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Intractability

Introduction

Computational problems, solvable in principle, but with solutions
requiring so much time or space that they cannot be used in practice,
are called intractable.

Several problems we have seen are thought to be intractable but none
have been proven to be intractable. E.g., the Sat problem and all
other NP-complete problems.

We visit examples of problems that can be shown to be intractable.

We also develop several theorems that relate the power of Turing
machines to the amount of time or space available for computation.

We close with a discussion of the possibility of proving that problems
in NP are intractable, thereby solving the P versus NP question.

In summary, the topics we discuss are:
The relativization technique that is used to show that certain methods
are unsuitable for resolving the P versus NP.
Circuit complexity theory, which is believed to be a promising approach.
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Intractability Hierarchy Theorems

Subsection 1

Hierarchy Theorems
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Intractability Hierarchy Theorems

Space Constructible Functions

Intuition suggests that giving a Turing machine more time or more
space should increase the class of problems that it can solve.

The hierarchy theorems prove that this intuition is correct, subject to
certain conditions.

We start with the hierarchy theorem for space complexity.

Definition (Space Constructible Function)

A function f : N→ N, where f (n) is at least O (log n), is called space

constructible if the function that maps the string 1n to the binary
representation of f (n) is computable in space O (f (n)).

Note that f is space constructible if some O (f (n)) space TM M

exists that always halts with the binary representation of f (n) on its
tape when started on input 1n.

Fractional functions, e.g., n log2 n and
√
n, are rounded down to the

next lower integer for the purposes of time and space constructibility.
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Intractability Hierarchy Theorems

Remarks on Space Constructibility

All commonly occurring functions that are at least O (log n) are space
constructible, including the functions log2 n, n log2 n and n2.
Example: n2 is space constructible because a machine may take its
input 1n:

Obtain n in binary by counting the number of 1s;
Multiply n · n using any standard multiplication method;
Output n2.

The total space used is O (n) which is O
(

n2
)

.

When showing functions f (n) that are o (n) to be space constructible,
we use a separate read only input tape, as we did with sublinear space
complexity.
Example: Such a machine can compute the function which maps 1n

to the binary representation of log2 n as follows:
It first counts the number of 1s in its input in binary, using its work
tape as it moves its head along the input tape.
With n in binary on its work tape, it can compute log2 n by counting
the number of bits in the binary representation of n.
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Intractability Hierarchy Theorems

The Role of Space Constructibility

If f (n) and g(n) are two space bounds, where f (n) is asymptotically
larger than g(n), we would expect a machine to be able to compute
more languages in f (n) space than in g(n) space.

Consider, however, the case in which f (n) exceeds g(n) by only a very
small and hard to compute amount.

Then, the machine may not be able to use the extra space profitably,
since even computing the amount of extra space may require more
space than is available.

In such a case, a machine may not be able to compute more
languages in f (n) space than it can in g(n) space.

Imposing space constructibility on f (n) avoids this situation and
allows proving that a machine can compute more than it would in any
asymptotically smaller bound.
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Intractability Hierarchy Theorems

Space Hierarchy Theorem

The Space Hierarchy Theorem

For any space constructible function f : N→ N, a language A exists that
is decidable in O (f (n)) space but not in o (f (n)) space.

We must demonstrate a language A that has two properties:

A is decidable in O (f (n)) space.
A is not decidable in o (f (n)) space.

We describe A by giving an algorithm D that decides it:

D runs in O (f (n)) space, ensuring the first property.
Furthermore, D guarantees that A is different from any language that
is decidable in o (f (n)) space, ensuring the second property.

In order to ensure that A is not be decidable in o (f (n)) space, we use
the diagonalization method: If M is a TM that decides a language in
o (f (n)) space, D guarantees that A differs from M’s language in at
least one place. The place corresponds to a description of M itself.
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Intractability Hierarchy Theorems

Essentials of the Operation of D

D takes its input to be the description of a TM M.

D runs M on input 〈M〉 within the space bound f (n).

If M halts within that much space, D accepts iff M rejects.
If M does not halt, D just rejects.

Thus:

If M runs within space f (n), D has enough space to ensure that its
language is different from M ’s.
If not, D does not have enough space to figure out what M does, but
fortunately D has no requirement to act differently from machines that
do not run in o (f (n)) space. So D’s action on this input is
inconsequential.
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Intractability Hierarchy Theorems

Critical Remarks on the Operation of D

If M runs in o (f (n)) space, D must guarantee that its language is
different from M’s language.
But even when M runs in o (f (n)) space, it may use more than f (n)
space for small n, before assuming the asymptotic behavior. Possibly,
D might not have enough space to run M to completion on input
〈M〉. Hence, D will miss its one opportunity to avoid M’s language.

We modify D to give it additional opportunities to avoid M ’s language.
Instead of running M only on input 〈M〉, it runs M also on inputs of
the form 〈M〉10∗. If M really is running in o (f (n)) space, D will have
enough space to run it to completion on input 〈M〉10k for some large
value of k because the asymptotic behavior must eventually kick in.

When D runs M on some string, M may get into an infinite loop
while using only a finite amount of space. But D is supposed to be a
decider, so we must ensure that D does not loop while simulating M.

Any machine that runs in space o (f (n)) uses only 2o(f (n)) time. We
modify D so that it counts the number of steps used in simulating M .
If this count ever exceeds 2f (n), then D rejects.
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Intractability Hierarchy Theorems

The Algorithm D

The following O (f (n)) space algorithm D decides a language A that
is not decidable in o (f (n)) space:
D: On input w :
1. Let n be the length of w .
2. Compute f (n) using space constructibility, and mark off this much

tape. If later stages ever attempt to use more, reject.
3. If w is not of the form 〈M〉10∗ for some TM M , reject.
4. Simulate M on w while counting the number of steps used in the

simulation. If the count ever exceeds 2f (n), reject.
5. If M accepts, reject. If M rejects, accept.

In Stage 4 the simulated TM M has an arbitrary tape alphabet and D

has a fixed tape alphabet. So each cell of M’s tape is represented
with several cells on D’s tape. Therefore, the simulation introduces a
constant factor overhead in the space used, i.e., if M runs in g(n)
space, then D uses dg(n) space to simulate M for some constant d
that depends on M.

George Voutsadakis (LSSU) Computational Complexity September 2014 11 / 62



Intractability Hierarchy Theorems

The Language that Algorithm D Decides

Machine D is a decider because each of its stages can run for a
limited time.

Let A be the language that D decides.

A is decided by D in space O (f (n)).
A is not decidable in o (f (n)) space: Assume to the contrary that some
Turing machine M decides A in space g(n), where g(n) is o (f (n)). D
can simulate M , using space dg(n), for some constant d . Because
g(n) is o (f (n)), some constant n0 exists, such that dg(n) < f (n), for
all n ≥ n0. Therefore, D’s simulation of M will run to completion so
long as the input has length n0 or more.
When D is run on input 〈M〉10n0 , which is longer than n0, the
simulation in Stage 4 will complete. Therefore, D will do the opposite
of M on the same input. Hence, M does not decide A, contradicting
our assumption. Therefore, A is not decidable in o (f (n)) space.
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Intractability Hierarchy Theorems

Separating Polynomial Space Complexity Classes

Corollary

For any two functions f1, f2 : N→ N, where f1(n) is o (f2(n)) and f2 is
space constructible, SPACE(f1(n)) ( SPACE(f2(n)).

This corollary separates various space complexity classes.

The function nc is space constructible for any natural number c .
Hence, for any natural numbers c1 < c2, SPACE(n

c1 ) ( SPACE(nc2).
A bit more work yields that nc is space constructible for any rational
number c > 0 and helps extend the preceding containment to hold for
any rational numbers 0 < c1 < c2.
Observing that two rational numbers c1 and c2 always exist between
any two real numbers ǫ1 < ǫ2, such that ǫ1 < c1 < c2 < ǫ2, we obtain:

Corollary

For any two real numbers 0 < ǫ1 < ǫ2, SPACE(n
ǫ1) ( SPACE(nǫ2).
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Intractability Hierarchy Theorems

Non-Deterministic Logarithmic and Polynomial Space

The space hierarchy theorem also separates two space complexity
classes encountered before:

Corollary

NL ( PSPACE.

Savitch’s theorem shows that NL ⊆ SPACE(log2 n). The space
hierarchy theorem shows that SPACE(log2 n) ( SPACE(n). Hence,
the corollary follows.

This separation shows that TQBF 6∈ NL because TQBF is
PSPACE-complete with respect to log space reducibility.
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Intractability Hierarchy Theorems

Existence of Intractable Languages

We establish the existence of problems that are decidable in principle
but not in practice, i.e., problems that are decidable but intractable.

By hierarchy, SPACE(nk) ( SPACE(nlog n) ( SPACE(2n). Therefore,

we can separate PSPACE from EXPSPACE =
⋃

k SPACE(2
nk ):

Corollary

PSPACE ( EXPSPACE.

This corollary establishes the existence of decidable problems that are
intractable, in the sense that their decision procedures must use more
than polynomial space.

The languages themselves are somewhat artificial - interesting only for
the purpose of separating complexity classes. We use them later to
prove the intractability of other, more natural, languages.
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Intractability Hierarchy Theorems

Time Constructible Functions

Definition (Time Constructible Function)

A function t : N→ N, where t(n) is at least O (n log n), is called time

constructible if the function that maps the string 1n to the binary
representation of t(n) is computable in time O (t(n)).

Thus, t is time constructible if some O (t(n)) time TM M exists that
always halts with the binary t(n) on its tape when started on 1n.

Example: All commonly occurring functions that are at least n log n
are time constructible, including n log n, n

√
n, n2 and 2n.

To see that n
√
n is time constructible:

First, design a TM to count the number of 1s in binary.
The TM moves a binary counter along the tape, incrementing it by 1
for every input position. This part uses O (n log n) steps because
O (log n) steps are used for each of the n input positions.

Then, we compute n
√
n in binary from the binary representation of n.

Any reasonable method needs O (n log n) time because the length of
the numbers involved is O (log n).
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Intractability Hierarchy Theorems

The Time Hierarchy Theorem

Time Hierarchy Theorem

For any time constructible function t : N→ N, a language A exists that is

decidable in O (t(n)) time but not decidable in time o
(

t(n)
log t(n)

)

.

We construct a TM D that decides a language A in time O (t(n)),

where A cannot be decided in o
(

t(n)
log t(n)

)

time. D takes an input w

of the form 〈M〉10∗ and simulates M on input w , making sure not to
use more than t(n) time. If M halts within that much time, D gives
the opposite output.

In counting the number of steps used while simulating M, D incurs a
time cost. The simulation must be efficient so that D runs in
O (t(n)) time while avoiding all languages decidable in o

(

t(n)
log t(n)

)

time. The simulation introduces a logarithmic factor overhead, which
is the reason for the 1

log t(n) factor in the statement.
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Intractability Hierarchy Theorems

Description of the Algorithm D

The following O (t(n)) time algorithm D decides a language A that is

not decidable in o
(

t(n)
log t(n)

)

time:

D: On input w :
1. Let n be the length of w .

2. Compute t(n) using time constructibility, and store the value t(n)
log t(n) in

a binary counter. Decrement this counter before each step used to
carry out stages 3, 4, and 5. If the counter ever hits 0, reject.

3. If w is not of the form 〈M〉10∗ for some TM M , reject.
4. Simulate M on w .
5. If M accepts, then reject. If M rejects, then accept.

We examine each stage to determine the running time.
Stages 1, 2 and 3 can be performed within O (t(n)) time.
In Stage 4, every time D simulates one step of M , it takes M ’s current
state together with the tape symbol under M ’s tape head and looks up
M ’s next action in its transition function so that it can update M ’s
tape appropriately. All three of these objects (state, tape symbol, and
transition function) are stored on D’s tape somewhere.
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Intractability Hierarchy Theorems

Stage 4: Organizing D’s Tape into “Tracks”

To keep D efficient, the information needed in Stage 4 to simulate M,
has to be stored close together.

We can think of D’s single tape as organized into tracks.

One way to get two tracks is by storing one track in the odd positions
and the other in the even positions.
Another, by enlarging D ’s tape alphabet to include each pair of
symbols, one from the top track and the second from the bottom track.

We can get the effect of additional tracks similarly. Multiple tracks
introduce only a constant factor overhead in time, provided that only a
fixed number of tracks are used.

D has three tracks.
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Intractability Hierarchy Theorems

Stage 4: Simulating Machine M

One of the tracks contains the information on M ’s tape.

A second contains its current state and a copy of M ’s transition function.
During the simulation, D keeps the information on the second track near the
current position of M ’s head on the first track. If M ’s head position moves,
D shifts this information to keep it near the head. Because the size of the
information on the second track depends only on M and not on the length of
the input to M , the shifting needs constant time. Furthermore, because the
required information is kept close together, the cost of looking up M ’s next
action in its transition function and updating its tape is only a constant.

If M runs in g(n) time, D can simulate it in O (g(n)) time.

At every step in Stages 3 and 4, D must decrement the step counter
originally set in Stage 2. D keeps the counter in binary on a third track and
moves it to keep it near the present head position. This counter has a

magnitude of about t(n)
log t(n) , so its length is log t(n)

log t(n) , which is O (log t(n)).

The cost of updating and moving it at each step adds a log t(n) factor to
the simulation time, thus bringing the total running time to O (t(n)).
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Intractability Hierarchy Theorems

A not Decidable in o (t(n)/ log t(n)) Time

A is not decidable in o (t(n)/ log t(n)):

Assume to the contrary that TM M decides A in time g(n), where
g(n) is o (t(n)/ log t(n)). D can simulate M, using time dg(n), for
some constant d . If the total simulation time (not counting the time

to update the step counter) is at most t(n)
log t(n) , the simulation will run

to completion. Because g(n) is o
(

t(n)
log t(n)

)

, some constant n0 exists

where dg(n) < t(n)
log t(n) , for all n ≥ n0. Therefore D’s simulation of M

will run to completion as long as the input has length n0 or more.

We run D on input 〈M〉10n0 : This input is longer than n0 so the
simulation in Stage 4 will complete. Therefore D will do the opposite
of M on the same input. Hence, M does not decide A, which
contradicts our assumption.

Therefore A is not decidable in o
(

t(n)
log t(n)

)

time.
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Intractability Hierarchy Theorems

Consequences of Time Hierarchy

Corollary

For any two functions t1, t2 : N→ N, where t1(n) is o
(

t2(n)
log t2(n)

)

and t2 is

time constructible,
TIME(t1(n)) ( TIME(t2(n)).

Corollary

For any two real numbers 1 ≤ ǫ1 < ǫ2,

TIME(nǫ1) ( TIME(nǫ2).

Corollary

P ( EXPTIME.
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Intractability Exponential Space Completeness

Subsection 2

Exponential Space Completeness
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Intractability Exponential Space Completeness

Intractability and Regular Expressions

We can use the preceding results to show that a specific language is
actually intractable. We follow several steps:

First, the hierarchy theorems tell us that a Turing machine can decide
more languages in EXPSPACE than it can in PSPACE.
Then, we show that a particular language concerning generalized
regular expressions is complete for EXPSPACE and hence cannot be
decided in polynomial time or even in polynomial space.

Recall that regular expressions are built up from the atomic
expressions ∅, ε and members of the alphabet, by using the regular
operations union, concatenation, and star, denoted ∪, ◦ and ∗,
respectively.

It can be shown that we can test the equivalence of two regular
expressions in polynomial space.

We show that, by allowing regular expressions with more operations
than the usual regular operations, the complexity of analyzing the
expressions may grow dramatically.
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Intractability Exponential Space Completeness

Generalized Regular Expressions

Let ↑ be the exponentiation operation. If R is a regular expression
and k is a nonnegative integer, writing R ↑ k is equivalent to the
concatenation of R with itself k times. The notation Rk is shorthand
for R ↑ k :

Rk = R ↑ k = R ◦ R ◦ · · · ◦ R .
Generalized regular expressions allow the exponentiation operation
in addition to the usual regular operations.

Generalized regular expressions still generate the same class of regular
languages as do the standard regular expressions.

EQREX↑ = {〈Q,R〉 : Q and R are equivalent regular expressions
with exponentiation}.

To show that EQREX↑ is intractable, we demonstrate that it is
complete for the class EXPSPACE: Any EXPSPACE-complete
problem cannot be in PSPACE, much less in P, since, otherwise,
EXPSPACE would equal PSPACE, contradicting the preceding
corollary.
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Intractability Exponential Space Completeness

EXPSPACE-Completeness

Definition (EXPSPACE-Complete Language)

A language B is EXPSPACE-complete if

1. B ∈ EXPSPACE;

2. Every A in EXPSPACE is polynomial time reducible to B .

Theorem

EQREX↑ is EXPSPACE-complete.

We assume that all exponents are written as binary integers. The
length of an expression is the total number of symbols it contains.
We sketch an EXPSPACE algorithm for EQREX↑.

We first use repetition to eliminate exponentiation.
Then convert the resulting expressions to NFAs.
Finally, we use an NFA equivalence testing procedure.

To show that a language A in EXPSPACE is polynomial time
reducible to EQREX↑, we use “reductions via computation histories”.
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Intractability Exponential Space Completeness

Reduction Via Computation Histories

Given a TM M for A, we design a polynomial time reduction mapping
an input w to a pair of expressions, R1 and R2, that are equivalent
exactly when M accepts w .
The expressions R1 and R2 simulate the computation of M on w .

Expression R1 simply generates all strings over the alphabet consisting
of symbols that may appear in computation histories.
Expression R2 generates all strings that are not rejecting computation
histories.

So, if the TM accepts its input, no rejecting computation histories
exist, and expressions R1 and R2 generate the same language.

A rejecting computation history is the sequence of configurations that
the machine enters in a rejecting computation on the input.

The difficulty is that the size of the expressions constructed must be
polynomial in n (so that the reduction can run in polynomial time),
whereas the simulated computation may have exponential length.

Exponentiation helps in expressing the long computation compactly.
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Intractability Exponential Space Completeness

Nondeterministic Test for Inequivalence of NFAs

First we present a nondeterministic algorithm for testing whether two
NFAs are inequivalent:

N: On input 〈N1,N2〉, where N1 and N2 are NFAs:

1. Place a marker on each of the start states of N1 and N2.
2. Repeat 2q1+q2 times, where q1,q2 are the numbers of states in N1,N2:

3. Nondeterministically select an input symbol and change the positions of
the markers on the states of N1,N2 to simulate reading that symbol.

4. If at any point, a marker was placed on an accept state of one of the
finite automata and not on any accept state of the other finite
automaton, accept. Otherwise, reject.
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Intractability Exponential Space Completeness

Correctness and Complexity of the Inequivalence Test

If N1 and N2 are equivalent, N clearly rejects because it only accepts
when it determines that one machine accepts a string that the other
does not accept.

If the automata are not equivalent, some string is accepted by one
machine and not by the other. Some such string must be of length at
most 2q1+q2 : Otherwise, consider using the shortest such string as the
sequence of nondeterministic choices. Only 2q1+q2 different ways exist
to place markers on the states of N1 and N2, so in a longer string the
positions of the markers would repeat. By removing the portion of
the string between the repetitions, a shorter such string would be
obtained. Hence algorithm N would guess this string among its
nondeterministic choices and would accept.

Algorithm N runs in nondeterministic linear space. By applying
Savitch’s theorem, we obtain a deterministic O

(

n2
)

space algorithm
for this problem.

George Voutsadakis (LSSU) Computational Complexity September 2014 29 / 62



Intractability Exponential Space Completeness

EXPSPACE-Algorithm for EQREX↑

We design algorithm E that decides EQREX↑.

E : On input 〈R1,R2〉, where R1 and R2 are regular expressions with
exponentiation:
1. Convert R1 and R2 to equivalent regular expressions B1 and B2 that

use repetition instead of exponentiation.
2. Convert B1 and B2 to equivalent NFAs N1 and N2, using the

well-known conversion procedure from the theory of languages.
3. Use the deterministic version of N to determine if N1,N2 are equivalent.

Algorithm E obviously is correct.

Using repetition to replace exponentiation may increase the length of
an expression by a factor of 2ℓ, where ℓ is the sum of the lengths of
the exponents. Thus, B1 and B2 have a length of at most n2n, n
input length. The conversion procedure increases the size linearly and
hence NFAs N1 and N2 have at most O (n2n) states. Thus, the
deterministic version of N uses space O

(

(n2n)2
)

= O
(

n222n
)

. Hence
EQREX↑ is decidable in exponential space.
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Intractability Exponential Space Completeness

EXPSPACE-Hardness of EQREX↑ I

Next, we show that EQREX↑ is EXPSPACE-hard: Let A be a language

decided by TM M running in space 2(n
k ), for a constant k . The

reduction maps an input w to a pair of regular expressions, R1, R2.
Expression R1 is ∆∗, where, if Γ and Q are M ’s tape alphabet and
states, ∆ = Γ ∪ Q ∪ {#} is the alphabet consisting of all symbols that
may appear in a computation history.
We construct expression R2 to generate all strings that are not
rejecting computation histories of M on w .

M accepts w iff M on w has no rejecting computation histories.
Therefore, the two expressions are equivalent iff M accepts w .

A rejecting computation history for M on w is a sequence of
configurations separated by #s. We assume all configurations have

length 2(n
k ) and are padded on the right by blank symbols if they

otherwise would be too short. The first configuration is the start
configuration of M on w . The last configuration is a rejecting
configuration. Each configuration must follow from the preceding one
according to the rules specified in the transition function.
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Intractability Exponential Space Completeness

EXPSPACE-Hardness of EQREX↑ II

A string may fail to be a rejecting computation in several ways:
It may fail to start or end properly;
It may be incorrect somewhere in the middle.

Expression R2 equals Rbad−start ∪Rbad−window ∪Rbad−reject, where each
subexpression corresponds to one of the three ways a string may fail.
Rbad−start generates all strings not starting with start configuration:

Configuration C1 looks like q0w1w2 . . .wn · · · #. We write Rbad−start

as the union of several subexpressions to handle each part of C1:
Rbad−start = S0 ∪ S1 ∪ · · · ∪ Sn ∪ Sb ∪ S#.

S0 generates all strings that do not start with q0. Let S0 be ∆−q0∆
∗,

where ∆−q0 is shorthand for the union of all symbols in ∆ but q0.
S1 generates all strings that do not contain w1 in the second position.
Let S1 be ∆∆−w1∆

∗. For 1 ≤ i ≤ n, expression Si is ∆
i∆−wi

∆∗.
Sb generates all strings that fail to contain a blank symbol in some

position n + 2 through 2(n
k ). Let Sb = ∆n+1(∆ ∪ ε)2

(nk )
−n−2∆− ∆∗.

S# generates all strings that do not have a # in position 2(n
k ) + 1. Let

S# be ∆2(n
k )

∆−#∆
∗.

George Voutsadakis (LSSU) Computational Complexity September 2014 32 / 62



Intractability Exponential Space Completeness

EXPSPACE-Hardness of EQREX↑ III

We still need to construct Rbad−reject and Rbad−window:
We turn to Rbad−reject: It generates all strings that fail to contain a
rejecting configuration. Any rejecting configuration contains the state
qreject. So we let Rbad−reject = ∆∗

−qreject
.

Finally, we construct Rbad−window that generates all strings whereby one
configuration does not properly lead to the next configuration. One
configuration legally yields another whenever every three consecutive
symbols in the first configuration correctly yield the corresponding
three symbols in the second configuration according to the transition
function. Hence, if one configuration fails to yield another, the error
will be apparent from an examination of the appropriate six symbols.
We use this idea to construct:

Rbad−window =
⋃

bad(abc,def )

∆∗abc∆(2(n
k )
−2)def∆∗,

bad(abc , def ) means abc does not yield def according to the transition.

Several exponents of magnitude roughly 2(n
k ) appear, and their total

length in binary is O
(

nk
)

. Thus, the length of R is polynomial in n.
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Intractability Relativization

Subsection 3

Relativization
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Intractability Relativization

Idea of Relativization

The proof that EQREX↑ is EXPSPACE-complete uses diagonalization.

The question arises on whether diagonalization could be used to show
that a ND poly time TM can decide a language that is not in P.
The method of relativization gives strong evidence against the
possibility of solving the P versus NP question using diagonalization.

The model of computation is strengthened by giving the Turing
machine certain extra information.
Depending on which information is actually provided, the TM may be
able to solve some problems more easily than before.

Example: Suppose that we grant the TM the ability to solve the
satisfiability problem in a single step, for any size Boolean formula.
This imaginary single step solver is called an oracle. The enriched
machine could use the oracle to solve any NP problem in polynomial
time, regardless of whether P equals NP, because every NP problem
is polynomial time reducible to the satisfiability problem. The term
relativization refers to computing relative to the satisfiability problem.
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Intractability Relativization

Oracle Turing Machines

Definition (Oracle Turing Machine)

An oracle for a language A is a device that is capable of reporting whether
any string w is a member of A. An oracle Turing machine MA is a
modified Turing machine that has the additional capability of querying an
oracle. Whenever MA writes a string on a special oracle tape, it is informed
whether that string is a member of A in a single computation step.
Let PA be the class of languages decidable with a polynomial time oracle
Turing machine that uses oracle A. Define NPA analogously.

Example:

Polynomial time computation relative to the satisfiability problem
contains all of NP, i.e., NP ⊆ PSat.
Since PSat is a deterministic complexity class, it is closed under
complementation. Therefore, we also have coNP ⊆ PSat.
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Intractability Relativization

An Additional Example of an Oracle Machine

The class NPSat contains languages believed not to be in NP.

Example: Call two Boolean formulas φ and ψ over the variables
x1, . . . , xℓ equivalent if the formulas have the same value on any
assignment to the variables. Call a formula minimal if no smaller
formula is equivalent to it. Define the language

NonMinFormula = {〈φ〉 : φ is not a minimal Boolean formula}.
NonMinFormula does not seem to be in NP (though whether it
actually belongs to NP is not known). However, NonMinFormula

is in NPSat: A nondeterministic polynomial time oracle Turing
machine with a Sat oracle can test whether φ is a member:

The inequivalence problem for two Boolean formulas is solvable in NP,
since a nondeterministic machine can guess the distinguishing
assignment. Hence, the equivalence problem is in coNP.
The nondeterministic oracle machine for NonMinFormula

nondeterministically guesses a smaller equivalent formula, tests whether
it is equivalent, using the Sat oracle, and accepts if it is.
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Intractability Limits of the Diagonalization Method

Subsection 4

Limits of the Diagonalization Method

George Voutsadakis (LSSU) Computational Complexity September 2014 38 / 62



Intractability Limits of the Diagonalization Method

Oracles and the Diagonalization Method

We show the existence of oracles A and B for which:
PA and NPA are provably different;
PB and NPB are provably equal.

So, it is unlikely to resolve the P vs NP using diagonalization:
The diagonalization method is a simulation of one Turing machine by
another. The simulation is done so that the simulator can determine
the behavior of the other machine and then behave differently.
Suppose that both of these Turing machines were given identical
oracles. Then, whenever the simulated machine queries the oracle, so
can the simulator, and therefore the simulation can proceed as before.
Consequently, any theorem proved about Turing machines by using only
the diagonalization method would still hold if both machines were given
the same oracle. In particular, if we could prove that P and NP were
different by diagonalizing, we could conclude that they are different
relative to any oracle as well. But, clearly, this conclusion is false.

Similarly, no proof that relies on a simple simulation could show
P = NP, because that would show that PA = NPA, for any oracle A.
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Intractability Limits of the Diagonalization Method

The Oracle Theorem

Theorem

1. An oracle A exists, such that PA 6= NPA.

2. An oracle B exists, such that PB = NPB .

Exhibiting oracle B is easy: Let B be any PSPACE-complete problem
such as TQBF.

We exhibit oracle A by construction: We design A so that a certain
language LA in NPA provably requires brute-force search, whence LA
cannot be in PA. Hence, we can conclude that PA 6= NPA.

The construction considers every polynomial time oracle machine in
turn and ensures that each fails to decide the language LA.
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Intractability Limits of the Diagonalization Method

Proof of the Oracle Theorem

Let B be TQBF. We have
NPTQBF ⊆ NPSPACE ⊆ PSPACE ⊆ PTQBF.

Containment 1 holds because we can convert the nondeterministic
polynomial time oracle TM to a nondeterministic polynomial space
machine that computes the answers to queries regarding TQBF

instead of using the oracle.
Containment 2 follows from Savitch’s theorem.
Containment 3 holds because TQBF is PSPACE-complete.

Hence, we have PTQBF = NPTQBF.
We show, next, how to construct oracle A. For any oracle A, let LA
be the collection of all strings for which a string of equal length
appears in A: LA = {w : ∃x ∈ A(|x | = |w |)}.

For any A, the language LA is in NPA.
To show LA is not in PA, we design A as follows: Let M1,M2, . . . be a
list of all polynomial time oracle TMs. We assume for simplicity that
Mi runs in time ni . The construction proceeds in stages, where stage i

constructs a part of A, which ensures that MA
i does not decide LA.
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Intractability Limits of the Diagonalization Method

Construction of A

Stage i constructs a part of A, which ensures that MA
i does not

decide LA. We construct A by declaring that certain strings are in A

and others are not in A. Each stage determines the status of only a
finite number of strings.
Stage i : Assume a finite number of strings have already been declared
to be in or out of A. We choose n greater than the length of any such
string and such that 2n > ni . We extend our information about A so
that MA

i accepts 1n whenever that string is not in LA:
We run Mi on input 1n and respond to its oracle queries as follows:

If Mi queries a string y whose status has already been determined, we
respond consistently.
If y ’s status is undetermined, we respond NO to the query and declare y

to be out of A.

We continue the simulation of Mi until it halts.
Consider the situation from Mi ’s perspective:

If it finds a string of length n in A, it should accept since 1n is in LA.
If Mi determines that all strings of length n are not in A, it should
reject because it knows that 1n is not in LA.
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Intractability Limits of the Diagonalization Method

Construction of A (Cont’d)

We are at Stage i :
Mi does not have enough time to ask about all strings of length n, and
we have answered NO to each of the queries it has made. Hence when
Mi halts and must decide whether to accept or reject, it does not have
enough information to be sure that its decision is correct.

Our objective is to ensure that its decision is not correct. We do so by
observing its decision and then extending A with the reverse.

If Mi accepts 1
n, we declare all the remaining strings of length n to be

out of A and so determine that 1n is not in LA.
If Mi rejects 1

n, we find a string of length n that Mi has not queried
and declare that string to be in A to guarantee that 1n is in LA. Such a
string must exist because Mi runs for n

i steps, which is fewer than 2n,
the total number of strings of length n.

Either way, we have ensured that MA
i does not decide LA.

Stage i is completed and we proceed with stage i + 1.

After finishing all stages, we arbitrarily declare any string of status
still undetermined to be out of A.
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Subsection 5

Circuit Complexity
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Intractability Circuit Complexity

Boolean Circuits

Computers are built from electronic devices wired together in a design
called a digital circuit.

Boolean circuits are theoretical counterpart to digital circuits, which
can be used to simulate theoretical models, such as Turing machines.
A connection between TMs and Boolean circuits serves two purposes:

Circuits provide a convenient computational model for attacking the P
versus NP and related questions.
Circuits provide an alternative proof that Sat is NP-complete.

Definition (Boolean Circuit)

A Boolean circuit is a collection of gates
and inputs connected by wires. Cycles are
not permitted. Gates take three forms:

AND gates;

OR gates;

NOT gates.

George Voutsadakis (LSSU) Computational Complexity September 2014 45 / 62



Intractability Circuit Complexity

Gates, Inputs and Output

The wires in a Boolean circuit carry the Boolean values 0 and 1.

The gates are simple processors that compute AND, OR, and NOT:

The AND function outputs 1 if both of its inputs are 1 and 0 otherwise.
The OR function outputs 0 if both of its inputs are 0 and 1 otherwise.
The NOT function outputs the opposite of its input.

The inputs are labeled x1, . . . , xn.

One of the gates is designated the output gate.
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Intractability Circuit Complexity

Computing an Output Vale

A Boolean circuit computes an output value from a setting of the
inputs by propagating values along the wires and computing the
function associated with the respective gates until the output gate is
assigned a value:
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Intractability Circuit Complexity

Functions Computed by Boolean Circuits

To a Boolean circuit C with n input variables, we associate a function
fC : {0, 1}n → {0, 1}, where, if C outputs b when its inputs x1, . . . , xn
are set to a1, . . . , an, we write

fC (a1, . . . , an) = b.

We say that C computes the function fC .

We sometimes consider Boolean circuits with multiple output gates.
A circuit with k output gates computes a function with range {0, 1}k .
Example:

The n-input parity function parityn :
{0, 1}n → {0, 1} outputs 1 if an odd
number of 1s appear in the input vari-
ables.
The circuit shown computes parity4:
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Intractability Circuit Complexity

Circuit Families

We want to use circuits to test membership in languages, once they
have been suitably encoded into {0, 1}.
One problem is that any particular circuit can handle only inputs of
some fixed length, whereas a language may contain strings of
different lengths.

So, instead of using a single circuit to test language membership, we
use an entire family of circuits, one for each input length.

Definition (Circuit Family)

A circuit family C is an infinite list of circuits (C0,C1,C2, . . .), where Cn

has n input variables. We say that C decides a language A over {0, 1} if,
for every string w ,

w ∈ A iff Cn(w) = 1,

where n is the length of w .
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Intractability Circuit Complexity

Size and Depth Complexity of Circuit Families

The size of a circuit is the number of gates that it contains.

Two circuits are equivalent if they have the same input variables and
output the same value on every input assignment.

A circuit is size minimal if no smaller circuit is equivalent to it.

The problem of minimizing circuits has obvious engineering
applications but is very difficult to solve in general. Even testing a
particular circuit for minimality does not appear to be in P or in NP.

A circuit family for a language is minimal if every Ci on the list is a
minimal circuit.

The size complexity of a circuit family (C0,C1,C2, . . .) is the
function f : N→ N, where f (n) is the size of Cn.

The depth of a circuit is the length (number of wires) of the longest
path from an input variable to the output gate.

We define depth minimal circuits and circuit families, and the depth

complexity of circuit families, as we did with circuit size.
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Intractability Circuit Complexity

Circuit Size and Circuit Depth Complexity of Languages

Definition (Circuit Size and Circuit Depth Complexity)

The circuit size complexity of a language is the size complexity of a size
minimal circuit family for that language.
The circuit depth complexity of a language is the depth complexity of a
depth minimal circuit family for that language.

Example: We can generalize the preceding example to give circuits
that compute the parity function on n variables with O (n) gates. One
way to do so is to:

Build a binary tree of gates that compute the XOR function, where the
XOR function is the same as the 2-parity function;
Then implement each XOR gate with 2 NOTs, 2 ANDs, and 1 OR, as
we did in that earlier example.

Let A be the language of strings that contain an odd number of 1s.
Then A has circuit size complexity O (n).
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Intractability Circuit Complexity

Relating Time with Circuit Complexity

A language with small time complexity has small circuit complexity:

Theorem

Let t : N→ N be a function, where t(n) ≥ n. If A ∈ TIME(t(n)), then A

has circuit size complexity O
(

t2(n)
)

.

To prove P 6= NP one might attempt to show that some language in
NP has more than polynomial circuit size complexity.

We let M be a TM that decides A in time t(n) (ignoring the constant
in O (t(n)). For each n, we construct a circuit Cn, that simulates M
on inputs of length n. The gates of Cn are organized in rows, one for
each of the t(n) steps in M’s computation on an input of length n.
Each row represents the configuration of M at that step. Each row
calculates its configuration from the previous row’s configuration. We
modify M so that the input is encoded into {0, 1}. Moreover, when
M is about to accept, it moves its head onto the leftmost cell and
writes the symbol on that cell prior to entering the accept state.
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Intractability Circuit Complexity

Proof of the Theorem

Let M = (Q,Σ, Γ, δ, q0, qaccept, qreject) decide A in time t(n). Let w
be an input of length n to M. Define a tableau for M on w to be a
t(n)× t(n) table whose rows are configurations of M.

The top row of the tableau contains the start configuration of M on w ;
The i-th row the configuration at the i-th step of the computation.

We represent both the state and the tape symbol under the tape head
by a single character:

E.g., if M is in state q and its tape contains 1011 with the head at 0,
the old format is 1q011 and the new format 1 q0 11.

Each entry of the tableau can contain a tape symbol (member of Γ)
or a combination of a state and a tape symbol (member of Q × Γ).
The entry at the i -th row and j-th column of the tableau is cell[i , j].
We make two assumptions about TM M:
1. M accepts only when its head is on the leftmost tape cell and that cell

contains the symbol.
2. Once M has halted it stays in the same configuration for all future time

steps. So, cell[t(n), 1] determines whether M has accepted.
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Intractability Circuit Complexity

Example of a Tableau

The following is a possible tableau for M on 0010:

George Voutsadakis (LSSU) Computational Complexity September 2014 54 / 62



Intractability Circuit Complexity

Interaction Between Contents of Cells in a Tableau

The contents of each cell are determined by certain cells in the
preceding row:

Knowing the values at cell[i − 1, j− 1], cell[i − 1, j ], and cell[i − 1, j+1],
we can obtain the value at cell[i , j ] via M ’s transition function

E.g., if the three top symbols, 0, 0, and 1, are
tape symbols without states, the middle symbol
must remain a 0 in the next row.

The circuit Cn has several gates for each cell in the tableau. These
gates compute the value at a cell from the values of the three cells
that affect it. Let k be the number of elements in Γ ∪ (Γ× Q). We
create k lights for each cell in the tableau, for a total of kt2(n) lights.
We call them light[i , j , s], where 1 ≤ i , j ≤ t(n), s ∈ Γ ∪ (Γ× Q). If
light[i , j , s] is on, cell[i , j] contains the symbol s. Consider the three
cells that can affect cell[i , j] and determine through δ which of their
settings cause cell[i , j] to contain s.
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Intractability Circuit Complexity

Determining the Contents of Cells in a Tableau

Suppose that, if cell[i − 1, j − 1], cell[i − 1, j], and cell[i − 1, j + 1]
contain a, b and c , respectively, cell[i , j] contains s, according to δ.
We wire the circuit so that, if light[i − 1, j − 1, a], light[i − 1, j , b] and
light[i − 1, j + 1, c] are on, then so is light[i , j , s].

Since several different settings
(a1, b1, c1), (a2, b2, c2), . . . , (aℓ,
bℓ, cℓ) may cause cell[i , j] to con-
tain s, we wire the circuit so that
for each setting (ai , bi , ci ) the
respective lights are connected
with an AND gate, and all the
AND gates are connected with
an OR gate.
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Intractability Circuit Complexity

Setting the Input and Output Variables

The circuitry is repeated for each light, except at the boundaries:
Each cell[i , 1] at the left boundary of the tableau has only two
preceding cells that affect its contents.
The cells at the right boundary are similar.

In these cases, we modify the circuitry accordingly.
The cells in the first row have no predecessors. Their lights are wired
to the input variables:

Thus, light[1, 1, q01 ] is connected to input w1;

light[1, 1, q00 ] is connected through a NOT gate to input w1.

light[1, 2, 1], . . . , light[1, n, 1] are connected to inputs w2, . . . ,wn.
light[1, 2, 0], . . . , light[1, n, 0] are connected via NOTs to w2, . . . ,wn.
light[1, n+ 1, ], . . . , light[1, t(n), ] are on.
Finally, all other lights in the first row are off.

M accepts w if it is in an accept state qaccept on a cell containing
at the left-hand end of the tape at step t(n). The output gate, thus,
is the one attached to light[t(n), 1, qaccept ].
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Intractability Circuit Complexity

The Circuit Satisfiability Problem

We obtain an alternative proof of the Cook-Levin theorem.

We say that a Boolean circuit is satisfiable if some setting of the
inputs causes the circuit to output 1:

CircuitSat = {〈C 〉 : C is a satisfiable Boolean circuit}.

Theorem

CircuitSat is NP-complete.

We must show that

CircuitSat is in NP;
Any language A in NP is reducible to CircuitSat.

The first is obvious. For the second, we must give a polynomial time
reduction f that maps strings to circuits, where f (w) = 〈C 〉 implies
that w ∈ A iff the Boolean circuit C is satisfiable.
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Intractability Circuit Complexity

The Reduction to CircuitSat

Because A is in NP, it has a polynomial time verifier V whose input
has the form 〈x , c〉, where c may be the certificate showing that x is
in A. To construct f , we obtain the circuit simulating V using the
method of the theorem. We fill in the inputs to the circuit that
correspond to x with the symbols of w . The only remaining inputs to
the circuit correspond to the certificate c . We call this circuit C and
output it.

If C is satisfiable, a certificate exists, so w is in A. Conversely, if w is
in A, a certificate exists, so C is satisfiable.

The reduction runs in polynomial time, since the construction of the
circuit can be done in time that is polynomial in n:

The running time of the verifier is nk for some k . Thus, the size of the
circuit constructed is O

(

n2k
)

.
The structure of the circuit is quite simple, so the running time of the
reduction is O

(

n2k
)

.
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Intractability Circuit Complexity

Alternative Proof of the Cook-Levin Theorem

We present an alternative proof of the Cook-Levin theorem:

Theorem (The Cook-Levin Theorem)

3Sat is NP-complete.

3Sat is obviously in NP.
We show that all languages in NP reduce to 3Sat in polynomial
time. We do so by reducing CircuitSat to 3Sat in polynomial
time. The reduction converts a circuit C to a formula φ, such that C
is satisfiable iff φ is satisfiable. The formula contains one variable for
each variable and each gate in the circuit and simulates the circuit. A
satisfying assignment for φ contains a satisfying assignment to C . It
also contains the values at each of C ’s gates in C ’s computation on
its satisfying assignment.

φ’s satisfying assignment “guesses” C ’s entire computation on its
satisfying assignment.
φ’s clauses check the correctness of that computation.
Finally, φ contains a clause stipulating that C ’s output is 1.
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Intractability Circuit Complexity

Construction of the Formula

Let C be a circuit containing inputs x1, . . . , xℓ and gates g1, . . . , gm.
The reduction builds a formula φ with variables x1, . . . , xℓ, g1, . . . , gm.
Each of φ’s variables corresponds to a wire in C .

The xi variables correspond to the input wires.
The gi variables correspond to the wires at the gate outputs.

We relabel φ’s variables as w1, . . . ,wℓ+m.

We describe φ’s clauses. We write them using implications, but they
can be converted in usual form.

Each NOT gate in C with input wire wi and output wire wj is
equivalent to the expression (wi → wj) ∧ (wi → wj), or, equivalently,
(wi ∨ wj) ∧ (wi ∨ wj).
Each AND gate in C with inputs wi and wj and output wk is
equivalent to ((wi ∧ wj) → wk) ∧ ((wi ∧ wj) → wk) ∧ ((wi ∧ wj) →
wk) ∧ ((wi ∧ wj) → wk), or, equivalently,
(wi ∨ wj ∨ wk) ∧ (wi ∨ wj ∨ wk) ∧ (wi ∨ wj ∨ wk) ∧ (wi ∨ wj ∨ wk).
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Correctness and Complexity

We continue with the construction of φ:
Similarly, each OR gate in C with inputs wi and wj and output wk is
equivalent to ((wi ∧ wj) → wk) ∧ ((wi ∧ wj) → wk) ∧ ((wi ∧ wj) →
wk) ∧ ((wi ∧ wj) → wk), or, equivalently,
(wi ∨ wj ∨ wk) ∧ (wi ∨ wj ∨ wk) ∧ (wi ∨ wj ∨ wk) ∧ (wi ∨ wj ∨ wk).
Finally, we add to φ clause (wm), where wm is C ’s output gate.

If some of the clauses contain fewer than three literals, we can easily
expand them to the desired size by repeating literals.
Correctness:

If a satisfying assignment for C exists, we obtain a satisfying
assignment for φ by assigning the gi variables according to C ’s
computation on this assignment.
If a satisfying assignment for φ exists, it gives an assignment for C ,
because it describes C ’s entire computation with output value 1.

Time complexity: The reduction can be done in polynomial time
because it is simple to compute and the output size is polynomial
(linear) in the size of the input.
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