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Recurrence Relations Introduction

Recurrence Relations or Difference Equations

Example: Consider the geometric series (1, 3, 32, 33, . . . , 3n, . . .).
This sequence of numbers can be described by the expression for the
general term an = 3n, n = 0, 1, 2, . . ..
Alternatively, we can express the n-th number in terms of the
(n − 1)-st, together with the specification of the first number:
an = 3an−1, a0 = 1.

For a sequence of numbers (a0, a1, a2, . . . , an, . . .), an equation
relating a number an to some of its predecessors in the sequence, for
any n, is called a recurrence relation. A recurrence relation is also
called a difference equation.

Example: The recurrence relation above specifies that the n-th
number is computed as three times the (n − 1)-st number in the
sequence.

To initiate the computation, one must know one (or several)
number(s) in the sequence, called the boundary conditions.

Example: The boundary condition of the preceding example is a0 = 1.
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Recurrence Relations Introduction

Example: The Fibonacci Sequence

Consider the Fibonacci sequence of numbers:
It starts with the two numbers 1, 1;
It contains numbers which are equal to the sum of their two immediate
predecessors.

A portion of the sequence is

1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

It is quite difficult in this case to obtain a general expression for the
n-th number in the sequence by observation.
On the other hand, the sequence can be described by the recurrence
relation

an = an−1 + an−2,

together with the boundary conditions a0 = 1 and a1 = 1.

We are interested in the solution of a recurrence relation to obtain a
general expression for the n-th number in a sequence.

In most instances, the converse problem of obtaining a recurrence
relation from a general expression for the n-th number is of less
interest.
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Recurrence Relations Introduction

Example: Ovals and Regions of the Plane

Let there be n ovals drawn on the plane. If an oval intersects each of
the other ovals at exactly two points and no three ovals meet at the
same point, into how many regions do these ovals divide the plane?

Let an denote the number of regions into which the plane is divided
by n ovals. It is clear that a1 = 2. We can also see that a2 = 4,
a3 = 8, and a4 = 14.

Suppose that we have drawn n − 1 ovals that divide the plane into
an−1 regions. The n-th oval will intersect these n − 1 ovals at
2(n − 1) points.
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Recurrence Relations Introduction

Ovals and Regions of the Plane (Cont’d)

Since the n-th oval will intersect these n− 1 ovals at 2(n − 1) points,
the n-th oval will be divided into 2(n − 1) arcs. Each of these arcs
will divide one of the an−1 regions in two pieces. So, we have the
recurrence relation

an = an−1 + 2(n − 1).

With this relation and the boundary condition a1 = 2, one can
compute the value of an for any given n simply by repeatedly applying
the recurrence relation:

a5 = a4 + 2 · (5− 1) = 14 + 8 = 22;
a6 = a5 + 2 · (6− 1) = 22 + 10 = 32.

We will develop methods for solving this recurrence relation to obtain
a general expression for an.
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Subsection 2

Linear Recurrence Relations with Constant Coefficients
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Recurrence Relations Linear Recurrence Relations with Constant Coefficients

Linear Recurrence Relations with Constant Coefficients

A recurrence relation of the form

C0an + C1an−1 + · · ·+ Cran−r = f (n)

is called a linear recurrence relation (difference equation) with
constant coefficients where all the C ’s are constants.

Example: 3an − 5an−1 +2an−2 = n2 +5 is a linear difference equation
with constant coefficients.

If the values of r consecutive a’s in the sequence, ak−r , ak−r+1, . . . ,
ak−1 are known for some k , the value of ak can be calculated by
using the equation. Also, the values of ak+1, ak+2, . . . and the values
of ak−r−1, ak−r−2, . . . can then be calculated recursively.

It follows that the solution to this recurrence is determined uniquely
by the values of r consecutive a’s (the boundary conditions).

The general form of the solution contains r undetermined constants.

These can be determined by the values of r consecutive a’s in the
sequence.
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Recurrence Relations Linear Recurrence Relations with Constant Coefficients

Total as Sum of Homogeneous and Particular Solutions

The (total) solution of a linear difference equation with constant
coefficients is the sum of two parts:

The homogeneous solution, which satisfies the difference equation
when the right-hand side of the equation is set to 0;
The particular solution, which satisfies the difference equation with
f (n) at the right-hand side.

Let a
(h)
n denote the homogeneous solution and a

(p)
n denote the

particular solution to the difference equation:

C0a
(h)
n + C1a

(h)
n−1 + · · ·+ Cra

(h)
n−r = 0

C0a
(p)
n + C1a

(p)
n−1 + · · ·+ Cra

(p)
n−r = f (n).

Then we have
C0(a

(h)
n + a

(p)
n ) + C1(a

(h)
n−1 + a

(p)
n−1) + · · ·+ Cr (a

(h)
n−r + a

(p)
n−r ) = f (n).

Thus, the total solution, an = a
(h)
n + a

(p)
n satisfies the difference

equation.
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Recurrence Relations Linear Recurrence Relations with Constant Coefficients

Characteristic Roots and Characteristic Equations

The homogeneous solution of a linear difference equation

C0an + C1an−1 + · · ·+ Cran−r = f (n) is of the form a
(h)
n = Aαn

1,
where

α1 is called a characteristic root and
A is a constant determined by the boundary conditions.

Substituting Aαn for an in the difference equation with the right-hand
side of the equation set to 0, we obtain

C0Aα
n + C1Aα

n−1 + C2Aα
n−2 + · · ·+ CrAα

n−r = 0.

This equation can be simplified into the polynomial

C0α
r + C1α

r−1 + C2α
r−2 + · · · + Cr = 0,

which is called the characteristic equation of the difference
equation.

Thus, if α1 is a root of the characteristic equation (a characteristic
root), Aαn

1 is a homogeneous solution to the difference equation.
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Form of the Homogeneous Solution

A characteristic equation of r -th degree has r characteristic roots.

Suppose the roots of the characteristic equation are distinct.

In this case it is easy to verify that the homogeneous solution is

a
(h)
n = A1α

n
1 + A2α

n
2 + · · ·+ Arα

n
r ,

where

α1, α2, . . . , αr are the distinct characteristic roots;
A1,A2, . . . ,Ar are constants which can be determined by the boundary
conditions.
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Example: Fibonacci Sequence Revisited

The recurrence relation for the Fibonacci sequence of numbers is
an = an−1 + an−2.

The corresponding characteristic equation is α2 − α− 1 = 0, which

has two distinct roots α1 =
1+

√
5

2 and α2 =
1−

√
5

2 .

The homogeneous solution (in this case, also the total solution, since
the particular solution is 0) is

an = a
(h)
n = A1

(

1 +
√
5

2

)n

+ A2

(

1−
√
5

2

)n

.

The two constants A1 and A2 can be determined from the boundary
conditions a0 = 1 and a1 = 1 by solving the two equations

{

a0 = 1 = A1 + A2

a1 = 1 = A1
1+

√
5

2 + A2
1−

√
5

2

These equations yield A1 =
1√
5
1+

√
5

2 and A2 = − 1√
5
1−

√
5

2 .

Thus, the solution is an = 1√
5
(1+

√
5

2 )n+1 − 1√
5
(1−

√
5

2 )n+1.
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Complex Conjugate Characteristic Roots

When the coefficients of the characteristic equation are real numbers
but some of the characteristic roots are complex numbers, the
homogeneous solution can be written in a different form.

If a polynomial has real coefficients, then the complex conjugate of
every root is also a root of the polynomial. Hence, complex roots
always appear in pairs.

Let α1 = δ + iω and α2 = δ − iω be a pair of complex characteristic
roots. Set ρ = |α1| = |α2| =

√
δ2 + ω2 and θ = tan−1 ω

δ . Then, we
have

A1α
n
1 + A2α

n
2 = A1(δ + iω)n + A2(δ − iω)n

= A1ρ
n(cos nθ + i sin nθ) + A2ρ

n(cos nθ − i sin nθ)
= (A1 + A2)ρ

n cos nθ + i(A1 − A2)ρ
n sin nθ.

B1 = A1 + A2 and B2 = i(A1 − A2) are constants determined by the
boundary conditions.
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Example

Evaluate the n × n determinant
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1 1 0 0 · · · 0 0 0
1 1 1 0 · · · 0 0 0
0 1 1 1 · · · 0 0 0
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0 0 0 0 · · · 1 1 1
0 0 0 0 · · · 0 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Let ak denote the value of the k × k determinant that is of this form.
Expanding the n × n determinant with respect to the first column:

an =
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∣
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∣

∣

∣
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1 1 0 0 · · · 0 0 0
1 1 1 0 · · · 0 0 0
0 1 1 1 · · · 0 0 0
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0 0 0 0 · · · 1 1 1
0 0 0 0 · · · 0 1 1
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0 0 0 · · · 0 1 1
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∣
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∣

∣

∣

∣

∣

∣

= an−1 − an−2.
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Example (Cont’d)

We obtained the recurrence relation

an = an−1 − an−2.

The corresponding characteristic equation is α2 − α+ 1 = 0. The

characteristic roots are α1 =
1
2 + i

√
3
2 and α2 =

1
2 − i

√
3
2 . Now

compute:

ρ =

√

( 12 )
2 + (

√
3
2 )2 = 1;

tan−1
√
3/2
1/2 = π

3 .

Thus, we have an = B1 cos
nπ
3 + B2 sin

nπ
3 .

Using the boundary conditions a1 = 1 and a2 = 0, the constants B1

and B2 are determined as B1 = 1 and B2 =
1√
3
. Therefore, the

solution of the difference equation is

an = cos
nπ

3
+

1√
3
sin

nπ

3
.
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Multiple Characteristic Roots

Let α1 be a k-multiple root.

The corresponding homogeneous solution is

(A1n
k−1 + A2n

k−2 + · · ·+ Ak−2n
2 + Ak−1n + Ak)α

n
1 ,

where the A’s are constants which are determined by the boundary
conditions.

It is clear that a
(h)
n = Akα

n
1 is a homogeneous solution.

Because of multiplicity α1 not only satisfies the equation
C0α

n + C1α
n−1 + C2α

n−2 + · · ·+ Crα
n−r = 0 but also its derivative

C0nα
n−1+C1(n−1)αn−2+C2(n−2)αn−2+ · · ·+Cr (n− r)αn−r−1 = 0.

Multiplying by Ak−1α and replacing α by α1, we obtain
C0Ak−1nα

n
1 + C1Ak−1(n − 1)αn−1

1 + C2Ak−1(n − 2)αn−2
1 + · · ·+

CrAk−1(n − r)αn−r
1 = 0, which shows that Ak−1nα

n
1 is indeed a

homogeneous solution.
The fact that α1 satisfies the second, third, . . ., (k − 1)-st derivatives
enables us to prove that Ak−2n

2αn
1 ,Ak−3n

3αn
1 , . . . ,A1n

k−1αn
1 are also

homogeneous solutions.

George Voutsadakis (LSSU) Combinatorics April 2016 17 / 68
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Example

Solve the difference equation

an + 6an−1 + 12an−2 + 8an−3 = 0,

with the boundary conditions a0 = 1, a1 = 2, and a2 = 8.
The characteristic equation is α3 + 6α2 + 12α+ 8 = 0. We get

α3 + 2α2 + 4α2 + 8α+ 4α+ 8 = 0
⇒ α2(α+ 2) + 4α(α + 2) + 4(α + 2) = 0
⇒ (α+ 2)(α2 + 4α+ 4) = 0
⇒ (α+ 2)3 = 0.

So it has α = −2 as a triple root. The solution is
an = (A1n

2 + A2n + A3)(−2)n. From the boundary conditions, the
constants are determined as

A1 =
1

2
, A2 = − 1

2
, A3 = 1.

Therefore, an = (12n
2 − 1

2n + 1)(−2)n.
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Example

Evaluate the n × n determinant
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Let ak denote the value of the k × k determinant that is of this form.
Expanding the n × n determinant with respect to the first column:

an =
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2 1 0 · · · 0 0 0
1 2 1 · · · 0 0 0
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0 0 0 · · · 1 2 1
0 0 0 · · · 0 1 2
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∣
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∣

∣

−

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 · · · 0 0 0
1 2 1 · · · 0 0 0

. . .

0 0 0 · · · 1 2 1
0 0 0 · · · 0 1 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 2an−1 − an−2.
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Example (Cont’d)

We obtained
an = 2an−1 − an−2.

The characteristic equation is α2 − 2α+ 1 = 0. It has a double
characteristic root α = 1. So the solution is

an = (A1n + A2)(1)
n = A1n + A2.

From the boundary conditions a1 = 2 and a2 = 3, we obtain

A1 = 1 and A2 = 1.

Thus, the solution is
an = n + 1.

George Voutsadakis (LSSU) Combinatorics April 2016 20 / 68



Recurrence Relations Linear Recurrence Relations with Constant Coefficients

Finding the Particular Solution

Solve the difference equation

an + 2an−1 = n + 3, a0 = 3.

The homogeneous solution is a
(h)
n = A(−2)n.

To determine the particular solution, we try a solution of the form

a
(p)
n = Bn+ D. Substituting this into the difference equation, we
have Bn+ D + 2[B(n − 1) + D] = n + 3. Thus,
3Bn + 3D − 2B = n + 3. Comparing the coefficients of n and the
constant terms, we have 3B = 1 and 3D − 2B = 3, i.e., B = 1

3 and

D = 11
9 . Therefore, a

(p)
n = n

3 + 11
9 .

The total solution of the difference equation is simply the sum of the
homogeneous and particular solutions: an = A(−2)n + n

3 + 11
9 .

Taking into account the boundary condition, A = 16
9 . So we get

an =
16

9
(−2)n +

n

3
+

11

9
.
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Example

Solve the difference equation

an + 2an−1 + an−2 = 2n.

The homogeneous solution is a
(h)
n = (A1n + A2)(−1)n.

The particular solution is found by trying a solution of the form

a
(p)
n = B · 2n.
Since

B · 2n + 2 · B · 2n−1 + B · 2n−2 = 2n.

B is determined as B = 4
9 . Hence,

an = a
(h)
n + a

(p)
n = (A1n + A2)(−1)n +

4

9
· 2n.
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The Tower of Hanoi Problem

n circular rings of tapering size are slipped onto a peg with the largest
at the bottom:

These rings are to be transferred one at a time onto another peg, and
there is a third peg available on which rings can be left temporarily.
If, during the course of transferring the rings, no ring may ever be
placed on top of a smaller one, in how many moves can these rings be
transferred with their relative positions unchanged?
We transfer the n rings by:

first moving the top n − 1 rings onto the third peg;
then we place the largest ring onto the second peg;
finally, move the n − 1 rings from the third peg onto the second peg.
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The Tower of Hanoi Problem: The Recurrence

If we let an denote the number of moves it takes to transfer n rings
from one peg to another, we have the recurrence relation

an = 2an−1 + 1.

The homogeneous solution is a
(h)
n = A · 2n.

The particular solution is a
(p)
n = − 1.

Thus an = A · 2n − 1.

Note that the boundary condition is a1 = 1. So, the solution is

an = 2n − 1.

George Voutsadakis (LSSU) Combinatorics April 2016 24 / 68



Recurrence Relations Solution by the Technique of Generating Functions

Subsection 3

Solution by the Technique of Generating Functions
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The Domain of a Sequence

Consider a difference equation of the form

C0an + C1an−1 + · · ·+ Cran−r = f (n).

Assume it is valid only for n greater than or equal to some integer k .

We want to determine the values of the an’s for n ≥ k − r .

Among these an’s, ak−r , ak−r+1, . . . , ak−1 are boundary conditions
specified by the problem.

We further assume that n ≥ 0. So k ≥ r .

Since the values of the an’s for n < k − r are not constrained by the
difference equation, they can be chosen arbitrarily.

If we set an to 0 for n < 0 and choose some arbitrary values for the
an’s for 0 ≤ n < k − r , we can solve for the generating function of the
sequence (a0, a1, a2, . . . , an, . . .), instead of solving for a general
expression for an.
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From a Recurrence Relation to a Generating Function

Let A(x) denote the ordinary generating function of the sequence
(a0, a1, . . . , an, . . .), i.e., A(x) = a0 + a1x + a2x

2 + · · ·+ anx
n + · · ·.

C0an + C1an−1 + · · · + Cran−r = f (n)
(C0an + C1an−1 + · · ·+ Cran−r )x

n = f (n)xn
∑∞

n=k(C0an + C1an−1 + · · · + Cran−r )x
n =

∑∞
n=k f (n)x

n

∑∞
n=k C0anx

n +
∑∞

n=k C1an−1x
n + · · ·

+
∑∞

n=k Cran−rx
n =

∑∞
n=k f (n)x

n

C0
∑∞

n=k anx
n + C1x

∑∞
n=k C1an−1x

n−1 + · · ·
+ Crx

r
∑∞

n=k Cran−rx
n−r =

∑∞
n=k f (n)x

n

C0[A(x)− a0 − a1x − · · · − ak−1x
k−1]

+ C1x [A(x)− a0 − a1x − · · · − ak−2x
k−2] + · · ·

+ Crx
r [A(x)− a0 − a1x − · · · − ak−r−1x

k−r−1] =
∑∞

n=k f (n)x
n.

So A(x) = a0 + a1x + · · · + ak−r−1x
k−r−1 +

1
C0+C1x+···+Cr x r

[
∑∞

n=k f (n)x
n + C0(ak−r x

k−r + · · ·+ ak−1x
k−1) +

C1(ak−r x
k−r+1 + · · ·+ ak−2x

k−1) + · · ·+ Cr−1ak−rx
k−1].
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Example: Two Generating Functions

Show that
(a)

∑∞

n=2(n − 1)xn = x2

(1−x)2 ;

(b) 2x2

(1−x)3 =
∑∞

n=1 n(n − 1)xn.

First, since 1
1−x

= 1 + x + x2 + x3 + · · · , we obtain, by

differentiation 1
(1−x)2

= 1 + 2x + 3x2 + 4x3 + · · · .
(a) Now multiply by x2 to get

x2

(1 − x)2
= x2 + 2x3 + 3x4 + · · · =

∞∑

n=2

(n − 1)xn.

(b) Take again the relation and differentiate once more to get
2

(1−x)3 = 2 + 3 · 2x + 4 · 3x2 + 5 · 4x3 + · · · . Therefore, multiplying by

x2, we get

2x2

(1−x)3 = 2x2 + 3 · 2x3 + 4 · 3x4 + 4 · 4x5 · · ·
=

∑∞

n=2 n(n − 1)xn =
∑∞

n=1 n(n − 1)xn.
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Example: Ovals and Number of Regions in the Plane

Recall that the recurrence relation giving the number of regions in
which n ovals divide the plane when the intersect at exactly two
points and no three share a common point is an = an−1 + 2(n − 1).

Since an has physical meaning only for n ≥ 1, the recurrence relation
is valid for n ≥ 2. Because a0 has no physical significance, we can
choose any arbitrary value for a0. One choice is to have a value for
a0, such that the range of validity of the recurrence relation is
extended. Since a1 = 2, we choose a0 = 2. The recurrence relation is
now valid for n ≥ 1.
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Ovals and Number of Regions in the Plane (Cont’d)

We solve the recurrence as follows:

an = an−1 + 2(n − 1)
anx

n = (an−1 + 2(n − 1))xn
∑∞

n=1 anx
n =

∑∞
n=1(an−1 + 2(n − 1))xn

∑∞
n=1 anx

n =
∑∞

n=1 an−1x
n +

∑∞
n=1 2(n − 1)xn

∑∞
n=1 anx

n = x
∑∞

n=1 an−1x
n−1 + 2

∑∞
n=1(n − 1)xn

A(x)− a0 − xA(x) = 2 x2

(1−x)2

A(x)(1− x) = 2x2

(1−x)2
+ 2

A(x) = 2x2

(1−x)3
+ 2

1−x

A(x) =
∑∞

n=1 n(n − 1)xn + 2
∑∞

n=0 x
n

A(x) = 2 +
∑∞

n=1[n(n − 1) + 2]xn.

It follows that an = n(n − 1) + 2, n = 0, 1, 2, . . ..
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Example: Even Numbers of 0’s

Among the 4n n-digit quaternary sequences, how many of them have
an even number of 0’s?

Let an−1 denote the number of (n − 1)-digit quaternary sequences
that have an even number of 0’s.
Then the number of (n − 1)-digit quaternary sequences that have an
odd number of 0’s is 4n−1 − an−1.

To each of the an−1 sequences that have an even number of 0’s, the
digit 1, 2, or 3 can be appended to yield sequences of length n that
contain an even number of 0’s.
To each of the 4n−1 − an−1 sequences that have an odd number of 0’s,
the digit 0 can be appended to yield a sequence of length n that
contains an even number of 0’s.

Therefore, for n ≥ 2, an = 3an−1 + 4n−1 − an−1. So we get

an − 2an−1 = 4n−1.
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Even Number of 0’s (Cont’d)

We discovered that
an − 2an−1 = 4n−1.

Note a1 = 3. For the recurrence relation to be valid for n = 1, we
choose a0 = 1.

Multiplying both sides of the recurrence relation by xn and summing
from n = 1 to n = ∞, we obtain

∞∑

n=1

anx
n − 2

∞∑

n=1

an−1x
n =

∞∑

n=1

4n−1xn.

A(x)− 1− 2xA(x) =
x

1− 4x
.

A(x) =
1

1− 2x
(

x

1− 4x
+ 1) =

1/2

1− 4x
+

1/2

1− 2x
.

It follows that an = 1
24

n + 1
22

n, n ≥ 0.
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Even Number of 0’s and Even Number of 1’s

Among the 4n n-digit quaternary sequences, how many of them have
an even number of 0’s and an even number of 1’s? Denote by:

bn−1 the number of (n − 1)-digit quaternary sequences that have an
even number of 0’s and an even number of 1’s;
cn−1 the number of (n − 1)-digit quaternary sequences that have an
even number of 0’s and an odd number of 1’s;
dn−1 the number of (n-1)-digit quaternary sequences that have an odd
number of 0’s and an even number of 1’s.

There are 4n−1 − bn−1 − cn−1 − dn−1 (n − 1)-digit quaternary
sequences that have an odd number of 0’s and an odd number of 1’s.

Append 0 Append 1 Append 2 or 3
Even 0’s Odd 0’s Even 0’s Even 0’s
Even 1’s Even 1’s Odd 1’s Even 1’s
Even 0’s Odd 0’s Even 0’s Even 0’s
Odd 1’s Odd 1’s Even 1’s Odd 1’s
Odd 0’s Even 0’s Odd 0’s Odd 0’s
Even 1’s Even 1’s Odd 1’s Even 1’s
Odd 0’s Even 0’s Odd 0’s Odd 0’s
Odd 1’s Odd 1’s Even 1’s Odd 1’s
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The Recurrences

We obtain, for n ≥ 2, the recurrence relations

bn = 2bn−1 + cn−1 + dn−1

cn = bn−1 + 2cn−1 + 4n−1 − bn−1 − cn−1 − dn−1

dn = bn−1 + 2dn−1 + 4n−1 − bn−1 − cn−1 − dn−1

After simplification,

bn = 2bn−1 + cn−1 + dn−1

cn = cn−1 − dn−1 + 4n−1

dn = − cn−1 + dn−1 + 4n−1

Note b1 = 2, c1 = 1 and d1 = 1. Therefore,






2 = 2b0 + c0 + d0
1 = c0 − d0 + 1
1 = −c0 + d0 + 1






. For the recurrence relations to be valid

for n ≥ 1, the values of b0, c0 and d0 can be chosen as b0 =
3
4 ,

c0 =
1
4 , d0 =

1
4 .
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Solving The Recurrences

Thus,
∑∞

n=1 bnx
n = 2

∑∞
n=1 bn−1x

n +
∑∞

n=1 cn−1x
n +

∑∞
n=1 dn−1x

n

∑∞
n=1 cnx

n =
∑∞

n=1 cn−1x
n −∑∞

n=1 dn−1x
n +

∑∞
n=1 4

n−1xn
∑∞

n=1 dnx
n = −

∑∞
n=1 cn−1x

n +
∑∞

n=1 dn−1x
n +

∑∞
n=1 4

n−1xn

Taking into account that b0 =
3
4 , c0 =

1
4 , d0 =

1
4 and using the

generating function representation, these relations become

B(x)− 3
4 = 2xB(x) + xC (x) + xD(x)

C (x) − 1
4 = xC (x)− xD(x) + x

1−4x

D(x)− 1
4 = − xC (x) + xD(x) + x

1−4x

From the last two
{

C (x) + D(x)− 1
2 = 2x

1−4x

C (x) = D(x)

}

⇒
{

C (x) + D(x) = 1/2
1−4x

C (x) = D(x) = 1/4
1−4x

}

.
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The Generating Functions

We got C (x) = D(x) = 1/4
1−4x . By the first equation

B(x)− 3
4 = 2xB(x) +

1
2
x

1−4x ⇒ B(x)(1− 2x) =
1
2
x

1−4x + 3
4

⇒ B(x) =
1
2
x

(1−4x)(1−2x) +
3/4
1−2x ⇒ B(x) = 1/4

1−4x − 1/4
1−2x + 3/4

1−2x

⇒ B(x) = 1/4
1−4x + 1/2

1−2x .

We conclude

B(x) =
1/4

1− 4x
+

1/2

1− 2x
, C (x) = D(x) =

1/4

1− 4x
.

and

bn =
1

4
4n +

1

2
2n, cn = dn =

1

4
4n, n = 0, 1, 2, . . . .
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Subsection 4

A Special Class of Nonlinear Recurrence Relations
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A Special Class of Nonlinear Recurrences

Consider a difference equation of the form

an = an−ra0 + an−r−1a1 + · · · + a0an−r ,

which is valid for n ≥ k . We consider the case k ≥ r . The value of
an, n ≥ k , can be computed recursively if a0, a1, . . . , ak−1 are known.

Multiplying both sides by xn and summing from n = k to n = ∞, we
obtain ∞∑

n=k

anx
n =

∞∑

n=k

(an−ra0 + an−r−1a1 + · · · + a0an−r )x
n.

Recognizing that (an−ra0 + an−r−1a1 + · · ·+ a0an−r ) is the coefficient
of xn−r in A(x)A(x), we can write

A(x)− a0 − a1x − · · · − ak−1x
k−1

= x r [A(x)A(x) − a20 − (a1a0 + a0a1)x − · · ·
− (ak−r−1a0 + ak−r−2a1 + · · ·+ a0ak−r−1)x

k−r−1].

This is a second-order algebraic equation in A(x) which can be solved
for A(x) by the ordinary algebraic method.
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Parenthesizing Expressions: The Recurrence

Find the number of ways to parenthesize the expression w1 +w2 + · · ·
+wn−1 + wn so that only two terms will be added at one time.

Let ai denote the number of ways of parenthesizing an expression
with i terms. Consider the two subexpressions w1 + w2 + · · · + wn−r

and wn−r+1 + wn−r+2 + · · · + wn. There are:
an−r ways to parenthesize the first expression;
ar ways to parenthesize the second expression.

It follows that there are an−rar ways to parenthesize the overall
expression in which the last pair of parentheses added joins these two
subexpressions.

Letting r range from 1 to n − 1, we obtain the difference equation
an = an−1a1 + an−2a2 + · · ·+ a2an−2 + a1an−1. This equation is valid
for n ≥ 2 (a1 = 1).

Since a0 is not constrained by the difference equation, it can be
chosen in an arbitrary manner.
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Parenthesizing Expressions: Generating Function

We obtained an = an−1a1 + an−2a2 + · · · + a2an−2 + a1an−1, n ≥ 2,
with a1 = 1.

Letting a0 = 0, we rewrite the difference equation as
an = ana0 + an−1a1 + · · ·+ a1an−1 + a0an, n ≥ 2. It follows that

∑∞
n=2 anx

n =
∑∞

n=2(ana0 + an−1a1 + · · · + a1an−1 + a0an)x
n

A(x)− a1x − a0 = [A(x)]2 − a20 − (a1a0 + a0a1)x

[A(x)]2 − A(x) + x = 0 ⇒ A(x) = 1±
√
1−4x
2 .

We choose the solution for A(x) that generates a sequence of positive
numbers. The general term in

√
1− 4x is

( 1
2
)( 1

2
−1)( 1

2
−2)···( 1

2
−n+1)

n! (−4x)n = − 1·1·3·5···(2n−3)
n! 2nxn = − 2

n

(2n−2
n−1

)
.

Choosing the solution A(x) = 1
2 − 1

2

√
1− 4x , we get

an =

{
0, if n = 0
1
n

(2n−2
n−1

)
, if n = 1, 2, . . .

George Voutsadakis (LSSU) Combinatorics April 2016 40 / 68
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Generalizing the Preceding Setting

Consider a difference equation of the form

bn = an−rb0 + an−r−1b1 + · · ·+ a0bn−r , n ≥ k , k ≥ r .

Multiplying both sides by xn and summing from n = k to n = ∞, we
obtain

∞∑

n=k

bnx
n =

∞∑

n=k

(an−rb0 + an−r−1b1 + · · ·+ a0bn−r )x
n.

Equivalently,

B(x)− b0 − b1x − · · · − bk−1x
k−1

= x r [A(x)B(x)− a0b0 − (a1b0 + a0b1)x − · · ·
− (ak−r−1b0 + ak−r−2b1 + · · ·+ a0bk−r−1)x

k−r−1].

If either A(x) or B(x) together with the appropriate boundary
conditions are known, then the other can be obtained.
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Patterns in a Binary Sequence

A pattern consists of one or more consecutive binary digits like 01
and 1011.

A pattern is said to occur at the k-th digit of a sequence if, in
scanning the sequence from left to right, the pattern appears after the
k-th digit is scanned.

After a pattern occurs, scanning starts all over again to search for the
second occurrence of the pattern that just occurred or for the
occurrence of other patterns.

Example: The pattern 010 occurs at the fifth and the ninth digits in
the sequence

11 010
︸︷︷︸
5-th

1 010
︸︷︷︸
9-th

101,

but not at the seventh and eleventh digits.
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The Pattern 010: The Recurrence Relation

Find the number of n-digit binary sequences that have the pattern
010 occurring at the n-th digit.

Let bn denote the number of such sequences. Among all the n-digit
binary sequences, there are 2n−3 sequences that have 010 as the last
three digits. These sequences can be divided into two groups:

Those that have the pattern 010 occurring at the n-th digit;
Those that do not have the pattern 010 occurring at the n-th digit.

There are bn sequences in the former group.

The sequences in the latter group must have the pattern 010
occurring at the (n− 2)-nd digit, since this is the only reason that the
last three digits in these n-digit sequences were not accepted as a 010
pattern. It follows that there are bn−2 sequences in the latter group.

Thus, 2n−3 = bn + bn−2. This difference equation is valid for n ≥ 5.
The values of b0, b1 and b2 are not constrained by the difference
equation, so they can be chosen in an arbitrary manner.
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The Pattern 010: The Generating Function

We came up with 2n−3 = bn + bn−2, n ≥ 5.

We set b0 = 1, b1 = b2 = 0.

For such a choice of the unconstrained values, the difference equation
is valid for n ≥ 3. We now have:

∑∞
n=3 2

n−3xn =
∑∞

n=3 bnx
n +

∑∞
n=3 bn−2x

n

x3

1− 2x
= B(x)− 1 + x2[B(x)− 1] ⇒ x3

1− 2x
= (B(x)− 1)(1 + x2)

⇒ B(x) = 1 +
x3

(1− 2x)(1 + x2)

⇒ B(x) = 1 + x3
1

1− (2x − x2 + 2x3)

⇒ B(x) = 1 + x3 + 2x4 + 3x5 + 6x6 + · · · .
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Pattern Appearing for the First Time at n-th Digit

Find the number of n-digit binary sequences that have the pattern
010 occurring for the first time at the n-th digit.
Let an denote the number of such sequences. There are 2n−3 n-digit
binary sequences that have 010 as the last three digits. These
sequences can be classified according to the digit at which the pattern
010 occurs for the first time.

There are an sequences in which the first occurrence of the pattern is
at the n-th digit;
There are an−2 sequences in which the first occurrence of the pattern is
at the (n − 2)-nd digit.
For 3 ≤ r ≤ n − 3, there are ar2

n−r−3 sequences in which the first
occurrence of the pattern is at the r -th digit, because to each of the ar
r -digit sequences that have the pattern 010 occurring for the first time
at the rth digit, n − r − 3 digits can be appended arbitrarily.

Therefore, 2n−3 = an + an−2 + an−32
0 + an−42

1 + · · ·+ a32
n−6,

n ≥ 6. Because a0, a1, a2 are not constrained by the difference
equation, they can be chosen arbitrarily.
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The Generating Function

We found 2n−3 = an + an−2 + an−32
0 + an−42

1 + · · ·+ a32
n−6, n ≥ 6.

Let a0 = a1 = a2 = 0. Let, also,

B(x) = b0 + b1x + b2x
2 + · · ·+ bnx

n + · · ·
= 1 + x2 + 20x3 + 21x4 + · · ·+ 2n−3xn + · · ·
= 1 + x2 + x3

1−2x .

We can rewrite the difference equation as
2n−3 = anb0 + an−1b1 + an−2b2 + · · ·+ a2bn−2 + a1bn−1 + a0bn. The
difference equation is now valid for n ≥ 3. It follows that

∑∞
n=3 2

n−3xn =
∑∞

n=3(anb0 + an−1b1 + an−2b2 + · · ·
+ a2bn−2 + a1bn−1 + a0bn)x

n

B(x)− 1− x2 = A(x)B(x)− a0b0 − (a1b0 + a0b1)x−
(a2b0 + a1b1 + a0b2)x

2

A(x) = x3

1−2x+x2−x3
= x3 + 2x4 + 3x5 + 5x6 + 9x7 + · · · .
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A Second Solution

Consider all 3 · 2n−5 n-digit binary sequences, the last five digits of
which are either 00010 or 10010 or 11010. Let an be the number of
sequences in which the pattern 010 occurs for the first time at the
n-th digit. We distinguish the following cases:

010 occurs for the first time at the n-th digit (this excludes 01010),
which can happen in an ways;
010 occurs for the first time at the (n − 3)rd digit, which can happen
only in 10010 in an−3 ways;
010 occurs for the first time at the (n − 4)th digit, which can happen
only in 00010 in an−4 ways;
010 occurs for the fist time at the (n − 5)th digit, which can happen in
an−5 · 3 · 25−5 ways;
010 occurs for the first time at the (n − 6)th digit, which can happen
in an−6 · 3 · 26−5 ways;
...
010 occurs for the first time at the 3rd digit, which can happen in
a3 · 3 · 2(n−3)−5 ways.
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A Second Solution (Cont’d)

Thus, for all n ≥ 8,
3·2n−5 = an+an−3+an−4+an−5(3·20)+an−6(3·21)+· · ·+a3(3·2n−8).

Let a0 = a1 = a2 = 0. Set

B(x) = 1 + x3 + x4 + b5x
5 + b6x

6 + · · ·+ bnx
n + · · ·

= 1 + x3 + x4 + 3(20x5 + 2x6 + · · · + 2n−5xn + · · · )
= 1 + x3 + x4 + 3x5(1 + 2x + · · · + (2x)n−5 + · · · )
= 1 + x3 + x4 + 3x5

1−2x .

The difference equation can be rewritten, for n ≥ 5, as
3 · 2n−5 = anb0 + an−1b1 + an−2b2 + · · · + a2bn−2 + a1bn−1 + a0bn.

Thus,
B(x)−1−x3−x4 = A(x)B(x)−a3x

3−a4x
4 = A(x)B(x)−x3−2x4.
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A Second Solution (Conclusion)

We obtained

B(x)− 1− x3 − x4 = A(x)B(x)− x3 − 2x4

3x5

1−2x = A(x)(1 + x3 + x4 + 3x5

1−2x )− x3 − 2x4

3x5

1−2x + x3 + 2x4 = A(x)(1 + x3 + x4 3x5

1−2x )

3x5+x3−2x4+2x4−4x5

1−2x = A(x)1−2x+x3−2x4+x4−2x5+3x5

1−2x

x3−x5

1−2x = A(x)1−2x+x3−x4+x5

1−2x

A(x) = x3(1−x2)
1−x2−2x+2x3+x2−x4−x3+x5

A(x) = x3(1−x2)
(1−x2)−2x(1−x2)+x2(1−x2)−x3(1−x2)

A(x) = x3

1−2x+x2−x3
.
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A Third Solution

Let bn be the number of sequences of length n in which the pattern
010 occurs at the n-th digit.
We again distinguish the following cases:

010 occurs for the first time at the n-th digit, which happens in an
ways;
010 occurs for the first time in the (n − 3)rd digit, which happens in
an−3b3 ways;
010 occurs for the first time in the (n − 4)th digit, which happens in
an−4b4 ways;
...
010 occurs for the first time in the 3rd digit, which happens in a3bn−3

ways.

In this case, we have the difference equation

bn = an + an−3b3 + an−4b4 + · · ·+ a3bn−3, n ≥ 6.
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A Third Solution (Cont’d)

bn = an + an−3b3 + an−4b4 + · · · + a3bn−3, n ≥ 6.

Because a0, a1, a2, b0, b1, b2 are not constrained by the difference
equation, we let a0 = a1 = a2 = 0 and b0 = 1, b1 = b2 = 0.

We can rewrite the difference equation as

bn = anb0 + an−1b1 + an−2b2 + an−3b3 + · · ·+ a3bn−3

a2bn−2 + a1bn−1 + a0bn, n ≥ 3.

Multiplying both sides of the difference equation by xn and summing
from n = 3 to n = ∞, we have

B(x)− 1 = A(x)B(x).

Since B(x) has been found to be 1−2x+x2−x3

1−2x+x2−2x3
, solving for A(x), we

obtain

A(x) = 1− 1

B(x)
= 1− 1− 2x + x2 − 2x3

1− 2x + x2 − x3
=

x3

1− 2x + x2 − x3
.
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Generalizing to Arbitrary Patterns

The preceding choice of B(x) suggests a useful formula for the
solution of the first-occurrence problems.

Let an be the number of n-digit sequences in which a particular
pattern of p digits occurs for the first time at the n-th digit.

Let bn be the number of n-digit sequences in which the pattern
occurs at the n-th digit.

By choosing the unconstrained values as

a0 = a1 = a2 = · · · = ap−1 = 0,
b0 = 1, b1 = b2 = · · · = bp−1 = 0,

we see that the difference equation always leads to

B(x)− b0 = A(x)B(x)

and
A(x) = 1− 1

B(x)
.
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Example

Find the number of n-digit binary sequences in which an occurrence
of the pattern 010 is followed by an occurrence of the pattern 110.

Let cn be the number of such sequences.
Let an be the number of n-digit binary sequences in which the pattern
010 occurs for the first time at the n-th digit.
Let bn be the number of n-digit binary sequences in which the pattern
110 occurs at least once.

We distinguish the following cases:
010 occurs for the first time at the 3rd digit, which can happen in
a3bn−3 ways;
010 occurs for the first time at the 4th digit, which can happen in
a4bn−4 ways;
...
010 occurs for the first time at the (n − 3)rd digit, which can happen
in an−3b3 ways.

Thus,
cn = a3bn−3 + a4bn−4 + a5bn−5 + · · ·+ an−3b3, n ≥ 6.
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Example (Cont’d)

We found cn = a3bn−3 + a4bn−4 + a5bn−5 + · · ·+ an−3b3, n ≥ 6.

Let a0 = a1 = a2 = 0, b0 = b1 = b2 = 0 and c0 = c1 = c2 = · · · =
c5 = 0, since they are not constrained by the difference equation.

It follows that

∞∑

n=6

cnx
n =

∞∑

n=0

(a3bn−3 + a4bn−4 + · · ·+ an−3b3)x
n.

Therefore, C (x) = A(x)B(x).

We know A(x) = x3

1−2x+x2−x3
. To find B(x), define dn as the number

of n-digit sequences in which the pattern 110 occurs at the n-th digit
for the first time, and let d0 = d1 = d2 = 0. Then

bn = d3 · 2n−3 + d4 · 2n−4 + · · ·+ dn−1 · 2 + dn, n ≥ 3.

Consequently, B(x) = D(x) 1
1−2x .
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Example (Conclusion)

Finally, top compute D(x), let en be the number of n-digit sequences
in which the pattern 110 occurs at the n-th digit.

Then, we have (choosing e0 = 1, e1 = e2 = 0)

E (x) = 1 + x3 + 2x4 + 22x5 + · · · + 2n−3xn + · · ·
= 1 + x3(1 + 2x + 22x2 + · · ·+ 2n−3xn−3 + · · · )
= 1 + x3

1−2x .

By the preceding example’s relation,
D(x) = 1− 1

E(x) = 1− 1

1+ x3

1−2x

= x3

1−2x+x3
. Therefore,

C (x) =
x3

1− 2x + x2 − x3
x3

1− 2x + x3
1

1− 2x

=
x6

1− 6x + 13x2 − 12x3 + 4x4 + x5 − 3x6 + 2x7

= x6 + 6x7 + 23x8 + · · · .
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Subsection 5

Recurrence Relations with Two Indices
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Recurrence Relations with Two Indices

For the combinations of distinct objects, we derived the relation

C (n, r) = C (n − 1, r − 1) + C (n − 1, r).

This is an example of a recurrence relation with two indices.

With the boundary conditions C (n, 0) = 1 and C (0, r) = 0, for r > 0,
the recurrence relation is valid for n ≥ 1 and r ≥ 1.

The value of C (n, r) can be computed recursively:
C (0, 0) = 1
C (1, 0) = 1; C (1, 1) = C (0, 0) + C (0, 1) = 1
C (2, 0) = 1; C (2, 1) = C (1, 0) + C (1, 1) = 1 + 1 = 2
· · ·

This essentially underlies the construction of the famous Pascal
triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
· · ·
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General Form of Recurrence with Two Indices
The general form of a linear recurrence relation with constant
coefficients that has two indices is

C0an,r +C1an,r−1 + C2an,r−2 + · · ·

+D0an−1,r +D1an−1,r−1 + D2an−1,r−2 + · · ·

+ · · ·

+G0an−k,r + G1an−k,r−1 + G2an−k,r−2 + · · · = f (n, r),

where the C ’s, D’s, . . ., G ’s are constants.
Although it may be tedious, we can always evaluate an,r using the
recurrence relation and starting with the known boundary conditions.
To solve a recurrence relation with two indices by the generating
function technique, we first define a sequence of generating functions
with one function for each value of one of the two indices:

A0(x) = a0,0 + a0,1x + a0,2x
2 + · · · + a0,rx

r + · · ·
A1(x) = a1,0 + a1,1x + a1,2x

2 + · · · + a1,rx
r + · · ·

· · ·
An(x) = an,0 + an,1x + an,2x

2 + · · ·+ an,rx
r + · · ·

· · ·
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Generating Functions with Two Variables
We can also define a generating function of the sequence
(A0(x),A1(x),A2(x), . . .), i.e., using powers of y :

A(y , x) = A0(x) + A1(x)y + A2(x)y
2 + · · ·+ An(x)y

n + · · ·

= [a0,0 + a0,1x + a0,2x
2 + · · ·+ a0,rx

r + · · · ]
+[a1,0 + a1,1x + a1,2x

2 + · · ·+ a1,rx
r + · · · ]y

+[a2,0 + a2,1x + a2,2x
2 + · · ·+ a2,rx

r + · · · ]y2

+ · · ·

+[an,0 + an,1x + an,2x
2 + · · ·+ an,rx

r + · · · ]yn

+ · · ·

Multiplying out, we get
A(y , x) = a0,0 + a0,1x + a0,2x

2 + · · ·+ a0,rx
r + · · ·

+a1,0y + a1,1yx + a1,2yx
2 + · · ·+ a1,ryx

r + · · ·

+a2,0y
2 + a2,1y

2x + a2,2y
2x2 + · · ·+ a2,ry

2x r + · · ·

+ · · ·

+an,0y
n + an,1y

nx + an,2y
nx2 + · · ·+ an,ry

nx r + · · ·

+ · · ·

For a sequence (a0,0, a0,1, a0,2, . . . , a0,r , . . . , a1,0, a1,1, . . . , a1,r , . . .), we
can use formal variables x , y and directly define the generating
function A(y , x) so that the coefficient of y ix j is ai ,j .
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Example: Combinations

Find the generating function of the C (n, r)’s

Fn(x) = C (n, 0) + C (n, 1)x + C (n, 2)x2 + · · ·+ C (n, r)x r + · · · .

From the recurrence relation C (n, r) = C (n − 1, r − 1) + C (n − 1, r),
we have
∑∞

r=1 C (n, r)x r =
∑∞

r=1 C (n − 1, r − 1)x r +
∑∞

r=1 C (n − 1, r)x r

Fn(x)− C (n, 0) = xFn−1(x) + Fn−1(x)− C (n − 1, 0)
Fn(x) = (1 + x)Fn−1(x).

It follows that

Fn(x) = (1 + x)2Fn−2(x) = (1 + x)3Fn−3(x)
= · · · = (1 + x)nF0(x)
= (1 + x)nC (0, 0) = (1 + x)n.
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Example: Combinations with Repetitions

Find the number of r -combinations of n distinct objects with
unlimited repetitions.
Denote this number by f (n, r). Let one of the n objects be labeled as
a special one.

There are f (n, r − 1) r -combinations in which this special object is
selected at least once.
There are f (n − 1, r) r -combinations in which this special object is not
selected.

Therefore, f (n, r) = f (n, r − 1) + f (n − 1, r), n ≥ 1, r ≥ 1. Let
Fn(x) = f (n, 0) + f (n, 1)x + f (n, 2)x2 + · · ·+ f (n, r)x r + · · ·, for
every n ≥ 0. Thus,

∑∞
r=1 f (n, r) =

∑∞
r=1 f (n, r − 1)x r +

∑∞
r=1 f (n − 1, r)x r

Fn(x) − f (n, 0) = xFn(x) + Fn−1(x) − f (n − 1, 0)

With f (n, 0) = 1, for n ≥ 0, and f (0, r) = 0, for r ≥ 0,

Fn(x) = (1− x)−1Fn−1(x) = (1− x)−nF0(x) = (1− x)−n.
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Example

Find the number of n-digit binary sequences that have exactly r pairs
of adjacent 1’s and no adjacent 0’s.

Notice that every two successive 1’s are counted as a pair. E.g., there
are two pairs of adjacent 1’s in the sequence 111.
Let

an,r = number of such sequences;
bn,r = number of such sequences that have a 1 as the n-th digit;
cn,r = number of such sequences that have a 0 as the n-th digit.

Clearly, an,r = bn,r + cn,r .
An n-digit sequence that has r pairs of 1’s, no adjacent 0’s, and a 1
as the n-th digit can be formed by appending a 1 either

to an (n − 1)-digit sequence that has r − 1 pairs of 1’s, no adjacent
0’s, and a 1 as the (n − 1)-st digit or
to an (n − 1)-digit sequence that has r pairs of 1’s, no adjacent 0’s,
and a 0 as the (n − 1)-st digit.

So we have the relation bn,r = bn−1,r−1 + cn−1,r .
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Example (Cont’d)

An n-digit sequence that has r pairs of 1’s, no adjacent 0’s, and a 0
as the n-th digit can be formed by appending a 0 to

an (n− 1)-digit sequence that has r pairs of 1’s, no adjacent 0’s, and a
1 as the (n − 1)-st digit.

Hence, cn,r = bn−1,r .

Combining with bn,r = bn−1,r−1 + cn−1,r , we obtain
bn,r = bn−1,r−1 + bn−2,r .

The value of bi ,j has physical significance only for i ≥ 1 and j ≥ 0.
So, the equation is valid for n ≥ 3 and r ≥ 1.

As to the boundary conditions, we have bn,0 = 1, for n ≥ 1, because
there is exactly one n-digit sequence that contains neither adjacent
0’s nor adjacent 1’s and has a 1 as the n-th digit, namely, the
sequence that consists of alternating 0’s and 1’s.

We also have bi ,j = 0, for i ≤ j . The value of b0,0 is not constrained
by the difference equation. Let it be chosen as 1.
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Example (Generating Functions)

Let Bn(x) = bn,0 + bn,1x + bn,2x
2 + · · ·+ bn,rx

r + · · ·. Multiplying
both sides by x r and summing from r = 1 to r = ∞, we obtain
∑∞

r=1 bn,rx
r =

∑∞
r=1 bn−1,r−1x

r +
∑∞

r=1 bn−2,rx
r which yields

Bn(x)− bn,0 = xBn−1(x) + Bn−2(x)− bn−2,0, n ≥ 3, that is,
Bn(x) = xBn−1(x) + Bn−2(x), n ≥ 3.

We have the following boundary conditions: B0(x) = b0,0 = 1,
B1(x) = b1,0 + b1,1x = 1, B2(x) = b2,0 + b2,1x + b2,2x = 1 + x .
The preceding equation, then, gives:

∑∞

n=3 Bn(x)y
n =

∑∞

n=3 xBn−1(x)y
n +

∑∞

n=3 Bn−2(x)y
n

B(y , x)− B2(x)y
2 − B1(x)y − B0(x)

= xy [B(y , x)− B1(x)y − B0(x)] + y2[B(y , x)− B0(x)]
B(y , x)− (1 + x)y2 − y − 1 = xy [B(y , x)− y − 1] + y2[B(y , x)− 1]

B(y , x) = 1+(1−x)y
1−xy−y2

= 1 + y + (1 + x)y2 + (1 + x + x2)y3 +
(1 + 2x + x2 + x3)y4 + (1 + 2x + 3x2 + x3 + x4)y5 + · · · .
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Example (Solving for the Generating Functions)

Recall that an,r = bn,r + cn,r and cn,r = bn−1,r .

By choosing c0,0 = 0, we get C(y , x) = yB(y , x). So
A(y , x) = B(y , x) + C(y , x) = (1 + y)B(x , y) =
(1 + y)(1 + y + (1 + x)y2 + (1 + x + x2)y3 + (1 + 2x + x2 + x3)y4 +
(1 + 2x + 3x2 + x3 + x4)y5 + · · · ) = 1 + 2y + (2 + x)y2 + (2 + 2x +
x2)y3 + (2 + 3x + 2x2 + x3)y4 + (2 + 4x + 4x2 + 2x3 + x4)y5 + · · · .
Equivalently,

A0(x) = 1;
A1(x) = 2;
A2(x) = 2 + x ;
A3(x) = 2 + 2x + x2;
A4(x) = 2 + 3x + 2x2 + x3;
A5(x) = 2 + 4x + 4x2 + 2x3 + x4;

· · ·
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Ordinary Generating Function for Permutations

To arrange r out of n distinct objects, consider one of the n objects
as a special object. Then we distinguish two cases:

Those r -permutations in which the special object does not appear,
which can happen in P(n − 1, r) ways;
Those in which the special object appears, which can happen in
rP(n − 1, r − 1) ways.

Thus, we get P(n, r) = P(n− 1, r) + rP(n− 1, r − 1), n ≥ 1, r ≥ 1.

Let

Fn(x) = P(n, 0) + P(n, 1)x + P(n, 2)x2 + · · · + P(n, r)x r + · · · .

∑∞
r=1 P(n, r)x

r =
∑∞

r=1 P(n − 1, r)x r +
∑∞

r=1 P(n − 1, r − 1)x r

Fn(x)− P(n, 0) = Fn−1(x)− P(n − 1, 0) + x d
dx
[xFn−1(x)]

Fn(x) = (1 + x)Fn−1(x) + x2 d
dx
Fn−1(x).
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Ordinary Generating Function for Permutations (Cont’d)

We obtained

Fn(x) = (1 + x)Fn−1(x) + x2
d

dx
Fn−1(x).

With the boundary condition F0(x) = 1, this recurrence yields:

F1(x) = 1 + x ;

F2(x) = (1 + x)(1 + x) + x2 d
dx
(1 + x) = 1 + 2x + 2x2;

F2(x) = (1 + x)(1 + 2x + 2x2) + x2 d
dx
(1 + 2x + 2x2);

= 1 + 3x + 6x2 + 6x3;

...
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Exponential Generating Function for Permutations

Define

Gn(x) = P(n, 0) +
P(n, 1)

1!
x +

P(n, 2)

2!
x2 + · · ·+ P(n, r)

r !
x r + · · · ,

for every n ≥ 0. Multiplying both sides of the equation
P(n, r) = P(n − 1, r) + rP(n − 1, r − 1) by 1

r !x
r and summing both

sides from r = 1 to r = ∞, we obtain

∞∑

r=1

P(n, r)

r !
x r =

∞∑

r=1

P(n − 1, r)

r !
x r +

∞∑

r=1

rP(n − 1, r − 1)

r !
x r ,

i.e., Gn(x)− P(n, 0) = Gn−1(x)− P(n− 1, 0) + xGn−1(x), which can
be simplified to Gn(x) = (1 + x)Gn−1(x). It follows that

Gn(x) = (1 + x)nG0(x) = (1 + x)n.
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