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Time Complexity Measuring Complexity

A Turing Machine for {0k1k : k ≥ 0}

Consider the language A = {0k1k : k ≥ 0}.
A is a decidable language.

How much time does a single-tape Turing machine need to decide A?

The following is a single-tape TM M1 for A at a low level description,
including the actual head motion on the tape, so that we can count
the number of steps that M1 uses when it runs:

M1: On input string w :
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat if both 0s and 1s remain on the tape:

3. Scan across the tape, crossing off a single 0 and a single 1.

4. If 0s still remain after all the 1s have been crossed off, or if 1s still
remain after all the 0s have been crossed off, reject.
Otherwise, if neither 0s nor 1s remain on the tape, accept.

We analyze this algorithm for TM M1 that decides A to determine
how much time it uses.
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Parameters and Worst- vs. Average-Case Analysis

The number of steps that an algorithm uses on a particular input may
depend on several parameters.

Example: If the input is a graph, the number of steps may depend on
the number of nodes, the number of edges, and the maximum degree
of the graph, or some combination of these and/or other factors.

For simplicity we compute the running time of an algorithm purely as
a function of the length of the string representing the input and do
not consider any other parameters.

In worst-case analysis, we consider the longest running time of all
inputs of a particular length.

In average-case analysis, we consider the average of all the running
times of inputs of a particular length.
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Running Time or Time Complexity

Definition (Running Time or Time Complexity)

Let M be a deterministic Turing machine that halts on all inputs. The
running time or time complexity of M is the function f : N → N, where
f (n) is the maximum number of steps that M uses on any input of length
n.
If f (n) is the running time of M, we say that M runs in time f (n) and
that M is an f (n)-time Turing machine.
The symbol n usually represents the length of the input.
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Asymptotic Analysis

Because the exact running time of an algorithm often is a complex
expression, we usually just estimate it.

In one convenient form of estimation, called asymptotic analysis, we
seek to understand the running time of the algorithm when it is run
on large inputs.

This is done by considering only the highest order term of the
expression for the running time of the algorithm, disregarding both
the coefficient of that term and any lower order terms, because the
highest order term dominates the other terms on large inputs.

Example: The function f (n) = 6n3 + 2n2 + 20n + 45 has four terms,
and the highest order term is 6n3. Disregarding the coefficient 6, we
say that f is asymptotically at most n3. The asymptotic notation

or big-O notation for describing this relationship is f (n) = O
(

n3
)

.
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Asymptotic Upper Bounds

Definition (Asymptotic Upper Bound)

Let f and g be functions f , g : N → R+. Say that f (n) = O (g(n)) if
there exist positive integers c and n0, such that, for every integer n ≥ n0,

f (n) ≤ cg(n).

When f (n) = O (g(n)) we say that g(n) is an upper bound for f (n), or
more precisely, that g(n) is an asymptotic upper bound for f (n), to
emphasize that we are suppressing constant factors.

Example: Let f1(n) be the function 5n3 + 2n2 + 22n + 6. Then,
selecting the highest order term 5n3 and disregarding its coefficient 5
gives f1(n) = O

(

n3
)

. To see that this result satisfies the formal
definition, let c = 6 and n0 = 10. Then, 5n3 + 2n2 + 22n + 6 ≤ 6n3,
for every n ≥ 10. In addition, f1(n) = O

(

n4
)

because n4 is larger
than n3. However, f1(n) is not O

(

n2
)

.
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Big-O and Logarithmic Functions

The big-O interacts with logarithms in a particular way:

When we use logarithms we must specify the base, as in x = log2 n.
This equality is equivalent to the equality 2x = n.
Changing the value of the base b changes the value of logb n by a

constant factor, owing to the identity logb n =
log2 n

log2 b
.

Thus, when we write f (n) = O (log n), specifying the base is no
longer necessary because we are suppressing constant factors anyway.

Example: Let f2(n) be the function 3n log2 n + 5n log2 log2 n + 2. In
this case we have f2(n) = O (n log n) because log n dominates
log log n.
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Big-O in Arithmetic Expressions

Big-O notation appears in arithmetic expressions, such as
f (n) = O

(

n2
)

+O(n).

In that case each occurrence of the O symbol represents a different
suppressed constant. O

(

n2
)

dominates O (n), so f (n) = O
(

n2
)

.

When the O symbol occurs in an exponent, as in f (n) = 2O(n), the
same idea applies. This expression represents an upper bound of 2cn

for some constant c .

The expression f (n) = 2O(log n) occurs in some analyses. Since
n = 2log2 n, we have nc = 2c log2 n, so 2O(log n) is an upper bound of
nc , for some c .

The expression nO(1) represents the same bound, since O (1)
represents a value that is never more than a fixed constant.

Frequently we derive bounds of the form nc for c greater than 0. Such
bounds are called polynomial bounds. Bounds of the form 2n

δ

are
called exponential bounds when δ is a real number greater than 0.
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Small-o Notation

Big-O notation has a companion called small-o notation.
Big-O says that one function is asymptotically no more than another.
Small-o says that one function is asymptotically less than another.

The difference is analogous to the difference between ≤ and <.

Definition (Small-o Notation)

Let f and g be functions, f , g : N → R
+. Say that f (n) = o (g(n)) if

lim
n→∞

f (n)
g(n) = 0. I.e., f (n) = o (g(n)) means that, for any real number

c > 0, a number n0 exists, such that f (n) < cg(n), for all n ≥ n0.

Examples: The following are easy to check:
1.

√
n = o (n).

2. n = o (n log log n).
3. n log log n = o (n log n).
4. n log n = o

(

n2
)

.

5. n2 = o
(

n3
)

.
6. But f (n) is never o (f (n)).
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Analysis of the Turing Machine for {0k1k : k ≥ 0}

We analyze the TM algorithm for the language A = {0k1k : k ≥ 0}.
We consider each of its four stages separately:

In Stage 1, the machine scans across the tape to verify that the input
is of the form 0∗1∗. Performing this scan uses n steps. Repositioning
the head at the left-hand end of the tape uses another n steps. So the
total used in this stage is 2n steps. In big-O notation we say that this
stage uses O (n) steps.
In Stages 2 and 3, the machine repeatedly scans the tape and crosses
off a 0 and 1 on each scan. Each scan uses O (n) steps. Because each
scan crosses off two symbols, at most n

2 scans can occur. So the total
time taken by Stages 2 and 3 is n

2 O(n) = O
(

n2
)

steps.
In Stage 4, the machine makes a single scan to decide whether to
accept or reject. The time taken in this stage is at most O (n).

Thus, the total time of M1 on an input of length n is
O (n) + O

(

n2
)

+O(n), or O
(

n2
)

.
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Time Complexity Classes

We set up some notation for classifying languages according to their
time requirements:

Definition (Time Complexity Classes)

Let t : N → R
+ be a function. Define the time complexity class

TIME(t(n)) to be the collection of all languages that are decidable by an
O (t(n)) time Turing machine.

Example: We looked at the language A = {0k1k : k ≥ 0}. We
showed that the machine M1 decides A in time O

(

n2
)

. The class
TIME(n2) contains all languages that can be decided in O

(

n2
)

time.
We conclude that A ∈ TIME(n2).
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Machine M2 Deciding A

Is there a machine that decides A = {0k1k : k ≥ 0} asymptotically
more quickly than O

(

n2
)

?

We can improve the running time by crossing off two 0s and two 1s
on every scan (instead of just one) because doing so cuts the number
of scans by half. But that improves the running time only by a factor
of 2 and does not affect the asymptotic running time.

The following machine M2 uses a different method to decide A

asymptotically faster in time n log n.

M2: On input string w :
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat as long as some 0s and some 1s remain on the tape:

3. Scan across the tape, checking whether the total number of 0s and 1s
remaining is even or odd. If it is odd, reject.

4. Scan again across the tape, crossing off every other 0 starting with the
first 0, and then crossing off every other 1 starting with the first 1.

5. If no 0s and no 1s remain on the tape, accept. Otherwise, reject.
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Correctness of M2

We first verify that M2 actually decides A.

On every scan performed in Stage 4, the total number of 0s remaining
is cut in half and any remainder is discarded. This stage has the same
effect on the number of 1s.
Starting with, say 13 0s and 13 1s, the first execution of stage 3 finds
an odd number of 0s and an odd number of 1s. On subsequent
executions an even number (6) occurs, then an odd number (3), and
an odd number (1). For the sequence of parities found (odd, even,
odd, odd) if we replace the evens with 0s and the odds with 1s and
then reverse the sequence, we obtain 1101, the binary representation of
13, or the number of 0s and 1s at the beginning. The sequence of
parities always gives the reverse of the binary representation.
When Stage 3 checks to determine that the total number of 0s and 1s
remaining is even, it actually is checking on the agreement of the parity
of the 0s with the parity of the 1s. If all parities agree, the binary
representations of the numbers of 0s and of 1s agree, and so the two
numbers are equal.
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Time Analysis of M2

For the running time of M2, note that every stage takes O (n) time.

Stages 1 and 5 are executed once, taking a total of O (n) time.
Stage 4 crosses off at least half the 0s and 1s each time it is executed,
so at most 1 + log2 n iterations of the repeat loop occur before all get
crossed off. Thus the total time of stages 2, 3, and 4 is
(1 + log2 n)O (n), or O (n log n).

The running time of M2 is O (n) + O (n log n) = O (n log n).

We showed that A ∈ TIME(n2), but now we have the better bound
A ∈ TIME(n log n).

This result cannot be further improved on single tape Turing
machines.

In fact, it can be shown that any language that can be decided in
o (n log n) time on a single-tape Turing machine is regular.
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A Two-Tape Machine Deciding A in Linear Time

The language A can be decided in O (n) time (also called linear

time) if the Turing machine has a second tape.

The following two-tape TM M3 decides A in linear time: It copies the
0s to its second tape and then matches them against the 1s.

M3: On input string w :

1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Scan across the 0s on tape 1 until the first 1. At the same time, copy

the 0s onto tape 2.
3. Scan across the 1s on tape 1 until the end of the input. For each 1

read on tape 1, cross off a 0 on tape 2. If all 0s are crossed off before
all the 1s are read, reject.

4. If all the 0s have now been crossed off, accept. If any 0s remain, reject.

Each of the four stages uses O (n) steps, so the total running time is
O (n) and thus is linear. This running time is the best possible
because n steps are necessary just to read the input.
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Complexity and Computability

We have produced a single-tape TM M1 that decides A in O
(

n2
)

time
and a faster single tape TM M2 that decides A in O (n log n) time.
It can be shown that no single-tape TM can decide A more quickly.
We also exhibited a two-tape TM M3 that decides A in O (n) time.
The complexity of A depends on the model of computation selected.
Key difference between complexity theory and computability theory:

In computability theory, the Church-Turing thesis implies that all
reasonable models of computation are equivalent;
In complexity theory, the choice of model affects the time complexity of
languages.

Since in complexity theory, we classify computational problems
according to their time complexity and this depends on the model of
computation, how do we decide which model to use?

It turns out that time requirements do not differ greatly for typical
deterministic models.
If our classification system is not very sensitive to small differences in
complexity, the choice of deterministic model is not crucial.
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Multi-Tape TMs and Single-Tape TMs

We examine how the choice of computational model can affect the
time complexity of languages. We consider three models:

The single-tape Turing machine;
The multi-tape Turing machine;
The nondeterministic Turing machine.

Theorem

Let t(n) be a function, where t(n) ≥ n. Every t(n) time multi-tape Turing
machine has an equivalent O

(

t2(n)
)

time single-tape Turing machine.

We have seen how to convert any multi-tape TM into a single-tape
TM that simulates it.
We need to analyze that simulation to determine how much
additional time it requires.

We show that simulating each step of the multi-tape machine uses at
most O (t(n)) steps on the single-tape machine.
Hence, the total time used is O

(

t2(n)
)

steps.
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Proof of the Multi-Tape to Single-Tape Theorem I

Let M be a k-tape TM that runs in t(n) time. We construct a
single-tape TM S that runs in O

(

t2(n)
)

time.

S uses its single tape to represent the contents on all k of M ’s tapes.
The tapes are stored consecutively, with the positions of M ’s heads
marked on the appropriate squares.
Initially, S puts its tape into the format that represents all the tapes of
M and then simulates M ’s steps.
To simulate one step, S scans all the information stored on its tape to
determine the symbols under M ’s tape heads. Then S makes another
pass over its tape to update the tape contents and head positions.
If one of M ’s heads moves rightward onto the previously unread portion
of its tape, S must increase the amount of space allocated to this tape.
It does so by shifting a portion of its own tape one cell to the right.
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Proof of the Multi-Tape to Single-Tape Theorem II

For each step of M, machine S makes two passes over the active
portion of its tape.

The first obtains the information necessary to determine the next move;
The second carries it out.

The length of the active portion of S ’s tape determines how long S
takes to scan it. Thus, we must obtain an upper bound on this
length.

We take the sum of the lengths of the active portions of M ’s k tapes.
Each of these active portions has length at most t(n) because M uses
t(n) tape cells in t(n) steps if the head moves rightward at every step
and even fewer if a head ever moves leftward. Thus, a scan of the
active portion of S ’s tape uses O (t(n)) steps.
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Proof of the Multi-Tape to Single-Tape Theorem III

To simulate each of M’s steps, S performs two scans and possibly up
to k rightward shifts, each of which uses O (t(n)) time. So the total
time for S to simulate one of M’s steps is O (t(n)).

Now we bound the total time used by the simulation.

The initial stage, where S puts its tape into the proper format, uses
O (n) steps.
Afterward, S simulates each of the t(n) steps of M , using O (t(n))
steps, so this part of the simulation uses t(n)× O(t(n)) = O

(

t2(n)
)

steps.

Therefore the entire simulation of M uses O (n) + O
(

t2(n)
)

steps.

We have assumed that t(n) ≥ n (a reasonable assumption because M

could not even read the entire input in less time), whence the running
time of S is O

(

t2(n)
)

.
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Running Time of a Non-Deterministic Turing Machine

We now show that any language that is decidable on a single-tape
non-deterministic Turing machine is also decidable on a deterministic
single-tape Turing machine that requires significantly more time.

Recall that a nondeterministic Turing machine is a decider if all its
computation branches halt on all inputs.

Definition (Running Time of a NDTM)

Let N be a nondeterministic Turing ma-
chine that is a decider. The running

time of N is the function f : N → N,
where f (n) is the maximum number of
steps that N uses on any branch of its
computation on any input of length n.
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Non-Deterministic to Deterministic Turing Machines

Theorem

Let t(n) be a function, where t(n) ≥ n. Every t(n) time nondeterministic
single-tape Turing machine has an equivalent 2O(t(n)) time deterministic
single-tape Turing machine.

Let N be a nondeterministic TM running in t(n) time. The
deterministic TM D simulates N by searching breadth-first N’s
nondeterministic computation tree.

On an input of length n, every branch of N’s nondeterministic
computation tree has a length of at most t(n). Every node in the tree
can have at most b children, where b is the maximum number of
legal choices given by N’s transition function. Thus, the total number
of leaves in the tree is at most bt(n). The simulation proceeds by
exploring this tree breadth first, i.e., it visits all nodes at depth d

before going on to any of the nodes at depth d + 1.
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Non-Deterministic to Deterministic TMs (Cont’d)

The corresponding algorithm starts at the root and travels down to a
node whenever it visits that node.

The total number of nodes in the tree is less than twice the maximum
number of leaves. So we bound it by O

(

bt(n)
)

. The time for starting
from the root and traveling down to a node is O (t(n)). Therefore the
running time of D is O

(

t(n)bt(n)
)

= 2O(t(n)).
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Subsection 2

The Class P
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Polynomial Time vs. Exponential Time

For complexity purposes, polynomial differences in running time are
considered small; exponential differences are considered large.
There are several reasons for making this distinction between
polynomials and exponentials rather than between other classes:

The growth rates of typically occurring polynomials such as n3 and
typically occurring exponentials such as 2n are dramatically different.
Polynomial time algorithms are fast enough for many purposes, but
exponential time algorithms rarely are useful.
Exponential time algorithms typically arise when we solve problems by
exhaustive search of a solution space, called brute-force search.
Sometimes, brute-force search may be avoided through a deeper
understanding of a problem, which may reveal a polynomial time
algorithm of greater utility.
All reasonable deterministic computational models are polynomially
equivalent, i.e., any one of them can simulate another with only a
polynomial increase in running time.
E.g., the deterministic single-tape and multi-tape Turing machine
models are polynomially equivalent.
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The Class P

We focus on aspects of time complexity theory that are unaffected by
polynomial differences in running time.

By considering polynomial differences insignificant and ignoring them,
we develop the theory in a way that does not depend on the selection
of a particular model of computation.

Definition (The Class P)

P is the class of languages that are decidable in polynomial time on a
deterministic single-tape Turing machine, i.e., P =

⋃

k TIME(nk).

The class P is important because:
1. P is invariant for all models of computation that are polynomially

equivalent to the deterministic single-tape Turing machine;
2. P roughly corresponds to the class of problems that are realistically

solvable on a computer.

Item 1 indicates that P is a mathematically robust class.

Item 2 indicates that P is relevant in practice.
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High Level Description of Algorithms

Polynomial time algorithms are provided via high-level descriptions,
without reference to features of a particular computational model.
These involve describing algorithms with numbered stages. Analysis
to show polynomial time involves:

Giving a polynomial upper bound on the number of stages that the
algorithm uses when it runs on an input of length n.
Making sure that each individual stage can be implemented in
polynomial time on a reasonable deterministic model.

The algorithm, then, runs in polynomial time because it runs for a
polynomial number of stages, each of which takes polynomial time,
and the composition of polynomials is a polynomial.

A sensitive point is the encoding method: The notation 〈•〉 indicates
a reasonable encoding of one or more objects into a string: A
reasonable method should allow for polynomial time encoding and
decoding into natural representations or other reasonable encodings.

Unary notation for encoding numbers is not reasonable!
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Paths in Directed Graphs

For graphs, one reasonable encoding consists of a list of its nodes and
edges.

Another is the adjacency matrix, where the (i , j)-th entry is 1 if there
is an edge from node i to node j and 0 if there is no edge.

In analysis of algorithms on graphs, the running time may be
computed in terms of the number of nodes instead of the size of the
graph representation: In a reasonable representation, the size of the
representation is a polynomial in the number of nodes.

A directed graph G contains nodes
s and t. The Path problem is to
determine whether a directed path
exists from s to t.

Path = {(G , s, t) : G is a directed graph that has
a directed path from s to t}.
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Path is in P: Idea of Proof

Theorem

Path ∈ P.

We prove this theorem by presenting a polynomial time algorithm
that decides Path.

A brute-force algorithm is not fast enough. Examining all potential
paths in G and determining whether any is a directed path from s to t

would take exponential time:
A potential path is a sequence of nodes in G having a length of at
most m, where m is the number of nodes in G . The number of such
potential paths is roughly mm, which is exponential in the number of
nodes in G .
To get a polynomial time algorithm for Path, we must do something
that avoids brute force. One way is to use a graph-searching method
such as breadth-first search. We successively mark all nodes in G that
are reachable from s by directed paths of length 1, then 2, then 3,
through m. Bounding the running time by a polynomial is easy.
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Path is in P: Formal Proof

Theorem

Path ∈ P.

A polynomial time algorithm M for PATH operates as follows.
M: On input 〈G , s, t〉, G is a directed graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G . If an edge (a, b) is found going from a marked
node a to an unmarked node b, mark node b.

4. If t is marked, accept. Otherwise, reject.

Stages 1 and 4 are executed only once. Stage 3 runs at most m times,
since each time except the last it marks an additional node in G .

The total number is at most 1 + 1 +m, a polynomial in the size of G .

Stages 1 and 4 of M are easily implemented in polynomial time on
any reasonable deterministic model. Stage 3 involves a scan of the
input and a test of whether certain nodes are marked, which is, also,
easily implemented in polynomial time.
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RelPrime is in P: Idea of Proof

Two numbers x , y are relatively prime if gcd(x , y) = 1.

Example: 10 and 21 are relatively prime; 10 and 22 are not relatively
prime because both are divisible by 2.

Let RelPrime be the problem of testing whether two numbers are
relatively prime:

RelPrime = {〈x , y〉 : x and y are relatively prime}.
Theorem

RelPrime ∈ P.

Searching through all possible divisors of both numbers and accepting
if none are greater than 1 is not efficient enough: The magnitude of a
number represented in binary is exponential in the length of its
representation.

The Euclidean algorithm for computing the greatest common divisor
of natural numbers x and y does the job in polynomial time. Recall
that x mod y is the remainder after the integer division of x by y .
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RelPrime is in P: Formal Proof

Theorem

RelPrime ∈ P.

The Euclidean algorithm E is as follows:

E : On input 〈x , y〉, where x and y are natural numbers in binary:
1. Repeat until y = 0:

2. Assign x ← x mod y .
3. Exchange x and y .

4. Output x .

Algorithm R solves RelPrime, using E as a subroutine.

R : On input 〈x , y〉, where x and y are natural numbers in binary:

1. Run E on 〈x , y〉.
2. If the result is 1, accept. Otherwise, reject.

Clearly, if E runs correctly in polynomial time, so does R . Hence, we
only need to analyze E for time and correctness.

George Voutsadakis (LSSU) Computational Complexity September 2014 34 / 105



Time Complexity The Class P

Analysis of the Euclidean Algorithm E

Since the correctness is well known, it will not be discussed.
We analyze the time complexity of E :

Every execution of Stage 2 (except possibly the first), cuts the value of
x by at least half:
After Stage 2 is executed, x < y because of the nature of the mod
function. After stage 3, x > y because the two have been exchanged.
Thus, when Stage 2 is subsequently executed, x > y .

If x
2
> y , then x mod y < y < x

2
and x drops by at least half.

If x
2
< y , then x mod y = x − y < x

2
and x drops by at least half.

The values of x and y are exchanged every time Stage 3 is executed, so
each of the original values of x and y are reduced by at least half every
other time through the loop.

Thus the maximum number of times that Stages 2 and 3 are
executed is the lesser of 2 log2 x and 2 log2 y . These are proportional
to the lengths of the representations, so number of stages is O (r).

Each stage of E uses only polynomial time. So the total running time
is polynomial.
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Context-Free Languages

Theorem

Every context-free language is a member of P.

Let L be a CFL generated by CFG G that is in Chomsky normal form.
Any derivation of a string w has 2n − 1 steps, where n is the length
of w because G is in Chomsky normal form. The decider for L works
by trying all possible derivations with 2n − 1 steps when its input is a
string of length n.

If any of these is a derivation of w , the decider accepts;
if not, it rejects.

This algorithm does not run in polynomial time. The number of
derivations with k steps may be exponential in k .

To get a polynomial time algorithm we introduce a technique called
dynamic programming. This technique uses the accumulation of
information about smaller subproblems to solve larger problems. We
record the solution to any subproblem so that it is solved only once.
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Dynamic Programming for CFLs

Dynamic programming uses the accumulation of information about
smaller subproblems to solve larger problems.

In the case of context-free languages, we consider the subproblems of
determining whether each variable in G generates each substring of w .
The algorithm enters the solution in an n× n table:

For i ≤ j the (i , j)-th entry of the table contains the collection of
variables that generate the substring wiwi+1 · · ·wj .
For i > j the table entries are unused.

The algorithm fills in the table entries for each substring of w .
First it fills in the entries for the substrings of length 1,
then those of length 2, and so on.

It uses the entries for the shorter lengths to assist in determining the
entries for the longer lengths.
Example: To determine whether a variable A generates a particular substring of

length k + 1, the algorithm splits that substring into two nonempty pieces in the k

possible ways. It then examines each rule A→ BC to determine whether B,C

generate the pieces, using table entries previously computed.
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The Dynamic Programming Algorithm

Let G be a CFG in Chomsky normal form generating the CFL L, with S

the start variable.
D: On input w = w1 · · ·wn:

1. If w = ε and S → ε is a rule, accept.

2. For i = 1 to n:
3. For each variable A:

4. Test whether A→ b is a rule, where b = wi .
5. If so, place A in table(i , i).

6. For ℓ = 2 to n:
7. For i = 1 to n − ℓ+ 1:

8. Let j = i + ℓ− 1,
9. For k = i to j − 1:

10. For each rule A→ BC :
11. If table(i , k) contains B and table(k + 1, j) contains C ,

put A in table(i , j).

12. If S is in table(1, n), accept. Otherwise, reject.
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Analysis of the Dynamic Programming Algorithm

Each stage is easily implemented to run in polynomial time.

Stages 4 and 5 run at most nv times, where v is the number of
variables in G , a fixed constant independent of n.
Hence these stages run O (n) times.
Stage 6 runs at most n times.
Each time Stage 6 runs, Stage 7 runs at most n times.
Each time Stage 7 runs, Stages 8 and 9 run at most n times.
Each time Stage 9 runs, Stage 10 runs r times, where r is the number
of rules of G and is another fixed constant.
Thus, Stage 11, the inner loop of the algorithm, runs O

(

n3
)

times.

Summing the total shows that D executes O
(

n3
)

stages.
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Subsection 3

The Class NP

George Voutsadakis (LSSU) Computational Complexity September 2014 40 / 105



Time Complexity The Class NP

Inability to Discover Polynomial Algorithms

In some instances, it is possible to avoid brute-force search and obtain
polynomial time solutions.

However, attempts to avoid brute force in certain other problems,
including many interesting and useful ones, have not been successful,
and polynomial time algorithms that solve them are not known to
exist.
The reason why success is elusive in finding polynomial time
algorithms for these problems is not known.

Perhaps these problems have, as yet undiscovered, polynomial time
algorithms that rest on unknown principles.
Possibly some of these problems simply cannot be solved in polynomial
time. They may be intrinsically difficult.

One remarkable discovery concerning this question is that the
complexities of many problems are linked:

A polynomial time algorithm for one such problem can be used to
solve an entire class of problems.
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The Hamiltonian Path Problem

A Hamiltonian path in a directed graph G is a directed path that
goes through each node exactly once.

We consider the problem of testing whether a directed graph contains
a Hamiltonian path connecting two specified nodes:

Let
HamPath = {〈G , s, t〉 : G is a directed graph with

a Hamiltonian path from s to t}.
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Polynomial Verifiability

We can easily obtain an exponential time algorithm for the
HamPath problem by modifying the brute-force algorithm for Path.

We need only add a check to verify that the potential path is
Hamiltonian.

No one knows whether HamPath is solvable in polynomial time.

The HamPath problem does have a feature called polynomial

verifiability that is important for understanding its complexity.

Even though we do not know of a fast (i.e., polynomial time) way to
determine whether a graph contains a Hamiltonian path, if such a
path were discovered somehow (perhaps using the exponential time
algorithm), we could easily convince someone else of its existence,
simply by presenting it.

In other words, verifying the existence of a Hamiltonian path may be
much easier than determining the existence.
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The Compositeness Problem

Another polynomially verifiable problem is compositeness:

A natural number is composite if it is the product of two integers
greater than 1 (i.e., a composite number is one that is not prime).
Let

Composites = {x : x = pq, for integers p, q > 1}.
We can easily verify that a number is composite - all that is needed is
a divisor of that number.

Recently, a polynomial time algorithm for testing whether a number is
prime or composite was discovered, but it is considerably more
complicated than the preceding method for verifying compositeness.

Some problems may not be polynomially verifiable.

Example: Consider HamPath, the complement of the HamPath

problem. Even if we could determine (somehow) that a graph did not
have a Hamiltonian path, we do not know of a way for someone else
to verify its nonexistence without using the same exponential time
algorithm for making the determination in the first place.
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Verifiers

Definition (Verifier)

A verifier for a language A is an algorithm V , where

A = {w : V accepts 〈w , c〉 for some string c}.
A polynomial time verifier runs in polynomial time in the length of w . A
language A is polynomially verifiable if it has a polynomial time verifier.

A verifier uses additional information, represented by c , to verify that
w ∈ A. c is called a certificate, or proof, of membership in A.

For polynomial verifiers, the certificate has polynomial length in |w |
because that is all that can be accessed within the time bound.

Example: For the HamPath problem, a certificate for a string
〈G , s, t〉 ∈ HamPath is the Hamiltonian path from s to t. For the
Composites problem, a certificate for the composite x is one of its
divisors. In both cases the verifier can check in polynomial time that
the input is in the language when it is given the certificate.
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The Class NP

Definition (The Class NP)

NP is the class of languages that have polynomial time verifiers.

The class NP is important because it contains many problems of
practical interest.

Example: From the previous slide HamPath, Composites ∈ NP.
As we mentioned, Composites is also a member of P which is a
subset of NP, but proving this stronger result is much more difficult.

The term NP comes from nondeterministic polynomial time and is
derived from an alternative characterization by using nondeterministic
polynomial time Turing machines.

Problems in NP are sometimes called NP-problems.
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Nondeterministic TM Deciding HamPath

The following is a nondeterministic Turing machine (NTM) that
decides the HamPath problem in nondeterministic polynomial time.

Recall that we defined the time of a nondeterministic machine to be
the time used by the longest computation branch.
N1: On input 〈G , s, t〉, G is a directed graph with nodes s and t:
1. Write a list of m numbers, p1, . . . , pm, where m is the number of nodes

in G . Each number is nondeterministically selected between 1 and m.
2. Check for repetitions in the list. If any are found, reject.
3. Check whether s = p1 and t = pm. If either fail, reject.
4. For each i = 1, . . . ,m − 1, check whether (pi , pi+1) is an edge of G . If

any are not, reject. Otherwise, all tests have been passed, so accept.

To analyze this algorithm, we examine each of its stages:
In Stage 1, the nondeterministic selection runs in polynomial time.
In Stages 2 and 3, each part is a simple check, so together they run in
polynomial time.
Stage 4 also clearly runs in polynomial time.

Thus, this algorithm runs in nondeterministic polynomial time.
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NTM Characterization of NP

Theorem

A language is in NP iff it is decided by some nondeterministic polynomial
time Turing machine.

For the forward direction, let A ∈ NP and show that A is decided by a
polynomial time NTM N. Let V be the polynomial time verifier for A.
Assume that V is a TM that runs in time nk . Construct N as follows:
N: On input w of length n:
1. Nondeterministically select string c of length at most nk .
2. Run V on input 〈w , c〉.
3. If V accepts, accept; otherwise, reject.

For the other direction, assume that A is decided by a polynomial
time NTM N. Construct a polynomial time verifier V as follows:
V : On input 〈w , c〉, where w and c are strings:
1. Simulate N on input w , treating each symbol of c as a description of

the nondeterministic choice to be made at each step.
2. If this branch of N ’s computation accepts, accept; otherwise, reject.
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The Classes NTIME(t(n))

We define the nondeterministic time complexity class NTIME(t(n)):

Definition (The Class NTIME(t(n)))

NTIME(t(n)) = {L : L is a language decided by a O (t(n)) time
nondeterministic Turing machine}.

Corollary

NP =
⋃

k NTIME(nk).

NP is not sensitive to the choice of reasonable nondeterministic (ND)
computational model because all such models are polynomially
equivalent.
When describing and analyzing nondeterministic polynomial time
algorithms, we show that:

Every branch uses at most polynomially many stages.
Each stage has an obvious implementation in ND polynomial time on a
reasonable ND computational model.
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The Clique Problem in Undirected Graphs

A clique in an undirected graph is a subgraph, wherein every two
nodes are connected by an edge. A k-clique is a clique that contains
k nodes.
Example: The following is a graph having a 5-clique:

The clique problem is to determine whether a graph contains a clique
of a specified size:

Clique = {〈G , k〉 : G is an undirected graph with a k-clique}.
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Clique is in NP

Theorem

Clique is in NP.

The clique is the certificate. More precisely, the following is a verifier
V for Clique:

V : On input 〈〈G , k〉, c〉:
1. Test whether c is a set of k nodes in G .
2. Test whether G contains all edges connecting nodes in c .
3. If both pass, accept; otherwise, reject.

An alternative proof involves providing a nondeterministic polynomial
time Turing machine that decides Clique (observe the similarity):

N: On input 〈G , k〉, where G is a graph:

1. Nondeterministically select a subset c of k nodes of G .
2. Test whether G contains all edges connecting nodes in c .
3. If yes, accept; otherwise, reject.
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The Subset Sum Problem

We have a collection of numbers x1, . . . , xk and a target number t.
Determine whether the collection contains a subcollection that adds
up to t.

SubsetSum = {〈S , t〉 : S = {x1, . . . , xk} and, for some
{y1, . . . , yℓ} ⊆ {x1, . . . , xk},

∑

yi = t}.

Example: 〈{4, 11, 16, 21, 27}, 25〉 ∈ SubsetSum because
4 + 21 = 25.

Here {x1, . . . , xk} and {y1, . . . , yℓ} are considered to be multisets and,
thus, repetition of elements is allowed.
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The Subset Sum Problem is in NP

Theorem

SubsetSum ∈ NP.

The subset is the certificate. The following is a verifier V for
SubsetSum:

V : On input 〈〈S , t〉, c〉:
1. Test whether c is a collection of numbers that sum to t.
2. Test whether S contains all the numbers in c .
3. If both pass, accept; otherwise, reject.

For a nondeterministic polynomial time Turing machine for
SubsetSum:

N: On input 〈S , t〉:
1. Nondeterministically select a subset c of the numbers in S .
2. Test whether c is a collection of numbers that sum to t.
3. If the test passes, accept; otherwise, reject.
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The Class coNP

The complements of Clique and SubsetSum are not obviously
members of NP.

Verifying that something is not present seems to be more difficult
than verifying that it is present.

We make a separate complexity class, called coNP, which contains
the languages that are complements of languages in NP.

We do not know whether coNP is different from NP.
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P Versus NP

Loosely referring to polynomial time solvable as solvable “quickly”:

P = the class of languages for which membership can be decided quickly.
NP = the class of languages for which membership can be verified quickly.

We have presented examples of languages, such as HamPath and
Clique, that are members of NP but that are not known to be in P.

The power of polynomial verifiability seems to be much greater than
that of polynomial decidability. But P and NP could be equal. The
question of whether P = NP is one of the greatest unsolved problems
in theoretical computer science and contemporary mathematics.

If these classes were equal, any polynomially verifiable problem would
be polynomially decidable.

The best method known for solving languages in NP deterministically
uses exponential time, i.e., NP ⊆ EXPTIME =

⋃

k TIME(2n
k

),

We do not know whether NP is contained in a smaller deterministic
time complexity class.
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Subsection 4

NP-completeness
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Introducing NP-Completeness

In the early 1970s Stephen Cook and Leonid Levin discovered certain
problems in NP whose individual complexity is related to that of the
entire class.

If a polynomial time algorithm exists for any of these problems, all
problems in NP would be polynomial time solvable.

These problems are called NP-complete.
NP-completeness is key for both theoretical and practical reasons:

On the theoretical side, a researcher trying to show that P is unequal
to NP may focus on an NP-complete problem.

If any problem in NP requires more than polynomial time, an
NP-complete one does.
Attempting to prove that P equals NP only requires finding a
polynomial time algorithm for an NP-complete problem.

On the practical side, the phenomenon of NP-completeness may
prevent wasting time searching for a nonexistent polynomial time
algorithm to solve a particular problem.

The belief that P is unequal to NP implies that proving a problem is
NP-complete is strong evidence of its non-polynomiality.
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Boolean Formulas

Our first NP-complete problem is called the satisfiability problem.

Variables that can take on the values TRUE and FALSE are called
Boolean variables.

Usually, we represent TRUE by 1 and FALSE by 0.

The Boolean operations AND, OR, and NOT, represented by the
symbols ∧, ∨, and ¬, respectively, are described below, where the
overbar is used as a shorthand for ¬, i.e., x means ¬x :

AND OR NOT

0 ∧ 0 = 0 0 ∨ 0 = 0 0 = 1
0 ∧ 1 = 0 0 ∨ 1 = 1 1 = 0
1 ∧ 0 = 0 1 ∨ 0 = 1
1 ∧ 1 = 1 1 ∨ 1 = 1

A Boolean formula is an expression involving Boolean variables and
operations.

Example: φ = (x ∧ y) ∨ (x ∧ z) is a Boolean formula.
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Boolean Formula Satisfiability

A Boolean formula is satisfiable if some assignment of 0s and 1s to
the variables makes the formula evaluate to 1.

Example: The formula φ = (x ∧ y) ∨ (x ∧ z) is satisfiable because the
assignment x = 0, y = 1, and z = 0 makes φ evaluate to 1. We say
the assignment satisfies φ.

The satisfiability problem is to test whether a Boolean formula is
satisfiable:

Sat = {〈φ〉 : φ is a satisfiable Boolean formula}.
The Cook-Levin theorem links the complexity of the Sat problem to
the complexities of all problems in NP:

The Cook-Levin Theorem

Sat ∈ P iff P = NP.

We now develop the method that is central to the proof of the
Cook-Levin theorem.

George Voutsadakis (LSSU) Computational Complexity September 2014 59 / 105



Time Complexity NP-completeness

Polynomial Time Reducibility

Recall the concept of reducing one problem to another: If problem A

reduces to problem B , a solution to B can be used to solve A.

Efficient reducibility of problem A to a problem B should imply that
an efficient solution to B can be used to solve A efficiently:

Definition (Polynomial Time Computable Function)

A function f : Σ∗ → Σ∗ is a polynomial time computable function if
some polynomial time Turing machine M exists that halts with just f (w)
on its tape, when started on any input w .

Definition (Polynomial Time Reducibility)

Language A is polynomial time mapping reducible, or simply
polynomial time reducible, to language B , written A ≤P B , if a
polynomial time computable function f : Σ∗ → Σ∗ exists, such that, for
every w , w ∈ A ⇐⇒ f (w) ∈ B .

The function f is called the polynomial time reduction of A to B .
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Polynomial Reducibility and Language Membership

As with an ordinary mapping reduction, a polynomial time reduction
of A to B provides a way to convert membership testing in A to
membership testing in B , with the conversion done efficiently.

To test whether w ∈ A, we use the reduction f to map w to f (w)
and test whether f (w) ∈ B .
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Polynomial Reducibility and Polynomial Decidability

Theorem

If A ≤P B and B ∈ P, then A ∈ P.

Let M be the polynomial time algorithm deciding B and f be the
polynomial time reduction from A to B . A polynomial time algorithm
N deciding A works as follows:

N: On input w :

1. Compute f (w).
2. Run M on input f (w) and output whatever M outputs.

We have w ∈ A if and only if f (w) ∈ B because f is a reduction from
A to B. Thus M accepts f (w) if and only if w ∈ A.
Moreover, N runs in polynomial time because each of its two stages
runs in polynomial time. Stage 2 runs in polynomial time because the
composition of two polynomials is a polynomial.

George Voutsadakis (LSSU) Computational Complexity September 2014 62 / 105



Time Complexity NP-completeness

The 3CNF-Formula Satisfiability Problem

The problem 3Sat is a special case of the satisfiability problem in
which all formulas are in a special form.

A literal is a Boolean variable or a negated Boolean variable, as in x

or x .

A clause is several literals connected with ∨s, as in (x1 ∨ x2 ∨ x3 ∨ x4).

A Boolean formula is in conjunctive normal form, called a
CNF-formula, if it comprises several clauses connected with ∧s, as in

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x3 ∨ x5 ∨ x6) ∧ (x3 ∨ x6).

It is a 3CNF-formula if all the clauses have three literals, as in

(x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x5 ∨ x6) ∧ (x3 ∨ x6 ∨ x4) ∧ (x4 ∨ x5 ∨ x6).

Let
3Sat = {〈φ〉 : φ is a satisfiable 3CNF-formula}.

In a satisfiable CNF-formula, each clause must contain at least one
literal that is assigned 1.
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Reduction of 3Sat to Clique

Theorem

3Sat is polynomial time reducible to Clique.

The polynomial time reduction f from 3Sat to Clique converts
formulas to graphs. In the constructed graphs, cliques of a specified
size correspond to satisfying assignments of the formula. Structures
within the graph are designed to mimic the behavior of the variables
and clauses.

Let φ be a formula with k clauses such as

φ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ · · · ∧ (ak ∨ bk ∨ ck).

The reduction f generates the string 〈G , k〉, where G is an undirected
graph defined as follows:

The nodes in G are organized into k groups of three nodes each called
the triples, t1, . . . , tk . Each triple corresponds to one of the clauses in
φ, and each node in a triple corresponds to a literal in the associated
clause. Label each node of G with its corresponding literal in φ.
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Reduction of 3Sat to Clique (Cont’d)

f generates the string 〈G , k〉. We continue the description of the
undirected graph G :

Recall each node of G is labeled with the literal in φ to which it
corresponds.
The edges of G connect all but two types of pairs of nodes in G :

No edge is present between nodes in the same triple;
No edge is present between two nodes with contradictory labels, as in
x2 and x2.

Example: Consider φ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2).
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Correctness of the Reduction of 3Sat to Clique

We show that φ is satisfiable iff G has a k-clique.
Suppose that φ has a satisfying assignment. In that satisfying
assignment, at least one literal is true in every clause. In each triple of
G , we select one node corresponding to a true literal in the satisfying
assignment. The nodes just selected form a k-clique:

The number of nodes selected is k , because we chose one for each of
the k triples.
Each pair of selected nodes is joined by an edge because no pair fits
one of the exceptions described previously: They could not be from the
same triple because we selected only one node per triple. They could
not have contradictory labels because the associated literals were both
true in the satisfying assignment.

Suppose that G has a k-clique. No two of the clique’s nodes occur in
the same triple, so each of the k triples contains exactly one of the k

clique nodes. Each literal in φ labeling a clique node is made true.
Doing so is always possible because two contradicting nodes are not
connected by an edge and, hence, cannot both be in the clique. This
assignment satisfies φ because each triple contains a clique node and,
hence, each clause contains a literal that is assigned TRUE.
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NP-Complete Languages

Thus, if Clique is solvable in polynomial time, so is 3Sat.

At first glance, this connection between these two problems appears
quite remarkable because, superficially, they are rather different.

Polynomial time reducibility links their complexities.

Definition (NP-Complete Language)

A language B is NP-complete if it satisfies two conditions:

1. B is in NP;

2. Every A in NP is polynomial time reducible to B.

Theorem

If B is NP-complete and B ∈ P, then P = NP.

We know P ⊆ NP. If A ∈ NP, then, since B is NP-complete, A ≤P B .
But B ∈ P, whence A ∈ P. This shows that NP ⊆ P.
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NP-Completeness and Polynomial Reducibility

Theorem

If B is NP-complete and B ≤P C for C in NP, then C is NP-complete.

We are given that C is in NP.

It remains to show that every A in NP is polynomial time reducible to
C . Because B is NP-complete, every language in NP is polynomial
time reducible to B . B in turn is polynomial time reducible to C .
Polynomial time reductions compose:

If A is polynomial time reducible to B and B is polynomial time
reducible to C , then A is polynomial time reducible to C .

Thus, every language in NP is polynomial time reducible to C .
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The First NP-Complete Problem

Once we have one NP-complete problem, we may obtain others by
polynomial time reduction from it.
Our first NP-complete problem is Sat.

The Cook-Levin Theorem (Restated)

Sat is NP-complete.

Showing that Sat is in NP is easy. The hard part of the proof is
showing that any language in NP is polynomial time reducible to
Sat. To do so we construct a polynomial time reduction for each
language A in NP to Sat.
The reduction for A takes a string w and produces a Boolean formula
φ that simulates the NP machine for A on input w .

If the machine accepts, φ has a satisfying assignment that corresponds
to the accepting computation.
If the machine does not accept, no assignment satisfies φ.

Therefore w is in A if and only if φ is satisfiable.
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Sat is in NP

First, Sat is in NP: A nondeterministic polynomial time machine can
guess an assignment to a given formula φ and accept if the
assignment satisfies φ.

Next, we take any language A in NP and show that A is polynomial
time reducible to Sat.

Let N be a nondeterministic Turing machine that decides A in nk

time for some constant k .

For technical convenience, we
actually assume that N runs
in time nk − 3.
A tableau for N on w is an
nk × nk table whose rows are
the configurations of a branch
of the computation of N on
input w :
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Tableau Functionality

For convenience later we assume that each configuration starts and
ends with a # symbol, so the first and last columns of a tableau are
all #s.

The first row of the tableau is the starting configuration of N on w ;
Each row follows the previous one according to N ’s transition function.
A tableau is accepting if any row of the tableau is an accepting
configuration.

Every accepting tableau for N on w corresponds to an accepting
computation branch of N on w .

Thus, the problem of determining whether N accepts w is equivalent
to the problem of determining whether an accepting tableau for N on
w exists.
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The Polynomial Time Reduction

Now we get to the description of the polynomial time reduction f

from A to Sat: On input w , the reduction produces a formula φ.

We begin by describing the variables of φ: Say that Q and Γ are the
state set and tape alphabet of N. Let C = Q ∪ Γ ∪ {#}. For each i

and j between 1 and nk and for each s in C we have a variable, xi ,j ,s .

Each of the (nk)2 entries of a tableau is called a cell. The cell in row
i and column j is called cell[i , j] and contains a symbol from C . We
represent the contents of the cells with the variables of φ. If xi ,j ,s
takes on the value 1, it means that cell[i , j] contains an s.

Now we design φ so that a satisfying assignment to the variables does
correspond to an accepting tableau for N on w . The formula φ is the
AND of four parts

φcell ∧ φstart ∧ φmove ∧ φaccept,

which are described next.
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The Formula φcell

The first thing we must guarantee in order to obtain a correspondence
between an assignment and a tableau is that the assignment turns on
exactly one variable for each cell. Formula φcell ensures this
requirement by expressing it in terms of Boolean operations:

φcell =
∧

1≤i ,j≤nk









(

∨

s∈C

xi ,j ,s

)

∧









∧

s,t∈C
s 6=t

(xi ,j ,s ∨ xi ,j ,t)

















.

φcell is actually a large expression that contains a fragment for each
cell in the tableau because i and j range from 1 to nk .

The first part of each fragment says that at least one variable is turned
on in the corresponding cell.
The second part of each fragment says that no more than one variable
is turned on (literally, it says that for each pair of variables, at least one
is turned off) in the corresponding cell.
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The Formula φstart

Formula φstart ensures that the first row of the table is the starting
configuration of N on w by explicitly stipulating that the
corresponding variables are on:

φstart = x1,1,# ∧ (margin)
x1,2,q0 ∧ (start state)
x1,3,w1 ∧ x1,4,w2 ∧ · · · ∧ x1,n+2,wn ∧ (input)
x1,n+3, ∧ · · · ∧ x1,nk−1, ∧ (blanks)

x1,nk ,#. (margin)
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The Formula φaccept

Formula φaccept guarantees that an accepting configuration occurs in
the tableau. It ensures that qaccept, the symbol for the accept state,
appears in one of the cells of the tableau, by stipulating that one of
the corresponding variables is on:

φaccept =
∨

1≤i ,j≤nk

xi ,j ,qaccept.
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Preparation for the Formula φmove

Finally, formula φmove guarantees that each row of the table
corresponds to a configuration that legally follows the preceding row’s
configuration according to N’s rules. It does so by ensuring that each
2× 3 window of cells is legal.

We say that a 2× 3 window is legal if that window does not violate
the actions specified by N’s transition function.
Example: Say that a, b and c are members of the tape alphabet and
q1 and q2 are states of N. Assume that:

When in state q, with the head reading an a, N writes a b, stays in
state q1 and moves right, formally δ(q1, a) = {(q1, b,R)};
When in state q1, with the head reading a b, N nondeterministically:

1. writes a c , enters q2 and
moves to the left, or

2. writes an a, enters q2 and
moves to the right.

Examples of legal windows for this machine:
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Example (Cont’d)

We are looking at a nondeterministic machine N with
δ(q1, a) = {(q1, b,R)} and δ(q1, b) = {(q2, c , L), (q2, a,R)}.
The following windows are not legal for machine N:

In window (a) the central symbol in the top row cannot change
because a state is not adjacent to it.
Window (b) is not legal because the transition function specifies that
the b gets changed to a c but not to an a.
Window (c) is not legal because two states appear in the bottom row.
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A Claim Concerning φmove

Claim: If the top row of the table is the start configuration and every
window in the table is legal, each row of the table is a configuration
that legally follows the preceding one.

Consider any two adjacent configurations in the table, called the
upper configuration and the lower configuration.

In the upper configuration, every cell that is not adjacent to a state
symbol and that does not contain the boundary symbol #, is the center
top cell in a window whose top row contains no states. Therefore, that
symbol must appear unchanged in the center bottom of the window.
Hence, it appears in the same position in the bottom configuration.
The window containing the state symbol in the center top cell
guarantees that the corresponding three positions are updated
consistently with the transition function.

Therefore, if the upper configuration is a legal configuration, so is the
lower configuration, and the lower one follows the upper one
according to N’s rules.
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The Formula φmove

The formula φmove stipulates that all the windows in the tableau are
legal.

Each window contains six cells, which may be set in a fixed number of
ways to yield a legal window.

The formula says that the settings of those six cells must be one of
these ways:

φmove =
∧

1<i≤nk

1<j<nk

(the (i , j) window is legal).

Writing the contents of six cells of a window as a1, a2, . . . , a6, we
replace the text “the (i , j) window is legal” with the formula:

∨

a1,...,a6
is a legal window

(xi ,j−1,a1 ∧ xi ,j ,a2 ∧ xi ,j+1,a3∧

xi+1,j−1,a4 ∧ xi+1,j ,a5 ∧ xi+1,j+1,a6).
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Complexity of the Reduction

To analyze the complexity of the reduction and show that it operates
in polynomial time, we examine the size of φ.

First, we estimate the number of variables it has. The tableau is an
nk × nk table, so it contains n2k cells. Each cell has ℓ variables
associated with it, where ℓ is the number of symbols in C . Because ℓ

depends only on the TM N and not on the length of the input n, the
total number of variables is O

(

n2k
)

.
We estimate, next, the size of each of the parts of φ.

Formula φcell contains a fixed size fragment of the formula for each cell
of the tableau. So its size is O

(

n2k
)

.

φstart has a fragment for each cell in the top row, i.e., size O
(

nk
)

.
Formulas φmove and φaccept each contain a fixed-size fragment of the
formula for each cell of the tableau. So their size is O

(

n2k
)

.

Thus φ’s total size is O
(

n2k
)

. The bound shows that the the size of φ
is polynomial in n.

φ can be produced in polynomial time from the input w , because
each component is composed of many nearly identical fragments,
varying only with the indices in a simple way.
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NP-Completeness of 3Sat

Corollary

3Sat is NP-complete.

It is clear that 3Sat is in NP. Thus, it suffices to show that all
languages in NP reduce to 3Sat in polynomial time. One way is by
showing that Sat polynomial time reduces to 3Sat. Instead, we
modify the proof of the preceding theorem so that it directly produces
a formula in conjunctive normal form with three literals per clause.

It produces a formula that is almost in conjunctive normal form:
Formula φcell is a big AND of subformulas, each of which contains a
big OR and a big AND of ORs. Thus, φcell is an AND of clauses and,
so, is already in CNF.
Formula φstart is a big AND of variables. Taking each of these variables
to be a clause of size 1 we see that φstart is in CNF.
Formula φaccept is a big OR of variables and is thus a single clause.
Formula φmove is the only one that is not already in CNF.
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Converting φmove into 3CNF

We must convert φmove into CNF.

Recall that φmove is a big AND of subformulas, each of which is an OR
of ANDs that describes all possible legal windows. The distributive
laws of Boolean logic state that we can replace an OR of ANDs with
an equivalent AND of ORs. Doing so may significantly increase the size
of each subformula, but it can only increase the total size of φmove by a
constant factor because the size of each subformula depends only on
N . The result is a formula that is in conjunctive normal form.

The formula is now written in CNF.

We convert it to one with three literals per clause:

In each clause that currently has one or two literals, we replicate one of
the literals until the total number is three.
In each clause that has more than three literals, we split it into several
clauses and add additional variables to preserve the satisfiability or
non-satisfiability of the original.
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Illustrating the Conversion from CNF to 3CNF

Suppose we want to convert the clause (a1 ∨ a2 ∨ a3 ∨ a4), wherein
each ai is a literal, into 3CNF.

We replace it by the two-clause expression
(a1 ∨ a2 ∨ z) ∧ (z ∨ a3 ∨ a4), wherein z is a new variable.
If some setting of the ai ’s satisfies the original clause, we can find
some setting of z so that the two new clauses are satisfied.

In general, if the clause contains ℓ literals, (a1 ∨ a2 ∨ · · · ∨ aℓ), we can
replace it with the ℓ− 2 clauses
(a1 ∨ a2 ∨ z1)∧ (z1 ∨ a3 ∨ z2)∧ (z2 ∨ a4 ∨ z3)∧ · · · ∧ (zℓ−3 ∨ aℓ−1 ∨ aℓ).
We may easily verify that the new formula is satisfiable iff the original
formula was.
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Subsection 5

Additional NP-complete Problems
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Reductions and Gadgets

We now present additional theorems showing that various languages
are NP-complete. They provide examples of relevant techniques.

The general strategy is to exhibit a polynomial time reduction from
3Sat to the language in question. But, sometimes, reduction from
other NP-complete languages may be more convenient.

When constructing a polynomial time reduction from 3Sat to a
language, we look for structures, called gadgets, in that language
that can simulate the variables and clauses in Boolean formulas.

Example: In the reduction from 3Sat to Clique, individual nodes
simulate variables and triples of nodes simulate clauses. An individual
node may or may not be a member of the clique, which corresponds
to a variable that may or may not be true in a satisfying assignment.

Corollary

Clique is NP-complete.
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The Vertex Cover Problem

If G is an undirected graph, a vertex cover of G is a subset of the
nodes, such that every edge of G touches at least one of them.

The vertex cover problem asks whether a graph contains a vertex
cover of a specified size:

VertexCover = {〈G , k〉 : G is an undirected graph that
has a k-node vertex cover}.

Theorem

VertexCover is NP-complete.

We must show that VertexCover is in NP and that all
NP-problems are polynomial time reducible to it.

The first part is easy: a certificate is simply a vertex cover of size k .
To prove the second part we show that 3Sat is polynomial time
reducible to VertexCover. The reduction converts a 3CNF-formula
φ into a graph G and a number k , so that φ is satisfiable whenever G
has a vertex cover with k nodes. The conversion is done without
knowing whether φ is satisfiable and, in effect, G simulates φ by using
gadgets that mimic the variables and clauses of the formula.
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Informal Description of the Gadgets

Designing the gadgets requires a bit of ingenuity.
For the variable gadget, we look for a structure in G that can
participate in the vertex cover in either of two possible ways,
corresponding to the two possible truth assignments to the variable.
Two nodes connected by an edge is a structure that works, because
one of these nodes must appear in the vertex cover. We arbitrarily
associate TRUE and FALSE to these two nodes.
For the clause gadget, we look for a structure that induces the vertex
cover to include nodes in the variable gadgets corresponding to at least
one true literal in the clause. The gadget contains three nodes and
additional edges so that any vertex cover must include at least two of
the nodes, or possibly all three.

Only two nodes would be required if one of the vertex gadget nodes
helps by covering an edge, as would happen if the associated literal
satisfies that clause.
Otherwise three nodes would be required.

Finally, we chose k so that the sought-after vertex cover has one node
per variable gadget and two nodes per clause gadget.
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The Formal Construction

The reduction from 3Sat to VertexCover maps a Boolean
formula φ to a graph G and a value k .

For each variable x in φ, we produce an edge connecting two nodes.
We label the two nodes in this gadget x and x . Setting x to be TRUE
corresponds to selecting the left node for the vertex cover, whereas
FALSE corresponds to the right node.
Each clause gadget is a triple of three nodes that are labeled with the
three literals of the clause. These three nodes are connected to each
other and to the nodes in the variable gadgets that have the identical
labels.

Thus, the total number of nodes that appear in G is 2m + 3ℓ, where
φ has m variables and ℓ clauses.

Finally, let k = m + 2ℓ.
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Illustrating the Construction

For example, if

φ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2),

we have m = 2 and ℓ = 3 and the reduction produces 〈G , k〉 from φ,
where

G has 2 · 2 + 3 · 3 = 13 nodes;
k = 2 + 2 · 3 = 8.

G is:
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Proof of the Correctness

Suppose φ has a satisfying assignment. We put the nodes of the variable
gadgets that correspond to the true literals in the assignment into the vertex
cover. Then, we select one true literal in every clause and put the remaining
two nodes from every clause gadget into the vertex cover. Now, we have a
total of k = m + 2ℓ nodes. They cover all edges because:

every variable gadget edge is clearly covered,
all three edges within every clause gadget are covered, and
all edges between variable and clause gadgets are covered.

Hence G has a vertex cover with k nodes.

If G has a vertex cover with k nodes, it must contain:
one node in each variable gadget, in order to cover its edge, and
two in every clause gadget, in order to cover its three edges.

We take the nodes of the variable gadgets that are in the vertex cover and
assign the corresponding literals TRUE. That assignment satisfies φ because
each of the three edges connecting the variable gadgets with each clause
gadget is covered and only two nodes of the clause gadget are in the vertex
cover. Therefore, one of the edges must be covered by a node from a
variable gadget. So that assignment satisfies the corresponding clause.
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The Hamiltonian Path Problem

The Hamiltonian path problem asks whether the input graph contains
a path from s to t that goes through every node exactly once.

Theorem

HamPath is NP-complete.

We have already seen that HamPath is in NP.
To show that every NP-problem is polynomial time reducible to
HamPath, we show that 3Sat is polynomial time reducible to
HamPath. We give a way to convert 3CNF-formulas to graphs in
which Hamiltonian paths correspond to satisfying assignments of the
formula. The graphs contain gadgets that mimic variables and
clauses:

The variable gadget is a diamond structure that can be traversed in
either of two ways, corresponding to the two truth settings.
The clause gadget is a node. Ensuring that the path goes through each
clause gadget corresponds to ensuring that each clause is satisfied in
the satisfying assignment.
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The 3CNF Formula

Since we know that HamPath is in NP, we only need to show
3Sat ≤P HamPath.

For each 3CNF-formula φ, we show how to construct a directed graph
G with two nodes, s and t, so that a Hamiltonian path exists between
s and t iff φ is satisfiable. Let

φ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ · · · ∧ (ak ∨ bk ∨ ck),

where each a, b and c is a literal xi or xi . Let x1, . . . , xℓ be the ℓ

variables of φ.

Now we show how to convert φ to a graph G . The graph G has
various parts to represent the variables and clauses that appear in φ.
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The Variable and the Clause Gadgets

We represent each variable xi with a diamond-shaped structure that
contains a horizontal row of nodes:

The number of nodes in the horizontal row will be specified later.

We represent each clause as a single node.

The global structure of G is shown here:
It shows all the elements of G and their
relationships, except the edges that rep-
resent the relationship of the variables to
the clauses that contain them.
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Connecting the Diamonds with the Nodes

Each diamond structure contains a horizontal row of nodes connected
by edges running in both directions. The horizontal row contains
3k + 1 nodes in addition to the two nodes on the ends belonging to
the diamond. These nodes are grouped into adjacent pairs, one for
each clause, with extra separator nodes next to the pairs:

If variable xi appears in clause cj , we add the following two edges
from the j-th pair in the i -th diamond to the j-th clause node:

If xi appears in clause cj , we add two edges from the j-th pair in the
i -th diamond to the j-th clause node, as shown on the right:
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From Satisfiability to Hamiltonicity

Suppose that φ is satisfiable. The Hamiltonian path begins at s, goes
through each diamond in turn, and ends up at t. To hit the
horizontal nodes in a diamond, the path either zig-zags from left to
right or zag-zigs from right to left:

If xi is assigned TRUE, the path zig-zags through the diamond.
If xi is assigned FALSE, the path zag-zigs.

To cover the clause nodes, we add detours at the horizontal nodes. In
each clause, we select a literal assigned TRUE by the assignment:

If we selected xi in clause cj , we can detour at the j-th pair in the i-th
diamond. This is possible because xi must be TRUE, so the path
zig-zags from left to right through the corresponding diamond. Hence
the edges to the cj node are in order that allows a detour and return.
Similarly, if we selected xi in clause cj , we can detour at the j-th pair in
the i-th diamond because xi must be FALSE, so the path zag-zigs from
right to left through the corresponding diamond. Hence the edges to
the cj node again are in the correct order to allow a detour and return.

Thus, we have constructed the desired Hamiltonian path.
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From Hamiltonicity to Satisfiability

For the reverse direction, if G has a Hamiltonian path from s to t, we
demonstrate a satisfying assignment for φ.

If the Hamiltonian path is normal, i.e., it goes through the diamonds in
order from the top one to the bottom one, except for the detours to
the clause nodes, we can easily obtain the satisfying assignment.

If the path zig-zags through the diamond, we assign the corresponding
variable TRUE;
If it zag-zigs, we assign FALSE.

Because each clause node appears on the path, by observing how the
detour is taken, we may determine which of the literals in the
corresponding clause is TRUE.
Normality may fail only if the path enters a clause from one diamond
but returns to another. In the next slide, we show that this is not
possible. Hence a Hamiltonian path must be normal.

Since the reduction obviously operates in polynomial time, the proof
is complete.
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Normality is Necessary in a Hamiltonian Path

Normality may fail only if the path enters a
clause from one diamond but returns to an-
other. The path goes from node a1 to c , but
instead of returning to a2 in the same dia-
mond, it returns to b2 in a different diamond.
If that occurs, either a2 or a3 must be a sep-
arator node.

If a2 were a separator node, the only edges entering a2 would be from
a1 and a3.
If a3 were a separator node, a1 and a2 would be in the same clause
pair, and hence the only edges entering a2 would be from a1, a3 and c .

In either case, the path could not contain node a2:

The path cannot enter a2 from c or a1 because the path goes
elsewhere from these nodes.
The path cannot enter a2 from a3, because a3 is the only available
node that a2 points at, so the path must exit a2 via a3.

George Voutsadakis (LSSU) Computational Complexity September 2014 97 / 105



Time Complexity Additional NP-complete Problems

Undirected Hamiltonian Path Problem

To show an undirected version UHamPath of the Hamiltonian path
problem is NP-complete we give a polynomial time reduction from
HamPath.

Theorem

UHamPath is NP-complete.

The reduction takes a directed graph G with nodes s and t and
constructs an undirected graph G ′ with nodes s ′ and t ′. G has a
Hamiltonian path from s to t iff G ′ has a Hamilton path from s ′ to t ′.
G ′ is constructed as follows:

Each node u of G , except for s and t, is replaced by a triple of nodes
uin, umid and uout in G ′. Nodes s and t in G are replaced by nodes sout

and t in in G ′.
Edges of two types appear in G ′.

Edges connect umid with uin and uout.
An edge connects uout with v in if an edge goes from u to v in G .

This completes the construction of G ′.
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Correctness of the Reduction

We show that G has a Hamiltonian path from s to t iff G ′ has a
Hamiltonian path from sout to t in.

To show one direction, we observe that a Hamiltonian path P in G ,
s, u1, u2, . . . , uk , t has a corresponding Hamiltonian path P ′ in G ′,
sout, uin1 , u

mid
1 , uout1 , uin2 , u

mid
2 , uout2 , . . . , t in.

For the other direction, we must show that any Hamiltonian path in G ′

from sout to t in must go from a triple of nodes to a triple of nodes,
except for the start and finish, as does the path P ′ we just described.
This would complete the proof because any such path has a
corresponding Hamiltonian path in G .
Start at node sout. Observe that the next node in the path must be uini
for some i because only those nodes are connected to sout. The next
node must be umid

i , because no other way is available to include umid
i in

the Hamiltonian path. After umid
i comes uouti because that is the only

other one to which umid
i is connected. The next node must be uinj for

some j because no other available node is connected to uouti . The
argument then repeats until t in is reached.
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The Subset Sum Problem

In the SubsetSum problem, we are given a collection of numbers
x1, . . . , xk together with a target number t, and want to determine
whether the collection contains a subcollection that adds up to t.

Theorem

SubsetSum is NP-complete.

We have already seen that SubsetSum is in NP.

We prove that all languages in NP are polynomial time reducible to
SubsetSum by reducing the NP-complete language 3Sat to it.
Given a 3CNF-formula φ we construct an instance of the
SubsetSum problem that contains a subcollection summing to the
target t if and only if φ is satisfiable. Call this subcollection T . To
achieve this reduction we find structures of the SubsetSum problem
that represent variables and clauses.

We represent variables by pairs of numbers;
Clauses are represented by certain positions in the decimal
representations of the numbers.
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The Idea of the Reduction

The idea involves representing a variable xi in φ by two numbers yi
and zi .

By proving that either yi or zi must be in T for each i , we establish
the encoding for the truth value of xi in the satisfying assignment.

Each clause position contains a certain value in the target t, which
imposes a requirement on the subset T .

We prove that this requirement is the same as the one in the
corresponding clause, i.e., that one of the literals in that clause is
assigned TRUE.
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The Reduction I

Since we know that SubsetSum ∈ NP, we only show that
3Sat ≤P SubsetSum.

Let φ be a Boolean formula with variables x1, . . . , xℓ and clauses
c1, . . . , ck . The reduction converts φ to an instance of the
SubsetSum problem 〈S , t〉, wherein the elements of S and the
number t are the rows in:

The rows above the double line are labeled
y1, z1, y2, z2, . . ., yℓ, zℓ and g1, h1, g2, h2,
. . ., gk , hk and comprise the elements of S .
The row below the double line is t. Thus, S
contains one pair of numbers, yi , zi , for each
variable xi in φ.
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The Reduction II

The left part of the decimal representation
comprises a 1 followed by ℓ− i 0s. The right
part contains one digit for each clause, where
the j-th digit of yi is 1 if clause cj contains
literal xi and the j-th digit of zi is 1 if clause
cj contains literal xi . Digits not specified to
be 1 are 0. Additionally, S contains one pair
of numbers, gj , hj , for each clause cj , which
are equal and consist of a 1 followed by k − j

0s.
Finally, the target number t, the bottom row of the table, consists of
ℓ 1s, followed by k 3s.

We prove that φ is satisfiable iff some subset of S sums to t.
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From Satisfiability to Summability

Suppose that φ is satisfiable. We construct a
subset of S as follows:

We select yi , if xi is assigned TRUE in the
satisfying assignment;

We select zi , if xi is assigned FALSE.

If we add up what we have selected so far, we
obtain a 1 in each of the first ℓ digits because
we have selected either yi or zi for each i .

Furthermore, each of the last k digits is a number between 1 and 3
because each clause is satisfied and so contains between 1 and 3 true
literals. Now, we further select enough of the g and h numbers to
bring each of the last k digits up to 3, thus hitting the target.
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From Summability to Satisfiability

Suppose that a subset of S sums to t. Note the following:

All digits in members of S are 0 or 1.

Each column in the table describing S contains at
most five 1s. Hence a “carry” into the next column
never occurs when a subset of S is added.

To get a 1 in each of the first ℓ columns the subset
must have either yi or zi for each i , but not both.

For the assignment:

If the subset contains yi , we assign xi TRUE, and, otherwise, FALSE.
This assignment must satisfy φ because in each of the final k columns
the sum is always 3. In column cj , at most 2 can come from gj and
hj , so at least 1 must come from some yi or zi in the subset.

If it is yi , then xi appears in cj and is assigned TRUE, so cj is satisfied.
If it is zi , then xi is in cj and xi is assigned FALSE, so cj is satisfied.

The table has size of roughly (k + ℓ)2, and each entry can be easily
calculated for any φ. Total time is O

(

n2
)

easy stages.
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