College Algebra

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 111

- Linear Functions
- Modeling with Linear Functions

Subsection 1

Linear Functions

We Will Learn How To:

- Represent a linear function;
- Interpret slope as a rate of change;
- Write and interpret an equation for a linear function;
- Graph linear functions;
- Determine whether lines are parallel or perpendicular;
- Write the equation of a line parallel or perpendicular to a given line.

Linear Functions

- A linear function is a function whose graph is a line.
- Linear functions can be written in the slope-intercept form of a line

$$
f(x)=m x+b,
$$

where

- b is the initial or starting value of the function (when $x=0$),
- m is the constant rate of change, or slope of the function.

Representing Linear Functions

- Suppose the distance $D(t)$ of a train from the station at time $t=0$ is 50 miles and is increasing at a constant rate of 60 miles per hour.
- Function: $D(t)=60 t+50$;
- Table:

t	0	1	2	3
$D(t)$	50	110	170	230

- Graph:

Linear Functions: Increasing, Decreasing, or Constant

- The slope determines if the function is an increasing linear function, a decreasing linear function, or a constant function:
- $f(x)=m x+b$ is an increasing function if $m>0$;
- $f(x)=m x+b$ is an decreasing function if $m<0$;
- $f(x)=m x+b$ is a constant function if $m=0$.

Slope as a Rate of Change

- The slope, or rate of change, m of a function can be calculated according to the following:

$$
m=\frac{\text { change in output (rise) }}{\text { change in input (run) }}=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}},
$$

where

- x_{1} and x_{2} are input values;
- y_{1} and y_{2} are the corresponding output values.

Finding Slope

- If $f(x)$ is a linear function, and $(3,-2)$ and $(8,1)$ are points on the line, find the slope.
Is this function increasing or decreasing?
We have

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1-(-2)}{8-3}=\frac{3}{5}
$$

This is an increasing line.

Finding Rate of Change

- The population of a city increased from 23,400 to 27,800 between 2008 and 2012.

Find the change of population per year if we assume the change was constant from 2008 to 2012.

We get

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{27,800-23,400}{2012-2008}=\frac{4,400}{4}=1,100 .
$$

So the (constant) rate of change was 1,100 people per year.

Writing an Equation for a Linear Function

- Write an equation for a linear function given the graph of f

The y-intercept is $b=2$.
The graph passes through $(0,2)$ and $(2,8)$.
So it has slope

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{8-2}{2-0}=3
$$

Therefore, $f(x)=3 x+2$.

Writing an Equation for a Linear Function

- Suppose Ben starts a company in which he incurs a fixed cost of $\$ 1,250$ per month for the overhead, which includes his office rent. His production costs are $\$ 37.50$ per item.
Write a linear function C where $C(x)$ is the cost for x items produced in a given month.
The y-intercept of C is $\$ 1,250$.
The rate of change of the cost (average cost per item) is $\$ 37.50$.
Therefore

$$
C(x)=37.50 x+1250
$$

Writing an Equation for a Linear Function

- If f is a linear function, with $f(3)=-2$, and $f(8)=1$, find an equation for the function in slope-intercept form.
Calculate the slope:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1-(-2)}{8-3}=\frac{3}{5} .
$$

Now set up the point-slope form $y-y_{0}=m\left(x-x_{0}\right)$.

$$
y-(-2)=\frac{3}{5}(x-3) \quad \Rightarrow \quad y+2=\frac{3}{5}(x-3)
$$

Finally, solve for y to write in the slope-intercept form:

$$
y+2=\frac{3}{5} x-\frac{9}{5} \Rightarrow y=\frac{3}{5} x-\frac{19}{5}
$$

Modeling Real-World Problems with Linear Functions

- Marcus currently has 200 songs in his music collection.

Every month, he adds 15 new songs.
(a) Write a formula for the number of songs, N, in his collection as a function of time, t, the number of months.
(b) How many songs will he own in a year?
(a) We have

$$
N(t)=15 t+200
$$

(b) Therefore, in a year, he will own

$$
N(12)=15 \cdot 12+200=380 \text { songs. }
$$

Using a Table to Write an Equation for a Linear Function

- The table relates the number of rats in a population to time, in weeks

Number of weeks, w	0	2	4	6
Number of rats, $P(w)$	1,000	1,080	1,160	1,240

Use the table to write a linear equation.
First, note that the rat population increases by the same amount every two weeks.
This shows that the function $P(w)$ is linear and has slope

$$
m=\frac{\Delta y}{\Delta x}=\frac{80}{2}=40 \text { rats per week. }
$$

Therefore, taking into account that $P(0)=1000$, we get

$$
P(w)=40 w+1000 .
$$

Slopes of Parallel or Perpendicular Lines

- Two lines are parallel lines if they do not intersect. The slopes of the lines are the same, $m_{1}=m_{2}$.
- Two lines are perpendicular lines if they intersect at right angles. The slopes of the lines multiply to $-1, m_{1} m_{2}=-1$.
Another way to say this is that the slope of one is the negative reciprocal of the slope of the other:

$$
m_{2}=-\frac{1}{m_{1}}
$$

Writing the Equation of a Line Parallel to a Given Line

- Find a line parallel to the graph of $f(x)=3 x+6$ that passes through the point $(3,0)$.
The given line has slope $m_{1}=3$.
Thus, the parallel line has slope $m_{2}=3$.
Using the point-slope form $y-y_{0}=m\left(x-x_{0}\right)$, we get

$$
y-0=3(x-3) \Rightarrow y=3 x-9
$$

Writing the Equation of a Perpendicular Line

- A line passes through the points $(-2,6)$ and $(4,5)$.

Find the equation of a perpendicular line that passes through the point $(4,5)$.
The given line has slope

$$
m_{1}=\frac{\Delta y}{\Delta x}=\frac{5-6}{4-(-2)}=-\frac{1}{6} .
$$

Thus, the perpendicular line has slope $m_{2}=6$.
Using the point-slope form $y-y_{0}=m\left(x-x_{0}\right)$, we get

$$
y-5=6(x-4) \Rightarrow y-5=6 x-24 \Rightarrow y=6 x-19
$$

Subsection 2

Modeling with Linear Functions

We Will Learn How To:

- Build linear models from verbal descriptions;
- Model a set of data with a linear function.

Building Linear Models from Verbal Descriptions

- A town's population has been growing linearly.
- In 2004 the population was 6,200 .
- By 2009 the population had grown to 8,100.
- Assume this trend continues.
(a) Predict the population in 2013.
(b) Identify the year in which the population will reach 15,000 .

We start counting from year $t=0$, corresponding to 2004.
From the two given data points $(0,6200)$ and $(5,8100)$, we may construct a linear model for the population $P(t)$ in year t.

- The y intercept is 6200 ;
- The slope is $m=\frac{8100-6200}{5-0}=\frac{1900}{5}=380$.

Thus, $P(t)=380 t+6200$.
(a) $P(9)=380 \cdot 9+6200=9620$.
(b) We must solve $P(t)=15000$ implies $380 t+6200=15000$ implies $380 t=8800$ implies $t=23.15$.
So the population will reach 15,000 in the year 2027-2028.

Using a Diagram to Model Distance Walked

- Anna and Emanuel start at the same intersection.
- Anna walks east at 4 miles per hour;
- Emanuel walks south at 3 miles per hour.

They are communicating via a radio that has a range of 2 miles. How long after they start walking will they fall out of radio contact? Drawing makes the situation clearer.

We apply the Pythagorean Theorem:

$$
\begin{gathered}
D^{2}=A^{2}+E^{2} \\
D^{2}=(4 t)^{2}+(3 t)^{2} \\
D^{2}=16 t^{2}+9 t^{2} \\
D^{2}=25 t^{2} \\
D=5 t
\end{gathered}
$$

We now solve $2=5 t$ implying $t=\frac{2}{5}$ hours or $t=24$ minutes.

Modeling a Set of Data with Linear Functions

- Jamal is choosing between two truck-rental companies.
- The first, A, charges an up-front fee of $\$ 20$, then 59 cents a mile.
- The second, B, charges an up-front fee of $\$ 16$, then 63 cents a mile.

When will A be the better choice for Jamal?
We model costs in terms of the moving distance x :

$$
C_{A}(x)=0.59 x+20, \quad C_{B}(x)=0.63 x+16
$$

So the first company will be preferable if

$$
\begin{aligned}
C_{A}(x) & <C_{B}(x) \\
0.59 x+20 & <0.63 x+16 \\
4 & <0.04 x \\
100 & <x .
\end{aligned}
$$

Company A is the better choice if distance exceeds 100 miles.

