College Algebra

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 111

Polynomial and Rational Functions

- Quadratic Functions
- Power Functions and Polynomial Functions
- Graphs of Polynomial Functions
- Dividing Polynomials
- Zeros of Polynomial Functions
- Rational Functions
- Inverses and Radical Functions
- Modeling Using Variation

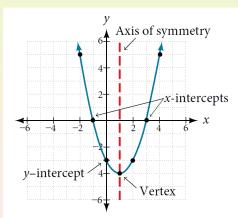
Subsection 1

Quadratic Functions

We Will Learn How To:

- Recognize characteristics of parabolas;
- Graphing a parabola given a quadratic function;
- Writing a quadratic function given the graph of a parabola;
- Determine a quadratic function's minimum or maximum value;
- Solve problems involving the minimum or maximum value.

Characteristics of Parabolas



• General Form:

$$f(x) = ax^2 + bx + c;$$

• Vertex:
$$(h, k) = (-\frac{b}{2a}, f(-\frac{b}{2a}));$$

• Axis of Symmetry:

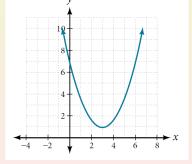
$$x = -\frac{b}{2a};$$

• x-intercepts:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a},$$
if $b^2 - 4ac \ge 0.$

Identifying the Characteristics of a Parabola

• Determine the vertex, axis of symmetry, zeros, and y-intercept of the parabola shown in the figure.



Vertex is at (3, 1). Axis of symmetry is the line x = 3. It has no zeros (no *x*-intercepts). The *y*-intercept is (0, 7).

Forms of Quadratic Functions

- A quadratic function is a polynomial function of degree two.
- The graph of a quadratic function is a **parabola**.
- The general form of a quadratic function is

$$f(x) = ax^2 + bx + c,$$

where *a*, *b*, and *c* are real numbers and $a \neq 0$.

• The standard form of a quadratic function is

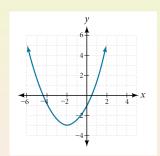
$$f(x) = a(x-h)^2 + k$$
, where $a \neq 0$.

• The vertex (h, k) is located at

$$h = -\frac{b}{2a}, \quad k = f(h) = f\left(-\frac{b}{2a}\right)$$

Writing the Equation from the Graph

• Write an equation in the standard form for the quadratic function *g* shown and then convert the equation to general form.



Since the vertex is at (h, k) = (-2, -3), we get:

$$g(x) = a(x+2)^2 - 3.$$

Note that it passes through (0, -1). So we must have $-1 = a(0+2)^2 - 3$ implies -1 = 4a - 3 implies $a = \frac{1}{2}$. So it has equation $g(x) = \frac{1}{2}(x+2)^2 - 3$.

• To write in general form, we expand the square and distribute:

$$g(x) = \frac{1}{2}(x^2 + 4x + 4) - 3$$
 or $g(x) = \frac{1}{2}x^2 + 2x - 1$.

Finding the Vertex of a Quadratic Function

- Find the vertex of the quadratic function f(x) = 2x² 6x + 7.
 Rewrite the quadratic in standard form.
 We work as follows:
 - First, find $h = -\frac{b}{2a} = -\frac{-6}{2 \cdot 2} = \frac{3}{2}$.

• Next, find
$$k = f(\frac{3}{2}) = 2(\frac{3}{2})^2 - 6 \cdot \frac{3}{2} + 7 = 2 \cdot \frac{9}{4} - 9 + 7 = \frac{9}{2} - 2 = \frac{5}{2}$$
.

Finally we write

$$f(x) = a(x-h)^2 + k$$
 or $f(x) = 2\left(x - \frac{3}{2}\right)^2 + \frac{5}{2}$.

Finding the Domain and Range of a Quadratic Function

- Find the domain and range of $f(x) = -5x^2 + 9x 1$.
- The domain is (for any quadratic function) \mathbb{R} .
- Suppose the vertex is at (h, k).
 - If the parabola open up (a > 0), the range is $[k, +\infty)$;
 - If the parabola open down (a < 0), the range is $(-\infty, k]$.

So compute the vertex:

•
$$h = -\frac{9}{2(-5)} = \frac{9}{10};$$

• $k = f(\frac{9}{10}) = -5(\frac{9}{10})^2 + 9 \cdot \frac{9}{10} - 1 = -5 \cdot \frac{81}{100} + \frac{81}{10} - 1 = -\frac{81}{20} + \frac{81}{10} - 1 = -\frac{81}{20} + \frac{162}{20} - \frac{20}{20} = \frac{61}{20};$
Thus $\operatorname{Ran}(f) = (-\infty, \frac{61}{20}].$

Finding the Maximum Value of a Quadratic Function

- A backyard farmer wants to enclose a rectangular space for a new garden within her fenced backyard. She has purchased 80 feet of wire fencing to enclose three sides, and she will use a section of the backyard fence as the fourth side.
 - a. Find a formula for the area enclosed by the fence if the sides of fencing perpendicular to the existing fence have length *L*.
 - b. What dimensions should she make her garden to maximize the enclosed area?
- a. First, note that 2L + W = 80, which implies W = 80 2L. So we get:

$$A = LW = L(80 - 2L) = -2L^2 + 80L.$$

b. A is maximum at the vertex:

$$L = -\frac{b}{2a} = -\frac{80}{2(-2)} = 20.$$

Thus the garden must be 40 \times 20 to maximize the area.

Finding Maximum Revenue

• A newspaper has 84,000 subscribers at a quarterly charge of \$30. Suppose if the price rises to \$32, 5,000 subscribers will be lost. Assuming that subscriptions are linearly related to the price, what price should the newspaper charge for a quarterly subscription to maximize their revenue?

Set x the price charged and y the number of subscribers.

Data points (30, 84000) and (32, 79000). Slope $m = \frac{79000-84000}{32-30} = -\frac{5000}{2} = -2500$. Equation of line y - 84000 = -2500(x - 30) or y = -2500x + 159000.

Thus, the revenue of the paper is:

$$R = xy = x(-2500x + 159000) = -2500x^{2} + 159000x.$$

To maximize this we find the vertex: $x = -\frac{b}{2a} = -\frac{159000}{2(-2500)} = \frac{159000}{5000} = 31.8.$

Finding the y- and x-Intercepts of a Parabola

- Find the y- and x-intercepts of the quadratic $f(x) = 3x^2 + 5x 2$.
- We work as follows:
 - Since a *y*-intercept is on the *y*-axis, we set x = 0.
 - Since an x-intercept is on the x-axis, we set y = 0.
- For the *y*-intercept:

$$f(0)=-2.$$

Thus y-intercept is at (0, -2).

• For *x*-intercepts:

$$0 = 3x^2 + 5x - 2 \Rightarrow 0 = (3x - 1)(x + 2) \Rightarrow x = \frac{1}{3}$$
 or $x = -2$.

Thus x-intercepts occur at (-2, 0) and $(\frac{1}{3}, 0)$.

Applying the Vertex and x-Intercepts of a Parabola

- A ball is thrown upward from the top of a 40 foot high building at a speed of 80 feet per second. The ball's height above ground can be modeled by the equation $H(t) = -16t^2 + 80t + 40$.
 - a. When does the ball reach the maximum height?
 - b. What is the maximum height of the ball?
 - c. When does the ball hit the ground?

a.
$$t = -\frac{b}{2a} = -\frac{80}{2(-16)} = \frac{80}{32} = \frac{5}{2}$$
.

- b. $H_{\max} = H(-\frac{5}{2}) = -16(\frac{5}{2})^2 + 80 \cdot \frac{5}{2} + 40 = -16 \cdot \frac{25}{4} + 200 + 40 = -100 + 200 + 40 = 140.$
- c. H(t) = 0 implies $-16t^2 + 80t + 40 = 0$.

$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-80 \pm \sqrt{8960}}{-32} \approx 5.458.$$

Subsection 2

Power Functions and Polynomial Functions

We Will Learn How To:

- Identify power functions;
- Identify end behavior of power functions;
- Identify polynomial functions;
- Identify the degree and leading coefficient of polynomial functions.

Identifying Power Functions

• A power function is a function that can be represented in the form

 $f(x)=kx^p,$

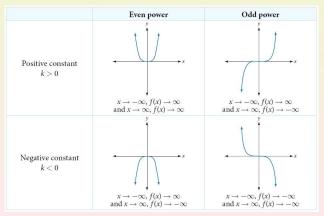
where k and p are real numbers, and k is known as the coefficient.
E.g., we have

$$\begin{array}{rcl} f(x) &=& 1 &=& 1 \cdot x^{0}; \\ f(x) &=& x &=& 1 \cdot x^{1}; \\ f(x) &=& x^{2} &=& 1 \cdot x^{2}; \\ f(x) &=& \frac{1}{x} &=& 1 \cdot x^{-1}; \\ f(x) &=& \frac{1}{x^{2}} &=& 1 \cdot x^{-2}; \\ f(x) &=& \sqrt{x} &=& 1 \cdot x^{1/2}; \\ f(x) &=& \sqrt{x} &=& 1 \cdot x^{1/3}. \end{array}$$

• On the other hand $f(x) = 2^x$ is not a power function.

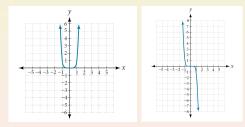
End Behavior of Power Functions

The behavior of the graph of a function as the input values get very small (x → -∞) and and as they get very large (x → ∞) is referred to as the end behavior of the function.



Identifying End Behavior of Power Functions

- Describe the end behavior of the graphs of a. $f(x) = x^8$ and b. $g(x) = -x^9$.
- a. We have k = 1 positive and p = 8 even.
 - As $x \to -\infty$, $f(x) \to +\infty$;
 - As $x \to +\infty$, $f(x) \to +\infty$.



b. We have k = -1 negative and p = 9 odd.

• As $x \to -\infty$, $g(x) \to +\infty$;

• As
$$x \to +\infty$$
, $g(x) \to -\infty$.

Polynomial Functions

• Let *n* be a non-negative integer. A **polynomial function** is a function that can be written in the form

$$f(x) = a_n x^n + \cdots + a_2 x^2 + a_1 x + a_0.$$

- This is called the **general form** of a polynomial function.
- Each *a_i* is a **coefficient** and can be any real.
- Each expression $a_i x^i$ is a **term** of a polynomial function.

Leading coefficient Degree

$$f(x) = \underbrace{a_n x^n}_{\uparrow} + \dots + a_2 x^2 + a_1 x + a_0$$
Leading term

Identifying the Degree and Leading Coefficient

• Identify the degree, leading term, and leading coefficient of the following polynomial functions.

a.
$$f(x) = 3 + 2x^2 - 4x^3$$

b.
$$g(t) = 5t^5 - 2t^3 + 7t^3$$

c.
$$h(p) = 6p - p^3 - 2$$
.

- a. For f, we have:
 - Degree: 3;
 - Leading Term: $-4x^3$;
 - Leading Coefficient: -4.
- b. For g, we have:
 - Degree: 5;
 - Leading Term: 5t⁵;
 - Leading Coefficient: 5.
- c. For h, we have:
 - Degree: 3;
 - Icading Term: −p³;
 - Leading Coefficient: -1.

Identifying End Behavior of Polynomial Functions

- For any polynomial, the end behavior of the polynomial will match the end behavior of the power function consisting of the leading term.
- E.g., $f(x) = -x^2 + 7x 12$ has the same end behavior as $-x^2$.
- E.g., $g(x) = 3x^5 x^4 + 7x^3 + 11x^2 x + 2$ has the same end behavior as $3x^5$.

Identifying End Behavior of a Polynomial Function

Given the function

$$f(x) = -3x^2(x-1)(x+4),$$

express the function as a polynomial in general form, and determine the leading term, degree, and end behavior of the function. Write in general form:

$$f(x) = -3x^{2}(x-1)(x+4)$$

$$f(x) = -3x^{2}(x^{2}+3x-4)$$

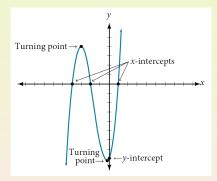
$$f(x) = -3x^{4}-9x^{3}+12x^{2}.$$

The degree is 4 and the leading term is $-3x^4$. Since the coefficient is negative and the power even:

• As
$$x \to -\infty$$
, $f(x) \to -\infty$;

• As
$$x \to +\infty$$
, $f(x) \to -\infty$

Intercepts and Turning Points of Polynomial Functions



- A **turning point** of a graph is a point at which the graph changes direction from increasing to decreasing or decreasing to increasing.
- The y-intercept is the point at which the function has an input value of zero.
- The x-intercepts are the points at which the output value is zero.

George Voutsadakis (LSSU)

Determining the Intercepts

Given the polynomial function f(x) = (x - 2)(x + 1)(x - 4), written in factored form, determine the y- and x-intercepts.

For the *y*-intercept, set x = 0:

$$f(0) = (-2)(1)(-4) = 8.$$

So the *y*-intercept is (0, 8).

For the *x*-intercepts, we must solve

$$(x-2)(x+1)(x-4) = 0$$

 $x-2 = 0 \text{ or } x+1 = 0 \text{ or } x-4 = 0$
 $x = 2 \text{ or } x = -1 \text{ or } x = 4.$

Thus the x-intercepts are (-1, 0), (2, 0) and (4, 0).

Determining the Intercepts

• Given the polynomial function $f(x) = x^4 - 4x^2 - 45$, determine the y- and x-intercepts.

For the *y*-intercept, set x = 0:

$$f(0)=-45.$$

So the *y*-intercept is (0, -45).

For the x-intercepts, we must solve

$$x^{4} - 4x^{2} - 45 = 0$$

(x² - 9)(x² + 5) = 0
(x + 3)(x - 3)(x² + 5) = 0
x + 3 = 0 or x - 3 = 0 or x² + 5 = 0
x = -3 or x = 3 (x² \neq -5).

Thus the x-intercepts are (-3, 0), (3, 0).

Number of Intercepts and Turning Points

- A polynomial of degree *n* will have:
 - at most n x-intercepts;
 - at most n-1 turning points.
- Without graphing the function, determine the local behavior of the function by finding the maximum number of x-intercepts and turning points for $f(x) = -3x^{10} + 4x^7 x^4 + 2x^3$.

The graph will have

- At most 10 *x*-intercepts;
- At most 9 turning points.
- Given the function f(x) = -4x(x+3)(x-4), determine the local behavior.

Since $f(x) = -4x^3 + 4x^2 + 48x$, it will have:

- At most 3 x-intercepts;
- At most 2 turning points.

Subsection 3

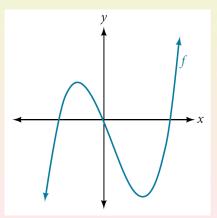
Graphs of Polynomial Functions

We Will Learn How To:

- Recognize characteristics of graphs of polynomial functions;
- Use factoring to find zeros of polynomial functions;
- Identify zeros and their multiplicities;
- Determine end behavior;
- Understand the relationship between degree and turning points;
- Graph polynomial functions;

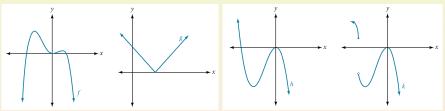
Characteristics of Graphs of Polynomial Functions

- Polynomial functions have graphs that:
 - do not have sharp corners (are smooth);
 - do not have breaks (are continuous).



Recognizing Polynomial Functions

Which of the graphs represents a polynomial function?



- The graphs of f and h are both continuous and smooth.
 So they represent graphs of polynomial functions.
- On the other hand, g is not smooth and k is not continuous.
 So these do not qualify as polynomial functions.

Finding the *x*-Intercepts by Factoring

• Find the x-intercepts of $f(x) = x^6 - 3x^4 + 2x^2$. Factor and use the zero-factor property:

$$x^{6} - 3x^{4} + 2x^{2} = 0$$

$$x^{2}(x^{4} - 3x^{2} + 2) = 0$$

$$x^{2}(x^{2} - 1)(x^{2} - 2) = 0$$

$$x^{2} = 0 \text{ or } x^{2} - 1 = 0 \text{ or } x^{2} - 2 = 0$$

$$x = 0 \text{ or } x^{2} = 1 \text{ or } x^{2} = 2$$

$$x = 0 \text{ or } x = \pm 1 \text{ or } x = \pm \sqrt{2}$$

So f has x-intercepts (0,0), (-1,0), (1,0), ($-\sqrt{2}$,0) and ($\sqrt{2}$,0).

Finding the *x*-Intercepts by Factoring

Find the x-intercepts of f(x) = x³ - 5x² - x + 5.
 We work in the same way:

$$x^{3} - 5x^{2} - x + 5 = 0$$

$$x^{2}(x - 5) - (x - 5) = 0$$

$$(x^{2} - 1)(x - 5) = 0$$

$$(x + 1)(x - 1)(x - 5) = 0$$

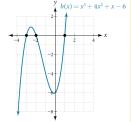
$$x + 1 = 0 \text{ or } x - 1 = 0 \text{ or } x - 5 = 0$$

$$x = -1 \text{ or } x = 1 \text{ or } x = 5$$

We conclude that the x-intercepts are (-1, 0), (1, 0) and (5, 0).

Finding the *x*-Intercepts Using a Graph

• Find the x-intercepts of $h(x) = x^3 + 4x^2 + x - 6$ whose graph is shown below



We can see that the x-intercepts are (-3,0), (-2,0) and (1,0). We can use one to factor and find the others.

$$x^{3} + 4x^{2} + x - 6 = 0$$

$$x^{3} + 3x^{2} + x^{2} + 3x - 2x - 6 = 0$$

$$x^{2}(x + 3) + x(x + 3) - 2(x + 3) = 0$$

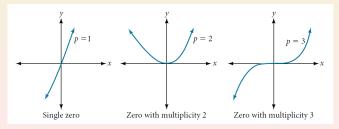
$$(x^{2} + x - 2)(x + 3) = 0$$

$$(x + 2)(x - 1)(x + 3) = 0$$

$$x = -2 \text{ or } x = 1 \text{ or } x = -3.$$

Graphical Behavior of Polynomials at x-Intercepts

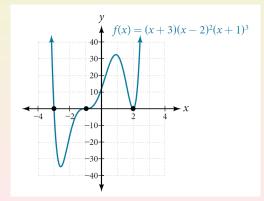
- If a polynomial contains a factor of the form (x h)^p, the behavior near the x-intercept h is determined by the power p.
- We say that x = h is a zero of multiplicity p.
 - The graph of a polynomial function will touch the *x*-axis at zeros with even multiplicities.
 - The graph will cross the x-axis at zeros with odd multiplicities.



Graphing a Function

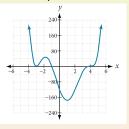
• For example, we graph the function shown.

$$f(x) = (x+3)(x-2)^2(x+1)^3.$$



Identifying Zeros and Their Multiplicities

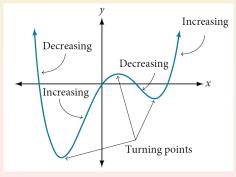
• Use the graph of the function of degree 6 to identify the zeros of the function and their possible multiplicities.



- The first zero occurs at x = -3.
 The graph touches the x-axis, so the multiplicity must be even.
- The next zero occurs at x = -1. This is a single zero of multiplicity 1.
- The last zero occurs at x = 4. The graph crosses the x-axis, so the multiplicity must be odd. We know that the multiplicity is likely 3.

Turning Points

- A **turning point** is a point of the graph where the graph changes from increasing to decreasing (rising to falling) or decreasing to increasing (falling to rising).
- A polynomial of degree n will have at most n-1 turning points.



Finding the Maximum Number of Turning Points

• Find the maximum number of turning points of each polynomial function.

a.
$$f(x) = -x^3 + 4x^5 - 3x^2 + 1$$

b.
$$f(x) = -(x-1)^2(1+2x^2)$$

a. The degree is 5.

Thus, f has at most 4 turning points.

b. The degree is 4.

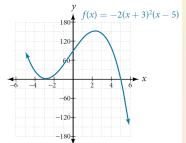
So this polynomial has at most 3 turning points.

Sketching the Graph of a Polynomial Function

- Sketch a graph of f(x) = −2(x + 3)²(x − 5).
 Use:
 - End behavior:

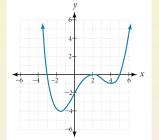
• if
$$x \to -\infty$$
, $f(x) \to +\infty$;
• if $x \to +\infty$, $f(x) \to -\infty$.

- The roots and their multiplicities:
 - x = -3 of multiplicity 2;
 - x = 5 of multiplicity 1.



Writing Formulas for Polynomial Functions

Write a formula for the polynomial function shown



Taking into account the zeros and their multiplicities we come up with a candidate formula:

$$f(x) = a(x+3)(x-2)^2(x-5).$$

Then we find *a* using a point on the graph.

$$f(0) = -2 \Rightarrow a \cdot 3 \cdot (-2)^2 \cdot (-5) = -2 \Rightarrow -60a = -2 \Rightarrow a = \frac{1}{30}.$$

So we have $f(x) = \frac{1}{30}(x+3)(x-2)^2(x-5)$.

Subsection 4

Dividing Polynomials

We Will Learn How To:

- Use long division to divide polynomials;
- Use synthetic division to divide polynomials.

The Division Algorithm

• Recall the division of numbers.

- Dividend 17
- Divisor 3
 - Divide $17 \div 3$ to get:
- Quotient 5
- Remainder 2

and write: $17 = 3 \cdot 5 + 2$ or $\frac{17}{3} = 5 + \frac{2}{3}$.

- Similarly for polynomials:
 - **Dividend** f(x)
 - Divisor d(x), with $\deg(d(x)) \le \deg(f(x))$ Divide $f(x) \div d(x)$ to get:
 - Quotient q(x)
 - **Remainder** r(x), with $0 \le \deg(r(x)) < \deg(d(x))$

and write $f(x) = d(x) \cdot q(x) + r(x)$ or $\frac{f(x)}{d(x)} = q(x) + \frac{r(x)}{d(x)}$.

Using Long Division to Divide a Polynomial

• Divide $5x^2 + 3x - 2$ by x + 1 and write your answer in an appropriate form.

So we have

$$5x^2 + 3x - 2 = (x + 1)(5x - 2).$$

Using Long Division to Divide a Polynomial

• Divide $6x^3 + 11x^2 - 31x + 15$ by 3x - 2 and write your answer in an appropriate form.

$$3x - 2 \mid \frac{2x^2 + 5x - 7}{6x^3 + 11x^2 - 31x + 15} \\ \underline{6x^3 - 4x^2} \\ 15x^2 - 31x \\ \underline{15x^2 - 31x} \\ 15x^2 - 10x \\ \underline{-21x + 15} \\ -21x + 14 \\ \underline{-11}$$

So we have

$$6x^3 + 11x^2 - 31x + 15 = (3x - 2)(2x^2 + 5x - 7) + 1.$$

Synthetic Division

- **Synthetic division** is a shortcut that can be used when the divisor is a binomial in the form x k where k is a real number.
- Only the coefficients are used, omitting the powers of x.
- Use synthetic division to divide $5x^2 3x 36$ by x 3.

So,
$$5x^2 - 3x - 36 = (x - 3)(5x + 12)$$
.

Using Synthetic Division

• Use synthetic division to divide $4x^3 + 10x^2 - 6x - 20$ by x + 2.

So, $4x^3 + 10x^2 - 6x - 20 = (x + 2)(4x^2 + 2x - 10)$.

• Use synthetic division to divide $-9x^4 + 10x^3 + 7x^2 - 6$ by x - 1.

Therefore $-9x^4 + 10x^3 + 7x^2 - 6 = (x - 1)(-9x^3 + x^2 + 8x + 8) + 2$.

Jsing Polynomial Division in an Application Problem

• The volume of a rectangular solid is given by the polynomial $3x^4 - 3x^3 - 33x^2 + 54x$.

The length of the solid is given by 3x and the width is given by x - 2. Find the height, *t*, of the solid.

We know that the volume equals length times width times height. So, according to the data, we have:

$$3x(x-2)t = 3x^4 - 3x^3 - 33x^2 + 54x$$

$$(x-2)t = \frac{3x^4 - 3x^3 - 33x^2 + 54x}{3x}$$

$$(x-2)t = x^3 - x^2 - 11x + 18$$

$$t = \frac{x^3 - x^2 - 11x + 18}{x-2}.$$

To find *t*, we must perform the division:

Subsection 5

Zeros of Polynomial Functions

We Will Learn How To:

- Evaluate a polynomial using the Remainder Theorem;
- Use the Factor Theorem to solve a polynomial equation;
- Use the Rational Zero Theorem to find rational zeros;
- Find zeros of a polynomial function;
- Find polynomials with given zeros.

The Remainder Theorem

• If a polynomial f(x) is divided by x - k, we get

f(x) = (x - k)q(x) + r, where r is a constant.

Note that

$$f(k) = (k-k)q(k) + r = r.$$

• That is, the remainder of the division $f(x) \div (x - k)$ equals f(k)!

Using the Remainder Theorem

• Use the **Remainder Theorem** to compute f(2) if

$$f(x) = 6x^4 - x^3 - 15x^2 + 2x - 7.$$

We must divide f(x) by x - 2 and find the remainder.

Therefore, f(2) = 25.

The Factor Theorem

- We saw that $f(x) \div (x k)$ has remainder r = f(k).
- It follows that

k is a zero of f(x) if and only if the remainder r = 0if and only if (x - k) is a factor of f(x).

• Thus (x - k) is a factor of f(x) if and only if f(k) = 0.

Using the Factor Theorem

• Let
$$f(x) = x^3 - 6x^2 - x + 30$$
.

- a) Use the **Factor Theorem** to show that (x + 2) is a factor of f(x).
- b) Find the remaining factors.
- c) Use the factors to determine the zeros of the polynomial.

(a) Show f(-2) = 0:

$$f(-2) = (-2)^3 - 6(-2)^2 - (-2) + 30 = -8 - 24 + 2 + 30 = 0.$$

So x + 2 is a factor of f(x). (b) We divide f(x) by x + 2:

So $x^3 - 6x^2 - x + 30 = (x+2)(x^2 - 8x + 15) = (x+2)(x-3)(x-5)$. (c) The zeros are x = -2, x = 3 and x = 5.

The Rational Zero Theorem

• The Rational Zero Theorem states that, if the polynomial

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

has integer coefficients, then every rational zero of f(x) has the form $\frac{p}{a}$ where

- p is a factor of the constant term a_0 ;
- q is a factor of the leading coefficient a_n .
- When the leading coefficient is 1, the possible rational zeros are the factors of the constant term.

Listing All Possible Rational Zeros

- List all possible rational zeros of $f(x) = 2x^4 5x^3 + x^2 4$. Relying on the Rational Zero Theorem,
 - we first list the factors of $a_0 = -4$: $\pm 1, \pm 2, \pm 4$;
 - we then list the factors of $a_4 = 2$: $\pm 1, \pm 2$.

Finally, we form all possible ratios:

$$\pm 1, \pm \frac{1}{2}, \pm 2, \pm 4.$$

Finding the Zeros of Polynomial Functions

- Find the zeros of $f(x) = 4x^3 3x 1$.
- We follow the strategy:
 - Quickly identify a zero, possibly by using the Rational Zero Theorem.
 - Use Synthetic Division to find the quotient.
 - Repeat these steps until obtaining a quadratic.

Observe that f(1) = 0.

Divide f by (x - 1):

So we get

$$f(x) = 4x^3 - 3x - 1 = (x - 1)(4x^2 + 4x + 1) = (x - 1)(2x + 1)^2.$$

Thus, the zeros are x = 1 and $x = -\frac{1}{2}$.

Find a Polynomial with Given Zeros

• Find a third degree polynomial that has zeros of -3, 1 and 2, such that f(-2) = 60.

We must have

$$f(x) = a(x + 3)(x - 1)(x - 2).$$

Now use f(-2) = 60 to compute *a*:

$$a(-2+3)(-2-1)(-2-2) = 60$$

$$a \cdot 1 \cdot (-3) \cdot (-4) = 60$$

$$12a = 60$$

$$a = 5.$$

So we get

$$f(x) = 5(x^2 + 2x - 3)(x - 2) = 5(x^3 - 2x^2 + 2x^2 - 4x - 3x + 6)$$

= 5(x^3 - 7x + 6) = 5x^3 - 35x + 30.

Subsection 6

Rational Functions

We Will Learn How To:

- Find the domain of a rational function;
- Identify vertical and horizontal asymptotes;
- Find x- and y-intercepts;
- Sketch the graph of a rational function, given a formula;
- Obtain a formula for a rational function, given a graph.

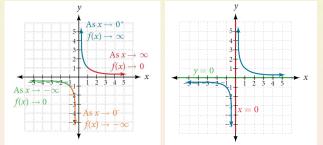
Vertical and Horizontal Asymptotes

• Follow the trends in the graph:

• As
$$x \to 0^-$$
, $f(x) \to -\infty$

• As
$$x o 0^+$$
, $f(x) o +\infty$

We say that the line x = 0 is a **vertical asymptote** of the graph.



Similarly:

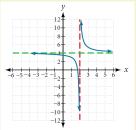
• As
$$x \to -\infty$$
, $f(x) \to 0$

• As
$$x \to +\infty$$
, $f(x) \to 0$

We say that the line y = 0 is a **horizontal asymptote** of the graph.

Using Arrow Notation

• Use arrow notation to describe the end behavior and local behavior of the function shown.



• As
$$x \to 2^-$$
, $y \to -\infty$
• As $x \to 2^+$, $y \to +\infty$
So $x = 2$ is a vertical asymptote.
• As $x \to -\infty$, $y \to 4$
• As $x \to +\infty$, $y \to 4$

So y = 4 is a horizontal asymptote.

Domain of a Rational Function

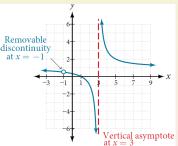
- The domain of a rational function includes all real numbers except those that cause the denominator to equal zero.
- Find the domain of f(x) = x+3/x²⁻⁹.
 Begin by setting the denominator equal to zero and solving.

$$x^2 - 9 = 0$$
$$x^2 = 9$$
$$x = \pm 3.$$

The denominator is equal to zero when $x = \pm 3$. The domain of the function is all real numbers except $x = \pm 3$. Formally and succinctly, we write $Dom(f) = \mathbb{R} - \{-3, 3\}$.

Identifying Vertical Asymptotes

- In general the vertical asymptotes occur at those values that zero the denominator, i.e., those values we exclude from the domain.
- Exceptions may occur if those same values zero also the numerator.
- If the multiplicity of the zero in the numerator is greater than or equal to that in the denominator, we have a hole in the graph.
- If the multiplicity is greater in the denominator, then we have a vertical asymptote at that value.



• The hole is called a **removable discontinuity**.

/ertical Asymptotes and Removable Discontinuities

• Find the vertical asymptotes of $k(x) = \frac{5+2x^2}{(2+x)(1-x)}$. We have

$$k(x) = \frac{5+2x^2}{(2+x)(1-x)}.$$

So x = -2 and x = 1 are vertical asymptotes.

• Find the vertical asymptotes and removable discontinuities of the graph of $k(x) = \frac{x-2}{x^2-4}$.

Factor the numerator and the denominator, $k(x) = \frac{x-2}{(x-2)(x+2)}$.

- There is a common factor in the numerator and the denominator, x 2. The multiplicities are both equal to 1.
 So, at x = 2, k has a removable discontinuity.
- There is a factor in the denominator that is not in the numerator, x + 2. So x = -2 is a vertical asymptote.

Horizontal Asymptotes of Rational Functions

- The horizontal asymptote of a rational function can be determined by looking at the degrees of the numerator and denominator.
 - Degree of numerator is less than degree of denominator: horizontal asymptote at y = 0.
 - Degree of numerator is greater than degree of denominator: no horizontal asymptote.
 - Degree of numerator is equal to degree of denominator: horizontal asymptote at ratio of leading coefficients.

dentifying Horizontal Asymptotes

• For the functions listed, identify the horizontal asymptote.

a.
$$g(x) = \frac{6x^3 - 10x}{2x^3 + 5x^2}$$

b. $h(x) = \frac{x^2 - 4x + 1}{x + 2}$
c. $k(x) = \frac{x^2 + 4x}{x^3 - 8}$.

a. Numerator and denominator have the same degree 3.

So g has a horizontal asymptote $y = \frac{6}{2}$ or y = 3.

- b. The degree of the numerator exceeds that of the denominator.
 So there is no horizontal asymptote.
- c. The degree of the denominator exceeds that of the numerator. So y = 0 is the horizontal asymptote.

Identifying Horizontal and Vertical Asymptotes

• Find the horizontal and vertical asymptotes of the function

$$f(x) = \frac{(x-2)(x+3)}{(x-1)(x+2)(x-5)}$$

Start by finding the domain $Dom(f) = \mathbb{R} - \{-2, 1, 5\}.$

Then find the *x*-intercepts (these are the numbers that zero the numerator): x = -3, x = 2.

Note that numerator and denominator do not share any zeros. So we get the following:

• The vertical asymptotes are the lines

$$x = -2, \quad x = 1, \quad x = 5.$$

 The horizontal asymptote (since the degree of the denominator is bigger than that of the numerator) is y = 0.

Finding the Intercepts of a Rational Function

• Find the intercepts of

$$f(x) = \frac{(x-2)(x+3)}{(x-1)(x+2)(x-5)}.$$

For the *y*-intercept, we set x = 0:

$$f(0) = \frac{-2 \cdot 3}{-1 \cdot 2 \cdot (-5)} = \frac{-6}{10} = -\frac{3}{5}.$$

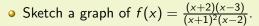
So the *y*-intercept is $(0, -\frac{3}{5})$. For the *x*-intercepts, set y = 0.

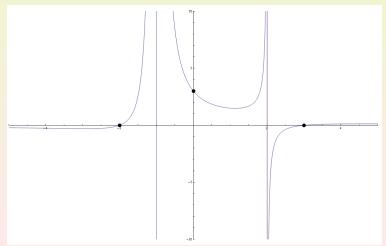
$$\frac{(x-2)(x+3)}{(x-1)(x+2)(x-5)} = 0 \quad \Rightarrow \quad (x-2)(x+3) = 0 \\ \Rightarrow \quad x = -3 \text{ or } x = 2.$$

Thus, the x-intercepts are (-3, 0) and (2, 0).

Graphing and Writing a Rational Function

- Sketch a graph of f(x) = (x+2)(x-3)/(x+1)²(x-2).
 We follow a series of steps to facilitate graphing:
- The domain is $Dom(f) = \mathbb{R} \{-1, 2\};$
- The vertical asymptotes are: x = -1 and x = 2.
- The horizontal asymptote is: y = 0.
- The x-intercepts are: (-2, 0) and (3, 0).
- The y-intercept is: (0,3).
- Finally, set up the sign table for f(x):

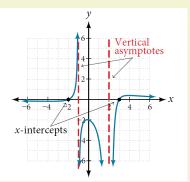




George Voutsadakis (LSSU)

Graphing and Writing a Rational Function

• Write an equation for the rational function shown



- x-intercepts are (-2,0) and (3,0).
 Numerator factors: x + 2 and x 3.
- Vertical asymptotes are x = -1 and x = 2. Denominator factors: x + 1 and x - 2.
- Horizontal asymptote y = 0. So denominator is of higher degree.

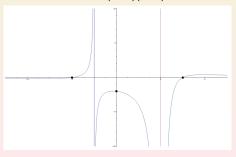
At x = 2, f(x) does not switch signs.

A guess for the formula is $f(x) = \frac{a(x+2)(x-3)}{(x+1)(x-2)^2}$.

Graphing and Writing a Rational Function (Cont'd)

$$f(0) = -2 \Rightarrow \frac{a \cdot 2 \cdot (-3)}{1 \cdot (-2)^2} = -2 \Rightarrow \frac{-6a}{4} = -2 \Rightarrow a = \frac{4}{3}.$$

So we have the formula $f(x) = \frac{4(x+2)(x-3)}{3(x+1)(x-2)^2}$.



George Voutsadakis (LSSU)

Subsection 7

Inverses and Radical Functions

We Will Learn How To:

- Find the inverse of an invertible polynomial function;
- Restrict the domain to find the inverse of a polynomial function.

Verifying two Functions are Inverses

• Two functions, f and g, are inverses of one another if

- for all x in the domain of f, g(f(x)) = x;
- for all x in the domain of g, f(g(x)) = x.
- Show that $f(x) = \frac{1}{x+1}$ and $g(x) = \frac{1}{x} 1$ are inverses.

We verify that both composition operations yield the identity:

$$g(f(x)) = g\left(\frac{1}{x+1}\right) = \frac{1}{\frac{1}{x+1}} - 1 = x + 1 - 1 = x$$
$$f(g(x)) = f\left(\frac{1}{x} - 1\right) = \frac{1}{\frac{1}{x} - 1 + 1} = \frac{1}{\frac{1}{x}} = x.$$

Finding the Inverse of a Cubic Function

Find the inverse of the function f(x) = 5x³ + 1. Rewrite y = 5x³ + 1. Interchange x ↔ y: x = 5y³ + 1.
Solve for y:

$$x = 5y^{3} + 1$$
$$x - 1 = 5y^{3}$$
$$\frac{x - 1}{5} = y^{3}$$
$$\sqrt[3]{\frac{x - 1}{5}} = y.$$

So
$$f^{-1}(x) = \sqrt[3]{\frac{x-1}{5}}$$

Restricting the Domain to Find the Inverse

- If a function is not one-to-one, it cannot have an inverse.
- If we restrict the domain of the function so that it becomes one-to-one, thus creating a new function, this new function will have an inverse.
- Find the inverse function of *f*:

a.
$$f(x) = (x - 4)^2, x \ge 4;$$

b. $f(x) = (x - 4)^2, x \le 4.$
1. $y = (x - 4)^2 \Rightarrow x = (y - 4)^2 \stackrel{y \ge 4}{\Rightarrow} \sqrt{x} = y - 4 \Rightarrow \sqrt{x} + 4 = y.$
So, in this case, $f^{-1}(x) = \sqrt{x} + 4.$
1. $y = (x - 4)^2 \Rightarrow x = (y - 4)^2 \stackrel{y \le 4}{\Rightarrow} -\sqrt{x} = y - 4 \Rightarrow -\sqrt{x} + 4 = y.$
So, in this case, $f^{-1}(x) = -\sqrt{x} + 4.$

Finding the Inverse When the Restriction Is Not Specified

Restrict the domain and then find the inverse of

$$f(x) = (x-2)^2 - 3.$$

The graph is that of $y = x^2$ shifted 2 units right and 3 units down. To pass the horizontal line test, we must restrict its domain to $[2, \infty)$. Now we work to find the inverse:

$$y = (x - 2)^{2} - 3$$

$$x = (y - 2)^{2} - 3$$

$$x + 3 = (y - 2)^{2}$$

$$\sqrt{x + 3} = y - 2$$

$$\sqrt{x + 3} + 2 = y.$$

So $f^{-1}(x) = \sqrt{x+3} + 2$.

Finding the Inverse of a Radical Function

• Restrict the domain of the function $f(x) = \sqrt{x-4}$ and then find the inverse.

The graph is that of $y = \sqrt{x}$ shifted 4 units right.

The graph passes the horizontal line test on $[4,\infty)$.

Now we work to find the inverse:

$$y = \sqrt{x - 4}$$
$$x = \sqrt{y - 4}$$
$$x^2 = y - 4$$
$$x^2 + 4 = y.$$

So $f^{-1}(x) = x^2 + 4$, but defined only on $[0, \infty)$.

Solving Applications of Radical Functions

- A mound of gravel is in the shape of a cone with the height equal to twice the radius, whose volume in terms of the radius is $V = \frac{2}{3}\pi r^3$.
 - a. Find the inverse of the function $V = \frac{2}{3}\pi r^3$ that determines the volume V of a cone and is a function of the radius r.
 - b. Then use the inverse function to calculate the radius of such a mound of gravel measuring 100 cubic feet. Use $\pi = 3.14$.
- a. We need to solve for *r*:

$$V = \frac{2}{3}\pi r^3 \Rightarrow \frac{3V}{2\pi} = r^3 \Rightarrow \sqrt[3]{\frac{3V}{2\pi}} = r.$$

Thus, $r = \sqrt[3]{\frac{3V}{2\pi}}$.
We have $r = \sqrt[3]{\frac{3\cdot100}{2\cdot3.14}} \approx 3.63$ feet.

Determining the Domain of a Radical Function

• Find the domain of the function $f(x) = \sqrt{\frac{(x+2)(x-3)}{x-1}}$. One has to impose two restrictions:

$$x-1 \neq 0$$
 and $\frac{(x-2)(x-3)}{x-1} \geq 0.$

We use the sign table method:

Hence, we must have x in $[-2,1) \cup [3,\infty)$.

Finding the Inverse of a Rational Function

- The function $C = \frac{20+0.4n}{100+n}$ represents the concentration C of an acid solution after n mL of 40% solution has been added to 100 mL of a 20% solution.
 - a. Find the inverse of the function; that is, find an expression for n in terms of C.
 - b. Use your result to determine how much of the 40% solution should be added so that the final mixture is a 35% solution.
- a. We have

$$C = \frac{20+0.4n}{100+n} \Rightarrow C(100+n) = 20 + 0.4n$$

$$\Rightarrow 100C + Cn = 20 + 0.4n \Rightarrow 100C - 20 = 0.4n - Cn$$

$$\Rightarrow 100C - 20 = (0.4 - C)n \Rightarrow \frac{100C - 20}{0.4 - C} = n.$$

So
$$n = \frac{100C - 20}{0.35 - C}$$
.
(b) Now we get $n = \frac{100 \cdot 0.35 - 20}{0.4 - 0.35} = \frac{15}{0.05} = 300$

Subsection 8

Modeling Using Variation

We Will Learn How To:

- Solve direct variation problems;
- Solve inverse variation problems;
- Solve problems involving joint variation.

Direct Variation

• If x and y are related by an equation of the form

$$y = kx^n$$
,

then we say that the relationship is **direct variation** and y **varies directly with**, or **is proportional to**, the *n*th power of x.

• In direct variation relationships, there is a nonzero constant ratio $k = \frac{y}{x^n}$, where k is called the **constant of variation**, which helps define the relationship between the variables.

Solving a Direct Variation Problem

The quantity y varies directly with the cube of x.
 If y = 25 when x = 2, find y when x is 6.
 The hypothesis implies that there exists a constant k, such that

$$y = kx^3$$
.

Since when x = 2, y = 25, we get

$$25 = k \cdot 2^3 \Rightarrow k = \frac{25}{8}.$$

Thus, the relation of direct variation is

$$y=\frac{25}{8}x^3.$$

Therefore, for x = 6,

$$y = \frac{25}{8} \cdot 6^3 = 675.$$

Inverse Variation

• If x and y are related by an equation of the form

$$y = \frac{k}{x^n},$$

where k is a nonzero constant, then we say that y varies inversely with the *n*th power of x.

In inversely proportional relationships, or inverse variations, there
is a constant multiple k = xⁿy.

Solving an Inverse Variation Problem

A quantity y varies inversely with the cube of x.
 If y = 25 when x = 2, find y when x is 6.
 The hypothesis implies that there exists a constant k, such that

$$y = \frac{k}{x^3}.$$

Since when x = 2, y = 25, we get

$$25 = \frac{k}{2^3} \Rightarrow k = 25 \cdot 8 \Rightarrow k = 200.$$

Thus, the relation of inverse variation is

$$y=\frac{200}{x^3}.$$

Therefore, for x = 6,

$$y = \frac{200}{6^3} = \frac{25}{27}$$

Joint Variation

- Joint variation occurs when a variable varies directly or inversely with multiple variables.
- For instance, if x varies directly with both y and z, we have

$$x = kyz$$
.

• If x varies directly with y and inversely with z, we have

$$x = \frac{ky}{z}$$
.

• Notice that we only use one constant in a joint variation equation.

Solving Problems Involving Joint Variation

- A quantity x varies
 - directly with the square of y and
 - inversely with the cube root of *z*.

If x = 6 when y = 2 and z = 8, find x when y = 1 and z = 27. The hypothesis implies that there exists a constant k, such that

$$x=\frac{ky^2}{\sqrt[3]{z}}.$$

Since when y = 2 and z = 8, x = 6, we get

$$6 = \frac{k \cdot 2^2}{\sqrt[3]{8}} \Rightarrow k = \frac{6 \cdot 2}{4} \Rightarrow k = 3.$$

Thus, the relation of inverse variation is $x = \frac{3y^2}{\sqrt[3]{z}}$. Therefore, for y = 1 and z = 27,

$$x = \frac{3 \cdot 1^2}{\sqrt[3]{27}} = \frac{3 \cdot 1}{3} = 1.$$