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Pólya’s Theory of Counting Introduction

Subsection 1
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Pólya’s Theory of Counting Introduction

Chessboards With Black and White Cells

Consider the problem of counting the number of 2× 2 chessboards
that contain black and white cells.

Clearly, there are 24 such chessboards
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Pólya’s Theory of Counting Introduction

Taking Into Account Rotations

If the four sides of a chessboard are not
marked and one side cannot be distinguished
from another, then there are chessboards that
become indistinguishable from other chess-
boards after being rotated by 90◦, 180◦ or
270◦.

We can check that the following groups become indistinguishable:

chessboards C2,C3,C4 and C5;
chessboards C6,C8,C9 and C11;
chessboards C7 and C10;
chessboards C12,C13,C14 and C15.

If this “indistinguishability” is termed equivalence, then, among the
16 chessboards, there are only six “nonequivalent” ones.
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Pólya’s Theory of Counting Introduction

The Contrast Chessboard Patters

Suppose that we are not interested in the
black-and-white patterns of the chessboards
but are only interested in the contrast pat-
terns.

Chessboards C1 and C16 have the same
contrast pattern.

Chessboards C2 and C15 have the same
contrast pattern. etc.

With rotations of the chessboards also allowed, we can check that
there are only four nonequivalent contrast patterns.

We now study the theory of enumerating nonequivalent objects as
first developed by Pólya in 1938.
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Pólya’s Theory of Counting Sets, Relations and Groups

Subsection 2

Sets, Relations and Groups
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Pólya’s Theory of Counting Sets, Relations and Groups

Sets

A set is a collection of distinct elements (objects).

We use an uppercase Roman letter to denote a set.

Example: S = {a, b, c , x , z} denotes a set S that contains the
elements a, b, c , x and z .

There is no ordering among the elements in a set, i.e., {a, b, c} and
{c , b, a} denote the same set.
Also, since the elements in a set are all distinct, {a, a, b, c} is a
redundant representation of the set {a, b, c}.

The empty or null set, denoted by ∅, is a set containing no elements.
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Pólya’s Theory of Counting Sets, Relations and Groups

Subsets

A set T is said to be a subset of another set S , written T ⊆ S , if
every element in T is also an element in S .

Example: {a, b, x} is a subset of {a, b, c , x , z}, but {a, b, y} is not.

Every set is, trivially, a subset of itself.

A set T is said to be a proper subset of S , written T ⊂ S , if T is a
subset of S , but there is at least one element in S that is not in T .

We write a ∈ S to mean that a is an element in the set S .

Also, |S | denotes the number of elements in the set S .

A set is said to be a k-set if it contains k elements.
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Pólya’s Theory of Counting Sets, Relations and Groups

Union, Intersection, Difference and Ring Sum

Let A and B be two sets.

The union of A and B, denoted by A ∪ B, is the set that contains the
elements in A and the elements in B.
Example: {a, b, c , d} ∪ {a, d , e, j} = {a, b, c , d , e, j}.
The intersection of A and B, denoted by A ∩ B, is the set that
contains the elements that are in both A and B.
Example: {a, b, c , d} ∩ {a, d , e, j} = {a, d}.
The difference of A and B, denoted by A− B, is a set that contains
the elements that are in A but not in B.
Example: {a, b, c , d} − {a, d , e, j} = {b, c}.
The ring sum of A and B, denoted by A⊕ B, is the set that contains
the elements in A and the elements in B which are not in the
intersection of A and B.
Example: {a, b, c , d} ⊕ {a, d , e, j} = {b, c , e, j}.
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Pólya’s Theory of Counting Sets, Relations and Groups

Partitions and Cartesian Products

A partition on a set is a subdivision of all the elements in the set into
disjoint subsets. I.e., a partition on a set is a collection of subsets of
the set such that every element in the set is in exactly one of the
subsets.

Example: {{a, b, x}, {d}, {c , z}} is a partition on the set
{a, b, c , d , x , z}.

An ordered pair is an ordered arrangement of two (not necessarily
distinct) elements.

We use the notation (a, b) for an ordered pair that contains the
elements a and b, arranged in that order.

Thus, (a, b) and (b, a) are two different ordered pairs.

The cartesian product of two sets S and T , denoted by S × T , is
the set of all ordered pairs (x , y) in which x is in S and y is in T .

Example:
{a, b, c} × {1, 2} = {(a, 1), (a, 2), (b, 1), (b, 2), (c , 1), (c , 2)}.
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Pólya’s Theory of Counting Sets, Relations and Groups

Binary Relations

A binary relation between two sets S and T is a subset of the
ordered pairs in the cartesian product S × T .

Example: {(a, 1), (a, 2), (c , 2)} is a binary relation between the sets
{a, b, c} and {1, 2}.

For a pair like (a, 2) in the relation, we say that a is related to 2.

A binary relation between two sets can be represented in the form of
a matrix: The figure shows a representation of the relation

{(a, 1), (a, 3), (b, 4), (d , 2), (d , 4)} between sets
{a, b, c , d} and {1, 2, 3, 4, 5}. A checkmark in
a cell indicates that the element identifying the
row and the element identifying the column that
contains the cell are related.

A binary relation on a set S is a binary relation between S and itself.

Example: {(a, a), (a, c), (b, a), (b, c), (c , b)} is a binary relation on
the set {a, b, c}.
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Pólya’s Theory of Counting Sets, Relations and Groups

Equivalence Relations

A binary relation on a set is called an equivalence relation if the
following conditions are satisfied:
1. Every element in the set is related to itself (reflexive law).
2. For any two elements a and b in the set, if a is related to b, then b is

also related to a (symmetric law).
3. For any three elements a, b and c in the set, if a is related to b and b

is related to c , then a is also related to c (transitive law).

Example: The binary relation on the left is an equivalence relation,
but the binary relation on the right is not.

George Voutsadakis (LSSU) Combinatorics April 2016 13 / 97



Pólya’s Theory of Counting Sets, Relations and Groups

Equivalence Classes

Given an equivalence relation on a set S , we can divide the elements
of S into classes, such that two elements are in the same class if and
only if they are related.

These classes of elements are called the equivalence classes into
which the set S is divided by the equivalence relation.

Notice the following:
Every element is in one of the equivalence classes because it can at
least be in a class by itself, according to the reflexive law.
The symmetric law ensures that there is no ambiguity regarding
membership in the equivalence classes. (If the relation is not
symmetric, we might encounter the difficult situation where a is related
to b but b is not related to a.)
Finally, because of the transitive law, no element can be in more than
one equivalence class.

Therefore, an equivalence relation on a set induces a partition on the
set in which the disjoint subsets are the equivalence classes.
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Pólya’s Theory of Counting Sets, Relations and Groups

Equivalent Elements

Example: The partition induced by the depicted equivalence relation
on the set {a, b, c , d , e} is {{a, b}, {c , d , e}}.

Two elements are said to be equivalent if they are in the same
equivalence class.
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Pólya’s Theory of Counting Sets, Relations and Groups

Functions

A (single-valued) function from a set S to a set T is a binary
relation between the sets S and T , such that every element in S is
related to exactly one element in T .

Example: {(a, 2), (b, 1), (c , 2)} is a function from the set {a, b, c} to
the set {1, 2}.

The set S is called the domain of the function, and the set T is
called the range of the function.

Let f denote a function, and let (a, 2) be an ordered pair in the
function.

We write f (a) = 2 to mean that a is related to 2 by the function f .

We say that 2 is the value, or image, of a under the function f , and
also that f maps a into 2.
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Pólya’s Theory of Counting Sets, Relations and Groups

One-to-One and Onto Functions

An arbitrary function on the left:

A function is a one-to-one function if every element in the domain
has a unique image.

A function is an onto function if every element in the range is the
image of at least one element in the domain.
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Pólya’s Theory of Counting Sets, Relations and Groups

Binary Operations and Closure

A binary operation on a set S is a function from the set S × S to a
set T .

Example: Both tables below describe the same binary operation ∗ on
the set S = {a, b} with T = {1, 2, 3}.

Instead of the functional notation, we shall also let ∗ denote a binary
operation and let a ∗ b denote the value of the ordered pair (a, b)
under the binary operation.

Example: In the operation depicted above, a ∗ a = 1 and a ∗ b = 2.

A binary operation on a set S is said to be closed if it is a function
from the set S × S to the set S .

George Voutsadakis (LSSU) Combinatorics April 2016 18 / 97



Pólya’s Theory of Counting Sets, Relations and Groups

Groups

A set S together with a binary operation ∗ on the set S is said to
form a group if the following conditions are satisfied:

1. The binary operation ∗ is closed.
2. The binary operation ∗ is associative, i.e., for all a, b, c in S ,

(a ∗ b) ∗ c = a ∗ (b ∗ c).
3. There is an element e in S , such that a ∗ e = a, for every a in S . This

element is called an identity element of the group.
4. For any element a in S , there is another element in S , denoted by a−1

and called an inverse of a, which is such that a ∗ a−1 = e.

Example: The binary operation for a group
consisting of the five elements 0, 1, 2, 3 and
4 is shown on the right.
Notice that 0 is an identity element, an in-
verse of the element 0 is 0 itself, an inverse
of the element 1 is 4, etc.
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Pólya’s Theory of Counting Sets, Relations and Groups

Properties of Group I

1. If b is an inverse of a, then a is an inverse of b.

If b is an inverse of a, a ∗ b = e. Let b−1 denote an inverse of b, i.e.,
b ∗ b−1 = e. Then, we have

b ∗ a = b ∗ (a ∗ e) = b ∗ (a ∗ (b ∗ b−1))
= b ∗ ((a ∗ b) ∗ b−1) = (b ∗ (a ∗ b)) ∗ b−1

= (b ∗ e) ∗ b−1 = b ∗ b−1 = e.

Therefore, a is an inverse of b.

2. For every a in S , e ∗ a = a.

Using Property 1, we get

e ∗ a = (a ∗ a−1) ∗ a = a ∗ (a−1 ∗ a)
= a ∗ e = a.
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Pólya’s Theory of Counting Sets, Relations and Groups

Properties of Group II

3. The identity element is unique.

Suppose there are two elements e1 and e2, such that a ∗ e1 = a and
a ∗ e2 = a. Then

a ∗ e1 = a ∗ e2 ⇒ a−1 ∗ (a ∗ e1) = a−1 ∗ (a ∗ e2)
⇒ (a−1 ∗ a) ∗ e1 = (a−1 ∗ a) ∗ e2
⇒ e ∗ e1 = e ∗ e2
⇒ e1 = e2.

4. The inverse of any element is unique.

Suppose there are two elements b and c , such that a ∗ b = e and
a ∗ c = e. Then, we have

a ∗ b = a ∗ c ⇒ a−1 ∗ (a ∗ b) = a−1 ∗ (a ∗ c)
⇒ (a−1 ∗ a) ∗ b = (a−1 ∗ a) ∗ c
⇒ e ∗ b = e ∗ c
= b = c .
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Pólya’s Theory of Counting Equivalence Classes Under a Permutation Group

Subsection 3

Equivalence Classes Under a Permutation Group
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Pólya’s Theory of Counting Equivalence Classes Under a Permutation Group

Permutations and Composition

A one-to-one function from a set S to itself is called a permutation

of the set S.
We use the notation

(

abcd
bdca

)

for the permutation of the set {a, b, c , d}
that maps a into b, b into d , c into c and d into a:

In the upper row the elements in the set are written down in an
arbitrary order;
In the lower row the image of an element will be written below the
element itself.

The notion of a permutation of a set is the same as an arrangement
of a set of objects.

Let π1 and π2 be two permutations of a set S . The composition of
π1 and π2, denoted by π1π2, is the successive permutations of the set
S , first according to π2 and, then, according to π1.

Example: Let π1 =
(

abcd
adbc

)

, π2 =
(

abcd
bacd

)

be two permutations of the

set {a, b, c , d}. Then π1π2 =
(

abcd
dabc

)

. π1π2 maps a into d since π2
maps a into b and π1 maps b into d , and so on.
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Pólya’s Theory of Counting Equivalence Classes Under a Permutation Group

Closure of the Set of Permutations Under Composition

Claim: The composition of two permutations is also a permutation.

Let π1 and π2 be two permutations of the set

S = {a, b, c , . . . , x , y , z}.

To show that π1π2 is also a permutation of the set S , we have only to
show that no two elements in S are mapped into the same element by
π1π2.

Suppose that π2 maps the element a into b and π1 maps the element
b into c . π1π2 will then map the element a into c .

Let x be any element distinct from a. Since π2 is a permutation of
the set S , π2 maps x into an element that is distinct from b, say y .
Similarly, π1 maps y into an element that is distinct from c , say z .

We conclude that π1π2 always maps two distinct elements (for
example, a and x) into two distinct elements (for example, c and z).
Thus, π1π2 is a permutation of the set S .
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Pólya’s Theory of Counting Equivalence Classes Under a Permutation Group

Non-commutativity of Composition

The composition of permutations is noncommutative, i.e., in general,
π1π2 6= π2π1.

Example: for π1 =
(

abcd
adbc

)

, π2 =
(

abcd
bacd

)

, we have

π1π2 =
(

abcd
dabc

)

,

π2π1 =
(

abcd
bdac

)

,

i.e., in this case, π1π2 6= π2π1.
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Pólya’s Theory of Counting Equivalence Classes Under a Permutation Group

Associativity of Composition

Claim: The composition of permutations is associative, i.e., for any
permutations π1, π2 and π3 of a set, we have (π1π2)π3 = π1(π2π3).
Suppose:

π3 maps a into b;
π2 maps b into c ;
π1 maps c into d .

Since π1π2 maps b into d , (π1π2)π3 maps a into d .

Similarly, since π2π3 maps a into c , π1(π2π3) maps a into d .

Example: Let π1 =
(

abcd
adbc

)

, π2 =
(

abcd
bacd

)

and π3 =
(

abcd
bdac

)

. Then, we
have

(π1π2)π3 =

[(

abcd

adbc

)(

abcd

bacd

)](

abcd

bdac

)

=

(

abcd

dabc

)(

abcd

bdac

)

=

(

abcd

acdb

)

;

π1(π2π3) =

(

abcd

adbc

)[(

abcd

bacd

)(

abcd

bdac

)]

=

(

abcd

adbc

)(

abcd

adbc

)

=

(

abcd

acdb

)

.
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Pólya’s Theory of Counting Equivalence Classes Under a Permutation Group

Permutation Groups

Let G = {π1, π2, . . .} be a set of permutations of a set S .

Then G is said to be a permutation group of S if G and the binary
operation of composition of permutations form a group.

In other words, according to the definition of a group, the following
conditions should be satisfied:

1. If π1 and π2 are in G , then π1π2 is also in G .
2. The binary operation, composition of permutations, is associative.

However, this is known to be true.
3. The identity permutation that maps each element into itself is in G .

This is the only permutation among all the permutations of a set that
can be the identity element of the group.

4. For every permutation π1 in G , there is a permutation π2, which is
such that π1π2 is the identity permutation.

Example: G =
{

(

abc
abc

)

,
(

abc
bca

)

,
(

abc
cab

)

}

is a permutation group of

{a, b, c}.
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Pólya’s Theory of Counting Equivalence Classes Under a Permutation Group

The Relation Induced by a Permutation Group G

Let G be a permutation group of a set S = {a, b, . . .}.

A binary relation on the set S , called the binary relation induced by

G , is defined to be such that

element a is related to element b if and only if
there is a permutation in G that maps a into b.

Example: Let

G =

{(

abcd

abcd

)

,

(

abcd

bacd

)

,

(

abcd

abdc

)

,

(

abcd

badc

)}

.

The binary relation induced by G is depicted on
the right.
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Pólya’s Theory of Counting Equivalence Classes Under a Permutation Group

The Induced Binary Relation is an Equivalence

Theorem

The binary relation on a set induced by a permutation group of the set is
an equivalence relation.

Let G be a permutation group of the set S = {a, b, . . .}.

1. Since the identity permutation is in G , every element in S is related to
itself in the binary relation on S induced by G . Therefore, the reflexive
law is satisfied.

2. If there is a permutation π1 in G that maps a into b, the inverse of π1,
which is also in G , will map b into a. Therefore, the binary relation on
S induced by G satisfies the symmetric law.

3. If there is a permutation π1 mapping a into b and a permutation π2
mapping b into c , the permutation π2π1, which is also in G , will map a

into c . Therefore, the binary relation on S induced by G satisfies the
transitive law.
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Pólya’s Theory of Counting Equivalence Classes Under a Permutation Group

Invariant Elements

Given a set S and a permutation group G of S , we wish to find the
number of equivalence classes into which S is divided by the
equivalence relation on S induced by G .

The direct calculation involves finding the equivalence relation and
then counting the number of equivalence classes.

When the set S contains a large number of elements, such counting
becomes prohibitively tedious.

Burnside’s Theorem enables us to find the number of equivalence
classes in an alternative way by counting the number of elements that
are invariant under the permutations in the group.

An element is said to be invariant under a permutation, or is called
an invariance, if the permutation maps the element into itself.
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Pólya’s Theory of Counting Equivalence Classes Under a Permutation Group

Permuting the 2× 2 Squares

Consider the example of 2× 2 chessboards to see why we are
interested in counting the number of equivalence classes into which a
set is divided by the equivalence relation on the set induced by a
permutation group.

When the chessboards are rotated clockwise
by 90◦, C1 remains as C1, C2 becomes C3, C3

becomes C4, C4 becomes C5, C5 becomes C2,
C6 becomes C9, C7 becomes C10, and so on.

A 90◦ rotation amounts to a permutation
π1 of the chessboards:

π1 =
(

C1C2C3C4C5C6C7C8C9C10C11C12C13C14C15C16

C1C3C4C5C2C9C10C6C11C7C8C15C12C13C14C16

)

.
Similarly, corresponding to a 180◦ clockwise rotation and a 270◦

clockwise rotation of the chessboards, there are the permutations π2
and π3: π2 =

(

C1C2C3C4C5C6C7C8C9C10C11C12C13C14C15C16

C1C4C5C2C3C11C7C9C8C10C6C14C15C12C13C16

)

,

π3 =
(

C1C2C3C4C5C6C7C8C9C10C11C12C13C14C15C16

C1C5C2C3C4C8C10C11C6C7C9C13C14C15C12C16

)

.

Let π4 be the identity: π4 =
(

C1C2C3C4C5C6C7C8C9C10C11C12C13C14C15C16

C1C2C3C4C5C6C7C8C9C10C11C12C13C14C15C16

)

.
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Pólya’s Theory of Counting Equivalence Classes Under a Permutation Group

The Group of Rotations and Indistinguishability

It can be shown that G = {π1, π2, π3, π4} is a permutation group of
the set of 2× 2 chessboards.

In the equivalence relation induced by G , we see that C2, C3, C4 and
C5 are in the same equivalence class, which means that they become
indistinguishable when rotations of the chessboards are allowed.

It follows that the number of equivalence
classes into which the chessboards are di-
vided by the equivalence relation induced
by G is the number of “distinct” chess-
boards, i.e., those distinguishable through
rotation.
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Pólya’s Theory of Counting Equivalence Classes Under a Permutation Group

Burnside’s Theorem

Theorem (Burnside)

The number of equivalence classes into which a set S is divided by the
equivalence relation induced by a permutation group G of S is given by
1
|G |

∑

π∈G ψ(π), where ψ(π) is the number of elements that are invariant
under the permutation π.

For any element s in S , let η(s) denote the number of permutations
under which s is invariant. Then

∑

π∈G ψ(π) =
∑

s∈S η(s) because
both count the total number of invariances under all the permutations
in G :

One way to count the invariances is to go through the permutations
one by one and count the number of invariances under each
permutation, giving

∑

π∈G ψ(π) as the total count.
Another way to count the invariances is to go through the elements
one by one and count the number of permutations under which an
element is invariant, giving

∑

s∈S η(s) as the total count.
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Pólya’s Theory of Counting Equivalence Classes Under a Permutation Group

An Auxiliary Lemma

Claim: Let a and b be two elements in S in the same equivalence
class. There are exactly η(a) permutations mapping a into b.

Since a and b are in the same equivalence class, there is at least one
such permutation which we shall denote by πx . Let {π1, π2, π3, . . .}
be the set of the η(a) permutations under which a is invariant. Then,
the η(a) permutations in the set {πxπ1, πxπ2, πxπ3, . . .} are
permutations that map a into b.

They are all distinct because, if πxπ1 = πxπ2, π
−1
x (πxπ1) = π−1

x (πxπ2),
whence π1 = π2, which is impossible.
No other permutation in G maps a into b: If πy maps a into b, then
π−1
x πy is a permutation that maps a into a, whence it is in the set

{π1, π2, π3, . . .}. Hence πy = πx(π
−1
x πy ) is in {πxπ1, πxπ2, πxπ3, . . .}.

We conclude that there are exactly η(a) permutations in G that map
a into b.
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Pólya’s Theory of Counting Equivalence Classes Under a Permutation Group

Proof of Burnside’s Theorem (Cont’d)

Let a, b, c , . . . , h be the elements in S that are in one equivalence
class. All the permutations in G can be categorized as those that
map a into a, those that map a into b, those that map a into c , . . .,
and those that map a into h. We have shown that there are exactly
η(a) permutations in each of these categories. Thus, η(a) = η(b) =

· · · = η(h) =
|G |

number of elements in class containing a
. We now get:

η(a) + η(b) + · · ·+ η(h) = |G |
∑

all s in the equivalence class

η(s) = |G |

∑

s∈S η(s) = (number of equivalence classes) · |G |

Number of Classes =
1

|G |

∑

s∈S η(s) =
1

|G |

∑

π∈G ψ(π).
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Pólya’s Theory of Counting Equivalence Classes Under a Permutation Group

Example

Let S = {a, b, c , d}, and let G be the permutation group consisting of

π1 =

(

abcd

abcd

)

, π2 =

(

abcd

bacd

)

, π3 =

(

abcd

abdc

)

, π4 =

(

abcd

badc

)

.

The equivalence relation on S induced by G is
shown on the right. Clearly, S is divided into
two equivalence classes, {a, b} and {c , d}.

Since
ψ(π1) = 4, ψ(π2) = 2, ψ(π3) = 2, ψ(π4) = 0,

according to Burnside’s Theorem, the number of equivalence classes
can be computed as

1

|G |
(ψ(π1) + ψ(π2) + ψ(π3) + ψ(π4)) =

1

4
(4 + 2 + 2 + 0) = 2.
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Pólya’s Theory of Counting Equivalence Classes Under a Permutation Group

Strings of Beads of Length 2

Find the number of distinct strings of length 2 that are made up of
blue beads and yellow beads. The two ends of a string are not
marked, and two strings are, therefore, indistinguishable if
interchanging the ends of one will yield the other.
Let b and y denote blue and yellow beads, respectively. Let bb, by , yb
and yy denote the four different strings of length 2 when equivalence
between strings is not taken into consideration. The problem is to
find the number of equivalence classes into which the set
S = {bb, by , yb, yy} is divided by the equivalence relation induced by
the permutation group G = {π1, π2}, where

π1 =

(

bb by yb yy

bb by yb yy

)

, π2 =

(

bb by yb yy

bb yb by yy

)

.

π1 indicates that every string is equivalent to itself, and π2 indicates
the equivalence between strings when the two ends of a string are
interchanged. According to Burnside’s theorem, the number of
distinct strings is 1

2(4 + 2) = 3.
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Pólya’s Theory of Counting Equivalence Classes Under a Permutation Group

Strings of Beads of Length 3

For the case of distinct strings of length 3 made up of blue beads and
yellow beads, we have S = {bbb, bby , byb, ybb, byy , yby , yyb, yyy}
and the permutation group G = {π1, π2}, where:

π1 is the identity permutation;
π2 is the permutation that maps a string into one that is obtained from
the former by interchanging its ends.
For example, bbb is mapped into bbb, bby is mapped into ybb, byb is
mapped into byb, and so on.

The number of elements that are invariant under π1 is eight.

The number of elements that are invariant under π2 is four:

A string will be mapped into itself under π2 if the beads at the two
ends of a string are of the same color.
There are four such strings.

Therefore, the number of distinct strings is equal to 1
2(8 + 4) = 6.
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Pólya’s Theory of Counting Equivalence Classes Under a Permutation Group

Five-Bead Bracelets

Find the number of distinct bracelets of five beads made up of yellow,
blue, and white beads. Two bracelets are said to be
indistinguishable if the rotation of one will yield another. For
simplicity, we assume that the bracelets cannot be flipped over.

Let S be the set of the 35(= 243) distinct bracelets when rotational
equivalence is not considered. Let G = {π1, π2, π3, π4, π5} be a
permutation group, where:

π1 is the identity permutation;
π2 is the permutation that maps a bracelet into one which is the former

rotated clockwise by one bead position: (e.g., is mapped to ).
π3, π4 and π5 are permutations that map a bracelet into one rotated
clockwise by two, three and four bead positions, respectively.
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Pólya’s Theory of Counting Equivalence Classes Under a Permutation Group

Five-Bead Bracelets (Cont’d)

The number of elements that are invariant under:

π1 is 243;
π2 is three, since only when all five beads in a bracelet have to be of
the same color;
each of π3, π4 and π5 is also three.

Thus, the number of distinct bracelets is

1

5
(ψ(π1) + ψ(π2) + ψ(π3) + ψ(π4) + ψ(π5))

= 1
5(243 + 3 + 3 + 3 + 3) = 51.
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Pólya’s Theory of Counting Equivalence Classes Under a Permutation Group

Arrangements of n People Around a Circle

The problem of finding the number of ways to arrange n people
around a circle can also be solved using Burnside’s theorem.

Let S be the set of the n! distinct ways to arrange n people around a
circle when rotational equivalence is not considered.

Let G = {π1, π2, . . . , πn} be a permutation group where:

π1 is the identity permutation;
π2 is the permutation that maps a circular arrangement into one which
is the former rotated clockwise by one position;
π3 is the permutation that maps a circular arrangement into one which
is the former rotated clockwise by two positions;
...
πn is the permutation that maps a circular arrangement into one which
is the former rotated clockwise by n − 1 positions.

Since ψ(π1) = n! and ψ(π2) = ψ(π3) = · · · = ψ(πn) = 0, the number
of distinct circular arrangements is 1

n
(n! + 0 + 0 + · · ·+ 0) = (n− 1)!.

George Voutsadakis (LSSU) Combinatorics April 2016 41 / 97



Pólya’s Theory of Counting Equivalence Classes Under a Permutation Group

Printing Five-Digit Numbers

Suppose that we are to print all the five-digit numbers on slips of
paper with one number on each slip. Clearly, there are 105 such slips,
assuming that for numbers smaller than 10, 000, leading zeros are
always filled in. However, since 0, 1, 6, 8, and 9 become 0, 1, 9, 8,
and 6 when they are read upside down, there are pairs of numbers
that can share the same slip if the slips will be read either right side
up or upside down. E.g., we can make up one slip for both the
numbers 89166 and 99168. How many distinct slips will we have to
make up for the 105 numbers?
Let S be the set of the 105 numbers, and G = {π1, π2} a
permutation group of S , where:

π1 is the identity permutation;
π2 is the permutation that maps a number:

into itself, if it is not readable as a number when turned upside down,
e.g., 13765 is mapped into 13765.
into the number obtained by reading the former upside down, whenever
it is possible, e.g., 89166 is mapped into 99168.
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Pólya’s Theory of Counting Equivalence Classes Under a Permutation Group

Printing Five-Digit Numbers (Cont’d)

The number of invariances under:

π1 is 105;
π2 is (105 − 55) + 3 · 52:

there are 105 − 55 numbers that contain one or more of the digits 2, 3,
4, 5 and 7 and cannot be read upside down;
there are 3 · 52 numbers that will read the same either right side up or
upside down.
e.g., 16891 (the center digit of these numbers must be 0 or 1 or 8, the
last digit must be the first digit turned upside down, and the fourth
digit must be the second digit turned upside down).

Therefore, the number of distinct slips to be made up is

1

2
(105 + 105 − 55 + 3 · 52) = 105 −

1

2
· 55 +

3

2
· 52.
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Pólya’s Theory of Counting Equivalence Classes Under a Permutation Group

A Group Q Acting on a Set S

Let Q be a group consisting of the elements q1, q2, . . ., together with
a binary operation ∗, and S = {a, b, . . .} a set.

Suppose that every element q in Q is associated with a permutation
πq of the set S , such that, for any q1 and q2 in Q,

πq1∗q2 = πq1πq2 ,

i.e., the permutation associated with the element q1 ∗ q2 is equal to
the composition of the permutations πq1 and πq2 , the permutations
associated with the elements q1 and q2. This condition is referred to
as the homomorphy condition.

Different elements in Q need not be associated with distinct
permutations.
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Pólya’s Theory of Counting Equivalence Classes Under a Permutation Group

Binary Relation Induced by Q Acting on S

We define a binary relation on the set S , called the binary relation

induced by Q, such that elements a and b in S are related if and
only if there is a permutation πq, associated with an element q in Q,
that maps a into b.

Theorem

The binary relation induced by Q is an equivalence relation.

Proof is very similar to the one on permutation groups.
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Pólya’s Theory of Counting Equivalence Classes Under a Permutation Group

Generalization of Burnside’s Theorem

Theorem (Generalization of Burnside’s Theorem)

The number of equivalence classes into which S is divided by the
equivalence relation induced by Q is 1

|Q|

∑

q∈Q ψ(πq), where ψ(πq) is the
number of elements in S that are invariant under the permutation πq, the
permutation associated with the element q in Q.

Proof similar to Burnside’s Theorem.

The permutations associated with the elements in Q form a
permutation group.

Moreover, the binary relation on the set S induced by this
permutation group is the same as that induced by Q.

In many applications, it is more convenient to consider the structure
of the group Q than the structure of the permutation group.
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Pólya’s Theory of Counting Equivalence Classes of Functions

Subsection 4

Equivalence Classes of Functions
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Pólya’s Theory of Counting Equivalence Classes of Functions

Introducing Pólya’s Theorem

In applying Burnside’s theorem to the counting of the number of
equivalence classes into which a set is divided:

The computation of the numbers of invariances under the permutations
is still quite involved.
In addition to the number of equivalence classes, we may wish to have
further information about the properties of the equivalence classes.
E.g., in the problem of chessboards, one may wish to know the number
of distinct chessboards consisting of two black cells and two white cells.

Pólya’s theory of counting offers solutions to both of these problems.

Let f be a function from a set D, its domain, to a set R , its range.

Since each element in D has a unique image in R , the function f

corresponds to a way of distributing |D| objects into |R | cells.

Therefore, the problem of enumerating the ways of distributing |D|
objects into |R | cells is the same as that of enumerating the functions
from D to R .
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Pólya’s Theory of Counting Equivalence Classes of Functions

Equivalence Relation on Set of Functions

Let D and R be two sets, and let G be a permutation group of D.
We define a binary relation on the set of all the functions from D to
R as follows:

A function f1 is related to a function f2 if and only if there is a
permutation π in G , such that f1(d) = f2[π(d)], for all d in D.

This binary relation is an equivalence relation:
1. Because the identity permutation is in G , the reflexive law is satisfied.
2. If f1(d) = f2[π(d)], for all d in D, then f2(d) = f1[π

−1(d)], for all d in
D. Since π−1 is a permutation in G , the symmetric law is satisfied.

3. If f1(d) = f2[π1(d)] and f2(d) = f3[π2(d)], for all d in D, where π1 and
π2 are permutations in G , then f1(d) = f3[π2π1(d)], for all d in D.
Since π2π1 is a permutation in G , the transitive law is satisfied.

It follows that the functions from D to R are divided into equivalence
classes, called patterns, by the equivalence relation.

The patterns correspond to the distinct ways of distributing |D|
objects into |R | cells when equivalence between ways of distribution is
introduced by the permutation group G .
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Pólya’s Theory of Counting Equivalence Classes of Functions

Example

Let D = {a, b, c , d} and R = {x , y}. Let G be the permutation
group {π1, π2, π3, π4}, where π1 =

(

abcd
bcda

)

, π2 =
(

abcd
cdab

)

, π3 =
(

abcd
dabc

)

and π4 =
(

abcd
abcd

)

. There are 16 functions f1, f2, . . . .f16 from D to R :

f (a) f (b) f (c) f (d)
f1 x x x x

f2 y x x x

f3 x y x x

f4 x x y x

f5 x x x y

f6 y y x x

f7 y x y x

f8 y x x y

f9 x y y x

f10 x y x y

f11 x x y y

f12 y y y x

f13 y y x y

f14 y x y y

f15 x y y y

f16 y y y y

Note that:

f3[π1(a)] = f3(b) = y = f2(a),
f3[π1(b)] = f3(c) = x = f2(b),
f3[π1(c)] = f3(d) = x = f2(c),
f3[π1(d)] = f3(a) = x = f2(d).

So, f2 and f3 are equivalent.
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Pólya’s Theory of Counting Equivalence Classes of Functions

Example (Cont’d)

G is the permutation group {π1, π2, π3, π4}, where π1 =
(

abcd
bcda

)

,

π2 =
(

abcd
cdab

)

, π3 =
(

abcd
dabc

)

and π4 =
(

abcd
abcd

)

.

f (a) f (b) f (c) f (d)
f1 x x x x

f2 y x x x

f3 x y x x

f4 x x y x

f5 x x x y

f6 y y x x

f7 y x y x

f8 y x x y

f9 x y y x

f10 x y x y

f11 x x y y

f12 y y y x

f13 y y x y

f14 y x y y

f15 x y y y

f16 y y y y

Note that:

f7[π1(a)] = f7(b) = x = f10(a),
f7[π1(b)] = f7(c) = y = f10(b),
f7[π1(c)] = f7(d) = x = f10(c),
f7[π1(d)] = f7(a) = y = f10(d).

So, f7 and f10 are equivalent.
Similarly, it can be seen that the 16
functions are divided into six equiv-
alence classes: {f1}, {f2, f3, f4, f5},
{f6, f8, f9, f11}, {f7, f10}, {f12, f13, f14,
f15}, {f16}.
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Pólya’s Theory of Counting Equivalence Classes of Functions

The Problem of 2× 2 Chessboards

Let the four cells in a 2× 2 chessboard be labeled a, b, c and d :
a b

d c
Let the two colors, white and black, be denoted by x and y .

A function from the set {a, b, c , d} to the set {x , y} then corresponds
to a chessboard. The permutations in the group

G =

{(

abcd

bcda

)

,

(

abcd

cdab

)

,

(

abcd

dabc

)

,

(

abcd

abcd

)}

correspond to the rotations of the chessboards.

E.g., the permutation π1 =
(

abcd
bcda

)

corresponds to the rotation of the
chessboards in a clockwise direction by 90◦.

The 16 functions in the preceding slide correspond to the 16
chessboards. We saw that they are divided into six equivalence classes
by the equivalence relation induced by G .
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Pólya’s Theory of Counting Weights and Inventories of Functions

Subsection 5

Weights and Inventories of Functions
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Pólya’s Theory of Counting Weights and Inventories of Functions

Weights and Store Enumerators

Let D and R be the domain and the range, respectively, of a set of
|R ||D| functions.

Suppose that a weight is assigned to each of the elements in R .

The weights can be either numbers or symbols. Let r be in R , and let
w(r) denote the weight assigned to r .

The store enumerator of the set R is defined to be the sum of the
weights of the elements in R , i.e.,

Store enumerator =
∑

r∈R

w(r).

The term “store enumerator” is actually very descriptive: The
elements in the set R are the values that the elements in the set D
can assume under functions from D to R . Thus, the store enumerator
is a description of what is “in the store”.
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Pólya’s Theory of Counting Weights and Inventories of Functions

Examples and Comparison with Generating Functions

Example: Let R = {r1, r2, r3} and w(r1) = r1,w(r2) = r2 and
w(r3) = r3. Then, the store enumerator is r1 + r2 + r3. It indicates
that the value that an element in D can assume is either r1 or r2 or r3.

Example: Suppose we let w(r1) = u, w(r2) = v and w(r3) = u. The
store enumerator is 2u + v . It means that there are two elements of
type u and one element of type v in the set R from which the value
for an element in D can be chosen.

The notion of store enumerator is just a generalization of the notion
of generating functions.

For the selection of one object from the three objects r1, r2 and r3, the
generating function is r1x + r2x + r3x . x is just the indicator which can
be omitted when it is understood that exactly one of the three objects
is selected.
When objects r1 and r3 are of the same kind u and object r2 is of
another kind v , the generating function becomes 2u + v .
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Pólya’s Theory of Counting Weights and Inventories of Functions

Weights and Inventories

For a function f from D to R , we define its weight, denoted by
W (f ), as the product of the weights of the images of the elements in
D under f , i.e.,

W (f ) =
∏

d∈D

w [f (d)].

The inventory of a set of functions is defined as the sum of their
weights, i.e.,

Inventory of a set of functions =
∑

all f in the set

W (f ).

Example: Let D = {d1, d2, d3}, R = {r1, r2, r3},
w(r1) = u, w(r2) = v , and w(r3) = u. The weight
of the function f1 on the right is W (f1) = uv2.
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Pólya’s Theory of Counting Weights and Inventories of Functions

Example of Weights and Inventories

Example: Let D = {d1, d2, d3}, R = {r1, r2, r3}, w(r1) = u,
w(r2) = v , and w(r3) = u. The weight of the function f1 on the left
is W (f1) = uv2.

The inventory of the set of functions f1, f2 and f3 is

W (f1) +W (f2) +W (f3) = uv2 + 2u2v .

The weight of a function is a representation of the way |D| objects
are distributed into |R | cells as described by the function.

The inventory of a set of functions is a representation of the ways the
objects are distributed.
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Pólya’s Theory of Counting Weights and Inventories of Functions

Weights of Patterns and Inventories of Sets of Patterns

Let G be a permutation group of D. We saw that the |R ||D| functions
are divided into equivalence classes by the equivalence relation
induced by G .

Let f1 and f2 be two functions in the same equivalence class. Since
there exists a permutation π in G , such that f1(d) = f2[π(d)], for all
d in D, we have

∏

d∈D w [f1(d)] =
∏

d∈D w [f2(π(d))]. But
∏

d∈D w [f2(π(d))] =
∏

d∈D w [f2(d)] because the two products
contain the same factors, only in different orders. We conclude that
functions in the same equivalence class have the same weight.

This weight is called the weight of the pattern (equivalence class).

It is important to emphasize that functions with the same weight
might not be in the same equivalence class.

The inventory of a set of patterns is defined as the sum of the
weights of the patterns in the set.
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Pólya’s Theory of Counting Weights and Inventories of Functions

Example

Find all the possible ways of painting three distinct balls in solid
colors when there are three kinds of paint available, an expensive kind
of red paint, a cheap kind of red paint, and blue paint.

Let D be the set of the three balls, and let R be the set of the three
kinds of paint. Let r1, r2 and b be the weight assigned to the
expensive red paint, cheap red paint, and blue paint, respectively.
The store enumerator is r1 + r2 + b. So (r1 + r2 + b)3 gives all the
possible ways in which the three balls can be painted. In other words,
(r1 + r2 + b)3 is the inventory of the set of all the functions from D to
R . We get

(r1 + r2 + b)3 = r31 + r32 + b3 + 3r21 r2 + 3r1r
2
2 + 3r21b + 3r22 b

+ 3r1b
2 + 3r2b

2 + 6r1r2b.

E.g., 3r1r
2
2 means there are three ways of painting the balls in which

the expensive red is used for one ball and the cheap red for two balls.
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Pólya’s Theory of Counting Weights and Inventories of Functions

Example (Cont’d)

Suppose we let the weights of both the expensive red paint and the
cheap red paint be r and let the weight of the blue paint be b. The
inventory of the set of all the functions from D to R is

(r + r + b)3 = (2r + b)3 = 8r3 + 12r2b + 6rb2 + b3.

The store enumerator 2r + b indicates that there are two ways to
paint a ball red and one way to paint a ball blue.

In the inventory (2r + b)3:

the term 8r3 means that there are eight ways in which all three balls
are painted red;
the term 12r2b means that there are 12 ways in which two balls are
painted red and one ball is painted blue, etc.
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Pólya’s Theory of Counting Weights and Inventories of Functions

Important Remarks on the Example

In the example, the two kinds of red paints are still two distinct kinds
even though they are assigned the same weight.

E.g., painting all three balls with the expensive red paint is different
from painting all three balls with the cheap red paint. They are
counted as two ways of painting the balls in red.

Assigning to the red paints the same weight indicates we wish to look
at the red paints as two kinds of paint having a common property.
If the two kinds of red paint are indistinguishable, i.e., there is only one
kind of red paint, the store enumerator should be r + b instead.
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Pólya’s Theory of Counting Weights and Inventories of Functions

Planning a Vacation

Eight people are planning vacation trips. There are three cities they
can visit. Three of these eight people are in one family, and two of
them are in another family. If the people in the same family must go
together, find the ways the eight people can plan their trips.

Let D = {a, b, c , d , e, f , g , h} be the set of the eight people. Suppose
that a, b and c are in one family, and d and e are in the other family.
Let R = {c1, c2, c3} be the set of the three cities. Let α, β and γ be
the weights of c1, c2 and c3.

The symbolic representation of the different trips that

a, b and c can take is α3 + β3 + γ3 because they will either visit c1
together, c2 together, or c3 together;
d and e can take is α2 + β2 + γ2;
each of f , g and h can take is α+ β + γ.

Therefore, the different ways in which the eight people can plan their
trips are (α3 + β3 + γ3)(α2 + β2 + γ2)(α + β + γ)3.
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Pólya’s Theory of Counting Weights and Inventories of Functions

Inventories with Partition Restrictions

Let {D1,D2, . . . ,Dk} be a partition on the set D, where
D1,D2, . . . ,Dk are the disjoint subsets.

Note that the representation of the ways to distribute the objects in
the subset Di such that they will all be in the same cell is

∑

r∈R

w(r)|Di |.

Therefore, the inventory of the set of all the functions from D to R ,
such that the elements in the same subset will have the same value is

k
∏

i=1





∑

r∈R

w(r)|Di |



 .
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Pólya’s Theory of Counting Pólya’s Fundamental Theorem

Subsection 6

Pólya’s Fundamental Theorem
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Pólya’s Theory of Counting Pólya’s Fundamental Theorem

The Setting for Pólya’s Theorem

Let D and R be two sets, and let G be a permutation group of D.

Our problem is to find the inventory of the equivalence classes of the
functions from D to R , which is also called the pattern inventory.

The pattern inventory is a representation of all the distinct ways of
distributing the objects in D into the cells in R .

We categorize the |R ||D| functions from D to R according to their
weights.

Let F1,F2, . . . ,Fn, . . . denote the sets of functions that have weights
W1,W2, . . . ,Wn, . . ., respectively.
Associated with each permutation π in the group G , we define a
function π(i), mapping the set of functions Fi into itself, such that a
function f1 in Fi will be mapped into the function f2, where
f1(d) = f2[π(d)], for all d in D.
Notice that f2 is, indeed, a function in the set Fi as both f1 and f2 have
the same weight Wi .
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Pólya’s Theory of Counting Pólya’s Fundamental Theorem

π
(i) is a permutation of Fi

Lemma

The function π(i) is a permutation of the set of functions Fi .

We only have to prove that no two functions in Fi are mapped into
the same function by π(i).

Suppose there are two functions f1 and f3 both of which are mapped
into f2 under π(i), i.e.,

f1(d) = f2[π(d)] and f3(d) = f2[π(d)], for all d in D.

This means that f1(d) = f3(d), for all d in D. Thus, f1 and f3 are
the same function.
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Pólya’s Theory of Counting Pólya’s Fundamental Theorem

Homomorphy of Permutations of Fi

Lemma

For any π1, π2 in G ,

(π1π2)
(i) = π

(i)
1 π

(i)
2 .

To prove the homomorphy condition, suppose that π
(i)
2 maps f1 into

f2 and π
(i)
1 maps f2 into f3. That is, for all d in D,

f1(d) = f2[π2(d)] and f2(d) = f3[π1(d)].

It follows that

f1(d) = f2[π2(d)] = f3[π1π2(d)], for all d in D.

Therefore, both π
(i)
1 π

(i)
2 and (π1π2)

(i) map f1 into f3.
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Cycles

A cycle in a permutation is a subset of elements that are cyclically
permuted.

Example: In the permutation
(

abcdef
cedabf

)

, {a, c , d} forms a cycle:

a is permuted into c ;
c is permuted into d ;
d is permuted into a.

Similarly, {b, e} forms a cycle, and {f } forms a cycle.

The length of a cycle is the number of elements in the cycle.

Example: In the permutation
(

abcdef
cedabf

)

, there is a cycle of length 3, a
cycle of length 2, and a cycle of length 1.
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Cycle Structure Representation of a Permutation

Let π be a permutation that has

b1 cycles of length 1;
b2 cycles of length 2;
...
bk cycles of length k ;
...

We use x1, x2, . . . , xk , . . . as formal variables and use the monomial

xb11 xb22 · · · xbkk · · ·

to represent the number of cycles of various lengths in the
permutation π. Such a representation is called the cycle structure

representation of the permutation π.
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Cycle Index of a Permutation Group

Given a permutation group G , we define the cycle index PG of G as
the sum of the cycle structure representations of the permutations in
G divided by the number of permutations in G :

PG (x1, x2, . . . , xk , . . .) =
1

|G |

∑

π∈G

xb11 xb22 · · · xbkk · · · .

Example: The cycle index of the group consisting of

(

abcd

abcd

)

,

(

abcd

bacd

)(

abcd

abdc

)

,

(

abcd

badc

)

is
1

4
(x41 + x21 x2 + x21x2 + x22 ) =

1

4
(x41 + 2x21 x2 + x22 ).
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Pólya’s Theorem

Theorem (Pólya)

The inventory of the equivalence classes of functions from domain D to
range R is

PG (
∑

r∈R

w(r),
∑

r∈R

[w(r)]2, . . . ,
∑

r∈R

[w(r)]k , . . .),

i.e., the pattern inventory is obtained by substituting
∑

r∈R w(r) for x1,
∑

r∈R [w(r)]2 for x2, . . .,
∑

r∈R [w(r)]k for xk , . . . in the expression of the
cycle index PG of the permutation group G .

Let mi denote the number of equivalence classes of functions that
have the weight Wi (in the set Fi). Clearly, the pattern inventory is
equal to

∑

i miWi . By the preceding theorem and two lemmas,
mi =

1
|G |

∑

π∈G ψ(π
(i)). Therefore,

∑

i

miWi =
∑

i

[

1

|G |

∑

π∈G

ψ(π(i))

]

Wi =
1

|G |

∑

π∈G

[

∑

i

ψ(π(i))Wi

]

.
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Proof of Pólya’s Theorem

We obtained
∑

i

miWi =
1

|G |

∑

π∈G

[

∑

i

ψ(π(i))Wi

]

.

The term
∑

i ψ(π
(i))Wi is the inventory of all the functions f , such

that f (d) = f [π(d)], for all d in D.
For a function f , f (d) = f [π(d)], for all d in D, if and only if the
elements in D that are in one cycle in π have the same value under f .
Therefore,

∑

i

ψ(π(i))Wi = [
∑

r∈R

w(r)]b1 [
∑

r∈R

w(r)2]b2 · · · [
∑

r∈R

w(r)k ]bk · · · ,

where b1, b2, . . . , bk , . . . are the number of cycles of length 1, 2, . . .,
k , . . . in π, respectively. It follows now that

∑

i

miWi = PG (
∑

r∈R

w(r),
∑

r∈R

[w(r)]2, . . . ,
∑

r∈R

[w(r)]k , . . .).
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Counting Number of Equivalence Classes

Corollary

The number of equivalence classes of functions from D to R is

PG (|R |, |R |, . . . , |R |, . . .).

If the weight 1 is assigned to each of the elements in R , the weight of
any pattern is also equal to 1. Therefore, the pattern inventory gives
the number of patterns.
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Example

We find the number of distinct strings of three beads.
Let D = {1, 2, 3} be the set of the three positions, and R = {b, y}
the set of the two kinds of bead. Let w(b) = b and w(y) = y be the

weights of the elements in R . Let G = {
(

123
123

)

,
(

123
321

)

}.
(

123
123

)

corresponds to leaving a string as is.
(

123
321

)

corresponds to interchanging the two ends of a string.

The cycle index of the group G is

PG (x1, x2) =
1

2
(x31 + x1x2).

The pattern inventory is
1

2
[(b + y)3 + (b + y)(b2 + y2)] = b3 + 2b2y + 2by2 + y3.

We see, e.g., that there is one string that is made up of three blue
beads, two strings that are made up of two blue beads and one yellow
bead, and so on. By assigning w(b) = w(y) = 1 we find that the
number of patterns is six.
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Example

Find the number of ways of painting the four faces
a, b, c and d of the pyramid with two colors of
paints, x and y .
Let D = {a, b, c , d} be the set of the four faces,
and let R = {x , y} be the set of the two colors with
w(x) = x and w(y) = y . The permutation group is
G = {

(

abcd
abcd

)

,
(

abcd
bcad

)

,
(

abcd
cabd

)

}, corresponding to the

identity, the counterclockwise 120◦ rotation and the counterclockwise
240◦ rotation of the pyramid around the vertical axis, respectively.
Notice that in either rotation, face d remains fixed. The cycle index
of the group G is 1

3(x
4
1 + 2x1x3). The pattern inventory is

1

3
[(x + y)4 + 2(x + y)(x3 + y3)] = x4 + y4 + 2x3y + 2x2y2 + 2xy3.

Thus, there are eight distinct ways of painting the four faces.
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Example

Find the distinct ways of painting the eight vertices of a cube with
two colors x and y .
Let G be the permutation group corresponding to all possible
rotations of the cube. There are 24 permutations in the group:
1. The identity permutation (cycle structure representation x81 ).
2. Three permutations corresponding to 180◦ rotations around lines

connecting the centers of opposite faces (x42 ).

3. Six permutations corresponding to 90◦ rotations around lines
connecting the centers of opposite faces (x24 ).

4. Six permutations corresponding to 180◦ rotations around lines
connecting the midpoints of opposite edges (x42 ).

5. Eight permutations corresponding to 120◦ rotations around lines
connecting opposite vertices (x21 x

2
3 ).
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Painting the Cube (Cont’d)

Thus, the cycle index of the permutation group is

1

24
(x81 + 9x42 + 6x24 + 8x21 x

2
3 ).

The pattern inventory is

1

24
((x + y)8 + 9(x2 + y2)4 + 6(x4 + y4)2 + 8(x + y)2(x3 + y3)2).

By assigning w(x) = w(y) = 1, we compute the number of patterns
as

1

24
[28 + 9 · 24 + 6 · 22 + 8 · 22 · 22] = 23.

This is the number of distinct ways of painting the eight vertices of a
cube with two colors.
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Example (Molecules)

Consider the class of organic molecules of the form

X

X C X

X

CH3

Cl C C2H5

Cl

where C is a carbon atom, and each X denotes any one of the
components CH3 (methyl), C2H5 (ethyl), H (hydrogen), or Cl
(chlorine).

For example, a typical molecule is the one on the right.
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Example (Cont’d)

Each such molecule can be modeled as a regular
tetrahedron with the carbon atom occupying the
center position and the components labeled X at
the corners.

The problem of finding the number of different molecules of this form
is the same as that of finding the number of equivalence classes of
functions:

from the domain D containing the four corners of the tetrahedron
to the range R containing the four components CH3, C2H5, H , Cl ,
with the permutation group G consisting of the permutations
corresponding to all the possible rotations of the tetrahedron.
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Example (The Cycle Index)

To find the cycle index of the permutation group G , notice that in G :

1. There is the identity permutation (x41 ).
2. There are eight permutations corresponding to 120◦ rotations around

lines connecting a vertex and the center of its opposite face (x1x3).
3. There are three permutations corresponding to 180◦ rotations around

lines connecting the midpoints of opposite edges (x22 ).

It follows that PG = 1
12(x

4
1 + 8x1x3 + 3x22 ).

Therefore, the number of different molecules is
PG (4, 4, 4) =

1
12(4

4 + 8 · 4 · 4 + 3 · 42) = 36.
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Example (First Variation)

Suppose we wish to find the number of molecules containing one or
more hydrogen atoms.

We assign:

the weight 1 to each of the components CH3, C2H5, and Cl ;
the weight 0 to the component H .

Then, we get

PG (3, 3, 3) =
1

12
(34 + 8 · 3 · 3 + 3 · 32) = 15.

This is the number of molecules that do not contain the hydrogen
atom. Therefore, there are

36− 15 = 21

molecules containing the hydrogen atom.
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Example (Second Variation)

If we assign the weight 1 to each of the components CH3, C2H5, Cl
and the weight h to the component H, the pattern inventory is

PG (h + 3, h2 + 3, h3 + 3)

= 1
12 [(h + 3)4 + 8(h + 3)(h3 + 3) + 3(h2 + 3)2]

= h4 + 3h3 + 6h2 + 11h + 15.

So there are:

one molecule containing four hydrogen atoms;
three molecules containing three hydrogen atoms;
six molecules containing two hydrogen atoms;
11 molecules containing one hydrogen atom;
15 molecules containing no hydrogen atoms.
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Subsection 7

Generalization of Pólya’s Theorem
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A New Equivalence Relation on Functions

In addition to a permutation group G of the domain D, let there be a
permutation group H of the range R .
We define a binary relation on the functions from D to R as follows:

A function f1 is related to a function f2 iff there is are permutations π
in G and τ in H , such that τ f1(d) = f2[π(d)], for all d in D.

Such a binary relation is an equivalence relation:
1. Let both π and τ be the identity permutations in G and H . It follows

that each function is related to itself and the reflexive law is satisfied.
2. Suppose that f1 is related to f2, i.e., τ f1(d) = f2[π(d)], for all d in D.

Since π−1 is a permutation of D, then f2[π(π
−1(d))] = τ f1[π

−1(d)],
for all d in D, i.e., f2(d) = τ f1[π

−1(d)], or τ−1f2(d) = f1[π
−1(d)].

Since π−1 is in G and τ−1 is in H , f2 is related to f1. Therefore, the
symmetric law is satisfied.

3. Suppose that f1 is related to f2 and f2 to f3. Then τ1f1(d) = f2[π1(d)]
and τ2f2(d) = f3[π2(d)] for all d in D. Since π1 is a permutation of D,
τ2f2(d) = f3[π2(d)] is the same as τ2f2[π1(d)] = f3[π2(π1(d))], for all d
in D. Thus, τ2τ1(d) = f3[π2π1(d)]. Since both π2π1 and τ2τ1 are in G

and H , respectively, f1 is related to f3, and the transitive law holds.
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Equivalent Functions May Have Different Weights

Such an equivalence relation divides the functions from D to R into
equivalence classes.

However, if we assign weights to the elements in R and compute the
weights of the |R ||D| functions from D to R , we see that two functions
in the same equivalence class may not have the same weight.

Example: Let D = {a, b} and R = {x , y}. Suppose that the
permutation group G of the domain D contains the permutations
π1 =

(

ab
ab

)

and π2 =
(

ab
ba

)

. Suppose that the permutation group H of
the range R contains the permutations τ1 =

(

xy
xy

)

and τ2 =
(

xy
yx

)

.
Clearly, the function f1 with f1(a) = x and f1(b) = x , and the
function f2, with f2(a) = y and f2(b) = y , are equivalent because
τ2f1(d) = f2[π1(d)], for all d in D. However, for the assignment of
weights w(x) = x and w(y) = y , the weights of the functions f1 and
f2 are x2 and y2, respectively.
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Adjusting the Framework

To be able to talk about the weight of a pattern and the pattern
inventory, we must impose the additional condition that weights
should be assigned to the elements in the range R in such a way that
functions in the same equivalence class will have the same weight.

We limit our discussion to the counting of the number of equivalence
classes of functions. So we assign the weight 1 to each element in R .
Since the weight of any function is then equal to 1, the condition that
the weights of the functions in the same equivalence class are the
same is trivially satisfied.

As a consequence, the pattern inventory will be the number of
equivalence classes.
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Number of Equivalence Classes

Theorem

The number of equivalence classes of functions from D to R is given by

1

|G |

1

|H|

∑

π∈G
τ∈H

ψ[(π, τ)′],

where ψ[(π, τ)′] is the number of function f which are such that
τ f (d) = f [π(d)], for all d in D.

Let G × H be the set of |G ||H| ordered pairs for (π, τ), where π is a
permutation in G and τ is a permutation in H. Let a binary operation
∗ on G × H be defined such that

(π1, τ1) ∗ (π2, τ2) = (π1π2, τ1τ2).

G × H is a group under the binary operation ∗.
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Number of Equivalence Classes (Cont’d)

Associated with each (π, τ) in G × H, we define a function (π, τ)′,
mapping the set of functions from D to R into the set itself, such
that a function f1 is mapped into a function f2, where
τ f1(d) = f2[π(d)], for all d in D. Clearly, (π, τ)′ is a permutation.

Claim: The homomorphy condition (π1π2, τ1τ2)
′ = (π1, τ1)

′(π2, τ2)
′ is

satisfied.

Thus, the number of equivalence classes into which the functions
from D to R are divided by the equivalence relation induced by the
group G × H is

1

|G |

1

|H|

∑

π∈G
τ∈H

ψ[(π, τ)′],

where ψ[(π, τ)′] is the number of invariances of the permutation
(π, τ)′. This is exactly the number of functions f , such that
τ f (d) = f [π(d)], for all d in D.
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Invariance Under (π, τ)′ and Cycle Decompositions

Lemma

A function f from D to R is invariant under the permutation (π, τ)′ if and
only if f maps the elements of D that are in a cycle of length i in π into
the elements of R that are in a cycle of length j in τ , with j being a divisor
of i . Moreover, within these two cycles, there must be a cyclic
correspondence between the elements, i.e., if f (d) = r , then

f [π(d)] = τ(r), f [π2(d)] = τ2(r), . . . , f [πi−1(d)] = τ i−1(r).

That a function that satisfies these conditions is invariant under
(π, τ)′ is clear.

If f is invariant under (π, τ)′, then f (d) = r implies f [π(d)] = τ(r).
It follows that f [π(π(d))] = τ f [π(d)], which can be rewritten as
f [π2(d)] = τ2(r). Similarly, f [π3(d)] = τ3(r), f [π4(d)] = τ4(r), . . .,
f [πi−1(d)] = τ i−1(r), and f [πi (d)] = τ i (r). Since πi (d) = d , it
follows that τ i (r) = r , whence i must be a multiple of j .
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Enumeration Using Cycle Indices

Theorem

The number of equivalence classes of functions from D to R is the value
of

PG (
∂

∂z1
,
∂

∂z2
, . . .)× PH [e

z1+z2+···, e2(z1+z2+··· ), e3(z1+z2+··· ), . . .]

evaluated at z1 = z2 = z3 = · · · = 0.

In view of the preceding theorem, we have only to evaluate ψ[(π, τ)′].
According to the preceding lemma, for a function that is invariant
under the permutation (π, τ)′, the elements in a cycle of length i in π
must be mapped into elements in a cycle of length j in τ , with j a
divisor of i . Let bi denote the number of cycles of length i in π, and
let cj denote the number of cycles of length j in τ .

The elements in a cycle of length i in π can be mapped into the
elements in any one of the cj cycles of length j in τ .
For a cycle of length j in τ , there are j different ways in which a cyclic
correspondence between the i elements in π and the j elements in τ
can exist.
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Enumeration Using Cycle Indices (Cont’d)

Therefore, we have ψ[(π, τ)′] =
∏

i (
∑

j :j |i jcj )
bi =

(c1)
b1(c1 + 2c2)

b2(c1 + 3c3)
b3(c1 + 2c2 + 4c4)

b4(c1 + 5c5)
b5 · · · . But

we have

(c1)
b1 = ( ∂

∂z1
)b1ec1z1 |z1=0;

(c1 + 2c2)
b2 = ( ∂

∂z2
)b2ec1z2e2c2z2 |z2=0;

(c1 + 3c3)
b3 = ( ∂

∂z3
)b3ec1z3e3c3z3 |z3=0;

(c1 + 2c2 + 4c4)
b4 = ( ∂

∂z4
)b2ec1z4e2c2z4e4c4z4 |z4=0;

...

Therefore

ψ[(π, τ)′] = [( ∂

∂z1
)b1( ∂

∂z2
)b2 · · · ( ∂

∂zk
)bk · · · ]×

[ec1(z1+z2+z3+··· )e2c2(z2+z4+z6+··· )e3c3(z3+z6+z9+··· ) · · ·

emcm(zm+z2m+z3m+··· ) · · · ]
∣

∣

z1=z2=···=zm=···=0
.
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2× 2 Chessboards With Permutations and Contrasts

We revisit the example of the 2× 2 chessboards.

Let D = {a, b, c , d} be the set of the four cells. Let R = {x , y} be
the set of the two colors white and black. Let G = {

(

abcd
abcd

)

,
(

abcd
bcda

)

,
(

abcd
cdab

)

,
(

abcd
dabc

)

}, where the permutations correspond to the rotations of
the chessboards. When we are interested only in the contrast patterns
of the chessboards, we also have H = {

(

xy
xy

)

,
(

xy
yx

)

}, where the

permutation
(

xy
yx

)

means the interchange of the two colors x and y .

We have PG = 1
4 (x

4
1 + x22 + 2x4) and PH = 1

2(x
2
1 + x2). Thus, the

number of distinct contrast patterns is

1
8(

∂4

∂z41
+ ∂2

∂z22
+ 2 ∂

∂z4
)
[

e2(z1+z2+z3+z4) + e2(z2+z4)
]

∣

∣

∣

z1=z2=z3=z4=0

= 1
8 [2

4 + (22 + 22) + 2 · (2 + 2)] = 4.
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Transmission of Messages: The Setup

A certain number of messages are to be represented by n-digit
quaternary sequences and transmitted through a communication
channel. For each of the digits 0, 1, 2 and 3 received, a corresponding
indicator light will be flashed so that the transmitted sequence can be
recorded.

The indicator lights for the digits 2
and 3 are not labeled and there is
no way to tell which one of the two
digits was transmitted.

Therefore, we cannot expect to use all the 4n n-digit sequences to
represent 4n distinct messages. E.g., we cannot distinguish 011023
and 011032. But 011022 and 011032 are distinguishable:

When the last two digits of the sequence 011022 are received, one of
the two unlabeled lights will flash twice;
When the last two digits of the sequence 011032 are received, each of
the two unlabeled lights will flash once.
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Transmission of Messages: Counting Distinct Messages

Let D = {a1, a2, a3, . . . , an} be the set of the n positions in the
n-digit quaternary sequences. Let R = {0, 1, 2, 3} be the set of the
four digits. Then:

the permutation group of D is

G = {

(

a1a2 · · · an
a1a2 · · · an

)

};

the permutation group of R is

H = {

(

0123

0123

)

,

(

0123

0132

)

}.

The number of distinct messages one can transmit is

1

2
(
∂n

∂zn1
)(e4z1 + e2z1)

∣

∣

∣

∣

z1=0

=
1

2
(4n + 2n).
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Transmission of Messages: Errors

Suppose that at the transmitting end a sequence occasionally will be
transmitted with the first two digits interchanged.

Since there is no way to signal the receiver when this happens, how
many distinct messages can be transmitted?

In this case,
G = {

(

a1a2···an
a1a2···an

)

,
(

a1a2a3···an
a2a1a3···an

)

};

H = {
(0123
0123

)

,
(0123
0132

)

}.

The number of distinct messages that can be transmitted is then

1
4(

∂n

∂zn1
+ ∂n−2

∂zn−2
1

∂

∂z2
)[e4(z1+z2) + e2(z1+z2)e2z2 ]

∣

∣

∣

z1=z2=0

= 1
4 [(4

n + 2n) + 4 · (4n−2 + 2n−2)]

= 1
4 (4

n + 2n + 4n−1 + 2n)

= 1
4 (4

n + 4n−1 + 2n+1)
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Pólya’s Theory of Counting Generalization of Pólya’s Theorem

Distributing Books to Children

In how many ways can five books, two of which are the same, be
distributed to four children, if among them there is a set of identical
twins?
Let D = {a, b, c , d , e} be the set of the five books with a and b being
the two copies of the same book. Then the permutation group of D
is G = {

(

abcde
abcde

)

,
(

abcde
bacde

)

}.
Let R = {u, v , x , y} be the set of the four children with u and v being
the twins. Then the permutation group of R is H = {

(

uvxy
uvxy

)

,
(

uvxy
vuxy

)

}.
The number of distinct patterns from D to R is

1
4(

∂5

∂z51
+ ∂3

∂z31

∂

∂z2
)[e4(z1+z2) + e2(z1+z2)e2z2 ]

∣

∣

∣

z1=z2=0

= 1
4 [(4

5 + 25) + 4 · (43 + 23)]

= 1
4(4

5 + 25 + 44 + 4 · 23)

= 336.
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Pólya’s Theory of Counting Generalization of Pólya’s Theorem

Interchangeability versus Indistinguishability

A opposed to the case in which objects are either distinct or totally
indistinguishable, Pólya’s theory allows interchangeability under
permutations, which does not always mean indistinguishability.

Only when G is the group that contains all the possible permutations
of certain elements do the elements become totally indistinguishable:

Let D = {a, b, c}, G = {
(

abc
abc

)

,
(

abc
bca

)

,
(

abc
cab

)

,
(

abc
bac

)

,
(

abc
cba

)

,
(

abc
acb

)

}. Let
R = {x , y} and H = {

(

xy
xy

)

,
(

xy
yx

)

}. The number of equivalence classes
of functions from D to R is

1
12 (

∂3

∂z31
+ 2 ∂

∂z3
+ 3 ∂

∂z1

∂

∂z2
)[e2(z1+z2+z3) + e2z2 ]

∣

∣

∣

z1=z2=z3=0

= 1
12 (2

3 + 2 · 2 + 3 · 2 · 2) = 2.

This was expected. The number of ways of distributing three
indistinguishable objects into two indistinguishable cells is two:

three in one cell, none in the other;
two in one cell, one in the other.
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