## College Algebra

## George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science<br>Lake Superior State University

LSSU Math 111

(1) Polynomial and Rational Functions

- Quadratic Functions
- Power Functions and Polynomial Functions
- Graphs of Polynomial Functions
- Dividing Polynomials
- Zeros of Polynomial Functions
- Rational Functions
- Inverses and Radical Functions
- Modeling Using Variation


## Subsection 1

## Quadratic Functions

## We Will Learn How To:

- Recognize characteristics of parabolas;
- Graphing a parabola given a quadratic function;
- Writing a quadratic function given the graph of a parabola;
- Determine a quadratic function's minimum or maximum value;
- Solve problems involving the minimum or maximum value.


## Characteristics of Parabolas



- General Form: $f(x)=a x^{2}+b x+c$;
- Vertex: $(h, k)=$ $\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$;
- Axis of Symmetry: $x=-\frac{b}{2 a}$;
- $y$-intercept: $(0, c)$;
- x-intercepts:
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$,
if $b^{2}-4 a c \geq 0$.


## Identifying the Characteristics of a Parabola

- Determine the vertex, axis of symmetry, zeros, and y-intercept of the parabola shown in the figure.


Vertex is at $(3,1)$.
Axis of symmetry is the line $x=3$.
It has no zeros (no $x$-intercepts). The $y$-intercept is $(0,7)$.

## Forms of Quadratic Functions

- A quadratic function is a polynomial function of degree two.
- The graph of a quadratic function is a parabola.
- The general form of a quadratic function is

$$
f(x)=a x^{2}+b x+c,
$$

where $a, b$, and $c$ are real numbers and $a \neq 0$.

- The standard form of a quadratic function is

$$
f(x)=a(x-h)^{2}+k, \quad \text { where } a \neq 0 .
$$

- The vertex $(h, k)$ is located at

$$
h=-\frac{b}{2 a}, \quad k=f(h)=f\left(-\frac{b}{2 a}\right) .
$$

## Writing the Equation from the Graph

- Write an equation in the standard form for the quadratic function $g$ shown and then convert the equation to general form.


Since the vertex is at $(h, k)=(-2,-3)$, we get:

$$
g(x)=a(x+2)^{2}-3
$$

Note that it passes through $(0,-1)$. So we must have $-1=a(0+2)^{2}-3$ implies $-1=4 a-3$ implies $a=\frac{1}{2}$.
So it has equation $g(x)=\frac{1}{2}(x+2)^{2}-3$.

- To write in general form, we expand the square and distribute:

$$
g(x)=\frac{1}{2}\left(x^{2}+4 x+4\right)-3 \text { or } g(x)=\frac{1}{2} x^{2}+2 x-1
$$

## Finding the Vertex of a Quadratic Function

- Find the vertex of the quadratic function $f(x)=2 x^{2}-6 x+7$.

Rewrite the quadratic in standard form.
We work as follows:

- First, find $h=-\frac{b}{2 a}=-\frac{-6}{2 \cdot 2}=\frac{3}{2}$.
- Next, find $k=f\left(\frac{3}{2}\right)=2\left(\frac{3}{2}\right)^{2}-6 \cdot \frac{3}{2}+7=2 \cdot \frac{9}{4}-9+7=\frac{9}{2}-2=\frac{5}{2}$.
- Finally we write

$$
f(x)=a(x-h)^{2}+k \quad \text { or } \quad f(x)=2\left(x-\frac{3}{2}\right)^{2}+\frac{5}{2} .
$$

## Finding the Domain and Range of a Quadratic Function

- Find the domain and range of $f(x)=-5 x^{2}+9 x-1$.
- The domain is (for any quadratic function) $\mathbb{R}$.
- Suppose the vertex is at $(h, k)$.
- If the parabola open up ( $a>0$ ), the range is $[k,+\infty)$;
- If the parabola open down $(a<0)$, the range is $(-\infty, k]$.

So compute the vertex:

- $h=-\frac{9}{2(-5)}=\frac{9}{10}$;
- $k=f\left(\frac{9}{10}\right)=-5\left(\frac{9}{10}\right)^{2}+9 \cdot \frac{9}{10}-1=-5 \cdot \frac{81}{100}+\frac{81}{10}-1=$ $-\frac{81}{20}+\frac{81}{10}-1=-\frac{81}{20}+\frac{162}{20}-\frac{20}{20}=\frac{61}{20}$;
Thus $\operatorname{Ran}(f)=\left(-\infty, \frac{61}{20}\right]$.


## Finding the Maximum Value of a Quadratic Function

- A backyard farmer wants to enclose a rectangular space for a new garden within her fenced backyard. She has purchased 80 feet of wire fencing to enclose three sides, and she will use a section of the backyard fence as the fourth side.
a. Find a formula for the area enclosed by the fence if the sides of fencing perpendicular to the existing fence have length $L$.
b. What dimensions should she make her garden to maximize the enclosed area?
a. First, note that $2 L+W=80$, which implies $W=80-2 L$. So we get:

$$
A=L W=L(80-2 L)=-2 L^{2}+80 L
$$

b. $A$ is maximum at the vertex:

$$
L=-\frac{b}{2 a}=-\frac{80}{2(-2)}=20
$$

Thus the garden must be $40 \times 20$ to maximize the area.

## Finding Maximum Revenue

- A newspaper has 84,000 subscribers at a quarterly charge of $\$ 30$. Suppose if the price rises to $\$ 32,5,000$ subscribers will be lost. Assuming that subscriptions are linearly related to the price, what price should the newspaper charge for a quarterly subscription to maximize their revenue?
Set $x$ the price charged and $y$ the number of subscribers.
Data points $(30,84000)$ and $(32,79000)$.
Slope $m=\frac{79000-84000}{32-30}=-\frac{5000}{2}=-2500$.
Equation of line $y-84000=-2500(x-30)$ or
$y=-2500 x+159000$.
Thus, the revenue of the paper is:

$$
R=x y=x(-2500 x+159000)=-2500 x^{2}+159000 x
$$

To maximize this we find the vertex:

$$
x=-\frac{b}{2 a}=-\frac{159000}{2(-2500)}=\frac{159000}{5000}=31.8
$$

## Finding the $y$ - and $x$-Intercepts of a Parabola

- Find the $y$ - and $x$-intercepts of the quadratic $f(x)=3 x^{2}+5 x-2$.
- We work as follows:
- Since a $y$-intercept is on the $y$-axis, we set $x=0$.
- Since an $x$-intercept is on the $x$-axis, we set $y=0$.
- For the $y$-intercept:

$$
f(0)=-2
$$

Thus $y$-intercept is at $(0,-2)$.

- For $x$-intercepts:

$$
0=3 x^{2}+5 x-2 \Rightarrow 0=(3 x-1)(x+2) \Rightarrow x=\frac{1}{3} \text { or } x=-2
$$

Thus $x$-intercepts occur at $(-2,0)$ and $\left(\frac{1}{3}, 0\right)$.

## Applying the Vertex and $x$-Intercepts of a Parabola

- A ball is thrown upward from the top of a 40 foot high building at a speed of 80 feet per second. The ball's height above ground can be modeled by the equation $H(t)=-16 t^{2}+80 t+40$.
a. When does the ball reach the maximum height?
b. What is the maximum height of the ball?
c. When does the ball hit the ground?
a. $t=-\frac{b}{2 a}=-\frac{80}{2(-16)}=\frac{80}{32}=\frac{5}{2}$.
b. $H_{\max }=H\left(-\frac{5}{2}\right)=-16\left(\frac{5}{2}\right)^{2}+80 \cdot \frac{5}{2}+40=-16 \cdot \frac{25}{4}+200+40=$
$-100+200+40=140$.
c. $H(t)=0$ implies $-16 t^{2}+80 t+40=0$.

$$
t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-80 \pm \sqrt{8960}}{-32} \approx 5.458
$$

## Subsection 2

## Power Functions and Polynomial Functions

## We Will Learn How To:

- Identify power functions;
- Identify end behavior of power functions;
- Identify polynomial functions;
- Identify the degree and leading coefficient of polynomial functions.


## Identifying Power Functions

- A power function is a function that can be represented in the form

$$
f(x)=k x^{p}
$$

where $k$ and $p$ are real numbers, and $k$ is known as the coefficient.

- E.g., we have

$$
\begin{aligned}
& f(x)=1=1 \cdot x^{0} \\
& f(x)=1 \cdot x^{1} \\
& f(x)=x^{2}=1 \cdot x^{2} \\
& f(x)=\frac{1}{x}=1 \cdot x^{-1} \\
& f(x)=\frac{1}{x^{2}}=1 \cdot x^{-2} \\
& f(x)=\sqrt[3]{x}=1 \cdot x^{1 / 2} \\
& f(x)=\sqrt[3]{x}=1 \cdot x^{1 / 3} .
\end{aligned}
$$

- On the other hand $f(x)=2^{x}$ is not a power function.


## End Behavior of Power Functions

- The behavior of the graph of a function as the input values get very small $(x \rightarrow-\infty)$ and and as they get very large $(x \rightarrow \infty)$ is referred to as the end behavior of the function.



## Identifying End Behavior of Power Functions

- Describe the end behavior of the graphs of a. $f(x)=x^{8}$ and $b$. $g(x)=-x^{9}$.
a. We have $k=1$ positive and $p=8$ even.
- As $x \rightarrow-\infty, f(x) \rightarrow+\infty$;
- As $x \rightarrow+\infty, f(x) \rightarrow+\infty$.



We have $k=-1$ negative and $p=9$ odd.

- As $x \rightarrow-\infty, g(x) \rightarrow+\infty$;
- As $x \rightarrow+\infty, g(x) \rightarrow-\infty$.


## Polynomial Functions

- Let $n$ be a non-negative integer. A polynomial function is a function that can be written in the form

$$
f(x)=a_{n} x^{n}+\cdots+a_{2} x^{2}+a_{1} x+a_{0} .
$$

- This is called the general form of a polynomial function.
- Each $a_{i}$ is a coefficient and can be any real.
- Each expression $a_{i} x^{i}$ is a term of a polynomial function.



## Identifying the Degree and Leading Coefficient

- Identify the degree, leading term, and leading coefficient of the following polynomial functions.
a. $f(x)=3+2 x^{2}-4 x^{3}$
b. $g(t)=5 t^{5}-2 t^{3}+7 t$
c. $h(p)=6 p-p^{3}-2$.
a. For $f$, we have:
- Degree: 3;
- Leading Term: $-4 x^{3}$;
- Leading Coefficient: -4.

For $g$, we have:

- Degree: 5;
- Leading Term: $5 t^{5}$;
- Leading Coefficient: 5.
c. For $h$, we have:
- Degree: 3;
- Leading Term: $-p^{3}$;
- Leading Coefficient: -1 .


## Identifying End Behavior of Polynomial Functions

- For any polynomial, the end behavior of the polynomial will match the end behavior of the power function consisting of the leading term.
- E.g., $f(x)=-x^{2}+7 x-12$ has the same end behavior as $-x^{2}$.
- E.g., $g(x)=3 x^{5}-x^{4}+7 x^{3}+11 x^{2}-x+2$ has the same end behavior as $3 x^{5}$.


## Identifying End Behavior of a Polynomial Function

- Given the function

$$
f(x)=-3 x^{2}(x-1)(x+4)
$$

express the function as a polynomial in general form, and determine the leading term, degree, and end behavior of the function.
Write in general form:

$$
\begin{gathered}
f(x)=-3 x^{2}(x-1)(x+4) \\
f(x)=-3 x^{2}\left(x^{2}+3 x-4\right) \\
f(x)=-3 x^{4}-9 x^{3}+12 x^{2}
\end{gathered}
$$

The degree is 4 and the leading term is $-3 x^{4}$.
Since the coefficient is negative and the power even:

- As $x \rightarrow-\infty, f(x) \rightarrow-\infty$;
- As $x \rightarrow+\infty, f(x) \rightarrow-\infty$.


## Intercepts and Turning Points of Polynomial Functions



- A turning point of a graph is a point at which the graph changes direction from increasing to decreasing or decreasing to increasing.
- The $y$-intercept is the point at which the function has an input value of zero.
- The $x$-intercepts are the points at which the output value is zero.


## Determining the Intercepts

- Given the polynomial function $f(x)=(x-2)(x+1)(x-4)$, written in factored form, determine the $y$ - and $x$-intercepts.
For the $y$-intercept, set $x=0$ :

$$
f(0)=(-2)(1)(-4)=8
$$

So the $y$-intercept is $(0,8)$.
For the $x$-intercepts, we must solve

$$
\begin{gathered}
(x-2)(x+1)(x-4)=0 \\
x-2=0 \text { or } x+1=0 \text { or } x-4=0 \\
x=2 \text { or } x=-1 \text { or } x=4
\end{gathered}
$$

Thus the $x$-intercepts are $(-1,0),(2,0)$ and $(4,0)$.

## Determining the Intercepts

- Given the polynomial function $f(x)=x^{4}-4 x^{2}-45$, determine the $y$ - and $x$-intercepts.
For the $y$-intercept, set $x=0$ :

$$
f(0)=-45
$$

So the $y$-intercept is $(0,-45)$.
For the $x$-intercepts, we must solve

$$
\begin{gathered}
x^{4}-4 x^{2}-45=0 \\
\left(x^{2}-9\right)\left(x^{2}+5\right)=0 \\
(x+3)(x-3)\left(x^{2}+5\right)=0 \\
x+3=0 \text { or } x-3=0 \text { or } x^{2}+5=0 \\
x=-3 \text { or } x=3 \quad\left(x^{2} \neq-5\right) .
\end{gathered}
$$

Thus the $x$-intercepts are $(-3,0),(3,0)$.

## Number of Intercepts and Turning Points

- A polynomial of degree $n$ will have:
- at most $n$ x-intercepts;
- at most $n-1$ turning points.
- Without graphing the function, determine the local behavior of the function by finding the maximum number of $x$-intercepts and turning points for $f(x)=-3 x^{10}+4 x^{7}-x^{4}+2 x^{3}$.
The graph will have
- At most 10 -intercepts;
- At most 9 turning points.
- Given the function $f(x)=-4 x(x+3)(x-4)$, determine the local behavior.
Since $f(x)=-4 x^{3}+4 x^{2}+48 x$, it will have:
- At most $3 x$-intercepts;
- At most 2 turning points.


## Subsection 3

## Graphs of Polynomial Functions

## We Will Learn How To:

- Recognize characteristics of graphs of polynomial functions;
- Use factoring to find zeros of polynomial functions;
- Identify zeros and their multiplicities;
- Determine end behavior;
- Understand the relationship between degree and turning points;
- Graph polynomial functions;


## Characteristics of Graphs of Polynomial Functions

- Polynomial functions have graphs that:
- do not have sharp corners (are smooth);
- do not have breaks (are continuous).



## Recognizing Polynomial Functions

- Which of the graphs represents a polynomial function?




- The graphs of $f$ and $h$ are both continuous and smooth.

So they represent graphs of polynomial functions.

- On the other hand, $g$ is not smooth and $k$ is not continuous.

So these do not qualify as polynomial functions.

## Finding the $x$-Intercepts by Factoring

- Find the $x$-intercepts of $f(x)=x^{6}-3 x^{4}+2 x^{2}$.

Factor and use the zero-factor property:

$$
\begin{gathered}
x^{6}-3 x^{4}+2 x^{2}=0 \\
x^{2}\left(x^{4}-3 x^{2}+2\right)=0 \\
x^{2}\left(x^{2}-1\right)\left(x^{2}-2\right)=0 \\
x^{2}=0 \text { or } x^{2}-1=0 \text { or } x^{2}-2=0 \\
x=0 \text { or } x^{2}=1 \text { or } x^{2}=2 \\
x=0 \text { or } x= \pm 1 \text { or } x= \pm \sqrt{2}
\end{gathered}
$$

So $f$ has $x$-intercepts $(0,0),(-1,0),(1,0),(-\sqrt{2}, 0)$ and $(\sqrt{2}, 0)$.

## Finding the $x$-Intercepts by Factoring

- Find the $x$-intercepts of $f(x)=x^{3}-5 x^{2}-x+5$.

We work in the same way:

$$
\begin{gathered}
x^{3}-5 x^{2}-x+5=0 \\
x^{2}(x-5)-(x-5)=0 \\
\left(x^{2}-1\right)(x-5)=0 \\
(x+1)(x-1)(x-5)=0 \\
x+1=0 \text { or } x-1=0 \text { or } x-5=0 \\
x=-1 \text { or } x=1 \text { or } x=5
\end{gathered}
$$

We conclude that the $x$-intercepts are $(-1,0),(1,0)$ and $(5,0)$.

## Finding the $x$-Intercepts Using a Graph

- Find the $x$-intercepts of $h(x)=x^{3}+4 x^{2}+x-6$ whose graph is shown below


We can see that the $x$-intercepts are $(-3,0),(-2,0)$ and $(1,0)$.
We can use one to factor and find the others.

$$
\begin{gathered}
x^{3}+4 x^{2}+x-6=0 \\
x^{3}+3 x^{2}+x^{2}+3 x-2 x-6=0 \\
x^{2}(x+3)+x(x+3)-2(x+3)=0 \\
\left(x^{2}+x-2\right)(x+3)=0 \\
(x+2)(x-1)(x+3)=0 \\
x=-2 \text { or } x=1 \text { or } x=-3
\end{gathered}
$$

## Graphical Behavior of Polynomials at x-Intercepts

- If a polynomial contains a factor of the form $(x-h)^{p}$, the behavior near the $x$-intercept $h$ is determined by the power $p$.
- We say that $x=h$ is a zero of multiplicity $p$.
- The graph of a polynomial function will touch the $x$-axis at zeros with even multiplicities.
- The graph will cross the $x$-axis at zeros with odd multiplicities.




Zero with multiplicity 3

## Graphing a Function

- For example, we graph the function shown.

$$
f(x)=(x+3)(x-2)^{2}(x+1)^{3} .
$$



## Identifying Zeros and Their Multiplicities

- Use the graph of the function of degree 6 to identify the zeros of the function and their possible multiplicities.

- The first zero occurs at $x=-3$.

The graph touches the $x$-axis, so the multiplicity must be even.

- The next zero occurs at $x=-1$.

This is a single zero of multiplicity 1 .

- The last zero occurs at $x=4$.

The graph crosses the $x$-axis, so the multiplicity must be odd.
We know that the multiplicity is likely 3.

## Turning Points

- A turning point is a point of the graph where the graph changes from increasing to decreasing (rising to falling) or decreasing to increasing (falling to rising).
- A polynomial of degree $n$ will have at most $n-1$ turning points.



## Finding the Maximum Number of Turning Points

- Find the maximum number of turning points of each polynomial function.

$$
\begin{aligned}
& \text { a. } f(x)=-x^{3}+4 x^{5}-3 x^{2}+1 \\
& \text { b. } f(x)=-(x-1)^{2}\left(1+2 x^{2}\right)
\end{aligned}
$$

a. The degree is 5 .

Thus, $f$ has at most 4 turning points.
The degree is 4 .
So this polynomial has at most 3 turning points.

## Sketching the Graph of a Polynomial Function

- Sketch a graph of $f(x)=-2(x+3)^{2}(x-5)$. Use:
- End behavior:
- if $x \rightarrow-\infty, f(x) \rightarrow+\infty$;
- if $x \rightarrow+\infty, f(x) \rightarrow-\infty$.
- The roots and their multiplicities:
- $x=-3$ of multiplicity 2 ;
- $x=5$ of multiplicity 1 .



## Writing Formulas for Polynomial Functions

- Write a formula for the polynomial function shown


Taking into account the zeros and their multiplicities we come up with a candidate formula:

$$
f(x)=a(x+3)(x-2)^{2}(x-5)
$$

Then we find $a$ using a point on the graph.
$f(0)=-2 \Rightarrow a \cdot 3 \cdot(-2)^{2} \cdot(-5)=-2 \Rightarrow-60 a=-2 \Rightarrow a=\frac{1}{30}$.
So we have $f(x)=\frac{1}{30}(x+3)(x-2)^{2}(x-5)$.

## Subsection 4

## Dividing Polynomials

## We Will Learn How To:

- Use long division to divide polynomials;
- Use synthetic division to divide polynomials.


## The Division Algorithm

- Recall the division of numbers.
- Dividend 17
- Divisor 3 Divide $17 \div 3$ to get:
- Quotient 5
- Remainder 2
and write: $17=3 \cdot 5+2$ or $\frac{17}{3}=5+\frac{2}{3}$.
- Similarly for polynomials:
- Dividend $f(x)$
- Divisor $d(x)$, with $\operatorname{deg}(d(x)) \leq \operatorname{deg}(f(x))$ Divide $f(x) \div d(x)$ to get:
- Quotient $q(x)$
- Remainder $r(x)$, with $0 \leq \operatorname{deg}(r(x))<\operatorname{deg}(d(x))$
and write $f(x)=d(x) \cdot q(x)+r(x)$ or $\frac{f(x)}{d(x)}=q(x)+\frac{r(x)}{d(x)}$.


## Using Long Division to Divide a Polynomial

- Divide $5 x^{2}+3 x-2$ by $x+1$ and write your answer in an appropriate form.

$$
x+1 \left\lvert\, \begin{array}{rrr}
5 x & -2 & \\
\begin{array}{rrr}
5 x^{2} & +3 x & -2 \\
5 x^{2} & +5 x & \\
& & -2 x
\end{array}-2 \\
& -2 x & -2 \\
\hline & 0
\end{array}\right.
$$

So we have

$$
5 x^{2}+3 x-2=(x+1)(5 x-2)
$$

## Using Long Division to Divide a Polynomial

- Divide $6 x^{3}+11 x^{2}-31 x+15$ by $3 x-2$ and write your answer in an appropriate form.

$$
3 x-2 \left\lvert\, \begin{array}{rrrr}
2 x^{2} & +5 x & -7 & \\
\begin{array}{llll}
6 x^{3} & +11 x^{2} & -31 x & +15 \\
6 x^{3}-4 x^{2} & & & \\
& & 15 x^{2} & -31 x \\
& & 15 x^{2} & -10 x \\
& & & \\
& & & -21 x
\end{array} & +15 \\
& & & -21 x
\end{array}\right.
$$

So we have

$$
6 x^{3}+11 x^{2}-31 x+15=(3 x-2)\left(2 x^{2}+5 x-7\right)+1
$$

## Synthetic Division

- Synthetic division is a shortcut that can be used when the divisor is a binomial in the form $x-k$ where $k$ is a real number.
- Only the coefficients are used, omitting the powers of $x$.
- Use synthetic division to divide $5 x^{2}-3 x-36$ by $x-3$.

| 3 | 5 | -3 | -36 |
| ---: | ---: | ---: | ---: |
|  |  | 15 | 36 |
|  | 5 | 12 | 0 |

So, $5 x^{2}-3 x-36=(x-3)(5 x+12)$.

## Using Synthetic Division

- Use synthetic division to divide $4 x^{3}+10 x^{2}-6 x-20$ by $x+2$.

| -2 | 4 | 10 | -6 | -20 |
| ---: | ---: | ---: | ---: | ---: |
|  |  | -8 | -4 | 20 |
|  | 4 | 2 | -10 | 0 |

So, $4 x^{3}+10 x^{2}-6 x-20=(x+2)\left(4 x^{2}+2 x-10\right)$.

- Use synthetic division to divide $-9 x^{4}+10 x^{3}+7 x^{2}-6$ by $x-1$.

| 1 | -9 | 10 | 7 | 0 | -6 |
| ---: | ---: | ---: | ---: | ---: | ---: |
|  |  | -9 | 1 | 8 | 8 |
|  | -9 | 1 | 8 | 8 | 2 |

Therefore $-9 x^{4}+10 x^{3}+7 x^{2}-6=(x-1)\left(-9 x^{3}+x^{2}+8 x+8\right)+2$.

## Using Polynomial Division in an Application Problem

- The volume of a rectangular solid is given by the polynomial $3 x^{4}-3 x^{3}-33 x^{2}+54 x$.
The length of the solid is given by $3 x$ and the width is given by $x-2$.
Find the height, $t$, of the solid.
We know that the volume equals length times width times height.
So, according to the data, we have:

$$
\begin{gathered}
3 x(x-2) t=3 x^{4}-3 x^{3}-33 x^{2}+54 x \\
(x-2) t=\frac{3 x^{4}-3 x^{3}-33 x^{2}+54 x}{3 x} \\
(x-2) t=x^{3}-x^{2}-11 x+18 \\
t=\frac{x^{3}-x^{2}-11 x+18}{x-2}
\end{gathered}
$$

To find $t$, we must perform the division:

| 2 | 1 | -1 | -11 | 18 |
| ---: | ---: | ---: | ---: | ---: |
|  |  | 2 | 2 | -18 |
|  | 1 | 1 | -9 | 0 |

$$
\text { So } t=\frac{x^{3}-x^{2}-11 x+18}{x-2}=x^{2}+x-9 .
$$

## Subsection 5

## Zeros of Polynomial Functions

## We Will Learn How To:

- Evaluate a polynomial using the Remainder Theorem;
- Use the Factor Theorem to solve a polynomial equation;
- Use the Rational Zero Theorem to find rational zeros;
- Find zeros of a polynomial function;
- Find polynomials with given zeros.


## The Remainder Theorem

- If a polynomial $f(x)$ is divided by $x-k$, we get

$$
f(x)=(x-k) q(x)+r, \text { where } r \text { is a constant. }
$$

- Note that

$$
f(k)=(k-k) q(k)+r=r .
$$

- That is, the remainder of the division $f(x) \div(x-k)$ equals $f(k)$ !


## Using the Remainder Theorem

- Use the Remainder Theorem to compute $f(2)$ if

$$
f(x)=6 x^{4}-x^{3}-15 x^{2}+2 x-7
$$

We must divide $f(x)$ by $x-2$ and find the remainder.

| 2 | 6 | -1 | -15 | 2 | -7 |
| ---: | ---: | ---: | ---: | ---: | ---: |
|  |  | 12 | 22 | 14 | 32 |
|  | 6 | 11 | 7 | 16 | 25 |

Therefore, $f(2)=25$.

## The Factor Theorem

- We saw that $f(x) \div(x-k)$ has remainder $r=f(k)$.
- It follows that
$k$ is a zero of $f(x)$ if and only if the remainder $r=0$ if and only if $(x-k)$ is a factor of $f(x)$.
- Thus $(x-k)$ is a factor of $f(x)$ if and only if $f(k)=0$.


## Using the Factor Theorem

- Let $f(x)=x^{3}-6 x^{2}-x+30$.
(a) Use the Factor Theorem to show that $(x+2)$ is a factor of $f(x)$.
(b) Find the remaining factors.
(c) Use the factors to determine the zeros of the polynomial.
(a) Show $f(-2)=0$ :

$$
f(-2)=(-2)^{3}-6(-2)^{2}-(-2)+30=-8-24+2+30=0 .
$$

So $x+2$ is a factor of $f(x)$.
(b) We divide $f(x)$ by $x+2$ :

| -2 | 1 | -6 | -1 | 30 |
| ---: | ---: | ---: | ---: | ---: |
|  |  | -2 | 16 | -30 |
|  | 1 | -8 | 15 | 0 |

So $x^{3}-6 x^{2}-x+30=(x+2)\left(x^{2}-8 x+15\right)=(x+2)(x-3)(x-5)$.
(c) The zeros are $x=-2, x=3$ and $x=5$.

## The Rational Zero Theorem

- The Rational Zero Theorem states that, if the polynomial

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

has integer coefficients, then every rational zero of $f(x)$ has the form $\frac{p}{q}$ where

- $p$ is a factor of the constant term $a_{0}$;
- $q$ is a factor of the leading coefficient $a_{n}$.
- When the leading coefficient is 1 , the possible rational zeros are the factors of the constant term.


## Listing All Possible Rational Zeros

- List all possible rational zeros of $f(x)=2 x^{4}-5 x^{3}+x^{2}-4$. Relying on the Rational Zero Theorem,
- we first list the factors of $a_{0}=-4: \pm 1, \pm 2, \pm 4$;
- we then list the factors of $a_{4}=2: \pm 1, \pm 2$.

Finally, we form all possible ratios:

$$
\pm 1, \pm \frac{1}{2}, \pm 2, \pm 4
$$

## Finding the Zeros of Polynomial Functions

- Find the zeros of $f(x)=4 x^{3}-3 x-1$.
- We follow the strategy:
- Quickly identify a zero, possibly by using the Rational Zero Theorem.
- Use Synthetic Division to find the quotient.
- Repeat these steps until obtaining a quadratic.

Observe that $f(1)=0$.
Divide $f$ by $(x-1)$ :

| 1 | 4 | 0 | -3 | -1 |
| ---: | ---: | ---: | ---: | ---: |
|  |  | 4 | 4 | 1 |
|  | 4 | 4 | 1 | 0 |

So we get

$$
f(x)=4 x^{3}-3 x-1=(x-1)\left(4 x^{2}+4 x+1\right)=(x-1)(2 x+1)^{2}
$$

Thus, the zeros are $x=1$ and $x=-\frac{1}{2}$.

## Find a Polynomial with Given Zeros

- Find a third degree polynomial that has zeros of $-3,1$ and 2 , such that $f(-2)=60$.
We must have

$$
f(x)=a(x+3)(x-1)(x-2)
$$

Now use $f(-2)=60$ to compute $a$ :

$$
\begin{gathered}
a(-2+3)(-2-1)(-2-2)=60 \\
a \cdot 1 \cdot(-3) \cdot(-4)=60 \\
12 a=60 \\
a=5 .
\end{gathered}
$$

So we get

$$
\begin{aligned}
f(x) & =5\left(x^{2}+2 x-3\right)(x-2)=5\left(x^{3}-2 x^{2}+2 x^{2}-4 x-3 x+6\right) \\
& =5\left(x^{3}-7 x+6\right)=5 x^{3}-35 x+30
\end{aligned}
$$

Subsection 6

## Rational Functions

## We Will Learn How To:

- Find the domain of a rational function;
- Identify vertical and horizontal asymptotes;
- Find $x$ - and $y$-intercepts;
- Sketch the graph of a rational function, given a formula;
- Obtain a formula for a rational function, given a graph.


## Vertical and Horizontal Asymptotes

- Follow the trends in the graph:
- As $x \rightarrow 0^{-}, f(x) \rightarrow-\infty$
- As $x \rightarrow 0^{+}, f(x) \rightarrow+\infty$

We say that the line $x=0$ is a vertical asymptote of the graph.



- Similarly:
- As $x \rightarrow-\infty, f(x) \rightarrow 0$
- As $x \rightarrow+\infty, f(x) \rightarrow 0$

We say that the line $y=0$ is a horizontal asymptote of the graph.

## Using Arrow Notation

- Use arrow notation to describe the end behavior and local behavior of the function shown.

- As $x \rightarrow 2^{-}, y \rightarrow-\infty$
- As $x \rightarrow 2^{+}, y \rightarrow+\infty$

So $x=2$ is a vertical asymptote.

- As $x \rightarrow-\infty, y \rightarrow 4$
- As $x \rightarrow+\infty, y \rightarrow 4$

So $y=4$ is a horizontal asymptote.

## Domain of a Rational Function

- The domain of a rational function includes all real numbers except those that cause the denominator to equal zero.
- Find the domain of $f(x)=\frac{x+3}{x^{2}-9}$.

Begin by setting the denominator equal to zero and solving.

$$
\begin{gathered}
x^{2}-9=0 \\
x^{2}=9 \\
x= \pm 3 .
\end{gathered}
$$

The denominator is equal to zero when $x= \pm 3$.
The domain of the function is all real numbers except $x= \pm 3$.
Formally and succinctly, we write $\operatorname{Dom}(f)=\mathbb{R}-\{-3,3\}$.

## Identifying Vertical Asymptotes

- In general the vertical asymptotes occur at those values that zero the denominator, i.e., those values we exclude from the domain.
- Exceptions may occur if those same values zero also the numerator.
- If the multiplicity of the zero in the numerator is greater than or equal to that in the denominator, we have a hole in the graph.
- If the multiplicity is greater in the denominator, then we have a vertical asymptote at that value.

- The hole is called a removable discontinuity.


## Vertical Asymptotes and Removable Discontinuities

- Find the vertical asymptotes of $k(x)=\frac{5+2 x^{2}}{(2+x)(1-x)}$.

We have

$$
k(x)=\frac{5+2 x^{2}}{(2+x)(1-x)}
$$

So $x=-2$ and $x=1$ are vertical asymptotes.

- Find the vertical asymptotes and removable discontinuities of the graph of $k(x)=\frac{x-2}{x^{2}-4}$.
Factor the numerator and the denominator, $k(x)=\frac{x-2}{(x-2)(x+2)}$.
- There is a common factor in the numerator and the denominator, $x-2$. The multiplicities are both equal to 1 . So, at $x=2, k$ has a removable discontinuity.
- There is a factor in the denominator that is not in the numerator, $x+2$. So $x=-2$ is a vertical asymptote.


## Horizontal Asymptotes of Rational Functions

- The horizontal asymptote of a rational function can be determined by looking at the degrees of the numerator and denominator.
- Degree of numerator is less than degree of denominator: horizontal asymptote at $y=0$.
- Degree of numerator is greater than degree of denominator: no horizontal asymptote.
- Degree of numerator is equal to degree of denominator: horizontal asymptote at ratio of leading coefficients.


## Identifying Horizontal Asymptotes

- For the functions listed, identify the horizontal asymptote.
a. $g(x)=\frac{6 x^{3}-10 x}{2 x^{3}+5 x^{2}}$
b. $h(x)=\frac{x^{2}-4 x+1}{x+2}$
C. $k(x)=\frac{x^{2}+4 x}{x^{3}-8}$.
a. Numerator and denominator have the same degree 3.

So $g$ has a horizontal asymptote $y=\frac{6}{2}$ or $y=3$.
b. The degree of the numerator exceeds that of the denominator.

So there is no horizontal asymptote.
The degree of the denominator exceeds that of the numerator.
So $y=0$ is the horizontal asymptote.

## Identifying Horizontal and Vertical Asymptotes

- Find the horizontal and vertical asymptotes of the function

$$
f(x)=\frac{(x-2)(x+3)}{(x-1)(x+2)(x-5)}
$$

Start by finding the domain $\operatorname{Dom}(f)=\mathbb{R}-\{-2,1,5\}$.
Then find the $x$-intercepts (these are the numbers that zero the numerator): $x=-3, x=2$.
Note that numerator and denominator do not share any zeros.
So we get the following:

- The vertical asymptotes are the lines

$$
x=-2, \quad x=1, \quad x=5 .
$$

- The horizontal asymptote (since the degree of the denominator is bigger than that of the numerator) is $y=0$.


## Finding the Intercepts of a Rational Function

- Find the intercepts of

$$
f(x)=\frac{(x-2)(x+3)}{(x-1)(x+2)(x-5)}
$$

For the $y$-intercept, we set $x=0$ :

$$
f(0)=\frac{-2 \cdot 3}{-1 \cdot 2 \cdot(-5)}=\frac{-6}{10}=-\frac{3}{5} .
$$

So the $y$-intercept is $\left(0,-\frac{3}{5}\right)$.
For the $x$-intercepts, set $y=0$.

$$
\begin{aligned}
\frac{(x-2)(x+3)}{(x-1)(x+2)(x-5)}=0 & \Rightarrow \quad(x-2)(x+3)=0 \\
& \Rightarrow \quad x=-3 \text { or } x=2
\end{aligned}
$$

Thus, the $x$-intercepts are $(-3,0)$ and $(2,0)$.

## Graphing and Writing a Rational Function

- Sketch a graph of $f(x)=\frac{(x+2)(x-3)}{(x+1)^{2}(x-2)}$.

We follow a series of steps to facilitate graphing:

- The domain is $\operatorname{Dom}(f)=\mathbb{R}-\{-1,2\}$;
- The vertical asymptotes are: $x=-1$ and $x=2$.
- The horizontal asymptote is: $y=0$.
- The $x$-intercepts are: $(-2,0)$ and $(3,0)$.
- The $y$-intercept is: $(0,3)$.
- Finally, set up the sign table for $f(x)$ :

| interval | $(-\infty,-2)$ | $(-2,-1)$ | $(-1,2)$ | $(2,3)$ | $(3,+\infty)$ |
| ---: | :---: | :---: | :---: | :---: | :---: |
| sign of $f(x)$ | - | + | + | - | + |

## Graphing and Writing a Rational Function

- Sketch a graph of $f(x)=\frac{(x+2)(x-3)}{(x+1)^{2}(x-2)}$.



## Graphing and Writing a Rational Function

- Write an equation for the rational function shown

- $x$-intercepts are $(-2,0)$ and $(3,0)$. Numerator factors: $x+2$ and $x-3$.
- Vertical asymptotes are $x=-1$ and $x=2$. Denominator factors: $x+1$ and $x-2$.
- Horizontal asymptote $y=0$. So denominator is of higher degree.
At $x=2, f(x)$ does not switch signs.
A guess for the formula is $f(x)=\frac{a(x+2)(x-3)}{(x+1)(x-2)^{2}}$.


## Graphing and Writing a Rational Function (Cont'd)

- We obtained $f(x)=\frac{a(x+2)(x-3)}{(x+1)(x-2)^{2}}$.
$y$-intercept is $(0,-2)$.

$$
f(0)=-2 \Rightarrow \frac{a \cdot 2 \cdot(-3)}{1 \cdot(-2)^{2}}=-2 \Rightarrow \frac{-6 a}{4}=-2 \Rightarrow a=\frac{4}{3} .
$$

So we have the formula $f(x)=\frac{4(x+2)(x-3)}{3(x+1)(x-2)^{2}}$.


## Subsection 7

## Inverses and Radical Functions

## We Will Learn How To:

- Find the inverse of an invertible polynomial function;
- Restrict the domain to find the inverse of a polynomial function.


## Verifying two Functions are Inverses

- Two functions, $f$ and $g$, are inverses of one another if
- for all $x$ in the domain of $f, g(f(x))=x$;
- for all $x$ in the domain of $g, f(g(x))=x$.
- Show that $f(x)=\frac{1}{x+1}$ and $g(x)=\frac{1}{x}-1$ are inverses.

We verify that both composition operations yield the identity:

$$
\begin{gathered}
g(f(x))=g\left(\frac{1}{x+1}\right)=\frac{1}{\frac{1}{x+1}}-1=x+1-1=x . \\
f(g(x))=f\left(\frac{1}{x}-1\right)=\frac{1}{\frac{1}{x}-1+1}=\frac{1}{\frac{1}{x}}=x
\end{gathered}
$$

## Finding the Inverse of a Cubic Function

- Find the inverse of the function $f(x)=5 x^{3}+1$.

Rewrite $y=5 x^{3}+1$.
Interchange $x \leftrightarrow y$ :

$$
x=5 y^{3}+1 .
$$

Solve for $y$ :

$$
\begin{gathered}
x=5 y^{3}+1 \\
x-1=5 y^{3} \\
\frac{x-1}{5}=y^{3} \\
\sqrt[3]{\frac{x-1}{5}}=y
\end{gathered}
$$

So $f^{-1}(x)=\sqrt[3]{\frac{x-1}{5}}$.

## Restricting the Domain to Find the Inverse

- If a function is not one-to-one, it cannot have an inverse.
- If we restrict the domain of the function so that it becomes one-to-one, thus creating a new function, this new function will have an inverse.
- Find the inverse function of $f$ :
a. $f(x)=(x-4)^{2}, x \geq 4$;
b. $f(x)=(x-4)^{2}, x \leq 4$.
a. $y=(x-4)^{2} \Rightarrow x=(y-4)^{2} \stackrel{y>4}{\Rightarrow} \sqrt{x}=y-4 \Rightarrow \sqrt{x}+4=y$.

So, in this case, $f^{-1}(x)=\sqrt{x}+4$.
a. $y=(x-4)^{2} \Rightarrow x=(y-4)^{2} \stackrel{y}{\Rightarrow}-\sqrt{x}=y-4 \Rightarrow-\sqrt{x}+4=y$. So, in this case, $f^{-1}(x)=-\sqrt{x}+4$.

## Finding the Inverse When the Restriction Is Not Specified

- Restrict the domain and then find the inverse of

$$
f(x)=(x-2)^{2}-3
$$

The graph is that of $y=x^{2}$ shifted 2 units right and 3 units down. To pass the horizontal line test, we must restrict its domain to $[2, \infty)$. Now we work to find the inverse:

$$
\begin{gathered}
y=(x-2)^{2}-3 \\
x=(y-2)^{2}-3 \\
x+3=(y-2)^{2} \\
\sqrt{x+3}=y-2 \\
\sqrt{x+3}+2=y
\end{gathered}
$$

So $f^{-1}(x)=\sqrt{x+3}+2$.

## Finding the Inverse of a Radical Function

- Restrict the domain of the function $f(x)=\sqrt{x-4}$ and then find the inverse.
The graph is that of $y=\sqrt{x}$ shifted 4 units right.
The graph passes the horizontal line test on $[4, \infty)$.
Now we work to find the inverse:

$$
\begin{gathered}
y=\sqrt{x-4} \\
x=\sqrt{y-4} \\
x^{2}=y-4 \\
x^{2}+4=y .
\end{gathered}
$$

So $f^{-1}(x)=x^{2}+4$, but defined only on $[0, \infty)$.

## Solving Applications of Radical Functions

- A mound of gravel is in the shape of a cone with the height equal to twice the radius, whose volume in terms of the radius is $V=\frac{2}{3} \pi r^{3}$.
a. Find the inverse of the function $V=\frac{2}{3} \pi r^{3}$ that determines the volume $V$ of a cone and is a function of the radius $r$.
b. Then use the inverse function to calculate the radius of such a mound of gravel measuring 100 cubic feet. Use $\pi=3.14$.
a. We need to solve for $r$ :

$$
V=\frac{2}{3} \pi r^{3} \Rightarrow \frac{3 V}{2 \pi}=r^{3} \Rightarrow \sqrt[3]{\frac{3 V}{2 \pi}}=r
$$

Thus, $r=\sqrt[3]{\frac{3 V}{2 \pi}}$.
We have $r=\sqrt[3]{\frac{3 \cdot 100}{2 \cdot 3.14}} \approx 3.63$ feet.

## Determining the Domain of a Radical Function

- Find the domain of the function $f(x)=\sqrt{\frac{(x+2)(x-3)}{x-1}}$. One has to impose two restrictions:

$$
x-1 \neq 0 \quad \text { and } \quad \frac{(x-2)(x-3)}{x-1} \geq 0
$$

We use the sign table method:

|  | $(-\infty,-2]$ | $[-2,1)$ | $(1,3]$ | $[3, \infty)$ |
| :---: | :---: | :---: | :---: | :---: |
| $\frac{(x-2)(x-3)}{x-1}$ | - | + | - | + |

Hence, we must have $x$ in $[-2,1) \cup[3, \infty)$.

## Finding the Inverse of a Rational Function

- The function $C=\frac{20+0.4 n}{100+n}$ represents the concentration $C$ of an acid solution after $n \mathrm{~mL}$ of $40 \%$ solution has been added to 100 mL of a $20 \%$ solution.
a. Find the inverse of the function; that is, find an expression for $n$ in terms of $C$.
b. Use your result to determine how much of the $40 \%$ solution should be added so that the final mixture is a $35 \%$ solution.
a. We have

$$
\begin{gathered}
C=\frac{20+0.4 n}{100+n} \Rightarrow C(100+n)=20+0.4 n \\
\Rightarrow 100 C+C n=20+0.4 n \Rightarrow 100 C-20=0.4 n-C n \\
\Rightarrow 100 C-20=(0.4-C) n \Rightarrow \frac{100 C-20}{0.4-C}=n .
\end{gathered}
$$

So $n=\frac{100 C-20}{0.35-C}$.
(b) Now we get $n=\frac{100 \cdot 0.35-20}{0.4-0.35}=\frac{15}{0.05}=300$.

## Subsection 8

## Modeling Using Variation

## We Will Learn How To:

- Solve direct variation problems;
- Solve inverse variation problems;
- Solve problems involving joint variation.


## Direct Variation

- If $x$ and $y$ are related by an equation of the form

$$
y=k x^{n}
$$

then we say that the relationship is direct variation and $y$ varies directly with, or is proportional to, the $n$th power of $x$.

- In direct variation relationships, there is a nonzero constant ratio $k=\frac{y}{x^{n}}$, where $k$ is called the constant of variation, which helps define the relationship between the variables.


## Solving a Direct Variation Problem

- The quantity $y$ varies directly with the cube of $x$.

If $y=25$ when $x=2$, find $y$ when $x$ is 6 .
The hypothesis implies that there exists a constant $k$, such that

$$
y=k x^{3} .
$$

Since when $x=2, y=25$, we get

$$
25=k \cdot 2^{3} \Rightarrow k=\frac{25}{8} .
$$

Thus, the relation of direct variation is

$$
y=\frac{25}{8} x^{3}
$$

Therefore, for $x=6$,

$$
y=\frac{25}{8} \cdot 6^{3}=675
$$

## Inverse Variation

- If $x$ and $y$ are related by an equation of the form

$$
y=\frac{k}{x^{n}},
$$

where $k$ is a nonzero constant, then we say that $y$ varies inversely with the $n$th power of $x$.

- In inversely proportional relationships, or inverse variations, there is a constant multiple $k=x^{n} y$.


## Solving an Inverse Variation Problem

- A quantity $y$ varies inversely with the cube of $x$.

If $y=25$ when $x=2$, find $y$ when $x$ is 6 .
The hypothesis implies that there exists a constant $k$, such that

$$
y=\frac{k}{x^{3}}
$$

Since when $x=2, y=25$, we get

$$
25=\frac{k}{2^{3}} \Rightarrow k=25 \cdot 8 \Rightarrow k=200 .
$$

Thus, the relation of inverse variation is

$$
y=\frac{200}{x^{3}}
$$

Therefore, for $x=6$,

$$
y=\frac{200}{6^{3}}=\frac{25}{27}
$$

## Joint Variation

- Joint variation occurs when a variable varies directly or inversely with multiple variables.
- For instance, if $x$ varies directly with both $y$ and $z$, we have

$$
x=k y z
$$

- If $x$ varies directly with $y$ and inversely with $z$, we have

$$
x=\frac{k y}{z} .
$$

- Notice that we only use one constant in a joint variation equation.


## Solving Problems Involving Joint Variation

- A quantity $x$ varies
- directly with the square of $y$ and
- inversely with the cube root of $z$.

If $x=6$ when $y=2$ and $z=8$, find $x$ when $y=1$ and $z=27$.
The hypothesis implies that there exists a constant $k$, such that

$$
x=\frac{k y^{2}}{\sqrt[3]{z}}
$$

Since when $y=2$ and $z=8, x=6$, we get

$$
6=\frac{k \cdot 2^{2}}{\sqrt[3]{8}} \Rightarrow k=\frac{6 \cdot 2}{4} \Rightarrow k=3
$$

Thus, the relation of inverse variation is $x=\frac{3 y^{2}}{\sqrt[3]{z}}$.
Therefore, for $y=1$ and $z=27$,

$$
x=\frac{3 \cdot 1^{2}}{\sqrt[3]{27}}=\frac{3 \cdot 1}{3}=1
$$

