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The Principle of Inclusion and Exclusion Introduction

Example

In a group of ten girls:

six have blond hair;
five have blue eyes;
three have blond hair and blue eyes.

How many girls are there in the group who have neither blond hair
nor blue eyes?

Clearly the answer is 10− 6− 5 + 3 = 2.

The three blondes with blue eyes are in-
cluded in the count of the six blondes and
are again included in the count of the five
with blue eyes. Thus, they are subtracted
twice in the expression 10− 6− 5.

Therefore, 3 should be added to the expression 10− 6− 5 to give the
correct count of girls who have neither blond hair nor blue eyes.
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The Principle of Inclusion and Exclusion Introduction

Illustration of the Example

The area inside the large circle represents the total
number of girls. The areas inside the two small circles
represent the number of girls who have blond hair and
the number of girls who have blue eyes.

The crosshatched area represents the number of girls that have both
blond hair and blue eyes.

This area is subtracted twice when the areas of the two small circles
are subtracted from the area of the large circle. To find the area
representing the number of girls who neither are blondes nor have
blue eyes, we should, therefore, compensate the oversubtraction by
adding back the crosshatched area.

This reasoning leads to the Principle of Inclusion and Exclusion:

To count the number of a certain class of objects, we exclude those
that should not be included in the count and, in turn, compensate the
count by including those that have been excluded incorrectly.
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Subsection 2

The Principle of Inclusion and Exclusion
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The Principle of Inclusion and Exclusion The Principle of Inclusion and Exclusion

Properties and Counting Objects Possessing Properties

Consider a set of N objects.

Let a1, a2, . . . , ar be a set of properties that these objects may have.

In general, these properties are not mutually exclusive, i.e., an object
can have one or more of these properties.

Let

N(a1) denote the number of objects that have the property a1;
N(a2) denote the number of objects that have the property a2;
...
N(ar ) denote the number of objects that have the property ar .

An object having the property ai is included in the count N(ai )
regardless of the other properties it may have.

If an object has both the properties ai and aj , it will contribute a
count in N(ai ) as well as a count in N(aj ).
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The Principle of Inclusion and Exclusion The Principle of Inclusion and Exclusion

More Counting of Objects

Let
N(a′1) denote the number of objects that do not have the property a1;
N(a′2) denote the number of objects that do not have the property a2;
...
N(a′r ) denote the number of objects that do not have the property ar .

Let
N(aiaj) denote the number of objects that have both the properties ai
and aj ;
N(a′ia

′

j) denote the number of objects that have neither the property ai
nor the property aj ;
N(a′iaj) denote the number of objects that have the property aj , but
not the property ai .

Logically, we see that

N(a′i ) = N − N(ai )

because each of the N objects either has the property ai or does not
have the property ai .
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The Principle of Inclusion and Exclusion The Principle of Inclusion and Exclusion

Additional Relationships

We also have

N(aj ) = N(a′iaj) + N(aiaj) ⇒ N(a′iaj) = N(aj )− N(aiaj),

because for each of the N(aj ) objects that have the property aj , it
either has the property ai or does not have the property ai .

Similarly,

N = N(a′ia
′
j) + N(aia

′
j) + N(a′iaj) + N(aiaj)

⇒ N(a′ia
′
j) = N − N(aia

′
j)− N(a′iaj)− N(aiaj).

This can be rewritten as

N(a′ia
′
j)

= N − [N(aia
′
j) + N(aiaj)]− [N(a′iaj) + N(aiaj)] + N(aiaj)

= N − N(ai )− N(aj ) + N(aiaj).
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The Principle of Inclusion and Exclusion The Principle of Inclusion and Exclusion

The Principle of Inclusion and Exclusion

The following extends the preceding cases:
N(a′1a

′
2 · · · a

′
r )

= N − N(a1)− N(a2)− · · · − N(ar )
+ N(a1a2) + N(a1a3) + · · ·+ N(ar−1ar )
− N(a1a2a3)− N(a1a2a4)− · · · − N(ar−2ar−1ar )
+ · · ·

+ (−1)rN(a1a2 · · · ar )
= N −

∑

i
N(ai ) +

∑

i,j :i 6=j
N(aiaj)−

∑

i,j,k:i 6=j 6=k 6=i
N(aiajak)

+ · · ·+ (−1)rN(a1a2 · · · ar ).

This will be proved by induction on the total number of properties the
objects may have.

Basis: We have already shown N(a′1) = N − N(a1).
Induction Hypothesis: Assume the identity is true for objects having up
to r − 1 properties, i.e.,

N(a′1a
′
2 · · · a

′
r−1) = N − N(a1)− N(a2)− · · · − N(ar−1)

+N(a1a2) + N(a1a3) + · · ·+ N(ar−2ar−1)
− · · ·

+(−1)r−1
N(a1a2 · · · ar−1).
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The Principle of Inclusion and Exclusion The Principle of Inclusion and Exclusion

The Induction Step

For a set of N objects having up to r properties, a1, a2, . . . , ar , the
N(ar ) objects that have the property ar may have any of the r − 1
properties a1, a2, . . . , ar−1. By the induction hypothesis,

N(a′1a
′
2 · · · a

′
r−1ar ) = N(ar )− N(a1ar )− N(a2ar )− · · · − N(ar−1ar )

+ N(a1a2ar ) + N(a1a3ar ) + · · ·+ N(ar−2ar−1ar )
− · · ·

+ (−1)r−1
N(a1a2 · · · ar−1ar ).

Therefore, we get

N(a′1a
′
2 · · · a

′
r−1a

′
r )

= N(a′1a
′
2 · · · a

′
r−1)− N(a′1a

′
2 · · · a

′
r−1ar )

= N − N(a1)− N(a2)− · · · − N(ar−1)− N(ar )
+ N(a1a2) + N(a1a3) + · · ·+ N(ar−2ar−1) + N(a1ar ) + · · ·+ N(ar−1ar )
− N(a1a2a3)− N(a1a2a4)− · · · − N(ar−2ar−1ar )
+ · · ·

+ (−1)rN(a1a2 · · · ar ).
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The Principle of Inclusion and Exclusion The Principle of Inclusion and Exclusion

Colored Balls

Twelve balls are painted in the following way:
Two are unpainted.
Two are painted red, one is painted blue, and one is painted white.
Two are painted red and blue, and one is painted red and white.
Three are painted red, blue, and white.

Let a1, a2 and a3 denote the properties that a ball is painted red,
blue, and white, respectively. Then

N(a1) = 8, N(a2) = 6, N(a3) = 5,
N(a1a2) = 5, N(a1a3) = 4, N(a2a3) = 3,

N(a1a2a3) = 3.

It follows that

N(a′1a
′
2a

′
3) = N − N(a1)− N(a2)− N(a3)

+ N(a1a2) + N(a1a3) + N(a2a3)− (a1a2a3)
= 12− 8− 6− 5 + 5 + 4 + 3− 3 = 2.
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The Principle of Inclusion and Exclusion The Principle of Inclusion and Exclusion

Divisibility

Find the number of integers between 1 and 250 that are not divisible
by any of the integers 2, 3, 5, and 7.

Let a1, a2, a3 and a4 denote the properties that a number is divisible
by 2, divisible by 3, divisible by 5, and divisible by 7, respectively.
Among the integers 1 through 250 there are:

125 (= 250
2 ) integers that are divisible by 2, because every other integer

is a multiple of 2;
83 (= the integral part of 250

3 ) integers that are multiples of 3;
50 (= 250

5 ) integers that are multiples of 5;
...
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The Principle of Inclusion and Exclusion The Principle of Inclusion and Exclusion

Divisibility (Cont’d)

Letting [x ] denote the integral part of the number x ,

N(a1) = [2502 ] = 125, N(a2) = [2503 ] = 83,

N(a3) = [2505 ] = 50, N(a4) = [2507 ] = 35,

N(a1a2) = [2502·3 ] = 41, N(a1a3) = [2502·5 ] = 25,

N(a1a4) = [2502·7 ] = 17, N(a2a3) = [2503·5 ] = 16,

N(a2a4) = [2503·7 ] = 11, N(a3a4) = [2505·7 ] = 7,

N(a1a2a3) = [ 250
2·3·5 ] = 8, N(a1a2a4) = [ 250

2·3·7 ] = 5,

N(a1a3a4) = [ 250
2·5·7 ] = 3, N(a2a3a4) = [ 250

3·5·7 ] = 2,

N(a1a2a3a4) = [ 250
2·3·5·7 ] = 1.

Thus,
N(a1a

′
2a

′
3a

′
4) = 250− (125 + 83 + 50 + 35)

+ (41 + 25 + 17 + 16 + 11 + 7)
− (8 + 5 + 3 + 2) + 1 = 57.
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The Principle of Inclusion and Exclusion The Principle of Inclusion and Exclusion

Example: Quaternary Sequences

Find the number of r -digit quaternary sequences in which each of the
three digits 1, 2 and 3 appears at least once.

Let a1, a2 and a3 be the properties that the digits 1, 2 and 3 do not
appear in a sequence, respectively. Then

N(a1) = N(a2) = N(a3) = 3r ,
N(a1a2) = N(a1a3) = N(a2a3) = 2r ,

N(a1a2a3) = 1.

Therefore,
N(a′1a

′
2a

′
3) = 4r − 3 · 3r + 3 · 2r − 1.
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The Principle of Inclusion and Exclusion The Principle of Inclusion and Exclusion

Example: Distinct Objects into Distinct Cells

The preceding problem is the same as that of distributing r distinct
objects into four distinct cells with three of them never left empty.

We solved this problem using the generating function technique.

The formula can also be derived by the use of the principle of
inclusion and exclusion as follows: Let a1, a2, . . . , an be the properties
that the 1-st, 2-nd, . . ., n-th cell is left empty, respectively. Then,

N(a′1a
′
2 · · · a

′
n) = nr −

(

n
1

)

(n − 1)r +
(

n
2

)

(n − 2)r − · · ·

+ (−1)n−1
(

n
n−1

)

1r + (−1)n
(

n
n

)

0r

=

n
∑

i=0

(−1)i
(

n
i

)

(n − i)r .
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The Principle of Inclusion and Exclusion The Principle of Inclusion and Exclusion

Example

Consider a single ball that is painted with n colors.
Let a1, a2, . . . , an denote the properties that a ball is painted with the
1-st, 2-nd, . . ., n-th color, respectively. We have the following:

N(a1) = N(a2) = · · · = N(an) = 1;
N(a1a2) = N(a1a3) = · · · = N(an−1an) = 1;
...
N(a1a2 · · · an) = 1.

So, by Inclusion-Exclusion,

N(a′1a
′
2 · · · a

′
n) = 1−

(

n

1

)

+

(

n

2

)

− · · ·+ (−1)n
(

n

n

)

.

However, N(a′1a
′
2 · · · a

′
n) = 0, because there is no unpainted ball.

Therefore, we have the identity

1−

(

n

1

)

+

(

n

2

)

− · · · + (−1)n
(

n

n

)

= 0.
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The Principle of Inclusion and Exclusion The General Formula

Subsection 3

The General Formula
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The Principle of Inclusion and Exclusion The General Formula

The si ’s

In a set of N objects with properties a1, a2, . . . , ar , the number of
objects that do not have any of these properties, N(a′1a

′
2 · · · a

′
r ), is

given by the Inclusion-Exclusion Formula.

We derive, next, a more general formula for the number of objects
that have exactly m of the r properties for m = 0, 1, . . . , r .

We introduce the notations

s0 = N;
s1 = N(a1) + N(a2) + · · ·+ N(ar ) =

∑

i N(ai );
s2 = N(a1a2) + N(a1a3) + · · ·+ N(ar−1ar ) =

∑

i ,j :i 6=j N(aiaj);

s3 = N(a1a2a3) + N(a1a2a4) + · · · + N(ar−2ar−1ar )
=

∑

i ,j ,k:i 6=j 6=k 6=i N(aiajak);
...

sr = N(a1a2 · · · ar ).
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The Principle of Inclusion and Exclusion The General Formula

The ei ’s

Let ei be the number of objects that have exactly i properties:

e0 = N(a′1a
′
2 · · · a

′
r );

e1 = N(a1a
′
2a

′
3 · · · a

′
r ) + N(a′1a2a

′
3 · · · a

′
r ) + · · ·

+ N(a′1a
′
2a

′
3 · · · a

′
r−1ar );

e2 = N(a1a2a
′
3 · · · a

′
r ) + N(a1a

′
2a3a

′
4 · · · a

′
r ) + · · ·

+ N(a′1a
′
2a

′
3 · · · a

′
r−2ar−1ar );

...
er = N(a1a2 · · · ar ).

With this notation, Inclusion-Exclusion can be rewritten as

e0 = s0 − s1 + s2 − · · ·+ (−1)r sr .
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The Principle of Inclusion and Exclusion The General Formula

A Formula for the ei ’s

We show that, for all m = 0, 1, 2, . . . , r ,

em = sm −

(

m + 1

1

)

sm+1 +

(

m + 2

2

)

sm+2 − · · ·+ (−1)r−m

(

r

r −m

)

sr .

When m = 0, we get the Inclusion-Exclusion Formula.

An object having less than m properties should not be included in the
count em. It contributes no count to the expression on the right side.

An object having exactly m properties should be included in the count
em. It contributes a count of 1 to the expression on the right side: It
is counted once in sm and is not included in sm+1, sm+2, . . . , sr .

An object having m + j properties, with 0 < j ≤ r −m should not be
included in em either. Note that it contributes

(

m+j
m

)

counts to sm,
(

m+j
m+1

)

counts to sm+1, . . .,

and
(

m+j

m+j

)

counts to sm+j .

George Voutsadakis (LSSU) Combinatorics April 2016 21 / 57



The Principle of Inclusion and Exclusion The General Formula

A Formula for the ei ’s (cont’d)

Thus, an object having exactly m properties contributes to the
expression on the right side a total count of

(m+ j

m

)

−
(m + 1

1

)(m+ j

m + 1

)

+
(m+ 2

2

)(m + j

m+ 2

)

− · · ·+ (−1)j
(m + j

j

)(m + j

m + j

)

.

Notice that
(

m+k
k

)(

m+j
m+k

)

= (m+k)!
m!k!

(m+j)!
(m+k)!(j−k)!

= (m+j)!
m!k!(j−k)!

= (m+j)!
m!j!

j!
k!(j−k)!

=
(

m+j
m

)(

j
k

)

.

Thus, the total count is
(

m+j
m

)

−
(

m+j
m

)(

j
1

)

+
(

m+j
m

)(

j
2

)

− · · ·+ (−1)j
(

m+j
m

)(

j
j

)

=
(

m+j
m

)

[
(

j
0

)

−
(

j
1

)

+
(

j
2

)

− · · ·+ (−1)j
(

j
j

)

] = 0.

Therefore, an object having more than m properties is not included in
the count em.
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The Principle of Inclusion and Exclusion The General Formula

Example

Twelve balls are painted in the following way:

Two are unpainted.
Two are painted red, one is painted blue, and one is painted white.
Two are painted red and blue, and one is painted red and white.
Three are painted red, blue, and white.

We have

s1 = 19, s2 = 12, s3 = 3.

Therefore,

e1 = 19−
(2
1

)

· 12 +
(3
2

)

· 3 = 19− 24 + 9 = 4;

e2 = 12−
(3
1

)

· 3 = 12− 9 = 3;
e3 = 3.
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The Principle of Inclusion and Exclusion The General Formula

The Sum of the ei ’s equals s0

Let E (x) be the ordinary generating function of the sequence
(e0, e1, e2, . . . , em, . . . , er ).
Then
E(x) = e0 + e1x + e2x

2 + · · ·+ emx
m + · · ·+ erx

r

= [s0 − s1 + s2 − · · ·+ (−1)r sr ]

+ [s1 −
(

2
1

)

s2 +
(

3
2

)

s3 − · · ·+ (−1)r−1
(

r

r−1

)

sr ]x

+ [s2 −
(

3
1

)

s3 +
(

4
2

)

s4 − · · ·+ (−1)r−2
(

r

r−2

)

sr ]x
2

+ · · ·

+ [sm −

(

m+1
1

)

sm+1 +
(

m+2
2

)

sm+2 − · · ·+ (−1)r−m
(

r

r−m

)

sr ]x
m

+ · · ·

+ srx
r

= s0 + s1[x − 1] + s2[x
2
−

(

2
1

)

x + 1] + s3[x
3
−

(

3
1

)

x
2 +

(

3
2

)

x − 1]
+ · · ·

+ sm[x
m
−

(

m

1

)

x
m−1 +

(

m

2

)

x
m−2 + · · ·+ (−1)m−1

(

m

m−1

)

x + (−1)m]

+ · · ·

+ sr [x
r
−

(

r

1

)

x
r−1 +

(

r

2

)

x
r−2 + · · ·+ (−1)r ]

=
∑r

j=0 sj (x − 1)j .

Setting x = 1, we obtain E (1) = e0 + e1 + e2 + · · ·+ er = s0.
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The Principle of Inclusion and Exclusion The General Formula

Counting Objects with Odd/Even Number of Properties

We observe that
1
2 [E (1) + E (−1)] = e0 + e2 + e4 + · · · = 1

2 [s0 +
∑r

j=0(−2)j sj ] gives the
number of objects having an even number of properties.
1
2 [E (1)− E (−1)] = e1 + e3 + e5 + · · · = 1

2 [s0 −
∑r

j=0(−2)j sj ] gives the
number of objects having an odd number of properties.

Example: Find the number of n-digit ternary sequences that have an
even number of 0’s.

Let ai be the property that the i -th digit of a sequence is 0,
i = 1, 2, . . . , n. Let ej and sj be defined as above with j = 0, 1, . . . , n.
Then since sj =

(

n
j

)

3n−j with j = 0, 1, . . . , n, it follows that

e0 + e2 + e4 + · · · = 1
2 [3

n +
∑n

j=0(−2)j
(

n
j

)

3n−j ]

= 1
2 [3

n + (3− 2)n]

= 1
2 (3

n − 1).
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The Principle of Inclusion and Exclusion Derangements

Subsection 4

Derangements

George Voutsadakis (LSSU) Combinatorics April 2016 26 / 57



The Principle of Inclusion and Exclusion Derangements

Derangements

Consider the permutations of the integers 1, 2, . . . , n.

A permutation of these integers is said to be a derangement of the
integers if no integer appears in its natural position, i.e.:

1 does not appear in the first position;
2 does not appear in the second position,
...
n does not appear in the n-th position.

In general, when each of a set of objects has a position that it is
forbidden to occupy and no two objects have the same forbidden
position, a derangement of these objects is a permutation of them
such that no object is in its forbidden position.
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The Principle of Inclusion and Exclusion Derangements

Counting Derangements

Let ai be the property of a permutation in which the i -th object is
placed in its forbidden position, with i = 1, 2, . . . , n. Then

N(ai ) = (n − 1)!, i = 1, 2, . . . , n;
N(aiaj) = (n − 2)!, i , j = 1, 2, . . . , n; i 6= j ;

N(aiajak) = (n − 3)!, i , j , k = 1, 2, . . . , n, i 6= j 6= k 6= i ;
...

N(a1a2 · · · an) = 1.

Moreover, s1 =
(

n
1

)

(n − 1)!, s2 =
(

n
2

)

(n − 2)!, . . ., sn =
(

n
n

)

(n − n)!.

Therefore, the number dn of derangements of n objects is

dn = N(a′1a
′
2 · · · a

′
n)

= n!−
(

n
1

)

(n − 1)! +
(

n
2

)

(n − 2)!− · · ·+ (−1)n
(

n
n

)

(n − n)!
= n![1− 1

1! +
1
2! − · · ·+ (−1)n 1

n! ].

The expression in the square brackets is the truncated series of the
Taylor expansion of e−1. Its value can be approximated very
accurately by the value of e−1, even for small values of n.
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The Principle of Inclusion and Exclusion Derangements

The Hat Problem

Suppose 10 gentlemen check their hats at the coatroom, and later on
the hats are returned to them randomly. In how many ways can the
hats be returned to them such that no gentleman will get his own hat
back?

This is exactly the problem of permuting 10 objects (the hats) so that
none of them will be in its forbidden position (the owner).

Therefore, the number of ways of returning the hats is
d10 = 10!(1 − 1

1! +
1
2! −

1
3! + · · ·+ 1

10! ) = 1, 334, 961 ≈ 10! · e−1.

It follows that the probability that none of the gentlemen will have his
own hat back is d10

10! ≈ e−1.

This probability is essentially the same for 10 gentlemen as well as for
10,000 gentlemen.
Also, when there are 10 gentlemen, the probability is slightly higher
than that when there are 9 or 11 gentlemen because of the alternating
signs in the expression for dn.
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The Principle of Inclusion and Exclusion Derangements

A Recurrence Relation for Derangements

The number of derangements of integers can also be obtained by the
solution of a recurrence relation.

Consider the derangements of the integers 1, 2, . . . , n in which the
first position is occupied by the integer k 6= 1.

If the integer 1 occupies the k-th position, then there are dn−2 ways to
derange the n − 2 integers 2, 3, . . . , k − 1, k + 1, . . . , n.
If the integer 1 does not occupy the k-th position, then there are dn−1

ways to derange the integers 1, 2, . . . , k − 1, k + 1, . . . , n, because in
this case we can consider the k-th position as the forbidden position for
the integer 1.

Since k can assume the n− 1 values 2, 3, . . . , n, we have the
recurrence relation

dn = (n − 1)(dn−1 + dn−2).
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The Principle of Inclusion and Exclusion Derangements

An Ordinary Generating Function for Derangements

We discovered dn = (n − 1)(dn−1 + dn−2).

The boundary conditions are d2 = 1 and d1 = 0.

The equation is valid for n ≥ 2 if we set d0 = 1.

It can be rewritten as

dn − ndn−1 = − [dn−1 − (n − 1)dn−2] = − [−dn−2 + (n − 2)dn−3]
= · · · = (−1)n−2[d2 − 2d1] = (−1)n−2 = (−1)n.

i.e., dn − ndn−1 = (−1)n.

To solve, let D(x) = d0 +
d1
1! x +

d2
2! x

2 + d3
3! x

3 + · · ·+ dr
r ! x

r + · · · be the
exponential generating function of the sequence (d0, d1, . . . , dr , . . .).
Multiplying both sides by xn

n! and summing from n = 2 to n = ∞,
∑∞

n=2
dn
n! x

n −
∑∞

n=2
ndn−1

n! =
∑∞

n=2
(−1)nxn

n!
D(x)− d1x − d0 − x [D(x)− d0] = e−x − (1− x)

D(x) = e−x

1−x
.

Since 1
1−x

is summing, dn = n!(1− 1
1! +

1
2! − · · ·+ (−1)n 1

n! ).
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The Principle of Inclusion and Exclusion Derangements

Distributing Books to Children

Let n books be distributed to n children. The books are returned and
distributed to the children again later on. In how many ways can the
books be distributed so that no child will get the same book twice?

For the first time, the books can be distributed in n! ways.

For the second time, the books can be distributed in dn ways.

Therefore, the total number of ways is given by

(n!)2
[

1−
1

1!
+

1

2!
− · · ·+ (−1)n

1

n!

]

≈ (n!)2e−1.
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The Principle of Inclusion and Exclusion Derangements

Permuting Integers

In how many ways can the integers 1, 2, 3, 4, 5, 6, 7, 8 and 9 be
permuted such that no odd integer will be in its natural position?

Let ai be the property that integer i appears in its natural position.

Then, we want to compute N(a′1a
′
3a

′
5a

′
9).

Applying the principle of inclusion and exclusion, we have

N(a′1a
′
3a

′
5a

′
9) = N − N(a1)− · · · − N(a9)

+ N(a1a3) + · · ·+ N(a7a9)
− N(a1a3a5)− · · · − N(a5a7a9)
+ N(a1a3a5a7) + · · ·+ N(a3a5a7a9)
− N(a1a3a5a7a9)

= 9!−
(

5
1

)

8! +
(

5
2

)

7!−
(

5
3

)

6! +
(

5
4

)

5!−
(

5
5

)

4!
= 205, 056.
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The Principle of Inclusion and Exclusion Derangements

More on Permuting Integers

For a set of n objects, the number of permutations in which a subset
of r objects are deranged is

n!−

(

r

1

)

(n − 1)! +

(

r

2

)

(n − 2)!− · · ·+ (−1)r
(

r

r

)

(n − r)!.

The number of permutations in which all even integers are in their
natural positions and none of the odd integers are in their natural
positions is equal to d5 = 5!(1 − 1

1! +
1
2! −

1
3! +

1
4! −

1
5!) = 44.

The number of permutations in which exactly four of the nine
integers are in their natural positions (exactly five integers are
deranged) is

(9
5

)

· d5 = 5, 544.

The number of permutations in which five or more integers are
deranged is equal to

(

9

5

)

· d5 +

(

9

6

)

· d6 +

(

9

7

)

· d7 +

(

9

8

)

· d8 +

(

9

9

)

· d9.
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Subsection 5

Permutations and Restrictions on Relative Positions
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The Principle of Inclusion and Exclusion Permutations and Restrictions on Relative Positions

Generalizing the Study of Forbidden Positions

In our discussion about the derangement of objects:

The forbidden positions are absolute positions in the permutations.
Each object has only one forbidden position.
No two objects have the same forbidden position.

We now study the case in which the restrictions are on the relative
positions of the objects.

Later, we look at the case in which:

An object may have any number of forbidden positions.
Several objects may have the same forbidden position.
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The Principle of Inclusion and Exclusion Permutations and Restrictions on Relative Positions

Forbidden Positions

We find the number of permutations of 1, 2, . . . , n in which no two
adjacent integers are consecutive integers, i.e., the n− 1 patterns
12, 23, 34, . . . , (n − 1)n should not appear in the permutations.
Let ai be the property that the pattern i(i + 1) appears in a
permutation, with i = 1, 2, . . . , n − 1.

Note that N(a1) = N(a2) = · · · = N(an−1) = (n − 1)!. So
s1 =

(

n−1
1

)

(n − 1)!.
Observe that N(a1a2) = (n − 2)! because N(a1a2) is equal to the
number of permutations of the n − 2 “objects” 123, 4, 5, . . . , n.
Similarly, for 1 ≤ i ≤ n − 1, N(aiai+1) = (n − 2)!.
Also, N(a1a3) = (n − 2)! because N(a1a3) is equal to the number of
permutations of the n − 2 “objects” 12, 34, 5, 6, . . . , n. Similarly, for
1 ≤ i < n− 2 and i +1 < j ≤ n− 1, N(aiaj) = (n− 2)!. So, N(a1a2) =
N(a1a3) = · · · = N(an−2an−1) = (n − 2)! and s2 =

(

n−1
2

)

(n − 2)!.

In general, sj =
(

n−1
j

)

(n − j)!, j = 0, 1, . . . , n− 1.

Thus, we get N(a′1a
′
2 · · · a

′
n−1) =

n!−
(

n−1
1

)

(n − 1)! +
(

n−1
2

)

(n − 2)!− · · ·+ (−1)n−1
(

n−1
n−1

)

1!.
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The Principle of Inclusion and Exclusion Permutations and Restrictions on Relative Positions

Example

Find the number of permutations of the letters a, b, c , d , e and f in
which neither the pattern ace nor the pattern fd appears.

Let

a1 be the property that the pattern ace appears in a permutation.
a2 be the property that the pattern fd appears in a permutation.

According to the principle of inclusion and exclusion,

N(a′1a
′
2) = N − N(a1)− N(a2) + N(a1a2)

= 6!− 4!− 5! + 3!
= 582.
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The Principle of Inclusion and Exclusion Permutations and Restrictions on Relative Positions

Example

In how many ways can the letters α,α, α, α, β, β, β, γ and γ be
arranged so that all the letters of the same kind are not in a single
block?

For the permutations of these letters, let
a1 be the property that the four α’s are in one block;
a2 be the property that the three β’s are in one block
a3 be the property that the two γ’s are in one block.

Then,

N(a′1a
′
2a

′
3)

= N − N(a1)− N(a2)− N(a3)
+ N(a1a2) + N(a1a3) + N(a2a3)− N(a1a2a3)

= 9!
4!3!2! − ( 6!

3!2! +
7!
4!2! +

8!
4!3! ) + (4!2! +

5!
3! +

6!
4!)− 3!

= 871.
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Subsection 6

The Rook Polynomials
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The Principle of Inclusion and Exclusion The Rook Polynomials

Nontaking Rooks

A rook is a chessboard piece which “captures” on both rows and
columns.

The problem of nontaking rooks is to enumerate the number of
ways of placing k rooks on a chessboard such that no rook will be
captured by any other rook.

Example: Consider a regular 8× 8 chessboard.

There are (trivially) 64 ways to place one nontaking rook.

There are
(

8
2

)

P(8, 2) = 1, 568 ways to place two nontaking rooks. In
fact, there are:

(

8
2

)

ways to choose two rows;
P(8, 2) ways to choose two cells from the two rows for the rooks.

Obviously, we can put at the most eight nontaking rooks on the board
and there are 8! ways to do so.
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The Principle of Inclusion and Exclusion The Rook Polynomials

Generalization to Arbitrary Boards

We generalize the problem in that we are interested in placing
nontaking rooks not only on a regular 8× 8 chessboard, but also on
chessboards of arbitrary shapes and sizes.

Example: The figure shows a so-called “staircase” chessboard.

For such a chessboard, there are:

four ways to place one nontaking rook;

three ways to place two nontaking rooks;

no way to place three or more nontaking rooks.
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The Principle of Inclusion and Exclusion The Rook Polynomials

The Rook Polynomial of a Chessboard

For a given chessboard, let:
rk denote the number of ways of placing k nontaking rooks on the
board;
R(x) =

∑

∞

k=0 rkx
k be the ordinary generating function of the sequence

(r0, r1, r2, . . . , rk , . . .). R(x) is the rook polynomial of the given
chessboard.

R(x) is a finite polynomial whose degree is at most n, where n is the
number of cells of the chessboard, because it is never possible to
place more than n rooks on a chessboard of n cells.
Example: For the staircase chessboard, the rook polynomial is
R(x) = 1 + 4x + 3x2.
When there are several chessboards C1,C2,C3, . . . under
consideration, let:

rk(C1), rk (C2), rk (C3), . . . denote the numbers of ways of placing k

nontaking rooks on the boards C1,C2,C3, . . .;
R(x ,C1),R(x ,C2),R(x ,C3), . . . denote the rook polynomials of the
boards C1,C2,C3, . . ., respectively.
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The Principle of Inclusion and Exclusion The Rook Polynomials

The Expansion Formula

Suppose that on a given chessboard C , a cell is selected and marked
as a special cell.

Let

Ci denote the chessboard obtained from C by deleting the row and the
column that contain the special cell;
Ce denote the chessboard obtained from C by deleting the special cell.

To find the value of rk(C ), we observe that the ways of placing k
nontaking rooks on C can be divided into two classes:

Those that have a rook in the special cell; The number of ways is equal
to rk−1(Ci ).
Those that do not have a rook in the special cell. The number of ways
in the second class is equal to rk(Ce).

Thus, rk(C ) = rk−1(Ci ) + rk(Ce).

Correspondingly, R(x ,C ) = xR(x ,Ci) + R(x ,Ce). This is called the
expansion formula.
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The Principle of Inclusion and Exclusion The Rook Polynomials

Applying the Expansion Formula

By a pair of parentheses around a chessboard we denote the rook
polynomial of the board:

By expansion with respect to the cell in the upper left corner, we get

( ) = x( ) + ( ).

By expansion with respect to the cell in the upper right corner, we get

( ) = x( ) + ( ).

Note that

( ) = 1 + x , ( ) = 1 + 2x ,

( ) = 1, ( ) = 1 + 2x + x2.

Therefore ( ) = x(1 + x) + 1 + 2x = 1 + 3x + x2.
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The Principle of Inclusion and Exclusion The Rook Polynomials

Another Example

( ) = x( ) + ( )

= x2( ) + x( ) + x( ) + ( )

= x2( ) + x( ) + x( ) + x( ) + ( )

= (x + x2)( ) + (1 + 2x)( )

= (x + x2)(1 + 2x) + (1 + 2x)(1 + 3x + x2)

= (x + 3x2 + 2x3) + (1 + 5x + 7x2 + 2x3)

= 1 + 6x + 10x2 + 4x3.
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The Principle of Inclusion and Exclusion The Rook Polynomials

Disjunct Sub-boards and Rook Polynomials

Two sub-boards C1 and C2 of a chessboard C are called disjunct if
no cell of one sub-board is in the same row or in the same column of
any cell of the other.

Claim: If a chessboard C consists of two disjunct sub-boards C1 and
C2, then

R(x ,C ) = R(x ,C1)R(x ,C2).

Observe that the way rooks are placed on C1 is completely
independent of the way rooks are placed on C2.

Therefore,

rk(C ) =
k
∑

j=0

rj(C1)rk−j (C2).

The equation now follows by the definition of the product of two
ordinary generating functions.
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Subsection 7

Permutations with Forbidden Positions
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The Principle of Inclusion and Exclusion Permutations with Forbidden Positions

Distinct Objects Into Distinct Positions

Consider the distribution of four distinct objects, labeled a, b, c and
d , into four distinct positions, labeled 1, 2, 3 and 4, with no two
objects occupying the same position.

A distribution can be represented in the form
of a matrix.

The rows correspond to the objects.

The columns correspond to the positions.

A circle indicates that the object in the row
occupies the position in column.

Example: In the figure a is placed in the second position; b is placed
in the fourth position; c is placed in the first position; d is placed in
the third position.

Enumerating the number of ways of distributing distinct objects into
distinct positions is the same as enumerating the number of ways of
placing nontaking rooks on a chessboard.
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The Principle of Inclusion and Exclusion Permutations with Forbidden Positions

From Non-Taking Rooks to Forbidden Positions

Placing non-taking rooks on a chessboard can be extended to the
case where these are forbidden positions for the objects.

Example: For the derangement of four objects, the forbidden
positions are shown as dark cells:

Thus, the problem of enumerating the number of
derangements of four objects is equivalent to the
problem of finding the value of r4 for the white
chessboard.

Example: Consider the problem of painting four houses a, b, c and d
with four different colors, green, blue, gray, and yellow, subject to:

House a cannot be painted with yellow.
House b cannot be painted with gray or yellow.
House c cannot be painted with blue or gray.
House d cannot be painted blue.

This is a problem of permutations with forbidden positions.
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The Principle of Inclusion and Exclusion Permutations with Forbidden Positions

The Chessboard for the House Painting Problem

The problem of painting four houses a, b, c and d with four different
colors, green, blue, gray, and yellow, subject to:

House a cannot be painted with yellow.
House b cannot be painted with gray or yellow.
House c cannot be painted with blue or gray.
House d cannot be painted blue.

The forbidden positions are shown as dark cells in the following
chessboard

Again, the number of ways of painting the houses is equal to the
value of r4 for the white chessboard.
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The Principle of Inclusion and Exclusion Permutations with Forbidden Positions

Inclusion-Exclusion Instead of Chessboards

Consider the permutation of n objects with restrictions on their
positions.

Let ai denote the property of a permutation in which the i-th object is
in a forbidden position, i = 1, 2, . . . , n.
Let rk is the number of ways of placing k non-taking rooks on the dark
chessboard.

To compute sj , note that:
j of the n objects can be placed in the forbidden positions in rj ways;
the n − j remaining objects can be placed in the n − j remaining
positions arbitrarily in (n − j)! ways,

So sj = rj · (n − j)!.

Thus, by inclusion-exclusion, the number of permutations in which no
object is in a forbidden position is

N(a′1a
′
2 · · · a

′
n) = n!− r1 · (n − 1)! + r2 · (n − 2)! + · · ·

+ (−1)n−1 · rn−1 · 1! + (−1)n · rn · 0!
=

∑n
j=0(−1)j · rj · (n − j)!
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The Principle of Inclusion and Exclusion Permutations with Forbidden Positions

Painting the Housed Revisited

Consider again the problem of painting the four
houses with the four colors mentioned above.
The rook polynomial for the board of forbidden
positions is

R(x) = 1 + 6x + 10x2 + 4x3.

Thus, the preceding equation gives

e0 = 4!− r1 · 3! + r2 · 2!− r3 · 1! + r4 · 0!

= 4!− 6 · 3! + 10 · 2!− 4 · 1!

= 4.
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The Principle of Inclusion and Exclusion Permutations with Forbidden Positions

Hit Polynomials

We compute the number of permutations in which exactly m of the
objects are in forbidden positions, i.e.,

em = rm · (n −m)!−
(

m+1
1

)

· rm+1 · (n −m − 1)! + · · ·

+ (−1)n−m
(

n
n−m

)

· rn · 0!.

Recall the equation connecting E (x) and the sj ’s
E (x) =

∑n
j=0 sj(x − 1)j . Since sj = rj · (n − j)!, we get

E (x) =

n
∑

j=0

rj · (n − j)! · (x − 1)j .

Because an object in a forbidden position is said to be a “hit”, E (x)
is also called the hit polynomial.
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The Principle of Inclusion and Exclusion Permutations with Forbidden Positions

House Paintings

For the problem of painting four houses with four colors, since the
rook polynomial is R(x) = 1 + 6x + 10x2 + 4x3, the hit polynomial is

E (x) =
∑4

j=0 rj · (4− j)! · (x − 1)j

= r04!(x − 1)0 + r13!(x − 1)1 + r22!(x − 1)2

+ r31!(x − 1)3 + r44!(x − 1)4

= 4! + 6 · 3! · (x − 1) + 10 · 2! · (x − 1)2

+ 4 · 1! · (x − 1)3 + 0 · 0! · (x − 1)4

= 4 + 8x + 5x2 + 4x3.
Thus, there are:

four ways to paint the houses so that none of the houses will be
painted with forbidden colors;
eight ways to paint the houses so that exactly one of the houses will be
painted with forbidden colors;
...
no way to paint all four houses with forbidden colors.
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The Principle of Inclusion and Exclusion Permutations with Forbidden Positions

Example

Find the number of permutations of α,α, β, β, γ and γ so that:

no α appears in the first and second positions;
no β appears in the third position;
no γ appears in the fifth and sixth positions.

Imagine that the α’s, β’s and γ’s are marked so that they become
distinguishable.

Then, the forbidden positions are:

The rook polynomial for a 2× 2 square
chessboard is 1 + 4x + 2x2;

The rook polynomial for a 2× 1 rectangular
chessboard is 1 + 2x .

The rook polynomial for the board of the forbidden positions is
(1 + 4x + 2x2)2(1 + 2x) = 1 + 10x + 36x2 + 56x3 + 36x4 + 8x5.

George Voutsadakis (LSSU) Combinatorics April 2016 56 / 57



The Principle of Inclusion and Exclusion Permutations with Forbidden Positions

Example (Cont’d)

We found

R(x) = 1 + 10x + 36x2 + 56x3 + 36x4 + 8x5.

Thus, we get

e0 =
∑6

j=0 rj(6− j)!

= 6!− r15! + r24!− r33! + r4!− r51! + r60!
= 6!− 10 · 5! + 36 · 4!− 56 · 3! + 36 · 2!− 8 · 1!
= 112.

Since the objects are not all distinct, we divide by 2! · 2! · 2!. Thus,

112

2! · 2! · 2!
= 14

is the number of ways of distributing the objects with none of them in
a forbidden position.
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