College Algebra

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 111

(1) Systems of Equations and Inequalities

- Systems of Linear Equations: Two Variables
- Systems of Nonlinear Equations and Inequalities: Two Variables
- Partial Fractions
- Solving Systems with Gaussian Elimination
- Solving Systems with Cramer's Rule

Subsection 1

Systems of Linear Equations: Two Variables

We Will Learn How To:

- Solve systems of equations by substitution;
- Solve systems of equations by addition;
- Identify inconsistent systems of equations containing two variables;
- Express the solution of a system of dependent equations containing two variables.

Types of Linear Systems

- There are three types of systems of linear equations in two variables, and three types of solutions.
- An independent system has exactly one solution pair (x, y).

The point where the two lines intersect is the only solution.

- An inconsistent system has no solution.

The two lines are parallel and will never intersect.

- A dependent system has infinitely many solutions.

The lines are coincident (the same line), so every coordinate pair on the line is a solution to both equations.

Solving by Substitution

- Solve the following system of equations by substitution.

$$
\left\{\begin{array}{rrr}
-x+y & = & -5 \\
2 x-5 y & = & 1
\end{array}\right\}
$$

Solve the first equation for y :

$$
y=x-5
$$

Substitute into the second equation and solve for x :
$2 x-5(x-5)=1 \Rightarrow 2 x-5 x+25=1 \Rightarrow-3 x=-24 \Rightarrow x=8$.
Find the value of y :

$$
y=x-5 \Rightarrow y=8-5 \Rightarrow y=3
$$

So the solution is $(x, y)=(8,3)$.

Solving a System by the Addition Method

- Solve the given system of equations by addition.

$$
\left\{\begin{array}{rlr}
x+2 y & = & -1 \\
-x+y & = & 3
\end{array}\right\}
$$

Add the two rows side-by-side (to cancel the x 's):

$$
3 y=2 \Rightarrow y=\frac{2}{3}
$$

Now use one of the two equations to find x :

$$
x+2 y=-1 \Rightarrow x=-2 y-1 \Rightarrow x=-2 \cdot \frac{2}{3}-1 \Rightarrow x=-\frac{7}{3}
$$

So the solution pair is $(x, y)=\left(-\frac{7}{3}, \frac{2}{3}\right)$.

Addition Method When Multiplication Is Required

- Solve the given system of equations by the addition method.

$$
\left\{\begin{array}{rlr}
3 x+5 y & = & -11 \\
x-2 y & = & 11
\end{array}\right\}
$$

To cancel the x 's, we start by multiplying both sides of the second equation by -3 :

$$
\left\{\begin{aligned}
3 x+5 y & =-11 \\
-3 x+6 y & =-33
\end{aligned}\right\}
$$

Now we add side-by-side:

$$
11 y=-44 \Rightarrow y=-4
$$

Finally we find x :

$$
x-2 y=11 \Rightarrow x=2 y+11 \Rightarrow x=2(-4)+11 \Rightarrow x=3
$$

So the solution pair is $(x, y)=(3,-4)$.

Addition Method When Double Multiplication Is Required

- Solve the given system of equations in two variables by addition.

$$
\left\{\begin{array}{rlr}
2 x+3 y & = & -16 \\
5 x-10 y & = & 30
\end{array}\right\} .
$$

To cancel the x 's, we start by multiplying both sides of the first equation by 5 and both sides of the second equation by -2 :

$$
\left\{\begin{aligned}
10 x+15 y & =-80 \\
-10 x+20 y & =-60
\end{aligned}\right\}
$$

Now we add side-by-side:

$$
35 y=-140 \Rightarrow y=-4
$$

Finally we find x :
$2 x+3 y=-16 \Rightarrow 2 x=-3 y-16 \Rightarrow 2 x=-3(-4)-16 \Rightarrow x=-2$.
So the solution pair is $(x, y)=(-2,-4)$.

Addition Method in Systems Containing Fractions

- Solve the given system of equations in two variables by addition.

$$
\left\{\begin{array}{l}
\frac{x}{3}+\frac{y}{6}=3 \\
\frac{x}{2}-\frac{y}{4}=1
\end{array}\right\}
$$

To get rid of fractions, we multiply both sides of the first equation by 6 and both sides of the second equation by 4 :

$$
\left\{\begin{aligned}
2 x+y & =18 \\
2 x-y & =
\end{aligned}\right\}
$$

Now we add side-by-side:

$$
4 x=22 \Rightarrow x=\frac{11}{2}
$$

Finally we find y :

$$
2 x-y=4 \Rightarrow y=2 x-4 \Rightarrow y=2 \cdot \frac{11}{2}-4 \Rightarrow y=7
$$

So the solution pair is $(x, y)=\left(\frac{11}{2}, 7\right)$.

Solving an Inconsistent System of Equations

- Solve the following system of equations.

$$
\left\{\begin{array}{rlr}
x & = & 9-2 y \\
x+2 y & = & 13
\end{array}\right\}
$$

Use substitution.

$$
9-2 y+2 y=13 \Rightarrow 9=13
$$

Thus, the given system is inconsistent.

Finding a Solution to a Dependent System

- Find a solution to the system of equations using the addition method.

$$
\left\{\begin{array}{r}
x+3 y=2 \\
3 x+9 y=6
\end{array}\right\}
$$

Multiply the first equation by -3 and then add:

$$
\left\{\begin{array}{rrr}
-3 x-9 y & = & -6 \\
3 x+9 y & = & 6
\end{array}\right\} \Rightarrow 0=0
$$

Therefore, the system is dependent.
We get

$$
x+3 y=2 \Rightarrow x=-3 y+2
$$

So $(x, y)=(-3 y+2, y), y$ any real number.

Finding the Break-Even Point and the Profit Function

- Given the cost function $C(x)=0.85 x+35,000$ and the revenue function $R(x)=1.55 x$, find the break-even point and the profit function.
The break-even point is the point where $R(x)=C(x)$.

$$
\begin{aligned}
& R(x)=C(x) \Rightarrow 1.55 x=0.85 x+35000 \\
& \Rightarrow 0.70 x=35000 \Rightarrow x=50000
\end{aligned}
$$

The profit is

$$
\begin{aligned}
& \text { Profit }=\text { Revenue }- \text { Cost. } \\
& \begin{aligned}
P(x) & =R(x)-C(x) \\
& =1.55 x-(0.85 x+35000) \\
& =1.55 x-0.85 x-35000 \\
& =0.70 x-35000 .
\end{aligned}
\end{aligned}
$$

Writing and Solving a System of Equations

- The cost of a circus ticket is $\$ 25.00$ for children and $\$ 50.00$ for adults. On a certain day, attendance is 2,000 and total revenue \$70,000. How many children and how many adults bought tickets?
Let x be number of children and y number of adults.
Then we have

$$
\left\{\begin{aligned}
x+y & =2000 \\
25 x+50 y & =70000
\end{aligned}\right\} .
$$

Let us solve by substitution, starting by solving the first for y :

$$
y=2000-x
$$

Substitute into the second equation:

$$
\begin{aligned}
& 25 x+50(2000-x)=70000 \Rightarrow 25 x+100000-50 x=70000 \\
& -25 x=-30000 \Rightarrow x=1200
\end{aligned}
$$

Thus, 1200 children and 800 adults attended.

Subsection 2

Systems of Nonlinear Equations and Inequalities: Two Variables

We Will Learn How To:

- Solve a system of nonlinear equations using substitution;
- Solve a system of nonlinear equations using elimination;
- Graph a nonlinear inequality;
- Graph a system of nonlinear inequalities.

Solving a System Representing a Parabola and a Line

- Solve the system of equations. $\left\{\begin{array}{rlr}x-y & = & -1 \\ y & = & x^{2}+1\end{array}\right\}$.

Substitute $y=x^{2}+1$ into the first equation and solve for x :

$$
\begin{aligned}
& x-y=-1 \Rightarrow x-\left(x^{2}+1\right)=-1 \Rightarrow x-x^{2}-1=-1 \\
& \Rightarrow x-x^{2}=0 \Rightarrow x(1-x)=0 \Rightarrow x=0 \text { or } 1-x=0 \\
& \Rightarrow x=0 \text { or } x=1
\end{aligned}
$$

- If $x=0$, then $y=1$.
- If $x=1$, then $y=2$.

It follows that $(x, y)=(0,1)$ or $(x, y)=(1,2)$.

Finding the Intersection of a Circle and a Line

- Find the intersection of the given circle and the given line by
substitution. $\left\{\begin{aligned} x^{2}+y^{2} & = \\ y & =3 x-5\end{aligned}\right\}$.
Substitute $y=3 x-5$ into the first equation and solve for x :

$$
\begin{aligned}
& x^{2}+y^{2}=5 \Rightarrow x^{2}+(3 x-5)^{2}=5 \\
& \Rightarrow x^{2}+9 x^{2}-30 x+25=5 \Rightarrow 10 x^{2}-30 x+20=0 \\
& \Rightarrow x^{2}-3 x+2=0 \Rightarrow(x-1)(x-2)=0 \\
& \Rightarrow x-1=0 \text { or } x-2=0 \Rightarrow x=1 \text { or } x=2
\end{aligned}
$$

- If $x=1$, then $y=-2$.
- If $x=2$, then $y=1$.

It follows that $(x, y)=(1,-2)$ or $(x, y)=(2,1)$.

Solving a System Representing a Circle and an Ellipse

- Solve the system of nonlinear equations. $\left\{\begin{aligned} x^{2}+y^{2} & =26 \\ 3 x^{2}+25 y^{2} & =100\end{aligned}\right\}$. We may use addition:

$$
\left.\begin{array}{l}
\left\{\begin{array}{rlr}
x^{2}+y^{2} & = & 26 \\
3 x^{2}+25 y^{2} & = & 100
\end{array}\right\} \Rightarrow\left\{\begin{array}{rr}
-3 x^{2}-3 y^{2} & = \\
3 x^{2}+25 y^{2} & = \\
\hline
\end{array}\right\} \\
\Rightarrow 22 y^{2}=22
\end{array}\right\} y^{2}=1 \Rightarrow y= \pm 1 . ~ \$
$$

- If $y=-1, x^{2}+1=26 \Rightarrow x^{2}=25 \Rightarrow x= \pm 5$.
- If $y=1, x^{2}+1=26 \Rightarrow x^{2}=25 \Rightarrow x= \pm 5$.

Therefore, we have four solution pairs: $(x, y)=(-1,-5)$ or $(x, y)=(-1,5)$ or $(x, y)=(1,-5)$ or $(x, y)=(1,5)$.

Graphing an Inequality for a Parabola

- Graph the inequality $y>x^{2}+1$.

First plot the graph $y=x^{2}+1$.

Pick a test point not on the graph, say $(0,0)$.
Test the inequality there: $0>0+1$ is FALSE.
So the region of solutions is the the opposite side.
Shade that region.

Graphing a System of Inequalities

Graph the given system of inequalities. $\left\{\begin{array}{rlr}x^{2}-y & \leq 0 \\ 2 x^{2}+y & \leq & 12\end{array}\right\}$.
First plot the graphs of

- $x^{2}-y=0$ or $y=x^{2}$;
- $2 x^{2}+y=12$ or $y=12-2 x^{2}$.

Pick a test point not on the graphs, say $(0,1)$.
Test the inequalities there:

- $0^{2}-1 \leq 0$ is TRUE
- $2 \cdot 0^{2}+1 \leq 12$ is TRUE

The solution region lies above the first and below the second parabola.

Subsection 3

Partial Fractions

We Will Learn How To:

- Decompose $\frac{P(x)}{Q(x)}$, where $Q(x)$ has only non-repeated linear factors;
- Decompose $\frac{P(x)}{Q(x)}$, where $Q(x)$ has repeated linear factors;
- Decompose $\frac{P(x)}{Q(x)}$, where $Q(x)$ has a non-repeated irreducible quadratic factor;
- Decompose $\frac{P(x)}{Q(x)}$, where $Q(x)$ has a repeated irreducible quadratic factor.

Denominator has Nonrepeated Linear Factors

- Suppose $\frac{P(x)}{Q(x)}$ is a rational expression, such that:
- the degree of $P(x)$ is less than the degree of $Q(x)$;
- $Q(x)$ has nonrepeated linear factors $a_{1} x+b_{1}, \ldots, a_{n} x+b_{n}$, i.e., we have

$$
Q(x)=\left(a_{1} x+b_{1}\right) \cdots\left(a_{n} x+b_{n}\right) .
$$

Then the partial fraction decomposition of $\frac{P(x)}{Q(x)}$ is

$$
\frac{P(x)}{Q(x)}=\frac{A_{1}}{a_{1} x+b_{1}}+\frac{A_{2}}{a_{2} x+b_{2}}+\frac{A_{3}}{a_{3} x+b_{3}}+\cdots+\frac{A_{n}}{a_{n} x+b_{n}},
$$

where A_{1}, \ldots, A_{n} are constants.

Decomposing Rationals with Distinct Linear Factors

- Decompose the rational expression $\frac{3 x}{(x+2)(x-1)}$.

We work as follows:

$$
\begin{gathered}
\frac{3 x}{(x+2)(x-1)}=\frac{A}{x+2}+\frac{B}{x-1} \\
(x+2)(x-1) \frac{3 x}{(x+2)(x-1)}=(x+2)(x-1)\left[\frac{A}{x+2}+\frac{B}{x-1}\right] \\
3 x=A(x-1)+B(x+2) \\
3 x=A x-A+B x+2 B \\
3 x=(A+B) x+(-A+2 B) \\
\left\{\begin{array}{c}
A+B=3 \\
-A+2 B=0
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
2 B+B=3 \\
A=2 B
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
B=1 \\
A=2
\end{array}\right\} .
\end{gathered}
$$

So $\frac{3 x}{(x+2)(x-1)}=\frac{1}{x+2}+\frac{2}{x-1}$.

Denominator has Repeated Linear Factors

- Suppose $\frac{P(x)}{Q(x)}$ is a rational expression, such that:
- the degree of $P(x)$ is less than the degree of $Q(x)$;
- $Q(x)$ has a repeated linear factor $a x+b$, occurring n times, i.e.,

$$
Q(x)=(a x+b)^{n} .
$$

Then the partial fraction decomposition of $\frac{P(x)}{Q(x)}$ is

$$
\frac{P(x)}{Q(x)}=\frac{A_{1}}{a x+b}+\frac{A_{2}}{(a x+b)^{2}}+\frac{A_{3}}{(a x+b)^{3}}+\cdots+\frac{A_{n}}{(a x+b)^{n}},
$$

where A_{1}, \ldots, A_{n} are constants.

- We write the denominator powers in increasing order.

Decomposing with Repeated Linear Factors

- Decompose the rational expression $\frac{-x^{2}+2 x+4}{x^{3}-4 x^{2}+4 x}$.

We have $x^{3}-4 x^{2}+4 x=x\left(x^{2}-4 x+4\right)=x(x-2)^{2}$.

$$
\begin{gathered}
\frac{-x^{2}+2 x+4}{x(x-2)^{2}}=\frac{A}{x}+\frac{B}{x-2}+\frac{C}{(x-2)^{2}} \\
-x^{2}+2 x+4=A\left(x^{2}-4 x+4\right)+B x(x-2)+C x \\
-x^{2}+2 x+4=A x^{2}-4 A x+4 A+B x^{2}-2 B x+C x \\
-x^{2}+2 x+4=(A+B) x^{2}+(-4 A-2 B+C) x+4 A \\
\left\{\begin{array}{c}
A+B=-1 \\
-4 A-2 B+C=2 \\
4 A=4
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
A=1 \\
B=-2 \\
C=2
\end{array}\right\}
\end{gathered}
$$

Therefore, $\frac{-x^{2}+2 x+4}{x(x-2)^{2}}=\frac{1}{x}+\frac{-2}{x-2}+\frac{2}{(x-2)^{2}}$.

Denominator has Nonrepeated Irreducible Quadratic Factor

- Suppose $\frac{P(x)}{Q(x)}$ is a rational expression, such that:
- the degree of $P(x)$ is less than the degree of $Q(x)$;
- $Q(x)$ has nonrepeated irreducible quadratic factors $a_{1} x^{2}+b_{1} x+c_{1}$, $\ldots, a_{n} x^{2}+b_{n} x+c_{n}$, i.e.,

$$
Q(x)=\left(a_{1} x^{2}+b_{1} x+c_{1}\right) \cdots\left(a_{n} x^{2}+b_{n} x+c_{n}\right) .
$$

Then the partial fraction decomposition of $\frac{P(x)}{Q(x)}$ is

$$
\frac{P(x)}{Q(x)}=\frac{A_{1} x+B_{1}}{a_{1} x^{2}+b_{1} x+c_{1}}+\frac{A_{2} x+B_{2}}{a_{2} x^{2}+b_{2} x+c_{2}}+\cdots+\frac{A_{n} x+B_{n}}{a_{n} x^{2}+b_{n} x+c_{n}}
$$

where $A_{1}, B_{1}, \ldots, A_{n}, B_{n}$ are constants.

- The decomposition may contain more rational expressions if there are linear factors.
- Each linear factor will have a different constant numerator: A, B, C, and so on.

Decomposing w/ Nonrepeated Irreducible Quadratic Factor

- Find a partial fraction decomposition of $\frac{8 x^{2}+12 x-20}{(x+3)\left(x^{2}+x+2\right)}$.

We have

$$
\begin{gathered}
\frac{8 x^{2}+12 x-20}{(x+3)\left(x^{2}+x+2\right)}=\frac{A}{x+3}+\frac{B x+C}{x^{2}+x+2} \\
8 x^{2}+12 x-20=A\left(x^{2}+x+2\right)+(B x+C)(x+3) \\
8 x^{2}+12 x-20=A x^{2}+A x+2 A+B x^{2}+C x+3 B x+3 C \\
8 x^{2}+12 x-20=(A+B) x^{2}+(A+3 B+C) x+(2 A+3 C) \\
\left\{\begin{array}{c}
A+B=8 \\
A+3 B+C=12 \\
2 A+3 C=-20
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
B=8-A \\
A+3(8-A)+C=12 \\
2 A+3 C=-20
\end{array}\right\} \\
\Rightarrow\left\{\begin{array}{c}
B=8-A \\
-2 A+C=-12 \\
2 A+3 C=-20
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
A=2 \\
B=6 \\
C=-8
\end{array}\right\}
\end{gathered}
$$

Thus, $\frac{8 x^{2}+12 x-20}{(x+3)\left(x^{2}+x+2\right)}=\frac{2}{x+3}+\frac{6 x-8}{x^{2}+x+2}$.

Denominator Has a Repeated Irreducible Quadratic Factor

- Suppose $\frac{P(x)}{Q(x)}$ is a rational expression, such that:
- the degree of $P(x)$ is less than the degree of $Q(x)$;
- $Q(x)$ has a repeated irreducible quadratic factors $a x^{2}+b x+c$, occurring n times, i.e.,

$$
Q(x)=\left(a x^{2}+b x+c\right)^{n} .
$$

Then the partial fraction decomposition of $\frac{P(x)}{Q(x)}$ is

$$
\frac{P(x)}{Q(x)}=\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\cdots+\frac{A_{n} x+B_{n}}{\left(a x^{2}+b x+c\right)^{n}},
$$

where $A_{1}, B_{1}, \ldots, A_{n}, B_{n}$ are constants.

- We write the denominators in increasing powers.

Decomposing with a Repeated Irreducible Quadratic Factor

- Decompose the given expression that has a repeated irreducible factor in the denominator. $\frac{x^{4}+x^{3}+x^{2}-x+1}{x\left(x^{2}+1\right)^{2}}$.
We have

$$
\begin{gathered}
\frac{x^{4}+x^{3}+x^{2}-x+1}{x\left(x^{2}+1\right)^{2}}=\frac{A}{x}+\frac{B x+C}{x^{2}+1}+\frac{D x+E}{\left(x^{2}+1\right)^{2}} \\
x^{4}+x^{3}+x^{2}-x+1=A\left(x^{2}+1\right)^{2} \\
\quad+(B x+C) x\left(x^{2}+1\right)+(D x+E) x \\
x^{4}+x^{3}+x^{2}-x+1=A\left(x^{4}+2 x^{2}+1\right) \\
\quad+(B x+C)\left(x^{3}+x\right)+(D x+E) x \\
x^{4}+x^{3}+x^{2}-x+1=A x^{4}+2 A x^{2}+A \\
\\
\quad+B x^{4}+C x^{3}+B x^{2}+C x+D x^{2}+E x \\
x^{4}+x^{3}+x^{2}-x+1=(A+B) x^{4}+C x^{3} \\
\\
\quad+(2 A+B+D) x^{2}+(C+E) x+A
\end{gathered}
$$

Decomposing with a Repeated Irreducible Quadratic Factor

- We found

$$
x^{4}+x^{3}+x^{2}-x+1=(A+B) x^{4}+C x^{3}+(2 A+B+D) x^{2}+(C+E) x+A
$$

Therefore, we get

$$
\left\{\begin{array}{c}
A+B=1 \\
C=1 \\
2 A+B+D=1 \\
C+E=-1 \\
A=1
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
A=1 \\
B=0 \\
C=1 \\
D=-1 \\
E=-2
\end{array}\right\}
$$

Therefore

$$
\frac{x^{4}+x^{3}+x^{2}-x+1}{x\left(x^{2}+1\right)^{2}}=\frac{1}{x}+\frac{1}{x^{2}+1}+\frac{-x-2}{\left(x^{2}+1\right)^{2}} .
$$

Subsection 4

Solving Systems with Gaussian Elimination

We Will Learn How To:

- Write the augmented matrix of a system of equations;
- Write the system of equations from an augmented matrix;
- Perform row operations on a matrix;
- Solve a system of linear equations using matrices.

Writing the Augmented Matrix for a System of Equations

- Write the augmented matrix for the given system of equations.

$$
\left\{\begin{array}{l}
x+2 y=3 \\
2 x-y=6
\end{array}\right\}
$$

The left hand side consists of the matrix of coefficients and the right hand column of the right-hand side constants:

$$
\left[\begin{array}{rr|r}
1 & 2 & 3 \\
2 & -1 & 6
\end{array}\right]
$$

Writing a System of Equations from Augmented Matrix

- Find the system of equations from the augmented matrix.

$$
\left[\begin{array}{rr|r}
1 & -3 & -2 \\
2 & -5 & 5
\end{array}\right] .
$$

We obtain the following system:

$$
\left\{\begin{aligned}
x-3 y & = \\
2 x-5 y & =5
\end{aligned}\right\}
$$

Elementary Row Operations

- To solve a system of equations we can perform the following elementary row operations:

1. Interchange rows (Notation: $R_{i} \leftrightarrow R_{j}$)
2. Multiply a row by a non-zero constant. (Notation: $R_{i} \leftarrow c R_{i}$)
3. Add the product of a row multiplied by a constant to another row. (Notation: $R_{i} \leftarrow R_{i}+c R_{j}$)

Gaussian Elimination

- In Gaussian elimination the goal is to write matrix A with the number 1 as the entry down the main diagonal and have all zeros below.

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \xrightarrow{\substack{\text { Gaussian } \\
\text { elimination }}} A=\left[\begin{array}{cc}
1 & b_{12} \\
0 & 1
\end{array}\right] .
$$

- The first step of the Gaussian strategy includes obtaining a 1 as the first entry, so that row 1 may be used to alter the second row.

Solving a 2×2 System by Gaussian Elimination

- Solve by Gaussian elimination $\left\{\begin{array}{rll}2 x+3 y & =6 \\ x-y & = & \frac{1}{2}\end{array}\right\}$

Write the augmented matrix and apply row operations to obtain the row echelon form:

$$
\begin{aligned}
& {\left[\begin{array}{rr|r}
2 & 3 & 6 \\
1 & -1 & \frac{1}{2}
\end{array}\right] \stackrel{R_{1} \leftrightarrow R_{2}}{R^{2}}\left[\begin{array}{rr|r}
1 & -1 & \frac{1}{2} \\
2 & 3 & 6
\end{array}\right]} \\
& R_{2} \leftarrow \underset{\rightarrow}{R_{2}-2 R_{1}}\left[\begin{array}{rr|r}
1 & -1 & \frac{1}{2} \\
0 & 5 & 5
\end{array}\right] \xrightarrow[\rightarrow]{R_{2} \leftarrow \frac{1}{5} R_{2}}\left[\begin{array}{rr|r}
1 & -1 & \frac{1}{2} \\
0 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

Now we have:

$$
\left\{\begin{array}{rll}
x_{1}-x_{2} & =\frac{1}{2} \\
x_{2} & =1
\end{array}\right\} \Rightarrow\left\{\begin{array}{lll}
x_{1} & = & \frac{3}{2} \\
x_{2} & = & 1
\end{array}\right\}
$$

Using Gaussian Elimination to Solve a System

- Use Gaussian elimination to solve $\left\{\begin{aligned} & 2 x+y=1 \\ & 4 x+2 y=6\end{aligned}\right\}$.

Form the augmented matrix and apply row operations:

$$
\begin{array}{cc|l}
{\left[\begin{array}{ll|l}
2 & 1 & 1 \\
4 & 2 & 6
\end{array}\right]} & \begin{array}{l}
R_{1} \leftarrow \frac{1}{2} R_{1} \\
4
\end{array} & {\left[\begin{array}{ll|l}
1 & \frac{1}{2} & \frac{1}{2} \\
4 & 2 & 6
\end{array}\right]} \\
R_{2} \leftarrow R_{2}-4 R_{1}
\end{array}\left[\begin{array}{ll|l}
1 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 4
\end{array}\right]
$$

The last row yields the equation $0=4$.
So the given system is inconsistent.

Solving a Dependent System

- Solve the system of equations. $\left\{\begin{array}{l}3 x+4 y=12 \\ 6 x+8 y=24\end{array}\right\}$

Form the augmented matrix and apply row operations:

$$
\begin{array}{cc|c}
{\left[\begin{array}{ll|l}
3 & 4 & 12 \\
6 & 8 & 24
\end{array}\right]} & \begin{array}{l}
R_{1} \leftarrow \frac{1}{3} R_{1}
\end{array} & {\left[\begin{array}{rr|r}
1 & \frac{4}{3} & 4 \\
6 & 8 & 24
\end{array}\right]} \\
R_{2} \leftarrow R_{2}-6 R_{1}
\end{array}\left[\begin{array}{cc|c}
1 & \frac{4}{3} & 4 \\
0 & 0 & 0
\end{array}\right]
$$

The last row yields the equation $0=0$.
So the given system is dependent.
From the first row, we get $x+\frac{4}{3} y=4 \Rightarrow x=4-\frac{4}{3} y$.
So $(x, y)=\left(4-\frac{4}{3} y, y\right), y$ any real.

Applying 2×2 Matrices to Finance

- Carolyn invests a total of $\$ 12,000$ in two municipal bonds, one paying 10.5% interest and the other paying 12% interest.
The annual interest earned on the two investments was $\$ 1,335$.
How much was invested at each rate?
Let x, y be the amounts invested in each kind.
Then we must solve $\left\{\begin{aligned} & x+y=12000 \\ & 0.105 x+0.12 y= \\ & 1335\end{aligned}\right\}$.
We use the matrix method:

$$
\begin{aligned}
& {\left[\begin{array}{rr|r}
1 & 1 & 12000 \\
105 & 120 & 1335000
\end{array}\right] \xrightarrow{R_{2} \leftarrow R_{2}-105 R_{1}}\left[\begin{array}{rr|r}
1 & 1 & 12000 \\
0 & 15 & 75000
\end{array}\right]} \\
& \xrightarrow{R_{2} \leftarrow \frac{1}{15} R_{2}}\left[\begin{array}{rr|r}
1 & 1 & 12000 \\
0 & 1 & 5000
\end{array}\right]
\end{aligned}
$$

Therefore $(x, y)=(7000,5000)$.

Subsection 5

Solving Systems with Cramer's Rule

We Will Learn How To:

- Evaluate 2×2 determinants;
- Use Cramer's Rule to solve a system of equations in two variables;

Find the Determinant of a 2×2 Matrix

- The determinant of a 2×2 matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

is defined as

$$
\operatorname{det}(A)=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-c b
$$

- Notice the change in notation.

There are several ways to indicate the determinant, including $\operatorname{det}(A)$ and replacing the brackets in a matrix with straight lines, $|A|$.

Finding the Determinant of a 2×2 Matrix

- Find the determinant of the matrix $A=\left[\begin{array}{rr}5 & 2 \\ -6 & 3\end{array}\right]$.

We compute

$$
\operatorname{det}(A)=5 \cdot 3-2 \cdot(-6)=15+12=27
$$

Cramer's Rule for 2×2 systems

- Cramer's Rule is a method that uses determinants to solve systems of equations that have the same number of equations as variables.
- Consider a system of two linear equations in two variables.

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y=c_{1} \\
a_{2} x+b_{2} y=c_{2}
\end{array}\right\}
$$

- The solution using Cramer's Rule is given as

$$
x=\frac{D_{x}}{D}=\frac{\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}, \quad y=\frac{D_{y}}{D}=\frac{\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}, \quad D \neq 0 .
$$

- If we are solving for x, the x column is replaced with the constant column.
- If we are solving for y, the y column is replaced with the constant column.

Using Cramer's Rule to Solve a 2×2 System

- Solve the following 2×2 system using Cramer's Rule.

$$
\left\{\begin{aligned}
12 x+3 y & =15 \\
2 x-3 y & =13
\end{aligned}\right\}
$$

Compute the three determinants D, D_{x} and D_{y} :

$$
\begin{aligned}
& D=\left|\begin{array}{rr}
5 & 2 \\
-6 & 3
\end{array}\right|=12 \cdot(-3)-3 \cdot 2=-42 \\
& D_{x}=\left|\begin{array}{rr}
15 & 3 \\
13 & -3
\end{array}\right|=15 \cdot(-3)-3 \cdot 13=-84 \\
& D_{y}=\left|\begin{array}{rr}
12 & 15 \\
2 & 13
\end{array}\right|=12 \cdot 13-15 \cdot 2=126
\end{aligned}
$$

Now we derive the solution:

$$
(x, y)=\left(\frac{D_{x}}{D}, \frac{D_{y}}{D}\right)=\left(\frac{-84}{-42}, \frac{126}{-42}\right)=(2,-3)
$$

Using Cramer's Rule to Solve an Inconsistent System

- Solve the system of equations using Cramer's Rule.
$\left\{\begin{array}{l}3 x-2 y=4 \\ 6 x-4 y=0\end{array}\right\}$.
We have $D=\left|\begin{array}{ll}3 & -2 \\ 6 & -4\end{array}\right|=0$.
We work by addition

$$
\left\{\begin{array}{l}
3 x-2 y=4 \\
6 x-4 y=0
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
-6 x+4 y=-8 \\
6 x-4 y=0
\end{array}\right\} \Rightarrow 0=-8
$$

Therefore the system is inconsistent.

