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Space Complexity Introduction

Space Complexity

We consider the complexity of computational problems in terms of
the amount of space, or memory, that they require.

Space complexity shares many of the features of time complexity and
serves as a further way of classifying problems.

We again select the Turing machine model for measuring space.

Definition (Space Complexity)

Let M be a deterministic Turing machine that halts on all inputs. The
space complexity of M is the function f : N → N, where f (n) is the
maximum number of tape cells that M scans on any input of length n. If
the space complexity of M is f (n), we also say that M runs in space f (n).
If M is a nondeterministic Turing machine wherein all branches halt on all
inputs, we define its space complexity f (n) to be the maximum number
of tape cells that M scans on any branch of its computation for any input
of length n.
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Space Complexity Introduction

Space Complexity Classes

We estimate the space complexity of Turing machines by using
asymptotic notation.

Definition (Space Complexity Classes)

Let f : N → R
+ be a function. The space complexity classes

SPACE(f (n)) and NSPACE(f (n)), are defined as follows:

SPACE(f (n)) = {L : L is a language decided by a O (f (n)) space
deterministic Turing machine}.

NSPACE(f (n)) = {L : L is a language decided by a O (f (n)) space
nondeterministic Turing machine}.
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Space Complexity Introduction

Satisfiability is in Linear Space

We have already seen the NP-complete problem Sat.

We now show that Sat can be solved with a linear space algorithm.

We believe that Sat cannot be solved with a polynomial time
algorithm, let alone in linear time, because Sat is NP-complete.

Space appears to be more powerful than time because space can be
reused, whereas time cannot.
M1: On input 〈φ〉, where φ is a Boolean formula:
1. For each truth assignment to the variables x1, . . . , xm of φ:

2. Evaluate φ on that truth assignment.

3. If φ is ever evaluated to 1, accept; if not, reject.

Machine M1 clearly runs in linear space because each iteration of the
loop can reuse the same portion of the tape:

The machine needs to store only the current truth assignment and that
can be done with O (m) space.
The number of variables m is at most n, the length of the input.

So this machine runs in space O (n).
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Determining a Nondeterministic Space Complexity

Determining the nondeterministic space complexity can be useful in
determining its deterministic space complexity.

Consider the problem of testing whether a nondeterministic finite
automaton accepts all strings:

AllNFA = {〈A〉 : A is an NFA and L(A) = Σ∗}.

We give a nondeterministic linear space algorithm that decides the
complement of this language, AllNFA.

The main idea involves:

Using nondeterminism to guess a string that is rejected by the NFA;
Using linear space to keep track of which states the NFA could be in at
a particular time.

This language is not known to be in NP or in coNP.
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The Nondeterministic Algorithm for AllNFA

N: On input 〈M〉, where M is an NFA:

1. Place a marker on the start state of the NFA.
2. Repeat 2q times, where q is the number of states of M :

3. Nondeterministically select an input symbol and change the positions of
the markers on M’s states to simulate reading that symbol.

4. If a marker was ever placed on an accept state, reject; otherwise accept.

If M accepts any strings, it must accept one of length at most 2q :

In any longer string that is accepted the locations of the markers
described in the preceding algorithm would repeat. The section of the
string between the repetitions can be removed to obtain a shorter
accepted string.

Hence N decides AllNFA.

The only space needed by this algorithm is for storing the location of
the markers. This can be done using linear space.
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Space Complexity Savitch’s Theorem

Savitch’s Theorem: The Näıve Approach

The simulation of nondeterministic machines by deterministic
machines seems to require an exponential increase in time.

Theorem (Savitch’s Theorem)

For any function f : N → R
+, where f (n) ≥ n,

NSPACE(f (n)) ⊆ SPACE(f 2(n)).

We need to simulate an f (n) space NTM deterministically.

A naive approach is to proceed by trying all the branches of the
NTM’s computation, one by one. The simulation needs to keep track
of which branch it is currently trying so that it be able to go on to
the next one. But a branch that uses f (n) space may run for 2O(f (n))

steps, and each step may be a nondeterministic choice. Exploring the
branches sequentially would require recording all the choices used on
a particular branch in order to be able to find the next branch.
Therefore this approach may use 2O(f (n)) space, exceeding the goal of
O
(

f 2(n)
)

space.
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Space Complexity Savitch’s Theorem

Savitch’s Theorem: The Yieldability Problem Approach

We consider the more general yieldability problem:
Given two configurations c1, c2 of the NTM, together with a number t,
test whether the NTM can get from c1 to c2 within t steps.

By solving the yieldability, with c1 the start configuration, c2 the
accept configuration, and t the max number of steps that the NTM
can use, we can determine whether the machine accepts its input.
We give a deterministic, recursive algorithm that solves yieldability: It
operates by searching for an intermediate configuration cm, and
recursively testing whether:
(1) c1 can get to cm within t

2 steps;
(2) cm can get to c2 within t

2 steps.
Reusing space for each of the two recursive tests saves enough space:

The algorithm needs space for storing the recursion stack. Each level of
the recursion uses O (f (n)) space to store a configuration. The depth is
log t, where t is the max time that the nondeterministic machine may
use on any branch. We have t = 2O(f (n)), so log t = O(f (n)), whence,
the deterministic simulation uses O

(

f 2(n)
)

space.
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Space Complexity Savitch’s Theorem

Proof of Savitch’s Theorem I

Let N be an NTM deciding a language A in space f (n). We construct
a deterministic TM M deciding A. M uses the procedure CanYield,
which tests whether one of N’s configurations can yield another
within a specified number of steps.

Let w be a string considered as input to N. For configurations c1 and
c2 of N on w , and integer t, CanYield(c1, c2, t) outputs accept if
N can go from c1 to c2 in t or fewer steps. If not, CanYield

outputs reject. We assume that t is a power of 2.
CanYield: On input c1, c2 and t:
1. If t = 1, then test directly whether c1 = c2 or whether c1 yields c2 in

one step according to the rules of N . Accept if either test succeeds;
reject if both fail.

2. If t > 1, then for each configuration cm of N on w using space f (n):
3. Run CanYield(c1, cm,

t

2
).

4. Run CanYield(cm, c2,
t

2
).

5. If steps 3 and 4 both accept, then accept.

6. If have not yet accepted, reject.
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Proof of Savitch’s Theorem II
Now we define M to simulate N:

We first modify N so that when it accepts it clears its tape and moves
the head to the leftmost cell, thereby entering a configuration caccept.
We let cstart be the start configuration of N on w .
We select a constant d so that N has no more than 2df (n)

configurations using f (n) tape, where n is the length of w . Then,
2df (n) is an upper bound on the running time of any branch of N on w .

M: On input w :
1. Output the result of CanYield(cstart, caccept, 2

df (n)).

Algorithm CanYield obviously solves the yieldability problem. So M

correctly simulates N.
We need to verify that M works within O

(

f 2(n)
)

space.
Whenever CanYield invokes itself recursively, it stores the current
stage number and the values of c1, c2, and t on a stack so that they
may be restored upon return. So, each level uses O (f (n)) additional
space. Since each level divides the size of t in half and t starts at
2df (n), the depth of the recursion is O

(

log 2df (n)
)

or O (f (n)).

Therefore the total space used is O
(

f 2(n)
)

.
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Space Complexity Savitch’s Theorem

A Technical Difficulty Involving Knowledge of f (n)

One technical difficulty arises in this argument because algorithm M

needs to know the value of f (n) when it calls CanYield.

We can handle this difficulty by modifying M so that it tries
f (n) = 1, 2, 3, . . ..

For each value f (n) = i , the modified algorithm uses CanYield to
determine whether the accept configuration is reachable.
In addition, it uses CanYield to determine whether N uses at least
space i + 1 by testing whether N can reach any of the configurations of
length i + 1 from the start configuration.

If the accept configuration is reachable, M accepts;
If no configuration of length i + 1 is reachable, M rejects;
Otherwise M continues with f (n) = i + 1.

We could have handled this difficulty in another way by assuming that
M can compute f (n) within O (f (n)) space, but then we would need
to add that assumption to the statement of the theorem.
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Space Complexity The Class PSPACE

Polynomial Space Complexity

To the polynomial time complexity class P corresponds the space
complexity class PSPACE:

Definition (The Class PSPACE)

PSPACE is the class of languages that are decidable in polynomial space
on a deterministic Turing machine. I.e., PSPACE =

⋃

k SPACE(n
k).

We define NPSPACE, the nondeterministic counterpart to PSPACE,
in terms of the NSPACE classes.

However, since the square of any polynomial is still a polynomial, by
Savitch’s Theorem, PSPACE = NPSPACE.

Example: We showed that Sat is in SPACE(n) and that AllNFA is in
coNSPACE(n). Hence, since deterministic space complexity classes
are closed under complement, by Savitch’s theorem, AllNFA is also in
SPACE(n2). Therefore, both languages are in PSPACE.
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Relations Between PSPACE, P and NP

We look at the relationship of PSPACE with P and NP.
We have P ⊆ PSPACE:

A machine can explore at most one new cell at each step of its
computation. Thus, for t(n) ≥ n, any machine that operates in time
t(n) can use at most t(n) space.

Similarly, NP ⊆ NPSPACE, whence NP ⊆ PSPACE.

Conversely, we can bound the time complexity of a Turing machine in
terms of its space complexity.

We show that PSPACE ⊆ EXPTIME =
⋃

k TIME(2n
k

).

For f (n) ≥ n, a TM that uses f (n) space can have at most f (n)2O(f (n))

different configurations. A TM computation that halts may not repeat
a configuration. Therefore, a TM that uses space f (n) must run in
time f (n)2O(f (n)).
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Depiction of the Relationships Between Classes

We showed that:

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME.

It is not known whether any of these “⊆” is actually an equality.

However, we will prove that P 6= EXPTIME.

So, at least one of “⊆” is proper, but we are unable to say which!

Most researchers believe that all containments are proper, i.e., that:
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Space Complexity PSPACE-Completeness

PSPACE-Complete Languages

NP-complete languages are the most difficult languages in NP:
Demonstrating that a language is NP-complete provides strong
evidence that the language is not in P.

The analogous notion for the class PSPACE is PSPACE-completeness.

Definition (PSPACE-Complete Language)

A language B is PSPACE-complete if it satisfies two conditions:

1. B is in PSPACE;

2. Every A in PSPACE is polynomial time reducible to B.

If B satisfies Condition 2, we say that it is PSPACE-hard.

In the definition, we use polynomial time reducibility.

We look now at why polynomial time reducibility is still used, instead
of some “analogous” notion of “polynomial space reducibility”.
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Why Use Polynomial Time Reducibility

Complete problems for a complexity class are important because they
are examples of the most difficult problems in the class.

Reason for difficulty: Since any other problem in the class is easily
reduced to it, if we find an easy way to solve the complete problem,
we can easily solve all other problems in the class.

For this idea to work, the reduction must be easy, relative to the
complexity of typical problems in the class.

If the reduction itself were difficult to compute, an easy solution to
the complete problem would not necessarily yield an easy solution to
the problems reducing to it.

This reasoning provides a rule for reductions:

Whenever we define complete problems for a complexity class,
the reduction model must be more limited than the model used
for defining the class itself.
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Universal and Existential Quantifiers

A Boolean formula is an expression that contains Boolean variables,
the constants 0 and 1, and the Boolean operations ∧,∨ and ¬.

The quantifiers ∀ (for all) and ∃ (there exists) are often used in
mathematical statements:

Writing the statement ∀x φ means that, for every value of the variable
x , the statement φ is true.
Writing the statement ∃x φ means that, for some value of the variable
x , the statement φ is true.

Sometimes, ∀ is referred to as the universal quantifier and ∃ as the
existential quantifier.

We say that the variable x immediately following the quantifier is
bound to the quantifier.
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Universe of Interpretation

Example: Considering the natural numbers, the statement

∀x [x + 1 > x ]

means that “the successor x + 1 of every natural number x is greater
than the number itself”. Obviously, this statement is true.
The statement

∃y [y + y = 3]

is obviously false.

When interpreting statements (i.e., assigning meaning to statements)
involving quantifiers, the universe from which the values are drawn is
extremely important.

Example: If, instead of the natural numbers, we considered the set of
real numbers as the universe, the preceding existentially quantified
statement would become true.
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Multiple Quantifiers

Statements may contain several quantifiers, as in

∀x ∃y [y > x ].

Interpreted in the universe of the natural numbers, this statement
says that “for every natural number there exists another natural
number larger than it”.

The order of the quantifiers is important!

Reversing the order, as in the statement

∃y ∀x [y > x ],

gives an entirely different meaning. It says that “some natural
number is greater than all others”.

Note that the first statement is true and the second statement is false.
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Scope and Prenex Normal Form

A quantifier may appear anywhere in a mathematical statement:

It applies to the fragment of the statement appearing within the
matched pair of parentheses or brackets following the quantified
variable. This fragment is called the scope of the quantifier.

If all quantifiers appear at the beginning of the statement and each
quantifier’s scope is everything following it, the statement is said to
be in prenex normal form.

Since any statement can be converted easily into prenex normal form,
we only consider statements in this form.
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Quantified Boolean Formulas

Boolean formulas with quantifiers are called quantified Boolean

formulas. For such formulas, the universe is {0, 1}.
Example: Consider

φ = ∀x ∃y [(x ∨ y) ∧ (x ∨ y)].

φ is a quantified Boolean formula. φ is true, but it would be false if
the quantifiers ∀x and ∃y were reversed.

When each variable of a formula appears within the scope of some
quantifier, the formula is said to be fully quantified or a sentence

and is always either true or false.

Example: The preceding formula φ is fully quantified. However, if the
initial part, ∀x , of φ were removed, the formula would no longer be
fully quantified and would be neither true nor false.

The TQBF problem is to determine whether a fully quantified
Boolean formula is true or false:

TQBF = {〈φ〉 : φ is a true fully quantified Boolean formula}.
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A PSPACE-Complete Language

Theorem

TQBF is PSPACE-complete.

TQBF is in PSPACE: An algorithm assigns values to the variables
and recursively evaluates the truth of the formula.
Every language A in PSPACE reduces to TQBF in polynomial time:
Let M be a polynomial space-bounded Turing machine for A.
Polynomial time reduce an input w to a QBF φ that encodes a
simulation of M on w , such that φ is true iff M accepts w .

In the Cook-Levin Theorem, we construct φ that simulates M on w by
expressing the requirements for an accepting tableau. A tableau for M
on w has width O

(

nk
)

, the space used by M , but has exponential
height in nk because M can run for exponential time. This would result
in a formula of exponential size, i.e., a non-polynomial time reduction.
A technique related to the proof of Savitch’s theorem is used: The
formula divides the tableau into halves and employs the universal
quantifier to represent each half with the same part of the formula.
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TQBF is in PSPACE

The following polynomial space algorithm decides TQBF:
T : On input 〈φ〉, φ a fully quantified Boolean formula:
1. If φ contains no quantifiers, then it is an expression with only

constants, so evaluate φ and accept if it is true; otherwise, reject.
2. If φ equals ∃x ψ, recursively call T on ψ, first with 0 substituted for x

and then with 1 substituted for x . If either result is accept, then
accept; otherwise, reject.

3. If φ equals ∀x ψ, recursively call T on ψ, first with 0 substituted for x
and then with 1 substituted for x . If both results are accept, then
accept; otherwise, reject.

Algorithm T obviously decides TQBF.
The depth of the recursion is at most the number of variables. At
each level we only store the value of one variable, so the total space
used is O (m), where m is the number of variables. So T runs in
linear space.
TQBF is PSPACE-hard: Let A be a language decided by a TM M in
space nk . We give a polynomial time reduction from A to TQBF.
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TQBF is PSPACE-hard: φc1,c2,t

The reduction maps a string w to a quantified Boolean formula φ
that is true iff M accepts w .

To show how to construct φ we solve a more general problem:

Using two collections of variables, denoted c1 and c2, representing
two configurations, and a number t > 0, we construct a formula
φc1,c2,t . If we assign c1 and c2 to actual configurations, the formula is
true iff M can go from c1 to c2 in at most t steps. Then, we can let
φ be the formula φcstart,caccept,h, where h = 2df (n), for a constant d ,

chosen so that M has no more than 2df (n) possible configurations on
an input of length n. We let f (n) = nk and, for convenience, assume
that t is a power of 2.

The formula encodes the contents of tape cells as in the proof of the
Cook-Levin Theorem. Each cell has several variables associated with
it, one for each tape symbol and state. Each configuration has nk

cells and so is encoded by O
(

nk
)

variables.
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φc1,c2,t : The Case t = 1

If t = 1, we can easily construct φc1,c2,t :

We design the formula to say that:

either c1 equals c2, or
c2 follows from c1 in a single step of M .

Considering each case:

We express the equality by writing a Boolean expression saying that
each of the variables representing c1 contains the same Boolean value
as the corresponding variable representing c2.
We express the second possibility by using the technique presented in
the proof of the Cook-Levin theorem, i.e., we can express that c1 yields
c2 in a single step of M by writing Boolean expressions stating that the
contents of each triple of c1’s cells correctly yield the contents of the
corresponding triple of c2’s cells.
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φc1,c2,t : A First Attempt at t > 1

If t > 1, we construct φc1,c2,t recursively.

We try one idea that does not work and then fix it: Let
φc1,c2,t = ∃m1 [φc1,m1,

t
2
∧ φm1,c2,

t
2
]. The symbol m1 represents a

configuration of M. ∃m1 is shorthand for ∃x1, . . . , xℓ, where
ℓ = O

(

nk
)

and x1, . . . , xℓ are the variables that encode m1. Then, we
construct the two formulas φc1,m1,

t
2
and φm1,c2,

t
2
recursively.

The formula φc1,c2,t has the correct value: it is TRUE whenever M
can go from c1 to c2 within t steps.

The problem is that it is too big. Every level of the recursion cuts t in
half but roughly doubles the size of the formula. Hence we end up
with a formula of size roughly t. Initially, t = 2df (n), so this method
gives an exponentially large formula.

To reduce the size of the formula we use the ∀ quantifier in addition
to the ∃ quantifier.
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φc1,c2,t : The Case t > 1

Let φc1,c2,t = ∃m1 ∀(c3, c4) ∈ {(c1,m1), (m1, c2)} [φc3,c4, t2
].

The introduction of the new variables representing the configurations
c3 and c4 allows us to ”fold” the two recursive subformulas into a
single subformula, while preserving the original meaning.

We may replace the construct ∀x ∈ {y , z}[. . .] by the equivalent
construct ∀x [(x = y ∨ x = z) → . . .] to obtain a syntactically correct
quantified Boolean formula. Moreover, Boolean implication → and
Boolean equality = can be expressed in terms of AND and NOT.

To calculate the size of the formula φcstart,caccept,h, where h = 2df (n),
note that:

Each level of the recursion adds a portion of the formula that is linear
in the size of the configurations and is thus of size O (f (n)).
The number of levels of the recursion is log (2df (n)) or O (f (n)).

Hence, the size of the resulting formula is O
(

f 2(n)
)

.
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Quantifiers and Games

A game is loosely defined to be a competition in which opposing
parties attempt to achieve some goal according to prespecified rules.

Games are closely related to quantifiers.

A quantified statement has a corresponding game.
Conversely, a game often has a corresponding quantified statement.

These correspondences are helpful in several ways.

Expressing a mathematical statement that uses many quantifiers in
terms of the corresponding game may facilitate in understanding its
meaning.
Expressing a game in terms of a quantified statement aids in
understanding the complexity of the game.

To illustrate the correspondence between games and quantifiers, we
consider a simple artificial game, called the formula game.
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The Formula Game

Let
φ = ∃x1 ∀x2 ∃x3 · · ·Qxk [ψ]

be a quantified Boolean formula in prenex normal form, where Q
represents either a ∀ or ∃ quantifier.

We associate a formula game with φ as follows:
Two players, called Player A and Player E, take turns selecting the
values of the variables x1, . . . , xk .

Player A selects values for the variables that are bound to ∀ quantifiers;
Player E selects values for the variables that are bound to ∃ quantifiers.

The order of play is the same as that of the quantifiers at the
beginning of the formula.
At the end of the play, we use the values that the players have selected
for the variables and declare that:

Player E has won the game if ψ, the part of the formula with the
quantifiers stripped off, is now TRUE.
Player A has won if ψ is now FALSE.
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Winning Strategy

Suppose φ1 = ∃x1 ∀x2 ∃x3 [(x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3)].
In the formula game for φ1,

Player E picks the value of x1;
Player A picks the value of x2;
Player E picks the value of x3.

Represent the Boolean value TRUE with 1 and FALSE with 0.

Suppose Player E picks x1 = 1, then Player A picks x2 = 0, and,
finally, Player E picks x3 = 1.

With these values for x1, x2 and x3, (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3)
evaluates to 1, so Player E has won the game.

In fact, Player E may always win this game by selecting x1 = 1 and
then selecting x3 to be the negation of whatever Player A selects for
x2. We say that Player E has a winning strategy for this game.

In general, a player has a winning strategy for a game if that player
wins when both sides play optimally.
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Formula Game is Complete for Polynomial Space

We consider the problem of determining which player has a winning
strategy in the formula game associated with a formula:

FormulaGame = {〈φ〉 : Player E has a winning strategy in
the formula game associated with φ}.

Theorem

FormulaGame is PSPACE-complete.

FormulaGame is PSPACE-complete because it is TQBF.

The formula φ = ∃x1 ∀x2 ∃x3 · · · [ψ] is TRUE when some setting for
x1 exists such that, for any setting of x2, a setting of x3 exists such
that, and so on, where ψ is TRUE under the settings of the variables.
Similarly, Player E has a winning strategy in the game associated with
φ when Player E can make some assignment to x1, such that, for any
setting of x2, Player E can make an assignment to x3, such that, and
so on, ψ is TRUE under these settings of the variables. The same
reasoning applies when the formula does not alternate quantifiers.
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The Game of Geography

Geography is a child’s game in which players take turns naming cities
from anywhere in the world. Each city chosen must begin with the
same letter that ended the previous city’s name. Repetition is not
permitted.

The game starts with some designated starting city.
It ends when some player loses because he/she is unable to continue.

Example: Peoria; Amherst; Tucson; Nashua; · · ·; Until one player gets
stuck and thereby loses.

We can model this game with a directed
graph whose nodes are the cities of the
world. We draw an arrow from one city
to another if the first can lead to the sec-
ond according to the game rules, i.e., the
graph contains an edge from a city X to a
city Y if city X ends with the same letter
that begins city Y.
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Generalized Geography

In Geography, as interpreted in terms of the graphic representation:
A player starts by selecting the designated start node.
The players take turns alternately by picking nodes that form a simple
path in the graph. The path being simple (i.e., not using any node
more than once) reflects the requirement that a city not be repeated.
The first player unable to extend the path loses the game.

In generalized geography we take an arbitrary directed graph with a
designated start node instead of the graph associated with the actual
cities:
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Winning Strategy in Generalized Geography

Say that Player I moves first and Player II second.

Player I has a winning strategy: He
starts at node 1. His first move must
be to node 2 or 3 and he chooses 3.
Now Player II must move, and she is
forced to select node 5. Then Player
I selects 6. And Player II is stuck.
Thus, Player I wins.

The problem of determining which player has a winning strategy in a
generalized geography game is PSPACE-complete:

GG = {〈G , b〉 : Player I has a winning strategy for the generalized
geography game played on G starting at node b}.
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Generalized Geography is PSPACE-Complete

Theorem

GG is PSPACE-complete.

A recursive algorithm, similar to the one used for TQBF, determines
which player has a winning strategy. It runs in polynomial space and,
thus, GG ∈ PSPACE.

To prove that GG is PSPACE-hard, we give a polynomial time
reduction from FormulaGame to GG.

This reduction converts a formula game to a generalized geography
graph so that play on the graph mimics play in the formula game.
The players in the generalized geography game are really playing an
encoded form of the formula game.
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Generalized Geography is in PSPACE

The following algorithm decides whether Player I has a winning
strategy in instances of generalized geography, i.e., it decides GG:

M: On input 〈G , b〉, with G a directed graph and b a node of G :

1. If b has outdegree 0, reject, because Player I loses immediately.
2. Remove node b and all connected arrows to get a new graph G1.
3. For each of the nodes b1, b2, . . . , bk that b originally pointed at,

recursively call M on 〈G1, bi〉.
4. If all of these accept, Player II has a winning strategy in the original

game, so reject. Otherwise, Player II does not have a winning strategy,
so Player I must; therefore accept.

The only space required is for storing the recursion stack.

Each level of the recursion adds a single node to the stack;
At most m levels occur, where m is the number of nodes in G .

Hence the algorithm runs in linear space.
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Generalized Geography is PSPACE-hard

We show that FormulaGame is polynomial time reducible to GG.

The reduction maps the formula

φ = ∃x1 ∀x2 ∃x3 · · ·Qxk [ψ]

to an instance 〈G , b〉 of generalized geography.
We assume for simplicity that:

φ’s quantifiers begin and end with ∃;
They strictly alternate between ∃ and ∀.

A formula that does not conform to this assumption may be
converted to a slightly larger one that does so, by adding extra
quantifiers binding otherwise unused or “dummy” variables.

We assume also that ψ is in conjunctive normal form.

The reduction constructs a geography game on a graph G where
optimal play mimics optimal play of the formula game on φ.

Player I in the geography game takes the role of Player E in the
formula game;
Player II takes the role of Player A.
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Left Part of the Geography Graph G

The structure of graph G is partially shown below:

Play starts at b. Player I must select one of the
two edges going from b. These correspond to
Player E’s initial possible choices:

The left-hand choice for Player I corresponds
to TRUE for Player E in the formula game;
The right-hand choice to FALSE.

After Player I has selected one of these edges,
say, the left-hand one, Player II moves. Only
one outgoing edge is present, so this move is
forced.

Player I’s next move is also forced.
Now two edges again are present, but Player II gets the choice. This
choice corresponds to Player A’s first move in the formula game.
Players I and II choose a path through each of the diamonds.

At the bottom node, it is Player I’s turn because the last quantifier is
∃. Player I’s next move is forced and we end up at c .
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Right Part of the Geography Graph G

At this point Player II has the next move. This point in the
geography game corresponds to the end of play in the formula game.

The chosen path corresponds to an assignment to φ’s variables:

If ψ is TRUE, Player E wins;
If ψ is FALSE, Player A wins.

The righthand side of the graph
guarantees that

Player I can win if Player E has
won;

Player II can win if Player A
has won.
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Gaming on the Right Side

At c , Player II chooses a node
corresponding to one of ψ’s clauses.

Then Player I chooses a node
corresponding to a literal in clause.

The nodes corresponding to
unnegated literals are connected to
the left-hand (TRUE) sides of the
diamond for associated variables;
For negated literals to right-hand
(FALSE) sides.

If ψ is FALSE, Player II may win by selecting the unsatisfied clause.
Any literal that Player I may pick is FALSE. So it is connected to the
side of the diamond that has not yet been played. Player II may play
the node in the diamond. Player I is unable to move and loses.
If ψ is TRUE, any clause that Player II picks contains a TRUE literal.
Player I selects that literal. Being TRUE, it is connected to the side
that has already been played. Player II is unable to move and loses.
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Subsection 5

The Classes L and NL
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Turing Machine Model for Sublinear Space

We have considered only time and space complexity bounds that are
at least linear. Now we turn to smaller, sublinear space bounds.

In time complexity, sublinear bounds are insufficient for reading the
entire input.
In sublinear space complexity the machine is able to read the entire
input but it does not have enough space to store the input. For this to
be meaningful, we must modify the model of computation.

We introduce a Turing machine with two tapes:
A read-only input tape;
A read/write work tape.

On the read-only tape the input head can detect symbols but not
change them. The machine can detect when the head is at the
left-hand and right-hand ends of the input so that the input head
must remain on the portion of the tape containing the input.

The work tape may be read and written in the usual way. Only the
cells scanned on the work tape contribute to the space complexity of
this type of Turing machine.
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The Classes L and NL

Sublinear space algorithms allow the computer to manipulate the data
without storing all of it in main memory.

For space bounds that are at least linear, the two-tape TM model is
equivalent to the standard one-tape model.

For sublinear space bounds, we use only the two-tape model:

Definition (The Classes L and NL)

L is the class of languages that are decidable in logarithmic space on a
deterministic Turing machine. In other words,

L = SPACE(log n).

NL is the class of languages that are decidable in logarithmic space on a
nondeterministic Turing machine. In other words,

NL = NSPACE(log n).
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A Language in Log Space

The choice of log n space is based on reasons similar to those for
selecting polynomial time and space:

Logarithmic space is just large enough to solve interesting problems.
It has attractive mathematical properties such as robustness.

Since pointers into the input may be represented in logarithmic space,
log-space algorithms correspond to a fixed number of input pointers.
Example: The language A = {0k1k : k ≥ 0} is a member of L. We
described a Turing machine that decides A by zigzagging back and
forth across the input, crossing off the 0s and 1s as they are matched.
That algorithm uses linear space to record which positions have been
crossed off. It can be modified to use only log space:
The log space TM for A cannot cross off the 0s and 1s because input
tape is read-only. Instead, the machine counts the number of 0s and
1s in binary on the work tape. The only space required is that used to
record the two counters. In binary, each counter uses only logarithmic
space. Hence the algorithm runs in O (log n) space and A ∈ L.
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A Language in Nondeterministic Log Space

Recall the language

Path = {〈G , s, t〉 : G is a directed graph that has
a directed path from s to t}.

We saw that Path is in P.

The algorithm provided uses linear space. It is not known whether
Path can be solved in logarithmic space deterministically.
We have a nondeterministic log space algorithm for Path:

Start at node s and nondeterministically guess a node from s.
Record only the position of the current node on the work tape.
Then nondeterministically select the next node from among those
pointed at by the current node.
Repeat this action until:

Node t is reached, whence accept; or
m steps have been completed and reject, where m is the number of
nodes in the graph.

Thus, Path is in NL.
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Configurations of a Machine

The claim that any f (n) space bounded Turing machine also runs in
time 2O(f (n)) is no longer true for very small space bounds.

Example: A Turing machine that uses O (1) (i.e., constant) space
may run for n steps.

Definition (Machine Configuration)

If M is a Turing machine that has a separate read-only input tape and w is
an input, a configuration of M on w is a setting of the state, the work
tape, and the positions of the two tape heads.
The input w is not a part of the configuration of M on w .

If M runs in f (n) space and w is an input of length n, the number of
configurations of M on w is n2O(f (n)).

If M has c states and g tape symbols, the number of strings that can
appear on the work tape is g f (n). The input head can be in one of n
positions and the work tape head can be in one of f (n) positions. So,
total number of configurations of M on w is cnf (n)g f (n), or n2O(f (n)).
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Time vs Space and Savitch’s Theorem for Log Space

We focus on space bounds f (n) that are at least log n.

The claim that the time complexity of a machine is at most
exponential in its space complexity remains true for such bounds:

We have n2O(f (n)) is 2O(f (n)) when f (n) ≥ log n.

Savitch’s theorem shows that we can convert nondeterministic TMs
to deterministic TMs and increase the space complexity f (n) by only
a squaring, provided that f (n) ≥ n.

Savitch’s theorem can be extended for sublinear space bounds down
to f (n) ≥ log n.

The proof is identical to the original, except that we use Turing
machines with a read-only input tape and instead of referring to
configurations of N we refer to configurations of N on w . Storing a
configuration of N on w uses log (n2O(f (n))) = log n+O(f (n)) space.
If f (n) ≥ log n, the storage used is O (f (n)). The remainder of the
proof remains the same.
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Subsection 6

NL-Completeness
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L and NL

The Path problem is known to be in NL but not known to be in L.
Path is thought not to belong to L, but no proof exists.

More generally, no problem in NL exists that is known to be outside L.

Analogous to the question of whether P = NP we have the question
of whether L = NL.

We can exhibit certain languages that are NL-complete, i.e., that are,
in a certain sense, the most difficult languages in NL.

If L and NL are different, all NL-complete languages cannot be in L.

We define an NL-complete language to be one which is in NL and to
which any other language in NL is reducible.

One cannot use polynomial time reducibility because all problems in
NL are solvable in polynomial time, so every two problems in NL
except ∅ and Σ∗ polynomial time reduce to one another.

Since polynomial time reducibility is too strong to differentiate
problems in NL, we use log space reducibility.

George Voutsadakis (LSSU) Computational Complexity September 2014 54 / 70



Space Complexity NL-Completeness

Log Space Reducibility and NL-Completeness

Definition (Log Space Reducibility)

A log space transducer is a Turing machine with a read-only input tape,
a write only output tape, and a read/write work tape. The work tape may
contain O (log n) symbols. A log space transducer M computes a

function f : Σ∗ → Σ∗, where f (w) is the string remaining on the output
tape after M halts when it is started with w on its input tape. We call f a
log space computable function.
Language A is log space reducible to language B , written A ≤L B , if A is
mapping reducible to B by means of a log space computable function f .

Definition (NL-Complete Language)

A language B is NL-complete if

1. B ∈ NL;

2. Every A in NL is log space reducible to B .
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Log Space and Log Space Reducibility

If one language is log space reducible to another language already
known to be in L, the original language is also in L:

Theorem

If A ≤L B and B ∈ L, then A ∈ L.

A tempting approach to get a log space algorithm for A would be to:

first map its input w to f (w), using the log space reduction f ;
then apply the log space algorithm for B.

However, the storage required for f (w) may be too large to fit within
the log space bound.
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A Valid Proof

Theorem

If A ≤L B and B ∈ L, then A ∈ L.

A’s machine MA computes individual symbols of f (w) as requested by
B ’s machine MB .
In the simulation, MA keeps track of where MB ’s input head would be
on f (w). Every time MB moves, MA restarts the computation of f on
w from the beginning and ignores all the output except for the desired
location of f (w). Doing so may require occasional recomputation of
parts of f (w) and so is inefficient in its time complexity. The
advantage of this method is that only a single symbol of f (w) needs
to be stored at any point, in effect trading time for space.
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If L 6= NL no NL-Complete Language is in L

Corollary

If any NL-complete language is in L, then L = NL.

Clearly, L ⊆ NL.

Suppose A ∈ NL. Let B ∈ L be NL-complete. Then, A ≤L B ,
whence, by the theorem, A ∈ L. Thus, NL ⊆ L.
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Searching in Graphs

Theorem

Path is NL-complete.

We saw that Path is in NL. Thus, it suffices to show that Path is
NL-hard, i.e., that every language A in NL is log space reducible to
Path.

We construct a graph that represents the computation of the
nondeterministic log space Turing machine for A. The reduction maps
a string w to a graph whose nodes correspond to the configurations
of the NTM on input w . One node points to a second node if the
corresponding first configuration can yield the second configuration in
a single step of the NTM. Hence, the machine accepts w whenever
some path from the node corresponding to the start configuration
leads to the node corresponding to the accepting configuration.
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NL-Completeness of Path

We give a log space reduction from any A in NL to Path. Suppose
the NTM M decides A in O (log n) space. Given an input w , we
construct 〈G , s, t〉 in log space, where G is a directed graph that
contains a path from s to t if and only if M accepts w .

The nodes of G are the configurations of M on w .
For configurations c1 and c2 of M on w , (c1, c2) is an edge of G if c2 is
one of the possible next configurations of M starting from c1.
Node s is the start configuration of M on w .
Machine M is modified to have a unique accepting configuration,
which is designated to be node t.

This mapping reduces A to Path:

If M accepts, some branch of its computation accepts. Thus, a path
from the start configuration s to the accepting configuration t in G

exists.
Conversely, if some path exists from s to t in G , some computation
branch accepts when M runs on input w . Thus, M accepts w .
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Reduction from A to Path is in Log Space

The reduction operates in log space: To see this, we describe a log
space transducer which, on input w , outputs a description of G . The
description comprises two lists: G ’s nodes and G ’s edges.

Listing the nodes is easy because each node is a configuration of M on
w and can be represented in c log n space for some constant c . The
transducer sequentially goes through all possible strings of length
c log n, tests whether each is a legal configuration of M on w , and
outputs those that pass the test.
The transducer lists the edges similarly. Log space is sufficient for
verifying that a configuration c1 of M on w can yield configuration c2
because the transducer only needs to examine the actual tape contents
under the head locations given in c1 to determine that M ’s transition
function would give configuration c2 as a result. The transducer tries
all pairs (c1, c2) in turn to find which qualify as edges of G . Those that
do are added to the output tape.
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Consequences for the Complexity Class Hierarchy

Corollary

NL ⊆ P.

The theorem shows that any language in NL is log space reducible to
Path. A Turing machine that uses space f (n) runs in time n2O(f (n)).
Thus, a reducer that runs in log space also runs in polynomial time.
Therefore, any language in NL is polynomial time reducible to Path,
which in turn is in P . Every language that is polynomial time
reducible to a language in P is also in P, which completes the proof.

Despite the restrictiveness of log space reducibility, it is sufficient for
many reductions:

The reduction of any PSPACE problem to TQBF, presented earlier,
may be computed using only log space. Thus, TQBF is PSPACE-
complete with respect to log space reducibility.
This conclusion is important in view of NL ( PSPACE. This separation
with log space reducibility implies that TQBF 6∈ NL.
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Subsection 7

NL Equals coNL
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NL = coNL

Recall that the classes NP and coNP are generally believed to be
different.

At first glance, the same appears to hold for the classes NL and
coNL, but, in fact, NL equals coNL.

Theorem

NL = coNL.

We show that Path is in NL. Since Path is NL-complete, this shows
that every problem in coNL is also in NL.

The NL algorithm M for Path must have an accepting computation
whenever the input graph G does not contain a path from s to t.

We first tackle an easier problem: Let c be the number of nodes in G

that are reachable from s. We assume that c is provided as an input
to M and show how to use c to solve Path. Later we show how to
compute c .
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The Simplified Problem
Given G , s, t and c , the machine M operates as follows:

One by one, M goes through all m nodes of G and nondeterministically
guesses whether each one is reachable from s.
Whenever a node u is guessed to be reachable, M attempts to verify
this guess by guessing a path of length m or less from s to u.

If a computation branch fails to verify this guess, it rejects.
In addition, if a branch guesses that t is reachable, it rejects.

Machine M counts the number of nodes that have been verified to be
reachable.
When a branch has gone through all of G ’s nodes, it checks that the
number of nodes that it verified to be reachable from s equals c , the
number of nodes that actually are reachable.

It rejects if not.
Otherwise, this branch accepts.

In summary:
M nondeterministically selects exactly c nodes reachable from s, not
including t, and proves that each is reachable from s by guessing the
path. The remaining nodes, including t, are not reachable, so it can
accept.
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The Original Problem: Set Up and Main Idea

We show how to calculate c , the number of nodes reachable from s.

We describe a nondeterministic log space procedure, such that at
least one computation branch has the correct value for c and all other
branches reject.

For each i = 0, . . . ,m, we define Ai to be the collection of nodes that
are at a distance of i or less from s.

A0 = {s};
Ai ⊆ Ai+1;
Am contains all nodes that are reachable from s.

Let ci be the number of nodes in Ai .

We describe a procedure that calculates ci+1 from ci . Repeated
application of this procedure yields the desired value of c = cm.
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The Original Problem: Computing ci+1 from ci

To calculate ci+1 from ci , the algorithm goes through all the nodes of
G , determines whether each is a member of Ai+1, and counts the
members.

To determine whether a node v is in Ai+1, we use an inner loop to go
through all the nodes of G and guess whether each node is in Ai .

Each positive guess is verified by guessing the path of length at most i
from s.
For each node u verified to be in Ai , the algorithm tests whether (u, v)
is an edge of G . If it is an edge, v is in Ai+1.
Additionally, the number of nodes verified to be in Ai is counted.

At the completion of the inner loop:

If the total number of nodes verified to be in Ai is not ci , all Ai have
not been found, so this computation branch rejects.
If the count equals ci and v has not yet been shown to be in Ai+1, we
conclude that it is not in Ai+1.

Then we go on to the next v in the outer loop.
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The Formal Algorithm I

The algorithm for Path: Let m be the number of nodes of G .
M: On input 〈G , s, t〉:

1. Let c0 = 1.

2. For i = 0 to m − 1:

3. Let ci+1 = 1.
4. For each node v 6= s in G :

5. Let d = 0.
6. For each node u in G :
7. Nondeterministically either perform or skip these steps:
8. Nondeterministically follow a path of length at most i from s and

reject if it does not end at u.
9. Increment d .

10. If (u, v) is an edge of G , increment ci+1 and go to Stage 5 with
the next v .

11. If d 6= ci , then reject.
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The Formal Algorithm II

12. Let d = 0.

13. For each node u in G :
14. Nondeterministically either perform or skip these steps:

15. Nondeterministically follow a path of length at most m from s and
reject if it does not end at u.

16. If u = t, then reject.
17. Increment d .

18. If d 6= cm, then reject. Otherwise, accept.

This algorithm only needs to store u, v , ci , ci+1, d , i , and a pointer to the
head of a path, at any given time. Hence, it runs in log space.
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State of the Art in Class Relationships

Our present knowledge of the relationships among several complexity
classes is as follows:

L ⊆ NL = coNL ⊆ P ⊆ PSPACE.

We do not know whether any of these containments is proper,
although we will show that NL ( PSPACE.

Consequently, either coNL ( P or P ( PSPACE must hold.

The current belief is that all these containments are proper.
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