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Advanced Topics in Complexity Approximation Algorithms

Optimization Problems and Approximation Algorithms

In optimization problems we seek the best solution among a
collection of possible solutions.

Example: We may want to find:

A largest clique in a graph;
A smallest vertex cover;
A shortest path connecting two nodes.

When an optimization problem is NP-hard, as is the case with the
first two problems, no polynomial time algorithm exists that finds the
best solution unless P = NP.

In practice, instead of finding the absolute best or optimal solution,
a solution that is nearly optimal may be good enough and may be
much easier to find.

An approximation algorithm is designed to find such approximately
optimal solutions.
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Approximation Algorithm for MinVertexCover

The vertex cover problem was introduced as the language
VertexCover representing a decision problem, one that has a
yes/no answer.

In the optimization version, called MinVertexCover, we aim to
produce one of the smallest vertex covers among all possible vertex
covers in the input graph.

The following polynomial time algorithm approximately solves this
optimization problem. It produces a vertex cover that is never more
than twice the size of one of the smallest vertex covers.

A: On input 〈G 〉, where G is an undirected graph:
1. Repeat the following until all edges in G touch a marked edge:

2. Find an edge in G untouched by any marked edge.
3. Mark that edge.

4. Output all nodes that are endpoints of marked edges.
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Proving Correctness of the Algorithm A

Theorem

A is a polynomial time algorithm that produces a vertex cover of G that is
no more than twice as large as a smallest vertex cover.

A obviously runs in polynomial time.

Let X be the set of nodes that it outputs. Let H be the set of edges
that it marks. H contains or touches every edge in G . Thus, X
touches all edges in G . Hence, X is a vertex cover.
To prove that X is at most twice as large as a smallest vertex cover
Y , we establish two facts:

X is twice as large as H : Every edge in H contributes two nodes to X ,
so X is twice as large as H .
H is not larger than Y : Y is a vertex cover, so every edge in H is
touched by some node in Y . No such node touches two edges in H

because the edges in H do not touch each other. So, vertex cover Y is
at least as large as H , since Y contains a different node that touches
every edge in H .
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k-Optimal Approximation Algorithms

In a minimization problem we aim to find the smallest among the
collection of possible solutions.

In a maximization problem we seek the largest solution.

An approximation algorithm for a minimization problem is k-optimal
if it always finds a solution that is not more than k times optimal.

Example: The preceding algorithm is 2-optimal for the vertex cover
problem.

For a maximization problem a k-optimal approximation algorithm
always finds a solution that is at least 1

k
times the size of the optimal.
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An Approximation Algorithm for MaxCut

A cut in an undirected graph is a separation of the vertices V into
two disjoint subsets S and T . A cut edge is one that goes between a
node in S and a node in T . An uncut edge is an edge that is not a
cut edge. The size of a cut is the number of cut edges.

The MaxCut problem asks for a largest cut in a graph G .

The MaxCut problem is NP-complete.

The following algorithm approximates MaxCut within a factor of 2.
B : On input 〈G 〉, where G is an undirected graph with nodes V :
1. Let S = ∅ and T = V .
2. If moving a single node, either from S to T or from T to S , increases

the size of the cut, make that move and repeat this stage.
3. If no such node exists, output the current cut and halt.

This algorithm starts with a (presumably) bad cut and makes local
improvements until no further local improvement is possible.

Although it will not give an optimal cut in general, we show that it
does give one that is at least half the size of the optimal one.
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Proving Correctness of the Algorithm B

Theorem

B is a polynomial time, 2-optimal approximation algorithm for MaxCut.

B runs in polynomial time because every execution of Stage 2
increases the size of the cut to a maximum of the total number of
edges in G .

We show that B ’s cut is at least half optimal:

Actually, we show B ’s cut contains at least half of all edges in G :
Observe that, at every node of G , the number of cut edges is at least
as large as the number of uncut edges; Otherwise, B would have
shifted that node to the other side. We add up the numbers of cut
edges at every node: That sum is twice the total number of cut
edges. By the preceding observation, that sum must be at least the
corresponding sum of the numbers of uncut edges at every node.
Thus, G has at least as many cut edges as uncut edges, and,
therefore, the cut contains at least half of all edges.
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Probabilistic Algorithms

A probabilistic algorithm is an algorithm designed to use the
outcome of a random process. Typically, it would contain an
instruction “flip a coin” and the outcome would influence the
algorithm’s subsequent execution and output.

Certain types of problems seem to be more easily solvable by
probabilistic algorithms than by deterministic algorithms.
Making a decision by flipping a coin can sometimes be better than
actually calculating, or even estimating, the best choice:

Calculating the best choice may require excessive time.
Estimating the best option may introduce a bias that invalidates the
result.

Example: Statisticians use random sampling to determine information
about the individuals in a large population, such as their tastes or
political preferences:

Querying all the individuals might take too long, and querying a
non-randomly selected subset might tend to give erroneous results.
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Probabilistic Turing Machines

We define the model of a probabilistic Turing machine and give a
complexity class associated with efficient probabilistic computation:

Definition (Probabilistic Turing Machine)

A probabilistic Turing machine M is a type of nondeterministic Turing
machine in which each nondeterministic step is called a coin-flip step and
has two legal next moves. We assign a probability to each branch b of M’s
computation on input w as follows: Define the probability of branch b to
be Pr[b] = 2−k , where k is the number of coin-flip steps that occur on
branch b. Define the probability that M accepts w to be

Pr[M accepts w ] =
∑

b is an accepting branch

Pr[b].

The probability that M accepts w is the probability that we would
reach an accepting configuration if we simulated M on w by flipping
a coin to determine which move to follow at each coin-flip step.

We let Pr[M rejects w ] = 1− Pr[M accepts w ].
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Recognition with Error

When a probabilistic Turing machine recognizes a language, it must
accept all strings in the language and reject all strings out of the
language as usual, except that now we allow the machine a small
probability of error.

For 0 ≤ ǫ < 1
2 , we say that M recognizes language A with error

probability ǫ if

1. w ∈ A implies Pr[M accepts w ] ≥ 1− ǫ;
2. w 6∈ A implies Pr[M rejects w ] ≥ 1− ǫ.

I.e., the probability that we would obtain the wrong answer by
simulating M is at most ǫ.

We also consider error probability bounds that depend on the input
length n. For example, error probability ǫ = 2n indicates an
exponentially small probability of error.
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The Class BPP

We are interested in probabilistic algorithms that run efficiently in
time and/or space.

We measure the time and space complexity of a probabilistic Turing
machine in the same way we do for a nondeterministic Turing
machine, by using the worst case computation branch on each input:

Definition (The Class BPP)

BPP is the class of languages that are recognized by probabilistic
polynomial time Turing machines with an error probability of 1

3 .

We defined this class with an error probability of 1
3 , but any constant

error probability would yield an equivalent definition as long as it is
strictly between 0 and 1

2 : This is ensured by the following
amplification lemma, which provides a simple way of making the
error probability exponentially small.
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The Amplification Lemma

Lemma (Amplification Lemma)

Let ǫ be a fixed constant strictly between 0 and 1
2 . For any polynomial

poly(n), a probabilistic polynomial time Turing machine M1 that operates
with error probability ǫ has an equivalent probabilistic polynomial time
Turing machine M2 that operates with an error probability of 2−poly(n).

M2 simulates M1 by running it a polynomial number of times and
taking the majority vote of the outcomes. The probability of error
decreases exponentially with the number of runs of M1 made.

Consider the case where ǫ = 1
3 . It corresponds to a box that contains

many green and red balls, 2
3 of one color and the remaining 1

3 of the
other, but unknown predominant color. We can test for that color by
sampling and testing which color comes up most frequently.

If green is accepting and red rejecting computation, M2 samples the
color by running M1. M2 errs with exponentially small probability if it
runs M1 a polynomial number of times and picks majority outcome.
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Proof of the Amplification Lemma

Given TM M1 recognizing a language with an error probability of
ǫ < 1

2 and a polynomial poly(n), we construct a TM M2 that

recognizes the same language with an error probability of 2−poly(n):
M2: On input w :
1. Calculate k (as detailed below).
2. Run 2k independent simulations of M1 on input w .
3. If most runs of M1 accept, then accept; otherwise, reject.

We bound the probability that M2 gives the wrong answer on an
input w : Stage 2 yields a sequence of 2k results from simulating M1,
each result either correct or wrong. If most of these results are
correct, M2 gives the correct answer. We bound the probability that
at least half of these results are wrong.

Let S be any sequence of results that M2 might obtain in Stage 2.
Let pS be the probability M2 obtains S . Say that S has c correct
results and w wrong results, so c +w = 2k . If c < w and M2 obtains
S , then M2 outputs incorrectly. We call such an S a bad sequence.
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Bounding the Probability of Obtaining a Bad Sequence

If S is any bad sequence then pS ≤ ǫw (1− ǫ)c , which in turn is at
most ǫk(1− ǫ)k because k < w and ǫ < 1− ǫ. Summing pS for all
bad sequences S gives the probability that M2 outputs incorrectly.
We have at most 22k bad sequences because 22k is the number of all
sequences. Hence Pr[M2 outputs incorrectly on input w ] =∑

bad S
pS ≤ 22kǫk(1− ǫ)k = (4ǫ(1− ǫ))k . We have assumed ǫ < 1

2 , so
4ǫ(1− ǫ) < 1 and, therefore, the above probability decreases
exponentially in k and so does M2’s error probability.

To calculate a specific value of k that allows us to bound M2’s error
probability by 2−t for any t ≥ 1, we let α = − log2 (4ǫ(1 − ǫ)) and
choose k ≥ t

α . Then we obtain an error probability of 2−poly(n) within
polynomial time.
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Primality

A prime number is an integer greater than 1 that is not divisible by
positive integers other than 1 and itself.

A nonprime number greater than 1 is called composite.

A polynomial time algorithm for the problem of testing whether an
integer is prime or composite is now known.

We only describe a much simpler probabilistic polynomial time
algorithm for primality testing.

One way to determine whether a number is prime is to try all possible
integers less than that number and see whether any are divisors, also
called factors. This algorithm has exponential time complexity
because the magnitude of a number is exponential in its length.

The probabilistic primality testing algorithm does not search for
factors.

George Voutsadakis (LSSU) Computational Complexity September 2014 18 / 82



Advanced Topics in Complexity Probabilistic Algorithms

Number Theoretic Notation

All numbers considered here are integers.

For any p > 1, we say that two numbers are equivalent modulo p if
they differ by a multiple of p. If numbers x and y are equivalent
modulo p, we write x ≡ y (mod p).

We let x mod p be the smallest nonnegative y where x ≡ y

(mod p).

Every number is equivalent modulo p to some member of the set
Zp = {0, . . . , p − 1}. For convenience we let Z+

p = {1, . . . , p − 1}.
We may refer to the elements of these sets by other numbers that are
equivalent modulo p, as when we refer to p − 1 by −1.

Theorem (Fermat’s Little Theorem)

If p is prime and a ∈ Z
+
p , then ap−1 ≡ 1 (mod p).
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The Fermat Test for Primality

If p = 7 and a = 2, the theorem says that 2(7−1) mod 7 should be 1
because 7 is prime.

The simple calculation 2(7−1) = 26 = 64 and 64 mod 7 = 1 confirms
this result.

Suppose that we try p = 6 instead. Then 2(6−1) = 25 = 32 and 32
mod 6 = 2 gives a result different from 1, implying, by the theorem,
that 6 is not prime. This method demonstrates that 6 is composite
without finding its factors.

Fermat’s Last Theorem provides a type of “test” for primality, called
a Fermat test. When we say that p passes the Fermat test at a,
we mean that ap−1 ≡ 1 (mod p).

The theorem states that primes pass all Fermat tests for a ∈ Z
+
p .

Since 6 fails some Fermat test, 6 is not prime.

George Voutsadakis (LSSU) Computational Complexity September 2014 20 / 82



Advanced Topics in Complexity Probabilistic Algorithms

Primes, Pseudoprimes and the Carmichael Numbers

We want to use, if possible, the Fermat Test to give an algorithm for
determining primality.

Call a number pseudoprime if it passes the Fermat tests at all
smaller a relatively prime to it.

With the exception of the infrequent Carmichael numbers, which
are composite yet pass all Fermat tests, the pseudoprime numbers are
identical to the prime numbers.

We first give a very simple probabilistic polynomial time algorithm
that distinguishes primes from composites except for the Carmichael
numbers. Then, we present and analyze the complete probabilistic
primality testing algorithm.

A pseudoprimality algorithm that goes through all Fermat tests would
require exponential time. The key to the probabilistic polynomial time
algorithm is that, if a number is not pseudoprime, it fails at least half
of all tests.
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Distinguishing Pseudoprimes

The algorithm works by trying several tests chosen at random. If any
fail, the number must be composite. It contains a parameter k that
determines the error probability.

PseudoPrime: On input p:

1. Select a1, . . . , ak randomly in Z
+
p .

2. Compute a
p−1
i mod p, for each i .

3. If all computed values are 1, accept; otherwise, reject.

Correctness:

If p is prime, it passes all tests and the algorithm accepts with certainty.
If p is not pseudoprime, it passes at most half of all tests. In that case
it passes each randomly selected test with probability at most 1

2 . The
probability that it passes all k randomly selected tests is at most 2−k .

Time complexity: The algorithm operates in polynomial time because
modular exponentiation is computable in polynomial time.
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Square Root Test for Primality

To convert the algorithm to a primality algorithm, we need a test that
avoids the problem with the Carmichael numbers.

The underlying principle is that the number 1 has exactly two square
roots, 1 and −1, modulo any prime p.
For many composite numbers, including all the Carmichael numbers, 1
has four or more square roots.

Example: ±1 and ±8 are the four square roots of 1, modulo 21.

If a number passes the Fermat test at a, the algorithm finds one of its
square roots of 1 at random and determines whether that square root
is 1 or −1. If it is not, we know that the number is not prime.

If p passes the Fermat test at a, ap−1 mod p = 1. Thus, we can

obtain square roots of 1, since a
p−1
2 mod p is a square root of 1. If

that value is still 1, we may repeatedly divide the exponent by 2, so
long as the resulting exponent remains an integer, and see whether
the first number that is different from 1 is −1 or some other number.
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The Probabilistic Algorithm for Primality

Select k ≥ 1 as a parameter that determines the maximum error
probability to be 2−k :

Prime: On input p:

1. If p is even, accept if p = 2; otherwise, reject.
2. Select a1, . . . , ak randomly in Z

+
p .

3. For each i from 1 to k :

4. Compute a
p−1
i mod p and reject if different from 1.

5. Let p − 1 = st, where s is odd and t = 2h is a power of 2.

6. Compute the sequence as·2
0

i , as·2
1

i , . . . , as·2
h

i modulo p.
7. If some element of this sequence is not 1, find the last element that is

not 1 and reject if that element is not −1.

8. All tests have passed at this point, so accept.

George Voutsadakis (LSSU) Computational Complexity September 2014 24 / 82



Advanced Topics in Complexity Probabilistic Algorithms

Primes are Accepted with Probability 1

The following two lemmas show that Prime works correctly.
We only need to consider the case when p is odd.

Say that ai is a (compositeness) witness if the algorithm rejects at
either Stage 4 or Stage 7, using ai .

Lemma

If p is an odd prime number, Pr[Prime accepts p] = 1.

If p is prime, no witness exists, whence no branch of Prime rejects:
If a were a Stage 4 witness, ap−1 mod p 6= 1 and Fermat’s Little
Theorem implies that p is composite.
If a were a Stage 7 witness, some b exists in Z

+
p , where b 6≡ ±1

(mod p) and b2 ≡ 1 (mod p). Therefore, b2 − 1 ≡ 0 (mod p).
Factoring b2 − 1 yields (b − 1)(b + 1) ≡ 0 (mod p), which implies that
(b − 1)(b + 1) = cp for some positive integer c . Because b 6≡ ±1
(mod p), both b− 1 and b+ 1 are strictly between 0 and p. Therefore,
p is composite (a multiple of a prime number cannot be expressed as a
product of numbers that are smaller than it is).
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Composites Accepted with Low Probability I

Two numbers are relatively prime if they have no common divisor
other than 1.

The Chinese Remainder Theorem says that, if p and q are
relatively prime, a one-to-one correspondence exists between Zpq and
Zp ×Zq . Each number r ∈ Zpq corresponds to a pair (a, b), where
a ∈ Zp and b ∈ Zq, such that

r ≡ a (mod p), and r ≡ b (mod q).

Lemma

If p is an odd composite number, Pr[Prime accepts p] ≤ 2−k .

We show that, if p is an odd composite number and a is selected
randomly in Z

+
p , Pr[a is a witness] ≥ 1

2 by demonstrating that at
least as many witnesses as non-witnesses exist in Z

+
p . We do so by

finding a unique witness for each non-witness.
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Composites Accepted with Low Probability II

At every non-witness, the sequence computed in Stage 6 is either all
1s or contains −1 at some position, followed by 1s. E.g., 1 itself is a
non-witness of the first kind, and −1 is a non-witness of the second
kind because s is odd and (−1)s·2

0
≡ −1 and (−1)s·2

1
≡ 1.

Among all non-witnesses of the second kind, find a non-witness for
which the −1 appears in the largest position in the sequence. Let h
be that non-witness and let j be the position of −1 in its sequence,
where the sequence positions are numbered starting at 0. Hence,
hs·2

j
≡ −1 (mod p).

Because p is composite, either

Case 1: p is the power of a prime or
Case 2: p is the product of two numbers q and r that are relatively prime.
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Case 2: p Product of Relatively Primes q, r

The Chinese remainder theorem implies that some number t exists in
Zp, such that t ≡ h (mod q) and t ≡ 1 (mod r). Therefore,

ts·2
j
≡ −1 (mod q) and ts·2

j
≡ 1 (mod r). Hence t is a witness

because ts·2
j
6≡ ±1 (mod p), but ts·2

j+1
≡ 1 (mod p). Now that we

have one witness, we can get many more. We prove that dt mod p is
a unique witness for each non-witness d by making two observations:

d s·2j ≡ ±1 (mod p) and d s·2j+1

≡ 1 (mod p) owing to the way j was

chosen. Therefore, dt mod p is a witness because (dt)s·2
j

6≡ ±1 and

(dt)s·2
j+1

≡ 1 (mod p).
Second, if d1 and d2 are distinct non-witnesses, d1t mod p 6= d2t

mod p. The reason is that ts·2
j+1

mod p = 1. Hence, t · ts·2
j+1

−1

mod p = 1. Therefore, if td1 mod p = td2 mod p, then

d1 = t · ts·2
j+1

−1d1 mod p = t · ts·2
j+1

−1d2 mod p = d2.

Thus, the number of witnesses must be as large as the number of
nonwitnesses.
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Case 1: p is a Power of a Prime

We have p = qe , where q is prime and e > 1. Let t = 1 + qe−1.
Expanding tp using the binomial theorem, we obtain
tp = (1 + qe−1)p = 1 + p · qe−1+ multiples of higher powers of qe−1,
which is equivalent to 1 mod p. Hence t is a Stage 4 witness
because, if tp−1 ≡ 1 (mod p), then tp ≡ t 6≡ 1 (mod p). As in the
previous case, we use this one witness to get many others.

If d is a non-witness, we have dp−1 ≡ 1 (mod p), whence dt mod p is
a witness.
Moreover, if d1 6= d2 are non-witnesses, then d1t mod p 6= d2t

mod p; Otherwise

d1 = d1 · t · t
p−1 mod p = d2 · t · t

p−1 mod p = d2.

Thus, the number of witnesses must be as large as the number of
non-witnesses, and the proof is complete.
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Primes and One-Sided Error

Define
Primes = {n : n is a prime number in binary}.

The preceding algorithm and its analysis prove the following:

Theorem

Primes ∈ BPP.

Note that the probabilistic primality algorithm has one-sided error.

When the algorithm outputs reject, we know that the input must be
composite.
When the output is accept, we know only that the input could be
prime or composite.

Thus, an incorrect answer can only occur when the input is a
composite number.
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The Class RP

The one-sided error feature is common to many probabilistic
algorithms, so deserves a special complexity class RP:

Definition (The Class RP)

RP is the class of languages that are recognized by probabilistic
polynomial time Turing machines where:

Inputs in the language are accepted with a probability of at least 1
2 ;

Inputs not in the language are rejected with a probability of 1.

We can make the error probability exponentially small, while
maintaining a polynomial running time, by using a probability
amplification technique.

Our earlier algorithm shows that Composites ∈ RP.
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Branching Programs and their Equivalence

A branching program is a model of computation:

It represents a decision process that queries the values of input
variables and makes decisions about the way to proceed based on the
answers to those queries.

We represent this decision process as a graph whose nodes correspond
to the variables queried at particular points in the process.

We focus on the complexity of testing whether two branching
programs are equivalent.

In general, the problem is coNP-complete.

If we restrict the class of branching programs, we can give a
probabilistic polynomial time algorithm for testing equivalence.
The algorithm is especially interesting because:

No polynomial time algorithm is known for this problem;
It introduces the technique of assigning non-Boolean values to normally
Boolean variables in order to analyze the behavior of some Boolean
function of those variables.
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Branching Programs

Definition (Branching Program)

A branching program is a directed acyclic graph where all nodes are
labeled by variables, except for two output nodes labeled 0 or 1. The
nodes that are labeled by variables are called query nodes.

Every query node has two outgoing edges, one labeled 0 and the
other labeled 1.

Both output nodes have no outgoing edges.

One of the nodes in a branching program is designated the start node.

A branching program determines a Boolean function as follows:
Take any assignment to the variables appearing on the query nodes.
Begin at the start node, follow the path determined by taking the
outgoing edge from each query node according to the value assigned to
the indicated variable, until one of the output nodes is reached.
The value is the label of that output node.
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Examples of Branching Programs

The following are examples of branching programs:

A branching program with polynomially many nodes can test
membership in any language over {0, 1} that is in L (log space).
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Equivalence of Read-Once Branching Programs

Two branching programs are equivalent if they determine equal
functions.

The problem of testing equivalence is coNP-complete.

A read-once branching program is one that can query each variable
at most once on every directed path from the start to an output node.

Let

EQROBP = {〈B1,B2〉 : B1 and B2 are equivalent
read-once branching programs}.

Theorem

EQROBP is in BPP.
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Idea for the Proof

First we try assigning random values to the variables x1 through xm
that appear in B1 and B2, and evaluate these branching programs on
that setting.

We accept if B1 and B2 agree on the assignment;
We reject otherwise.

This strategy does not work because two inequivalent read-once
branching programs may disagree only on a single assignment out of
the 2n possible Boolean assignments to the variables. The probability
that we would select that assignment is exponentially small. Hence
we would accept with high probability even when B1 and B2 are not
equivalent, and that is unsatisfactory.

We modify this strategy by randomly selecting a non-Boolean
assignment to the variables and evaluate B1 and B2 in a suitably
defined manner. We can then show that, if B1 and B2 are not
equivalent, the random evaluations will likely be unequal.
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The Probabilistic Algorithm for EQROBP

Assign polynomials over x1, . . . , xm to the nodes and to the edges of a
read-once branching program B as follows:

The constant function 1 is assigned to the start node.
If a node labeled x has been assigned polynomial p, assign the
polynomial xp to its outgoing 1-edge, and assign the polynomial
(1− x)p to its outgoing 0-edge.
If the edges incoming to some node have been assigned polynomials,
assign the sum of those polynomials to that node.
Finally, the polynomial that has been assigned to the output node
labeled 1 is also assigned to the branching program itself.

The probabilistic polynomial time algorithm for EQROBP: Denote by
F a finite field with at least 3m elements.

D: On input 〈B1,B2〉, two read-once branching programs:

1. Select elements a1 through am at random from F.
2. Evaluate the assigned polynomials p1 and p2 at a1 through am.
3. If p1(a1, . . . , am) = p2(a1, . . . , am), accept; otherwise, reject.
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Polynomiality and Correctness of the Algorithm

The algorithm runs in polynomial time: We can evaluate the
polynomial without actually constructing the polynomial.
For any Boolean assignment to B ’s variables, all polynomials assigned
to its nodes evaluate to either 0 or 1. The polynomials that evaluate
to 1 are those on the computation path for that assignment. Hence B

and p agree when the variables take on Boolean values.
Similarly, because B is read-once, we may write p as a sum of product
terms y1y2 · · · ym, where each yi is xi , (1− xi), or 1, and where each
product term corresponds to a path in B from the start node to the
output node labeled 1. The case of yi = 1 occurs when a path does
not contain variable xi . Take each such product term of p containing
a yi that is 1 and split it into the sum of two product terms, one
where yi = xi and the other where yi = (1− xi). Continue splitting
product terms until each yi is either xi or (1− xi). The end result is
an equivalent polynomial q that contains a product term for each
assignment on which B evaluates to 1.
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Correctness of the Algorithm

If B1 and B2 are equivalent, D always accepts: If the branching
programs are equivalent, they evaluate to 1 on exactly the same
assignments. Consequently, the polynomials q1 and q2 are equal
because they contain identical product terms. Therefore p1 and p2
are equal on every assignment.

If B1 and B2 are not equivalent, D rejects with a probability of at
least 1

2 : We show this using two lemmas.
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First Lemma

Lemma

For every d > 0, a degree-d polynomial p on a single variable x either has
at most d roots, or is everywhere equal to 0.

We use induction on d .

Basis: For d = 0, a polynomial of degree 0 is constant. If that
constant is not 0, the polynomial clearly has no roots.

Induction Step: Assume true for d − 1 and prove true for d . If p is a
nonzero polynomial of degree d with a root at a, the polynomial x − a

divides p evenly. Then p
x−a

is a nonzero polynomial of degree d − 1.
Thus, it has at most d − 1 roots by virtue of the induction hypothesis.
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Second Lemma I

Lemma

Let F be a finite field with f elements and let p be a nonzero polynomial
on the variables x1 through xm, where each variable has degree at most d .
If a1 through am are selected randomly in F, then

Pr[p(a1, . . . , am) = 0] ≤
md

f
.

We use induction on m.

Basis: For m = 1, by the preceding lemma, p has at most d roots. So
the probability that a1 is one of them is at most d

f
.

Induction Step: Assume true for m − 1 and prove true for m. Let x1
be one of p’s variables. For each i ≤ d , let pi be the polynomial
comprising the terms of p containing x i1, but where x i1 has been
factored out. Then

p = p0 + x1p1 + x21p2 + · · ·+ xd1 pd .
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Second Lemma II

We wrote p = p0 + x1p1 + x21p2 + · · · + xd1 pd . If p(a1, . . . , am) = 0,
one of two cases arises: Either all pi evaluate to 0 or some pi does
not evaluate to 0 and a1 is a root of the single variable polynomial
obtained by evaluating p0 through pd on a2 through am.

To bound the probability that the first case occurs, observe that one of
the pj must be nonzero because p is nonzero. Then the probability
that all pi evaluate to 0 is at most the probability that pj evaluates to

0. By the induction hypothesis, that is at most (m−1)d
f

because pj has
at most m − 1 variables.
To bound the probability that the second case occurs, observe that if
some pi does not evaluate to 0, then on the assignment of a2 through
am, p reduces to a nonzero polynomial in the single variable x1. The
basis already shows that a1 is a root of such a polynomial with a
probability of at most d

f
.

Therefore the probability that a1 through am is a root of the
polynomial is at most (m−1)d

f
+ d

f
= md

f
.
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Subsection 3

Alternation
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Idea Behind Alternation

Alternation is a generalization of nondeterminism, useful in
understanding relationships among complexity classes;
classifying specific problems according to their complexity;
exhibiting a surprising connection between the time and space
complexity measures.

An alternating algorithm may contain instructions to branch a process
into multiple child processes, just as in a nondeterministic algorithm.

The difference between the two lies in the mode of determining
acceptance.

A nondeterministic computation accepts if any one of the initiated
processes accepts.
When an alternating computation divides into multiple processes, two
possibilities arise:

The algorithm can designate that the current process accepts if at least
one of the children accept.
The algorithm can designate that the current process accepts if all of
the children accept.
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Nondeterminism Versus Alternation

The difference between alternating and nondeterministic computation:

In a nondeterministic
computation, each node
computes the OR operation of
its children. It corresponds to
the usual nondeterministic
acceptance mode whereby a
process is accepting if any of
its children are accepting.

In an alternating computation, the nodes may compute the AND or
OR operations as determined by the algorithm. It corresponds to the
alternating acceptance mode whereby a process is accepting if all or
any of its children accept.
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Alternating Turing Machines

Definition (Alternating Turing Machine)

An alternating Turing machine is a nondeterministic Turing machine
with an additional feature.

Its states, except for qaccept and qreject are divided into universal
states and existential states.

When we run an alternating Turing machine on an input string, we
label each node of its nondeterministic computation tree with ∧ or ∨,
depending on whether the corresponding configuration contains a
universal or existential state.

We determine acceptance by designating a node to be accepting if:

It is labeled with ∧ and all of its children are accepting;
It it is labeled with ∨ and at least one of its children is accepting.

George Voutsadakis (LSSU) Computational Complexity September 2014 46 / 82



Advanced Topics in Complexity Alternation

Alternating Time and Space

Definition (Alternating Time and Space)

ATIME(t(n)) = {L : L is decided by an O (t(n)) time
alternating Turing machine};

ASPACE(f (n)) = {L : L is decided by an O (f (n)) space
alternating Turing machine}.

We define AP, APSPACE and AL to be the classes of languages that
are decided by:

alternating polynomial time,
alternating polynomial space, and
alternating logarithmic space

Turing machines, respectively.
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Example: Tautologies

A tautology is a Boolean formula that evaluates to 1 on every
assignment to its variables:

Taut = {〈φ〉 : φ is a tautology}.

The following alternating algorithm shows that Taut is in AP:
On input 〈φ〉:
1. Universally select all assignments to the variables of φ.
2. For a particular assignment, evaluate φ.
3. If φ evaluates to 1, accept; otherwise, reject.

Stage 1 nondeterministically selects every assignment to φ’s variables
with universal branching. This requires all branches to accept in order
for the entire computation to accept.

Stages 2 and 3 deterministically check whether the assignment that
was selected on a particular computation branch satisfies the formula.

Hence, the algorithm accepts if all assignments are satisfying.

Observe that Taut is a member of coNP.

Similarly, any problem in coNP can be shown to be in AP.
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A language in AP Not Known to Be in NP or in coNP

Let φ and ψ be two Boolean formulas. φ and ψ are equivalent if
they evaluate to the same value on all assignments to their variables.

A minimal formula is one that has no shorter equivalent, where the
length of a formula is the number of symbols that it contains:

MinFormula = {〈φ〉 : φ is a minimal Boolean formula}.

The following algorithm shows that MinFormula is in AP:
On input 〈φ〉:
1. Universally select all formulas ψ that are shorter than φ.
2. Existentially select an assignment to the variables of φ.
3. Evaluate both φ and ψ on this assignment.
4. Accept if the formulas evaluate to different values. Reject if they

evaluate to the same value.

This algorithm starts with universal branching to select all shorter
formulas and switches to existential branching to pick an assignment.

The term alternation stems from the ability to alternate, or switch,
between universal and existential branching.
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Alternating and Deterministic Time and Space

The following theorem demonstrates:

an equivalence between alternating time and deterministic space for
polynomially related bounds;
another equivalence between alternating space and deterministic time
when the time bound is exponentially more than the space bound.

Theorem

For f (n) ≥ n, we have ATIME(f (n)) ⊆ SPACE(f (n)) ⊆ ATIME(f 2(n)).

For f (n) ≥ log n, we have ASPACE(f (n)) = TIME(2O(f (n))).

Consequently,

AL = P;
AP = PSPACE;
APSPACE = EXPTIME.

The proof of the theorem is given in four lemmas.
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Alternating Time and Deterministic Space

Lemma

For f (n) ≥ n, we have ATIME(f (n)) ⊆ SPACE(f (n)).

We convert an alternating time O (f (n)) machine M to a
deterministic space O (f (n)) machine S that simulates M:

On input w , the simulator S performs a depth-first search of M ’s
computation tree to determine which nodes in the tree are accepting.
Then S accepts if it determines that the root of the tree, corresponding
to M ’s starting configuration, is accepting.

Machine S requires space for storing the recursion stack.
Each recursion level stores one configuration using O (f (n)) space.
The recursion depth is M ’s time complexity, which is O (f (n)).

Hence S uses O
(
f 2(n)

)
space.

To improve space complexity, instead of the entire configuration, we
record only the nondeterministic choice that M made to reach that
configuration from its parent. Then S can recover this configuration
by replaying the computation from the start. Now the space used is
constant at each level and the total is, thus, O (f (n)).
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Deterministic Space and Alternating Time I

Lemma

For f (n) ≥ n, we have SPACE(f (n)) ⊆ ATIME(f 2(n)).

We start with a deterministic space O (f (n)) machine M and
construct an alternating machine S that uses time O

(
f 2(n)

)
to

simulate it.

The approach is that followed in the proof of Savitch’s Theorem,
where we constructed a general procedure for the yieldability problem:
Given configurations c1 and c2 of M and a number t, we must test
whether M can get from c1 to c2 within t steps.

An alternating procedure for this problem first branches existentially to
guess a configuration cm midway between c1 and c2.
Then it branches universally into two processes, one that recursively
tests whether c1 can get to cm within t

2 steps and the other whether
cm can get to c2 within t

2 steps.
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Deterministic Space and Alternating Time II

Machine S uses this recursive alternating procedure to test whether
the start configuration can reach an accepting configuration within
2df (n) steps. Here, d is selected so that M has no more than 2df (n)

configurations within its space bound.

The maximum time used on any branch of this alternating procedure
is O (f (n)) to write a configuration at each level of the recursion,
times the depth of the recursion, which is log (2df (n)) = O (f (n)).
Hence this algorithm runs in alternating time O

(
f 2(n)

)
.
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Alternating Space and Deterministic Time I

Lemma

For f (n) ≥ log n, we have ASPACE(f (n)) ⊆ TIME(2O(f (n))).

We construct a deterministic time 2O(f (n)) machine S to simulate an
alternating space O (f (n)) machine M.

On input w , the simulator S constructs the following graph of the
computation of M on w :

The nodes are the configurations of M on w that use at most df (n)
space, where d is the appropriate constant factor for M.
Edges go from a configuration to those configurations it can yield in a
single move of M.

After constructing the graph, S repeatedly scans it and marks certain
configurations as accepting.

Initially, only the accepting configurations of M are marked this way.
A configuration that performs universal branching is marked accepting
if all of its children are so marked.
An existential configuration is marked if any of its children are marked.
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Alternating Space and Deterministic Time II

Continuing with the operation of S :

Machine S continues scanning and marking until no additional nodes
are marked on a scan.
Finally, S accepts if the start configuration of M on w is marked.

The number of configurations of M on w is 2O(f (n)) because
f (n) ≥ log n. Thus, the size of the configuration graph is 2O(f (n)).

Constructing the graph may be done in 2O(f (n)) time.
Scanning the graph once takes roughly the same time.
The total number of scans is at most the number of nodes in the
graph, because each scan except for the final one marks at least one
additional node.

Hence, the total time used is 2O(f (n)).
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Deterministic Time and Alternating Space I

Lemma

For f (n) ≥ log n, we have ASPACE(f (n)) ⊇ TIME(2O(f (n))).

We show how to simulate a deterministic time 2O(f (n)) machine M by
an alternating Turing machine S that uses space O (f (n)). This
simulation is tricky because the space available to S is so much less
than the size of M’s computation.

In this case S has only enough space to
store pointers into a tableau for M on w :
We represent configurations in a way that a
single symbol may represent both the state
of the machine and the contents of the tape
cell under the head. The contents of cell d
are then determined by the contents of its
parents a, b and c .
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Deterministic Time and Alternating Space II

Simulator S operates recursively to guess and then verify the contents
of the individual cells of the tableau. To verify the contents of a cell
d outside the first row, simulator S :

existentially guesses the contents of the parents,
checks whether their contents would yield d ’s contents according to
M ’s transition function,
then universally branches to verify these guesses recursively.

If d were in the first row, S verifies the answer directly because it
knows M’s starting configuration.

We assume that M moves its head to the left-hand end of the tape
on acceptance, so S can determine whether M accepts w by checking
the contents of the lower leftmost cell of the tableau.

Hence, S never needs to store more than a single pointer to a cell in
the tableau, so it uses space log (2O(f (n))) = O (f (n)).
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Σ- and Π-Alternating Turing Machines

Alternating machines provide a way to define a natural hierarchy of
problems within the class PSPACE.

Definition (Σ- and Π-Alternating Turing Machines)

Let i be a natural number.

A Σi -alternating Turing machine is an alternating Turing machine that
contains at most i runs of universal or existential steps, starting with
existential steps.

A Πi -alternating Turing machine is similar except that it starts with
universal steps.

Define ΣiTIME(f (n)) to be the class of languages that a
Σi -alternating Turing machine can decide in O (f (n)) time.

Similarly, define ΠiTIME(f (n)) for Πi -alternating Turing machines.

Define the classes ΣiSPACE(f (n)) and ΠiSPACE(f (n)) for space
bounded alternating Turing machines.
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The Polynomial Time Hierarchy

We define the polynomial time hierarchy to be the collection of
classes

ΣiP =
⋃

k

ΣiTIME(nk) and ΠiP =
⋃

k

ΠiTIME(nk).

Define PH =
⋃

i ΣiP =
⋃

i ΠiP.

Clearly, NP = Σ1P and coNP = Π1P.

Additionally, MinFormula ∈ Π2P.
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Subsection 4

Interactive Proof Systems
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Prover and Verifier in NP

We saw that probabilistic polynomial time algorithms provide a
probabilistic analog to P.

Interactive proof systems provide a way to define a probabilistic
analog of the class NP.

Recall that the languages in NP are those whose members all have
short certificates of membership that can be easily checked. One may
think of having:

a Prover that finds the proofs of membership;
a Verifier that checks them.

The Verifier is required to be a polynomial time bounded machine,
since, otherwise, it could figure out the answer itself.

No computational bound on the Prover is imposed, because finding
the proof may be time consuming.

Example: In Sat, a Prover can convince a polynomial time Verifier
that a formula φ is satisfiable by supplying the satisfying assignment.
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Prover and Verifier in Interactive Proof Systems

Can a Prover convince a computationally limited Verifier that a
formula is not satisfiable?

The complement of Sat is not known to be in NP so we cannot rely
on the certificate idea.

The answer, surprisingly, is yes, provided we give the Prover and
Verifier two additional features:

First, they are permitted to engage in a two-way dialog.
Second, the Verifier may be a probabilistic polynomial time machine
that reaches the correct answer with a high degree of, but not
absolute, certainty.

Such a Prover and Verifier constitute an interactive proof system.
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Graph Isomorphism and Graph Non-Isomorphism

Graphs G and H are isomorphic if the nodes of G may be reordered
so that it is identical to H:

Iso = {〈G ,H〉 : G and H are isomorphic graphs}.

Iso is obviously in NP, but extensive research has so far failed to
discover either a polynomial time algorithm or a proof that it is
NP-complete.

Consider the language

NonIso = {〈G ,H〉 : G and H are not isomorphic graphs}.

NonIso is not known to be in NP because we do not know how to
provide short certificates that graphs are not isomorphic.
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Interactive Proof System for Graph Non-Isomorphism

When two graphs G1 and G2 are not isomorphic, a Prover can
convince a Verifier of this fact:

The Verifier randomly selects either G1 or G2 and, then, randomly
reorders its nodes to obtain a graph H . The Verifier sends H to the
Prover.
The Prover must respond by declaring whether G1 or G2 was the
source of H .

If G1 and G2 were indeed non-isomorphic, the Prover could always
carry out the protocol because the Prover could identify whether H
came from G1 or G2.

If the graphs were isomorphic, H might have come from either G1 or
G2, so even with unlimited computational power, the Prover would
have no better than a 50-50 chance of getting the correct answer.

Thus, if the Prover is able to answer correctly consistently (say in 100
repetitions of the protocol) the Verifier has convincing evidence that
the graphs are actually nonisomorphic.
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The Verifier

The Verifier is a function V that computes its next transmission to
the Prover from the message history sent so far. V has three inputs:
1. Input string: The objective is to determine whether this string is a

member of some language.
2. Random input: For convenience, we provide the Verifier with a

randomly chosen input string instead of the equivalent capability to
make probabilistic moves during its computation.

3. Partial message history: A script of the dialog up to the present
point, represented by a string containing the messages sent thus far.
m1#m2# · · ·#mi represents the exchange of messages m1 through mi .

The Verifier’s output is either the next message mi+1 in the sequence
or accept or reject.

V has the functional form V : Σ∗ × Σ∗ × Σ∗ → Σ∗ ∪ {accept, reject}
and V (w , r ,m1# · · ·#mi) = mi+1 means that the input string is w ,
the random input is r , the current message history is m1 through mi ,
and the Verifier’s next message to the Prover is mi+1.
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The Prover

The Prover is a party with unlimited computational ability. We
define it to be a function P with two inputs:

1. Input string.
2. Partial message history.

The Prover’s output is the next message to the Verifier.

Formally, P has the form P : Σ∗ × Σ∗ → Σ∗ and

P(w ,m1# · · ·#mi ) = mi+1

means that the Prover sends mi+1 to the Verifier after having
exchanged messages m1 through mi so far.
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The Interaction Between Prover and Verifier

For particular strings w and r , we write

(V ↔ P)(w , r) = accept

if a message sequence m1 through mk exists for some k , such that

1. For 0 ≤ i < k , where i is even, V (w , r ,m1# · · ·#mi) = mi+1;
2. For 0 < i < k , where i is odd, P(w ,m1# · · ·#mi ) = mi+1;
3. The final message mk in the message history is accept.

To simplify the definition of the class IP we assume that the lengths
of the Verifier’s random input and each of the messages exchanged
between the Verifier and the Prover are p(n) for some polynomial p
that depends only on the Verifier.

Furthermore we assume that the total number of messages exchanged
is at most p(n).
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The Class IP

For any string w of length n, we define

Pr[V ↔ P accepts w ] = Pr[(V ↔ P)(w , r) = accept],

where r is a randomly selected string of length p(n).

Definition (The Class IP)

Say that language A is in IP if there exist a polynomial time function V

and arbitrary function P , such that, for every function P̃ and string w :

1. w ∈ A implies Pr[V ↔ P accepts w ] ≥ 2
3 ;

2. w 6∈ A implies Pr[V ↔ P̃ accepts w ] ≤ 1
3 .

We may amplify the success probability of an interactive proof system
by repetition to make the error probability exponentially small.

IP contains both of the classes NP and BPP. Moreover, it contains
the language NonIso, which is not known to be in either NP or BPP.
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Polynomial Interactive Proofs and Polynomial Space

A remarkable theorem in complexity is the equality of IP and
PSPACE: For any language in PSPACE, a Prover can convince a
probabilistic polynomial time Verifier about the membership of a
string in the language, even though a conventional proof of
membership might be exponentially long.

Theorem

IP = PSPACE.

The proof consists of establishing inclusions in each direction.
The left-to-right containment involves a standard simulation of an
interactive proof system by a polynomial space machine.
The right-to-left containment involves arithmetization, in which a
polynomial p(x1, . . . , xm) is associated to a CNF-formula φ, with
variables x1 through xm, that mimics φ by simulating the Boolean ∧, ∨
and ¬ operations via the arithmetic operations +, ×.

We omit this rather long and tedious proof.
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Subsection 5

Parallel Computation
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Parallel Computers

A parallel computer is one that can perform multiple operations
simultaneously.

Parallel computers may solve certain problems much faster than
sequential computers, able to do a single operation at a time.

In practice, the distinction between the two is slightly blurred because
most real computers (including “sequential” ones) are designed to use
some parallelism as they execute individual instructions.

We focus on massive parallelism whereby a huge number of
processing elements are actively participating in a single computation.

We introduce the theory of parallel computation:

We describe one model of a parallel computer;
Use it to give examples of certain problems that lend themselves well to
parallelization;
Explore the possibility that parallelism may not be suitable for certain
other problems.
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Boolean Circuits as Models of Parallel Computers

One model in theoretical work on parallel algorithms is called the
Parallel Random Access Machine or PRAM:

In the PRAM model, idealized processors with a simple instruction set
patterned on actual computers interact via a shared memory.

We use an alternative model of parallel computer, Boolean circuits:
The model is simple to describe, which makes proofs easier.
Circuits also bear an obvious resemblance to actual hardware designs
and in that sense the model is realistic.
Circuits are awkward to “program” because the individual processors
are so weak.
Furthermore, we disallow cycles in our definition of Boolean circuits, in
contrast to circuits that we can actually build.

We take each gate to be an individual processor, so we define the
processor complexity of a Boolean circuit to be its size.

Each processor computes its function in a single time step, so the
parallel time complexity is the depth, or the longest distance from
an input variable to the output gate.
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Uniform Circuit Families

Any particular circuit has a fixed number of input variables, so we use
circuit families for recognizing languages.

To correspond to parallel computation models, such as PRAMs,
where a single machine is capable of handling all input lengths,
Boolean circuit families must be refined:

Definition (Uniform Family of Circuits)

A family of circuits (C1,C2, . . .) is uniform if some log space transducer T
outputs 〈Cn〉 when T ’s input is 1n.

The size and depth complexity of languages were defined in terms of
families of circuits of minimal size and depth.

A language has simultaneous size-depth circuit complexity at
most (f (n), g(n)) if a uniform circuit family exists for that language
with size complexity f (n) and depth complexity g(n).
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Strings with Odd Number of 1s

Let A be the language over {0, 1} consisting of all strings with an odd
number of 1s.

We can test membership in A by computing the parity function. We
can implement the two input parity gate x ⊕ y with the standard
AND, OR, and NOT operations as

x ⊕ y = (x ∧ ¬y) ∨ (¬x ∧ y).

Let the inputs to the circuit be x1, . . . , xn. One way to get a circuit
for the parity function is to construct gates gi whereby g1 = x1 and
gi = xi ⊕ gi−1, for i ≤ n. The construction uses O (n) size and depth.

We have described another circuit for the parity function with O (n)
size and O (log n) depth by constructing a binary tree of ⊕ gates.
This is a significant improvement because it uses exponentially less
parallel time than does the preceding construction. Thus, the
size-depth complexity of A is (O (n) ,O (log n)).
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Boolean Matrix Multiplication

Consider the Boolean matrix multiplication function:

The input has 2m2 = n variables representing two m ×m matrices
A = {aik} and B = {bik}.
The output is m2 values representing the m ×m matrix C = {cik},
where

cik =
∨

j

(aij ∧ bjk ).

The circuit for this function contains:

Gates gijk that compute aij ∧ bjk for each i , j and k ;
For each i and k , a binary tree of ∨ gates to compute

∨
j gijk . Each

such tree contains m − 1 OR gates and has logm depth.

Consequently, these circuits for Boolean matrix multiplication have
size O

(
m3

)
= O

(
n3/2

)
and depth O (log n).
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The Transitive Closure of a Matrix

If A = {aij} is an m ×m matrix, we let the transitive closure of A
be the matrix A ∨ A2 ∨ · · · ∨ Am, where Ai is the matrix product of A
with itself i times and ∨ is the bitwise OR of the matrix elements.
The transitive closure is related to Path and, hence, to the class NL:

If A is the adjacency matrix of a directed graph G , Ai is the adjacency
matrix of the graph, with the same nodes, in which an edge indicates
the presence of a path of length i in G .
The transitive closure of A is the adjacency matrix of the graph in
which an edge indicates the presence of a path of any length in G .

We can represent the computation of Ai with a binary tree of size i
and depth log i wherein a node computes the product of the two
matrices below it:

Each node needs a circuit of O
(
n3/2

)
size and logarithmic depth.

Hence the circuit computing Am has size O
(
n2
)
and depth O

(
log2 n

)
.

We make circuits for each Ai :
This adds a factor of m to the size and an extra O (log n) depth.

Hence, the size-depth complexity is (O
(
n5/2

)
,O

(
log3 n

)
).
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NC-Computable Languages

Many problems have size-depth complexity (O
(
nk

)
,O

(
logk n

)
) for

some constant k . Such problems may be considered to be highly
parallelizable with a moderate number of processors:

Definition (NC-Computable Languages)

For i ≥ 1, let NCi be the class of languages that can be decided by a
uniform family of circuits with polynomial size and O

(
logi n

)
depth. Let

NC be the class of languages that are in NCi , for some i . Functions that
are computed by such circuit families are called NCi -computable or
NC-computable.

We will see that:

Problems that are solvable in logarithmic depth are also solvable in
logarithmic space.
Conversely, problems that are solvable in logarithmic space, even
nondeterministically, are solvable in logarithmic squared depth.
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Logarithmic Depth and Logarithmic Space

Theorem

NC1 ⊆ L.

We sketch a log space algorithm to decide a language A in NC1.

On input w of length n, the algorithm can construct the description as
needed of the n-th circuit in the uniform circuit family for A.
Then the algorithm can evaluate the circuit by using a depth-first
search from the output gate. The only memory that is necessary to
keep track of the progress of the search is to record the path to the
current gate that is being explored and to record any partial results
that have been obtained along that path.

The circuit has logarithmic depth. Hence, only logarithmic space is
required by the simulation.
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Nondeterministic Log Space and Log Squared Depth

Theorem

NL ⊆ NC2.

We compute the transitive closure of the graph of configurations of
an NL-machine and output the position corresponding to the presence
of a path from the start configuration to the accept configuration.
Let A be a language that is accepted by an NL machine M, where A
has been encoded into the {0, 1} alphabet. We construct a uniform
circuit family (C0,C1, . . .) for A. To get Ci we construct a graph G
that is similar to the computation graph for M on an input w of
length n. We do not know w - only its length n. The inputs to the
circuit are variables w1, . . . ,wn corresponding to input positions.

A configuration of M on w describes the state, the contents of the
work tape, and the positions of both the input and the work tape
heads, but does not include w itself. So the collection of configurations
does not depend on w - only on w ’s length n. These polynomially
many configurations form the nodes of G .
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Proof (Cont’d)

We continue with the edges:
The edges of G are labeled with the input variables wi .

If c1 and c2 are two nodes of G and c1 indicates input head position i ,
we put edge (c1, c2) in G with label wi (or wi ) if c1 can yield c2 in a
single step when the input head is reading a 1 (or 0), according to M’s
transition function.
If c1 can yield c2 in a single step, whatever the input head is reading,
we put that edge in G unlabeled.

If we set the edges of G according to a string w of length n, a path
exists from the start configuration to the accepting configuration if
and only if M accepts w . Hence, a circuit that computes the
transitive closure of G and outputs the position indicating the
presence of such a path accepts exactly those strings in A of length n.
That circuit has polynomial size and O

(
log2 n

)
depth. Finally, a log

space transducer is capable of constructing G and, thus, also Cn, on
input 1n.
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NC and Polynomial Time

All NC-problems are solvable in polynomial time:

Theorem

NC ⊆ P.

A polynomial time algorithm can run the log space transducer to
generate circuit Cn and simulate it on an input of length n.
Are all problems in P also in NC, i.e., are the two classes equal?

Equality would be surprising because it would imply that all polynomial
time solvable problems are highly parallelizable.
We introduce the phenomenon of P-completeness as a means to
provide evidence that some problems in P are inherently sequential.

Definition (P-Complete Language)

A language B is P-complete if:

1. B ∈ P ;

2. Every A in P is log space reducible to B.
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Polynomial Time Completeness of Circuit Value

Recall the proof that, if A ≤L B and B ∈ L, then A ∈ L.

Since NL and NC machines can compute log space reductions:

Theorem

If A ≤L B and B is in NC, then A is in NC.

For a circuit C and input x , C (x) denotes the value of C on x :

CircuitValue = {〈C , x〉 : C is a Boolean circuit and C (x) = 1}.

Theorem

CircuitValue is P-complete.

The tableau construction, used to encode a DTM into a family of
circuits, can reduce any language A in P to CircuitValue. On
input w , the reduction produces a circuit that simulates the
polynomial time Turing machine for A. The input to the circuit is w .

The reduction can be carried out in log space because the circuit it
produces has a simple and repetitive structure.
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