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Complex Functions and Mappings Functions

Real versus Complex Functions

A function f from a set A to a set B is a rule of correspondence
that assigns to each element in A one and only one element in B .

We often think of a function as a rule or a machine that accepts
inputs from the set A and returns outputs in the set B .

In calculus we studied functions whose inputs and outputs were real
numbers. Such functions are called real-valued functions of a real

variable.

Now we study functions whose inputs and outputs are complex
numbers. We call these functions complex functions of a complex

variable, or complex functions for short.

Many interesting complex functions are simply generalizations of
well-known functions from calculus.
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Complex Functions and Mappings Functions

Domain and Range

Suppose that f is a function from the set A to the set B .

If f assigns to a in A the element b in B , then we say that b is the
image of a under f , or the value of f at a, and we write b = f (a).

The set A, the set of inputs, is called the domain of f and the set of
images in B , the set of outputs, is called the range of f .

We denote the domain of f by Dom(f ) and the range of f by
Range(f ).

Example: Consider the “squaring” function f (x) = x2 defined for the
real variable x .

Since any real number can be squared, the domain of f is the set R of
all real numbers, i.e., Dom(f ) = A = R. The range of f consists of all
real numbers x2, where x is a real number. Of course, x2 ≥ 0, for all
real x , and one can see from the graph of f that Range(f ) = [0,∞).

The range of f need not be the same as the set B . For instance,
because the interval [0,∞) is a subset of R, f can be viewed as a
function from A = R to B = R, so the range of f is not equal to B .
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Complex Functions and Mappings Functions

Complex Functions

Definition (Complex Function)

A complex function is a function f whose domain and range are subsets
of the set C of complex numbers.

A complex function is also called a complex-valued function of a

complex variable.
Ordinarily, the usual symbols f , g and h will denote complex functions.
Inputs to a complex function f will typically be denoted by the
variable z and outputs by the variable w = f (z).
When referring to a complex function we will use three notations
interchangeably: E.g.,

f (z) = z − i , w = z − i , or, simply, the function z − i .

The notation w = f (z) will always denote a complex function;
the notation y = f (x) will represent a real-valued function of a real
variable x .
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Complex Functions and Mappings Functions

Examples of Complex Functions

(a) The expression z2 − (2 + i)z can be evaluated at any complex
number z and always yields a single complex number, and so

f (z) = z2 − (2 + i)z

defines a complex function.
Values of f are found by using the arithmetic operations for complex
numbers. For instance, at the points z = i and z = 1 + i we have:

f (i) = (i)2 − (2 + i)(i) = − 1− 2i + 1 = − 2i ;
f (1 + i) = (1 + i)2 − (2 + i)(1 + i) = 2i − 1− 3i = − 1− i .

(b) The expression g(z) = z + 2Re(z) also defines a complex function.
Some values of g are:

g(i) = i + 2Re(i) = i + 2(0) = i ;
g(2 − 3i) = 2− 3i + 2Re(2− 3i) = 2− 3i + 2(2) = 6− 3i .
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Complex Functions and Mappings Functions

Natural Domains

When the domain of a complex function is not explicitly stated, we
assume the domain to be the set of all complex numbers z for which
f (z) is defined. This set is sometimes referred to as the natural

domain of f .

Example: The functions

f (z) = z2 − (2 + i)z and g(z) = z + 2Re(z)

are defined for all complex numbers z , and so, Dom(f ) = C and

Dom(g) = C. The complex function h(z) =
z

z2 + 1
is not defined at

z = i and z = −i because the denominator z2 + 1 is equal to 0 when
z = ±i . Therefore, Dom(h) is the set of all complex numbers except
i and −i , written Dom(h) = C− {−i , i}.
Since R is a subset of C, every real-valued function of a real variable
is also a complex function. We will see that real-valued functions of
two real variables x and y are also special types of complex functions.
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Complex Functions and Mappings Functions

Real and Imaginary Parts of a Complex Function

If w = f (z) is a complex function, then the image of a complex
number z = x + iy under f is a complex number w = u + iv . By
simplifying the expression f (x + iy), we can write the real variables u
and v in terms of the real variables x and y .

Example: By replacing the symbol z with x + iy in the complex
function w = z2, we obtain:

w = u + iv = (x + iy)2 = x2 − y2 + 2xyi .

Thus, u = x2 − y2 and v = 2xy , respectively.

If w = u + iv = f (x + iy) is a complex function, then both u and v

are real functions of the two real variables x and y , i.e., by setting
z = x + iy , we can express any complex function w = f (z) in terms
of two real functions as:

f (z) = u(x , y) + iv(x , y).

The functions u(x , y) and v(x , y) are called the real and imaginary

parts of f , respectively.
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Complex Functions and Mappings Functions

Examples

Find the real and imaginary parts of the functions:

(a) f (z) = z2 − (2 + i)z ;
(b) g(z) = z + 2Re(z).

In each case, we replace the symbol z by x + iy , then simplify.

(a) f (z) = (x + iy)2− (2+ i)(x + iy) = x2− 2x + y − y2+(2xy − x − 2y)i .
So,

u(x , y) = x2 − 2x + y − y2 and v(x , y) = 2xy − x − 2y .

(b) Since g(z) = x + iy + 2Re(x + iy) = 3x + iy , we have

u(x , y) = 3x and v(x , y) = y .
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Complex Functions and Mappings Functions

Specifying w via u and v

Every complex function is completely determined by the real functions
u(x , y) and v(x , y).

Thus, a complex function w = f (z) can be defined by arbitrarily
specifying two real functions u(x , y) and v(x , y), even though
w = u + iv may not be obtainable through familiar operations
performed solely on the symbol z .

Example: If we take u(x , y) = xy2 and v(x , y) = x2 − 4y3, then

f (z) = xy2 + i(x2 − 4y3)

defines a complex function. In order to find the value of f at the
point z = 3 + 2i , we substitute x = 3 and y = 2:

f (3 + 2i) = 3 · 22 + i(32 − 4 · 23) = 12− 23i .

Of course, complex functions defined in terms of u(x , y) and v(x , y)
can always be expressed in terms of operations on the symbols z and
z̄.
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Complex Functions and Mappings Functions

Exponential Function

The complex exponential function ez is an example of a function
defined by specifying its real and imaginary parts.

Definition (Complex Exponential Function)

The function ez defined by

ez = ex cos y + iex sin y

is called the complex exponential function.

The real and imaginary parts of the complex exponential function are

u(x , y) = ex cos y and v(x , y) = ex sin y .

Thus, values of the complex exponential function w = ez are found
by expressing the point z as z = x + iy and then substituting the
values of x and y in u(x , y) and v(x , y).
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Complex Functions and Mappings Functions

Values of the Complex Exponential Function

Find the values of the complex exponential function ez at:

(a) z = 0 (b) z = i (c) z = 2 + πi .

In each part we substitute x = Re(z) and y = Im(z) in
ez = ex cos y + iex sin y and then simplify:

(a) For z = 0, we have x = 0 and y = 0, and so
e0 = e0 cos 0 + ie0 sin 0 = 1 · 1 + i1 · 0 = 1.

(b) For z = i , we have x = 0 and y = 1, and so:
e i = e0 cos 1 + ie0 sin 1 = cos 1 + i sin 1.

(c) For z = 2 + πi , we have x = 2 and y = π, and so
e2+πi = e2 cosπ + ie2 sinπ = e2 · (−1) + ie2 · 0 = − e2.
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Complex Functions and Mappings Functions

Exponential Form of a Complex Number

The exponential function enables us to express the polar form of a
nonzero complex number z = r(cos θ + i sin θ) in a particularly
convenient and compact form:

z = re iθ.

This form is called the exponential form of the complex number z .

Example: A polar form of the complex number 3i is
3(cos π

2 + i sin π
2 ), whereas an exponential form of 3i is 3e iπ/2.

In the exponential form of a complex number, the value of θ = arg(z)
is not unique.

Example: All forms
√
2e iπ/4,

√
2e i9π/4, and

√
2e i17π/4 are all valid

exponential forms of the complex number 1 + i .
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Complex Functions and Mappings Functions

Some Additional Properties

If z is a real number, that is, if z = x + 0i , then

ez = ex cos 0 + iex sin 0 = ex .

Thus, the complex exponential function agrees with the usual real
exponential function for real z .

Many well-known properties of the real exponential function are also
satisfied by the complex exponential function: If z1 and z2 are
complex numbers, then:

e0 = 1;

ez1ez2 = ez1+z2 ;
ez1

ez2
= ez1−z2 ;

(ez1)n = enz1 , for n = 0, 1, 2, . . ..
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Complex Functions and Mappings Functions

Periodicity of ez

The most unexpected difference between the real and complex
exponential functions is:

Proposition (Periodicity of ez)

The complex exponential function is periodic; Indeed, we have

ez+2πi = ez , for all complex numbers z .

ez+2πi = ex+iy+2πi

= ex+i(y+2π)

= ex cos (y + 2π) + iex sin (y + 2π)
= ex cos y + iex sin y
= ex+iy = ez .

Corollary

The complex exponential function has a pure imaginary period 2πi .
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Complex Functions and Mappings Functions

Polar Coordinates

It is often more convenient to express the complex variable z using
either the polar form z = r(cos θ + i sin θ) or, equivalently, the
exponential form z = re iθ.

Given a complex function w = f (z), if we replace the symbol z with
r(cos θ + i sin θ), then we can write this function as:

f (z) = u(r , θ) + iv(r , θ).

We still call the real functions u(r , θ) and v(r , θ) the real and
imaginary parts of f , respectively.

Example: Replacing z with r(cos θ + i sin θ) in f (z) = z2 yields

f (z) = (r(cosθ + i sin θ))2 = r2 cos 2θ + ir2 sin 2θ.

Thus, the real and imaginary parts of f (z) = z2 are

u(r , θ) = r2 cos 2θ and v(r , θ) = r2 sin 2θ.

Note that u and v are not the same as the functions u and v

previously computed using z = x + iy .

George Voutsadakis (LSSU) Complex Analysis October 2014 17 / 108



Complex Functions and Mappings Functions

Definition in Polar Coordinates

A complex function can be defined by specifying its real and
imaginary parts in polar coordinates.

Example: The expression

f (z) = r3 cos θ + (2r sin θ)i

defines a complex function.
To find the value of this function at, say, the point z = 2i , we first
express 2i in polar form 2i = 2(cos π

2 + i sin π
2 ). We then set r = 2

and θ = π
2 in the expression for f :

f (2i) = (2)3 cos
π

2
+ (2 · 2 sin π

2
)i = 8 · 0 + (4 · 1)i = 4i .
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Complex Functions and Mappings Functions

Remarks

(i) The complex exponential function provides a good example of how
complex functions can be similar to and, at the same time, different
from their real counterparts.

(ii) Every complex function can be defined in terms of two real functions
u(x , y) and v(x , y) as f (z) = u(x , y) + iv(x , y). Thus, the study of
complex functions is closely related to the study of real multivariable
functions of two real variables.

(iii) Real-valued functions of a real variable and real-valued functions of
two real variables are special types of complex functions. Other types
include:

Real-valued functions of a complex variable are functions y = f (z)
where z is a complex number and y is a real number. The functions
x = Re(z) and r = |z | are both examples of this type of function.
Complex-valued functions of a real variable are functions w = f (t)
where t is a real number and w is a complex number. It is customary
to express such functions in terms of two real-valued functions of the
real variable t, w(t) = x(t) + iy(t). An example is w(t) = 3t + i cos t.
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Complex Functions and Mappings Complex Functions as Mappings

Subsection 2

Complex Functions as Mappings
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Complex Functions and Mappings Complex Functions as Mappings

Complex Mappings

The graph of a complex function lies in four-dimensional space, and
so we cannot use graphs to study complex functions.

The concept of a complex mapping gives a geometric representation
of a complex function:

The basic idea is that every complex function describes a
correspondence between points in two copies of the complex plane.
The point z in the z-plane is associated with the unique point
w = f (z) in the w -plane.

The alternative term complex mapping in place of “complex function”
is used when considering the function as this correspondence between
points in the z-plane and points in the w -plane.

The geometric representation of a complex mapping w = f (z)
consists of two figures:

the first, a subset S of points in the z-plane;
the second, the set S ′ of the images of points in S under w = f (z) in
the w -plane.
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Complex Functions and Mappings Complex Functions as Mappings

Mappings

If y = f (x) is a real-valued function of a real variable x , then the
graph of f is defined to be the set of all points (x , f (x)) in the
two-dimensional Cartesian plane.

If w = f (z) is a complex function, then both z and w lie in a
complex plane, whence the set of all points (z , f (z)) lies in
four-dimensional space.

A subset of four-dimensional space cannot be easily illustrated and,
thus, the graph of a complex function cannot be drawn.

The term complex mapping refers to the correspondence determined
by a complex function w = f (z) between points in a z-plane and
images in a w -plane.

If the point z0 in the z-plane corresponds to the point w0 = f (z0) in
the w -plane, then we say that f maps z0 onto w0 or that z0 is
mapped onto w0 by f .
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Complex Functions and Mappings Complex Functions as Mappings

Example (Physical Motion)

Consider the real function f (x) = x + 2.

The known representation of this function is a line of slope 1 and
y-intercept (0, 2).

Another representation shows how one copy of the real line (the
x-line) is mapped onto another copy of the real line (the y -line) by f :
Each point on the x-line is mapped onto a point two units to the
right on the y -line.

You can visualize the action of this mapping by imagining the real line
as an infinite rigid rod that is physically moved two units to the right.
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Complex Functions and Mappings Complex Functions as Mappings

Representing a Complex Mapping

To create a geometric representation of a complex mapping, we begin
with two copies of the complex plane, the z-plane and the w -plane.

A complex mapping is rep-
resented by drawing a set
S of points in the z-plane
and the corresponding set
of images of the points in
S under f in the w -plane.

If w = f (z) is a complex mapping and if S is a set of points in the
z-plane, then we call the set of images of the points in S under f the
image of S under f , denoted S ′.

If S is a domain or a curve, we also use symbols such as D and D ′ or
C and C ′, in place of S and S ′.

Sometimes f (C ) is used to denote the image of C under w = f (z).
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Complex Functions and Mappings Complex Functions as Mappings

Image of a Half-Plane under w = iz

Find the image of the half-plane Re(z) ≥ 2 under the complex
mapping w = iz and represent the mapping graphically.

Let S be the half-plane consisting of all complex points z with
Re(z) ≥ 2. Consider first the vertical boundary line x = 2 of S :

For any point z on this line we have z = 2 + iy ,
where −∞ < y < ∞. The value of f (z) = iz

at a point on this line is w = f (2 + iy) = i(2 +
iy) = −y + 2i . The set of points w = −y + 2i ,
−∞ < y < ∞, is the line v = 2 in the w -plane.

Hence, the vertical line x = 2 in the z-plane is mapped onto the
horizontal line v = 2 in the w -plane by the mapping w = iz .
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Complex Functions and Mappings Complex Functions as Mappings

Image of a Half-Plane under w = iz (Cont’d)

Therefore, the vertical line on the left is mapped onto the horizontal
line shown on the right.

Now consider the entire half-
plane S . This set can be de-
scribed by the two simultane-
ous inequalities, x ≥ 2 and
−∞ < y < ∞. In order to
describe the image of S :

We express w = iz in terms of its real and imaginary parts u and v .
Then we use the bounds on x and y in the z-plane to determine
bounds on u and v in the w -plane.

We have w = i(x + iy) = −y + ix . So the real and imaginary parts of
w = iz are u(x , y) = −y and v(x , y) = x . We conclude that v ≥ 2
and −∞ < u < ∞. That is, the set S ′ is the half-plane lying on or
above the horizontal line v = 2.

George Voutsadakis (LSSU) Complex Analysis October 2014 26 / 108



Complex Functions and Mappings Complex Functions as Mappings

Image of a Line under w = z
2

Find the image of the vertical line x = 1 under the complex mapping
w = z2 and represent the mapping graphically.

Let C be the set of points on the vertical line x = 1, i.e., the set of
points z = 1 + iy with −∞ < y < ∞. The real and imaginary parts
of w = z2 = (x + iy)2 are

u(x , y) = x2 − y2 and v(x , y) = 2xy .

For a point z = 1 + iy in C , we have

u(1, y) = 1− y2 and v(1, y) = 2y .

Thus, the image of S is the set of points w = u + iv satisfying
u = 1− y2 and v = 2y , for −∞ < y < ∞.
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Complex Functions and Mappings Complex Functions as Mappings

Image of a Line under w = z
2 (Cont’d)

We found w = u + iv , with u = 1− y2, v = 2y , −∞ < y < ∞.

Note that these are parametric equations in the real parameter y , and
they define a curve in the w -plane. By eliminating the parameter y ,
we find

u = 1−
(v

2

)2
= 1− v2

4
.

Since y can take on any real value and since v = 2y , it follows that
v can take on any real value. Consequently, C ′ is a parabola in the
w -plane with vertex at (1, 0) and u-intercepts at (0,±2):
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Complex Functions and Mappings Complex Functions as Mappings

Parametric Curves in the Complex Plane

We can often gain a good understanding of a complex mapping by
analyzing the images of curves (one-dimensional subsets of the
complex plane).

This process is facilitated by the use of parametric equations.

If x = x(t) and y = y(t) are real-valued functions of a real variable t,
then the set C of all points (x(t), y(t)), where a ≤ t ≤ b, is called a
parametric curve.

The equations x = x(t), y = y(t), and a ≤ t ≤ b are called
parametric equations of C .

A parametric curve can be regarded as lying in the complex plane by
letting x and y represent the real and imaginary parts of a point in
the complex plane, i.e., if x = x(t), y = y(t), a ≤ t ≤ b, are
parametric equations of a curve C in the Cartesian plane, then the set
of points z(t) = x(t) + iy(t), a ≤ t ≤ b, is a description of the curve
C in the complex plane.
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Complex Functions and Mappings Complex Functions as Mappings

Definition of Parametric Curves in the Complex Plane

Example: Consider the parametric equations

x = cos t, y = sin t, 0 ≤ t ≤ 2π,

of a curve C in the xy -plane. The set of points z(t) = cos t + i sin t,
0 ≤ t ≤ 2π, describes the curve C in the complex plane (a circle of
radius 1 centered at the origin). If, say, t = 0, then

the point (cos 0, sin 0) = (1, 0) is on the curve C in the Cartesian plane;
the point z(0) = cos 0 + i sin 0 = 1 represents this point on C in the
complex plane.

Definition (Parametric Curve in the Complex Plane)

If x(t) and y(t) are real-valued functions of a real variable t, then the set
C consisting of all points z(t) = x(t) + iy(t), a ≤ t ≤ b, is called a
parametric curve or a complex parametric curve.
The complex valued function of the real variable t, z(t) = x(t) + iy(t), is
called a parametrization of C .
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Complex Functions and Mappings Complex Functions as Mappings

Parametrization of a Line

Suppose we want to find a parametrization of the line in the complex
plane containing the points z0 and z1.

The difference z1 − z0 represents the vector
originating at z0 and terminating at z1: If z
is any point on the line containing z0 and z1,
then the vector z−z0 is a real multiple of the
vector z1 − z0.

Therefore, if z is on the line containing z0 and z1, then there is a real
number t such that z − z0 = t(z1 − z0).

Solving this equation for z gives the parametrization

z(t) = z0 + t(z1 − z0) = z0(1− t) + z1t, −∞ < t < ∞.

If we restrict the parameter t to the interval [0, 1], then the points
z(t) range from z0 to z1.
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Complex Functions and Mappings Complex Functions as Mappings

Common Parametric Curves in the Complex Plane

Line: A parametrization of the line containing the points z0 and z1 is:

z(t) = z0(1− t) + z1t, −∞ < t < ∞.

Line Segment: A parametrization of the line segment from z0 to z1
is:

z(t) = z0(1− t) + z1t, 0 ≤ t ≤ 1.

Ray: A parametrization of the ray emanating from z0 and containing
z1 is:

z(t) = z0(1− t) + z1t, 0 ≤ t < ∞.

Circle: A parametrization of the circle centered at z0 with radius r is:

z(t) = z0 + r(cos t + i sin t), 0 ≤ t ≤ 2π.

In exponential notation:

z(t) = z0 + re it , 0 ≤ t ≤ 2π.
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Complex Functions and Mappings Complex Functions as Mappings

Images of Parametric Curves

Parametric curves are important in the study of complex mappings
because it is easy to determine a parametrization of the image of a
parametric curve.

Example: If w = iz and C is the line x = 2 given by z(t) = 2 + it,
−∞ < t < ∞, then the value of f (z) = iz at a point on this line is

w = f (2 + it) = i(2 + it) = − t + 2i ,

and so the image of z(t) is w(t) = −t + 2i . Since w(t) = −t + 2i ,
−∞ < t < ∞, is a parametrization of the image C ′, C ′ is the line
v = 2.

Image of a Parametric Curve under a Complex Mapping

If w = f (z) is a complex mapping and if C is a curve parametrized by
z(t), a ≤ t ≤ b, then w(t) = f (z(t)), a ≤ t ≤ b, is a parametrization of
the image C ′ of C under w = f (z).

George Voutsadakis (LSSU) Complex Analysis October 2014 33 / 108



Complex Functions and Mappings Complex Functions as Mappings

Using a Single Copy of the Plane

In some instances it is convenient to represent a complex mapping
using a single copy of the complex plane.

This is done by superimposing the w -plane on top of the z-plane, so
that the real and imaginary axes in each copy of the plane coincide.

Because such a figure simultaneously represents both the z and the
w -planes, we omit all labels x , y , u and v from the axes.

Example: If we plot the half-plane S and its image S ′ from the first
example in the same copy of the complex plane,

then we see that the half-
plane S ′ may be obtained
by rotating the half-plane S

through an angle π
2 radians

counter-clockwise about the
origin.
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Complex Functions and Mappings Complex Functions as Mappings

Example I: Image of a Parametric Curve

Find the image of the line segment from 1 to i under the complex
mapping w = iz.

Let C denote the line segment from 1 to i and let C ′ denote its image
under f (z) = iz . A parametrization of C is

z(t) = (1− t) + it, 0 ≤ t ≤ 1.

The image C ′ is then given by

w(t) = f (z(t)) = i(1− t + it) = − i(1− t)− t, 0 ≤ t ≤ 1.

We see that w(t) is a parametrization of the
line segment from −i to −1. Therefore, C ′ is
the line segment from −i to −1.
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Complex Functions and Mappings Complex Functions as Mappings

Example II: Image of a Parametric Curve

Find the image of the upper semicircle centered at the origin with
radius 2 under the complex mapping w = z2.

Let C denote the given semicircle and C ′ its image under f (z) = z2.
A parametrization of C is

z(t) = 2e it , 0 ≤ t ≤ π.

Thus, we get a parametrization of C ′:

w(t) = f (z(t)) = (2e it)2 = 4e2it , 0 ≤ t ≤ π.

If we set t = 1
2s, then we obtain a new

parametrization of C ′:

W (s) = 4e is , 0 ≤ s ≤ 2π.

C ′ is a circle centered at 0 with radius 4:
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Mappings and Parametric Curves

(i) An important difference between real and complex analysis is that we
cannot graph a complex function. Instead, we represent a complex
function with two images:

a subset S in the complex plane;
the image S ′ of the set S under a complex mapping.

A complete understanding of a complex mapping is obtained when we
understand the relationship between any set S and its image S ′.

(ii) Complex mappings are closely related to parametric curves in the
plane.

This very important relationship will be used to help visualize the
notions of limit, continuity, and differentiability of complex functions.
Parametric curves will also be of central importance in the study of
complex integrals.
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Subsection 3

Linear Mappings
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Real and Complex Linear Functions

A real function of the form f (x) = ax + b, where a and b are any real
constants, is called a linear function.

By analogy, we define a complex linear function to be a function of
the form

f (z) = az + b,

where a and b are any complex constants.

Just as real linear functions are the easiest types of real functions to
graph, complex linear functions are the easiest types of complex
functions to visualize as mappings of the complex plane.

We will show that every nonconstant complex linear mapping can be
described as a composition of three basic types of motions:

a translation,
a rotation, and
a magnification.
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Translations

We use the symbols T ,R and M to represent mapping by translation,
rotation, and magnification, respectively.

Definition (Translation)

A complex linear function

T (z) = z + b, b 6= 0,
is called a translation.

If we set z = x + iy and b = x0 + iy0, then we obtain:

T (z) = (x + iy) + (x0 + iy0) = x + x0 + i(y + y0).

The linear mapping T (z) = z + b can be vi-
sualized in a single copy of the complex plane
as the process of translating the point z along
the vector representation (x0, y0) of b to the
point T (z).
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Image of a Square under Translation

Find the image S ′ of the square S with vertices at 1 + i , 2 + i , 2 + 2i
and 1 + 2i under the linear mapping T (z) = z + 2− i .

We will represent S and S ′ in the same copy of the complex plane.
The mapping T is a translation. Identify b = x0 + iy0 = 2 + i(−1).
Plot the vector (2,−1) originating at each point in S .

The set of terminal points of these vectors is S ′. S ′ is a square with
vertices at: T (1 + i) = 3, T (2 + i) = 4, T (2 + 2i) = 4 + i ,
T (1 + 2i) = 3 + i . Therefore, the blue square S is mapped onto the
black square S ′ by the translation T (z) = z + 2− i .
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Rotations

A translation does not change the shape or size of a figure in the
complex plane, i.e., the image of a line, circle, or triangle under a
translation will also be a line, circle, or triangle, respectively. A
mapping with this property is sometimes called a rigid motion.

Definition (Rotation)

A complex linear function

R(z) = az , |a| = 1,

is called a rotation.

If α is any nonzero complex number, then a = α
|α| is a complex

number for which |a| = 1.

So, for any nonzero complex number α, we have that R(z) = α
|α|z is

a rotation.
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Description of Rotations

Consider the rotation R = az and assume that Arg(a) > 0. Since
|a| = 1 and Arg(a) > 0, we can write a in exponential form as
a = e iθ, with 0 < θ ≤ π. If we set a = e iθ and z = re iφ, then we
obtain the following description of R :

R(z) = e iθre iφ = re i(θ+φ).

The modulus of R(z) is r , which is the same as the modulus of z .
Therefore, if z and R(z) are plotted in the same copy of the complex
plane, then both points lie on a circle centered at 0 with radius r .
An argument of R(z) is θ + φ, which is θ radians greater than an
argument of z . Therefore, R(z) = az rotates z counterclockwise
through an angle of θ radians about the origin to R(z).

If Arg(a) < 0, then the linear mapping R(z) = az can be visualized in
a single copy of the complex plane as the process of rotating points
clockwise through an angle of θ radians about the origin.

The angle θ = Arg(a) is called an angle of rotation of R .
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Image of a Line under Rotation

Find the image of the real axis y = 0 under the linear mapping
R(z) = (12

√
2 + 1

2

√
2i)z .

Let C denote the real axis y = 0 and let C ′ denote the image of C
under R . Since |12

√
2 + 1

2

√
2i | = 1, the complex mapping R(z) is a

rotation. In order to determine the angle of rotation, we write
1
2

√
2 + 1

2

√
2i in exponential form 1

2

√
2 + 1

2

√
2i = e iπ/4.

If z and R(z) are plotted in the same copy
of the complex plane, then the point z is
rotated counterclockwise through π

4 radians
about the origin to the point R(z). The im-
age C ′ is, therefore, the line v = u, which
contains the origin and makes an angle of π

4
radians with the real axis.
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Magnifications

Rotations will not change the shape or size of a figure in the complex
plane either.

Definition (Magnification)

A complex linear function
M(z) = az , a > 0,

is called a magnification.

It is implicit in a > 0 that the symbol a represents a real number.
If z = x + iy , then M(z) = az = ax + iay . So the image of the point
(x , y) is the point (ax , ay). If z = re iθ, M(z) = a(re iθ) = (ar)e iθ, so
that the magnitude of M(z) is ar .

If a > 1, then the complex points z and M(z) have the same argument
θ, but different moduli r 6= ar . M(z) is the unique point on the ray
emanating from 0 and containing z whose distance from 0 is a times
further than z . a is called the magnification factor of M .
If 0 < a < 1, then the point M(z) is a times closer to the origin than
the point z . This case of a magnification is a contraction.
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Image of a Circle under Magnification

Find the image of the circle C given by |z | = 2 under the linear
mapping M(z) = 3z .
Since M is a magnification with magnification factor of 3, each point
on the circle |z | = 2 will be mapped onto a point with the same
argument but with modulus magnified by 3.

Thus, each point in the image will have modulus 3 · 2 = 6.
The image points can have any argument since the points z in the
circle |z | = 2 can have any argument.

Therefore, the image C ′ is the circle |w | = 6, centered at the origin
with radius 6.

George Voutsadakis (LSSU) Complex Analysis October 2014 46 / 108



Complex Functions and Mappings Linear Mappings

Composition and Mappings

A magnification mapping will change the size of a figure in the
complex plane, but it will not change its basic shape.

We will now show that a general linear mapping f (z) = az + b is a
composition of a rotation, a magnification, and a translation.

Recall that if f and g are two functions, then the composition of f

and g is the function f ◦ g defined by

f ◦ g(z) = f (g(z)).

The value w = f ◦ g(z) is determined by
first evaluating the function g at z ;
and, then, evaluating the function f at g(z).

In a similar manner, the image, S ′′, of set S under a composition
w = f ◦ g(z) is determined by

first finding the image S ′ of S under g ;
and, then, finding the image S ′′ of S ′ under f .
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Linear Mappings

Suppose that f (z) = az + b is a complex linear function, with a 6= 0
(if f (z) = b, every point is mapped onto the single point b).

We can express f as:

f (z) = az + b = |a| · a

|a|z + b.

Consider a point z0:

First, z0 is multiplied by the complex number a
|a| . Since

∣

∣

∣

a
|a|

∣

∣

∣
= |a|

|a| = 1,

the complex mapping w = a
|a|z is a rotation that rotates the point z0

through an angle of θ = Arg( a
|a|) radians about the origin. The angle

of rotation can also be written as θ = Arg(a), since 1
|a| is a real

number. Let z1 be the image of z0 under this rotation by Arg(a).
Then z1 is multiplied by |a|. Because |a| > 0 is a real number, the
complex mapping w = |a|z is a magnification with a magnification
factor |a|. Let z2 be the image of z1 under magnification by |a|.
The last step is to add b to z2. The complex mapping w = z + b

translates z2 by b onto the point w0 = f (z0).
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Image of a Point under a Linear Mapping

Let f (z) = az + b be a linear mapping with a 6= 0 and let z0 be a
point in the complex plane.

If the point w0 = f (z0) is plotted in the same copy of the complex
plane as z0, then w0 is the point obtained by

(i) rotating z0 through an angle of Arg(a) about the origin;
(ii) magnifying the result by |a|, and
(iii) translating the result by b.

The image S ′ of a set S under f (z) = az + b is the set of points
obtained by

rotating S through Arg(a),
magnifying by |a|,
and, then, translating by b.

Thus, every nonconstant complex linear mapping is a composition of
at most one rotation, one magnification, and one translation.
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Example and Remarks

Example: The linear mapping f (z) = 3z + i involves

a magnification by 3,
and a translation by i .

If a 6= 0 is a complex number, and if

R(z) is a rotation through Arg(a),
M(z) is a magnification by |a|, and
T (z) is a translation by b,

then the composition f (z) = T ◦M ◦ R(z) = T (M(R(z))) is a
complex linear function.

Since the composition of any finite number of linear functions is again
a linear function, it follows that the composition of finitely many
rotations, magnifications, and translations is a linear mapping.
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Preservation of Shapes and Order of Composition

Since translations, rotations, and magnifications all preserve the basic
shape of a figure in the complex plane, a linear mapping will also
preserve the basic shape of a figure in the complex plane.

A complex linear mapping w = az + b, with a 6= 0, can distort the
size of a figure, but it cannot alter the basic shape of the figure.

When writing a linear function as a composition of a rotation, a
magnification and a translation, the order is important.

Example: The mapping f (z) = 2z + i magnifies by 2, then translates
by i . Thus, 0 maps onto i . If we reverse the order of composition,
i.e., translate by i , then magnify by 2, the effect is 0 maps onto 2i .

A complex linear mapping can always be represented as a composition
in more than one way.

Example: f (z) = 2z + i can also be expressed as f (z) = 2(z + i/2).
Therefore, a magnification by 2 followed by translation by i is the
same mapping as translation by i

2 followed by magnification by 2.
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Image of a Rectangle under a Linear Mapping

Find the image of the rectangle with vertices −1 + i , 1 + i , 1 + 2i ,
and −1 + 2i under the linear mapping f (z) = 4iz + 2 + 3i .

Let S be the rectangle with the given vertices and let S ′ denote the
image of S under f . Because f is a linear mapping, S ′ has the same
shape as S , i.e., it is a rectangle. Thus, in order to determine S ′, we
need only find its vertices, which are the images of the vertices of S
under f :

f (−1 + i) = − 2− i f (1 + i) = − 2 + 7i
f (1 + 2i) = − 6 + 7i f (−1 + 2i) = − 6− i .

Therefore, S ′ is the rectangle with vertices −2− i ,−2 + 7i ,−6 + 7i
and −6− i .
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Alternative Point of View

The linear mapping f (z) = 4iz + 2 + 3i is a composition of

a rotation through Arg(4i) = π
2 radians;

a magnification by |4i | = 4 and
a translation by 2 + 3i .
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A Linear Mapping of a Triangle I

Find a complex linear function that maps the equilateral triangle with
vertices 1 + i , 2 + i and 3

2 + (1 + 1
2

√
3)i onto the equilateral triangle

with vertices i ,
√
3 + 2i and 3i .

Let S1 denote the triangle with vertices 1+ i , 2+ i and 3
2 +(1+ 1

2

√
3)i

and let S ′ represent the triangle with vertices i , 3i and
√
3 + 2i .

We first translate S1 to have one of its vertices at the origin. If 1 + i

should be mapped onto 0, then this is accomplished by the translation
T1(z) = z − (1 + i). Let S2 be the image of S1 under T1.

Note that the angle between the imaginary
axis and the edge of S2 containing the ver-
tices 0 and 1

2 + 1
2

√
3i is π

6 .
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A Linear Mapping of a Triangle II

A rotation through an angle of π
6 radians counterclockwise about the

origin will map S2 onto a triangle with two vertices on the imaginary
axis. This rotation is given by R(z) = (e iπ/6)z = (12

√
3 + 1

2 i)z . The

image of S2 under R is the triangle S3 with vertices at 0, 1
2

√
3 + 1

2 i

and i :

It is easy to verify that each side of the triangle S3 has length 1.
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A Linear Mapping of a Triangle III

Because each side of the desired triangle S ′ has length 2, we next
magnify S3 by a factor of 2. The magnification M(z) = 2z maps the
triangle S3 onto the triangle S4 with vertices 0,

√
3 + i , and 2i :

Finally, we translate S4 by i using the mapping T2(z) = z + i . This
maps triangle S4 onto the triangle S ′ with vertices i ,

√
3 + 2i , and 3i .

Thus, the linear mapping: f (z) = T2 ◦M ◦ R ◦ T1(z) =
(
√
3 + i)z + 1−

√
3 +

√
3i maps the triangle S1 onto the triangle S ′.
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Linear Approximations

The study of differential calculus is based on the principle that real
linear functions are the easiest types of functions to understand. One
of the many uses of the derivative is to find a linear function that
approximates f in a neighborhood of a point x0.

The linear approximation of a differentiable function f (x) at x = x0 is
the linear function ℓ(x) = f (x0) + f ′(x0)(x − x0). Geometrically, the
graph of ℓ(x) is the tangent line to the graph of f at (z0, f (z0)).

The linear approximation formula can be applied to complex functions
once an appropriate definition of the derivative of complex function is
given. If f ′(z0) represents the derivative of the complex function f (z)
at z0, then the linear approximation of f in a neighborhood of z0 is
the complex linear function ℓ(z) = f (z0) + f ′(z0)(z − z0).
Geometrically, ℓ(z) approximates how f (z) acts as a complex
mapping near the point z0.
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An Example

The derivative of the complex function f (z) = z2 is f ′(z) = 2z .

Therefore, the linear approximation of f (z) = z2 at z0 = 1 + i is

ℓ(z) = 2i + 2(1 + i)(z − 1− i) = 2
√
2(e iπ/4z)− 2i .

Near the point z0 = 1 + i the mapping w = z2 can be approximated
by the linear mapping consisting of the composition of:

rotation through π
4 ,

magnification by 2
√
2,

and translation by −2i .

The image of the circle |z − (1 + i)| =
0.25 under both f and ℓ are shown on
the right.
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Subsection 4

Special Power Functions
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Complex Polynomial and Principal Root Functions

A complex polynomial function is a function of the form
p(z) = anz

n + an−1z
n−1 + · · · + a1z + a0, where n is a positive

integer and an, an−1, . . . , a1, a0 are complex constants.

In general, a complex polynomial mapping can be quite complicated,
but in many special cases the action of the mapping is easily
understood.

We now study complex polynomials of the form f (z) = zn, n ≥ 2.

Unlike the linear mappings, the mappings w = zn, n ≥ 2, do not
preserve the basic shape of every figure in the complex plane.

Associated to the function zn, n ≥ 2, we also have the principal nth
root function z1/n.

The principal nth root functions are inverse functions of the functions
zn defined on a sufficiently restricted domain.
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Power Functions

A real function of the form f (x) = xa, where a is a real constant, is
called a power function.

We form a complex power function by allowing the input or the
exponent a to be a complex number.

A complex power function is a function of the form

f (z) = zα, α a complex constant.

If α is an integer, then the power function zα can be evaluated using
the algebraic operations on complex numbers seen earlier:

Example: z2 = z · z and z−3 = 1
z ·z ·z .

We can also use the formulas for taking roots of complex numbers to
define power functions with fractional exponents of the form 1

n
.

We restrict attention to special complex power functions of the form
zn and z1/n, where n ≥ 2 and n is an integer.

More complicated complex power functions such as z
√
2−i , will be

discussed after the introduction of the complex logarithmic function.
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The Power Function z
n

We consider complex power functions of the form zn, n ≥ 2.

We begin with the simplest of these functions, the complex squaring

function z2.

Values of the complex power function f (z) = z2 are easily found
using complex multiplication.

Example: At z = 2− i , we have

f (2− i) = (2− i)2 = (2− i) · (2− i) = 3− 4i .

We express w = z2 in exponential notation by replacing z with re iθ:

w = z2 = (re iθ)2 = r2e i2θ.

The modulus r2 of the point w is the square of the modulus r of the
point z ;
The argument 2θ of w is twice the argument θ of z .
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The Complex Squaring Function z
2

If we plot both z and w in the same copy of the complex plane, then
w is obtained by magnifying z by a factor of r and then by rotating
the result through the angle θ about the origin.

The figure shows z and w = z2, when r > 1 and θ > 0.

If 0 < r < 1, then z is contracted by a factor of r , and if θ < 0, then
the rotation is clockwise.
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Magnification and Rotation in Complex Squaring

The magnification factor and the rotation angle associated to
w = f (z) = z2 depend on where z is located in the complex plane.

Example: Since f (2) = 4 and f ( i2 ) = − 1
4 , the point z = 2 is

magnified by 2 but not rotated, whereas the point z = i
2 is

contracted by 1
2 and rotated through π

2 .

The function z2 does not magnify the modulus of points on the unit
circle |z | = 1 and it does not rotate points on the positive real axis.

Consider a ray emanating from the origin and making an angle of φ
with the positive real axis.

The images of all points have an argument of 2φ. Thus, they lie on a
ray emanating from the origin and making an angle of 2φ with the
positive real axis.
The modulus ρ of a point on the ray can be any value in [0,∞]. So the
modulus ρ2 of a point in the image can also be any value in [0,∞].

Hence, the ray is mapped onto a ray emanating from the origin
making an angle 2φ with the positive real axis.
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Image of a Circular Arc under w = z
2

Find the image of the circular arc defined by |z | = 2, 0 ≤ arg(z) ≤ π
2 ,

under the mapping w = z2.
Let C be the circular arc defined by |z | = 2, 0 ≤ arg(z) ≤ π

2 , and let

C ′ denote the image of C under w = z2.
Since each point in C has modulus 2, each point in C ′ has modulus
22 = 4. Thus, the image C ′ must be contained in the circle |w | = 4.
Since the arguments of the points in C take on every value in [0, π2 ],
the points in C ′ have arguments that take on every value in [0, π].

So C ′ is the semicircle defined by |w | = 4, 0 ≤ arg(w) ≤ π.

George Voutsadakis (LSSU) Complex Analysis October 2014 65 / 108



Complex Functions and Mappings Special Power Functions

Alternative Solution

An alternative way to find the image of the circular arc defined by
|z | = 2, 0 ≤ arg(z) ≤ π

2 , under the mapping w = z2 is to use a
parametrization.

The circular arc C can be parametrized by z(t) = 2e it , 0 ≤ t ≤ π
2 . Its

image C ′ is given by w(t) = f (z(t)) = 4e i2t , 0 ≤ t ≤ π
2 . By replacing

the parameter t with s = 2t, we obtain W (s) = 4e is , 0 ≤ s ≤ π. This
is a parametrization of the semicircle |w | = 4, 0 ≤ arg(w) ≤ π.

Similarly, the squaring function maps a semicircle

|z | = r ,−π

2
≤ arg(z) ≤ π

2
,

onto a circle |w | = r2.
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Mapping of a Half-Plane onto the Entire Plane

Since the right half-plane Re(z) ≥ 0 consists of the collection of
semicircles |z | = r , −π

2 ≤ arg(z) ≤ π
2 , where r takes on every value in

the interval [0,∞), the image of this half-plane consists of the
collection of circles |w | = r2 where r takes on any value in [0,∞).

This implies that w = z2 maps the right half-plane Re(z) ≥ 0 onto
the entire complex plane.
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Image of a Vertical Line under w = z
2

Find the image of the vertical line x = k under the mapping w = z2.

In this example it is convenient to work with real and imaginary parts
of w = z2 which are

u(x , y) = x2 − y2, v(x , y) = 2xy .

Since the vertical line x = k consists of the points
z = k + iy ,−∞ < y < ∞, it follows that the image of this line
consists of all points w = u + iv , where u = k2 − y2, v = 2ky . If
k 6= 0, we get y = v

2k and then u = k2 − v2

4k2
,−∞ < v < ∞. Thus,

the image of the line x = k (with k 6= 0) under w = z2 is a parabola
that opens in the direction of the negative u-axis, has its vertex at
(k2, 0), and has v -intercepts at (0, ± 2k2). Since the image is
unchanged if k is replaced by −k , if k 6= 0, the pair of vertical lines
x = k and x = −k are both mapped onto the parabola u = k2 − v2

4k2
.
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Image of a Vertical Line under w = z
2 (Cont’d)

The action of the mapping w = z2 on vertical lines is depicted below:

The lines x = 3 and x = −3 are mapped onto the parabola with
vertex at (9, 0).

Similarly, the lines x = ±2 are mapped onto the parabola with vertex
at (4, 0), and the lines x = ±1 onto the parabola with vertex at (1, 0).

In the case when k = 0, the image of the line x = 0 (the imaginary
axis) is given by: u = −y2, v = 0,−∞ < y < ∞. Therefore, the
imaginary axis is mapped onto the negative real axis.
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Image of a Horizontal Line under w = z
2

The same method can be used to show that a horizontal line y = k ,
k 6= 0, is mapped by w = z2 onto the parabola

u =
v2

4k2
− k2.

The image is unchanged if k is replaced by −k . So the pair y = k

and y = −k , k 6= 0, are both mapped onto the same parabola.

If k = 0, then the horizontal line y = 0 (the real axis) is mapped onto
the positive real axis.
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Image of a Triangle under w = z
2

Find the image of the triangle with vertices 0, 1 + i and 1− i under
the mapping w = z2.

Let S denote the triangle with vertices at 0, 1 + i and 1− i , and let S ′

denote its image under w = z2.

The side of S containing the vertices 0 and 1 + i lies on a ray
emanating from the origin and making an angle of π

4 radians with the
positive x-axis. The image of this segment must lie on a ray making an
angle of 2π

4 = π
2 radians with the positive u-axis. Since the moduli of

the points on the edge containing 0 and 1 + i vary from 0 to
√
2, the

moduli of the images of these points vary from 0 to 2. Thus, the image
of this side is a vertical line segment from 0 to 2i contained in the
v -axis.
In a similar manner, we find that the image of the side of S containing
the vertices 0 and 1− i is a vertical line segment from 0 to −2i
contained in the v -axis.
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Image of a Triangle under w = z
2 (Cont’d)

We continue with the image of the triangle with vertices 0, 1 + i and
1− i under the mapping w = z2:

The remaining side of S contains the vertices 1− i and 1 + i . This side
consists of the set of points z = 1 + iy , −1 ≤ y ≤ 1. Because this side
is contained in the vertical line x = 1, its image is a parabolic segment

given by: u = 1− v2

4 ,−2 ≤ v ≤ 2.

Thus, we have shown that the image of triangle S is the figure S ′

shown below.
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The Function z
n, n > 2

An analysis similar to that used for the mapping w = z2 can be
applied to the mapping w = zn, n > 2.

By replacing the symbol z with re iθ we obtain:

w = zn = rne inθ.

Consequently, if z and w = zn are plotted in the same copy of the
complex plane, then this mapping can be visualized as the process of

magnifying or contracting the modulus r of z to the modulus rn of w ;
rotating z about the origin to increase an argument θ of z to an
argument nθ of w .

Example: A ray emanating from the origin and making an angle of φ
radians with the positive x-axis is mapped onto a ray emanating from
the origin and making an angle of nφ radians with the positive u-axis.
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Image of a Circular Wedge under w = z
3

Determine the image of the quarter disk defined by the inequalities
|z | ≤ 2, 0 ≤ arg(z) ≤ π

2 , under the mapping w = z3.

Let S denote the quarter disk and let S ′ denote its image under
w = z3.

Since the moduli of the points in S vary from 0 to 2 the moduli of the
points in S ′ vary from 0 to 8.
In addition, because the arguments of the points in S vary from 0 to π

2 ,
the arguments of the points in S ′ vary from 0 to 3π

2 .

Therefore, S ′ is given by the inequalities |w | ≤ 8, 0 ≤ arg(w) ≤ 3π
2 :
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The Power Function z
1/n

We now investigate complex power functions of the form z1/n, where
n is an integer and n ≥ 2. We begin with n = 2.

We have seen that the n n-th roots of a nonzero complex number
z = r(cos θ + i sin θ) = re iθ are given by:

n
√
r

[

cos
θ + 2kπ

n
+ i sin

θ + 2kπ

n

]

= n
√
re i(θ+2kπ)/n ,

for k = 0, . . . , n − 1.

For n = 2, we get

√
r

[

cos
θ + 2kπ

2
+ i sin

θ + 2kπ

2

]

=
√
re i(θ+2kπ)/2, k = 0, 1.

By setting θ = Arg(z) and k = 0, we can define a function that
assigns to z the unique principal square root.
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The Principal Square Root Function

Definition (The Principal Square Root Function)

The function z1/2 defined by

z1/2 =
√

|z |e iArg(z)/2

is called the principal square root function.

If we set θ = Arg(z) and replace z with re iθ, then we obtain an
alternative description of the principal square root function for |z | > 0:

z1/2 =
√
re iθ/2, r = |z | and θ = Arg(z).

Note that the symbol z1/2, as used in the definition, represents
something different from the same symbol as used previously.
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Values of the Principal Square Root Function

Example: Find the values of the principal square root function z1/2 at
the following points: (a) z = 4 (b) z = −2i (c) z = −1 + i .

(a) For z = 4, |z | = |4| = 4 and Arg(z) = Arg(4) = 0. Thus,
41/2 =

√
4e i(0/2) = 2e i(0) = 2.

(b) For z = −2i , |z | = | − 2i | = 2 and Arg(z) = Arg(−2i) = −π
2 ,

whence (−2i)1/2 =
√
2e i(−π/2)/2 =

√
2e−iπ/4 = 1− i .

(c) For z = −1 + i , |z | = | − 1 + i | =
√
2 and Arg(z) = Arg(−1 + i) =

3π
4 , and, hence, (−1 + i)1/2 =

√

(
√
2)e i(3π/4)/2 = 4

√
2e i(3π/8).
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One-to-One Functions

The principal square root function z1/2 is an inverse function of the
squaring function z2.

A real function must be one-to-one in order to have an inverse
function. The same is true for a complex function.

A complex function f is one-to-one if each point w in the range of f
is the image of a unique point z , called the pre-image of w , in the
domain of f . That is, f is one-to-one if whenever f (z1) = f (z2), then
z1 = z2. Equivalently, if z1 6= z2, then f (z1) 6= f (z2).

Example: The function f (z) = z2 is not one-to-one because
f (i) = f (−i) = −1.

If f is a one-to-one complex function, then for any point w in the
range of f there is a unique pre-image in the z-plane, which we
denote by f −1(w).

This correspondence between a point w and its pre-image f −1(w)
defines the inverse function of a one-to-one complex function.
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Inverse Functions

Definition (Inverse Function)

If f is a one-to-one complex function with domain A and range B , then
the inverse function of f , denoted by f −1, is the function with domain B

and range A defined by

f −1(z) = w if f (w) = z .

If a set S is mapped onto a set S ′ by a one-to-one function f , then
f −1 maps S ′ onto S .

If f has an inverse function, then f (f −1(z)) = z and f −1(f (z)) = z .
I.e., the two compositions f ◦ f −1 and f −1 ◦ f are the identities.

Example: Show that the complex function f (z) = z +3i is one-to-one
on the entire complex plane and find a formula for its inverse function.

f (z1) = f (z2) implies z1 + 3i = z2 + 3i which implies z1 = z2.

The inverse function of f can often be found algebraically by solving
the equation z = f (w) for the symbol w : z = w + 3i implies
w = z − 3i . Therefore, f −1(z) = z − 3i .
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Functions of zn, n ≥ 2, Not One-to-One

The function f (z) = zn, n ≥ 2, is not one-to-one: Consider the points
z1 = re iθ and z2 = re i(θ+2π/n) with r 6= 0. Because n ≥ 2, the points
z1 and z2 are distinct. Note f (z1) = rne inθ and f (z2) = rne i(nθ+2π) =
rne inθe i2π = rne inθ. Therefore, f is not one-to-one.

In fact, the n distinct points z1 = re iθ, z2 = re i(θ+2π/n),
z3 = re i(θ+4π/n), . . ., zn = re i(θ+2(n−1)π/n) are all mapped onto the
single point w = rne inθ by f (z) = zn.

This fact is illustrated for n = 6:
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Restricting the Domain

Recall that even though the real functions f (x) = x2 and g(x) = sin x
are not one-to-one and, thus, appear not to have inverses, yet we still
have the inverse functions f −1(x) =

√
x and g−1(x) = arcsin x .

The key is to appropriately restrict the domains of f (x) = x2 and
g(x) = sin x to sets on which the functions are one-to-one.

Example: Whereas f (x) = x2 defined on (−∞,∞) is not one-to-one,
the same function defined on [0,∞) is one-to-one.

Similarly, g(x) = sin x is not one-to-one on (−∞,∞), but it is
one-to-one on the interval [−π

2 ,
π
2 ].

The function f −1(x) =
√
x is the inverse of f (x) = x2 defined on the

interval [0,∞). Since Dom(f ) = [0,∞) and Range(f ) = [0,∞), the
domain and range of f −1(x) =

√
x are both [0,∞) as well.

Similarly, g−1(x) = arcsin x is the inverse function of the function
g(x) = sin x defined on [−π

2 ,
π
2 ]. The domain and range of g−1 are

[−1, 1] and [−π
2 ,

π
2 ], respectively.
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A Restricted Domain for f (z) = z
2

Show that f (z) = z2 is a one-to-one function on the set A defined by
−π

2 < arg(z) ≤ π
2

We show that f is one-to-one by demonstrating that if z1 and z2 are
in A and if f (z1) = f (z2), then z1 = z2. If f (z1) = f (z2), then
z21 = z22 , or, equivalently, z

2
1 − z22 = 0. By factoring this expression,

we obtain (z1 − z2)(z1 + z2) = 0. It follows that either z1 = z2 or
z1 = −z2. By definition of the set A, both z1 and z2 are nonzero. The
complex points z and −z are symmetric about the origin.

Inspection shows that if z2 is in A, then −z2 is
not in A. This implies that z1 6= −z2, since z1
is in A. Therefore, we conclude that z1 = z2,
and this proves that f is a one-to-one function
on A.
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An Alternative Approach

The preceding technique does not extend to the function zn, n > 2.

We present an alternative approach.

We prove that f (z) = z2 is one-to-one on A by showing that if
f (z1) = f (z2) for two complex numbers z1 and z2 in A, then z1 = z2.

Suppose that z1 and z2 are in A. Then we may write z1 = r1e
iθ1 and

z2 = r2e
iθ2 with −π

2 < θ1 ≤ π
2 and −π

2 < θ2 ≤ π
2 . If f (z1) = f (z2),

then it follows r21 e
i2θ1 = r22 e

i2θ2 . We conclude that the complex
numbers r21 e

i2θ1 and r22 e
i2θ2 have the same modulus and principal

argument: r21 = r22 and Arg(r21 e
i2θ1) = Arg(r22 e

i2θ2). Because both r1
and r2 are positive, we get r1 = r2. Moreover, since −π

2 < θ1 ≤ π
2 and

−π
2 < θ2 ≤ π

2 , it follows that −π < 2θ1 ≤ π and −π < 2θ2 ≤ π. This
means that Arg(r21 e

i2θ1) = 2θ1 and Arg(r22 e
i2θ2) = 2θ2. This fact

combined with the second equation implies that 2θ1 = 2θ2, or
θ1 = θ2. Therefore, z1 and z2 are equal because they have the same
modulus and principal argument.
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An Inverse of f (z) = z
2

The squaring function z2 is one-to-one on the set A defined by
−π

2 < arg(z) ≤ π
2 . Thus, this function has a well-defined inverse

function f −1. We show this inverse function is the principal square
root function z1/2.

Let z = re iθ and w = ρe iφ, where θ and φ are the principal
arguments of z and w , respectively. Suppose that w = f −1(z). Since
the range of f −1 is the domain of f , the principal argument φ of w
must satisfy: −π

2 < φ ≤ π
2 . On the other hand, f (w) = w2 = z .

Hence, w is one of the two square roots of z , i.e., either w =
√
re iθ/2

or w =
√
re i(θ+2π)/2. Assume that w is the latter, i.e., assume that

w =
√
re i(θ+2π)/2. Because θ = Arg(z), we have −π < θ ≤ π, and

so, π
2 < θ+2π

2 ≤ 3π
2 . We conclude that the principal argument φ of w

must satisfy either −π < φ ≤ −π
2 or π

2 < φ ≤ π. However, this

cannot be true since −π
2 < φ ≤ π

2 . So w =
√
re iπ/2, which is the

value of the principal square root function z1/2.
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Domain and Range of f −1(z) = z
1/2

Since z1/2 is an inverse function of f (z) = z2 defined on the set
−π

2 < arg(z) ≤ π
2 , it follows that the domain and range of z1/2 are the

range and domain of f , respectively. In particular, Range(z1/2) = A, that is,
the range of z1/2 is the set of complex w satisfying −π

2 < arg(w) ≤ π
2 . In

order to find Dom(z1/2) we need to find the range of f . We saw that
w = z2 maps the right half-plane Re(z) ≥ 0 onto the entire complex plane.
The set A is equal to the right half-plane Re(z) ≥ 0 excluding the set of
points on the ray emanating from the origin and containing the point −i .
That is, A does not include the point z = 0 or the points satisfying
arg(z) = −π

2 . However, we have seen that the image of the set arg(z) = π
2 ,

the positive imaginary axis, is the same as the image of the set
arg(z) = −π

2 . Both sets are mapped onto the negative real axis. Since the
set arg(z) = π

2 is contained in A, it follows that the only difference between
the image of the set A and the image of the right half-plane Re(z) ≥ 0 is
the image of the point z = 0, which is the point w = 0. Since A is mapped
onto the entire complex plane excluding the point w = 0, the domain of
f −1(z) = z1/2 is the entire complex plane C excluding 0.
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The Mapping w = z
1/2

As a mapping, z2 squares the modulus of z and doubles its argument.

Thus, the mapping w = z1/2 takes the square root of the modulus of
a point and halves its principal argument, i.e., if w = z1/2, then we
have |w | =

√

|z | and Arg(w) = 1
2Arg(z).

Example (Image of a Circular Sector under w = z1/2): Find the image
of the set S defined by |z | ≤ 3, π

2 ≤ arg(z) ≤ 3π
4 , under w = z1/2.

Let S ′ denote the image of S under w = z1/2.
Since |z | ≤ 3 for points in S , we have that |w | ≤

√
3 for points w in S ′.

Since π
2 ≤ arg(z) ≤ 3π

4 for points in S , π
4 ≤ arg(w) ≤ 3π

8 for points w
in S ′.
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Principal n-th Root Function

The complex power function f (z) = zn, n > 2, is one-to-one on the
set defined by −π

n
< arg(z) ≤ π

n
.

It can be seen that the image of this set under the mapping w = zn is
the entire complex plane C excluding w = 0.

Therefore, there is a well-defined inverse function for f .

Analogous to the case n = 2, this inverse function of zn is called the
principal n-th root function z1/n.

The domain of z1/n is the set of all nonzero complex numbers, and
the range of z1/n is the set of w satisfying −π

n
< arg(w) ≤ π

n
.

Definition (Principal n-th Root Functions)

For n ≥ 2, the function z1/n defined by

z1/n = n
√

|z |e iArg(z)/n

is called the principal n-th root function.

By setting z = re iθ, with θ = Arg(z), we have z1/n = n
√
re iθ/n.
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Values of z1/n

Find the value of the given principal nth root function z1/n at the
given point z : (a) z1/3; z = i (b) z1/5; z = 1−

√
3i .

(a) For z = i , |z | = 1 and Arg(z) = π
2 . Thus, we obtain:

i1/3 =
3
√
1e i(π/2)/3 = e iπ/6 =

√
3

2
+

1

2
i .

(b) For z = 1−
√
3i , we have |z | = 2 and Arg(z) = − π

3 . Thus, we get

(1−
√
3i)1/5 =

5
√
2e i(−π/3)/5 =

5
√
2e−i(π/15).
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Multiple-Valued Functions

A nonzero complex number z has n distinct n-th roots in the complex
plane. Thus, the process of “taking the n-th root” of a complex
number z does not define a complex function. We introduced the
symbol z1/n to represent the set consisting of the n n-th roots of z .

Similarly, arg(z) represents an infinite set of values.

These types of operations on complex numbers are examples of
multiple-valued functions.

When representing multiple-valued functions with functional notation,
we will use uppercase letters such as F (z) = z1/2 or G (z) = arg(z).

Lowercase letters such as f and g will be reserved for functions.

Example: g(z) = z1/3 refers to the principal cube root function
whereas G (z) = z1/3 represents the multiple-valued function that
assigns the three cube roots of z to the value of z . Thus,
g(i) = 1

2

√
3 + 1

2 i and G (i) = {1
2

√
3 + 1

2 i ,−1
2

√
3 + 1

2 i ,−i}.
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Riemann Surface of f (z) = z
2

f (z) = z2 is not one-to-one. f (z) = z2 is one-to-one on A defined by
|z | ≤ 1,−π

2 < arg(z) ≤ π
2 .

w = z2 is a one-to-one mapping of the set B defined by |z | ≤ 1,
π
2 < arg(z) ≤ 3π

2 , onto the closed unit disk |w | ≤ 1.

Since the unit disk |z | ≤ 1 is the union of the sets A and B , the
image of the disk |z | ≤ 1 under w = z2 covers the disk |w | ≤ 1 twice
(once by A and once by B).

We visualize this “covering” by considering two image disks for
w = z2.
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Riemann Surface of f (z) = z
2 (Cont’d)

Let A′ denote the image of A under f and B ′ the image of B under f .

Imagine the disks A′ and B ′ cut open along the negative real axis:

We construct a Riemannn surface for f (z) = z2 by stacking the cut
disks A′ and B ′ one atop the other in xyz-space and attaching them
by gluing together their edges.

After attaching in this manner we obtain the Riemann surface:

Although w = z2 is not a one-to-one mapping of the closed unit disk
|z | ≤ 1 onto the closed unit disk |w | ≤ 1, it is a one-to-one mapping
of the closed unit disk |z | ≤ 1 onto the Riemann surface.
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Riemann Surface of G (z) = arg(z)

Another interesting Riemann surface is one for the multiple valued
function G (z) = arg(z) defined on 0 < |z | ≤ 1. We take a copy A0 of
the punctured disk 0 < |z | ≤ 1 and cut it open along the negative
real axis. Let A0 represent the points re iθ, −π < θ ≤ π.

Take another copy A1 and let it represent re iθ, π < θ ≤ 3π. Let A−1

represent the points re iθ, −3π < θ ≤ −π. We have an infinite set of
cut disks . . . ,A−2,A−1,A0,A1,A2, . . .. Place An in xyz-space so that
re iθ, with (2n− 1)π < θ ≤ (2n+1)π, lies at height θ above the point
re iθ in the xy -plane. The collection of all the cut disks in xyz-space
forms the Riemann surface for the multiple-valued function G (z).
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Subsection 5

Reciprocal Function
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The Reciprocal Function

Analogous to real functions, we define a complex rational function

to be a function of the form f (z) = p(z)
q(z) where both p(z) and q(z)

are complex polynomial functions.

The most basic complex rational function is the reciprocal function.

The function 1
z
, whose domain is the set of all nonzero complex

numbers, is called the reciprocal function.

Given z 6= 0, if we set z = re iθ, we obtain: w = 1
z
= 1

re iθ
= 1

r
e−iθ.

The modulus of w is the reciprocal of the modulus of z ;
The argument of w is the negative of the argument of z .

Therefore, the reciprocal function maps
a point in the z-plane with polar coordi-
nates (r , θ) onto a point in the w -plane
with polar coordinates (1

r
,−θ).
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Inversion in the Unit Circle

The function g(z) = 1
r
e iθ, whose domain is the set of all nonzero

complex numbers, is called inversion in the unit circle.

We consider separately the images of points on the unit circle, points
outside the unit circle, and points inside the unit circle.

Consider, first, a point z on the unit circle. Since z = 1 · e iθ,
g(z) = 1

1e
iθ = z . So each point on the unit circle is mapped onto itself

by g .
If, on the other hand, z is a nonzero complex number that does not lie
on the unit circle, then z = re iθ, with r 6= 1.

When r > 1 (z is outside of the unit circle), we have that |g(z)| =
| 1
r
e
iθ| = 1

r
< 1. So, the image under g of a point z outside the unit

circle is a point inside the unit circle.
Conversely, if r < 1 (z is inside the unit circle), then |g(z)| = 1

r
> 1.

Thus, if z is inside the unit circle, then its image under g is outside the
unit circle.
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Illustration of the Inversion in the Unit Circle

The mapping w = 1
r
e iθ is represented below:

The arguments of z and g(z) are equal. So, if z1 6= 0 is a point with
modulus r in the z-plane, then g(z1) is the unique point in the
w -plane with modulus 1

r
lying on a ray emanating from the origin

making an angle of arg(z1) with the positive u-axis.

The moduli of z and g(z) are inversely proportional: the farther a
point z is from 0 in the z-plane, the closer its image g(z) is to 0 in
the w -plane, and, the closer z is to 0, the farther g(z) is from 0.
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Complex Conjugation

The second complex mapping that is helpful for describing the
reciprocal mapping is a reflection across the real axis.

Under this mapping the image of the point (x , y) is (x ,−y).

This complex mapping is given by the function c(z) = z, called the
complex conjugation function.

The relationship between z and its image c(z) is shown below:

If z = re iθ, then c(z) = re iθ = re iθ = re−iθ.
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Reciprocal Mapping

The reciprocal function f (z) = 1
z
can be written as the composition

of inversion in the unit circle and complex conjugation.

Since c(z) = re−iθ and g(z) = 1
r
e iθ, we get

c(g(z)) = c(
1

r
e iθ) =

1

r
e−iθ =

1

z
.

Thus, as a mapping, the reciprocal function

first inverts in the unit circle,
then reflects across the real axis.

In summary: Given z0 a nonzero point in the complex plane the point
w0 = f (z0) =

1
z0

is obtained by:

(i) inverting z0 in the unit circle, then
(ii) reflecting the result across the real axis.
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Image of a Semicircle under w = 1
z

Find the image of the semicircle |z | = 2, 0 ≤ arg(z) ≤ π, under the
reciprocal mapping w = 1

z
.

Let C denote the semicircle and let C ′ denote its image under w = 1
z
.

In order to find C ′, we first invert C in the unit circle, then we reflect
the result across the real axis.

Under inversion in the unit circle, points with modulus 2 have images
with modulus 1

2 . Moreover, inversion in the unit circle does not change
arguments. The image is the semicircle |w | = 1

2 , 0 ≤ arg(w) ≤ π.
Reflecting this set across the real axis
negates the argument of a point but does
not change its modulus. Hence, the im-
age is the semicircle given by |w | = 1

2 ,
−π ≤ arg(w) ≤ 0.
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Image of a Line under w = 1
z

Find the image of the vertical line x = 1 under the mapping w = 1
z
.

The vertical line x = 1 consists of z = 1 + iy , −∞ < y < ∞. After
replacing z with 1 + iy in w = 1

z
and simplifying, we obtain:

w = 1
1+iy

= 1
1+y2 − y

1+y2 i . It follows that the image of x = 1 under

w = 1
z
consists of all points u + iv satisfying: u = 1

1+y2 , v = − y

1+y2 ,
−∞ < y < ∞. We eliminate y : We have v = −yu. The first
equation implies that u 6= 0, so we get y = − v

u
. Thus, we obtain the

quadratic equation u2 − u + v2 = 0.

Complete the square to get (u− 1
2)

2+v2 = 1
4 ,

u 6= 0. It defines a circle centered at (12 , 0)
with radius 1

2 . However, because u 6= 0, the
point (0, 0) is not in the image. Using the
complex variable w = u+ iv , we can describe
this image by |w − 1

2 | = 1
2 , w 6= 0.
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Reverting to the Extended Complex Number System

The image of x = 1 is not the entire circle |w − 1
2 | = 1

2 because
points on the line x = 1 with extremely large modulus map onto
points on the circle |w − 1

2 | = 1
2 that are extremely close to 0, but

there is no point on the line x = 1 that actually maps onto 0.

To obtain the entire circle as the image, we must consider the
reciprocal function defined on the extended complex number system.

The extended complex number system consists of all the points in the
complex plane adjoined with the ideal point ∞.

In the context of mappings this set of points is commonly referred to
as the extended complex plane.
The important property of the extended complex plane is the
correspondence between points on the extended complex plane and
the points on the complex plane.

In particular, points in the extended complex plane that are near the
ideal point ∞ correspond to points with extremely large modulus in the
complex plane.
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Extending the Reciprocal Function

We use this correspondence to extend the reciprocal function to a
function whose domain and range are the extended complex plane.

Since w = 1
r
e−iθ already defines the reciprocal function for all points

z 6= 0 or ∞ in the extended complex plane, we extend this function
by specifying the images of 0 and ∞.

If z = re iθ is a point close to 0, then r is small, whence w is a point
whose modulus 1

r
is large. In the extended complex plane, if z is a

point that is near 0, then w = 1
z
is a point that is near the ideal point

∞. So we define the reciprocal function f (z) = 1
z
on the extended

complex plane so that f (0) = ∞.
If z is a point that is near ∞, in the extended complex plane, then f (z)
is a point that is near 0. Thus, we define the reciprocal function on the
extended complex plane so that f (∞) = 0.
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The Reciprocal Function on the Extended Complex Plane

Definition (The Reciprocal Function on the Extended Complex Plane)

The reciprocal function on the extended complex plane is the
function defined by

f (z) =







1
z
, if z 6= 0 or ∞

∞, if z = 0
0, if z = ∞

We use the notation 1
z
to represent both the reciprocal function and

the reciprocal function on the extended complex plane.

Whenever the ideal point ∞ is mentioned, it will be assumed that 1
z

represents the reciprocal function defined on the extended complex
plane.
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Image of a Line under w = 1
z

Find the image of the vertical line x = 1 under the reciprocal function
on the extended complex plane.

Since the line x = 1 is an unbounded set in the complex plane, the
ideal point ∞ is on the line in the extended complex plane.

We already saw that the image of the points z 6= ∞ on the line x = 1
is the circle |w − 1

2 | = 1
2 excluding the point w = 0.

We have that f (∞) = 0, and so w = 0 is the image of the ideal point.
This “fills in” the missing point in the circle |w − 1

2 | = 1
2 .

Therefore, the vertical line x = 1 is mapped onto the entire circle
|w − 1

2 | = 1
2 by the reciprocal mapping on the extended complex

plane.
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Mapping Lines to Circles with w = 1
z

Mapping Lines to Circles with w = 1
z

The reciprocal function on the extended complex plane maps:

(i) The vertical line x = k with k 6= 0 onto the circle
∣

∣w − 1
2k

∣

∣ =
∣

∣

1
2k

∣

∣;

(ii) The horizontal line y = k with k 6= 0 onto the circle
∣

∣w + 1
2k i

∣

∣ =
∣

∣

1
2k

∣

∣.
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Mapping of a Semi-infinite Strip

Find the image of the semi-infinite horizontal strip defined by
1 ≤ y ≤ 2, x ≥ 0, under w = 1

z
.

Let S denote the semi-infinite horizontal strip
defined by 1 ≤ y ≤ 2, x ≥ 0. The boundary
of S consists of the line segment x = 0, 1 ≤
y ≤ 2, and the two half-lines y = 1 and y = 2,
0 ≤ x < ∞. We first determine the images of
these boundary curves.

The line segment x = 0, 1 ≤ y ≤ 2, can also be described as the set
1 ≤ |z | ≤ 2, arg(z) = π

2 . Since w = 1
z
, 1

2 ≤ |w | ≤ 1. In addition, we
have that arg(w) = arg(1/z) = −arg(z), and so, arg(w) = −π

2 . Thus,
the image of x = 0, 1 ≤ y ≤ 2, is the line segment on the v -axis from
− 1

2 i to −i .
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Mapping of a Semi-infinite Strip (Cont’d)

Now consider y = 1, 0 ≤ x < ∞. The image is an arc in |w + 1
2 i | =

1
2 . The arguments satisfy 0 < arg(z) ≤ π

2 , so −π
2 ≤ arg(w) < 0.

Moreover, ∞ is on the half-line, and so w = 0 is in its image. Thus,
the image of y = 1, 0 ≤ x < ∞, is |w + 1

2 i | = 1
2 , −π

2 ≤ arg(w) ≤ 0.

Similarly, the image of y = 2, 0 ≤ x < ∞, is the circular arc
|w + 1

4 i | = 1
4 , −π

2 ≤ arg(w) ≤ 0.

Every half-line y = k , 1 ≤ k ≤ 2, between the boundary half-lines maps
onto |w + 1

2k i | = 1
2k , −π

2 ≤ arg(w) ≤ 0, between these circular arcs:
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The Inverse Mapping of 1
z

The reciprocal function f (z) = 1
z
is one-to-one.

Thus, f has a well-defined inverse function f −1.

Solving the equation z = f (w) for w , we get f −1(z) = 1
z
.

This observation extends our understanding of the complex mapping
w = 1

z
.

We have seen that the image of the line x = 1 under 1
z
is the circle

|w − 1
2 | = 1

2 . Since f −1(z) = 1
z
= f (z), the image of the circle

|z − 1
2 | = 1

2 under 1
z
is the line u = 1.

Similarly, we see that the circles |w − 1
2k | = | 1

2k | and |w + 1
2k i | = | 1

2k |
are mapped onto the lines x = k and y = k , respectively.
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