z \leq u_{2}(x, y)\right\}
$$

and

$$
\iiint_{\mathcal{W}} f(x, y, z) d V=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}} \int_{u_{1}(x, y)}^{h_{2}(y) u_{2}(x, y)} f(x, y, z) d z d x d y
$$

Calculating a Type I Triple Integral

- Evaluate $\iiint_{\mathcal{E}} z d V$, where \mathcal{E} is the solid tetrahedron bounded by the four planes $x=0, y=0, z=0$ and $x+y+z=1$.
The tetrahedral region may be expressed as

$$
\begin{aligned}
& \mathcal{E}=\{(x, y, z): 0 \leq x \leq 1,0 \leq y \leq 1-x, 0 \leq z \leq 1-x-y\} \\
& \iiint_{\mathcal{E}} z d V=\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} z d z d y d x \\
&=\left.\int_{0}^{1} \int_{0}^{1-x} \frac{1}{2} z^{2}\right|_{0} ^{1-x-y} d y d x \\
&=\frac{1}{2} \int_{0}^{1} \int_{0}^{1-x}(1-x-y)^{2} d y d x \\
&=\left.\frac{1}{2} \int_{0}^{1}\left(-\frac{1}{3}(1-x-y)^{3}\right)\right|_{0} ^{1-x} d x \\
&=\frac{1}{6} \int_{0}^{1}(1-x)^{3} d x \\
&=\left.\frac{1}{6}\left(-\frac{1}{4}(1-x)^{4}\right)\right|_{0} ^{1}=\frac{1}{24}
\end{aligned}
$$

Triple Integrals Over Type II Solid Regions

- A solid region \mathcal{W} is said to be of type II if it lies between the graphs of two continuous functions of y and z, i.e., if it is of the form

$$
\mathcal{W}=\left\{(x, y, z):(y, z) \in \mathcal{D}, u_{1}(y, z) \leq x \leq u_{2}(y, z)\right\}
$$

- For a type II region \mathcal{W},

$$
\iiint_{\mathcal{W}} f(x, y, z) d V=\iint_{\mathcal{D}} \int_{u_{1}(y, z)}^{u_{2}(y, z)} f(x, y, z) d x d A
$$

Triple Integrals Over Type III Solid Regions

- A solid region \mathcal{W} is said to be of type III if it lies between the graphs of two continuous functions of x and z, i.e., if it is of the form

$$
\mathcal{W}=\left\{(x, y, z):(x, z) \in \mathcal{D}, u_{1}(x, z) \leq y \leq u_{2}(x, z)\right\}
$$

- For a type III region \mathcal{W},

$$
\iiint_{\mathcal{W}} f(x, y, z) d V=\iint_{\mathcal{D}} \int_{u_{1}(x, z)}^{u_{2}(x, z)} f(x, y, z) d y d A
$$

Calculating a Type III Triple Integral

- Evaluate $\iiint_{\mathcal{W}} \sqrt{x^{2}+z^{2}} d V$, where \mathcal{W} is the region bounded by the paraboloid $y=x^{2}+z^{2}$ and the plane $y=4$.
Let $\mathcal{D}=\left\{(x, z): x^{2}+z^{2} \leq 4\right\}$.
The paraboloid region may be expressed as

$$
\begin{aligned}
& \quad \mathcal{W}=\{(x, y, z):(x, z \\
& \iiint_{\mathcal{W}} \sqrt{x^{2}+z^{2}} d V \\
& =\iint_{\mathcal{D}} \int_{x^{2}+z^{2}}^{4} \sqrt{x^{2}+z^{2}} d y d A \\
& =\iint_{\mathcal{D}}\left(4-x^{2}-z^{2}\right) \sqrt{x^{2}+z^{2}} d A \\
& =\int_{0}^{2 \pi} \int_{0}^{2}\left(4-r^{2}\right) r r d r d \theta \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{2}\left(4 r^{2}-r^{4}\right) d r \\
& =\left.2 \pi\left(\frac{4}{3} r^{3}-\frac{1}{5} r^{5}\right)\right|_{0} ^{2} \\
& =\frac{128 \pi}{15} .
\end{aligned}
$$

Region Between Intersecting Surfaces

- Integrate $f(x, y, z)=x$ over the region \mathcal{W} bounded above by $z=4-x^{2}-y^{2}$ and below by $z=x^{2}+3 y^{2}$ in the octant $x \geq 0$, $y \geq 0, z \geq 0$.
We have $\iiint_{\mathcal{W}} x d V=\iint_{\mathcal{D}} \int_{x^{2}+3 y^{2}}^{4-x^{2}} x d z d A$.

For the boundary of \mathcal{D} set $x^{2}+3 y^{2}=4-x^{2}-y^{2} \Rightarrow x^{2}+2 y^{2}=2$.
We conclude that $\mathcal{D}=\left\{(x, y): 0 \leq y \leq 1,0 \leq x \leq \sqrt{2-2 y^{2}}\right\}$.

Region Between Intersecting Surfaces (Cont'd)

- Now we have:

$$
\begin{aligned}
\iiint_{\mathcal{W}} x d V & =\int_{0}^{1} \int_{0}^{\sqrt{2-2 y^{2}}} \int_{x^{2}+3 y^{2}}^{4-y^{2}} x d z d x d y \\
& =\left.\int_{0}^{1} \int_{0}^{\sqrt{2-2 y^{2}}}(x z)\right|_{x^{2}+3 y^{2}} ^{4-x^{2}-y^{2}} d x d y \\
& =\int_{0}^{1} \int_{0}^{\sqrt{2-2 y^{2}}}\left(4 x-2 x^{3}-4 y^{2} x\right) d x d y \\
& =\left.\int_{0}^{1}\left(2 x^{2}-\frac{1}{2} x^{4}-2 x^{2} y^{2}\right)\right|_{0} ^{\sqrt{2-2 y^{2}}} d y \\
& =\int_{0}^{1}\left(2\left(2-2 y^{2}\right)-\frac{1}{2}\left(2-2 y^{2}\right)^{2}-2\left(2-2 y^{2}\right) y^{2}\right) d y \\
& =\int_{0}^{1}\left(4-4 y^{4}-2+4 y^{2}-2 y^{4}-4 y^{2}+4 y^{4}\right) d y \\
& =\int_{0}^{1}\left(2-4 y^{2}+2 y^{4}\right) d y \\
& =\left(2 y-\frac{4}{3} y^{3}+\frac{2}{5} y^{5}\right)_{0}^{1}=2-\frac{4}{3}+\frac{2}{5}=\frac{16}{15} .
\end{aligned}
$$

Volumes

- If $f(x, y, z)=1$ throughout a solid region \mathcal{W}, then the triple integral of f over \mathcal{W} is equal to the volume of $\mathcal{W}: V(\mathcal{W})=\iiint_{\mathcal{W}} 1 d V$.
Example: Compute the volume of the tetrahedron \mathcal{T} bounded by the planes $x+2 y+z=2, x=2 y, x=0$ and $z=0$.

$$
\begin{aligned}
& V(\mathcal{T})=\iiint_{\mathcal{T}} d V \\
& =\int_{0}^{1} \int_{x / 2}^{1-x / 2} \int_{0}^{2-x-2 y} d z d y d x \\
& =\int_{0}^{1} \int_{x / 2}^{1-x / 2}(2-x-2 y) d y d x \\
& =\left.\int_{0}^{1}\left((2-x) y-y^{2}\right)\right|_{x / 2} ^{1-x / 2} d x \\
& =\int_{0}^{1}\left(x^{2}-2 x+1\right) d x \\
& =\frac{1}{3}
\end{aligned}
$$

Subsection 5

Triple Integrals in Cylindric Coordinates

Cylindrical Coordinate System

- In cylindrical Coordinates a point P is represented by a triple (r, θ, z), where
- r and θ are polar coordinates of the projection of P onto the $x y$-plane;
- z is the directed distance from the $x y$-plane to P.

- Conversion from Cylindrical to Rectangular:

$$
x=r \cos \theta, \quad y=r \sin \theta, \quad z=z
$$

- Conversion from Rectangular to Cylindrical:

$$
r^{2}=x^{2}+y^{2}, \quad \tan \theta=\frac{y}{x}, \quad z=z
$$

Surface with Cylindrical Coordinates $z=r$

- In rectangular $z=r$ translates to $z^{2}=x^{2}+y^{2}$, which represents a cone with axis the z-axis.

Triple Integrals in Cylindrical Coordinates

- Assume f is continuous on

$$
\mathcal{W}=\left\{(x, y, z):(x, y) \in \mathcal{D}, u_{1}(x, y) \leq z \leq u_{2}(x, y)\right\}
$$

Assume also that

$$
\mathcal{D}=\left\{(r, \theta): \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\} .
$$

Then, the triple integral of f over \mathcal{W} is given by

$$
\begin{aligned}
& \iiint_{\mathcal{W}} f(x, y, z) d V \\
&=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} \int_{u_{1}(r \cos \theta, r \sin \theta)}^{u_{2}(r \cos \theta, r \sin \theta)} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
\end{aligned}
$$

Example I

- Integrate $f(x, y, z)=z \sqrt{x^{2}+y^{2}}$ over the cylinder $x^{2}+y^{2} \leq 4$, for $1 \leq z \leq 5$.

We have

$$
\begin{gathered}
\mathcal{W}=\{(r, \theta, z): 0 \leq \theta \leq 2 \pi \\
\\
0 \leq r \leq 2,1 \leq z \leq 5\}
\end{gathered}
$$

Therefore, we obtain

$$
\begin{aligned}
& \iiint_{\mathcal{W}} z \sqrt{x^{2}+y^{2}} d V \\
& =\int_{0}^{2 \pi} \int_{0}^{2} \int_{1}^{5}(z r) r d z d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{2} \frac{1}{2} r^{2}\left(\left.z^{2}\right|_{1} ^{5}\right) d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{2} 12 r^{2} d r d \theta=\left.\int_{0}^{2 \pi} 4\left(r^{3}\right)\right|_{0} ^{2} d \theta \\
& =\int_{0}^{2 \pi} 32 d \theta=\left.32(\theta)\right|_{0} ^{2 \pi}=64 \pi
\end{aligned}
$$

Example II

- Compute the integral of $f(x, y, z)=z$ over the region \mathcal{W} within the cylinder $x^{2}+y^{2} \leq 4$ where $0 \leq z \leq y$.

We have

$$
\begin{aligned}
\mathcal{W}= & \{(r, \theta, z): 0 \leq \theta \leq \pi \\
& 0 \leq r \leq 2,0 \leq z \leq r \sin \theta\}
\end{aligned}
$$

Therefore, we obtain

$$
\begin{aligned}
& \iiint_{\mathcal{W}} z d V \\
& =\int_{0}^{\pi} \int_{0}^{2} \int_{0}^{r \sin \theta} z r d z d r d \theta \\
& =\int_{0}^{\pi} \int_{0}^{2} \frac{1}{2} r\left(\left.z^{2}\right|_{0} ^{r \sin \theta}\right) d r d \theta \\
= & \int_{0}^{\pi} \int_{0}^{2} \frac{1}{2} r^{3} \sin ^{2} \theta d r d \theta=\left.\int_{0}^{\pi} \frac{1}{8} \sin ^{2} \theta\left(r^{4}\right)\right|_{0} ^{2} d \theta=\int_{0}^{\pi} 2 \sin ^{2} \theta d \theta \\
= & \int_{0}^{\pi}(1-\cos 2 \theta) d \theta=\left.\left(\theta-\frac{1}{2} \sin 2 \theta\right)\right|_{0} ^{\pi}=\pi .
\end{aligned}
$$

Computing a Mass

- Compute the mass of a solid \mathcal{W} that lies within the cylinder $x^{2}+y^{2}=1$, below $z=4$ and above $z=1-x^{2}-y^{2}$, with density proportional to the distance from the axis of the cylinder.

The region \mathcal{W} can be expressed as

$$
\begin{aligned}
& \mathcal{W}=\{(r, \theta, z): 0 \leq \theta \leq 2 \pi \\
& \left.0 \leq r \leq 1,1-r^{2} \leq z \leq 4\right\}
\end{aligned}
$$

Density is $\rho(x, y, z)=K \sqrt{x^{2}+y^{2}}=K r$.

$$
\begin{aligned}
& m=\iiint_{E} K \sqrt{x^{2}+y^{2}} d V \\
= & \int_{0}^{2 \pi} \int_{0}^{1} \int_{1-r^{2}}^{4}(K r) r d z d r d \theta=\int_{0}^{2 \pi} \int_{0}^{1} K r^{2}\left(4-\left(1-r^{2}\right)\right) d r d \theta \\
= & K \int_{0}^{2 \pi} d \theta \int_{0}^{1}\left(3 r^{2}+r^{4}\right) d r=\left.2 \pi K\left(r^{3}+\frac{1}{5} r^{5}\right)\right|_{0} ^{1}=\frac{12 \pi K}{5} .
\end{aligned}
$$

Another Example

- Evaluate

$$
I=\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{2}\left(x^{2}+y^{2}\right) d z d y d x
$$

The region \mathcal{W} can be expressed as

$$
\begin{aligned}
\mathcal{W}= & \{(r, \theta, z): 0 \leq \theta \leq 2 \pi \\
& 0 \leq r \leq 2, r \leq z \leq 2\} \\
= & \iiint_{\mathcal{W}}\left(x^{2}+y^{2}\right) d V \\
= & \int_{0}^{2 \pi} \int_{0}^{2} \int_{r}^{2} r^{2} r d z d r d \theta \\
= & \left.\int_{0}^{2 \pi} d \theta \int_{0}^{2} r^{3} z\right|_{r} ^{2} d r \\
= & \int_{0}^{2 \pi} d \theta \int_{0}^{2} r^{3}(2-r) d r \\
= & \left.2 \pi\left(\frac{1}{2} r^{4}-\frac{1}{5} r^{5}\right)\right|_{0} ^{2} \\
= & \frac{16 \pi}{5} .
\end{aligned}
$$

Subsection 6

Triple Integrals in Spherical Coordinates

Spherical Coordinate System

- The spherical coordinates (ρ, θ, ϕ) of a point P consist of
- the distance $\rho=O P$ of P from the origin O;
- the same angle θ as in cylindrical coordinates;
- the angle ϕ between the positive z-axis and the line segment $O P$.

Why "Spherical"?

- The sphere centered at origin with radius c has equation $\rho=c$.

From Spherical to Rectangular

- Recall again that $z=\rho \cos \phi$ and $r=\rho \sin \phi$. Thus, the equations to convert from Spherical to Rectangular are:

$$
x=\rho \sin \phi \cos \theta, \quad y=\rho \sin \phi \sin \theta, \quad z=\rho \cos \phi
$$

- Recall, also, that $\rho^{2}=x^{2}+y^{2}+z^{2}$.

Triple Integrals Using Spherical Coordinates

- A spherical wedge is a set of the form

$$
\mathcal{W}=\{(\rho, \theta, \phi): a \leq \rho \leq b, \alpha \leq \theta \leq \beta, \gamma \leq \phi \leq \delta\}
$$

- The elementary volume $\Delta V_{i j k}$ of a small wedge, whose center radius is ρ_{i} and whose spherical "dimensions" are $\Delta \rho_{i}, \Delta \theta_{j}$ and $\Delta \phi_{k}$ is given by

$$
\Delta V_{i j k} \approx\left(\Delta \rho_{i}\right)\left(\rho_{i} \Delta \phi_{k}\right)\left(\rho_{i} \sin \phi_{k} \Delta \theta_{j}\right)
$$

$$
=\rho_{i}^{2} \sin \phi_{k} \Delta \rho_{i} \Delta \theta_{j} \Delta \phi_{k}
$$

Illustrating an Elementary Spherical Volume

- Recall $\Delta V_{i j k} \approx \rho_{i}^{2} \sin \phi_{k} \Delta \rho_{i} \Delta \theta_{j} \Delta \phi_{k}$.
- Volume differential: $d V=d \rho(\rho d \phi)(\rho \sin \phi d \theta)=\rho^{2} \sin \phi d \rho d \theta d \phi$.

Triple Integrals in Spherical Coordinates

- Recall $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta$ and $z=\rho \cos \phi$.
- Recall, also, $\Delta V_{i j k}=\rho_{i}^{2} \sin \phi_{k} \Delta \rho_{i} \Delta \theta_{j} \Delta \phi_{k}$.
- So, we get that

$$
\iiint_{\mathcal{W}} f(x, y, z) d V \approx \sum_{i=1}^{\ell} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right) \Delta V_{i j k}
$$

$=\sum_{i=1}^{\ell} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(\tilde{\rho}_{i} \sin \tilde{\phi}_{k} \cos \tilde{\theta}_{j}, \tilde{\rho}_{i} \sin \tilde{\phi}_{k} \sin \tilde{\theta}_{j}, \tilde{\rho}_{i} \cos \tilde{\phi}_{k}\right) \tilde{\rho}_{i}^{2} \sin \tilde{\phi}_{k} \Delta \rho_{i} \Delta \theta_{j} \Delta \phi_{k}$.

- We, therefore get the formula $\iiint_{\mathcal{W}} f(x, y, z) d V=$
$=\lim$

$$
\begin{aligned}
& \substack{\Delta \rho_{i} \rightarrow 0 \\
\Delta \theta_{j} \rightarrow 0 \\
\Delta \phi_{k} \rightarrow 0}
\end{aligned} \sum_{i=1}^{\ell} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(\tilde{\rho}_{i} \sin \tilde{\phi}_{k} \cos \tilde{\theta}_{j}, \tilde{\rho}_{i} \sin \tilde{\phi}_{k} \sin \tilde{\theta}_{j}, \tilde{\rho}_{i} \cos \tilde{\phi}_{k}\right) \tilde{\rho}_{i}^{2} \sin \text { } \Delta \rho_{i} \Delta \theta_{j} \Delta \phi_{k}
$$

$=\int_{\gamma}^{\delta} \int_{\alpha}^{\beta} \int_{a}^{b} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \theta d \phi$.

Example I

- Evaluate $\iiint_{\mathcal{W}} 16 z d V$, where \mathcal{W} is the upper half of the sphere $\mathcal{B}=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 1\right\}$.
In spherical coordinates

$$
\mathcal{W}=\left\{(\rho, \theta, \phi): 0 \leq \rho \leq 1,0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \frac{\pi}{2}\right\}
$$

Taking into account that $z=\rho \cos \phi$, we get

$$
\begin{aligned}
\iiint_{\mathcal{W}} 16 z d V & =\int_{0}^{\pi / 2} \int_{0}^{2 \pi} \int_{0}^{1}(16 \rho \cos \phi)\left(\rho^{2} \sin \phi\right) d \rho d \theta d \phi \\
& =\int_{0}^{\pi / 2} \int_{0}^{2 \pi} \int_{0}^{1} 8 \rho^{3} \sin 2 \phi d \rho d \theta d \phi \\
& =\left.\int_{0}^{\pi / 2} \int_{0}^{2 \pi} 2 \rho^{4} \sin 2 \phi\right|_{0} ^{1} d \theta d \phi \\
& =\int_{0}^{\pi / 2} \int_{0}^{2 \pi} 2 \sin 2 \phi d \theta d \phi \\
& =\left.\int_{0}^{\pi / 2} 2 \theta \sin 2 \phi\right|_{0} ^{2 \pi} d \phi \\
& =\int_{0}^{\pi / 2} 4 \pi \sin 2 \phi d \phi \\
& =-\left.2 \pi \cos 2 \phi\right|_{0} ^{\pi / 2}=4 \pi .
\end{aligned}
$$

Example II

- Evaluate $\iiint_{\mathcal{B}} e^{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} d V$, where \mathcal{B} is the unit ball $\mathcal{B}=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 1\right\}$.
In spherical coordinates

$$
\mathcal{B}=\{(\rho, \theta, \phi): 0 \leq \rho \leq 1,0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi\} .
$$

Taking into account that $x^{2}+y^{2}+z^{2}=\rho^{2}$, we get

$$
\begin{aligned}
\iiint_{\mathcal{B}} e^{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} d V & =\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{1} e^{\left(\rho^{2}\right)^{3 / 2}} \rho^{2} \sin \phi d \rho d \theta d \phi \\
& =\int_{0}^{\pi} \sin \phi d \phi \int_{0}^{2 \pi} d \theta \int_{0}^{1} \rho^{2} e^{\rho^{3}} d \rho \\
& =-\left.\left.\cos \phi\right|_{0} ^{\pi} \cdot 2 \pi \cdot\left(\frac{1}{3} e^{\rho^{3}}\right)\right|_{0} ^{1} \\
& =\frac{4}{3} \pi(e-1) .
\end{aligned}
$$

Example III

- Compute the integral $\int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{18-y^{2}}}\left(x^{2}+y^{2}+z^{2}\right) d z d x d y$.

The equation of the sphere in spherical coordinates is $\rho^{2}=18$ or $\rho=3 \sqrt{2}$.
The equation of the cone is
$z=\rho \cos \phi=-$ $\rho \sin \phi$. So $\phi=\frac{\pi}{4}$.

Finally, the solid \mathcal{W} in spherical coordinates is given by

$$
\mathcal{W}=\left\{(\rho, \theta, \phi): 0 \leq \theta \leq \frac{\pi}{2}, 0 \leq \phi \leq \frac{\pi}{4}, 0 \leq \rho \leq 3 \sqrt{2}\right\}
$$

Example III (Cont'd)

$$
\begin{aligned}
& \iiint_{\mathcal{W}} \rho^{2} d V \\
& =\int_{0}^{\pi / 2} \int_{0}^{\pi / 4} \int_{0}^{3 \sqrt{2}} \rho^{2}\left(\rho^{2} \sin \phi\right) d \rho d \phi d \theta \\
& =\left.\int_{0}^{\pi / 2} \int_{0}^{\pi / 4} \frac{1}{5} \rho^{5} \sin \phi\right|_{0} ^{3 \sqrt{2}} d \phi d \theta \\
& =\int_{0}^{\pi / 2} \int_{0}^{\pi / 4} \frac{243 \cdot 4 \sqrt{2}}{5} \sin \phi d \phi d \theta \\
& =\int_{0}^{\pi / 2}-\left.\frac{972 \sqrt{2}}{5} \cos \phi\right|_{0} ^{\pi / 4} d \theta \\
& =\int_{0}^{\pi / 2}\left(-\frac{972 \sqrt{2}}{5}\left(\frac{\sqrt{2}}{2}-1\right)\right) d \theta \\
& =\int_{0}^{\pi / 2} \frac{972(\sqrt{2}-1)}{5} d \theta \\
& =\frac{972(\sqrt{2}-1) \pi}{10} .
\end{aligned}
$$

Example IV

- Compute the volume of the solid lying above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=z$.
The equation of the sphere in spherical coordinates is $\rho^{2}=\rho \cos \phi$ or $\rho=\cos \phi$. The equation of the cone is

$$
\rho \cos \phi=\sqrt{\rho^{2} \sin ^{2} \phi \cos ^{2} \theta+\rho^{2} \sin ^{2} \phi \sin ^{2} \theta}=\rho \sin \phi . \text { So } \phi=\frac{\pi}{4} .
$$

Finally, the solid \mathcal{W} in spherical coordinates is given by

$$
\mathcal{W}=\left\{(\rho, \theta, \phi): 0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \frac{\pi}{4}, 0 \leq \rho \leq \cos \phi\right\}
$$

Example IV (Cont'd)

