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Interlude on Sets

o Intuitively, a set is a bag of points, of which there may be infinitely
many.
o These points, or elements, are not related to one another in any way.

o They are not in any order;

o They do not come with any algebraic structure (for instance, there is
no specified way of multiplying elements together);

o There is no sense of what it means for one point to be close to another.

o In particular examples, we might have some extra structure in mind.

o For instance, we often equip the set of real numbers with an order, a
field structure and a metric.

o But to view R as a mere set is to ignore all that structure and regard
it as no more than a bag of featureless points.
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Interlude on Sets

o Intuitively, a function A— B is an assignment of a point in bag B to
each point in bag A.
o We can do one function after another:

Given functions

o This composition of functions is associative: ho(gof)=(hog)of.
o There is also an identity function on every set.
o Hence: Sets and functions form a category, denoted by Set.
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Interlude on Sets

The empty set: There is a set @ with no elements.

o Suppose that someone hands you a pair of sets, A and B, and tells
you to specify a function from A to B.

Then your task is to specify for each element of A an element of B.
The larger A is, the longer the task.
The smaller A is, the shorter the task.

¢ © ¢ ¢

In particular, if A is empty then the task takes no time at all; we have
nothing to do.

So there is a function from @ to B specified by doing nothing.
On the other hand, there cannot be two different ways to do nothing.

So there is only one function from @ to B.

¢ © ¢ ¢

Hence: @ is an initial object of Set.
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Interlude on Sets

o Suppose that we have a set A with disjoint subsets A; and A, such
that AjuA, = A.

o Then a function from A to B amounts to a function from A; to B
together with a function from A, to B.

o So if all the sets are finite, we should have the rule

(number of functions from A to B)
= (number of functions from A; to B)
x (number of functions from A, to B).

o In particular, we could take A; = A and A> = @.
o This would force the number of functions from @ to B to be 1.

o So if we want this rule to hold (and surely we do!), we had better say
that there is exactly one function from @ to B.
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Interlude on Sets [SConstructions\With Sets

Functions Into @

o What about functions into @?
o There is exactly one function @ — @, namely, the identity.
o This is a special case of the initiality of @.

o On the other hand, for a set A that is not empty, there are no
functions A — @ because there is nowhere for elements of A to go.
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Interlude on Sets

The one-element set: There is a set 1 with exactly one element.

©

For any set A, there is exactly one function from A to 1, since every
element of A must be mapped to the unique element of 1.

That is: 1 is a terminal object of Set.

o
o A function from 1 to a set B is just a choice of an element of B.
o In short, the functions 1 — B are the elements of B.

o

Hence: The concept of element is a special case of the concept of
function.
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Interlude on Sets

Products: Any two sets A and B have a product, A x B.
o Its elements are the ordered pairs (a,b) with a€ A and be B.
o All that matters about ordered pairs is that for a,a’ € A and b,b' € B,

(a,b)=(a,b') o a=a and b=V

o More generally, take any set / and any family (A;)je; of sets.

o There is a product set [];c; A;, whose elements are families (a;);e/
with a; € A; for each i.

o Just as for ordered pairs,

(ai)ier =(a})ier & aj=aj, foralliel.
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Interlude on Sets

Sums: Any two sets A and B have a sum A+ B.
o Thinking of sets as bags of points, the sum of two sets is obtained by
putting all the points into one big bag:

o If A and B are finite sets with m and n elements respectively, then
A+ B always has m+ n elements.

o It makes no difference what the elements of A+ B are called; as usual,
we only care what A+ B is up to isomorphism.

o There are inclusion functions A-~> A+ B £ B such that the union of
the images of j and j is all of A+ B and the intersection of the images
is empty.
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Interlude on Sets

©

Sum is sometimes called disjoint union and written as [].

©

It is not to be confused with (ordinary) union U.
o We can take the sum of any two sets A and B;
o AU B only really makes sense when A and B come as subsets of some
larger set (to say what Au B is, we need to know which elements of A
are equal to which elements of B);

o Even if A and B do come as subsets of some larger set, A+ B and
AU B can be different.

For example, take the subsets A={1,2,3} and B ={3,4} of IN.
Then AU B has 4 elements, but A+ B has 3+2 =5 elements.

©

©

More generally, any family (A;);c; of sets has a sum Y ¢/ A;.

©

If I is finite and each A; is finite, say with m; elements, then Y ;c; A;
has Y ;c; m; elements.
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Interlude on Sets

o Sets of functions: For any two sets A and B, we can form the set
AB of functions from B to A.

o This is a special case of the product construction:

AB is the product [[peg A of the constant family (A)pes.

o Indeed, an element of [Ipcg A is a family (ap)pes consisting of one
element ap, € A for each be B.

In other words, it is a function B — A.
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Interlude on Sets

©

We are using notation reminiscent of arithmetic: Ax B, A+ B and AB.
There is good reason for this:
If Ais a finite set with m elements and B a finite set with n elements,
then:
o Ax B has mx n elements;
o A+ B has m+ n elements;
o AB has m" elements.
o Our notation 1 for a one-element set and the alternative notation 0 for
the empty set @ also follow this pattern.
o All the usual laws of arithmetic have their counterparts for sets:

¢ ©

Ax(B+C) = (AxB)+(AxC(C);
AB+C I~ ABXAC'
(AB)C = ABxC.

and so on, where = is isomorphism in the category of sets.
o These isomorphisms hold for all sets, not just finite ones.
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Interlude on Sets

The two-element set: Let 2 be the set 1+1 (a set with two
elements!).

o We write the elements of 2 as true and false.

o Let A be a set.

o Given a subset S of A, we obtain a function ys: A — 2 (the
characteristic function of S < A), where, for all a€ A,

_ | true, ifae$
xs(a)= false, ifa¢$S

o Conversely, given a function f: A— 2, we obtain a subset of A,
fl({true}) ={a€ A: f(a) = true}.

o These two processes are mutually inverse:
s is the unique function f: A— 2 such that f~1{true}=S.
o Hence: Subsets of A correspond one-to-one with functions A — 2.
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Interlude on Sets [SConstructions\With Sets

Power Set

o We just saw that:
Subsets of A correspond one-to-one with functions A — 2.

o We already know that the functions from A to 2 form a set, 2A.

o When we are thinking of 24 as the set of all subsets of A, we call it
the power set of A and write it as 22(A).
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Interlude on Sets

o It would be nice if, given a set A, we could define a subset S of A by
specifying a property that the elements of S are to satisfy:

S ={ae A:some property of a holds}.

o It is hard to give a general definition of “property”.

o There is, however, a special type of property that is easy to handle:
equality of two functions.

. . . f .
o Precisely, given sets and functions A= B, there is a set
g

facA:f(a)=g(a)}-

o This set is called the equalizer of f and g, since it is the part of A on
which the two functions are equal.
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Interlude on Sets

o Let A be a set and ~ an equivalence relation on A.

o There is a set A/~, the quotient of A by ~, whose elements are the
equivalence classes.

o For example, given a group G and a normal subgroup N, define an
equivalence relation ~on G by g~h & gh™leN.

Then G/~=G/N.
o There is also a canonical map

p:A—A/~,

sending an element of A to its equivalence class.
o p is surjective;
o It has the property

George Voutsadakis (LSSU) Category Theory



Interlude on Sets

o This map has a universal property:
Any function f: A— B such that for all a,a’ € A,

a~a = f(a)=f(a")

factorizes uniquely through p, as in the diagram

A—Pooa-
>~ IF
B

o Thus, for any set B, the functions A/~ — B correspond one-to-one
with the functions f : A — B satisfying the condition, for all 3,a" € A,

a~a = f(a)=1(a).
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Interlude on Sets

©

A function with domain IN is usually called a sequence.

©

A crucial property of IN is that sequences can be defined recursively:

©

Given a set X, an element a€ X, and a function r: X — X, there is a
unique sequence (x,)% of elements of X such that

X0=a, Xp+1=r(xp), forall neN.

©

This property refers to two pieces of structure on IN:
@ The element 0;
o The function s:IN — IN defined by s(n) =n+1.
Reformulated in terms of functions, and writing x, = x(n), the
property is this:
For any set X, element a€ X, and function r: X — X, there is a unique
function x:IN — X such that x(0) =a and xos=rox.

©

o This is a universal property of IN, 0 and s.
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Interlude on Sets

o Let f: A— B be a map in a category /.
o A section (or right inverse) of f is a map i: B— A in & such that

foi=1g.
Il
A<~———B
DN
B

o In the category of sets, any map with a section is certainly surjective.
o The converse statement is called the axiom of choice:

Every surjection has a section.

o It is called “choice” because specifying a section of f: A— B amounts
to choosing, for each be B, an element of {a€ A: f(a) = b} # .
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Subsection 2

Small and Large Categories
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Interlude on Sets

o Given sets A and B, write |A| <|B| (or |B| = |A]) if there exists an
injection A— B.

©

We give no meaning to the expression “|A[" or “|B]|" in isolation.

©

In the case of finite sets, |A| <|B| just means that the number of
elements of A is less than or equal to the number of elements of B.

©

Since identity maps are injective, |A| < |A]|, for all sets A.

©

Since the composite of two injections is an injection,
lAl=1BI=ICl = |AI=IC]

o Also, if A= B then |A| < |B| <Al

Theorem (Cantor-Bernstein)

Let A and B be sets. If |[A|<|B|<|A|, then A= B.
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Interlude on Sets

o These observations tell us that < is a preorder on the collection of all
sets.

o It is not a genuine order, since |A| <|B| < |A| only implies that A= B,
not A=B.

o We write |A| =|B|, and say that A and B have the same cardinality,
if AZ B, or equivalently if |A| <|B|<|A|.

o As long as we do not confuse equality with isomorphism, the sign <
behaves as we might imagine.

o For example, write |A| < |B] if |A| <|B| and |A| #|B].
Then |A|<|B|l<|C| = |Al<|C|, for sets A, B and C.

o Indeed, we have already established that |A| =|C], and the strict
inequality follows from the Cantor-Bernstein Theorem.
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Interlude on Sets |SSmallland Earge Categories

Cantor's Theorem

o Recall that 2(A) is the power set of A.

Theorem (Cantor)
Let A be a set. Then |A| <|22(A)l.

o The lemma is easy for finite sets, since if A has n elements then 2(A)
has 2" elements, and n<2".

Corollary
For every set A, there is a set B such that |A| < |B].

o In other words, there is no biggest set.
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Interlude on Sets |SSmallland Earge Categories

Set-Indexed Family of Sets

Let / be a set, and let (A;);c; be a family of sets. Then there exists a set
not isomorphic to any of the sets A;.

o Put A=22(Y e Ai) the power set of the sum of the sets A;.
For each j €/, we have the inclusion function A; — ¥ e/ A;.
So by Cantor’'s Theorem,

A <1 Y Al <AL

i€l

Hence |A;| <|Al. In particular, A; 2 A.
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Interlude on Sets

o We use the word class informally to mean any collection of
mathematical objects.

o All sets are classes, but some classes (such as the class of all sets) are
too big to be sets.

o A class will be called small if it is a set, and large otherwise.

o For example, the preceding proposition states that the class of
isomorphism classes of sets is large.

o The crucial point is:

Any individual set is small, but the class of sets is large.

o This is even true if we pretend that isomorphic sets are equal.

o Although the “definition” of class is not precise, it will do for our
purposes.

o We make a naive distinction between small and large collections, and
implicitly use some intuitively plausible principles (for example, that
any subcollection of a small collection is small).



Interlude on Sets

©

A category of is small if the class or collection of all maps in o is
small, and large otherwise.

o If of is small then the class of objects of «f is small too, since objects
correspond one-to-one with identity maps.

o A category o is locally small if for each A, B € o/, the class </ (A, B)
is small.

o Clearly, small implies locally small.

o Many authors take local smallness to be part of the definition of
category.

o The class «/(A, B) is often called the hom-set from A to B, although
strictly speaking, we should only call it this when < is locally small.
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Interlude on Sets

o Set is locally small, because for any two sets A and B, the functions
from A to B form a set.

This was one of the properties of sets stated in the previous section.
o Vecty, Grp, Ab, Ring and Top are all locally small.

For example, given rings A and B, a homomorphism from A to B is a
function from A to B with certain properties.

The collection of all functions from A to B is small.
So the collection of homomorphisms from A to B is certainly small.
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Interlude on Sets

o A category is small if and only if it is locally small and its class of
objects is small.

o Again, it may help to consider a similar fact about finiteness:

A category & is finite (that is, the class of all maps in « is finite) if
and only if it is locally finite (that is, each class </(A, B) is finite) and
its class of objects is finite.

: Consider the category %8 whose objects correspond to the
natural numbers.

The objects form a set, so the class of objects of 28 is small.
Each hom-set 28(m, n) is a set (indeed, a finite set).
So & is locally small.

Hence 2 is small.
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Interlude on Sets

©

A category is essentially small if it is equivalent to some small

category.

o For example, the category of finite sets is essentially small since it is
equivalent to the small category & just mentioned.

o If two categories o/ and 28 are equivalent, the class of isomorphism
classes of objects of o is in bijection with that of 2.

o In a small category, the class of objects is small, so the class of

isomorphism classes of objects is certainly small.

o Hence in an essentially small category, the class of isomorphism classes
of objects is small:

Set is not essentially small.

o A previous proposition states that the class of isomorphism classes of
sets is large. The result follows.
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Interlude on Sets

o For any field k, the category Vect, of vector spaces over k is not
essentially small.

o As in the proof of the proposition, it is enough to prove that the class
of isomorphism classes of vector spaces is large.

o In other words, it is enough to prove that for any set / and family
(Vi)ies of vector spaces, there exists a vector space not isomorphic to
any of the spaces V.

F
o To show this, write Set = Vecty for the free and forgetful functors.

U
The set S=22(Xc; U(V;)) has the property that |U(V;)l <|S]| for all
i€ l. The free vector space F(S) on S contains a copy of S as a basis.
So |S| < |UF(S)I. Hence |[U(V;)I <|UF(S)I, for all i. So F(S)2 V; for
all /.
o Similarly, none of the categories Grp, Ab, Ring and Top is essentially
small.
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Interlude on Sets

o Recall that the category of all categories and functors is written as
CAT.

We denote by Cat the category of small categories and functors between
them.

: Monoids are by definition sets equipped with certain
structure.

So the one-object categories that they correspond to are small.

Let .4 be the full subcategory of Cat consisting of the one-object
categories.

Then there is an equivalence of categories Mon = ./ .

Note that each object of .4 is a small one-object category. Hence, the
collection of maps from the single object to itself really is a set.
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