Introduction to Category Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

(1) Representables

- Definitions and Examples
- The Yoneda Lemma
- Consequences of the Yoneda Lemma

Subsection 1

Definitions and Examples

The Forward Maps Functor

- Fix an object A of a category \mathscr{A}.
- We will consider the totality of maps out of A.
- To each $B \in \mathscr{A}$, there is assigned the set (or class) $\mathscr{A}(A, B)$ of maps from A to B.

Definition

Let \mathscr{A} be a locally small category and $A \in \mathscr{A}$. We define a functor

$$
H^{A}=\mathscr{A}(A,-): \mathscr{A} \rightarrow \text { Set }
$$

as follows:

- For objects $B \in \mathscr{A}$, put $H^{A}(B)=\mathscr{A}(A, B)$;
- For maps $B \xrightarrow{g} B^{\prime}$ in \mathscr{A}, define

$$
\begin{aligned}
& H^{A}(g)=\mathscr{A}(A, g): \mathscr{A}(A, B) \rightarrow \mathscr{A}\left(A, B^{\prime}\right) \text { by } \\
& p \mapsto g \circ p, \text { for all } p: A \rightarrow B .
\end{aligned}
$$

Remarks

(a) Recall that "locally small" means that each class $\mathscr{A}(A, B)$ is in fact a set.
This hypothesis is clearly necessary in order for the definition to make sense.
(b) Sometimes $H^{A}(g)$ is written as $g \circ-$ or g_{*}.

All three forms, as well as $\mathscr{A}(A, g)$, are in use.

Representable Functors

Definition

Let \mathscr{A} be a locally small category. A functor $X: \mathscr{A} \rightarrow$ Set is representable if

$$
X \cong H^{A}, \text { for some } A \in \mathscr{A} .
$$

A representation of X is a choice of:

- An object $A \in \mathscr{A}$;
- An isomorphism between H^{A} and X.
- Representable functors are sometimes just called "representables".
- Only set valued functors (that is, functors with codomain Set) can be representable.

Example

- Consider H^{1} : Set \rightarrow Set, where 1 is the one-element set.
- Since a map from 1 to a set B amounts to an element of B, we have

$$
H^{1}(B) \cong B, \text { for each } B \in \text { Set. }
$$

- It is easily verified that this isomorphism is natural in B.
- So H^{1} is isomorphic to the identity functor $1_{\text {Set }}$.
- Hence $1_{\text {Set }}$ is representable.

Example

- The forgetful functor $\operatorname{Top} \rightarrow$ Set is isomorphic to $H^{1}=\operatorname{Top}(1,-)$.
- The forgetful functor $\operatorname{Grp} \rightarrow$ Set is isomorphic to $\operatorname{Grp}(\mathbb{Z},-)$.
- For each prime p, there is a functor $U_{p}: \operatorname{Grp} \rightarrow$ Set defined on objects by

$$
U_{p}(G)=\{\text { elements of } G \text { of order } 1 \text { or } p\} .
$$

Then $U_{p} \cong \operatorname{Grp}(\mathbb{Z} / p \mathbb{Z},-)$.
Hence U_{p} is representable.

Example

- There is a functor ob: Cat \rightarrow Set sending a small category to its set of objects.
- It is representable.
- Indeed, consider the terminal category 1 (with one object and only the identity map).
- A functor from 1 to a category \mathscr{B} simply picks out an object of \mathscr{B}.
- Thus,

$$
H^{1}(\mathscr{B}) \cong \mathrm{ob} \mathscr{B} .
$$

- Again, it is easily verified that this isomorphism is natural in \mathscr{B}.
- Hence ob $\cong \operatorname{Cat}(1,-)$.
- It can be shown similarly that the functor Cat \rightarrow Set sending a small category to its set of maps is representable.

Example

- Let M be a monoid, regarded as a one-object category.
- Recall that a set-valued functor on M is just an M-set.
- Since the category M has only one object, there is only one representable functor on it (up to isomorphism).

$$
M^{M}: M \rightarrow \text { Set }
$$

- As an M-set, the unique representable is the so-called left regular representation of M, that is, the underlying set of M acted on by multiplication on the left.

$$
M^{M}\left(m^{\prime}\right): m \mapsto m^{\prime} m
$$

Example

- Fix a field k and vector spaces U and V over k.
- There is a functor

$$
\operatorname{Bilin}(U, V ;-): \operatorname{Vect}_{k} \rightarrow \operatorname{Set}
$$

whose value $\operatorname{Bilin}(U, V ; W)$ at $W \in \operatorname{Vect}_{k}$ is the set of bilinear maps $U \times V \rightarrow W$.

- It can be shown that this functor is representable, in other words, there is a space T with the property that

$$
\operatorname{Bilin}(U, V ; W) \cong \operatorname{Vect}_{k}(T, W)
$$

naturally in W.

- This T is the tensor product $U \otimes V$.

Adjunctions and Representables

Lemma

Let $\mathscr{A} \underset{G}{\stackrel{F}{\rightleftarrows}} \mathscr{B}$, with $F \dashv G$ and \mathscr{A}, \mathscr{B} locally small categories, and let $A \in \mathscr{A}$.
Then the functor $\mathscr{A}(A, G(-)): \mathscr{B} \rightarrow$ Set (the composite $\mathscr{B} \xrightarrow{G} \mathscr{A} \xrightarrow{H^{A}}$ Set) is representable.

- We have

$$
\mathscr{A}(A, G(B)) \cong \mathscr{B}(F(A), B),
$$

for each $B \in \mathscr{B}$.
If we can show that this isomorphism is natural in B, then we will have proved that $\mathscr{A}(A, G(-))$ is isomorphic to $H^{F(A)}$ and is therefore representable.
Let $B \xrightarrow{q} B^{\prime}$ be a map in \mathscr{B}.

Adjunctions and Representables (Cont'd)

- We must show that the following square commutes

$$
\begin{array}{rr}
\mathscr{A}(A, G(B)) & \longrightarrow \mathscr{B}(F(A), B) \\
G(q) \circ-\downarrow & \downarrow q \circ- \\
\mathscr{A}\left(A, G\left(B^{\prime}\right)\right) & \rightarrow \mathscr{B}\left(F(A), B^{\prime}\right)
\end{array}
$$

where the horizontal arrows are the bijections provided by the adjunction. For $f: A \rightarrow G(B)$, we have

So we must prove that $q \circ \bar{f}=\overline{G(q) \circ f}$.
This follows immediately from the naturality condition in the definition of adjunction (with $g=\bar{f}$).

Set-Valued Functors with Left Adjoints

Proposition

Any set-valued functor with a left adjoint is representable.

- Let $G: \mathscr{A} \rightarrow$ Set be a functor with a left adjoint F.

Write 1 for the one-point set.
Then

$$
G(A) \cong \operatorname{Set}(1, G(A))
$$

naturally in $A \in \mathscr{A}$.
That is, $G \cong \operatorname{Set}(1, G(-))$.
So by the lemma, G is representable; indeed, $G \cong H^{F(1)}$.

Example

- Several of the examples of representables mentioned previously arise as in the proposition.
- For instance, $U:$ Top \rightarrow Set has a left adjoint D.
$D(1) \cong 1$.
So we recover the result that $U \cong H^{1}$.
- Similarly, there is a left adjoint D to the objects functor ob: Cat \rightarrow Set.

This functor D satisfies $D(1) \cong 1$.
So ob $\cong H^{1}$.

Example

- The forgetful functor $U:$ Vect $_{k} \rightarrow$ Set is representable, since it has a left adjoint.
- Indeed, if F denotes the left adjoint, then $F(1)$ is the 1-dimensional vector space k.
- So $U \cong H^{k}$.
- This is also easy to see directly:

A map from k to a vector space V is uniquely determined by the image of 1 , which can be any element of V. Hence $\operatorname{Vect}_{k}(k, V) \cong U(V)$ naturally in V.

Example

- We stated that forgetful functors between categories of algebraic structures usually have left adjoints.
- Take the category CRing of commutative rings and the forgetful functor U : CRing \rightarrow Set.
- This general principle suggests that U has a left adjoint.
- Then the proposition tells us that U is representable.
- We see how this works explicitly.

Given a set S, let $\mathbb{Z}[S]$ be the ring of polynomials over \mathbb{Z} in commuting variables $x_{s}, s \in S$.
Then $S \mapsto \mathbb{Z}[S]$ defines a functor Set \rightarrow CRing.
This is left adjoint to U.
Hence $U \cong H^{\mathbb{Z}[x]}$.

- Again, this can be verified directly:

For any ring R, the maps $\mathbb{Z}[x] \rightarrow R$ correspond one-to-one with the elements of R.

The Natural Transformation H^{f}

- The family $\left(H^{A}\right)_{A \in \mathscr{A}}$ of "views" from various objects of a category \mathscr{A} has some consistency, meaning that whenever there is a map between objects A and A^{\prime}, there is also a map between H^{A} and $H^{A^{\prime}}$.
- A map $A^{\prime} \xrightarrow{f} A$ induces a natural transformation

whose B-component (for $B \in \mathscr{A}$) is the function

$$
\begin{array}{ccc}
H^{A}(B)=\mathscr{A}(A, B) & \longrightarrow & H^{A^{\prime}}(B)=\mathscr{A}\left(A^{\prime}, B\right) \\
p & \longmapsto & p \circ f .
\end{array}
$$

- Again, H^{f} goes by a variety of other names: $\mathscr{A}(f,-), f^{*}$, and $-\circ f$.

The Functor H°

- Note that, even though each functor H^{A} is covariant, they come together to form a contravariant functor, as in the following definition:

Definition

Let \mathscr{A} be a locally small category. The functor

$$
H^{\bullet}: \mathscr{A}^{\mathrm{op}} \rightarrow[\mathscr{A}, \text { Set }]
$$

is defined:

- On objects A by $H^{\bullet}(A)=H^{A}$;
- On maps f by $H^{\bullet}(f)=H^{f}$.
- The symbol • is another type of blank, like -.

The Functor H_{A}

Definition

Let \mathscr{A} be a locally small category and $A \in \mathscr{A}$. We define a functor

$$
H_{A}=\mathscr{A}(-, A): \mathscr{A}^{\mathrm{op}} \rightarrow \text { Set }
$$

as follows:

- For objects $B \in \mathscr{A}$, put $H_{A}(B)=\mathscr{A}(B, A)$;
- For maps $B^{\prime} \xrightarrow{g} B$ in \mathscr{A}, define

$$
\begin{aligned}
& H_{A}(g)=\mathscr{A}(g, A)=g^{*}=-\circ g: \\
& \mathscr{A}(B, A) \rightarrow \mathscr{A}\left(B^{\prime}, A\right)
\end{aligned}
$$

by $p \mapsto p \circ g$ for all $p: B \rightarrow A$.

Representability Revisited

- We now define representability for contravariant set-valued functors.
- Strictly speaking, this is unnecessary, as a contravariant functor on \mathscr{A} is a covariant functor on $\mathscr{A}^{\mathrm{op}}$, and we already know what it means for a covariant set-valued functor to be representable.
- Here is a direct definition:

Definition

Let \mathscr{A} be a locally small category. A functor $X: \mathscr{A}^{\mathrm{op}} \rightarrow$ Set is representable if

$$
X \cong H_{A}, \quad \text { for some } A \in \mathscr{A}
$$

A representation of X is a choice of:

- An object $A \in \mathscr{A}$;
- An isomorphism between H_{A} and X.

Example

- There is a functor

$$
\mathscr{P}: \text { Set }^{\mathrm{Op}} \rightarrow \text { Set }
$$

sending each set B to its power set $\mathscr{P}(B)$, and defined on maps $g: B^{\prime} \rightarrow B$ by

$$
(\mathscr{P}(g))(U)=g^{-1} U, \text { for all } U \in \mathscr{P}(B) .
$$

- Here $g^{-1} U$ denotes the inverse image or preimage of U under g, defined by $g^{-1} U=\left\{x^{\prime} \in B^{\prime}: g\left(x^{\prime}\right) \in U\right\}$.
- As we saw previously, a subset amounts to a map into the two-point set 2.
- Precisely put, $\mathscr{P} \cong H_{2}$.

Example

- There is a functor

$$
\mathscr{O}: \text { Top }^{\text {op }} \rightarrow \text { Set }
$$

defined on objects B by taking $\mathscr{O}(B)$ to be the set of open subsets of B.

- If S denotes the two-point topological space in which exactly one of the two singleton subsets is open, then continuous maps from a space B into S correspond naturally to open subsets of B.
- Hence $\mathscr{O} \cong H_{S}$, and \mathscr{O} is representable.

Example

- In a previous example, we defined a functor $C:$ Top $^{\text {op }} \rightarrow$ Ring, assigning to each space the ring of continuous real-valued functions on it.
- The composite functor

$$
\text { Top }^{\text {op }} \xrightarrow{C} \text { Ring } \xrightarrow{U} \text { Set }
$$

is representable, since by definition, $U(C(X))=\operatorname{Top}(X, \mathbb{R})$ for topological spaces X.

The Functor H_{f}

- Any map $A \xrightarrow{f} A^{\prime}$ in \mathscr{A} induces a natural transformation

(also called $\mathscr{A}(-, f), f_{*}$ or $f \circ-$), whose component at an object $B \in \mathscr{A}$ is

$$
\begin{array}{cccc}
H_{A}(B)=\mathscr{A}(B, A) & \rightarrow & H_{A^{\prime}}(B)=\mathscr{A}\left(B, A^{\prime}\right) \\
p & \mapsto & f \circ p .
\end{array}
$$

The Yoneda Embedding H.

Definition

Let \mathscr{A} be a locally small category. The Yoneda embedding of \mathscr{A} is the functor

$$
H_{0}: \mathscr{A} \rightarrow\left[A^{\mathrm{op}}, \text { Set }\right]
$$

defined

- on objects A by $H_{0}(A)=H_{A}$;
- on maps f by $H_{0}(f)=H_{f}$.

Summary of Definitions

For each $A \in \mathscr{A}$, we have a functor
$\mathscr{A} \xrightarrow{H^{A}}$ Set;
Putting them all together gives a functor
For each $A \in \mathscr{A}$, we have a functor
$\mathscr{A}^{\mathrm{op}} \xrightarrow{\mathrm{H}^{\cdot}}[\mathscr{A}$, Set $] ;$

Putting them all together gives a functor $\mathscr{A} \xrightarrow{H}\left[\mathscr{A}^{\mathrm{op}}\right.$, Set $]$.

- The second pair of functors is the dual of the first.
- In the theory of representable functors, it does not make much difference whether we work with the first or the second pair.
- Any theorem that we prove about one dualizes to give a theorem about the other.
- We choose to work with the second pair, the H_{A} 's and $H_{\text {. }}$.
- In a sense to be explained, $H_{\text {. "embeds" }}^{A}$ into $\left[\mathscr{A}^{\text {op }}\right.$, Set].
- This can be useful, because the category [$\mathscr{A}^{\text {op }}$, Set] has some good properties that \mathscr{A} might not have.

A Functor Unifying the Dual Pairs

Definition

Let \mathscr{A} be a locally small category. The functor

$$
\operatorname{Hom}_{\mathscr{A}}: \mathscr{A}^{\mathrm{op}} \times \mathscr{A} \rightarrow \text { Set }
$$

is defined by

$$
\begin{array}{llc}
(A, B) & \mapsto & \mathscr{A}(A, B) \\
f|\mid g & \mapsto & \mid g \circ-\circ f \\
\left(A^{\prime}, B^{\prime}\right) & \mapsto & \mathscr{A}\left(A^{\prime}, B^{\prime}\right)
\end{array}
$$

In other words, $\operatorname{Hom}_{\mathscr{A}}(A, B)=\mathscr{A}(A, B)$ and $\left(\operatorname{Hom}_{\mathscr{A}}(f, g)\right)(p)=g \circ p \circ f$, whenever

$$
A^{\prime} \xrightarrow{f} A \xrightarrow{p} B \xrightarrow{g} B^{\prime} .
$$

Remark

- We saw that for any set B, there is an adjunction $(-\times B) \dashv(-)^{B}$ of functors Set \rightarrow Set.
- Similarly, for any category B, there is an adjunction $(-\times B) \dashv[B,-]$ of functors CAT \rightarrow CAT.
- In other words, there is a canonical bijection

$$
\operatorname{CAT}(\mathscr{A} \times \mathscr{B}, \mathscr{C}) \cong \operatorname{CAT}(\mathscr{A},[\mathscr{B}, \mathscr{C}])
$$

for $\mathscr{A}, \mathscr{B}, \mathscr{C} \in$ CAT.

- Under this bijection, the functors

$$
\operatorname{Hom}_{\mathscr{A}}: \mathscr{A}^{\mathrm{op}} \times \mathscr{A} \rightarrow \text { Set, } \quad H^{\bullet}: \mathscr{A}^{\mathrm{op}} \rightarrow[\mathscr{A}, \text { Set }]
$$

correspond to one another.

- Thus, $\operatorname{Hom}_{\mathscr{A}}$ carries the same information as H^{\bullet} (or H_{\bullet}), presented slightly differently.

Naturality in Definition of Adjunction (Revisited)

- Take categories and functors $\mathscr{A} \underset{G}{\stackrel{F}{\rightleftarrows}} \mathscr{B}$.
- They give rise to functors

$$
\begin{aligned}
& \quad \mathscr{A}^{\mathrm{op}} \times \mathscr{B} \xrightarrow{1 \times G} \mathscr{A}^{\mathrm{op}} \times \mathscr{A} \\
& F^{\mathrm{op}} \times 1 \mid \\
& \mathscr{B}^{\mathrm{op}} \times \mathscr{B} \underset{\mathrm{Hom}_{\mathscr{B}}}{ } \text { Set }
\end{aligned}
$$

- The lower path sends (A, B) to $\mathscr{B}(F(A), B)$. It can be written as $\mathscr{B}(F(-),-)$.
- The upper path sends (A, B) to $\mathscr{A}(A, G(B))$.
- These two functors

$$
\mathscr{B}(F(-),-), \mathscr{A}(-, G(-)): \mathscr{A}^{\mathrm{op}} \times \mathscr{B} \rightarrow \text { Set }
$$

are naturally isomorphic if and only if F and G are adjoint.

Generalized Elements

- Objects of an arbitrary category do not have elements in any obvious sense.
- However, sets certainly have elements, and we have observed that an element of a set A is the same thing as a map $1 \rightarrow A$.
- This inspires the following definition.

Definition

Let A be an object of a category. A generalized element of A is a map with codomain A. A map $S \rightarrow A$ is a generalized element of A of shape S.

- "Generalized element" is nothing more than a synonym of "map", but sometimes it is useful to think of maps as generalized elements.

Examples

- When A is a set:
- A generalized element of A of shape 1 is an ordinary element of A;
- A generalized element of A of shape \mathbb{N} is a sequence in A.
- In the category of topological spaces:
- The generalized elements of shape 1 (the one-point space) are the points;
- The generalized elements of shape S^{1} (the circle) are, by definition, loops.
As this suggests, in categories of geometric objects, we might equally well say "figures of shape S ".

Examples (Cont'd)

- For an object S of a category A, the functor $H^{S}: \mathscr{A} \rightarrow$ Set sends an object to its set of generalized elements of shape S.
- The functoriality tells us that any map $A \rightarrow B$ in \mathscr{A} transforms S-elements of A into S-elements of B.
- For example, taking $\mathscr{A}=$ Top and $S=S^{1}$, any continuous map $A \rightarrow B$ transforms loops in A into loops in B.

Subsection 2

The Yoneda Lemma

Posing a Question

- Fix a locally small category \mathscr{A}.
- Take an object $A \in \mathscr{A}$ and a functor $X: \mathscr{A}^{\mathrm{op}} \rightarrow$ Set.
- The object A gives rise to another functor $H_{A}=\mathscr{A}(-, A): \mathscr{A}^{\mathrm{op}} \rightarrow$ Set.
- We ask what are the maps $H_{A} \rightarrow X$?
- Since H_{A} and X are both objects of the presheaf category [$\mathscr{A}^{\mathrm{op}}$, Set], the "maps" concerned are maps in [$\mathscr{A}^{\circ \mathrm{p}}$, Set].
- So, we are asking what natural transformations

there are.
- The set of such natural transformations is called $\left[\mathscr{A}^{\text {op }}, \operatorname{Set}\right]\left(H_{A}, X\right)$.

Content of the Yoneda Lemma

- Given as input an object $A \in \mathscr{A}$ and a presheaf X on \mathscr{A}, we can construct the set $\left[\mathscr{A}^{\mathrm{op}}, \operatorname{Set}\right]\left(H_{A}, X\right)$.
- Another way to construct a set from the same input data (A, X) is to simply take the set $X(A)$!
- The content of the Yoneda Lemma is that these two sets are the same:

$$
\left[\mathscr{A}^{\mathrm{op}}, \operatorname{Set}\right]\left(H_{A}, X\right) \cong X(A),
$$

for all $A \in \mathscr{A}$ and $X \in\left[\mathscr{A}^{\text {op }}\right.$, Set $]$.

- Informally, then, the Yoneda lemma says that for any $A \in \mathscr{A}$ and presheaf X on \mathscr{A} :

A natural transformation $H_{A} \rightarrow X$ is an element of $X(A)$.

The Yoneda Lemma

Theorem (Yoneda)

Let \mathscr{A} be a locally small category. Then

$$
\left[\mathscr{A}^{\mathrm{op}}, \operatorname{Set}\right]\left(H_{A}, X\right) \cong X(A)
$$

naturally in $A \in \mathscr{A}$ and $X \in\left[\mathscr{A}^{\text {op }}\right.$, Set $]$.

- Recall that for functors $F, G: \mathscr{C} \rightarrow \mathscr{D}$, the phrase " $F(C) \cong G(C)$ naturally in C " means that there is a natural isomorphism $F \cong G$.
- So the use of this phrase in the Yoneda lemma suggests that each side is functorial in both A and X.
- This means, for instance, that a map $X \rightarrow X^{\prime}$ must induce a map

$$
\left[\mathscr{A}^{\mathrm{op}}, \operatorname{Set}\right]\left(H_{A}, X\right) \rightarrow\left[\mathscr{A}^{\mathrm{op}}, \operatorname{Set}\right]\left(H_{A}, X^{\prime}\right)
$$

and that not only does the Yoneda isomorphism hold for every A and X, but also, the isomorphisms can be chosen in a way that is compatible with these induced maps.

Further Explanations

- The Yoneda lemma states that the composite functor

$$
\begin{array}{ccc}
\mathscr{A}^{\mathrm{op}} \times\left[\mathscr{A}^{\mathrm{op}}, \text { Set }\right] & \xrightarrow{H^{\mathrm{op}} \times 1} & {\left[\mathscr{A}^{\mathrm{op}}, \text { Set }\right]^{\mathrm{op}} \times\left[\mathscr{A}^{\mathrm{op}}, \text { Set }\right]} \\
(A, X) & \xrightarrow{\mapsto} & \left(H_{A}, X\right) \\
& \xrightarrow{\mathrm{Hom}_{\left[\mathscr{A}^{\mathrm{OP}, \mathrm{Set}]}\right]}^{\mapsto}} & \text { Set } \\
& \mapsto & {\left[\mathscr{A}^{\mathrm{op}}, \text { Set }\right]\left(H_{A}, X\right)}
\end{array}
$$

is naturally isomorphic to the evaluation functor

$$
\begin{array}{ccc}
\mathscr{A}^{\mathrm{op}} \times\left[\mathscr{A}^{\mathrm{op}}, \text { Set }\right] & \rightarrow & \text { Set } \\
(A, X) & \mapsto & X(A) .
\end{array}
$$

World View Without Yoneda

- If the Yoneda lemma were false then the world would look much more complex.
- Take a presheaf $X: \mathscr{A}^{\text {op }} \rightarrow$ Set.
- Define a new presheaf X^{\prime} by

$$
X^{\prime}=\left[\mathscr{A}^{\mathrm{op}}, \text { Set }\right]\left(H_{A}, X\right): \mathscr{A}^{\mathrm{op}} \rightarrow \text { Set },
$$

that is, $X^{\prime}(A)=\left[\mathscr{A}^{\mathrm{op}}, \operatorname{Set}\right]\left(H_{A}, X\right)$ for all $A \in \mathscr{A}$.

- Yoneda tells us that $X^{\prime}(A) \cong X(A)$ naturally in A.
- In other words, $X^{\prime} \cong X$.
- If Yoneda were false then starting from a single presheaf X, we could build an infinite sequence $X, X^{\prime}, X^{\prime \prime}, \ldots$ of new presheaves, potentially all different.
- But in reality, the situation is very simple: they are all the same.

Proof

- We have to define, for each A and X, a bijection between the sets $\left[\mathscr{A}^{\text {op }}\right.$, Set $]\left(H_{A}, X\right)$ and $X(A)$.
- We then have to show that our bijection is natural in A and X.
- Fix $A \in \mathscr{A}$ and $X \in\left[\mathscr{A}^{\text {op }}\right.$, Set $]$.
- We define functions

$$
\begin{equation*}
\left[\mathscr{A}^{\mathrm{op}}, \text { Set }\right]\left(H_{A}, X\right) \stackrel{\overparen{(}}{\rightleftarrows} X(A) \tag{}
\end{equation*}
$$

and show that they are mutually inverse.

- So we have to do four things:
- Define the function ();
- Define the function ();
- Show that $\widehat{()}$ is the identity;
- Show that $\widetilde{(Y)}$ is the identity.

Proof (Cont'd)

- Given $\alpha: H_{A} \rightarrow X$, define $\widehat{\alpha} \in X(A)$ by $\widehat{\alpha}=\alpha_{A}\left(1_{A}\right)$.
- Let $x \in X(A)$.

We have to define a natural transformation $\widetilde{x}: H_{A} \rightarrow X$.
That is, we have to define for each $B \in \mathscr{A}$ a function

$$
\tilde{x}_{B}: H_{A}(B)=\mathscr{A}(B, A) \rightarrow X(B)
$$

and show that the family $\widetilde{x}=\left(\widetilde{x}_{B}\right)_{B \in \mathscr{A}}$ satisfies naturality.
Given $B \in \mathscr{A}$ and $f \in \mathscr{A}(B, A)$, define

$$
\widetilde{x}_{B}(f)=(X(f))(x) \in X(B) .
$$

This makes sense, since $X(f)$ is a map $X(A) \rightarrow X(B)$.

Proof (Cont'd)

To prove naturality, we must show that for any map $B^{\prime} \xrightarrow{g} B$ in \mathscr{A}, the following square commutes:

$$
\begin{aligned}
& \mathscr{A}(B, A) \xrightarrow{H_{A}(g)=-0 g} \mathscr{A}\left(B^{\prime}, A\right) \\
& \widetilde{x}_{B} \mid \\
& X(B) \xrightarrow[X(g)]{ } \begin{array}{|c}
\mid \tilde{x}_{B^{\prime}} \\
\end{array}(A)
\end{aligned}
$$

To reduce clutter, let us write $X(g)$ as $X g$, and so on.
Now for all $f \in \mathscr{A}(B, A)$, we have

But $X(f \circ g)=(X g) \circ(X f)$ by functoriality.

Proof (Cont'd)

- Given $x \in X(A)$, we have to show that $\widehat{\widehat{x}}=x$:

$$
\widehat{\widetilde{x}}=\widetilde{x}_{A}\left(1_{A}\right)=\left(X 1_{A}\right)(x)=1_{X(A)}(x)=x .
$$

- Given $\alpha: H_{A} \rightarrow X$, we have to show that $\widetilde{\widetilde{\alpha}}=\alpha$.

Two natural transformations are equal if and only if all their components are equal.
So, we have to show that $\widetilde{\widetilde{\alpha}}_{B}=\alpha_{B}$, for all $B \in \mathscr{A}$.
Each side is a function from $H_{A}(B)=\mathscr{A}(B, A)$ to $X(B)$.
Two functions are equal if and only if they take equal values at every element of the domain.
So, we have to show that $\widetilde{\widehat{\alpha}}_{B}(f)=\alpha_{B}(f)$, for all $B \in \mathscr{A}$ and $f: B \rightarrow A$ in \mathscr{A}.

Proof (Cont'd)

We have to show that $\widetilde{\widetilde{\alpha}}_{B}(f)=\alpha_{B}(f)$, for all $B \in \mathscr{A}$ and $f: B \rightarrow A$ in \mathscr{A}.
The left-hand side is by definition

$$
\widetilde{\widetilde{\alpha}}_{B}(f)=(X f)(\widehat{\alpha})=(X f)\left(\alpha_{A}\left(1_{A}\right)\right) .
$$

So it remains to prove that $(X f)\left(\alpha_{A}\left(1_{A}\right)\right)=\alpha_{B}(f)$.
This follows by the naturality of α :

$$
\begin{aligned}
& \mathscr{A}(A, A) \xrightarrow{H_{A}(f)=-\circ f} \mathscr{A}(B, A) \\
& \alpha_{A} \mid \\
& X(A) \xrightarrow[X f]{\mid \alpha_{B}} \\
& X(B)
\end{aligned}
$$

Proof (Cont'd)

- We now show that the bijection is natural in A and X.
- We employ two mildly labor-saving devices.
- First, in principle we have to prove naturality of both $\widehat{()}$ and $\widetilde{()}$. However, by a previous lemma, it is enough to prove naturality of just one of them.
We prove naturality of $\widehat{()}$.
- Second, naturality in two variables simultaneously is equivalent to naturality in each variable separately.
Thus, $\widehat{()}$ is natural in the pair (A, X) if and only if it is:
- natural in A for each fixed X and
- natural in X for each fixed A.
- So, it remains to check these two types of naturality.

Proof (Cont'd)

- Naturality in A states that for each $X \in\left[\mathscr{A}^{\mathrm{op}}\right.$, Set $]$ and $B \xrightarrow{f} A$ in \mathscr{A}, the following square commutes

$$
\begin{aligned}
& {\left[\mathscr{A}^{\mathrm{op}, \operatorname{Set}]\left(H_{A}, X\right)} \xrightarrow{-\circ H_{f}}\left[\mathscr{A}^{\mathrm{op}}, \operatorname{Set}\right]\left(H_{B}, X\right)\right.} \\
& \begin{array}{l}
\widehat{()} \downarrow \\
X(A) \xrightarrow[()]{l} \\
X f \\
X(B)
\end{array}
\end{aligned}
$$

For $\alpha: H_{A} \rightarrow X$, we have

So we have to show that $\left(\alpha \circ H_{f}\right)_{B}\left(1_{B}\right)=(X f)\left(\alpha_{A}\left(1_{A}\right)\right)$.

Proof (Cont'd)

To show that

$$
\left(\alpha \circ H_{f}\right)_{B}\left(1_{B}\right)=(X f)\left(\alpha_{A}\left(1_{A}\right)\right) .
$$

We have

$$
\begin{aligned}
\left(\alpha \circ H_{f}\right)_{B}\left(1_{B}\right) & =\alpha_{B}\left(\left(H_{f}\right)_{B}\left(1_{B}\right)\right)\left(\text { composition in }\left[\mathscr{A}^{\circ p}, \text { Set }\right]\right) \\
& =\alpha_{B}\left(f \circ 1_{B}\right)\left(\text { definition of } H_{f}\right) \\
& =\alpha_{B}(f) \\
& =(X f)\left(\alpha_{A}\left(1_{A}\right)\right) \cdot(\text { as shown above })
\end{aligned}
$$

Proof (Cont'd)

- Naturality in X states that for each $A \in \mathscr{A}$ and map

in $\left[\mathscr{A}^{\text {op }}\right.$, Set $]$, the following square commutes:

$$
\begin{aligned}
& {\left[\mathscr{A}^{\mathrm{op}}, \operatorname{Set}\right]\left(H_{A}, X\right) \xrightarrow{\theta \circ-}\left[\mathscr{A}^{\mathrm{op}}, \operatorname{Set}\right]\left(H_{A}, X^{\prime}\right)} \\
& \text { (T)! } \\
& \widehat{()} \\
& X(A) \longrightarrow \theta_{A}(A)
\end{aligned}
$$

Proof (Cont'd)

$$
\begin{aligned}
& {\left[\mathscr{A}^{\mathrm{op}}, \operatorname{Set}\right]\left(H_{A}, X\right) \xrightarrow{\theta \circ-}\left[\mathscr{A}^{\mathrm{op}}, \operatorname{Set}\right]\left(H_{A}, X^{\prime}\right)} \\
& \text { () } \\
& \xrightarrow[\theta_{A}]{\stackrel{\downarrow}{(\mathrm{O})}} X^{\prime}(A)
\end{aligned}
$$

For $\alpha: H_{A} \rightarrow X$, we have

Since $(\theta \circ \alpha)_{A}=\theta_{A} \circ \alpha_{A}$ by definition of composition in [$\mathscr{A}^{\circ p}$, Set], we are done.

Subsection 3

Consequences of the Yoneda Lemma

Rephrasing of the Yoneda Lemma

Corollary

Let \mathscr{A} be a locally small category and $X: \mathscr{A}^{\mathrm{Op}} \rightarrow$ Set. Then a representation of X consists of an object $A \in \mathscr{A}$ together with an element $u \in X(A)$ such that:

For each $B \in \mathscr{A}$ and $x \in X(B)$, there is a unique map $\bar{x}: B \rightarrow A$ such that $(X \bar{x})(u)=x$.

- By definition, a representation of X is an object $A \in \mathscr{A}$ together with a natural isomorphism $\alpha: H_{A} \xrightarrow{\sim} X$.
- The corollary states that such pairs (A, α) are in natural bijection with pairs (A, u) satisfying the displayed condition.

Elements and Universal Elements

- Pairs (B, x) with $B \in \mathscr{A}$ and $x \in X(B)$ are sometimes called elements of the presheaf X.
- The Yoneda lemma tells us that x amounts to a generalized element of X of shape H_{B}.
- An element $u \in X(A)$ satisfying the condition

For each $B \in \mathscr{A}$ and $x \in X(B)$, there is a unique map $\bar{x}: B \rightarrow A$ such that $(X \bar{x})(u)=x$. is sometimes called a universal element of X.

- So, the corollary says that a representation of a presheaf X amounts to a universal element of X.

Proof of the Corollary

- By the Yoneda lemma, we have only to show that for $A \in \mathscr{A}$ and $u \in X(A)$, the natural transformation $\widetilde{u}: H_{A} \rightarrow X$ is an isomorphism if and only if
for each $B \in \mathscr{A}$ and $x \in X(B)$, there is a unique map $\bar{x}: B \rightarrow A$ such that $(X \bar{x})(u)=x$.
Now, \widetilde{u} is an isomorphism if and only if for all $B \in \mathscr{A}$, the function

$$
\widetilde{u}_{B}: H_{A}(B)=\mathscr{A}(B, A) \rightarrow X(B)
$$

is a bijection, if and only if for all $B \in \mathscr{A}$ and $x \in X(B)$, there is a unique $\bar{x} \in \mathscr{A}(B, A)$ such that $\widetilde{u}_{B}(\bar{x})=x$.
But $\widetilde{u}_{B}(\bar{x})=(X \bar{x})(u)$.
So this is exactly the displayed condition.

A Dual Formulation

Corollary

Let \mathscr{A} be a locally small category and $X: \mathscr{A} \rightarrow$ Set. Then a representation of X consists of an object $A \in \mathscr{A}$ together with an element $u \in X(A)$ such that:

For each $B \in \mathscr{A}$ and $x \in X(B)$, there is a unique map $\bar{x}: A \rightarrow B$ such that $(X \bar{x})(u)=x$.

- Follows immediately from the corollary by duality.

Example

- Fix a set S and consider the functor

$$
\begin{array}{l:lll}
X=\operatorname{Set}(S, U(-)): & \operatorname{Vect}_{k} & \rightarrow & \operatorname{Set} \\
V & \mapsto & \operatorname{Set}(S, U(V)) .
\end{array}
$$

- Here are two familiar (and true!) statements about X :
(a) There exist a vector space $F(S)$ and an isomorphism $\operatorname{Vect}_{k}(F(S), V) \cong \operatorname{Set}(S, U(V))$ natural in $V \in \operatorname{Vect}_{k}$;
(b) There exist a vector space $F(S)$ and a function $u: S \rightarrow U(F(S))$ such that:

For each vector space V and function $f: S \rightarrow U(V)$, there is a unique linear map $\bar{f}: F(S) \rightarrow V$ such that the following commutes:

Example (Cont'd)

- Each of these two statements says that X is representable:
- Statement (a) says that there is an isomorphism $X(V) \cong \operatorname{Set}(F(S), V)$ natural in V. That is, an isomorphism $X \cong H^{F(S)}$. So X is representable, by definition of representability.
- Statement (b) says that $u \in X(F(S))$ satisfies the condition in the preceding corollary.
So X is representable, by that corollary.
- The first way of saying that X is representable is substantially shorter than the second.
- Indeed, it is clear that if the situation of (b) holds then there is an isomorphism

$$
\operatorname{Vect}_{k}(F(S), V) \stackrel{\sim}{\rightarrow} \operatorname{Set}(S, U(V))
$$

natural in V, defined by $g \mapsto U(g) \circ u$.

- Even though (b) states that the two functors are not only naturally isomorphic, but naturally isomorphic in a rather special way, both are equivalent.

Example

- The same can be said for any other adjunction $\mathscr{A} \underset{G}{\stackrel{F}{\rightleftarrows}} \mathscr{B}$.
- Fix $A \in \mathscr{A}$ and put

$$
X=\mathscr{A}(A, G(-)): \mathscr{B} \rightarrow \text { Set. }
$$

- Then X is representable, and this can be expressed in either of the following ways:
(a) $\mathscr{A}(A, G(B)) \cong \mathscr{B}(F(A), B)$ naturally in B.

In other words, $X \cong H^{F(A)}$;
(b) The unit map $\eta_{A}: A \rightarrow G(F(A))$ is an initial object of the comma category $(A \Rightarrow G)$;
That is, $\eta_{A} \in X(F(A))$ satisfies
For each $B \in \mathscr{B}$ and $x \in X(B)$, there is a unique map $\bar{x}: F(A) \rightarrow B$ such that $(X \bar{x})\left(\eta_{A}\right)=x$.

Example

- For any group G and element $x \in G$, there is a unique homomorphism $\phi: \mathbb{Z} \rightarrow G$ such that $\phi(1)=x$.
- This means that $1 \in U(Z)$ is a universal element of the forgetful functor $U: G r p \rightarrow$ Set.
- In other words, we have

For each $B \in \mathbf{G r p}$ and $x \in U(B)$, there is a unique map $\bar{x}: \mathbb{Z} \rightarrow B$ such that $(U \bar{x})(1)=x$.

- So $1 \in U(\mathbb{Z})$ gives a representation $H^{\mathbb{Z}} \xrightarrow{\sim} U$ of U.
- On the other hand, the same is true with -1 in place of 1 .
- The isomorphisms $H^{\mathbb{Z}} \xrightarrow{\sim} U$ coming from 1 and -1 are not equal, because the corollary provides a one-to-one correspondence between universal elements and representations.

The Yoneda Embedding

Corollary

For any locally small category \mathscr{A}, the Yoneda embedding $H_{0}: \mathscr{A} \rightarrow\left[\mathscr{A}^{\text {pp }}\right.$, Set $]$ is full and faithful.

- Informally, this says that for $A ; A^{\prime} \in \mathscr{A}$, a map $H_{A} \rightarrow H_{A^{\prime}}$ of presheaves is the same thing as a map $A \rightarrow A^{\prime}$ in \mathscr{A}.
- We have to show that for each $A, A^{\prime} \in \mathscr{A}$, the function

$$
\begin{array}{ccc}
\mathscr{A}\left(A, A^{\prime}\right) & \rightarrow & {\left[\mathscr{A}^{\mathrm{op}}, \text { Set }\right]\left(H_{A}, H_{A^{\prime}}\right)} \\
f & \mapsto & H_{f}
\end{array}
$$

is bijective. By the Yoneda lemma (taking X to be $H_{A^{\prime}}$), the function ()$: H_{A^{\prime}}(A) \rightarrow\left[\mathscr{A}^{\circ \mathrm{op}}, \operatorname{Set}\right]\left(H_{A}, H_{A^{\prime}}\right)$ is bijective. So it is enough to prove that these functions are equal.
Thus, given $f: A \rightarrow A^{\prime}$, we have to prove that $\widetilde{f}=H_{f}$, or equivalently, $\widehat{H_{f}}=f$. Indeed we have $\widehat{H_{f}}=\left(H_{f}\right)_{A}\left(1_{A}\right)=f \circ 1_{A}=f$.

Remarks on Embeddings

- In mathematics, the word "embedding" is used to mean a map $A \rightarrow B$ that makes A isomorphic to its image in B.
- For example, an injection of sets $i: A \rightarrow B$ might be called an embedding, because it provides a bijection between A and the subset $i A$ of B.
- Similarly, a map $i: A \rightarrow B$ of topological spaces might be called an embedding if it is a homeomorphism to its image, so that $A \cong i A$.
- A previous corollary tells us that in category theory, a full and faithful functor $\mathscr{A} \rightarrow \mathscr{B}$ can reasonably be called an embedding, as it makes \mathscr{A} equivalent to a full subcategory of \mathscr{B}.

Remarks on the Yoneda Embedding

- The Yoneda embedding $H_{\mathbf{0}}: \mathscr{A} \rightarrow\left[\mathscr{A}^{\mathrm{op}}\right.$, Set $]$ embeds \mathscr{A} into its own presheaf category. So, \mathscr{A} is equivalent to the full subcategory of [$\mathscr{A}^{\text {op }}$, Set] whose objects are the representables.

- In general, full subcategories are the easiest subcategories to handle.
- For instance, given objects A and A^{\prime} of a full subcategory, we can speak unambiguously of the "maps" from A to A^{\prime};
- It makes no difference whether this is understood to mean maps in the subcategory or maps in the whole category.
- Similarly, we can speak unambiguously of isomorphism of objects of the subcategory.

Isomorphisms and Full and Faithful Functors

Lemma

Let $J: \mathscr{A} \rightarrow \mathscr{B}$ be a full and faithful functor and $A, A^{\prime} \in \mathscr{A}$. Then:
(a) A map f in \mathscr{A} is an isomorphism if and only if the map $J(f)$ in \mathscr{B} is an isomorphism;
(b) For any isomorphism $g: J(A) \rightarrow J\left(A^{\prime}\right)$ in \mathscr{B}, there is a unique isomorphism $f: A \rightarrow A^{\prime}$ in \mathscr{A} such that $J(f)=g$;
(c) The objects A and A^{\prime} of \mathscr{A} are isomorphic if and only if the objects $J(A)$ and $J\left(A^{\prime}\right)$ of \mathscr{B} are isomorphic.

Example

- We considered the representations of the forgetful functor $U: G r p \rightarrow$ Set, and found two different isomorphisms $H^{\mathbb{Z}} \stackrel{\sim}{\sim} U$.
- Are there others?
- Since $H^{\mathbb{Z}} \cong U$, there are as many isomorphisms $H^{\mathbb{Z}} \stackrel{\sim}{\rightarrow} U$ as there are isomorphisms $H^{\mathbb{Z}} \xrightarrow{\sim} H^{\mathbb{Z}}$.
- By the preceding corollary and Part (b) of the preceding lemma, there are as many of these as there are group isomorphisms $\mathbb{Z} \xrightarrow{\sim} \mathbb{Z}$.
- There are precisely two such (corresponding to the two generators ± 1 of \mathbb{Z}).
- So we did indeed find all the isomorphisms $H^{\mathbb{Z}} \xrightarrow{\sim} U$.
- Differently put, there are exactly two universal elements of $U(\mathbb{Z})$.

Isomorphism of Representables

Corollary

Let \mathscr{A} be a locally small category and $A, A^{\prime} \in \mathscr{A}$. Then

$$
H_{A} \cong H_{A^{\prime}} \quad \Leftrightarrow \quad A \cong A^{\prime} \quad \Leftrightarrow \quad H^{A} \cong H^{A^{\prime}}
$$

- By duality, it is enough to prove the first \Leftrightarrow. This follows from the preceding corollary and Part (c) of the preceding lemma.
- Since functors always preserve isomorphism, the force of this statement is that $H_{A} \cong H_{A^{\prime}} \Rightarrow A \cong A^{\prime}$.
- In other words, if $\mathscr{A}(B, A) \cong \mathscr{A}\left(B, A^{\prime}\right)$ naturally in B, then $A \cong A^{\prime}$.
- Thinking of $\mathscr{A}(B, A)$ as " A viewed from B ", the corollary tells us that two objects are the same if and only if they look the same from all viewpoints.
- Consider the case $\mathscr{A}=$ Grp.
- Take two groups A and A^{\prime}, and suppose someone tells us that A and A^{\prime} "look the same from $B^{\prime \prime}$ (meaning that $H_{A}(B) \cong H_{A^{\prime}}(B)$) for all groups B. Then, for instance:
- $H_{A}(1) \cong H_{A^{\prime}}(1)$, where 1 is the trivial group. But $H_{A}(1)=\operatorname{Grp}(1, A)$ is a one-element set, as is $H_{A^{\prime}}(1)$, no matter what A and A^{\prime} are.
So this tells us nothing at all.
- $H_{A}(\mathbb{Z}) \cong H_{A^{\prime}}(\mathbb{Z})$.

We know that $H_{A}(\mathbb{Z})$ is the underlying set of A, and similarly for A^{\prime}. So A and A^{\prime} have isomorphic underlying sets.

- $H_{A}(\mathbb{Z} / p \mathbb{Z}) \cong H_{A^{\prime}}(\mathbb{Z} / p \mathbb{Z})$ for every prime p.

So A and A^{\prime} have the same number of elements of each prime order.

- Each of these isomorphisms gives only partial information about the similarity of A and A^{\prime}.
- But if we know that $H_{A}(B) \cong H_{A^{\prime}}(B)$ for all groups B, and naturally in B, then $A \cong A^{\prime}$.

Example

- For any set A, we have

$$
A \cong \operatorname{Set}(1, A)=H_{A}(1)
$$

- So $H_{A}(1) \cong H_{A^{\prime}}(1)$ implies $A \cong A^{\prime}$.
- In other words, two objects of Set are the same if they look the same from the point of view of the one-element set.
- This is a familiar feature of sets: the only thing that matters about a set is its elements!
- For a general category, the preceding corollary tells us that two objects are the same if they have the same generalized elements of all shapes.
- But the category of sets has a special property:
- If we choose an object and we know only what its generalized elements of shape 1 are, then we can deduce exactly what the object must be.

Example

- Let $G: \mathscr{B} \rightarrow \mathscr{A}$ be a functor.
- Suppose that both F and F^{\prime} are left adjoint to G.
- Then for each $A \in \mathscr{A}$, we have

$$
\mathscr{B}(F(A), B) \cong \mathscr{A}(A, G(B)) \cong \mathscr{B}\left(F^{\prime}(A), B\right)
$$

naturally in $B \in \mathscr{B}$.

- So $H^{F(A)} \cong H^{F^{\prime}(A)}$.
- So $F(A) \cong F^{\prime}(A)$ by the corollary.
- In fact, this isomorphism is natural in A, so that $F \cong F^{\prime}$.
- This shows that left adjoints are unique.
- Dually, right adjoints are unique.

Example

- The corollary implies that if a set-valued functor is isomorphic to both H^{A} and $H^{A^{\prime}}$ then $A \cong A^{\prime}$.
- So the functor determines the representing object, if one exists.
- For instance, take the functor

$$
\operatorname{Bilin}(U, V ;-): \text { Vect }_{k} \rightarrow \text { Set. }
$$

- The corollary implies that up to isomorphism, there is at most one vector space T such that

$$
\operatorname{Bilin}(U, V ; W) \cong \operatorname{Vect}_{k}(T, W)
$$

naturally in W.

- It can be shown that there does, in fact, exist such a vector space T.
- Since all such spaces T are isomorphic, it is legitimate to refer to any of them as the tensor product of U and V.

