
Introduction to Category Theory

George Voutsadakis1

1Mathematics and Computer Science

Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU) Category Theory July 2020 1 / 102



Outline

1 Limits
Limits: Definition and Examples
Colimits: Definition and Examples
Interactions Between Functors and Limits

George Voutsadakis (LSSU) Category Theory July 2020 2 / 102



Limits Limits: Definition and Examples

Subsection 1

Limits: Definition and Examples

George Voutsadakis (LSSU) Category Theory July 2020 3 / 102



Limits Limits: Definition and Examples

Products in Sets

Let X and Y be sets.
The familiar cartesian product X ×Y is characterized by the property
that an element of X ×Y is an element of X together with an element
of Y .
Since elements are just maps from 1, this says that a map 1→X ×Y

amounts to a pair of maps (1→X ,1→Y ).
A little thought reveals that the same is true when 1 is replaced
throughout by any set A whatsoever:
A generalized element of X ×Y of shape A amounts to a generalized
element of X of shape A together with a generalized element of Y of
shape A.
The bijection between maps A→X ×Y and pairs of maps
(A→X ,A→Y ) is given by composing with the projection maps

X
p1
← X ×Y

p2
→ Y

x ← [ (x ,y) 7→ y
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Limits Limits: Definition and Examples

Products

Definition

Let A be a category and X ,Y ∈A . A product of X and Y consists of an
object P and maps

X
p1
←P

p2
→Y

with the property that for all objects and maps X
f1
←A

f2
→Y in A , there

exists a unique map f :A→P , such that the following diagram commutes:

A

X ✛

p1

✛

f 1

P

f

❄

p2

✲ Y

f2

✲

The maps p1 and p2 are called the projections.

George Voutsadakis (LSSU) Category Theory July 2020 5 / 102



Limits Limits: Definition and Examples

On Existence, Uniqueness and Terminology

Products do not always exist.

For example, if A is the discrete two-object category

X • •Y

then X and Y do not have a product.

When objects X and Y of a category do have a product, it is unique
up to isomorphism.

This justifies talking about the product of X and Y .

Strictly speaking, the product consists of the object P together with
the projections p1 and p2.

But informally, we often refer to P alone as the product of X and Y .

We write P as X ×Y .
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Limits Limits: Definition and Examples

Example

Any two sets X and Y have a product in Set.

It is the usual cartesian product X ×Y , equipped with the usual
projection maps p1 and p2.

Take sets and functions X
f1
←A

f2
→Y . Define f :A→X ×Y by

f (a)= (f1(a), f2(a)).

Then pi ◦ f = fi for i = 1,2, i.e., the required diagram commutes.

Moreover, this is the only map making that diagram commute:

Suppose that f̂ :A→X ×Y , in place of f , also makes the diagram
commute. Let a ∈A, and write f̂ (a) as (x ,y). Then
f1(a)= p1(f̂ (a))= p1(x ,y)= x . Similarly, f2(a)= y .

Hence, for all a ∈A, f̂ (a)= (f1(a), f2(a))= f (a). So, f̂ = f .

In general, in any category, the map f is usually written as (f1, f2).
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Limits Limits: Definition and Examples

Example

In the category of topological spaces, any two objects X and Y have a
product.

It is the set X ×Y equipped with the product topology and the
standard projection maps.

The product topology is deliberately designed so that a function

A → X ×Y

t 7→ (x(t),y(t))

is continuous if and only if it is continuous in each coordinate (that is
to say, both functions t 7→ x(t), t 7→ y(t) are continuous.
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Limits Limits: Definition and Examples

Example (Cont’d)

A closely related statement is that the product topology is the
smallest topology on X ×Y for which the projections are continuous.

Here “smallest” means that for any other topology T on X ×Y such
that p1 and p2 are continuous, every subset of X ×Y open in the
product topology is also open in T .

Thus, to define the product topology, we declare just enough sets to
be open that the projections are continuous.
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Limits Limits: Definition and Examples

Example

Let X and Y be vector spaces.

We can form their direct sum, X ⊕Y , whose elements can be written
as either (x ,y) or x +y (with x ∈X and y ∈Y ), according to taste.

There are linear projection maps

X ⊕Y (x ,y)

X
✛

p 1

Y

p
2
✲

x
✛

y

✲

It can be shown that X ⊕Y , together with p1 and p2, is the product of
X and Y in the category of vector spaces.
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Limits Limits: Definition and Examples

The Reals as an Ordered Set

Let x ,y ∈R.

Their minimum min{x ,y } satisfies

min {x ,y } ≤ x , min{x ,y } ≤ y .

It has the further property that whenever a ∈R with

a≤ x , a≤ y ,

we have a≤min{x ,y }.

This means exactly that when the poset (R,≤) is viewed as a
category, the product of x ,y ∈R is min{x ,y }.

The definition of product simplifies when interpreted in a poset, since
all diagrams commute.
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Limits Limits: Definition and Examples

Power Sets as Ordered Sets

Fix a set S .

Let X ,Y ∈P (S).

Then X ∩Y satisfies

X ∩Y ⊆X , X ∩Y ⊆Y .

It has the further property that whenever A ∈P (S) with

A⊆X , A⊆Y ,

we have A⊆X ∩Y .

This means that X ∩Y is the product of X and Y in the poset
(P (S),⊆) regarded as a category.
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Limits Limits: Definition and Examples

Natural Numbers with Divisibility as Ordered Sets

Let x ,y ∈N.

Their greatest common divisor gcd(x ,y) satisfies

gcd(x ,y) | x , gcd(x ,y) | y .

It has the further property that whenever a ∈N with

a | x , a | y ,

we have a | gcd(x ,y).

This means that gcd(x ,y) is the product of x and y in the poset (N, |)
regarded as a category.
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Limits Limits: Definition and Examples

Products in Partially Ordered Sets

Let (A,≤) be a poset and x ,y ∈A.

A lower bound for x and y is an element a ∈A such that a≤ x and
a≤ y .

A greatest lower bound or meet of x and y is a lower bound z for x
and y with the further property that whenever a is a lower bound for x
and y , we have a≤ z .

When a poset is regarded as a category, meets are exactly products.

They do not always exist, but when they do, they are unique.

The meet of x and y is usually written as x ∧y rather than x ×y .

Thus, in the three examples above,

x ∧y =min{x ,y }, X ∧Y =X ∩Y , x ∧y = gcd(x ,y),

the second example being the origin of the notation.
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Limits Limits: Definition and Examples

General Products

We have been discussing products X ×Y of two objects, so-called
binary products.

We can talk about products of an arbitrary number of objects.

Definition

Let A be a category, I a set, and (Xi )i∈I a family of
objects of A . A product of (Xi )i∈I consists of an

object P and a family of maps (P
pi
→Xi)i∈I with the

property that for all objects A and families of maps

(A
fi
→ Xi)i∈I there exists a unique map f : A→ P

such that pi ◦ f = fi for all i ∈ I .

A

P

f

❄

pi
✲ Xi

fi

✲

Products do not always exist but, when the product P exists, we write
P as

∏
i∈I Xi and the map f as (fi )i∈I .

We call the maps fi the components of the map (fi )i∈I .

With I a two-element set, we recover binary products.
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Limits Limits: Definition and Examples

Example

In ordered sets, the extension from binary to arbitrary products works
in the obvious way:

Given an ordered set (A,≤), a lower bound for a family (xi )i∈I of
elements is an element a ∈A such that a≤ xi for all i .

A greatest lower bound or meet of the family is a lower bound
greater than any other, written as

∧
i∈I xi .

These are the products in (A,≤).

For example, in R with its usual ordering, the meet of a family (xi)i∈I
is inf {xi : i ∈ I } (and one exists if and only if the other does).
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Limits Limits: Definition and Examples

The Case of Empty Index Set

Let A be a category.

In general, an I -indexed family (Xi)i∈I of objects of A is a function
I → ob(A ).

When I is empty, there is exactly one such function, i.e., there is
exactly one family (Xi)i∈;, the empty family.

Similarly, when I is empty, there is exactly one family (A
fi
→Xi)i∈; for

any given object A.

A product of the empty family therefore consists of an object P of A

such that for each object A of A , there exists a unique map f :A→P

(the condition pi ◦ f = fi for all i ∈ I holds trivially).

In other words, a product of the empty family is exactly a terminal
object.
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Limits Limits: Definition and Examples

The Case of Empty Index Set (Cont’d)

We have been writing 1 for terminal objects, which was justified by
the fact that in categories such as Set, Top, Ring and Grp, the
terminal object has one element.

But we have just seen that the terminal object is the product of no
things, which in the context of elementary arithmetic is the number 1.

This is a second, related, reason for the notation.
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Limits Limits: Definition and Examples

Powers

Take an object X of a category A , and a set I .

There is a constant family (X )i∈I .

Its product
∏

i∈I X , if it exists, is written as X I and called a power of
X .

We met powers in Set:

When X is a set, X I is the set of functions from I to X , also written
as Set(I ,X ).
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Limits Limits: Definition and Examples

Equalizers

A fork in a category consists of objects and maps A
f
→X

s
â
t
Y , such

that sf = tf .

Definition

Let A be a category and let X
s
â
t
Y be objects and maps in A . An

equalizer of s and t is an object E together with a map E
i
→X such that

E
i

✲ X
s

✲

t
✲ Y

is a fork, and with the property that for any fork

A
f
→ X

s
â
t
Y , there exists a unique map f : A → E

such that the following triangle commutes:

A

E

f
❄

i
✲ X

f

✲
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Limits Limits: Definition and Examples

Example

Equalizers in Set, as defined previously, are equalizers in the sense of
the general definition.

Indeed, take sets and functions X
s
â
t
Y .

Write
E = {x ∈X : s(x)= t(x)}.

Write i :E →X for the inclusion.

Then si = ti , so we have a fork.

We can check that it is universal among all forks on s and t.
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Limits Limits: Definition and Examples

Example (Cont’d)

Suppose A
f
→X

s
â
t
Y is another fork in Set.

A

E

f
❄

.........

i
✲ X

s
✲

t
✲

f

✲

Y

Define, for all a ∈A,
f (a)= f (a).

This makes sense, because, as s(f (a))= t(f (a)), f (a) ∈E .

Moreover, for all a ∈A, i(f (a))= i(f (a))= f (a).

Thus, the requisite triangle commutes.

Suppose that f̂ :A→E also made the triangle commute.

Then, we would have i f̂ = f = i f . As i is injective, we get that f̂ = f .

Thus, the function f is unique.
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Limits Limits: Definition and Examples

Combining Equalizers

An equalizer describes the set of solutions of a single equation.

By combining equalizers with products, we can also describe the
solution-set of any system of simultaneous equations.

Take a set Λ and a family (X
sλ
â
tλ
Yλ)λ∈Λ of pairs of maps in Set.

Then the solution-set

{x ∈X : sλ(x)= tλ(x), for all λ ∈Λ}

is the equalizer of the functions X
(sλ)λ∈Λ
â

(tλ)λ∈Λ

∏
λ∈ΛXλ.

To see this, observe that for x ∈X ,

(sλ)λ∈Λ(x)= (tλ)λ∈Λ(x) ⇔ (sλ(x))λ∈Λ = (tλ(x))λ∈Λ
⇔ sλ(x)= tλ(x), for all λ∈Λ.
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Limits Limits: Definition and Examples

Example

Take continuous maps X
s
â
t
Y between topological spaces.

We can form their equalizer E in the category of sets, with inclusion
map i :E →X , say.

Since E is a subset of the space X , it acquires the subspace topology
from X , and i is then continuous.

This space E , together with i , is the equalizer of s and t.

Showing this amounts to showing that for any fork A
f
→X

s
â
t
Y in

Top, the induced function f is continuous.

This follows from the definition of the subspace topology, which is the
smallest topology such that the inclusion map is continuous.
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Limits Limits: Definition and Examples

Example: Kernels in Grp

Let θ :G →H be a homomorphism of groups.

The homomorphism θ gives rise to a fork

kerθ
ι
,→G

θ

â
ε
H,

where ι is the inclusion and ε is the trivial homomorphism.

This is an equalizer in Grp.

Showing this amounts to showing that the map that we have been
calling f is a homomorphism.

However, this follows from the fact that it value is identical with the
value of f , as we saw previously.

Thus, kernels are a special case of equalizers.
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Limits Limits: Definition and Examples

Example

Let V
s
â
t
W be linear maps between vector spaces.

There is a linear map t− s :V →W , and the equalizer of s and t in
the category of vector spaces is the space ker(t − s) together with the
inclusion map ker(t − s) ,→V .
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Limits Limits: Definition and Examples

Pullbacks

Definition

Let A be a category and take objects and maps in A :

Y

X
s
✲ Z

t
❄

A pullback of this diagram is an object P ∈A together with maps
p1 :P →X and p2 :P →Y , such that the following commutes

P
p2
✲ Y

X

p1
❄

s
✲ Z

t
❄

and...
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Limits Limits: Definition and Examples

Pullbacks (Cont’d)

Definition (Cont’d)

... with the property that for any commutative square

A
f2
✲ Y

X

f1
❄

s
✲ Z

t
❄

in A , there is a unique map f :A→P , such that the following commutes:

A

P
p2

✲

f
✲

Y

f2

✲

X

p1
❄

s
✲

f
1

✲

Z

t
❄
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Limits Limits: Definition and Examples

Terminology

We call the following diagram a pullback square:

P
p2
✲ Y

X

p1
❄

s
✲ Z

t
❄

Another name for pullback is fibered product.

This name is partially explained by the following fact:

When Z is a terminal object (and s and t are the only maps they can
possibly be), a pullback of the diagram

Y

X
s
✲ Z

t
❄

is simply a product of X and Y .
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Limits Limits: Definition and Examples

Example

The pullback of a diagram

Y

X
s
✲ Z

t
❄

in Set is
P = {(x ,y) ∈X ×Y : s(x)= t(y)}

with projections p1 and p2 given by

p1(x ,y)= x and p2(x ,y)= y .
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Limits Limits: Definition and Examples

Example

A basic construction with sets and functions is the formation of
inverse images.

They are an instance of pullbacks.

Indeed, given a function f :X →Y and a subset Y ′ ⊆Y , we obtain a
new set, the inverse image

f −1Y ′
= {x ∈X : f (x) ∈Y ′

} ⊆X ,

and a new function,

f ′ : f −1Y ′ → Y ′

x 7→ f (x)
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Limits Limits: Definition and Examples

Example (Cont’d)

We also have the inclusion functions j :Y ′
,→Y and i : f −1Y ′

,→X .

Putting everything together gives a commutative square

f −1Y ′
f ′
✲ Y ′

X

i
❄

∩

f
✲ Y

j
❄

∩

The data we started with was the lower-right part of this square (X ,
Y , Y ′, f and j), and from it we constructed the rest of the square
(f −1Y ′, f ′ and i).

This square is a pullback which we verify next.

George Voutsadakis (LSSU) Category Theory July 2020 32 / 102



Limits Limits: Definition and Examples

Example (Cont’d)

Take any commutative square as on the outside of the following

A

f −1Y ′

f ′
✲

k
✲

Y ′

h

✲

X

i
❄

∩

f
✲

g

✲

Y

j
❄

∩

We must show that there is a unique map k :A→ f −1Y ′, as shown,
such that the diagram commutes.
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Limits Limits: Definition and Examples

Example (Cont’d)

For uniqueness, let k be a map making the diagram commute.

Then for all a ∈A, we have i(k(a))= g(a).

So k(a)= g(a), and this determines k uniquely.

For existence, note that, for all a ∈A, f (g(a))= j(h(a)) ∈Y ′.

So g(a) ∈ f −1Y ′.

Hence we may define k :A→ f −1Y ′ by setting, for all a ∈A,

k(a)= g(a).

Then for all a ∈A, we have i(k(a))= k(a)= g(a).

Also f ′(k(a))= f (k(a))= f (g(a))= j(h(a))= h(a).

Hence i ◦k = g and f ′ ◦k = h, as required.
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Limits Limits: Definition and Examples

Example

Intersection of subsets provides another example of pullbacks.

Indeed, let X and Y be subsets of a set Z .

Then

X ∩Y ⊂ ✲ Y

X
❄

∩

⊂ ✲ Z
❄

∩

is a pullback square, where all the arrows are inclusions of subsets.

In fact, this is a special case of the inverse image construction, since
X ∩Y is the inverse image of Y ⊆Z under the inclusion map X ,→Z .

In the situation of inverse images, where we have a map f :X →Y

and a subset Y ′ of Y , people sometimes say that f −1Y ′ is obtained by
“pulling Y ′ back” along f : hence the name.
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Limits Limits: Definition and Examples

Diagrams

We use typeface A,B,C, . . . to denote small categories, and typeface
A ,B,C , . . . to denote arbitrary categories.

Definition

Let A be a category and I a small category. A functor I→A is called a
diagram in A of shape I.

The following are the categories T,E,P, respectively:
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Limits Limits: Definition and Examples

Diagrams (Cont’d)

The following are diagrams of shape T, E, P in a category A :

X Y X
s
✲

t
✲ Y Y

X
s
✲ Z

t
❄

We already have the definitions of product of a diagram of shape T,
equalizer of a diagram of shape E, and pullback of a diagram of shape
P.
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Limits Limits: Definition and Examples

Cones and Limits

Definition

Let A be a category, I a small category, and D : I→A a diagram in A .

(a) A cone on D is an object A ∈A (the vertex of the cone) together
with a family

(A
fI
→D(I ))I∈I

of maps in A such that for all maps I
u
→ J in I, the triangle commutes:

A

D(I )
Du

✲

✛

f I

D(J)

fJ
✲

(b) A limit of D is a cone (L
pI
→D(I ))I∈I with the property that for any

cone (A
fI
→D(I ))I∈I on D, there exists a unique map f :A→ L such

that pI ◦ f = fI for all I ∈ I. The maps pI are called the projections.
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Limits Limits: Definition and Examples

Remarks

(a) Loosely, the universal property says that for any A ∈A , maps A→ L

correspond one-to-one with cones on D with vertex A.

Any map g :A→ L gives rise to a cone (A
pIg
→ D(I ))I∈I, and the

definition of limit is that for each A, this process is bijective.

We will use this thought to rephrase the definition of limit in terms of
representability.

From this it will follow that limits are unique up to canonical
isomorphism, when they exist.

Alternatively, uniqueness can be proved by the usual kind of direct
argument.
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Limits Limits: Definition and Examples

Remarks (Cont’d)

(b) If (L
pI
→D(I ))I∈I is a limit of D, we sometimes abuse language slightly

by referring to L (rather than the whole cone) as the limit of D.

For emphasis, we sometimes call (L
pI
→D(I ))I∈I a limit cone.

We write L= lim
←I

D.

Remark (a) can then be stated as:

A map into lim
←I

D is a cone on D.

(c) By assuming from the outset that the shape category I is small, we are
restricting ourselves to what are officially called small limits.
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Limits Limits: Definition and Examples

Example

A diagram D of shape T in a category A is a pair (X ,Y ) of objects of
A .

A cone on D is an object A together with maps f1 :A→X and
f2 :A→Y .

A limit of D is a product of X and Y .

More generally, let I be a set and write I for the discrete category on I .

A functor D : I→A is an I -indexed family (Xi )i∈I of objects of A .

A limit of D is exactly a product of the family (Xi)i∈I .

In particular, a limit of the unique functor ;;;→A is a terminal object
of A , where ;;; denotes the empty category.
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Limits Limits: Definition and Examples

Example

A diagram D of shape E in a category A is a parallel pair X
s
â
t
Y of

maps in A .

A cone on D consists of objects and maps

A

X
s

✲

t
✲

✛
f

Y

g
✲

such that s ◦ f = g and t ◦ f = g .

But since g is determined by f , it is equivalent to say that a cone on

D consists of an object A and a map f :A→X such that A
f
→X

s
â
t
Y

is a fork.

A limit of D is a universal fork on s and t, that is, an equalizer of s
and t.
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Limits Limits: Definition and Examples

Example

A diagram D of shape P in a category A consists of objects and maps

Y

X
s
✲ Z

t
❄

Performing a simplification, we see that a cone on D is a commutative
square

A
f2
✲ Y

X

f1
❄

s
✲ Z

t
❄

A limit of D is a pullback.
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Limits Limits: Definition and Examples

Example

Let I= (N,≤)op.

A diagram D : I→A consists of objects and maps

· · ·
s3
→X2

s2
→X1

s1
→X0.

For example, suppose that we have a set X0 and a chain of subsets

· · · ⊆X2 ⊆X1 ⊆X0.

The inclusion maps form a diagram in Set of the type above.

Its limit is
⋂
i∈NXi .

In this and similar contexts, limits are sometimes referred to as
inverse limits, although this usage may be regarded as old-fashioned.
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Limits Limits: Definition and Examples

Example

Let D : I→Set and, as a kind of thought experiment, let us ask
ourselves what lim

←I

D would have to be if it existed.

We would have

lim
←I

D ∼= Set(1, lim
←I

D)

∼= {cones on D with vertex 1}

∼= {(xI )I∈I : xI ∈D(I ) for all I ∈ I and

(Du)(xI )= xJ for all I
u
→ J in I},

where the second isomorphism is due to the limit property and the
third is by definition of cone.

In fact, this equation really is the limit of D in Set, with projections
pJ : lim

←I

D →D(J) given by pJ((xI )I∈I)= xJ .

So in Set, all limits exist.
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Example

The same formula gives limits in categories of algebras such as Grp,
Ring, Vectk , . . ..

Of course, we also have to say what the group/ring/. . . structure on
the set above is, but this works in the most straightforward way
imaginable.

For instance, in Vectk , if (xI )I∈I, (yI )I∈I ∈ lim
←I

D then

(xI )I∈I+ (yI )I∈I = (xI +yI )I∈I.

The same formula also gives limits in Top.

The topology on the set resulting is the smallest for which the
projection maps are continuous.
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Having Limits

Definition

(a) Let I be a small category. A category A has limits of shape I if for
every diagram D of shape I in A , a limit of D exists.

(b) A category has all limits (or properly, has small limits) if it has
limits of shape I for all small categories I.

Thus, Set, Top, Grp, Ring, Vectk , . . . all have all limits.

Similar terminology can be applied to special classes of limits (for
instance, “has pullbacks”).

A category is finite if it contains only finitely many maps (in which
case it also contains only finitely many objects).

A finite limit is a limit of shape I for some finite category I.

For instance, binary products, terminal objects, equalizers and
pullbacks are all finite limits.
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Constructing Limits Using Products and Equalizers

Proposition

Let A be a category.

(a) If A has all products and equalizers then A has all limits.

(b) If A has binary products, a terminal object and equalizers then A has
finite limits.

To understand the idea, consider the formula derived for limits in Set:

lim
←I

D ∼= {(xI )I∈I : xI ∈D(I ) for all I ∈ I and

(Du)(xI )= xJ for all I
u
→ J in I}.

The limit of D is described as the subset of the product
∏

I∈ID(I )
consisting of those elements for which certain equations hold.

But we saw that the set of solutions to any system of simultaneous
equations can be described via products and equalizers.

Thus, we can describe any limit in Set in terms of products and
equalizers and this is valid in any category.
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Proof in Set

Equation

lim
←I

D ∼= {(xI )I∈I : xI ∈D(I ) for all I ∈ I and

(Du)(xI )= xJ for all I
u
→ J in I},

states that in Set, the limit of a diagram D : I→Set consists of the
elements (xI )I∈I ∈

∏
I∈ID(I ) such that

(Du)(xJ)= xK ,

for each map J
u
→K in I.

For each such map u, define maps
∏

I∈ID(I )
su
â
tu
D(K ) by

su((xI )I∈I)= (Du)(xJ); tu((xI )I∈I)= xK .

Then lim
←I

D is the set of families x = (xI )I∈I satisfying the equation

su(x)= tu(x) for each map u in I.
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Proof in Set (Cont’d)

It follows that lim
←I

D is the equalizer of

∏

I∈I

D(I )
s
✲

t
✲

∏

J
u
→K in I

D(K )

where s and t are the maps with components su and tu, respectively.

We have described any limit in Set in terms of products and
equalizers.

A similar argument can be carried out in an arbitrary category.

George Voutsadakis (LSSU) Category Theory July 2020 50 / 102



Limits Limits: Definition and Examples

Example

Let CptHff denote the category of compact Hausdorff spaces and
continuous maps.

It is a classic exercise in topology to show that given continuous maps
s and t from a topological space X to a Hausdorff space Y , the
subset {x ∈X : s(x)= t(x)} of X is closed.

From this it follows that CptHff has equalizers.

Also, Tychonoff’s theorem states that any product (in Top) of
compact spaces is compact.

Moreover, it is easy to show that any product (in Top) of Hausdorff
spaces is Hausdorff.

From this it follows that CptHff has all products.

Hence by the proposition, CptHff has all limits

George Voutsadakis (LSSU) Category Theory July 2020 51 / 102



Limits Limits: Definition and Examples

Example

Recall that kernels provide equalizers in Vectk .

By the proposition, finite limits in Vectk can always be expressed in
terms of ⊕ (binary direct sum), {0}, and kernels.

The same is true in Ab.
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Monics

Definition

Let A be a category. A map X
f
→Y in A is monic (or a

monomorphism) if for all objects A and maps A
x
â
x ′
X ,

f ◦x = f ◦x ′ ⇒ x = x ′.

This can be rephrased suggestively in terms of generalized elements:

f is monic if for all generalized elements x and x ′ of X (of the same
shape), fx = fx ′ ⇒ x = x ′.

Being monic is, therefore, the generalized-element analogue of
injectivity.
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Example

In Set, a map is monic if and only if it is injective.

Indeed, if f is injective then certainly f is monic, and for the converse,
take A= 1.

In categories of algebras such as Grp, Vectk , Ring, etc., it is also true
that the monic maps are exactly the injections.

Again, it is easy to show that injections are monic.

For the converse, take A= F (1) where F is the free functor.

George Voutsadakis (LSSU) Category Theory July 2020 54 / 102



Limits Limits: Definition and Examples

Monics as Pullback

Lemma

A map X
f
→Y is monic if and only if the following square is a pullback:

X
1
✲ X

X

1
❄

f
✲ Y

f
❄

The significance of this lemma is that whenever we prove a result
about limits, a result about monics will follow.

For example, we will soon show that the forgetful functors from Grp,
Vectk , etc., to Set preserve limits (in a sense to be defined), from
which it will follow immediately that they also preserve monics.

This in turn gives an alternative proof that monics in these categories
are injective.
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Subsection 2

Colimits: Definition and Examples
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Colimits

Definition

Let A be a category and I a small category. Let D : I→A be a diagram in
A , and write Dop for the corresponding functor Iop →A

op. A cocone on
D is a cone on Dop. A colimit of D is a limit of Dop.

Explicitly, a cocone on D is an object A ∈A (the vertex of the

cocone) together with a family (D(I )
fI
→A)I∈I of maps in A such that

for all maps I
u
→ J in I, the following triangle commutes:

D(I )
Du

✲ D(J)

A
✛

f J
fI ✲
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Colimits (Cont’d)

A colimit of D is a cocone (D(I )
pI
→C )I∈I with the property that for

any cocone (D(I )
fI
→A)I∈I on D, there is a unique map f :C →A such

that f ◦pI = fI for all I ∈ I.

D(I )
Du

✲ D(J)

C
✛

pJp
I ✲

A

f

❄✛

f J
f
I

✲

We write (the vertex of) the colimit as lim
→I

D, and call the maps pI

coprojections.

George Voutsadakis (LSSU) Category Theory July 2020 58 / 102



Limits Colimits: Definition and Examples

Sums or Coproducts

Definition

A sum or coproduct is a colimit over a discrete category. That is, it is a
colimit of shape I for some discrete category I.

Let (Xi)i∈I be a family of objects of a category.

Their sum (if it exists) is written as
∑

i∈I Xi or
∐

i∈I Xi .

When I is a finite set {1, . . . ,n}, we write
∑

i∈I Xi as X1+·· ·+Xn, or as
0 if n= 0.
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Initial Objects

Let A be a category.

In general, an I -indexed family (Xi)i∈I of objects of A is a function
I → ob(A ).

When I is empty, there is exactly one such function, i.e., there is
exactly one family (Xi)i∈;, the empty family.

Similarly, when I is empty, there is exactly one family (Xi
fi
→A)i∈; for

any given object A.

A coproduct of the empty family therefore consists of an object C of
A such that for each object A of A , there exists a unique map
f :C →A (the condition f ◦pi = fi for all i ∈ I holds trivially).

In other words, a coproduct of the empty family is exactly an initial
object.
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Binary Sums in Set

Take two sets, X1 and X2.

Form their sum, X1+X2, and consider the inclusions
X1

p1
→X1+X2

p2
←X2.

This is a colimit cocone.

To prove this, we have to prove the following universal property:

For any diagram X1
f1
→A

f2
←X2 of sets and functions, there is a unique

function f :X1+X2 →A making the following commute:

X1

X1+X2 f ✲

p
1 ✲

A

f1

✲

X2

f2

✲

p2
✲
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Binary Sums in Set (Cont’d)

X1

X1+X2 f ✲

p
1 ✲

A

f1

✲

X2

f2

✲

p2
✲

p1 and p2 are injections whose images partition X1+X2.
So every element x of X1+X2 is

either equal to p1(x1) for a unique x1 ∈X1

or equal to p2(x2) for a unique x2 ∈X2.

So we may define f (x) to be equal to f1(x1) in the first case and
f2(x2) in the second.

This defines a function f making the diagram commute.

It is clearly the unique function that does so.
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Example

Let X1 and X2 be vector spaces.

There are linear maps

X1
i1
→X1⊕X2

i2
←X2

defined by i1(x1)= (x1,0) and i2(x2)= (0,x2).

It can be checked that the diagram is a colimit cocone in Vectk .

Hence binary direct sums are sums in the categorical sense.

This is remarkable, since we saw previously that X1⊕X2 is also the
product of X1 and X2!

Contrast this with the category of sets (or almost any other category),
where sums and products are very different.
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The Reals as an Ordered Set (Covisited)

Let x ,y ∈R.

Their maximum max{x ,y } satisfies

x ≤max {x ,y }, y ≤max {x ,y }.

It has the further property that whenever a ∈R with

x ≤ a, y ≤ a,

we have max {x ,y } ≤ a.

This means exactly that when the poset (R,≤) is viewed as a
category, the coproduct of x ,y ∈R is max {x ,y }.

The definition of coproduct simplifies when interpreted in a poset,
since all diagrams commute.
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Power Sets as Ordered Sets (Covisited)

Fix a set S .

Let X ,Y ∈P (S).

Then X ∪Y satisfies

X ⊆X ∪Y , Y ⊆X ∪Y .

It has the further property that whenever A ∈P (S) with

X ⊆A, Y ⊆A,

we have X ∪Y ⊆A.

This means that X ∪Y is the coproduct of X and Y in the poset
(P (S),⊆) regarded as a category.
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Natural Numbers with Divisibility (Covisited)

Let x ,y ∈N.

Their least common multiple lcm(x ,y) satisfies

x | lcm(x ,y), y | lcm(x ,y).

It has the further property that whenever a ∈N with

x | a, y | a,

we have lcm(x ,y) | a.

This means that lcm(x ,y) is the coproduct of x and y in the poset
(N, |) regarded as a category.
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Sums in Partially Ordered Sets

Let (A,≤) be a poset and x ,y ∈A.

An upper bound for x and y is an element a ∈A such that x ≤ a and
y ≤ a.

A least upper bound or join of x and y is an upper bound z for x
and y with the further property that whenever a is an upper bound for
x and y , we have z ≤ a.

When a poset is regarded as a category, joins are exactly coproducts.

They do not always exist, but when they do, they are unique.

The join of x and y is usually written as x ∨y rather than x +y .

Thus, in the three examples above,

x ∨y =max {x ,y }, X ∨Y =X ∪Y , x ∨y = lcm(x ,y),

the second example being the origin of the notation.
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Empty Joins

Let (A,≤) be an ordered set.

A join of the empty family (where I =;) is an initial object of the
category A.

Equivalently, it is a least element of A, i.e., an element 0 ∈A such
that 0≤ a for all a ∈A.
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Examples of Least Upper Bounds and Least Elements

In (R,≤),

join is supremum;
a least element does not exist.

In a power set (P (S),⊆),

join is union;
the least element is ;.

In (N, |),

join is least common multiple;
the least element is 1 (since 1 divides everything).
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Coequalizers

Recall that E is the category •â•.

Definition

A coequalizer is a colimit of shape E.

In other words, given a diagram X
s
â
t
Y , a coequalizer of s and t is a

map Y
p
→C satisfying p ◦ s = p ◦ t and universal with this property.

X
s

✲

t
✲ Y

p
✲ C

A

f
❄

f
✲
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Equivalence Relations

A binary relation R on a set A can be viewed as a subset R ⊆A×A.

Think of (a,a′) ∈R as meaning “a and a′ are related”.

We can speak of one relation S on A “containing” another such
relation, R .

This means that R ⊆ S : whenever a and a′ are R-related, they are also
S-related.

We will need to use the fact that for any binary relation R on a set A,
there is a smallest equivalence relation ∼ containing R .

This is called the equivalence relation generated by R .

“Smallest” means that any equivalence relation containing R also
contains ∼.
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Construction of ∼

We can construct ∼ as the intersection of all equivalence relations on
A containing R , since the intersection of any family of equivalence
relations is again an equivalence relation.
Roughly speaking, writing x → y to mean (x ,y) ∈R , we should have
a∼ a′ if and only if there is a zigzag such as a→ b← c ← d → e← a′

between a and a′.
To make this precise, we first define a relation S on A by

S = {(a,a′) ∈A×A : (a,a′) ∈R or (a′,a)∈R}

(which enlarges R to a symmetric relation).

Then define ∼ by declaring that a∼ a′ if and only if there exist n≥ 0
and a0, . . . ,an ∈A such that

a= a0, (a0,a1) ∈ S , (a1,a2) ∈ S , . . . , (an−1,an) ∈ S , an = a′

(which forces reflexivity and transitivity, while preserving the
symmetry).
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Quotients and Universal Property

Recall that, given any equivalence relation ∼ on a set A, we can
construct the set A/∼ of equivalence classes and the quotient map
p :A→A/∼.

This quotient map p is surjective and has the property that

p(a)= p(a′) ⇔ a∼ a′, for a,a′ ∈A.

We saw that for any set B , the maps A/∼→B correspond one-to-one
(via composition with p) with the maps f :A→B such that

∀a,a′ ∈A, a∼ a′ ⇒ f (a)= f (a′).
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Generated Equivalences and Universal Property

We now consider this universal property in the case where ∼ is the
equivalence relation generated by some relation R .

The condition

∀a,a′ ∈A, a∼ a′ ⇒ f (a)= f (a′).

is then equivalent to:

∀a,a′ ∈A, (a,a′) ∈R ⇒ f (a)= f (a′).

To see this, define an equivalence relation ≈ on A by
a≈ a′ ⇔ f (a)= f (a′).
Then, the former condition says that ∼⊆≈.

The latter condition says that R ⊆≈.
But ∼ is the smallest equivalence relation containing R .

So these statements are equivalent.
In conclusion, for any set B , the maps A/∼→B correspond
one-to-one with the maps f :A→B satisfying the condition above.
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Coequalizers in Set

Take sets and functions X
s
â
t
Y .

To find the coequalizer of s and t, we must construct in some
canonical way a set C and a function p :Y →C such that
p(s(x))= p(t(x)) for all x ∈X .

So, let ∼ be the equivalence relation on Y generated by s(x)∼ t(x)
for all x ∈X , i.e., ∼ is generated by the relation

R = {(s(x),t(x)) : x ∈X }

on Y .

Take the quotient map p :Y →Y /∼.

By the correspondence described in the preceding remarks, this is
indeed the coequalizer of s and t.
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Example

For each pair of homomorphisms A
s
â
t
B in Ab, there is a

homomorphism t − s :A→B , which gives rise to a subgroup im(t − s)
of B .

The coequalizer of s and t is the canonical homomorphism
B →B/im(t − s).
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Pushouts

A pushout is a colimit of shape

Pop
= • ✲ •

•
❄

In other words, the pushout of a diagram as on the left

X
s
✲ Y X

s
✲ Y

Z

t
❄

Z

t
❄

✲ ·
❄

is (if it exists) a commutative square as on the right that is universal
as such.

In other words still, a pushout in a category A is a pullback in A
op.
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Pushouts in Set

Take a diagram in Set:

X
s
✲ Y

Z

t
❄

Its pushout P is (Y +Z )/∼, where ∼ is the equivalence relation on
Y +Z generated by s(x)∼ t(x) for all x ∈X .

The coprojection Y →P sends y ∈Y to its equivalence class in P , and
similarly for the coprojection Z →P .
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Example

For example, let Y and Z be subsets of some set A.

Then

Y ∩Z ⊂ ✲ Y

Z
❄

∩

⊂ ✲ Y ∪Z
❄

∩

is a pushout square in Set.

It is also a pullback square!

This coincidence is a special property of the category of sets.

You can check this by verifying the universal property or by using the
formula just stated.

In this case, the formula takes the two sets Y and Z , places them side
by side (giving Y +Z ), then glues the subset Y ∩Z of Y to the subset
Y ∩Z of Z (giving (Y +Z )/∼=Y ∪Z ).
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Sums as Pushouts

If A is a category with an initial object 0, and if Y ,Z ∈A , then a
pushout of the unique diagram

0 ✲ Y

Z
❄

is exactly a sum of Y and Z .
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Direct Limits

A diagram D : (N,≤)→A consists of objects and maps

X0
s1
→X1

s2
→X2

s3
→···

in A .

Colimits of such diagrams are traditionally called direct limits.

Although the old terms “inverse limit” and “direct limit” are made
redundant by the general categorical terms “limit” and “colimit”
respectively, it is worth being aware of them.
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Construction of Colimits in Set

The colimit of a diagram D : I→Set is given by

lim
→I

D = (
∑

I∈I

D(I ))/∼,

where ∼ is the equivalence relation on
∑
D(I ) generated by

x ∼ (Du)(x) for all I
u
→ J in I and x ∈D(I ).

To see this, note that for any set A, the maps

(
∑

D(I ))/∼→A

correspond bijectively with the maps f :
∑
D(I )→A such that

f (x)= f ((Du)(x)), for all u and x .

These in turn correspond to families of maps (D(I )
fI
→A)I∈I such that

fI (x)= fJ((Du)(x)) for all u and x .

But these are exactly the cocones on D with vertex A.

Note that whereas the limit is constructed as a subset of a product,
the colimit is a quotient of a sum.
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Example

In elementary texts, surfaces are almost always seen as subsets of
Euclidean space R3, with the sphere S2 typically defined as

{(x ,y ,z) ∈R3 : x2
+y2

+z2
= 1}.

This is a subspace of the product space R3 =R×R×R, which
suggests that it is a limit.

Indeed, the sphere is the equalizer

S2 ⊂ ✲ R3
s

✲

t
✲ R

where the maps s ,t :R3 →R are given by

s(x ,y ,z)= x2
+y2

+z2
, t(x ,y ,z)= 1.

An equation is captured by an equalizer.
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Example (Cont’d)

In more advanced mathematics, a surface can instead be thought of as
the gluing-together of lots of little patches, each isomorphic to the
open unit disk D.

For example, we could in principle construct an entire bicycle inner
tube by gluing together a large number of puncture-repair patches.

The figure shows the simpler example of
a sphere made up of two disks glued to-
gether. This realizes the sphere as a quo-
tient (gluing) of the sum (disjoint union)
of the two copies of D, suggesting that we
have constructed the sphere as a colimit.
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Example (Cont’d)

Indeed, the sphere is the coequalizer

S1
× (0,1) ⊂ ✲

⊂ ✲ D+D ✲ S2

where S1 is the circle, the cylinder S1× (0,1) is the intersection of the
two copies of D, and the two maps into D +D are the inclusions of
the cylinder into the first and second copies of D.
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Example (Cont’d)

One disadvantage of the limit point of view is that it makes an
arbitrary choice of coordinate system.

It is generally best to think of spaces as freestanding objects, existing
independently of any particular embedding into Euclidean space.

One disadvantage of the colimit point of view is that it makes an
arbitrary choice of decomposition.

For example, we could decompose the sphere into three patches rather
than two, or use a different two patches from those shown.

The colimit point of view has the upper hand in modern geometry.

If you are familiar with the definition of manifold, you will recognize
that an atlas is essentially a way of viewing a manifold as a colimit of
Euclidean balls.

One reason for this is that we are often concerned with maps out of
spaces X , such as maps X →R and we know what maps out of a
colimit are by the the very definition of colimit.
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Epics

Definition

Let A be a category. A map X
f
→Y in A is epic (or an epimorphism) if

for all objects Z and maps Y
g
â
g ′
Z ,

g ◦ f = g ′
◦ f ⇒ g = g ′

.

This is the formal dual of the definition of monic, i.e., an epic in A is
a monic in A

op.

It is in some sense the categorical version of surjectivity.

But whereas the definition of monic closely resembles the definition of
injective, the definition of epic does not look much like the definition
of surjective.

The following examples confirm that in categories where surjectivity
makes sense, it is only sometimes equivalent to being epic.
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Epics in Set

In Set, a map is epic if and only if it is surjective.

If f is surjective then certainly f is epic.
To see the converse, take Z to be a two-element set {true,false}.
Take g to be the characteristic function of the image of f .
Take g ′ to be the function with constant value true.

Any isomorphism in any category is both monic and epic.

In Set, the converse also holds, since any injective surjective function
is invertible.
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Example

In categories of algebras, any surjective map is certainly epic.

In some such categories, including Ab, Vectk and Grp, the converse
also holds.

The proof is straightforward for Ab and Vectk , but much harder for
Grp.

However, there are other categories of algebras where it fails.

For instance, in Ring, the inclusion Z ,→Q is epic but not surjective.

This is also an example of a map that is monic and epic but not an
isomorphism.
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Example

In the category of Hausdorff topological spaces and continuous maps,
any map with dense image is epic.
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Epics as Pushouts

Lemma

A map X
f
→Y is epic if and only if the following square is a pushout:

X
f
✲ Y

Y

f
❄

1
✲ Y

1
❄

The significance of this lemma is that whenever we prove a result
about colimits, a result about epics will follow.

For example, if a functor preserves colimits then, it also preserves
epics.
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Subsection 3

Interactions Between Functors and Limits
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Preservation of Limits

Definition

(a) Let I be a small category. A functor F :A →B preserves limits of

shape I if for all diagrams D : I→A and all cones (A
pI
→D(I ))I∈I on D,

(A
pI
→D(I ))I∈I is a limit cone on D in A

=⇒ (F (A)
FpI
→ FD(I ))I∈I is a limit cone on F ◦D in B.

(b) A functor F :A →B preserves limits if it preserves limits of shape I

for all small categories I.

(c) Reflection of limits is defined as in (a), but with ⇐= in place of =⇒.

Of course, the same terminology applies to colimits.

George Voutsadakis (LSSU) Category Theory July 2020 93 / 102



Limits Interactions Between Functors and Limits

An Alternative Point of View

A functor F :A →B preserves limits if and only if it has the following
property:

Whenever D : I→A is a diagram that has a limit, the composite
F ◦D : I→B also has a limit, and the canonical map

F (lim
←I

D)→ lim
←I

(F ◦D)

is an isomorphism.

Here the “canonical map” has I -component F (lim
←I

D)
F(pI )
→ F (D(I )),

where pI is the I th projection of the limit cone on D.

In particular, if F preserves limits then F (lim
←I

D)∼= lim
←I

(F ◦D) whenever

D is a diagram with a limit.
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Remark

Preservation of limits says not only that the left- and right-hand sides
of

F (lim
←I

D)∼= lim
←I

(F ◦D)

are required to be isomorphic, but isomorphic in a particular way:

The canonical map

F (lim
←I

D)
F (pI )
→ F (D(I )),

where pI is the I th projection of the limit cone on D, must be an
isomorphism.

Nevertheless, we will sometimes omit this check, acting as if
preservation means only the first isomorphism.
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Example

The forgetful functor U :Top→Set preserves both limits and colimits.

As we will see, this follows from the fact that U has adjoints on both
sides.

It does not reflect all limits or all colimits.

For instance, choose any non-discrete spaces X and Y , and let Z be
the set U(X )×U(Y ) equipped with the discrete topology.

All that matters here is that the topology on Z is strictly larger than
the product topology.

Then we have a cone
X ←Z →Y

in Top whose image in Set is the product cone

U(X )←U(X )×U(Y )→U(Y ).

But the cone in Top is not a product cone in Top, since the discrete
topology on U(X )×U(Y ) is not the product topology.
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Example

We observed that:

The forgetful functor Grp→Set does not preserve initial objects;
The forgetful functor Vectk →Set does not preserve binary sums.

Forgetful functors out of categories of algebras very seldom preserve
all colimits.

George Voutsadakis (LSSU) Category Theory July 2020 97 / 102



Limits Interactions Between Functors and Limits

Forgetful Functors on Categories of Algebras

Take groups X1 and X2.

We can form the product set U(X1)×U(X2), which comes equipped
with projections

U(X1)
p1
←U(X1)×U(X2)

p2
→U(X2).

There is exactly one group structure on the set U(X1)×U(X2) with
the property that p1 and p2 are homomorphisms.

To prove uniqueness, suppose that we have a group structure on
U(X1)×U(X2) with this property.

Take elements (x1,x2) and (x ′1,x ′2) of U(X1)×U(X2) and write
(x1,x2) · (x

′
1,x ′2)= (y1,y2). Since p1 is a homomorphism,

y1 = p1(y1,y2)= p1((x1,x2) · (x
′
1,x ′2))= p1(x1,x2) ·p1(x

′
1,x ′2)= x1 ·x

′
1;

Similarly y2 = x2 ·x
′
2. Hence (x1,x2) · (x

′
1,x ′2)= (x1x

′
1,x2x

′
2).

A similar argument shows that (x1,x2)
−1 = (x−1

1 ,x−1
2 ).

And also that the identity element 1 of the group is (1,1).
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Forgetful Functors on Categories of Algebras (Cont’d)

For existence, define ·,( )−1 and 1 by the formulas just given.

It can then be checked that:

the group axioms are satisfied;
p1 and p2 are group homomorphisms.

This proves the claim.

Write L for the set U(X1)×U(X2) equipped with this group structure.

Then we have a cone X1
p1
← L

p2
→X2 in Grp.

It is easy to check that this is, in fact, a product cone in Grp.

Summarizing in language that is not tied to group theory, given
objects X1 and X2 of Grp:

For any product cone on (U(X1),U(X2)) in Set, there is a unique cone
on (X1,X2) in Grp whose image under U is the cone we started with;
This cone on (X1,X2) is a product cone.
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Creation of Limits

Definition

A functor F :A →B creates limits (of shape I) if whenever D : I→A is
a diagram in A :

For any limit cone (B
qI
→FD(I ))I∈I on the

diagram F ◦D, there is a unique cone

(A
pI
→D(I ))I∈I on D such that F (A)=B and

F (pI )= qI for all I ∈ I;

This cone (A
pI
→D(I ))I∈I is a limit cone on

D.

The forgetful functors from Grp, Ring,. . . to Set all create limits.
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Creation, Availability and Preservation of Limits

Lemma

Let F :A →B be a functor and I a small category. Suppose that B has,
and F creates, limits of shape I. Then A has, and F preserves, limits of
shape I.

Since Set has all limits, it follows that all our categories of algebras
have all limits, and that the forgetful functors preserve them.
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Remark

The preceding definition refers to equality of objects of a category.

It is almost always better to replace equality by isomorphism.

If we replace equality by isomorphism throughout the definition of
“creates limits”, we obtain a more healthy and inclusive notion.

We ask that if F ◦D has a limit then there exists a cone on D whose
image under F is a limit cone, and that every such cone is itself a limit
cone.

What we are calling creation of limits should really be called strict
creation of limits, with “creation of limits” reserved for the more
inclusive notion, and that is how “creates” is used in most of the
literature.
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