Introduction to Complex Analysis

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science

Lake Superior State University

LSSU Math 413

(1) Complex Numbers and the Complex Plane

- Complex Numbers and Their Properties
- Complex Plane
- Polar Form of Complex Numbers
- Powers and Roots
- Sets of Points in the Complex Plane
- Applications

Subsection 1

Complex Numbers and Their Properties

Complex Numbers

- The imaginary unit $i=\sqrt{-1}$ is defined by the property $i^{2}=-1$.

Definition (Complex Number)

A complex number is any number of the form $z=a+i b$ where a and b are real numbers and i is the imaginary unit.

- The notations $a+i b$ and $a+b i$ are used interchangeably.
- The real number a in $z=a+i b$ is called the real part of z and the real number b is called the imaginary part of z.
- The real and imaginary parts of a complex number z are abbreviated $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$, respectively.
Example: If $z=4-9 i$, then $\operatorname{Re}(z)=4$ and $\operatorname{Im}(z)=-9$.
- A real constant multiple of the imaginary unit is called a pure imaginary number.
Example: $z=6 i$ is a pure imaginary number.

Equality of Complex Numbers

- Two complex numbers are equal if the corresponding real and imaginary parts are equal.

Definition (Equality)

Complex numbers $z_{1}=a_{1}+i b_{1}$ and $z_{2}=a_{2}+i b_{2}$ are equal, written $z_{1}=z_{2}$, if $a_{1}=a_{2}$ and $b_{1}=b_{2}$.

- In terms of the symbols $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$, we have

$$
z_{1}=z_{2} \quad \text { if } \quad \operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right) \text { and } \operatorname{Im}\left(z_{1}\right)=\operatorname{Im}\left(z_{2}\right)
$$

- The totality of complex numbers or the set of complex numbers is usually denoted by the symbol \mathbb{C}.
- Because any real number a can be written as $z=a+0 i$, the set \mathbb{R} of real numbers is a subset of \mathbb{C}.

Arithmetic Operations

- If $z_{1}=a_{1}+i b_{1}$ and $z_{2}=a_{2}+i b_{2}$, the operations of addition, subtraction, multiplication and division are defined as follows:
- Addition:

$$
z_{1}+z_{2}=\left(a_{1}+i b_{1}\right)+\left(a_{2}+i b_{2}\right)=\left(a_{1}+a_{2}\right)+i\left(b_{1}+b_{2}\right)
$$

- Subtraction:

$$
z_{1}-z_{2}=\left(a_{1}+i b_{1}\right)-\left(a_{2}+i b_{2}\right)=\left(a_{1}-a_{2}\right)+i\left(b_{1}-b_{2}\right)
$$

- Multiplication:

$$
z_{1} \cdot z_{2}=\left(a_{1}+i b_{1}\right)\left(a_{2}+i b_{2}\right)=a_{1} a_{2}-b_{1} b_{2}+i\left(b_{1} a_{2}+a_{1} b_{2}\right)
$$

- Division:

$$
\frac{z_{1}}{z_{2}}=\frac{a_{1}+i b_{1}}{a_{2}+i b_{2}}=\frac{a_{1} a_{2}+b_{1} b_{2}}{a_{2}^{2}+b_{2}^{2}}+i \frac{b_{1} a_{2}-a_{1} b_{2}}{a_{2}^{2}+b_{2}^{2}}
$$

Laws of Arithmetic

- The familiar commutative, associative, and distributive laws hold for complex numbers:
- Commutative laws:

$$
\begin{aligned}
z_{1}+z_{2} & =z_{2}+z_{1} \\
z_{1} z_{2} & =z_{2} z_{1}
\end{aligned}
$$

- Associative laws:

$$
\begin{aligned}
z_{1}+\left(z_{2}+z_{3}\right) & =\left(z_{1}+z_{2}\right)+z_{3} \\
z_{1}\left(z_{2} z_{3}\right) & =\left(z_{1} z_{2}\right) z_{3}
\end{aligned}
$$

- Distributive law:

$$
z_{1}\left(z_{2}+z_{3}\right)=z_{1} z_{2}+z_{1} z_{3}
$$

- In view of these laws, there is no need to memorize the definitions of addition, subtraction, and multiplication.

How to Add, Subtract and Multiply

- Addition, Subtraction, and Multiplication can be performed as follows:
(i) To add (subtract) two complex numbers, simply add (subtract) the corresponding real and imaginary parts.
(ii) To multiply two complex numbers, use the distributive law and the fact that $i^{2}=-1$.
- Example: If $z_{1}=2+4 i$ and $z_{2}=-3+8 i$, find
(a) $z_{1}+z_{2}$;
(b) $z_{1} z_{2}$.
(a) By adding real and imaginary parts, the sum of the two complex numbers z_{1} and z_{2} is

$$
z_{1}+z_{2}=(2+4 i)+(-3+8 i)=(2-3)+(4+8) i=-1+12 i .
$$

(b) By the distributive law and $i^{2}=-1$, the product of z_{1} and z_{2} is

$$
\begin{aligned}
z_{1} z_{2} & =(2+4 i)(-3+8 i)=(2+4 i)(-3)+(2+4 i)(8 i) \\
& =-6-12 i+16 i+32 i^{2}=(-6-32)+(16-12) i \\
& =-38+4 i
\end{aligned}
$$

Zero and Unity

- The zero in the complex number system is the number $0+0$;
- The unity is $1+0 i$.
- The zero and unity are denoted by 0 and 1 , respectively.
- The zero is the additive identity in the complex number system: For any complex number $z=a+i b$,

$$
z+0=(a+i b)+(0+0 i)=a+i b=z
$$

- Similarly, the unity is the multiplicative identity: For any complex number $z=a+i b$, we have

$$
z \cdot 1=(a+i b)(1+0 i)=a+i b=z
$$

Conjugates

Definition (Conjugate)

If z is a complex number, the number obtained by changing the sign of its imaginary part is called the complex conjugate, or simply conjugate, of z and is denoted by the symbol \bar{z}. In other words, if $z=a+i b$, then its conjugate is $\bar{z}=a-i b$.

- Example: If $z=6+3 i$, then $\bar{z}=6-3 i$. If $z=-5-i$, then $\bar{z}=-5+i$.
- If z is a real number, then $\bar{z}=z$.
- The conjugate of a sum and difference of two complex numbers is the sum and difference of the conjugates:

$$
\overline{z_{1}+z_{2}}=\bar{z}_{1}+\bar{z}_{2}, \quad \overline{z_{1}-z_{2}}=\bar{z}_{1}-\bar{z}_{2} .
$$

More Properties of Conjugates

- Moreover, we have the following three additional properties:

$$
\overline{z_{1} z_{2}}=\bar{z}_{1} \bar{z}_{2}, \quad \overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\bar{z}_{1}}{\bar{z}_{2}}, \quad \overline{\bar{z}}=z .
$$

- The sum and product of a complex number z with its conjugate \bar{z} is a real number:

$$
\begin{aligned}
z+\bar{z} & =(a+i b)+(a-i b)=2 a ; \\
z \bar{z} & =(a+i b)(a-i b)=a^{2}-i^{2} b^{2}=a^{2}+b^{2}
\end{aligned}
$$

- The difference of a complex number z with its conjugate \bar{z} is a pure imaginary number:

$$
z-\bar{z}=(a+i b)-(a-i b)=2 i b .
$$

- We obtain

$$
\operatorname{Re}(z)=\frac{z+\bar{z}}{2} ; \quad \operatorname{Im}(z)=\frac{z-\bar{z}}{2 i} .
$$

How to Divide

- To divide z_{1} by z_{2} :
- multiply the numerator and denominator of $\frac{z_{1}}{z_{2}}$ by the conjugate of z_{2}.

$$
\frac{z_{1}}{z_{2}}=\frac{z_{1}}{z_{2}} \cdot \frac{\bar{z}_{2}}{\bar{z}_{2}}=\frac{z_{1} \bar{z}_{2}}{z_{2} \bar{z}_{2}}
$$

- Then use the fact that $z_{2} \bar{z}_{2}$ is the sum of the squares of the real and imaginary parts of z_{2}.
- Example: If $z_{1}=2-3 i$ and $z_{2}=4+6 i$, find $\frac{z_{1}}{z_{2}}$.

$$
\begin{aligned}
\frac{z_{1}}{z_{2}} & =\frac{2-3 i}{4+6 i}=\frac{2-3 i}{4+6 i} \cdot \frac{4-6 i}{4-6 i}=\frac{8-12 i-12 i+18 i^{2}}{4^{2}+6^{2}} \\
& =\frac{-10-24 i}{52}=-\frac{10}{52}-\frac{24}{52} i=-\frac{5}{26}-\frac{6}{13} i .
\end{aligned}
$$

Additive and Multiplicative Inverses

- In the complex number system, every number z has a unique additive inverse: The additive inverse of $z=a+i b$ is its negative, $-z$, where $-z=-a-i b$.
For any complex number z, we have $z+(-z)=0$.
- Similarly, every nonzero complex number z has a multiplicative inverse: For $z \neq 0$, there exists one and only one nonzero complex number z^{-1} such that $z z^{-1}=1$. The multiplicative inverse z^{-1} is the same as the reciprocal $\frac{1}{z}$.
- Example: Find the reciprocal of $z=2-3 i$ and put the answer in the form $a+i b$.

$$
\begin{gathered}
\frac{1}{z}=\frac{1}{2-3 i}=\frac{1}{2-3 i} \cdot \frac{2+3 i}{2+3 i}=\frac{2+3 i}{4+9}=\frac{2+3 i}{13} . \\
\text { Therefore, } \frac{1}{z}=z^{-1}=\frac{2}{13}+\frac{3}{13} i
\end{gathered}
$$

Comparison with Real Analysis

- Many of the properties of the real number system \mathbb{R} hold in the complex number system \mathbb{C}, but there are some truly remarkable differences as well:
(i) For example, the concept of order in the real number system does not carry over to the complex number system: We cannot compare two complex numbers $z_{1}=a_{1}+i b_{1}, b_{1} \neq 0$, and $z_{2}=a_{2}+i b_{2}, b_{2} \neq 0$, by means of inequalities.
(ii) Some things that we take for granted as impossible in real analysis, such as $e^{x}=-2$ and $\sin x=5$ when x is a real variable, are perfectly correct and ordinary in complex analysis when the symbol x is interpreted as a complex variable.

Subsection 2

Complex Plane

Complex Numbers and Points

- A complex number $z=x+i y$ is uniquely determined by an ordered pair of real numbers (x, y).
- The first and second entries of the ordered pairs correspond, in turn, to the real and imaginary parts of the complex number.
- Example: The ordered pair $(2,-3)$ corresponds to the complex number $z=2-3 i$. Conversely, $z=2-3 i$ determines the ordered pair $(2,-3)$. The numbers $7, i$ and $-5 i$ are equivalent to $(7,0),(0,1),(0,-5)$ respectively.
- Because of the correspondence between a complex number $z=x+i y$ and one and only one point (x, y) in a coordinate plane, we shall use the terms complex number and point interchangeably.

Complex Numbers and Vectors: Modulus

- A complex number $z=x+i y$ can also be viewed as a two-dimensional position vector, i.e., a vector whose initial point is the origin and whose terminal point is the point (x, y).

Definition (Modulus of a Complex Number)

The modulus of a complex number $z=x+i y$, is the real number $|z|=\sqrt{x^{2}+y^{2}}$.

- The modulus $|z|$ of a complex number z is also called the absolute value of z.
- Example: If $z=2-3 i$, then $|z|=\sqrt{2^{2}+(-3)^{2}}=\sqrt{13}$. If $z=-9 i$, then $|-9 i|=\sqrt{(-9)^{2}}=9$.

Properties of the Modulus

- For any complex number $z=x+i y$, the product $z \bar{z}$ is the sum of the squares of the real and imaginary parts of z :

$$
z \bar{z}=x^{2}+y^{2} .
$$

This yields the relations:

$$
|z|^{2}=z \bar{z} \quad \text { and } \quad|z|=\sqrt{z \bar{z}} .
$$

- The modulus of a complex number z has the additional properties:

$$
\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right| \quad \text { and } \quad\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}
$$

In particular, when $z_{1}=z_{2}=z$, we get $\left|z^{2}\right|=|z|^{2}$.

Addition and Subtraction Geometrically

- The addition of complex numbers $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ takes the form $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$, i.e., it is simply the component definition of vector addition.

- The difference $z_{2}-z_{1}$ can be drawn either starting from the terminal point of z_{1} and ending at the terminal point of z_{2}, or as the position vector with terminal point $\left(x_{2}-x_{1}, y_{2}-y_{1}\right)$.
- Thus, the distance between $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ is the same as the distance between the origin and ($x_{2}-x_{1}, y_{2}-y_{1}$).

Sets of Points in the Complex Plane

- Example: Describe the set of points z in the complex plane that satisfy $|z|=|z-i|$.
The given equation asserts that the distance from a point z to the origin equals the distance from z to the point i. Thus, the set of points z is a horizontal line:

$$
\begin{aligned}
& |z|=|z-i| \Leftrightarrow \sqrt{x^{2}+y^{2}}=\sqrt{x^{2}+(y-1)^{2}} \Leftrightarrow x^{2}+y^{2}= \\
& x^{2}+(y-1)^{2} \Leftrightarrow x^{2}+y^{2}=x^{2}+y^{2}-2 y+1 .
\end{aligned}
$$

Thus, $y=\frac{1}{2}$, which is an equation of a horizontal line. Complex numbers satisfying $|z|=|z-i|$ can be written as $z=x+\frac{1}{2} i$.

Comparing Moduli

- Since $|z|$ is a real number, we can compare the absolute values of two complex numbers.
- Example: If $z_{1}=3+4 i$ and $z_{2}=5-i$, then

$$
\left|z_{1}\right|=\sqrt{25}=5 \quad \text { and } \quad\left|z_{2}\right|=\sqrt{26}
$$

and, consequently, $\left|z_{1}\right|<\left|z_{2}\right|$.
A geometric interpretation of the last inequality is that the point $(3,4)$ is closer to the origin than the point $(5,-1)$.

The Triangle Inequality

- Consider the triangle

The length of the side of the triangle corresponding to $z_{1}+z_{2}$ cannot be longer than the sum of the lengths of the remaining two sides. In symbols

$$
\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|
$$

- From the identity $z_{1}=z_{1}+z_{2}+\left(-z_{2}\right)$, we get

$$
\begin{aligned}
& \left|z_{1}\right|=\left|z_{1}+z_{2}+\left(-z_{2}\right)\right| \leq\left|z_{1}+z_{2}\right|+\left|-z_{2}\right|=\left|z_{1}+z_{2}\right|+\left|z_{2}\right| \text {. Hence } \\
& \left|z_{1}+z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right| . \text { Because } z_{1}+z_{2}=z_{2}+z_{1} \text {, } \\
& \left|z_{1}+z_{2}\right|=\left|z_{2}+z_{1}\right| \geq\left|z_{2}\right|-\left|z_{1}\right|=-\left(\left|z_{1}\right|-\left|z_{2}\right|\right) \text {. Combined with }
\end{aligned}
$$ the last result, this implies

$$
\left|z_{1}+z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right|
$$

The Triangle Inequality: More Consequences

- We have shown that

$$
\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|
$$

- By replacing z_{2} by $-z_{2}$, we get

$$
\begin{array}{r}
\left|z_{1}+\left(-z_{2}\right)\right| \leq\left|z_{1}\right|+\left|\left(-z_{2}\right)\right|=\left|z_{1}\right|+\left|z_{2}\right| \text {, i.e., } \\
\left|z_{1}-z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| .
\end{array}
$$

- Replacing z_{2} by $-z_{2}$, we also find

$$
\left|z_{1}-z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right| .
$$

- The triangle inequality extends to any finite sum of complex numbers:

$$
\left|z_{1}+z_{2}+z_{3}+\cdots+z_{n}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|+\left|z_{3}\right|+\cdots+\left|z_{n}\right| .
$$

Establishing Upper Bounds

- Find an upper bound for $\left|\frac{-1}{z^{4}-5 z+1}\right|$ if $|z|=2$.

Since the absolute value of a quotient is the quotient of the absolute values and $|-1|=1,\left|\frac{-1}{z^{4}-5 z+1}\right|=\frac{1}{\left|z^{4}-5 z+1\right|}$. Thus, we want to find a positive real number M such that $\frac{1}{\left|z^{4}-5 z+1\right|} \leq M$. To accomplish this task we want the denominator as small as possible. We have

$$
\left|z^{4}-5 z+1\right|=\left|z^{4}-(5 z-1)\right| \geq \| z^{4}|-|5 z-1||
$$

To make the difference in the last expression as small as possible, we want to make $|5 z-1|$ as large as possible. We have

$$
|5 z-1| \leq|5 z|+|-1|=5|z|+1
$$

Using $|z|=2$,
$\left|z^{4}-5 z+1\right| \geq\left|\left|z^{4}\right|-|5 z-1|\right| \geq\left||z|^{4}-(5|z|+1)\right|=\left||z|^{4}-5\right| z|-1|=5$.
Hence for $|z|=2$, we have $\frac{1}{\left|z^{4}-5 z+1\right|} \leq \frac{1}{5}$.

Subsection 3

Polar Form of Complex Numbers

Polar Coordinates

- A point P in the plane whose rectangular coordinates are (x, y) can also be described in terms of polar coordinates.
- The polar coordinate system consists of
- a point O called the pole;
- the horizontal half-line emanating from the pole called the polar axis.
- If
- r is the directed distance from the pole to P,
- θ an angle (in radians) measured from the polar axis to the line $O P$, then the point P can be described by the ordered pair (r, θ), called the polar coordinates of P :

The Polar Form of a Complex Number

Suppose that a polar coordinate system is superimposed on the complex plane with

- the pole O at the origin;
- the polar axis coinciding with the positive x-axis.
- Then x, y, r and θ are related by $x=r \cos \theta, y=r \sin \theta$.
- These equations enable us to express a nonzero complex number $z=x+i y$ as

$$
z=(r \cos \theta)+i(r \sin \theta) \quad \text { or } \quad z=r(\cos \theta+i \sin \theta)
$$

This is called the polar form or polar representation of the complex number z.

The Polar Form of a Complex Number

- In the polar form $z=r(\cos \theta+i \sin \theta)$, the coordinate r can be interpreted as the distance from the origin to the point (x, y).
- We adopt the convention that r is never negative so that we can take r to be the modulus of $z: r=|z|$.
- The angle θ of inclination of the vector z, always measured in radians from the positive real axis, is positive when measured counterclockwise and negative when measured clockwise.
- The angle θ is called an argument of z and is denoted by $\theta=\arg (z)$.
- An argument θ of a complex number must satisfy the equations

$$
\cos \theta=\frac{x}{r} \quad \text { and } \quad \sin \theta=\frac{y}{r}
$$

- An argument of a complex number z is not unique since $\cos \theta$ and $\sin \theta$ are 2π-periodic.

Example: Expressing a Complex Number in Polar Form

- Express $-\sqrt{3}-i$ in polar form.

With $x=-\sqrt{3}$ and $y=-1$, we obtain

$$
r=|z|=\sqrt{(-\sqrt{3})^{2}+(-1)^{2}}=2
$$

Now $\frac{y}{x}=\frac{-1}{-\sqrt{3}}=\frac{1}{\sqrt{3}}$. We know that $\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}$.
However, the point $(-\sqrt{3},-1)$ lies in the third quadrant, whence, we take the solution of $\tan \theta=\frac{-1}{-\sqrt{3}}=\frac{1}{\sqrt{3}}$ to be $\theta=\arg (z)=\frac{\pi}{6}+\pi=\frac{7 \pi}{6}$.

It follows that a polar form of the number is $z=2\left(\cos \frac{7 \pi}{6}+i \sin \frac{7 \pi}{6}\right)$.

The Principal Argument

- The symbol $\arg (z)$ represents a set of values, but the argument θ of a complex number that lies in the interval $-\pi<\theta \leq \pi$ is called the principal value of $\arg (z)$ or the principal argument of z.
- The principal argument of z is unique and is represented by the symbol $\operatorname{Arg}(z)$, that is,

$$
-\pi<\operatorname{Arg}(z) \leq \pi
$$

- Example: If $z=i$, some values of $\arg (i)$ are $\frac{\pi}{2}, \frac{5 \pi}{2},-\frac{3 \pi}{2}$, and so on. However, $\operatorname{Arg}(i)=\frac{\pi}{2}$.
Similarly, the argument of $-\sqrt{3}-i$ that lies in the interval $(-\pi, \pi)$, the principal argument of z, is $\operatorname{Arg}(z)=\frac{\pi}{6}-\pi=-\frac{5 \pi}{6}$. Using $\operatorname{Arg}(z)$, we can express this complex number in the alternative polar form:

$$
z=2\left(\cos \left(-\frac{5 \pi}{6}\right)+i \sin \left(-\frac{5 \pi}{6}\right)\right)
$$

- In general, $\arg (z)$ and $\operatorname{Arg}(z)$ are related by

$$
\arg (z)=\operatorname{Arg}(z)+2 \pi n, \quad n=0, \pm 1, \pm 2, \ldots
$$

Multiplying and Dividing in Polar Form

- Suppose $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$, where θ_{1} and θ_{2} are any arguments of z_{1} and z_{2}, respectively.
- Then

$$
\begin{aligned}
z_{1} z_{2} & =r_{1} r_{2}\left[\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}+i\left(\sin \theta_{1} \cos \theta_{2}+\cos \theta_{1} \sin \theta_{2}\right)\right] \\
\frac{z_{1}}{z_{2}} & =\frac{r_{1}}{r_{2}}\left[\cos \theta_{1} \cos \theta_{2}+\sin \theta_{1} \sin \theta_{2}+i\left(\sin \theta_{1} \cos \theta_{2}-\cos \theta_{1} \sin \theta_{2}\right)\right] .
\end{aligned}
$$

- From the addition formulas for the cosine and sine, we get

$$
z_{1} z_{2}=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]
$$

and

$$
\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right] .
$$

- The lengths of $z_{1} z_{2}$ and $\frac{z_{1}}{z_{2}}$ are the product of the lengths of z_{1} and z_{2} and the quotient of the lengths of z_{1} and z_{2}, respectively.
- The arguments of $z_{1} z_{2}$ and $\frac{z_{1}}{z_{2}}$ are given by $\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$ and $\arg \left(\frac{z_{1}}{z_{2}}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)$.

Example of Multiplication and Division in Polar Form

- We have seen that for $z_{1}=i$ and $z_{2}=-\sqrt{3}-i, \operatorname{Arg}\left(z_{1}\right)=\frac{\pi}{2}$ and $\operatorname{Arg}\left(z_{2}\right)=-\frac{5 \pi}{6}$, respectively. Thus, arguments for the product and quotient $z_{1} z_{2}=i(-\sqrt{3}-i)=1-\sqrt{3} i$ and $\frac{z_{1}}{z_{2}}=\frac{i}{-\sqrt{3}-i}=\frac{-1}{4}-\frac{\sqrt{3}}{4} i$ are:

$$
\arg \left(z_{1} z_{2}\right)=\frac{\pi}{2}+\left(-\frac{5 \pi}{6}\right)=-\frac{\pi}{3}
$$

and

$$
\arg \left(\frac{z_{1}}{z_{2}}\right)=\frac{\pi}{2}-\left(-\frac{5 \pi}{6}\right)=\frac{4 \pi}{3}
$$

Integer Powers of a Complex Number

- We can find integer powers of a complex number z from the multiplication and division formulas.
- If $z=r(\cos \theta+i \sin \theta)$, then

$$
z^{2}=r^{2}[\cos (\theta+\theta)+i \sin (\theta+\theta)]=r^{2}(\cos 2 \theta+i \sin 2 \theta)
$$

- Since $z^{3}=z^{2} z$, we also get

$$
z^{3}=r^{3}(\cos 3 \theta+i \sin 3 \theta), \text { and so on. }
$$

- For negative powers, taking $\arg (1)=0$,

$$
\frac{1}{z^{2}}=z^{-2}=r^{-2}[\cos (-2 \theta)+i \sin (-2 \theta)]
$$

- A general formula for the n-th power of z, for any integer n, is

$$
z^{n}=r^{n}(\cos n \theta+i \sin n \theta)
$$

- When $n=0$, we get $z^{0}=1$.

Calculating the Power of a Complex Number

- Compute z^{3} for $z=-\sqrt{3}-i$.

A polar form of the given number is $z=2\left[\cos \left(\frac{7 \pi}{6}\right)+i \sin \left(\frac{7 \pi}{6}\right)\right]$. Using the previous formula, with $r=2, \theta=\frac{7 \pi}{6}$, and $n=3$, we get

$$
\left.\begin{array}{rl}
z^{3} & =(-\sqrt{3}-i)^{3} \\
& =2^{3}\left(\cos \left(3 \frac{7 \pi}{6}\right)+i \sin \left(3 \frac{7 \pi}{6}\right)\right) \\
& =8\left(\cos \left(\frac{7 \pi}{2}\right)+i \sin \left(\frac{7 \pi}{2}\right)\right) \\
& =-8 i
\end{array}\right\}
$$

De Moivre's Formula

- When $z=\cos \theta+i \sin \theta$, we have $|z|=r=1$, whence, we obtain de Moivre's Formula:

$$
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta
$$

- Example: If $z=\frac{\sqrt{3}}{2}+\frac{1}{2} i$, calculate z^{3}.

Since $\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$ and $\sin \frac{\pi}{6}=\frac{1}{2}$, we get:

$$
\begin{aligned}
z^{3} & =\left(\frac{\sqrt{3}}{2}+\frac{1}{2} i\right)^{3} \\
& =\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)^{3} \\
& =\cos \left(3 \frac{\pi}{6}\right)+i \sin \left(3 \frac{\pi}{6}\right) \\
& =\cos \frac{\pi}{2}+i \sin \frac{\pi}{2} \\
& =i .
\end{aligned}
$$

Some Remarks

(i) It is not true, in general, that $\operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)$ and $\operatorname{Arg}\left(\frac{z_{1}}{z_{2}}\right)=\operatorname{Arg}\left(z_{1}\right)-\operatorname{Arg}\left(z_{2}\right)$.
(ii) An argument can be assigned to any nonzero complex number z. However, for $z=0, \arg (z)$ cannot be defined in any way that is meaningful.
(iii) If we take $\arg (z)$ from the interval $(-\pi, \pi)$, the relationship between a complex number z and its argument is single-valued; i.e., every nonzero complex number has precisely one angle in $(-\pi, \pi)$.
But there is nothing special about the interval $(-\pi, \pi)$. For the interval $(-\pi, \pi)$, the negative real axis is analogous to a barrier that we agree not to cross (called a branch cut). If we use $(0,2 \pi)$ instead of $(-\pi, \pi)$, the branch cut is the positive real axis.
(iv) The "cosine i sine" part of the polar form of a complex number is sometimes abbreviated cis, i.e., $z=r(\cos \theta+i \sin \theta)=r \operatorname{cis} \theta$.

Subsection 4

Powers and Roots

n-th Complex Roots of a Complex Number

- Recall from algebra that -2 and 2 are said to be square roots of the number 4 because $(-2)^{2}=4$ and $(2)^{2}=4$.
- In other words, the two square roots of 4 are distinct solutions of the equation $w^{2}=4$.
- Similarly, $w=3$ is a cube root of 27 since $w^{3}=3^{3}=27$.
- In general, we say that a number w is an n-th root of a nonzero complex number z if $w^{n}=z$, where n is a positive integer.
- Example: $w_{1}=\frac{1}{2} \sqrt{2}+\frac{1}{2} \sqrt{2} i$ and $w_{2}=-\frac{1}{2} \sqrt{2}-\frac{1}{2} \sqrt{2} i$ are the two square roots of the complex number $z=i$.
- We will demonstrate that there are exactly n solutions of the equation $w^{n}=z$.

Roots of a Complex Number

- Suppose $z=r(\cos \theta+i \sin \theta)$ and $w=\rho(\cos \phi+i \sin \phi)$ are polar forms of the complex numbers z and w.
- $w^{n}=z$ becomes $\rho^{n}(\cos n \phi+i \sin n \phi)=r(\cos \theta+i \sin \theta)$.
- We can conclude that $\rho^{n}=r$ and $\cos n \phi+i \sin n \phi=\cos \theta+i \sin \theta$.
- Let $\rho=\sqrt[n]{r}$ be the unique positive n-th root of the real number $r>0$.
- The definition of equality of two complex numbers implies that $\cos n \phi=\cos \theta$ and $\sin n \phi=\sin \theta$. Thus, the arguments θ and ϕ are related by $n \phi=\theta+2 k \pi$, where k is an integer, i.e., $\phi=\frac{\theta+2 k \pi}{n}$.
- As k takes on the successive integer values $k=0,1,2, \ldots, n-1$, we obtain n distinct n-th roots of z.
- These roots have the same modulus $\sqrt[n]{r}$ but different arguments.
- The n nth roots of a nonzero complex number $z=r(\cos \theta+i \sin \theta)$ are given by

$$
w_{k}=\sqrt[n]{r}\left[\cos \left(\frac{\theta+2 k \pi}{n}\right)+i \sin \left(\frac{\theta+2 k \pi}{n}\right)\right], k=0,1, \ldots, n-1
$$

Example: Finding Cube Roots

- Find the three cube roots of $z=i$.

We are solving $w^{3}=i$. With $r=1, \theta=\arg (i)=\frac{\pi}{2}$, a polar form of the given number is given by $z=\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right)$. From the previous work, with $n=3$, we then obtain

$$
w_{k}=\sqrt[3]{1}\left(\cos \frac{\frac{\pi}{2}+2 k \pi}{3}+i \sin \frac{\frac{\pi}{2}+2 k \pi}{3}\right), k=0,1,2 .
$$

Hence the three roots are,

$$
\begin{array}{ll}
k=0, & w_{0}=\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}=\frac{\sqrt{3}}{2}+\frac{1}{2} i \\
k=1, & w_{1}=\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}=-\frac{\sqrt{3}}{2}+\frac{1}{2} i ; \\
k=2, & w_{2}=\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}=-i .
\end{array}
$$

The Principal n-th Root

- The symbol $\arg (z)$ really stands for a set of arguments for a complex number z.
- Similarly, $z^{1 / n}$ is n-valued and represents the set of $n n$-th roots w_{k} of z.
- The unique root of a complex number z obtained by using the principal value of $\arg (z)$, with $k=0$, is referred to as the principal n-th root of w.
- Example: Since $\operatorname{Arg}(i)=\frac{\pi}{2}$ and $w_{k}=\sqrt[3]{1}\left(\cos \frac{\frac{\pi}{2}+2 k \pi}{3}+i \sin \frac{\frac{\pi}{2}+2 k \pi}{3}\right)$, $k=0,1,2$,

$$
w_{0}=\frac{\sqrt{3}}{2}+\frac{1}{2} i
$$

is the principal cube root of i.

- The choice of $\operatorname{Arg}(z)$ and $k=0$ guarantees that when z is a positive real number r, the principal n-th root is $\sqrt[n]{r}$.

Geometry of the n Complex n-th Roots

- Since the roots have the same modulus, the $n n$-th roots of a nonzero complex number z lie on a circle of radius $\sqrt[n]{r}$ centered at the origin in the complex plane.
- Since the difference between the arguments of any two successive roots w_{k} and w_{k+1} is $\frac{2 \pi}{n}$, the nth roots of z are equally spaced on this circle, beginning with the root whose argument is $\frac{\theta}{n}$.
- To illustrate, look at the three cube roots of i :

$$
\begin{aligned}
& w_{0}=\frac{\sqrt{3}}{2}+\frac{1}{2} i \\
& w_{1}=-\frac{\sqrt{3}}{2}+\frac{1}{2} i \\
& w_{2}=-i
\end{aligned}
$$

Example: Fourth Roots of a Complex Number

- The four fourth roots of $z=1+i$.
$r=\sqrt{2}$ and $\theta=\arg (z)=\frac{\pi}{4}$. From our formula, with $n=4$, we obtain

$$
w_{k}=\sqrt[8]{2}\left[\cos \left(\frac{\frac{\pi}{4}+2 k \pi}{4}\right)+i \sin \left(\frac{\frac{\pi}{4}+2 k \pi}{4}\right)\right], k=0,1,2,3 .
$$

We calculate

$$
\begin{array}{ll}
k=0, & w_{0}=\sqrt[8]{2}\left(\cos \frac{\pi}{16}+i \sin \frac{\pi}{16}\right) ; \\
k=1, & w_{1}=\sqrt[8]{2}\left(\cos \frac{9 \pi}{16}+i \sin \frac{9 \pi}{16}\right) ; \\
k=2, & w_{2}=\sqrt[8]{2}\left(\cos \frac{17 \pi}{16}+i \sin \frac{17 \pi}{16}\right) ; \\
k=3, & w_{3}=\sqrt[8]{2}\left(\cos \frac{25 \pi}{16}+i \sin \frac{25 \pi}{16}\right) .
\end{array}
$$

Remarks on Complex Roots

(i) The complex number system is closed under the operation of extracting roots. This means that for any $z \in \mathbb{C}, z^{1 / n}$ is also in \mathbb{C}. The real number system does not possess a similar closure property since, if x is in $\mathbb{R}, x^{1 / n}$ is not necessarily in \mathbb{R}.
(ii) Geometrically, the $n n$th roots of a complex number z can also be interpreted as the vertices of a regular polygon with n sides that is inscribed within a circle of radius $\sqrt[n]{r}$ centered at the origin.
(iii) When m and n are positive integers with no common factors, then we may define a rational power of z, i.e., $z^{m / n}$: It can be shown that the set of values $\left(z^{1 / n}\right)^{m}$ is the same as the set of values $\left(z^{m}\right)^{1 / n}$. This set of n common values is defined to be $z^{m / n}$.

Subsection 5

Sets of Points in the Complex Plane

Circles

- Suppose $z_{0}=x_{0}+i y_{0}$.
- The distance between the points $z=x+i y$ and $z_{0}=x_{0}+i y_{0}$ is

$$
\left|z-z_{0}\right|=\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}
$$

Thus, the points $z=x+i y$ that satisfy the equation

$$
\left|z-z_{0}\right|=\rho, \rho>0
$$

lie on a circle of radius ρ centered at the point z_{0}.

- Example:
(a) $|z|=1$ is an equation of a unit circle centered at the origin.
(b) By rewriting $|z-1+3 i|=5$ as $|z-(1-3 i)|=5$, we see that the equation describes a circle of radius 5 centered at the point $z_{0}=1-3 i$.

Disks and Neighborhoods

- The points z that satisfy the inequality $\left|z-z_{0}\right| \leq \rho$ can be either on the circle $\left|z-z_{0}\right|=\rho$ or within the circle.
- We say that the set of points defined by $\left|z-z_{0}\right| \leq \rho$ is a disk of radius ρ centered at z_{0}.
- The points z that satisfy the strict inequality $\left|z-z_{0}\right|<\rho$ lie within, and not on, a circle of radius ρ centered at the point z_{0}. This set is called a neighborhood of z_{0}.
- Occasionally, we will need to use a neighborhood of z_{0} that also excludes z_{0}. Such a neighborhood is defined by the simultaneous inequality $0<\left|z-z_{0}\right|<\rho$ and called a deleted neighborhood of z_{0}.
- Example: $|z|<1$ defines a neighborhood of the origin, whereas $0<|z|<1$ defines a deleted neighborhood of the origin; $|z-3+4 i|<0.01$ defines a neighborhood of $3-4 i$, whereas the inequality $0<|z-3+4 i|<0.01$ defines a deleted neighborhood of $3-4 i$.

Open Sets

- A point z_{0} is called an interior point of a set S of the complex plane if there exists some neighborhood of z_{0} that lies entirely within S.
- If every point z of a set S is an interior point, then S is said to be an open set.

- Example: The inequality $\operatorname{Re}(z)>1$ defines a right half-plane, which is an open set. All complex numbers $z=x+i y$ for which $x>1$ are in this set. E.g., if we choose $z_{0}=1.1+2 i$, then a neighborhood of z_{0} lying entirely in the set is defined by $|z-(1.1+2 i)|<0.05$.
- Example: The set S of points in the complex plane defined by $\operatorname{Re}(z) \geq 1$ is not open because every neighborhood of a point lying on the line $x=1$ must contain points in S and points not in S.

Additional Examples of Open Sets

(a) $\operatorname{Im}(z)<0$; lower half-plane

(c) $|z|>1$; exterior of unit circle

(b) $-1<\operatorname{Re}(z)<1$; infinite vertical strip

(d) $1<|z|<2$; interior of circular ring

Boundary and Exterior Points

- If every neighborhood of a point z_{0} of a set S contains at least one point of S and at least one point not in S, then z_{0} is said to be a boundary point of S.
Example: For the set of points defined by $\operatorname{Re}(z) \geq 1$, the points on the vertical line $x=1$ are boundary points.
Example: The points that lie on the circle $|z-i|=2$ are boundary points for the disk $|z-i| \leq 2$ as well as for the neighborhood $|z-i|<2$ of $z=i$.
- The collection of boundary points of S is called the boundary of S. Example: The circle $|z-i|=2$ is the boundary for both the disk $|z-i| \leq 2$ and the neighborhood $|z-i|<2$ of $z=i$.
- A point z that is neither an interior point nor a boundary point of a set S is said to be an exterior point of S, i.e., z_{0} is an exterior point of a set S if there exists some neighborhood of z_{0} that contains no points of S.

Interior, Boundary and Exterior Points

- Typical set S with interior, boundary, and exterior.

- An open set S can be as simple as the complex plane with a single point z_{0} deleted.
- The boundary of this "punctured plane" is z_{0};
- The only candidate for an exterior point is z_{0}. However, S has no exterior points since no neighborhood of z_{0} lies entirely outside the punctured plane.

Annulus

- The set S_{1} of points satisfying the inequality $\rho_{1}<\left|z-z_{0}\right|$ lie exterior to the circle of radius ρ_{1} centered at z_{0}.
- The set S_{2} of points satisfying $\left|z-z_{0}\right|<\rho_{2}$ lie interior to the circle of radius ρ_{2} centered at z_{0}.
- Thus, if $0<\rho_{1}<\rho_{2}$, the set of points satisfying the simultaneous inequality $\rho_{1}<\left|z-z_{0}\right|<\rho_{2}$ is the intersection of the sets S_{1} and S_{2}. This intersection is an open circular ring centered at z_{0}, called an open circular annulus.

- By allowing $\rho_{1}=0$, we obtain a deleted neighborhood of z_{0}.

Connected Sets and Domains

- If any pair of points z_{1} and z_{2} in a set S can be connected by a polygonal line that consists of a finite number of line segments joined end to end that lies entirely in the set, then the set S is said to be connected.

- An open connected set is called a domain. Example: The set of numbers z satisfying $\operatorname{Re}(z) \neq 4$ is an open set but is not connected: it is not possible to join points on either side of the vertical line $x=4$ by a polygonal line without leaving the set.
Example: A neighborhood of a point z_{0} is a connected set.

Region

- A region is a set of points in the complex plane with all, some, or none of its boundary points.
- Since an open set does not contain any boundary points, it is automatically a region.
- A region that contains all its boundary points is said to be closed.
- Example: The disk defined by $\left|z-z_{0}\right| \leq \rho$ is an example of a closed region and is referred to as a closed disk.
- Example: A neighborhood of a point z_{0} defined by $\left|z-z_{0}\right|<\rho$ is an open set or an open region and is said to be an open disk.
- If the center z_{0} is deleted from either a closed disk or an open disk, the regions defined by $0<\left|z-z_{0}\right| \leq \rho$ or $0<\left|z-z_{0}\right|<\rho$ are called punctured disks. A punctured open disk is the same as a deleted neighborhood of z_{0}.
- A region can be neither open nor closed.

Example: The annular region defined by $1 \leq|z-5|<3$ contains only some of its boundary points, and so it is neither open nor closed.

General Annular Regions

- We have defined a circular annular region given by $\rho_{1}<\left|z-z_{0}\right|<\rho_{2}$.

- In a more general interpretation, an annulus or annular region may have the appearance shown on the right.

Bounded Sets

- We say that a set S in the complex plane is bounded if there exists a real number $R>0$ such that $|z|<R$ every z in S, i.e., S is bounded if it can be completely enclosed within some neighborhood of the origin.
Example: The set S shown below is bounded because it is contained entirely within the dashed circular neighborhood of the origin.

(b) $-1<\operatorname{Re}(z)<1$; infinite vertical strip

(c) $|z|>1$; exterior of unit circle
- A set is unbounded if it is not bounded.

Example: The sets on the rightmost figures above are unbounded.

Extended Real Number System

- On the real line, we have exactly two directions and we represent the notions of "increasing without bound" and "decreasing without bound" symbolically by $x \rightarrow+\infty x \rightarrow-\infty$, respectively.
- We can avoid $\pm \infty$ by dealing with an "ideal point" called the point at infinity, which is denoted simply by ∞.
- We identify any real number a with a point $\left(x_{0}, y_{0}\right)$:

The farther the point $(a, 0)$ is from the origin, the nearer $\left(x_{0}, y_{0}\right)$ is to $(0,1)$. The only point on the circle that does not correspond to a real number a is $(0,1)$. We identify $(0,1)$ with ∞.

- The set consisting of the real numbers \mathbb{R} adjoined with ∞ is called the extended real-number system.

Extended Complex Number System

- Since \mathbb{C} is not ordered, the notions of z either "increasing" or "decreasing" have no meaning.
- By increasing the modulus $|z|$ of a complex number z, the number moves farther from the origin.
- In complex analysis, only the notion of ∞ is used because we can extend the complex number system \mathbb{C} in a manner analogous to that just described for the real number system \mathbb{R}.
- We associate a complex number with a point on a unit sphere called the Riemann sphere:

Because the point $(0,0,1)$ corresponds to no number z in the plane, we correspond it with ∞. The system consisting of \mathbb{C} adjoined with the "ideal point" ∞ is called the extended complexnumber system.

Subsection 6

Applications

Complex Roots of Quadratic Equations

- Consider the quadratic equation

$$
a x^{2}+b x+c=0
$$

where the coefficients $a \neq 0, b$ and c are real.

- Completion of the square in x yields the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- When $D=b^{2}-4 a c<0$, the roots of the equation are complex.
- Example: The two roots of $x^{2}-2 x+10=0$ are

$$
x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(10)}}{2(1)}=\frac{2 \pm \sqrt{-36}}{2}
$$

$\sqrt{-36}=\sqrt{36} \sqrt{-1}=6 i$. Therefore, the complex roots of the equation are

$$
z_{1}=1+3 i, \quad z_{2}=1-3 i .
$$

The Quadratic Formula for Complex Coefficients

- The quadratic formula is perfectly valid when the coefficients $a \neq 0, b$ and c of a quadratic polynomial equation

$$
a z^{2}+b z+c=0
$$

are complex numbers.

- Although the formula can be obtained in exactly the same manner, we choose to write the result as

$$
z=\frac{-b+\left(b^{2}-4 a c\right)^{1 / 2}}{2 a}
$$

- When $D=b^{2}-4 a c \neq 0$, the symbol $\left(b^{2}-4 a c\right)^{1 / 2}$ represents the set of two square roots of the complex number $b^{2}-4 a c$.
- Thus, the formula gives two complex solutions.
- In the sequel to keep notation clear, we reserve the use of the symbol $\sqrt{ }$ to real numbers where \sqrt{a} denotes the nonnegative root of the real number $a \geq 0$.

Using the Quadratic Formula

- Solve the quadratic equation $z^{2}+(1-i) z-3 i=0$. Apply the quadratic formulas, with $a=1, b=1-i$ and $c=-3 i$:

$$
z=\frac{-(1-i)+\left[(1-i)^{2}-4(-3 i)\right]^{1 / 2}}{2}=\frac{1}{2}\left[-1+i+(10 i)^{1 / 2}\right]
$$

To compute $(10 i)^{1 / 2}$ we rewrite in polar form with $r=10, \theta=\frac{\pi}{2}$, and use

$$
w_{k}=\sqrt{r}\left(\cos \frac{\theta+2 k \pi}{2}+i \sin \frac{\theta+2 k \pi}{2}\right), k=0,1
$$

Thus, the two square roots of $10 i$ are:

$$
\begin{aligned}
& w_{0}=\sqrt{10}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)=\sqrt{10}\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i\right)=\sqrt{5}+\sqrt{5} i \text { and } \\
& w_{1}=\sqrt{10}\left(\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}\right)=\sqrt{10}\left(-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i\right)=-\sqrt{5}-\sqrt{5} i .
\end{aligned}
$$

Going back to the quadratic formula, we obtain

$$
\begin{aligned}
& z_{1}=\frac{1}{2}[-1+i+(\sqrt{5}+\sqrt{5} i)], \quad z_{2}=\frac{1}{2}[-1+i+(-\sqrt{5}-\sqrt{5} i)] \\
& \text { or } z_{1}=\frac{1}{2}(\sqrt{5}-1)+\frac{1}{2}(\sqrt{5}+1) i, \quad z_{2}=-\frac{1}{2}(\sqrt{5}+1)-\frac{1}{2}(\sqrt{5}-1) i
\end{aligned}
$$

Factoring a Quadratic Polynomial

- By finding all the roots of a polynomial equation we can factor the polynomial completely.
- If z_{1} and z_{2} are the roots of $a z^{2}+b z+c=0$, then $a z^{2}+b z+c$ factors as

$$
a z^{2}+b z+c=a\left(z-z_{1}\right)\left(z-z_{2}\right) .
$$

- Example: We found that the quadratic equation $x^{2}-2 x+10=0$ has roots $z_{1}=1+3 i$ and $z_{2}=1-3 i$. Thus, the polynomial $x^{2}-2 x+10$ factors as

$$
x^{2}-2 x+10=[x-(1+3 i)][x-(1-3 i)]=(x-1-3 i)(x-1+3 i) .
$$

- Example: Similarly, $z^{2}+(1-i) z-3 i=\left(z-z_{1}\right)\left(z-z_{2}\right)=$ $\left[z-\frac{1}{2}(\sqrt{5}-1)-\frac{1}{2}(\sqrt{5}+1) i\right]\left[z+\frac{1}{2}(\sqrt{5}+1)+\frac{1}{2}(\sqrt{5}-1) i\right]$.

Differential Equations: The Auxiliary Equation

- The first step in solving a linear second-order ordinary differential equation $a y^{\prime \prime}+b y^{\prime}+c y=f(x)$ with real coefficients a, b and c is to solve the associated homogeneous equation $a y^{\prime \prime}+b y^{\prime}+c y=0$.
- The latter equation possesses solutions of the form $y=e^{m x}$.
- To see this, we substitute $y=e^{m x}, y^{\prime}=m e^{m x}, y^{\prime \prime}=m^{2} e^{m x}$ into $a y^{\prime \prime}+b y^{\prime}+c y=0$:
$a y^{\prime \prime}+b y^{\prime}+c y=a m^{2} e^{m x}+b m e^{m x}+c e^{m x}=e^{m x}\left(a m^{2}+b m+c\right)=0$.
- From $e^{m x}\left(a m^{2}+b m+c\right)=0$, we see that $y=e^{m x}$ is a solution of the homogeneous equation whenever m is root of the polynomial equation $a m^{2}+b m+c=0$.
- This equation is known as the auxiliary equation.

Differential Equations: Complex Roots of the Auxiliary

- When the coefficients of a polynomial equation are real, the complex roots of the equation must always appear in conjugate pairs.
- Thus, if the auxiliary equation possesses complex roots $\alpha+i \beta$, $\alpha-i \beta, \beta>0$, then two solutions of $a y^{\prime \prime}+b y^{\prime}+c y=0$ are complex exponential functions $y=e^{(\alpha+i \beta) x}$ and $y=e^{(\alpha-i \beta) x}$.
- In order to obtain real solutions of the differential equation, we use Eulers formula $\quad e^{i \theta}=\cos \theta+i \sin \theta, \theta$ real.
- We obtain $e^{(\alpha+i \beta) x}=e^{\alpha x} e^{i \beta x}=e^{\alpha x}(\cos \beta x+i \sin \beta x)$ and $e^{(\alpha-i \beta) x}=e^{\alpha x} e^{-i \beta x}=e^{\alpha x}(\cos \beta x-i \sin \beta x)$.
- Since the differential equation is homogeneous, the linear combinations $y_{1}=\frac{1}{2}\left(e^{(\alpha+i \beta) x}+e^{(\alpha-i \beta) x}\right)$, $y_{2}=\frac{1}{2 i}\left(e^{(\alpha+i \beta) x}-e^{(\alpha-i \beta) x}\right)$ are also solutions.
- These expressions are real functions

$$
y_{1}=e^{\alpha x} \cos \beta x \quad \text { and } \quad y_{2}=e^{\alpha x} \sin \beta x .
$$

Solving a Differential Equation

- Solve the differential equation $y^{\prime \prime}+2 y^{\prime}+2 y=0$.

We apply the quadratic formula to the auxiliary equation

$$
m^{2}+2 m+2=0
$$

We obtain the complex roots $m_{1}=-1+i$ and $m_{2}=\overline{m_{1}}=-1-i$. With the identifications $\alpha=-1$ and $\beta=1$, the preceding formulas give the two solutions

$$
y_{1}=e^{-x} \cos x \quad \text { and } \quad y_{2}=e^{-x} \sin x
$$

- The general solution of a homogeneous linear n-th-order differential equations consists of a linear combination of n linearly independent solutions.
- Thus, the general solution of the given second-order differential equation is

$$
y=c_{1} y_{1}+c_{2} y_{2}=c_{1} e^{-x} \cos x+c_{2} e^{-x} \sin x
$$

where c_{1} and c_{2} are arbitrary constants.

Exponential Form of a Complex Number

- In general, the complex exponential e^{z} is the complex number defined by

$$
e^{z}=e^{x+i y}=e^{x}(\cos y+i \sin y)
$$

- The definition can be used to show that the familiar law of exponents $e^{z_{1}} e^{z_{2}}=e^{z_{1}+z_{2}}$ holds for complex numbers.
- This justifies the results presented on differential equations.
- Euler's formula is a special case of this definition.
- Euler's formula provides a notational convenience for several concepts considered earlier in this chapter, e.g., the polar form of z

$$
z=r(\cos \theta+i \sin \theta)
$$

can now be written compactly as $z=r e^{i \theta}$. This convenient form is called the exponential form of a complex number z.

- Example: $i=e^{\pi i / 2}$ and $1+i=\sqrt{2} e^{\pi i / 4}$.
- Finally, the formula for the n nth roots of a complex number becomes

$$
z^{1 / n}=\sqrt[n]{r} e^{i(\theta+2 k \pi) / n}, \quad k=0,1,2, \ldots, n-1
$$

