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Sets

Intuitively, a set is a bag of points, of which there may be infinitely
many.

These points, or elements, are not related to one another in any way.

They are not in any order;
They do not come with any algebraic structure (for instance, there is
no specified way of multiplying elements together);
There is no sense of what it means for one point to be close to another.

In particular examples, we might have some extra structure in mind.

For instance, we often equip the set of real numbers with an order, a
field structure and a metric.

But to view R as a mere set is to ignore all that structure and regard
it as no more than a bag of featureless points.

George Voutsadakis (LSSU) Category Theory July 2020 4 / 33



Interlude on Sets Constructions With Sets

The Category of Sets

Intuitively, a function A→B is an assignment of a point in bag B to
each point in bag A.
We can do one function after another:

Given functions

we obtain a composite function

This composition of functions is associative: h ◦ (g ◦ f )= (h ◦g)◦ f .

There is also an identity function on every set.

Hence: Sets and functions form a category, denoted by Set.
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The Empty Set

The empty set: There is a set ; with no elements.

Suppose that someone hands you a pair of sets, A and B , and tells
you to specify a function from A to B .

Then your task is to specify for each element of A an element of B .

The larger A is, the longer the task.

The smaller A is, the shorter the task.

In particular, if A is empty then the task takes no time at all; we have
nothing to do.

So there is a function from ; to B specified by doing nothing.

On the other hand, there cannot be two different ways to do nothing.

So there is only one function from ; to B .

Hence: ; is an initial object of Set.
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An Alternative Argument

Suppose that we have a set A with disjoint subsets A1 and A2 such
that A1∪A2 =A.

Then a function from A to B amounts to a function from A1 to B

together with a function from A2 to B .

So if all the sets are finite, we should have the rule

(number of functions from A to B)
= (number of functions from A1 to B)

× (number of functions from A2 to B).

In particular, we could take A1 =A and A2 =;.

This would force the number of functions from ; to B to be 1.

So if we want this rule to hold (and surely we do!), we had better say
that there is exactly one function from ; to B .
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Functions Into ;

What about functions into ;?

There is exactly one function ;→;, namely, the identity.

This is a special case of the initiality of ;.

On the other hand, for a set A that is not empty, there are no
functions A→; because there is nowhere for elements of A to go.
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The One-Element Set

The one-element set: There is a set 1 with exactly one element.

For any set A, there is exactly one function from A to 1, since every
element of A must be mapped to the unique element of 1.

That is: 1 is a terminal object of Set.

A function from 1 to a set B is just a choice of an element of B .

In short, the functions 1→B are the elements of B .

Hence: The concept of element is a special case of the concept of
function.
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Products

Products: Any two sets A and B have a product, A×B .

Its elements are the ordered pairs (a,b) with a ∈A and b ∈B .

All that matters about ordered pairs is that for a,a′ ∈A and b,b′ ∈B ,

(a,b)= (a′,b′) ⇔ a= a′ and b = b′.

More generally, take any set I and any family (Ai )i∈I of sets.

There is a product set
∏

i∈I Ai , whose elements are families (ai)i∈I
with ai ∈Ai for each i .

Just as for ordered pairs,

(ai)i∈I = (a′i )i∈I ⇔ ai = a′i , for all i ∈ I .
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Sums

Sums: Any two sets A and B have a sum A+B .

Thinking of sets as bags of points, the sum of two sets is obtained by
putting all the points into one big bag:

If A and B are finite sets with m and n elements respectively, then
A+B always has m+n elements.

It makes no difference what the elements of A+B are called; as usual,
we only care what A+B is up to isomorphism.

There are inclusion functions A
i
→A+B

j
←B such that the union of

the images of i and j is all of A+B and the intersection of the images
is empty.
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Sums (Cont’d)

Sum is sometimes called disjoint union and written as
∐

.

It is not to be confused with (ordinary) union ∪.

We can take the sum of any two sets A and B;
A∪B only really makes sense when A and B come as subsets of some
larger set (to say what A∪B is, we need to know which elements of A
are equal to which elements of B);
Even if A and B do come as subsets of some larger set, A+B and
A∪B can be different.

For example, take the subsets A= {1,2,3} and B = {3,4} of N.

Then A∪B has 4 elements, but A+B has 3+2= 5 elements.

More generally, any family (Ai )i∈I of sets has a sum
∑

i∈I Ai .

If I is finite and each Ai is finite, say with mi elements, then
∑

i∈I Ai

has
∑

i∈I mi elements.
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Sets of Functions

Sets of functions: For any two sets A and B , we can form the set
AB of functions from B to A.

This is a special case of the product construction:

AB is the product
∏

b∈B A of the constant family (A)b∈B .

Indeed, an element of
∏

b∈B A is a family (ab)b∈B consisting of one
element ab ∈A for each b ∈B .

In other words, it is a function B →A.
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Digression on Arithmetic

We are using notation reminiscent of arithmetic: A×B , A+B and AB .

There is good reason for this:
If A is a finite set with m elements and B a finite set with n elements,
then:

A×B has m×n elements;
A+B has m+n elements;
AB has mn elements.

Our notation 1 for a one-element set and the alternative notation 0 for
the empty set ; also follow this pattern.

All the usual laws of arithmetic have their counterparts for sets:

A× (B +C ) ∼= (A×B)+ (A×C );

AB+C ∼= AB ×AC ;

(AB)C ∼= AB×C ;

and so on, where ∼= is isomorphism in the category of sets.

These isomorphisms hold for all sets, not just finite ones.
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The Two-Element Set

The two-element set: Let 2 be the set 1+1 (a set with two
elements!).

We write the elements of 2 as true and false.

Let A be a set.

Given a subset S of A, we obtain a function χS :A→ 2 (the
characteristic function of S ⊆A), where, for all a ∈A,

χS(a)=

{

true, if a ∈ S
false, if a 6∈ S

Conversely, given a function f :A→ 2, we obtain a subset of A,

f −1({true})= {a ∈A : f (a)= true}.

These two processes are mutually inverse:

χS is the unique function f :A→ 2 such that f −1{true} = S .

Hence: Subsets of A correspond one-to-one with functions A→ 2.
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Power Set

We just saw that:

Subsets of A correspond one-to-one with functions A→ 2.

We already know that the functions from A to 2 form a set, 2A.

When we are thinking of 2A as the set of all subsets of A, we call it
the power set of A and write it as P (A).
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Equalizers

It would be nice if, given a set A, we could define a subset S of A by
specifying a property that the elements of S are to satisfy:

S = {a ∈A : some property of a holds}.

It is hard to give a general definition of “property”.

There is, however, a special type of property that is easy to handle:
equality of two functions.

Precisely, given sets and functions A
f
â
g
B , there is a set

{a ∈A : f (a)= g(a)}.

This set is called the equalizer of f and g , since it is the part of A on
which the two functions are equal.
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Quotients

Let A be a set and ∼ an equivalence relation on A.

There is a set A/∼, the quotient of A by ∼, whose elements are the
equivalence classes.

For example, given a group G and a normal subgroup N, define an
equivalence relation ∼ on G by g ∼ h ⇔ gh−1 ∈N.

Then G/∼=G/N.

There is also a canonical map

p :A→A/∼,

sending an element of A to its equivalence class.

p is surjective;
It has the property

p(a)= p(a′) ⇔ a∼ a′.
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Quotients (Cont’d)

This map has a universal property:
Any function f :A→B such that for all a,a′ ∈A,

a∼ a′ ⇒ f (a)= f (a′)

factorizes uniquely through p, as in the diagram

A
p
✲ A/∼

B

f
❄f ✲

Thus, for any set B , the functions A/∼→B correspond one-to-one
with the functions f :A→B satisfying the condition, for all a,a′ ∈A,

a∼ a′ ⇒ f (a)= f (a′).
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Natural Numbers

A function with domain N is usually called a sequence.

A crucial property of N is that sequences can be defined recursively:

Given a set X , an element a ∈X , and a function r :X →X , there is a
unique sequence (xn)

∞
n=0 of elements of X such that

x0 = a, xn+1 = r(xn), for all n ∈N.

This property refers to two pieces of structure on N:

The element 0;
The function s :N→N defined by s(n)= n+1.

Reformulated in terms of functions, and writing xn = x(n), the
property is this:

For any set X , element a ∈X , and function r :X →X , there is a unique
function x :N→X such that x(0)= a and x ◦ s = r ◦x .

This is a universal property of N, 0 and s.
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Choice

Let f :A→B be a map in a category A .

A section (or right inverse) of f is a map i :B →A in A such that
f ◦ i = 1B .

A ✛
i

B

B

1B
❄

f
✲

In the category of sets, any map with a section is certainly surjective.

The converse statement is called the axiom of choice:

Every surjection has a section.

It is called “choice” because specifying a section of f :A→B amounts
to choosing, for each b ∈B , an element of {a ∈A : f (a)= b} 6= ;.
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Small and Large Categories
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Comparing Cardinalities

Given sets A and B , write |A| ≤ |B | (or |B | ≥ |A|) if there exists an
injection A→B .

We give no meaning to the expression “ |A|” or “ |B |” in isolation.

In the case of finite sets, |A| ≤ |B | just means that the number of
elements of A is less than or equal to the number of elements of B .

Since identity maps are injective, |A| ≤ |A|, for all sets A.

Since the composite of two injections is an injection,

|A| ≤ |B | ≤ |C | ⇒ |A| ≤ |C |.

Also, if A∼=B then |A| ≤ |B | ≤ |A|.

Theorem (Cantor-Bernstein)

Let A and B be sets. If |A| ≤ |B | ≤ |A|, then A∼=B .
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Comparing Cardinalities (Cont’d)

These observations tell us that ≤ is a preorder on the collection of all
sets.

It is not a genuine order, since |A| ≤ |B | ≤ |A| only implies that A∼=B ,
not A=B .

We write |A| = |B |, and say that A and B have the same cardinality,
if A∼=B , or equivalently if |A| ≤ |B | ≤ |A|.

As long as we do not confuse equality with isomorphism, the sign ≤

behaves as we might imagine.

For example, write |A| < |B | if |A| ≤ |B | and |A| 6= |B |.

Then |A| ≤ |B | < |C | ⇒ |A| < |C |, for sets A, B and C .

Indeed, we have already established that |A| ≤ |C |, and the strict
inequality follows from the Cantor-Bernstein Theorem.
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Cantor’s Theorem

Recall that P (A) is the power set of A.

Theorem (Cantor)

Let A be a set. Then |A| < |P (A)|.

The lemma is easy for finite sets, since if A has n elements then P (A)
has 2n elements, and n< 2n.

Corollary

For every set A, there is a set B such that |A| < |B |.

In other words, there is no biggest set.
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Set-Indexed Family of Sets

Proposition

Let I be a set, and let (Ai)i∈I be a family of sets. Then there exists a set
not isomorphic to any of the sets Ai .

Put A=P (
∑

i∈I Ai) the power set of the sum of the sets Ai .

For each j ∈ I , we have the inclusion function Aj →
∑

i∈I Ai .

So by Cantor’s Theorem,

|Aj | ≤ |
∑

i∈I

Ai | < |A|.

Hence |Aj | < |A|. In particular, Aj ≇A.
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Classes

We use the word class informally to mean any collection of
mathematical objects.
All sets are classes, but some classes (such as the class of all sets) are
too big to be sets.
A class will be called small if it is a set, and large otherwise.
For example, the preceding proposition states that the class of
isomorphism classes of sets is large.
The crucial point is:

Any individual set is small, but the class of sets is large.

This is even true if we pretend that isomorphic sets are equal.
Although the “definition” of class is not precise, it will do for our
purposes.
We make a naive distinction between small and large collections, and
implicitly use some intuitively plausible principles (for example, that
any subcollection of a small collection is small).
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Small and Locally Small Categories

A category A is small if the class or collection of all maps in A is
small, and large otherwise.

If A is small then the class of objects of A is small too, since objects
correspond one-to-one with identity maps.

A category A is locally small if for each A,B ∈A , the class A (A,B)
is small.

Clearly, small implies locally small.

Many authors take local smallness to be part of the definition of
category.

The class A (A,B) is often called the hom-set from A to B , although
strictly speaking, we should only call it this when A is locally small.
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Examples

Set is locally small, because for any two sets A and B , the functions
from A to B form a set.

This was one of the properties of sets stated in the previous section.

Vectk , Grp, Ab, Ring and Top are all locally small.

For example, given rings A and B , a homomorphism from A to B is a
function from A to B with certain properties.

The collection of all functions from A to B is small.

So the collection of homomorphisms from A to B is certainly small.
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Characterization of Smallness

A category is small if and only if it is locally small and its class of
objects is small.

Again, it may help to consider a similar fact about finiteness:

A category A is finite (that is, the class of all maps in A is finite) if
and only if it is locally finite (that is, each class A (A,B) is finite) and
its class of objects is finite.

Example: Consider the category B whose objects correspond to the
natural numbers.

The objects form a set, so the class of objects of B is small.

Each hom-set B(m,n) is a set (indeed, a finite set).

So B is locally small.

Hence B is small.
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Essential Smallness

A category is essentially small if it is equivalent to some small
category.

For example, the category of finite sets is essentially small since it is
equivalent to the small category B just mentioned.

If two categories A and B are equivalent, the class of isomorphism
classes of objects of A is in bijection with that of B.

In a small category, the class of objects is small, so the class of
isomorphism classes of objects is certainly small.

Hence in an essentially small category, the class of isomorphism classes
of objects is small:

Proposition

Set is not essentially small.

A previous proposition states that the class of isomorphism classes of
sets is large. The result follows.
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Example

For any field k , the category Vectk of vector spaces over k is not
essentially small.

As in the proof of the proposition, it is enough to prove that the class
of isomorphism classes of vector spaces is large.

In other words, it is enough to prove that for any set I and family
(Vi)i∈I of vector spaces, there exists a vector space not isomorphic to
any of the spaces Vi .

To show this, write Set
F
⇄

U
Vectk for the free and forgetful functors.

The set S =P (
∑

i∈I U(Vi)) has the property that |U(Vi )| < |S | for all
i ∈ I . The free vector space F (S) on S contains a copy of S as a basis.
So |S | ≤ |UF (S)|. Hence |U(Vi )| < |UF (S)|, for all i . So F (S)≇Vi for
all i .

Similarly, none of the categories Grp, Ab, Ring and Top is essentially
small.
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The Category of Small Categories

Recall that the category of all categories and functors is written as
CAT.

Definition

We denote by Cat the category of small categories and functors between
them.

Example: Monoids are by definition sets equipped with certain
structure.

So the one-object categories that they correspond to are small.

Let M be the full subcategory of Cat consisting of the one-object
categories.

Then there is an equivalence of categories Mon≃M .

Note that each object of M is a small one-object category. Hence, the
collection of maps from the single object to itself really is a set.

George Voutsadakis (LSSU) Category Theory July 2020 33 / 33


	Interlude on Sets
	Constructions With Sets
	Small and Large Categories


