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Representables Definitions and Examples

The Forward Maps Functor

Fix an object A of a category A .

We will consider the totality of maps out of A.

To each B ∈A , there is assigned the set (or class) A (A,B) of maps
from A to B .

Definition

Let A be a locally small category and A ∈A . We define a functor

HA
=A (A,−) :A →Set

as follows:

For objects B ∈A , put HA(B)=A (A,B);

For maps B
g
→B ′ in A , define

HA(g)=A (A,g) :A (A,B)→A (A,B ′) by
p 7→ g ◦p, for all p :A→B.

A

B
g

✲
✛

p

B ′

g
◦p
✲
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Representables Definitions and Examples

Remarks

(a) Recall that “locally small” means that each class A (A,B) is in fact a
set.

This hypothesis is clearly necessary in order for the definition to make
sense.

(b) Sometimes HA(g) is written as g ◦− or g∗.

All three forms, as well as A (A,g), are in use.
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Representables Definitions and Examples

Representable Functors

Definition

Let A be a locally small category. A functor X :A →Set is representable

if
X ∼=HA, for some A ∈A .

A representation of X is a choice of:

An object A ∈A ;

An isomorphism between HA and X .

Representable functors are sometimes just called “representables”.

Only set valued functors (that is, functors with codomain Set) can be
representable.
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Representables Definitions and Examples

Example

Consider H1 :Set→Set, where 1 is the one-element set.

Since a map from 1 to a set B amounts to an element of B , we have

H1(B)∼=B , for each B ∈Set.

It is easily verified that this isomorphism is natural in B .

So H1 is isomorphic to the identity functor 1Set.

Hence 1Set is representable.
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Representables Definitions and Examples

Example

The forgetful functor Top→Set is isomorphic to H1 =Top(1,−).

The forgetful functor Grp→Set is isomorphic to Grp(Z,−).

For each prime p, there is a functor Up :Grp→Set defined on objects
by

Up(G )= {elements of G of order 1 or p}.

Then Up
∼=Grp(Z/pZ,−).

Hence Up is representable.
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Representables Definitions and Examples

Example

There is a functor ob :Cat→Set sending a small category to its set of
objects.

It is representable.

Indeed, consider the terminal category 1 (with one object and only the
identity map).

A functor from 1 to a category B simply picks out an object of B.

Thus,
H1(B)∼= obB.

Again, it is easily verified that this isomorphism is natural in B.

Hence ob∼=Cat(1,−).

It can be shown similarly that the functor Cat→Set sending a small
category to its set of maps is representable.
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Representables Definitions and Examples

Example

Let M be a monoid, regarded as a one-object category.

Recall that a set-valued functor on M is just an M-set.

Since the category M has only one object, there is only one
representable functor on it (up to isomorphism).

MM :M →Set;

As an M-set, the unique representable is the so-called left regular

representation of M, that is, the underlying set of M acted on by
multiplication on the left.

MM(m′) :m 7→m′m.

M

M
m′

✲
✛

m

M

m
′m
✲
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Representables Definitions and Examples

Example

Fix a field k and vector spaces U and V over k .

There is a functor

Bilin(U ,V ;−) :Vectk →Set

whose value Bilin(U ,V ;W ) at W ∈Vectk is the set of bilinear maps
U ×V →W .

It can be shown that this functor is representable, in other words,
there is a space T with the property that

Bilin(U ,V ;W )∼=Vectk(T ,W )

naturally in W .

This T is the tensor product U ⊗V .
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Representables Definitions and Examples

Adjunctions and Representables

Lemma

Let A

F
⇄

G
B, with F ⊣G and A ,B locally small categories, and let A ∈A .

Then the functor A (A,G (−)) :B →Set (the composite B
G
→A

HA

→ Set) is
representable.

We have
A (A,G (B))∼=B(F (A),B),

for each B ∈B.

If we can show that this isomorphism is natural in B , then we will
have proved that A (A,G (−)) is isomorphic to HF (A) and is therefore
representable.

Let B
q
→B ′ be a map in B.
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Representables Definitions and Examples

Adjunctions and Representables (Cont’d)

We must show that the following square commutes

A (A,G (B)) ✲ B(F (A),B)

A (A,G (B ′))

G (q)◦− ❄
✲ B(F (A),B ′)

q ◦−❄

where the horizontal arrows are the bijections provided by the
adjunction. For f :A→G (B), we have

f ✲ f

G (q)◦ f
❄

✲ q ◦ f

G (q)◦ f

❄

So we must prove that q ◦ f =G (q)◦ f .
This follows immediately from the naturality condition in the definition
of adjunction (with g = f ).
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Representables Definitions and Examples

Set-Valued Functors with Left Adjoints

Proposition

Any set-valued functor with a left adjoint is representable.

Let G :A →Set be a functor with a left adjoint F .

Write 1 for the one-point set.

Then
G (A)∼=Set(1,G (A))

naturally in A ∈A .

That is, G ∼=Set(1,G (−)).

So by the lemma, G is representable; indeed, G ∼=HF (1).
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Representables Definitions and Examples

Example

Several of the examples of representables mentioned previously arise as
in the proposition.

For instance, U :Top→Set has a left adjoint D.

D(1)∼= 1.

So we recover the result that U ∼=H1.

Similarly, there is a left adjoint D to the objects functor
ob :Cat→Set.

This functor D satisfies D(1)∼= 1.

So ob∼=H1.
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Representables Definitions and Examples

Example

The forgetful functor U :Vectk →Set is representable, since it has a
left adjoint.

Indeed, if F denotes the left adjoint, then F (1) is the 1-dimensional
vector space k .

So U ∼=Hk .

This is also easy to see directly:

A map from k to a vector space V is uniquely determined by the
image of 1, which can be any element of V .

Hence Vectk(k ,V )∼=U(V ) naturally in V .
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Example

We stated that forgetful functors between categories of algebraic
structures usually have left adjoints.

Take the category CRing of commutative rings and the forgetful
functor U :CRing→Set.

This general principle suggests that U has a left adjoint.

Then the proposition tells us that U is representable.

We see how this works explicitly.

Given a set S , let Z[S ] be the ring of polynomials over Z in
commuting variables xs , s ∈ S .

Then S 7→Z[S ] defines a functor Set→CRing.

This is left adjoint to U .

Hence U ∼=HZ[x ].

Again, this can be verified directly:

For any ring R , the maps Z[x ]→R correspond one-to-one with the
elements of R .
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Representables Definitions and Examples

The Natural Transformation H
f

The family (HA)A∈A of “views” from various objects of a category A

has some consistency, meaning that whenever there is a map between
objects A and A′, there is also a map between HA and HA′

.

A map A′ f
→A induces a natural transformation

A

HA

❥
⇓Hf

HA′

✯
Set

whose B-component (for B ∈A ) is the function

HA(B)=A (A,B) ✲ HA′

(B)=A (A′,B)
p ✲ p ◦ f .

Again, Hf goes by a variety of other names: A (f ,−), f ∗, and −◦ f .
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Representables Definitions and Examples

The Functor H•

Note that, even though each functor HA is covariant, they come
together to form a contravariant functor, as in the following definition:

Definition

Let A be a locally small category. The functor

H• :A op → [A ,Set]

is defined:

On objects A by H•(A)=HA;

On maps f by H•(f )=H f .

The symbol • is another type of blank, like −.
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The Functor HA

Definition

Let A be a locally small category and A ∈A . We define a functor

HA =A (−,A) :A op
→Set

as follows:

For objects B ∈A , put HA(B)=A (B ,A);

For maps B ′ g
→B in A , define

HA(g)=A (g ,A)= g∗ =−◦g :
A (B ,A)→A (B ′,A)

by p 7→ p ◦g for all p :B →A.

B ′
g ✲ B

A
✛

p
p
◦g ✲
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Representables Definitions and Examples

Representability Revisited

We now define representability for contravariant set-valued functors.

Strictly speaking, this is unnecessary, as a contravariant functor on A

is a covariant functor on A
op, and we already know what it means for

a covariant set-valued functor to be representable.

Here is a direct definition:

Definition

Let A be a locally small category. A functor X :A op →Set is
representable if

X ∼=HA, for some A ∈A .

A representation of X is a choice of:

An object A ∈A ;

An isomorphism between HA and X .
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Representables Definitions and Examples

Example

There is a functor
P :Setop →Set

sending each set B to its power set P (B), and defined on maps
g :B ′ →B by

(P (g))(U) = g−1U , for all U ∈P (B).

Here g−1U denotes the inverse image or preimage of U under g ,
defined by g−1U = {x ′ ∈B ′ : g(x ′) ∈U}.

As we saw previously, a subset amounts to a map into the two-point
set 2.

Precisely put, P ∼=H2.
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Representables Definitions and Examples

Example

There is a functor
O :Topop

→Set

defined on objects B by taking O(B) to be the set of open subsets of
B .

If S denotes the two-point topological space in which exactly one of
the two singleton subsets is open, then continuous maps from a space
B into S correspond naturally to open subsets of B .

Hence O ∼=HS , and O is representable.
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Example

In a previous example, we defined a functor C :Topop →Ring,
assigning to each space the ring of continuous real-valued functions on
it.

The composite functor

Topop C
→Ring

U
→Set

is representable, since by definition, U(C (X ))=Top(X ,R) for
topological spaces X .
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The Functor Hf

Any map A
f
→A′ in A induces a natural transformation

A
op

HA

❥
⇓Hf

HA′

✯
Set

(also called A (−, f ), f∗ or f ◦−), whose component at an object
B ∈A is

HA(B)=A (B ,A) → HA′(B)=A (B ,A′)
p 7→ f ◦p.
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The Yoneda Embedding H•

Definition

Let A be a locally small category. The Yoneda embedding of A is the
functor

H• :A → [Aop
,Set]

defined

on objects A by H•(A)=HA;

on maps f by H•(f )=Hf .
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Representables Definitions and Examples

Summary of Definitions

For each A ∈A , we have a functor A
HA

→ Set;

Putting them all together gives a functor A
op H•

→ [A ,Set];

For each A ∈A , we have a functor A
op HA

→ Set

Putting them all together gives a functor A
H•
→ [A op,Set].

The second pair of functors is the dual of the first.

In the theory of representable functors, it does not make much
difference whether we work with the first or the second pair.

Any theorem that we prove about one dualizes to give a theorem
about the other.

We choose to work with the second pair, the HA’s and H•.

In a sense to be explained, H• “embeds” A into [A op,Set].

This can be useful, because the category [A op,Set] has some good
properties that A might not have.
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Representables Definitions and Examples

A Functor Unifying the Dual Pairs

Definition

Let A be a locally small category. The functor

HomA :A op
×A →Set

is defined by

(A,B) 7→ A (A,B)

7→

(A′
,B ′)

f
✻

g
❄

7→ A (A′
,B ′)

g ◦−◦ f
❄

In other words, HomA (A,B)=A (A,B) and (HomA (f ,g))(p)= g ◦p ◦ f ,
whenever

A′ f
→A

p
→B

g
→B ′

.
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Remark

We saw that for any set B , there is an adjunction (−×B)⊣ (−)B of
functors Set→Set.

Similarly, for any category B , there is an adjunction (−×B)⊣ [B ,−] of
functors CAT→CAT.

In other words, there is a canonical bijection

CAT(A ×B,C )∼=CAT(A , [B,C ])

for A ,B,C ∈CAT.

Under this bijection, the functors

HomA :A op×A →Set, H• :A op → [A ,Set]

correspond to one another.

Thus, HomA carries the same information as H• (or H•), presented
slightly differently.
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Naturality in Definition of Adjunction (Revisited)

Take categories and functors A

F
⇄

G
B.

They give rise to functors

A
op

×B
1×G✲ A

op
×A

B
op×B

F op×1
❄

HomB

✲ Set

HomA❄

The lower path sends (A,B) to B(F (A),B).

It can be written as B(F (−),−).

The upper path sends (A,B) to A (A,G (B)).

These two functors

B(F (−),−),A (−,G (−)) :A op
×B →Set

are naturally isomorphic if and only if F and G are adjoint.
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Generalized Elements

Objects of an arbitrary category do not have elements in any obvious
sense.

However, sets certainly have elements, and we have observed that an
element of a set A is the same thing as a map 1→A.

This inspires the following definition.

Definition

Let A be an object of a category. A generalized element of A is a map
with codomain A. A map S →A is a generalized element of A of shape S .

“Generalized element” is nothing more than a synonym of “map”, but
sometimes it is useful to think of maps as generalized elements.
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Examples

When A is a set:

A generalized element of A of shape 1 is an ordinary element of A;
A generalized element of A of shape N is a sequence in A.

In the category of topological spaces:

The generalized elements of shape 1 (the one-point space) are the
points;
The generalized elements of shape S1 (the circle) are, by definition,
loops.

As this suggests, in categories of geometric objects, we might equally
well say “figures of shape S”.
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Examples (Cont’d)

For an object S of a category A, the functor HS :A →Set sends an
object to its set of generalized elements of shape S .

The functoriality tells us that any map A→B in A transforms
S-elements of A into S-elements of B .

For example, taking A =Top and S = S1, any continuous map A→B

transforms loops in A into loops in B .
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Subsection 2

The Yoneda Lemma
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Posing a Question

Fix a locally small category A .

Take an object A ∈A and a functor X :A op →Set.

The object A gives rise to another functor HA =A (−,A) :A op →Set.

We ask what are the maps HA →X?

Since HA and X are both objects of the presheaf category [A op,Set],
the “maps” concerned are maps in [A op,Set].

So, we are asking what natural transformations

A
op

HA

❥
⇓

X

✯
Set

there are.

The set of such natural transformations is called [A op,Set](HA,X ).
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Content of the Yoneda Lemma

Given as input an object A ∈A and a presheaf X on A , we can
construct the set [A op,Set](HA,X ).

Another way to construct a set from the same input data (A,X ) is to
simply take the set X (A)!

The content of the Yoneda Lemma is that these two sets are the same:

[A op
,Set](HA,X )∼=X (A),

for all A ∈A and X ∈ [A op,Set].

Informally, then, the Yoneda lemma says that for any A ∈A and
presheaf X on A :

A natural transformation HA →X is an element of X (A).
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The Yoneda Lemma

Theorem (Yoneda)

Let A be a locally small category. Then

[A op
,Set](HA,X )∼=X (A)

naturally in A ∈A and X ∈ [A op,Set].

Recall that for functors F ,G :C →D, the phrase “F (C )∼=G (C )
naturally in C ” means that there is a natural isomorphism F ∼=G .
So the use of this phrase in the Yoneda lemma suggests that each side
is functorial in both A and X .

This means, for instance, that a map X →X ′ must induce a map

[A op
,Set](HA,X )→ [A op

,Set](HA,X ′),

and that not only does the Yoneda isomorphism hold for every A and
X , but also, the isomorphisms can be chosen in a way that is
compatible with these induced maps.
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Further Explanations

The Yoneda lemma states that the composite functor

A
op× [A op,Set]

Hop×1
→ [A op,Set]op× [A op,Set]

(A,X ) 7→ (HA,X )
Hom[Aop ,Set]

→ Set

7→ [A op,Set](HA,X )

is naturally isomorphic to the evaluation functor

A
op× [A op,Set] → Set

(A,X ) 7→ X (A).
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World View Without Yoneda

If the Yoneda lemma were false then the world would look much more
complex.

Take a presheaf X :A op →Set.

Define a new presheaf X ′ by

X ′
= [A op

,Set](HA,X ) :A op
→Set,

that is, X ′(A)= [A op,Set](HA,X ) for all A ∈A .

Yoneda tells us that X ′(A)∼=X (A) naturally in A.

In other words, X ′ ∼=X .

If Yoneda were false then starting from a single presheaf X , we could
build an infinite sequence X ,X ′,X ′′, . . . of new presheaves, potentially
all different.

But in reality, the situation is very simple: they are all the same.
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Proof

We have to define, for each A and X , a bijection between the sets
[A op,Set](HA,X ) and X (A).

We then have to show that our bijection is natural in A and X .

Fix A ∈A and X ∈ [A op,Set].

We define functions

[A op
,Set](HA,X )

(̂ )

⇄

(̃ )

X (A)

and show that they are mutually inverse.

So we have to do four things:

Define the function (̂ );

Define the function (̃ );

Show that
̂̃
( ) is the identity;

Show that
˜̂
( ) is the identity.
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Proof (Cont’d)

Given α :HA →X , define α̂ ∈X (A) by α̂=αA(1A).

Let x ∈X (A).

We have to define a natural transformation x̃ :HA →X .

That is, we have to define for each B ∈A a function

x̃B :HA(B)=A (B ,A)→X (B)

and show that the family x̃ = (x̃B)B∈A satisfies naturality.

Given B ∈A and f ∈A (B ,A), define

x̃B(f )= (X (f ))(x) ∈X (B).

This makes sense, since X (f ) is a map X (A)→X (B).
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Proof (Cont’d)

To prove naturality, we must show that for any map B ′ g
→B in A , the

following square commutes:

A (B ,A)
HA(g)=−◦g✲ A (B ′

,A)

X (B)

x̃B ❄

X (g)
✲ X (A)

x̃B ′

❄

To reduce clutter, let us write X (g) as Xg , and so on.

Now for all f ∈A (B ,A), we have

f ✲ f ◦g

(Xf )(x)
❄

✲ (X (f ◦g))(x)
(Xg)((Xf )(x))

❄

But X (f ◦g)= (Xg)◦ (Xf ) by functoriality.
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Proof (Cont’d)

Given x ∈X (A), we have to show that ̂̃x = x :

̂̃x = x̃A(1A)= (X1A)(x)= 1X (A)(x)= x .

Given α :HA →X , we have to show that ˜̂α=α.

Two natural transformations are equal if and only if all their
components are equal.

So, we have to show that ˜̂αB =αB , for all B ∈A .

Each side is a function from HA(B)=A (B ,A) to X (B).

Two functions are equal if and only if they take equal values at every
element of the domain.

So, we have to show that ˜̂αB(f )=αB(f ), for all B ∈A and f :B →A

in A .
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Proof (Cont’d)

We have to show that ˜̂αB(f )=αB(f ), for all B ∈A and f :B →A in
A .

The left-hand side is by definition

˜̂αB(f )= (Xf )(α̂)= (Xf )(αA(1A)).

So it remains to prove that (Xf )(αA(1A))=αB(f ).

This follows by the naturality of α:

A (A,A)
HA(f )=−◦ f✲ A (B ,A)

X (A)

αA
❄

Xf
✲ X (B)

αB
❄
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Proof (Cont’d)

We now show that the bijection is natural in A and X .

We employ two mildly labor-saving devices.

First, in principle we have to prove naturality of both (̂ ) and (̃ ).

However, by a previous lemma, it is enough to prove naturality of just
one of them.

We prove naturality of (̂ ).

Second, naturality in two variables simultaneously is equivalent to
naturality in each variable separately.

Thus, (̂ ) is natural in the pair (A,X ) if and only if it is:

natural in A for each fixed X and
natural in X for each fixed A.

So, it remains to check these two types of naturality.
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Representables The Yoneda Lemma

Proof (Cont’d)

Naturality in A states that for each X ∈ [A op,Set] and B
f
→A in A ,

the following square commutes

[A op
,Set](HA,X )

−◦Hf✲ [A op
,Set](HB ,X )

X (A)

(̂ )
❄

Xf
✲ X (B)

(̂ )
❄

For α :HA →X , we have

α ✲ α◦Hf

αA(1A)
❄

✲ (α◦Hf )B(1B)
(Xf )(αA(1A))

❄

So we have to show that (α◦Hf )B(1B)= (Xf )(αA(1A)).
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Proof (Cont’d)

To show that
(α◦Hf )B(1B)= (Xf )(αA(1A)).

We have

(α◦Hf )B(1B) = αB((Hf )B(1B)) (composition in [A op,Set])
= αB(f ◦1B) (definition of Hf )
= αB(f )
= (Xf )(αA(1A)). (as shown above)
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Proof (Cont’d)

Naturality in X states that for each A ∈A and map

A
op

X

❥
⇓ θ

X ′

✯
Set

in [A op,Set], the following square commutes:

[A op
,Set](HA,X )

θ ◦−✲ [A op
,Set](HA,X ′)

X (A)

(̂ )
❄

θA

✲ X ′(A)

(̂ )
❄
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Proof (Cont’d)

[A op
,Set](HA,X )

θ ◦−✲ [A op
,Set](HA,X ′)

X (A)

(̂ )
❄

θA

✲ X ′(A)

(̂ )
❄

For α :HA →X , we have

α ✲ θ ◦α

αA(1A)
❄

✲ (θ ◦α)A(1A)
θA(αA(1A))

❄

Since (θ ◦α)A = θA ◦αA by definition of composition in [A op,Set], we
are done.
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Subsection 3

Consequences of the Yoneda Lemma

George Voutsadakis (LSSU) Category Theory July 2020 50 / 68



Representables Consequences of the Yoneda Lemma

Rephrasing of the Yoneda Lemma

Corollary

Let A be a locally small category and X :A op →Set. Then a
representation of X consists of an object A ∈A together with an element
u ∈X (A) such that:

For each B ∈A and x ∈X (B), there is a unique map x :B →A such
that (Xx)(u)= x .

By definition, a representation of X is an object A ∈A together with a
natural isomorphism α :HA

∼
→X .

The corollary states that such pairs (A,α) are in natural bijection with
pairs (A,u) satisfying the displayed condition.
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Elements and Universal Elements

Pairs (B ,x) with B ∈A and x ∈X (B) are sometimes called elements

of the presheaf X .

The Yoneda lemma tells us that x amounts to a generalized element
of X of shape HB .

An element u ∈X (A) satisfying the condition

For each B ∈A and x ∈X (B), there is a unique map x :B →A such
that (Xx)(u)= x .

is sometimes called a universal element of X .

So, the corollary says that a representation of a presheaf X amounts
to a universal element of X .
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Proof of the Corollary

By the Yoneda lemma, we have only to show that for A ∈A and
u ∈X (A), the natural transformation ũ :HA →X is an isomorphism if
and only if

for each B ∈A and x ∈X (B), there is a unique map x :B →A such
that (Xx)(u)= x .

Now, ũ is an isomorphism if and only if for all B ∈A , the function

ũB :HA(B)=A (B ,A)→X (B)

is a bijection, if and only if for all B ∈A and x ∈X (B), there is a
unique x ∈A (B ,A) such that ũB(x)= x .

But ũB(x)= (Xx)(u).

So this is exactly the displayed condition.
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A Dual Formulation

Corollary

Let A be a locally small category and X :A →Set. Then a representation
of X consists of an object A ∈A together with an element u ∈X (A) such
that:

For each B ∈A and x ∈X (B), there is a unique map x :A→B such
that (Xx)(u)= x .

Follows immediately from the corollary by duality.
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Example

Fix a set S and consider the functor

X =Set(S ,U(−)) : Vectk → Set

V 7→ Set(S ,U(V )).

Here are two familiar (and true!) statements about X :
(a) There exist a vector space F (S) and an isomorphism

Vectk (F (S),V )∼=Set(S ,U(V )) natural in V ∈Vectk ;
(b) There exist a vector space F (S) and a function u : S →U(F (S)) such

that:

For each vector space V and function f :S →U(V ), there is a unique

linear map f :F (S)→V such that the following commutes:

S
u✲ U(F (S))

U(V )

U(f )❄f ✲
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Example (Cont’d)

Each of these two statements says that X is representable:
Statement (a) says that there is an isomorphism X (V )∼=Set(F (S),V )

natural in V . That is, an isomorphism X ∼=HF(S).
So X is representable, by definition of representability.
Statement (b) says that u ∈X (F (S)) satisfies the condition in the
preceding corollary.
So X is representable, by that corollary.

The first way of saying that X is representable is substantially shorter
than the second.

Indeed, it is clear that if the situation of (b) holds then there is an
isomorphism

Vectk(F (S),V )
∼
→Set(S ,U(V ))

natural in V , defined by g 7→U(g)◦u.

Even though (b) states that the two functors are not only naturally
isomorphic, but naturally isomorphic in a rather special way, both are
equivalent.
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Example

The same can be said for any other adjunction A

F
⇄

G
B.

Fix A ∈A and put

X =A (A,G (−)) :B →Set.

Then X is representable, and this can be expressed in either of the
following ways:

(a) A (A,G(B)) ∼=B(F (A),B) naturally in B.

In other words, X ∼=HF(A);
(b) The unit map ηA :A→G(F (A)) is an initial object of the comma

category (A⇒G);
That is, ηA ∈X (F (A)) satisfies

For each B ∈B and x ∈X (B), there is a unique map x :F (A)→B such

that (Xx)(ηA)= x .

George Voutsadakis (LSSU) Category Theory July 2020 57 / 68



Representables Consequences of the Yoneda Lemma

Example

For any group G and element x ∈G , there is a unique homomorphism
φ :Z→G such that φ(1)= x .

This means that 1 ∈U(Z ) is a universal element of the forgetful
functor U :Grp→Set.

In other words, we have

For each B ∈Grp and x ∈U(B), there is a unique map x :Z→B such
that (Ux)(1)= x .

So 1 ∈U(Z) gives a representation HZ ∼
→U of U .

On the other hand, the same is true with −1 in place of 1.

The isomorphisms HZ ∼
→U coming from 1 and −1 are not equal,

because the corollary provides a one-to-one correspondence between
universal elements and representations.
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The Yoneda Embedding

Corollary

For any locally small category A , the Yoneda embedding
H• :A → [A op,Set] is full and faithful.

Informally, this says that for A;A′ ∈A , a map HA →HA′ of presheaves
is the same thing as a map A→A′ in A .

We have to show that for each A,A′ ∈A , the function

A (A,A′) → [A op,Set](HA,HA′)
f 7→ Hf

is bijective. By the Yoneda lemma (taking X to be HA′), the function
(̃ ) :HA′(A)→ [A op,Set](HA,HA′) is bijective. So it is enough to
prove that these functions are equal.

Thus, given f :A→A′, we have to prove that f̃ =Hf , or equivalently,
Ĥf = f . Indeed we have Ĥf = (Hf )A(1A)= f ◦1A = f .
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Remarks on Embeddings

In mathematics, the word “embedding” is used to mean a map A→B

that makes A isomorphic to its image in B .

For example, an injection of sets i :A→B might be called an
embedding, because it provides a bijection between A and the subset
iA of B .

Similarly, a map i :A→B of topological spaces might be called an
embedding if it is a homeomorphism to its image, so that A∼= iA.

A previous corollary tells us that in category theory, a full and faithful
functor A →B can reasonably be called an embedding, as it makes
A equivalent to a full subcategory of B.

George Voutsadakis (LSSU) Category Theory July 2020 60 / 68



Representables Consequences of the Yoneda Lemma

Remarks on the Yoneda Embedding

The Yoneda embedding H• : A → [A op,Set]
embeds A into its own presheaf category.
So, A is equivalent to the full subcategory of
[A op,Set] whose objects are the representables.

In general, full subcategories are the easiest subcategories to handle.

For instance, given objects A and A′ of a full subcategory, we can
speak unambiguously of the “maps” from A to A′;

It makes no difference whether this is understood to mean maps in the
subcategory or maps in the whole category.

Similarly, we can speak unambiguously of isomorphism of objects of
the subcategory.
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Isomorphisms and Full and Faithful Functors

Lemma

Let J :A →B be a full and faithful functor and A,A′ ∈A . Then:

(a) A map f in A is an isomorphism if and only if the map J(f ) in B is
an isomorphism;

(b) For any isomorphism g : J(A)→ J(A′) in B, there is a unique
isomorphism f :A→A′ in A such that J(f )= g ;

(c) The objects A and A′ of A are isomorphic if and only if the objects
J(A) and J(A′) of B are isomorphic.
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Example

We considered the representations of the forgetful functor
U :Grp→Set, and found two different isomorphisms HZ ∼

→U .

Are there others?

Since HZ ∼=U , there are as many isomorphisms HZ ∼
→U as there are

isomorphisms HZ ∼
→HZ.

By the preceding corollary and Part (b) of the preceding lemma, there
are as many of these as there are group isomorphisms Z

∼
→Z.

There are precisely two such (corresponding to the two generators ±1
of Z).

So we did indeed find all the isomorphisms HZ ∼
→U .

Differently put, there are exactly two universal elements of U(Z).
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Isomorphism of Representables

Corollary

Let A be a locally small category and A,A′ ∈A . Then

HA
∼=HA′ ⇔ A∼=A′

⇔ HA ∼=HA′

.

By duality, it is enough to prove the first ⇔.

This follows from the preceding corollary and Part (c) of the preceding
lemma.

Since functors always preserve isomorphism, the force of this
statement is that HA

∼=HA′ ⇒ A∼=A′.

In other words, if A (B ,A)∼=A (B ,A′) naturally in B , then A∼=A′.

Thinking of A (B ,A) as “A viewed from B”, the corollary tells us that
two objects are the same if and only if they look the same from all
viewpoints.
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Example

Consider the case A =Grp.
Take two groups A and A′, and suppose someone tells us that A and
A′ “look the same from B” (meaning that HA(B)∼=HA′(B)) for all
groups B . Then, for instance:

HA(1)∼=HA′(1), where 1 is the trivial group.
But HA(1)=Grp(1,A) is a one-element set, as is HA′(1), no matter
what A and A′ are.
So this tells us nothing at all.
HA(Z)∼=HA′(Z).
We know that HA(Z) is the underlying set of A, and similarly for A′.
So A and A′ have isomorphic underlying sets.
HA(Z/pZ)∼=HA′(Z/pZ) for every prime p.
So A and A′ have the same number of elements of each prime order.

Each of these isomorphisms gives only partial information about the
similarity of A and A′.
But if we know that HA(B)∼=HA′(B) for all groups B , and naturally in
B , then A∼=A′.
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Example

For any set A, we have

A∼=Set(1,A)=HA(1).

So HA(1)∼=HA′(1) implies A∼=A′.

In other words, two objects of Set are the same if they look the same
from the point of view of the one-element set.

This is a familiar feature of sets: the only thing that matters about a
set is its elements!

For a general category, the preceding corollary tells us that two objects
are the same if they have the same generalized elements of all shapes.

But the category of sets has a special property:

If we choose an object and we know only what its generalized elements
of shape 1 are, then we can deduce exactly what the object must be.
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Example

Let G :B →A be a functor.

Suppose that both F and F ′ are left adjoint to G .

Then for each A ∈A , we have

B(F (A),B)∼=A (A,G (B))∼=B(F ′(A),B)

naturally in B ∈B.

So HF (A) ∼=HF ′(A).

So F (A)∼= F ′(A) by the corollary.

In fact, this isomorphism is natural in A, so that F ∼=F ′.

This shows that left adjoints are unique.

Dually, right adjoints are unique.
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Example

The corollary implies that if a set-valued functor is isomorphic to both
HA and HA′

then A∼=A′.

So the functor determines the representing object, if one exists.

For instance, take the functor

Bilin(U ,V ;−) :Vectk →Set.

The corollary implies that up to isomorphism, there is at most one
vector space T such that

Bilin(U ,V ;W )∼=Vectk(T ,W )

naturally in W .

It can be shown that there does, in fact, exist such a vector space T .

Since all such spaces T are isomorphic, it is legitimate to refer to any
of them as the tensor product of U and V .
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