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Permutations and Combinations Introduction

Problems of Enumeration

When groups of dots and dashes are used to represent alphanumeric
symbols in telegraph communication, a communication engineer may
wish to know the total number of distinct representations consisting
of a fixed number of dots and dashes.

To study the physical properties of materials, a physicist may wish to
compute the number of ways molecules can be arranged in molecular
sites or to compute the number of ways electrons are distributed
among different energy levels.

A transportation engineer may wish to determine the number of
different acceptable train schedules.

A computer scientist may wish to have some idea about the number
of possible moves his chess-playing program should examine in
responding to each of the opponent’s moves.

Enumerating such problems is the main topic in the basic theory of
combinations and permutations.
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Permutations and Combinations Introduction

Selections and Arrangements

The words selection and arrangement will be used in the ordinary
sense: There should be no ambiguity in the meanings of statements
such as

“to select two representatives from five candidates”,
“there are 10 possible outcomes when
two representatives are selected from five candidates”,

“the books are arranged on the shelf”,
“there are 120 ways to arrange five different books on the shelf”.

The word combination has the same meaning as the word selection.

The word permutation has the same meaning as the word
arrangement.

George Voutsadakis (LSSU) Combinatorics April 2016 5 / 56



Permutations and Combinations Introduction

Combinations and Permutations

An r -combination of n objects is defined as an unordered selection of
r of these objects.

An r -permutation of n objects is defined as an ordered arrangement
of r of these objects.

Example: To form a committee of 20 senators is an unordered
selection of 20 senators from the 100 senators. It is therefore a
20-combination of the 100 senators.

Example: The outcome of a horse race can be viewed as an ordered
arrangement of the t horses in the race. It is therefore a
t-permutation of the t horses.
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Permutations and Combinations Introduction

Number of Combinations and Number of Permutations

We are interested in enumerating the number of combinations or
permutations of a given set of objects.

The notation C (n, r) denotes the number of r -combinations of n
distinct objects.
The notation P(n, r) denotes the number of r -permutations of n
distinct objects.

We compute easily the following:

C (n, n) = 1 (there is just one way to select n objects out of n objects);
C (n, 1) = n (there are n ways to select one object out of n objects);
C (3, 2) = 3 (for three objects A, B, and C , the selections of two
objects are AB, AC , and BC );
P(3, 2) = 6 (for three objects A, B, and C , the arrangements of two
objects are AB,BA,AC ,CA,BC , and CB).

George Voutsadakis (LSSU) Combinatorics April 2016 7 / 56



Permutations and Combinations The Rules of Sum and Product

Subsection 2

The Rules of Sum and Product
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Permutations and Combinations The Rules of Sum and Product

The Rule of Product and the Rule of Sum

Among the five Roman letters a, b, c , d and e and the three Greek
letters α, β and γ, it is clear that there are 5× 3 = 15 ways to select
two letters, one from each alphabet.

Rule of Product

If one event can occur in m ways and another event can occur in n ways,
there are m × n ways in which these two events can occur.

On the other hand, since there are five ways to select a Roman letter
and three ways to select a Greek letter, there are 5 + 3 = 8 ways to
select one letter that is either a Roman or a Greek letter.

Rule of Sum

If one event can occur in m ways and another event can occur in n ways,
there are m + n ways in which one of these two events can occur.

The occurrence of an event can mean either the selection or the
arrangement of a certain number of objects.
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Permutations and Combinations The Rules of Sum and Product

Example: Choosing Books

We want to choose two books of different languages among 5 books
in Latin, 7 books in Greek, and 10 books in French.

There are

5× 7 ways to choose a book in Latin and a book in Greek;
5× 10 ways to choose a book in Latin and a book in French;
7× 10 ways to choose a book in Greek and a book in French.

Thus, there are

5× 7 + 5× 10 + 7× 10 = 155

ways to choose two books of different languages.

If we just want to choose two books from the twenty-two books,
there are 22× 21 = 462 ways.

George Voutsadakis (LSSU) Combinatorics April 2016 10 / 56



Permutations and Combinations The Rules of Sum and Product

Formula Relating Combinations and Permutations

Claim:
P(n, r) = P(r , r)× C (n, r).

We can make an ordered arrangement of r out of n distinct objects
by:

first selecting r objects from the n objects, which can be done in
C (n, r) ways;
then arranging these r objects in order, which can be done in P(r , r)
ways.

By the rule of product, we get

P(n, r) = P(r , r) · C (n, r).
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Permutations and Combinations The Rules of Sum and Product

Recursive Formula for Combinations

Claim:
C (n, r) = C (n − 1, r − 1) + C (n − 1, r).

This can be seen from the following argument: Suppose that one of
the n distinct objects is marked as a special object.

We can select r objects from these n objects by either:

selecting r − 1 objects so that the special object is always included,
which can be done in C (n − 1, r − 1) ways, or
selecting r objects so that the special object is always excluded, which
can be done in C (n − 1, r) ways.

By the rule of sum, we get that

C (n, r) = C (n − 1, r − 1) + C (n − 1, r).
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Permutations and Combinations Permutations

Subsection 3

Permutations
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Permutations and Combinations Permutations

Closed Formula for P(n, r)

We derive an expression for P(n, r), the number of ways of arranging
r of n distinct objects:

Arranging r of n objects into some order is the same as putting r of
the n objects into r distinct (marked) positions. There are:

n ways to fill the first position (to choose one out of the n objects);
n − 1 ways to fill the second position (to choose one out of the n − 1
remaining objects); . . .
n − r + 1 ways to fill the last position (to choose one out of the
n − r + 1 remaining objects).

According to the rule of product, we have

P(n, r) = n(n − 1) · · · (n − r + 1).

Using the notation n! = n(n − 1)(n − 2) · · · 3 · 2 · 1, for n > 1 (n! is
read n factorial),

P(n, r) = n(n − 1)(n − 2) · · · (n − r + 1) =
n!

(n − r)!
.
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Permutations and Combinations Permutations

Inductive Proof of of P(n, n)

Claim: P(n, n) = n!.

We show P(n, n) = n! using induction on n.

As the basis of induction, P(1, 1) = 1 = 1!.

As the induction hypothesis, suppose that P(n− 1, n − 1) = (n − 1)!.

To arrange n distinct objects in order:
We single out a special object.
Arrange the remaining n − 1 objects first, which can be done in
P(n − 1, n− 1) ways.
For each ordered arrangement of these n − 1 objects, there are n

positions for the special object (the n − 2 positions between the
arranged objects and the two end positions).

Thus, by the Product Rule,

P(n, n) = n · P(n− 1, n − 1) = n · (n − 1)! = n!.
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Permutations and Combinations Permutations

Alternative Derivation of P(n, r)

Claim: P(n, r) = n!
(n−r)! .

Suppose that we divide n marked positions into two groups, the first r
positions and the remaining n − r positions. To place the n objects in
these n positions, we work as follows:

First, put r of the n objects in the first r positions, which can be done
in P(n, r) ways;
Then put the remaining n − r objects in the remaining n − r positions,
which can be done in P(n − r , n − r) ways.

Thus, by the Product Rule

P(n, n) = P(n, r) · P(n − r , n − r),

i.e.,

P(n, r) =
P(n, n)

P(n− r , n − r)

Prev. Slide
=

n!

(n − r)!
.
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Permutations and Combinations Permutations

Circular Arrangements

In how many ways can n people stand to form a ring?
There is a difference between a linear arrangement and a circular
arrangement of objects:

In the case of circular arrangement, the n people are not assigned to
absolute positions, but are only arranged relative to one another.

Method 1
If the n people are arranged linearly and then the two ends of the line
are closed to form a circular arrangement, we have a total of P(n, n)
such arrangements. Two of the circular arrangements obtained in this
manner are actually the same if one can be changed into the second by
rotating by one position, or two positions, . . ., or n positions. So the

number of circular arrangements is equal to P(n,n)
n

= (n − 1)!

Method 2
If we pick a particular person and let him occupy a fixed position, the
remaining n − 1 people will be arranged using this fixed position as
reference in a ring. Again, there are (n − 1)! ways of arranging these
n− 1 people.
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Permutations and Combinations Permutations

Arrangements of Non-distinct Objects

Claim: Let there be n objects not all distinct. Specifically, let there
be: q1 objects of the first kind; q2 objects of the second kind; . . .; qt
objects of the t-th kind. Then the number of n-permutations of these
n objects is given by the formula

P(n; q1, q2, . . . , qt) =
n!

q1!q2! · · · qt!
.

Imagine that the n objects are marked so that objects of the same
kind become distinguishable from one another. Then to permute
these n “distinct” objects we can:

First, permute the n objects before marking then, which, can be done
in P(n; q1, . . . , qt) ways;
Then, permute the marked objects of each group among their
respectively occupied positions, which can be done in q1!q2! · · · qt!
ways.

By the Product Rule, we get n! = P(n; q1, q2, . . . , qt) · q1!q2! · · · qt!.
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Permutations and Combinations Permutations

Example: Dashes and Dots

In how many different ways can five dashes and eight dots be
arranged?

They can be arranged in P(13; 5, 8) = 13!
5!8! = 1, 287 different ways.

In how many different ways can seven symbols among five dashes and
eight dots be arranged?
We can use one of the following:

0 dashes and 7 dots, which can be arranged in P(7; 0, 7) ways;
1 dash and 6 dots, which can be arranged in P(7; 1, 6) ways;
2 dashes and 5 dots, which can be arranged in P(7; 2, 5) ways;
3 dashes and 4 dots, which can be arranged in P(7; 3, 4) ways;
4 dashes and 3 dots, which can be arranged in P(7; 4, 3) ways;
5 dashes and 2 dots, which can be arranged in P(7; 5, 2) ways.

By the Sum Rule, we have:

7!

0!7!
+

7!

1!6!
+

7!

2!5!
+

7!

3!4!
+

7!

4!3!
+

7!

5!2!
= 120

distinct representations.
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Permutations and Combinations Permutations

A Divisibility Relation

Claim: (k!)! is divisible by (k!)(k−1)! for any integer k .

Consider a collection of k! objects among which there are:

k of the first kind;
k of the second kind;
...
k of the (k − 1)!-th kind.

The total number of ways of permuting these objects is given by

P(k!; k , k , . . . , k
︸ ︷︷ ︸
(k − 1)! types

) =
(k!)!

(k!)(k−1)!
.

Since the total number of permutations must be an integral value,
(k!)(k−1)! must divide (k!)!.
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Permutations and Combinations Permutations

Arrangements with Repetitions

Claim: The number of ways to arrange r objects when they are
selected out of n distinct objects with unlimited repetitions is nr .

There are:

n ways to choose an object to fill the first position;
n ways to choose an object to fill the second position;
...
n ways to choose an object to fill the r -th position.

By the Product Rule there are

n · n · · · n
︸ ︷︷ ︸

r factors

= nr

ways to arrange r objects when they are selected out of n distinct
objects with unlimited repetitions.
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Permutations and Combinations Permutations

Example

Among the 10 billion numbers between 1 and 10,000,000,000, how
many of them contain the digit 1 and how many of them do not?

Among the 10 billion numbers between 0 and 9,999,999,999, there
are 910 numbers that do not contain the digit 1.

Therefore, among the 10 billion numbers between 1 and
10,000,000,000, there are 910 − 1 numbers that do not contain the
digit 1.

Hence, there are 1010 − (910 − 1) numbers that do contain the digit 1.
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Permutations and Combinations Permutations

Binary Sequences

A binary sequence is a sequence of 0’s and 1’s.
What is the number of n-digit binary sequences that contain an even
number of 0’s (zero is considered as an even number)?
Method 1

The problem is immediately solved if we observe that, because of
symmetry, half of the 2n n-digit binary sequences contain an even
number of 0’s, and the other half of the sequences contain an odd
number of 0’s.

Method 2
Consider the 2n−1 (n − 1)-digit binary sequences.

If an (n − 1)-digit binary sequence contains an even number of 0’s, we
can append to it a 1 as the n-th digit to yield an n-digit binary
sequence that contains an even number of 0’s.
If an (n − 1)-digit binary sequence contains an odd number of 0’s, we
can append to it a 0 as the n-th digit to yield an n-digit binary
sequence that contains an even number of 0’s.

Therefore, there are 2n−1 n-digit binary sequences which contain an
even number of 0’s.
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Permutations and Combinations Permutations

Quaternary Sequences

A n-quaternary sequence is a sequence of length n that has 0’s, 1’s,
2’s and 3’s as digits.

How many quaternary sequences are there in each of which the total
number of 0’s and 1’s is even?

Because of symmetry, there are 4n

2 such sequences.
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Permutations and Combinations Permutations

Quaternary Sequences (Cont’d)

Find the number of quaternary sequences that contain an even
number of 0’s.

We divide the 4n sequences into two groups:
The 2n sequences that contain only 2’s and 3’s;
The 4n − 2n sequences that contain one or more 0’s or 1’s.

In the first group, all sequences have an even number of 0’s.

The sequences in the second group can be subdivided into categories
according to the patterns of 2’s and 3’s in the sequences.

E.g., sequences of the pattern 23××2×3××× will be in one category,
where the ×’s are 0’s and 1’s.

Half of the sequences in each category have an even number of 0’s.
So, the number of sequences with an even number of 0’s in this group
is 4n−2n

2 .

Among the 4n n-digit quaternary sequences, there are 2n + 4n−2n

2 with
an even number of 0’s.
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Permutations and Combinations Combinations

Subsection 4

Combinations
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Permutations and Combinations Combinations

Number of Combinations

We saw that the number of r -combinations of n objects is

C (n, r) =
P(n, r)

r !
=

n!

r !(n − r)!
.

This formula yields
C (n, r) = C (n, n − r).

This was expected since selecting r objects out of n objects is
equivalent to picking the n− r objects that are not to be selected.
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Permutations and Combinations Combinations

Example: A Convex Decagon

If no three diagonals of a convex decagon meet at the same point
inside the decagon, into how many line segments are the diagonals
divided by their intersections?

First, there are

C(10, 2) = 45 straight lines joining the pairs of vertices;
Of these 45 lines 10 are the sides of the decagon.

So the number of diagonals is C (10, 2)− 10 = 45− 10 = 35.
Since for every four vertices we can count exactly one intersection
between the diagonals (the decagon is convex), there is a total of
C (10, 4) = 210 intersections between the diagonals.

Note that:

a diagonal is divided into k + 1 straight-line segments when there are k

intersecting points lying along it;
each intersecting point lies along two diagonals.

So the total number of straight-line segments into which the
diagonals are divided is 35 + 2× 210 = 455.
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Permutations and Combinations Combinations

Example: Scientists, Locks and Keys

Eleven scientists are working on a secret project. They wish to lock
up the documents in a cabinet, such that the cabinet can be opened
if and only if six or more of the scientists are present.

What is the smallest number of locks needed?
What is the smallest number of keys each scientist must carry?

For any group of five scientists, there must be at least one lock they
cannot open. For any two different groups of five scientists, there
must be two different locks they cannot open, because if both groups
cannot open the same lock, there is a group of six scientists among
these two groups who will not be able to open the cabinet. Thus, at
least C (11, 5) = 462 locks are needed.

Whenever scientist A is associated with a group of five others, A
should have the key to the lock(s) that these five scientists were not
able to open. Thus, A carries at least C (10, 5) = 252 keys.
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Permutations and Combinations Combinations

Example: Divisibility

In how many ways can three numbers be selected from the numbers
1, 2, . . . , 300 such that their sum is divisible by 3?
The 300 numbers 1, 2, . . . , 300 can be divided into three groups:

Those that are divisible by 3;
Those that yield the remainder 1 when divided by 3;
Those that yield the remainder 2 when divided by 3.

Clearly, there are 100 numbers in each of these groups.
The sum will be divisible by 3 if:

three numbers from the first group are selected, or
three numbers from the second group are selected, or
three numbers from the third group are selected, or
three numbers, one from each of the three groups, are selected.

Thus, the total number of ways to select three desired numbers is

C (100, 3) + C (100, 3) + C (100, 3) + (100)3 = 1, 485, 100.
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Permutations and Combinations Combinations

Selections With Repetitions

Claim: When repetitions in the selection of the objects are allowed,
the number of ways of selecting r objects from n distinct objects is
C (n + r − 1, r).
Let the n objects be 1, 2, . . . , n. Let a selection of r objects be
identified by a list of the corresponding integers {i , j , k , . . . ,m}
arranged in increasing order.

E.g., the selection with first object selected thrice, the second not
selected, the third once, the fourth once, the fifth twice, etc., is
represented as {1, 1, 1, 3, 4, 5, 5, . . .}.

To the r integers in such a list we add:
0 to the first integer;
1 to the second integer; . . .;
r − 1 to the r -th integer.

Thus, {i , j , k , . . . ,m} becomes {i , j + 1, k + 2, . . . ,m + (r − 1)}.
E.g., {1, 1, 1, 3, 4, 5, 5, . . .} becomes {1, 2, 3, 6, 8, 10, 11, . . .}.

Each selection is identified uniquely as a selection of r distinct integers
from the integers 1, 2, . . . , n + (r − 1), whence the formula follows.
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Permutations and Combinations Combinations

Example: Coins and Dice

Out of a large number of pennies, nickels, dimes, and quarters, in how
many ways can six coins be selected?

The number of ways is the same as the number of selecting six coins
from a penny, a nickle, a dime, and a quarter with unlimited
repetitions. So it is

C (4 + 6− 1, 6) = C (9, 6) = 84.

When three distinct dice are rolled, the number of outcomes is
6× 6× 6 = 216.

If the three dice are indistinguishable, the number of outcomes is the
number of selections of three numbers from the six numbers 1, 2, 3,
4, 5, 6 when repetitions are allowed. So it is

C (6 + 3− 1, 3) = 56.
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Permutations and Combinations Combinations

Selections of Non-Distinct Objects

Claim: When the objects are not all distinct, the number of ways to
select one or more objects from them is equal to

(q1 + 1)(q2 + 1) · · · (qt + 1)− 1,

where there are q1 objects of the first kind, q2 objects of the second
kind, . . ., qt objects of the t-th kind.

This result follows directly from the rule of product.

There are q1 + 1 ways of choosing the object of the first kind, namely,
choosing none of them, one of them, two of them, . . ., or q1 of them;
There are q2 + 1 ways of choosing objects of the second kind;
...
qt + 1 ways of choosing objects of the t-th kind.

We subtract 1 for the “selection” in which no object is chosen.
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Permutations and Combinations Combinations

Example

How many divisors does the number 1400 have?

The number of divisors equals the number of ways to select the prime
factors of 1400.

Since 1400 = 23 · 52 · 7, the number of its divisors is

(3 + 1)(2 + 1)(1 + 1) = 24.
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Permutations and Combinations Combinations

Example: Weights I

For n given weights, what is the greatest number of different amounts
that can be made up by the combinations of these weights?

Since a weight can either be selected or not be selected in a
combination, there are 2n − 1 combinations.

If the values of the given weights are properly chosen, we will, at the
most, have 2n − 1 different combined weights.
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Permutations and Combinations Combinations

Example: Weights I (Cont’d)

Which scheme of weights achieves the upper bound?

Consider the collection of n weights

w0 = 20 = 1,w1 = 21 = 2,w2 = 22 = 4, . . . ,wn−1 = 2n−1.

Suppose two of the 2n − 1 nonempty collections of weights have the
same combined weight. Denote the two collections by {wi1 , . . . ,wik}
and {wj1 , . . . ,wjℓ}, where i1 < · · · < ik and j1 < · · · < jℓ. Then, by
hypothesis, 2i1 + · · ·+2ik = 2j1 + · · ·+ 2jℓ . If ik 6= jℓ, say ik < jℓ, then
we have

2i1 + · · · + 2ik ≤ 20 + 21 + · · ·+ 2ik = 2ik+1 − 1
< 2jℓ < 2j1 + · · ·+ 2jℓ .

This contradicts the hypothesis 2i1 + · · ·+ 2ik = 2j1 + · · ·+ 2jℓ . So
we must have ik = jℓ.

Now we get 2i1 + · · ·+ 2ik−1 = 2j1 + · · · + 2jℓ−1.

Repeating, we get that k = ℓ and ip = jp , for all p = 1, . . . , k .
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Permutations and Combinations Combinations

Example: Weights II

What is the greatest number of different amounts that can be
weighed by using a set of n weights and a balance?

Each of the weights may be disposed of in one of three ways:
It can be placed in the weight pan;
In the pan with the substance to be weighed;
It can be unused.

Therefore, there are 3n − 1 ways of using the n weights.

In at least half of these 3n − 1 ways, the total weight placed in the
weight pan is less than or equal to the total weight placed in the
other pan. Hence, we can weigh at most 3n−1

2 different amounts.

Similarly to the previous example, a scheme of weights achieving this
upper bound is

w0 = 30 = 1,w1 = 31 = 3, . . . ,wn−1 = 3n−1.
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Permutations and Combinations Distributions of Distinct Objects

Subsection 5

Distributions of Distinct Objects
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Permutations and Combinations Distributions of Distinct Objects

Distributing Distinct Objects into Distinct Positions

In placing r distinct objects into n distinct cells, two cases must be
considered:

Claim: For n ≥ r , there are P(n, r) ways to place r distinct objects into
n distinct cells, where each cell can hold only one object.

The first object can be placed in one of the n cells;
The second object can be placed in one of the n − 1 remaining cells;
...
The r -th object can be placed in one of the n − r + 1 remaining cells.

Claim: For r > n, there are P(r , n) ways to place n of r distinct objects
into n distinct cells, where each cell can hold only one object.

There are r ways to select an object to be placed in the first cell;
There are r − 1 ways to select an object to be placed in the second cell;
...
There are r − n + 1 ways to select an object to be placed in the r -th
cell.
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Permutations and Combinations Distributions of Distinct Objects

Multiple Objects in a Cell (Unordered)

The distribution of r distinct objects in n distinct cells, where each
cell can hold any number of objects, is equivalent to the arrangement
of r of the n cells when repetitions are allowed.

Claim: The number of ways, regardless of whether n is larger or
smaller than r , is nr .

The first object can be placed in one of the n cells;
The second object can again be placed in one of the n cells;
...
The r -th object can be placed in one of the n cells.

Note that, here, when more than one object is placed in the same
cell, the objects are not ordered inside the cell.
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Permutations and Combinations Distributions of Distinct Objects

Multiple Objects in a Cell (Ordered) Method I

Claim: The number of ways of distributing r distinct objects in n

distinct cells, where each cell can hold any number of objects, and the
order of objects in a cell is also considered, is

(n + r − 1)!

(n − 1)!
= (n + r − 1)(n + r − 2) · · · (n + 1)n.

Method 1: Imagine such a distribution as an ordered arrangement of
the r (distinct) objects and the n− 1 (nondistinct) intercell partitions.
Using the previously derived formula for the permutation of r + n − 1
objects where n− 1 of them are of the same kind, we obtain the result

P(n+ r − 1, n − 1) =
(n + r − 1)!

(n − 1)!
.
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Permutations and Combinations Distributions of Distinct Objects

Multiple Objects in a Cell (Ordered) Method II

The distribution of r distinct objects in n distinct cells, where each
cell can hold any number of objects and the objects in a cell are
ordered, is (n+r−1)!

(n−1)! = (n + r − 1)(n + r − 2) · · · (n + 1)n.

Method 2:

There are n ways to distribute the first object.
After the first object is placed in a cell, it can be considered as an
added partition that divides the cell into two cells.
Therefore, there are n + 1 ways to distribute the second object.
Similarly, there are n + 2 ways to distribute the third object.
...
Finally, there are n + r − 1 ways to distribute the r -th object.

By the Product Rule, we get a total of
(n + r − 1)(n + r − 2) · · · (n + 1)n ways.
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Permutations and Combinations Distributions of Distinct Objects

Example: Flags on Masts

The number of ways of arranging seven flags on five masts when all
the flags must be displayed but not all the masts have to be used is

5 · 6 · 7 · 8 · 9 · 10 · 11.

The argument is as follows:
If there is a single flag on a mast, we assume that it is raised to the top
of the mast.
However, if there is more than one flag on a mast, the order of the
flags on the mast is important.

So the number is equal to the number of ways of placing 7 distinct
objects in 5 distinct cells with the objects in a single cell ordered,
which is equal to P(7 + 5− 1, 5− 1) = (7+5−1)!

(5−1)! .

Similarly, seven cars can go through five toll booths in
5 · 6 · 7 · 8 · 9 · 10 · 11 ways
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Permutations and Combinations Distributions of Distinct Objects

Distributing Objects of Various Kinds

The distribution of n objects,

q1 of one kind;
q2 of another kind;
...
qt of a t-th kind

into n distinct cells (each of which can hold only one object) is
equivalent to the permutation of these objects.

So, the number of ways of distribution is

n!

q1!q2! · · · qt!
.
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Permutations and Combinations Distributions of Distinct Objects

Distributing Objects of Various Kinds (Cont’d)

Alternatively, among the n distinct cells, we have:

C (n, q1) ways to pick q1 cells for the objects of the first kind;
C (n − q1, q2) ways to pick q2 cells for the objects of the second kind;
...
C (n − q1 − · · · − qt−1, qt) ways to pick qt cells for the objects of the
t-th kind;
P(n − q1 − · · · − qt , n − q1 · · · − qt) ways of permuting those objects
that are one of a kind.

The number of ways of distribution is, therefore,
C (n, q1)C (n − q1, q2)C (n − q1 − q2, q3) · · ·C (n − q1 − · · · −
qt−1, qt)P(n − q1 − · · · − qt , n − q1 · · · − qt) =

n!
q1!(n−q1)!

(n−q1)!
q2!(n−q1−q2)!

· · · (n−q1−···−qt−1)!
qt !(n−q1−···−qt )!

(n − q1 − · · · − qt)!.

The number of ways of distributing the r objects (r ≤ n), into n

distinct cells is n!
q1!q2!···qt !

1
(n−r)! .
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Permutations and Combinations Distributions of Non-Distinct Objects

Subsection 6

Distributions of Non-Distinct Objects
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Permutations and Combinations Distributions of Non-Distinct Objects

Non-Distinct Objects into Non-Distinct Cells

Claim: There are C (n, r) ways of placing r nondistinct objects into n

distinct cells with at most one object in each cell (n ≥ r).

This follows because the distribution can be visualized as the selection
of r cells from the n cells for the r nondistinct objects.

Claim: The number of ways to place r nondistinct objects into n

distinct cells where a cell can hold more than one object is
C (n + r − 1, r).

Method 1: Distributing the r nondistinct objects is equivalent to
selecting r of the n cells for the r objects with repeated selections of
cells allowed.

Method 2: Imagine the distribution of the r objects into n cells as an
arrangement of the r objects and the n − 1 intercell partitions. Since
both the objects and the partitions are nondistinct, the number of
ways of arrangement is (n−1+r)!

(n−1)!r ! = C (n + r − 1, r).
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Permutations and Combinations Distributions of Non-Distinct Objects

Non-Distinct Objects into Non-Distinct Nonempty Cells

Claim: The number of ways to place r nondistinct objects into n

distinct cells where a cell can hold more than one object and where
none of the n cells can be left empty (r ≥ n) is C (r − 1, n − 1).

Distribute:

First, one object in each of the n cells;
Then, the remaining r − n objects arbitrarily.

The number of ways of distribution is
C ((r − n) + n − 1, r − n) = C (r − 1, r − n) = C (r − 1, n − 1).

Claim: The number of ways of distributing r nondistinct objects into
n distinct cells with each cell containing at least q objects (r ≥ nq) is
C (n − nq + r − 1, n − 1).

First, place q objects in each of the n cells;
Then, the remaining r − nq objects arbitrarily.

Number of ways is
C ((r − nq) + n− 1, r − nq) = C (n − nq + r − 1, n − 1).
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Permutations and Combinations Distributions of Non-Distinct Objects

Example: Letters and Blanks

Five distinct letters are to be transmitted through a communications
channel. A total of 15 blanks are to be inserted between the letters
with at least three blanks between every two letters. In how many
ways can the letters and blanks be arranged?

We do the following:

First arrange the 5 letters in 5! ways;
For each arrangement of the letters, consider the insertion of the
blanks as placing 15 nondistinct objects into four distinct interletter
positions with at least three objects in each interletter position, which
can be done in C (4− 12 + 15− 1, 4− 1) ways.

By the Product Rule, the total number of ways of arranging the
letters and blanks is:

5! · C (4− 12 + 15− 1, 4 − 1) = 5! · C (6, 3) = 2, 400.
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Permutations and Combinations Distributions of Non-Distinct Objects

Example: Congressional Seats

In how many ways can 2n + 1 seats in a congress be divided among
three parties so that the coalition of any two parties will ensure them
of a majority?
This is a problem of distributing 2n + 1 nondistinct objects into three
distinct cells.

Without any restriction on the number of seats each party can have,
there are C (3 + (2n + 1)− 1, 2n+ 1) = C (2n + 3, 2n+ 1) =
C (2n+ 3, 2) ways of distributing the seats.
Among these distributions, there are some in which a party gets n + 1
or more seats: For a party to have n + 1 or more seats,

we choose a particular party and assign it n + 1 seats in 3 ways;
then divide the remaining n seats among the three parties arbitrarily,
which can be done in C(3+ n− 1, n) = C(n+2, n) = C(n+2, 2) ways.

So there are 3 · C (n + 2, 2) ways of a party having n + 1 or more seats.

The total number of ways to divide the seats so that no party alone
will have a majority is C (2n + 3, 2) − 3 · C (n + 2, 2) =
1
2(2n + 3)(2n + 2)− 3

2(n + 2)(n + 1) = n
2 (n + 1).
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Permutations and Combinations Stirling’s Formula

Subsection 7

Stirling’s Formula

George Voutsadakis (LSSU) Combinatorics April 2016 51 / 56



Permutations and Combinations Stirling’s Formula

Stirling’s Formula and its Error

Even for a moderately large n the evaluation of n! is trying.
We derive an approximation formula for the value of n!, called
Stirling’s formula:

n! ≈
√
2πn

(n

e

)n

.

The absolute error of such an approximation increases as n increases:

lim
n→∞

[

n!−
√
2πn

(n

e

)n]

= ∞.

However, the percentage error decreases monotonically:

lim
n→∞

n!√
2πn(n/e)n

= 1.

Example: Stirling’s formula approximates:
1! by 0.9221 with an 8% error;
2! by 1.919 with a 4% error;
5! by 118.019 with a 2% error.
100! is approximated with only 0.08% error.
However, the absolute error in this case is about 1.7× 10155.
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Permutations and Combinations Stirling’s Formula

Proof of Stirling’s Formula

We let

an = log (n!)− 1

2
log n = log 2 + log 3 + · · · + log (n − 1) +

1

2
log n.

Consider the curve y = log x . The area under the curve and between
the two lines x = 1 and x = n is

∫ n

1 log xdx . This area can be
approximated by the sum of the areas of n trapezoids:

1
2(log 1 + log 2) + 1

2(log 2 + log 3) + · · ·+ 1
2 [log (n − 1) + log n] =

log 2 + log 3 + · · ·+ log (n − 1) + 1
2 log n = log (n!)− 1

2 log n = an.
This is smaller than the exact value of the area, because the curve
y = log x is convex, i.e., an <

∫ n

1 log xdx .
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Permutations and Combinations Stirling’s Formula

Proof of Stirling’s Formula (Cont’d)

The area under the curve y = log x and between the two lines x = 3
2

and x = n is
∫ n

3/2 log xdx . This can be approximated by the sum of
the areas of the n− 1 trapezoids bounded by the tangent at the point
(k , log k) and the lines x = k − 1

2 and x = k + 1
2 for k = 2, . . . , n− 1,

together with the area of the rectangle bounded by the horizontal line
at the point (n, log n) and the two lines x = n − 1

2 and x = n:

The approximated area is
log 2 + log 3 + · · ·+ log (n − 1) + 1

2 log n = an. Because the curve
y = log x is convex, we have

∫ n

3/2 log xdx < an.
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Permutations and Combinations Stirling’s Formula

Combining the Inequalities

We set an = log (n!)− 1
2 log n = log 2 + log 3 + · · ·+ log (n − 1)+

1
2 log n and showed that

an <

∫ n

1
log xdx and

∫ n

3/2
log xdx < an.

Combining the inequalities, we write
∫ n

3/2
log xdx < an <

∫ n

1
log xdx .

After evaluating the integrals, we get

n log n − n − 3

2
log

3

2
+

3

2
< an < n log n − n + 1.

But log (n!) = an +
1
2 log n, whence

(n +
1

2
) log n− n +

3

2
(1− log

3

2
) < log (n!) < (n +

1

2
) log n − n + 1.
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Permutations and Combinations Stirling’s Formula

Finishing the Proof of Stirling’s Formula

log (n!) = (n + 1
2 ) log n − n + δn,

3
2(1− log 3

2 ) = 0.893 < δn < 1.

It follows that

δn = log (n!)− (n + 1
2) log n + n

= log (n!)− 1
2 log n − (n log n − n+ 1) + 1

= an −
∫ n

1
log xdx + 1 = 1− (

∫ n

1
log xdx − an).

(
∫ n

1 log xdx − an) increases monotonically when n increases since
(
∫ n

1 log xdx − an) represents the difference between the area under the
curve y = log x and the sum of the areas of the trapezoids.
Therefore, δn decreases monotonically as n increases. However, since
δn has a lower bound (0.893), the limit of δn as n approaches ∞,
denoted by δ, is a constant having a value between 0.893 and 1.

Using δ to approximate δn: log (n!) ≈ (n + 1
2) log n− n + δ or

n! ≈ e(n+
1
2
) log ne−neδ = n(n+

1
2
)e−neδ = eδ

√
n(n/e)n.

It turns out, the value of eδ is equal to
√
2π = 2.507.
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