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Limits and Continuity Limits

Real and Complex Limits

limx→x0 f (x) = L intuitively means that values f (x) of the function f

can be made arbitrarily close to the real number L if values of x are
chosen sufficiently close to, but not equal to, the real number x0.

In real analysis, the concepts of continuity, the derivative, and the
definite integral were all defined using the concept of a limit.

limz→z0 f (z) = L will mean that the values f (z) of the complex
function f can be made arbitrarily close to the complex number L if
values of z are chosen sufficiently close to, but not equal to, the
complex number z0.
There is an important difference between these two concepts of limit:

In a real limit, there are two directions from which x can approach x0
on the real line, from the left or from the right.
In a complex limit, there are infinitely many directions from which z

can approach z0 in the complex plane. In order for a complex limit to
exist, each way in which z can approach z0 must yield the same
limiting value.
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Limits and Continuity Limits

Real Limits: From Intuition to Formalism

To rigorously define a real limit, we must formalize what is meant by
the phrases “arbitrarily close to” and “sufficiently close to”.

A precise statement should involve the use of absolute values since
|a − b| measures the distance between a, b on the real number line.

The points x and x0 are close if |x − x0| is a small positive number.

Also, f (x) and L are close if |f (x)− L| is a small positive number.

We let the Greek letters ε and δ represent small positive real numbers.

The expression “f (x) can be made arbitrarily close to L” can be made
precise by stating that for any real number ε > 0, x can be chosen so
that |f (x)− L| < ε.

We require that |f (x)− L| < ε whenever values of x are “sufficiently
close to, but not equal to, x0”.

This means that there is some distance δ > 0 with the property that,
if x is within distance δ of x0 and x 6= x0, then |f (x)− L| < ε.
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Limits and Continuity Limits

Formal Definition of a Real Limit

Definition (Limit of a Real Function f (x))

The limit of f as x tends to x0 exists and is equal to L if, for every ε > 0,
there exists a δ > 0, such that |f (x)− L| < ε when 0 < |x − x0| < δ.

The geometric interpretation is shown:

The graph of the function y = f (x) over the
interval (x0− δ, x0+ δ), excluding the point x0,
lies between the lines y = L− ε and y = L+ ε.
In the terminology of mappings, the interval
(x0 − δ, x0 + δ), excluding the point x = x0, is
mapped onto a set in the interval (L−ε, L+ε)
on the y -axis.
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Limits and Continuity Limits

Complex Limits

A complex limit is based on a notion of “close” in the complex plane.

Because the distance in the complex plane between two points z1 and
z2 is given by the modulus of the difference of z1 and z2, the precise
definition of a complex limit will involve |z2 − z1|.
E.g., the phrase “f (z) can be made arbitrarily close to the complex
number L” can be stated precisely: “for every ε > 0, z can be chosen
so that |f (z)− L| < ε.

Since the modulus of a complex number is a real number, both ε and
δ still represent small positive real numbers:

Definition (Limit of a Complex Function)

Suppose that a complex function f is defined in a deleted neighborhood of
z0 and suppose that L is a complex number. The limit of f as z tends to

z0 exists and is equal to L, written as limz→z0 f (z) = L, if, for every ε > 0,
there exists a δ > 0, such that |f (z)− L| < ε whenever 0 < |z − z0| < δ.
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Limits and Continuity Limits

Geometric Representation

The set of points w satisfying |w − L| < ε is called a neighborhood of
L, and consists of all points in the complex plane lying within, but not
on, a circle of radius ε centered at the point L.

The set of points satisfying 0 < |z − z0| < δ is called a deleted
neighborhood of z0 and consists of all points in the neighborhood
|z − z0| < δ excluding the point z0.

If limz→z0 f (z) = L and if ε is any positive number, then there is a
deleted neighborhood of z0 of radius δ, such that, for every z in this
deleted neighborhood, f (z) is in the ε neighborhood of L:
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Limits and Continuity Limits

Real One-Sided Limits

There is at least one very important difference between real and
complex limits.

For real functions, limx→x0 f (x) = L if and only if limx→x+0
f (x) = L

and limx→x
−

0
f (x) = L. Since there are two directions from which x can

approach x0 on the real line, the real limit exists if and only if these
two one-sided limits have the same value.

Example: Consider the real function f (x) =

{

x2, if x < 0
x − 1, if x ≥ 0

.

The limit of f as x approaches 0 does not exist:

limx→0− f (x) = limx→0− x2 = 0, but
limx→0+ f (x) = limx→0+ (x − 1) = −1.
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Limits and Continuity Limits

Criterion for the Nonexistence of a Limit

For limits of complex functions, z is allowed to approach z0 from any
direction in the complex plane, i.e., along any curve or path through
z0.

For limz→z0 f (z) to exist and to equal L, we require that f (z)
approach the same complex number L along every possible curve
through z0.

Criterion for the Nonexistence of a Limit

If f approaches two complex numbers L1 6= L2 for two different curves or
paths through z0, then limz→z0 f (z) does not exist.
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Limits and Continuity Limits

Example: Nonexistence of a Limit

Example: Show that limz→0
z
z
does not exist.

We show that this limit does not exist by finding two different ways of
letting z approach 0 that yield different values for limz→0

z
z
.

First, we let z approach 0 along the real axis. That is, we consider
complex numbers of the form z = x + 0i , where the real number x is
approaching 0. For these points we have:

lim
z→0

z

z
= lim

x→0

x + 0i

x − 0i
= lim

x→0
1 = 1.

On the other hand, if we let z approach 0 along the imaginary axis,
then z = 0 + iy , where the real number y is approaching 0. For this
approach we have:

lim
z→0

z

z
= lim

y→0

0 + iy

0− iy
= lim

y→0
(−1) = − 1.

Since the two values are not the same, we conclude that limz→0
z
z

does not exist.
George Voutsadakis (LSSU) Complex Analysis October 2014 11 / 45



Limits and Continuity Limits

Epsilon-Delta Proofs

Computing values of limz→z0 f (z) as z approaches z0 from different
directions can prove that a limit does not exist, but cannot be used to
prove that a limit does exist.

To prove that a limit exists we must use the definition directly.

This requires demonstrating that for every positive real number ε
there is an appropriate choice of δ that meets the relevant
requirements.

Such proofs are commonly called “epsilon-delta proofs”.

Even for relatively simple functions, epsilon-delta proofs can be quite
complicated.

We only show some easy examples of such proofs.
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Limits and Continuity Limits

Example: An Epsilon-Delta Proof

Prove that limz→1+i (2 + i)z = 1 + 3i .

According to the definition, limz→1+i (2 + i)z = 1 + 3i , if, for every
ε > 0, there is a δ > 0, such that |(2 + i)z − (1 + 3i)| < ε whenever
0 < |z − (1 + i)| < δ. Proving that the limit exists requires that we
find an appropriate value of δ for a given value of ε. One way of
finding δ is to “work backwards”. The idea is to start with the
inequality: |(2 + i)z − (1 + 3i)| < ε and then use properties of
complex numbers and the modulus to manipulate this inequality until
it involves the expression |z − (1 + i)|.
We first factor (2 + i) out of the left-hand side:

|2 + i | ·
∣

∣

∣
z − 1+3i

2+i

∣

∣

∣
< ε. Because |2 + i | =

√
5 and 1+3i

2+i
= 1 + i , we

get:
√
5 · |z − (1 + i)| < ε or |z − (1 + i)| < ε√

5
. This indicates that

we should take δ = ε√
5
.
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Limits and Continuity Limits

Example: An Epsilon-Delta Proof (Cont’d)

We now present the formal proof: Given ε > 0, let δ = ǫ√
5
. If

0 < |z − (1 + i)| < δ, then we have |z − (1 + i)| < ε√
5
. Multiplying

both sides by |2 + i | =
√
5 we obtain: |2 + i | · |z − (1 + i)| <

√
5 · ε√

5

or |(2 + i)z − (1 + 3i)| < ε. Therefore, |(2 + i)z − (1 + 3i)| < ε
whenever 0 < |z − (1 + i)| < δ. So, by definition,
limz→1+i (2 + i)z = 1 + 3i .
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Limits and Continuity Limits

Real Multivariable Limits

We present a practical method for computing complex limits which
also establishes an important connection between the complex limit of
f (z) = u(x , y) + iv(x , y) and the real limits of the real-valued
functions of two real variables u(x , y) and v(x , y).

Since every complex function is completely determined by the real
functions u and v , the limit of a complex function can be expressed in
terms of the real limits of u and v .

Definition (Limit of the Real Function F (x , y))

The limit of F as (x , y) tends to (x0, y0) exists and is equal to the real
number L if, for every ε > 0, there exists a δ > 0, such that
|F (x , y)− L| < ε whenever 0 <

√

(x − x0)2 + (y − y0)2 < δ.

The expression
√

(x − x0)2 + (y − y0)2 represents the distance
between the points (x , y) and (x0, y0) in the Cartesian plane.

George Voutsadakis (LSSU) Complex Analysis October 2014 15 / 45



Limits and Continuity Limits

Properties of Limits

Using the definitions, we can prove that:

lim(x,y)→(x0 ,y0) 1 = 1,
lim(x,y)→(x0 ,y0) x = x0,
lim(x,y)→(x0 ,y0) y = y0.
If lim(x,y)→(x0 ,y0) F (x , y) = L and lim(x,y)→(x0 ,y0) G(x , y) = M , then:

lim(x,y)→(x0,y0) cF (x , y) = cL, c a real constant,
lim(x,y)→(x0,y0) (F (x , y)± G(x , y)) = L±M,
lim(x,y)→(x0,y0) F (x , y) · G(x , y) = L ·M,

lim(x,y)→(x0,y0)
F (x , y)

G(x , y)
=

L

M
, M 6= 0.
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Limits and Continuity Limits

Limits Involving Polynomial Expressions

Example: Limits involving polynomial expressions in x and y can be
easily computed using these rules:

lim
(x ,y)→(1,2)

(3xy2 − y)

= 3(lim(x ,y)→(1,2) x)(lim(x ,y)→(1,2) y)(lim(x ,y)→(1,2) y)

− lim(x ,y)→(1,2) y

= 3 · 1 · 2 · 2− 2
= 10.

In general, if p(x , y) is a two-variable polynomial function, then

lim
(x ,y)→(x0,y0)

p(x , y) = p(x0, y0).

If p(x , y) and q(x , y) are two-variable polynomial functions and
q(x0, y0) 6= 0, then

lim
(x ,y)→(x0,y0)

p(x , y)

q(x , y)
=

p(x0, y0)

q(x0, y0)
.
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Limits and Continuity Limits

Real and Imaginary Parts of a Limit

Theorem (Real and Imaginary Parts of a Limit)

Suppose that f (z) = u(x , y) + iv(x , y), z0 = x0 + iy0 and L = u0 + iv0.
Then limz→z0 f (z) = L if and only if

lim
(x ,y)→(x0,y0)

u(x , y) = u0 and lim
(x ,y)→(x0,y0)

v(x , y) = v0.

The theorem reduces the computation of complex limits to the
computation of a pair of real limits.

Example: Compute limz→1+i (z
2 + i).

Since f (z) = z2 + i = x2 − y2 + (2xy + 1)i , we set
u(x , y) = x2 − y2, v(x , y) = 2xy + 1 and z0 = 1+ i , i.e., x0 = 1 and
y0 = 1. We next compute the two real limits:

u0 = lim(x ,y)→(1,1) (x
2 − y2) = 12 − 12 = 0,

v0 = lim(x ,y)→(1,1) (2xy + 1) = 2 · 1 · 1 + 1 = 3.

Therefore, L = u0 + iv0 = 0 + i(3) = 3i , i.e., limz→1+i (z
2 + i) = 3i .
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Limits and Continuity Limits

Properties of Complex Limits

Theorem (Properties of Complex Limits)

Suppose that f and g are complex functions. If limz→z0 f (z) = L and
limz→z0 g(z) = M, then:

(i) limz→z0 cf (z) = cL, c a complex constant;

(ii) limz→z0 (f (z)± g(z)) = L±M;

(iii) limz→z0 f (z) · g(z) = L ·M, and

(iv) limz→z0

f (z)

g(z)
=

L

M
, provided M 6= 0.

We only prove part (i): Let f (z) = u(x , y) + iv(x , y), z0 = x0 + iy0,
L = u0 + iv0, and c = a + ib. Since limz→z0 f (z) = L,
lim(x ,y)→(x0,y0) u(x , y) = u0 and lim(x ,y)→(x0,y0) v(x , y) = v0. Then
lim(x ,y)→(x0,y0) (au(x , y)− bv(x , y)) = au0 − bv0 and
lim(x ,y)→(x0,y0) (bu(x , y) + av(x , y)) = bu0 + av0.

George Voutsadakis (LSSU) Complex Analysis October 2014 19 / 45



Limits and Continuity Limits

Properties of Complex Limits (Cont’d)

We set f (z) = u(x , y) + iv(x , y), z0 = x0 + iy0, L = u0 + iv0, and
c = a + ib. We then computed
lim(x ,y)→(x0,y0) (au(x , y)− bv(x , y)) = au0 − bv0 and
lim(x ,y)→(x0,y0) (bu(x , y) + av(x , y)) = bu0 + av0.
However, note that

cf (z) = (a + ib)(u + iv)
= (au − bv) + i(bu + av).

Thus, Re(cf (z)) = au(x , y)− bv(x , y) and
Im(cf (z)) = bu(x , y) + av(x , y). Therefore,
limz→z0 cf (z) = au0 − bv0 + i(bu0 + av0) = (a + ib)(u0 + iv0) = cL.

Many limits can now be computed starting from:

limz→z0 c = c , c a complex constant;
limz→z0 z = z0.
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Limits and Continuity Limits

Computing Limits I

Compute the limit limz→i
(3 + i)z4 − z2 + 2z

z + 1
.

limz→i z
2 = limz→i z · z = (limz→i z)(limz→i z) = i · i = −1.

Similarly, limz→i z
4 = i4 = 1. Using these limits, and the properties,

we obtain: limz→i ((3 + i)z4 − z2 + 2z) = (3 + i) limz→i z
4 −

limz→i z
2 + 2 limz→i z = (3 + i)(1)− (−1) + 2(i) = 4 + 3i , and

limz→i (z + 1) = 1 + i . Therefore, finally,

limz→i
(3 + i)z4 − z2 + 2z

z + 1
=

limz→i ((3 + i)z4 − z2 + 2z)

limz→i (z + 1)
=

4 + 3i

1 + i
.

After carrying out the division, we obtain

limz→i
(3 + i)z4 − z2 + 2z

z + 1
= 7

2 − 1
2 i .
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Limits and Continuity Limits

Computing Limits II

Compute the limit lim
z→1+

√
3i

z2 − 2z + 4

z − 1−
√
3i
.

limz→1+
√
3i (z

2 − 2z + 4) = (1 +
√
3i)2 − 2(1 +

√
3i) + 4 =

− 2 + 2
√
3i − 2− 2

√
3i + 4 = 0, and

limz→1+
√
3i (z − 1−

√
3i) = 1 +

√
3i − 1−

√
3i = 0. It appears that

we cannot apply the quotient rule since the limit of the denominator
is 0. However, in the previous calculation we found that 1 +

√
3i is a

root of the quadratic polynomial z2 − 2z + 4. If z1 is a root of a
quadratic polynomial, then z − z1 is a factor of the polynomial. Using
long division, we find that z2 − 2z + 4 = (z − 1 +

√
3i)(z − 1−

√
3i).

Because z is not allowed to take on the value 1 +
√
3i in the limit:

limz→1+
√
3i

z2 − 2z + 4

z − 1−
√
3i

= limz→1+
√
3i

(z − 1 +
√
3i)(z − 1−

√
3i)

z − 1−
√
3i

=

limz→1+
√
3i (z − 1 +

√
3i) = 1 +

√
3i − 1 +

√
3i = 2

√
3i .
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Limits and Continuity Continuity

Subsection 2

Continuity
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Limits and Continuity Continuity

Continuity of Real Functions

If the limit of a real function f as x approaches the point x0 exists
and agrees with the value of the function f at x0, then we say that f
is continuous at the point x0.

Continuity of a Real Function f (x)

A function f is continuous at a point x0 if limx→x0 f (x) = f (x0).

In order for the equation limx→x0 f (x) = f (x0) to hold:
The limit limx→x0 f (x) must exist;
f must be defined at x0;
the two values must be equal.

If anyone of these three conditions fail, then f is not continuous at x0.

Example: The function f (x) =

{

x2, if x < 0
x − 1, if x ≥ 0

is not continuous

at the point x = 0 since limx→0 f (x) does not exist.

Example: Even though limx→1
x2−1
x−1 = 2, the function f (x) = x2−1

x−1 is
not continuous at x = 1 because f (1) is not defined.
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Limits and Continuity Continuity

Continuity of Complex Functions

A complex function f is continuous at a point z0 if the limit of f as z
approaches z0 exists and is the same as the value of f at z0.

Definition (Continuity of a Complex Function)

A complex function f is continuous at a point z0 if limz→z0 f (z) = f (z0).

Criteria for Continuity at a Point

A complex function f is continuous at a point z0 if each of the following
three conditions hold:

(i) limz→z0 f (z) exists;

(ii) f is defined at z0;

(iii) limz→z0 f (z) = f (z0).

If a complex function f is not continuous at a point z0, then we say
that f is discontinuous at z0.
Example: The function f (z) = 1

1+z2
is discontinuous at z = i and

z = −i .
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Limits and Continuity Continuity

Checking Continuity at a Point

Consider the function f (z) = z2 − iz + 2.

To determine if f is continuous at the point z0 = 1− i , we must find

limz→z0 f (z);
f (z0),
and then check to see whether these two complex values are equal.

We obtain:
limz→z0 f (z) = limz→1−i (z

2 − iz + 2) = (1−i)2−i(1−i)+2 = 1−3i .
Furthermore, for z0 = 1− i , we have:
f (z0) = f (1− i) = (1− i)2 − i(1− i) + 2 = 1− 3i .
Since limz→z0 f (z) = f (z0), we conclude that f (z) = z2 − iz + 2 is
continuous at the point z0 = 1− i .
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Limits and Continuity Continuity

Discontinuity of Principal Square Root Function

Show that the principal square root function f (z) = z1/2 =
√

|z |e iArg(z)/2 is discontinuous at the point z0 = −1.

We show that the limit limz→z0 f (z) = limz→−1 z
1/2 does not exist.

We let z approach −1 via two different paths.
Consider z approaching −1 along the quarter of the unit circle lying in
the second quadrant, i.e., |z | = 1, π

2 < arg(z) < π. In exponential form
z = e iθ, π

2 < θ < π, with θ approaching π. By setting |z | = 1 and

letting Arg(z) = θ approach π, we obtain: limz→−1 z
1/2 =

limz→−1

√

|z |e iArg(z)/2 = limθ→π

√
1e iθ/2 =

limθ→π (cos
θ
2 + i sin θ

2 ) = cos π
2 + i sin π

2 = 0 + i(1) = i .
Let z approach −1 along the quarter of the unit circle lying in the third
quadrant, i.e., z = e iθ, −π < θ < −π

2 , with θ approaching −π. By
setting |z | = 1 and letting Arg(z) = θ approach −π we find:
limz→−1 z

1/2 = limz→−1

√

|z |e iArg(z)/2 = limθ→−π e
iθ/2 =

limθ→−π (cos
θ
2 + i sin θ

2 ) = − i .

We conclude that limz→−1 z
1/2 does not exist. Therefore,

f (z) = z1/2 is discontinuous at the point z0 = −1.
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Limits and Continuity Continuity

Continuity on a Set of Points

Besides continuity of a complex function f at a single point z0 in the
complex plane, we are often also interested in the continuity of a
function on a set of points in the complex plane.

A complex function f is continuous on a set S if f is continuous at
z0, for each z0 in S .

Example: Using the properties, we can show that f (z) = z2 − iz + 2
is continuous at any point z0 in the complex plane. Therefore, we say
that f is continuous on C.

Example: The function f (z) = 1
z2+1

is continuous on the set
consisting of all complex z such that z 6= ±i .
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Limits and Continuity Continuity

Real and Imaginary Parts of a Continuous Function

Various properties of complex limits can be translated into statements
about continuity.

E.g., a preceding theorem described the connection between the
complex limit of f (z) = u(x , y) + iv(x , y) and the real limits of u, v :

Definition (Continuity of a Real Function F (x , y))

A function F is continuous at (x0, y0) if
lim(x ,y)→(x0,y0) F (x , y) = F (x0, y0).

Theorem (Real and Imaginary Parts of a Continuous Function)

Suppose that f (z) = u(x , y) + iv(x , y) and z0 = x0 + iy0. Then the
complex function f is continuous at the point z0 if and only if both real
functions u and v are continuous at the point (x0, y0).
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Limits and Continuity Continuity

Proof of the Theorem

Assume that the complex function f (z) = u(x , y) + iv(x , y) is
continuous at z0 = x0 + iy0. Then
limz→z0 f (z) = f (z0) = u(x0, y0) + iv(x0, y0). This implies:
lim(x ,y)→(x0,y0) u(x , y) = u(x0, y0), lim(x ,y)→(x0,y0) v(x , y) = v(x0, y0).
Therefore, both u and v are continuous at (x0, y0).

Conversely, if u and v are continuous at (x0, y0), then
lim(x ,y)→(x0,y0) u(x , y) = u(x0, y0) and
lim(x ,y)→(x0,y0) v(x , y) = v(x0, y0). It then follows that
limz→z0 f (z) = u(x0, y0) + iv(x0, y0) = f (z0). Therefore, f is
continuous.
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Limits and Continuity Continuity

Checking Continuity Using the Theorem

Show that the function f (z) = z is continuous on C.

According to the theorem, f (z) = z = x + iy = x − iy is continuous
at z0 = x0 + iy0 if both u(x , y) = x and v(x , y) = −y are continuous
at (x0, y0).
Because u and v are two-variable polynomial functions, it follows
that: lim(x ,y)→(x0,y0) u(x , y) = x0 and lim(x ,y)→(x0,y0) v(x , y) = −y0.
This implies that u and v are continuous at (x0, y0). Therefore, f is
continuous at z0 = x0 + iy0 by the preceding theorem.
Since z0 = x0 + iy0 was arbitrary, we conclude that the function
f (z) = z is continuous on C.
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Properties of Continuous Functions

Theorem (Properties of Continuous Functions)

If f and g are continuous at the point z0, then the following functions are
continuous at the point z0:

(i) cf , c a complex constant;

(ii) f ± g ;

(iii) f · g ;
(iv) f

g
, provided g(z0) 6= 0.

We only prove (ii). Since f and g are continuous at z0, we have that
limz→z0 f (z) = f (z0) and limz→z0 g(z) = g(z0). It follows that
limz→z0 (f (z) + g(z)) = limz→z0 f (z)+ limz→z0 g(z) = f (z0)+ g(z0).
Therefore, f + g is continuous at z0.
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Continuity of Polynomial Functions

Theorem (Continuity of Polynomial Functions)

Polynomial functions are continuous on the entire complex plane C.

Let p(z) = anz
n+ an−1z

n−1+ · · ·+ a1z + a0 be a polynomial function
and let z0 be any point in the complex plane C. The identity function
f (z) = z is continuous at z0, whence, by repeated application of the
product rule, the power function f (z) = zn, where n is an integer and
n ≥ 1, is continuous at this point as well. Moreover, every complex
constant function f (z) = c is continuous at z0, so it follows by the
theorem that each of the functions anz

n, an−1z
n−1, . . ., a1z , and a0

are continuous at z0. Finally, from repeated application of the sum
rule, p(z) = anz

n + an−1z
n−1 + · · ·+ a1z + a0 is continuous at z0.

Since z0 was allowed to be any point in the complex plane, we have
shown that the polynomial function p is continuous on the entire
complex plane C.
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Continuity of Rational Functions

Continuity of Rational Functions

Rational functions are continuous on their domains.

Since a rational function f (z) = p(z)
q(z) is quotient of the polynomial

functions p and q, it follows from the theorem and the quotient rule
that f is continuous at every point z0 for which q(z0) 6= 0.
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Real and Complex Bounded Functions

Recall that if a real function f is continuous on a closed interval I on
the real line, then f is bounded on I , i.e., there is a real number
M > 0 such that |f (x)| ≤ M, for all x in I .

An analogous result for real functions F (x , y) states that, if F (x , y) is
continuous on a closed and bounded region R of the Cartesian plane,
then there is a real number M > 0, such that |F (x , y)| ≤ M, for all
(x , y) in R , and we say F is bounded on R .

Suppose that the function f (z) = u(x , y) + iv(x , y) is defined on a
closed and bounded region R in the complex plane. As with real
functions, we say that the complex function f is bounded on R if
there exists a real constant M > 0, such that |f (z)| ≤ M, for all z in
R .
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Bounded Property for Complex Functions

Theorem (A Bounding Property)

If a complex function f is continuous on a closed and bounded region R ,
then f is bounded on R . That is, there is a real constant M > 0, such
that |f (z)| ≤ M, for all z in R .

If f is continuous on R , then u and v are continuous real functions on
R . Since the square root function is continuous, it follows that the
real function F (x , y) =

√

u(x , y)2 + v(x , y)2 is also continuous on R .
Because F is continuous on the closed and bounded region R , F is
bounded on R , i.e., there is a real constant M > 0, such that
|F (x , y)| ≤ M, for all (x , y) in R . However, since |f (z)| = F (x , y),
we have that |f (z)| ≤ M, for all z in R . Thus, the complex function
f is bounded on R .
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Branches

We have discussed the concept of a multiple valued function F (z)
that assigns a set of complex numbers to the input z .

Examples of multiple valued functions include F (z) = z1/n, which
assigns to the input z the set of n n-th roots of z , and G (z) = arg(z),
which assigns to the input z the infinite set of arguments of z .

In practice, it is often the case that we need a consistent way of
choosing just one of the values of a multiple-valued function.

If we make this choice of value with the concept of continuity in
mind, then we obtain a function that is called a branch of a
multiple-valued function.

A branch of a multiple-valued function F is a function f1 that is
continuous on some domain and that assigns exactly one of the
multiple values of F to each point z in that domain.

Notation for Branches: When representing branches of a multiple
valued function F with functional notation, we will use lowercase
letters with a numerical subscript such as f1, f2, and so on.
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Discontinuities of the Square Root Function

The requirement that a branch be continuous means that the domain
of a branch is different from the domain of the multiple valued
function.

Example: The multiple-valued function F (z) = z1/2 that assigns to
each input z the set of two square roots of z is defined for all nonzero
complex numbers z . Even though the principal square root function
f (z) = z1/2 does assign exactly one value of F to each input z (the
principal square root of z), f is not a branch of F . The reason is that
the principal square root function is not continuous on its domain.
E.g., we showed that f (z) = z1/2 is not continuous at z0 = −1. We
can also show that f (z) = z1/2 is discontinuous at every point on the
negative real axis.

In order to obtain a branch of F (z) = z1/2 that agrees with the
principal square root function, we must restrict the domain to exclude
points on the negative real axis.
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The Principal Branch of the Square Root Function

We define the principal branch of F (z) = z1/2 by f1(z) =
√
re iθ/2,

−π < θ < π. The function f1 is a branch of F (z) = z1/2.
The domain Dom(f1) of f1 is defined by |z | > 0, −π < arg(z) < π.
The function f1 agrees with the principal square root function f on
this set. Thus, f1 does assign to the input z exactly one of the values
of F (z) = z1/2. To show that f1 is a continuous, let z be a point with
|z | > 0, −π < arg(z) < π. If z = x + iy and x > 0, then z = re iθ,
where r =

√

x2 + y2 and θ = tan−1 (y
x
). Since −π

2 < tan−1 (y
x
) < π

2 ,
the inequality −π < θ < π is satisfied. Thus, substituting the
expressions for r and θ: f1(z) =

4
√

x2 + y2e i tan
−1 (y/x)/2 =

4
√

x2 + y2 cos ( tan
−1 (y/x)
2 ) + i 4

√

x2 + y2 sin ( tan
−1 (y/x)
2 ). Because the

real and imaginary parts of f1 are continuous real functions for x > 0,
we conclude that f1 is continuous for x > 0. A similar argument can
be made for points with y > 0 using θ = cot−1 ( x

y
) and for points

with y < 0 using θ = − cot−1 ( x
y
). So f1 is continuous.
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Branch Cuts

Although F (z) = z1/2 is defined for all nonzero complex numbers C,
the principal branch f1 is defined only on |z | > 0, −π < arg(z) < π.

In general, a branch cut for a branch f1 of a multiple-valued function
F is a portion of a curve that is excluded from the domain of F so
that f1 is continuous on the remaining points.

Therefore, the non-positive real axis is a branch cut for the principal
branch f1 of the multiple-valued function F (z) = z1/2.

A different branch of F with the same branch cut is given by
f2(z) =

√
re iθ/2, π < θ < 3π. These are distinct since for, e.g., z = i ,

f1(i) =
1
2

√
2 + 1

2

√
2i , but f2(i) = −1

2

√
2− 1

2

√
2i .

If we set φ = θ − 2π, then the branch f2 can be expressed as
f2(z) =

√
re i(φ+2π)/2 =

√
re iφ/2e iπ, −π < φ < π. Since e iπ = −1,

f2(z) = −√
re iφ/2, −π < φ < π. This shows that f2 = −f1.

These two branches of F (z) = z1/2 are analogous to the positive and
negative square roots of a positive real number.
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Branch Points

The point z = 0 must be on the branch cut of every branch of the
multiple-valued function F (z) = z1/2.

A point with the property that it is on the branch cut of every branch
is called a branch point of F .

Alternatively, a branch point is a point z0 with the following property:

If we traverse any circle centered at z0 with sufficiently small radius
starting at a point z1, then the values of any branch do not return to
the value at z1.

Example: Consider any branch of G (z) = arg(z).

At the point, say, z0 = 1, if we traverse the
small circle |z − 1| = ε counterclockwise from
the point z1 = 1 − εi , then the values of the
branch increase until we reach the point 1+εi .
Then the values of the branch decrease back
down to the value of the branch at z1. Thus,
z0 = 1 is not a branch point.
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Example (Cont’d)

Consider again any branch of G (z) = arg(z).

Suppose the process is repeated for the
point z0 = 0. For the small circle |z | = ε,
the values of the branch increase along the
entire circle. By the time we have re-
turned to our starting point, the value of
the branch is no longer the same, but has
increased by 2π.

Therefore, z0 = 0 is a branch point of G (z) = arg(z).
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Infinite Limits and Limits at Infinity

In analogy with real analysis, we can also define the concepts of
infinite limits and limits at infinity for complex functions.

Intuitively, the limit limz→∞ f (z) = L means that values f (z) of the
function f can be made arbitrarily close to L if values of z are chosen
so that |z | is sufficiently large.

The limit of f as z tends to ∞ exists and is equal to L if, for every
ε > 0, there exists a δ > 0, such that |f (z)− L| < ε whenever
|z | > 1/δ.

Using this definition it is not hard to show that: limz→∞ f (z) = L if
and only if limz→0 f (

1
z
) = L.

Similarly, the infinite limit limz→z0 f (z) = ∞ is defined by:

The limit of f as z tends to z0 is ∞ if, for every ε > 0, there is a
δ > 0, such that |f (z)| > 1/ε whenever 0 < |z − z0| < δ.

From this definition we obtain: limz→z0 f (z) = ∞ if and only if
limz→z0

1
f (z) = 0.
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Continuous Complex Parametric Curves

In real analysis we visualize a continuous function as a function whose
graph has no breaks or holes in it.

There is an analogous property for continuous complex functions, but
it must be stated in terms of complex mappings.

A parametric curve defined by parametric equations x = x(t) and
y = y(t) is called continuous if the real functions x , y are continuous.

Similarly, a complex parametric curve defined by z(t) = x(t) + iy(t)
is continuous if both x(t) and y(t) are continuous real functions.

As with parametric curves in the Cartesian plane, a continuous
parametric curve in the complex plane has no breaks or holes in it.

Such curves provide a means to visualize continuous complex
functions.
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Visualizing Continuity via Complex Parametric Curves

Proposition

If a complex function f is continuous on a set S , then the image of every
continuous parametric curve in S must be a continuous curve.

Consider a continuous complex function f (z) = u(x , y) + iv(x , y) and
a continuous parametric curve defined by z(t) = x(t) + iy(t). We
saw that u(x , y) and v(x , y) are continuous real functions. Moreover,
since x(t) and y(t) are continuous functions, it follows that the
compositions u(x(t), y(t)) and v(x(t), y(t)) are continuous
functions. Therefore, the image of the parametric curve given by

w(t) = f (z(t)) = u(x(t), y(t)) + iv(x(t), y(t))

is also continuous.
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