Introduction to Complex Analysis

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science

Lake Superior State University

LSSU Math 413

(1) Analytic Functions

- Differentiability and Analyticity
- Cauchy-Riemann Equations
- Harmonic Functions

Subsection 1

Differentiability and Analyticity

Complex versus Real Function Calculus

- The calculus of complex functions deals with the usual concepts of derivatives and integrals of these functions.
- We shall present, next, the limit definition of the derivative of a complex function $f(z)$.
- Many of the concepts seem familiar, such as the product, quotient, and chain rules of differentiation, but there are important differences between the calculus of complex and of real functions $f(x)$.
- In essence, apart for the familiarity of names and definitions, there is little similarity between the interpretations of quantities such as $f^{\prime}(x)$ and $f^{\prime}(z)$.

Derivative of Complex Function

- Suppose $z=x+i y$ and $z_{0}=x_{0}+i y_{0}$. Then the change in z_{0} is the difference $\Delta z=z-z_{0}$ or $\Delta z=x-x_{0}+i\left(y-y_{0}\right)=\Delta x+i \Delta y$.
- If a complex function $w=f(z)$ is defined at z and z_{0}, then the corresponding change in w is the difference $\Delta w=f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)$.

Definition (Derivative of Complex Function)

Suppose the complex function f is defined in a neighborhood of a point z_{0}. The derivative of f at z_{0}, denoted by $f^{\prime}\left(z_{0}\right)$, is

$$
f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}
$$

provided this limit exists.

- If the limit exists, then f is said to be differentiable at z_{0}.
- Two other symbols denoting the derivative of $w=f(z)$ are w^{\prime} and $\frac{d w}{d z}$. In the latter notation, the value of $\frac{d w}{d z}$ at z_{0} is written $\left.\frac{d w}{d z}\right|_{z=z_{0}}$.

Example

- Use the definition to find the derivative of $f(z)=z^{2}-5 z$.

To compute the derivative of f at any point z, we replace z_{0} by the symbol z :

$$
\begin{aligned}
& f(z+\Delta z)=(z+\Delta z)^{2}-5(z+\Delta z)=z^{2}+2 z \Delta z+(\Delta z)^{2}-5 z-5 \Delta z \\
& f(z+\Delta z)-f(z)= z^{2}+2 z \Delta z+(\Delta z)^{2}-5 z-5 \Delta z \\
&-\left(z^{2}-5 z\right) \\
&= 2 z \Delta z+(\Delta z)^{2}-5 \Delta z
\end{aligned}
$$

Finally, we get

$$
\begin{aligned}
f^{\prime}(z) & =\lim _{\Delta z \rightarrow 0} \frac{2 z \Delta z+(\Delta z)^{2}-5 \Delta z}{\Delta z} \\
& =\lim _{\Delta z \rightarrow 0} \frac{\Delta z(2 z+\Delta z-5)}{\Delta z} \\
& =\lim _{\Delta z \rightarrow 0}(2 z+\Delta z-5)
\end{aligned}
$$

The limit is $f^{\prime}(z)=2 z-5$.

Differentiation Rules

Differentiation Rules

- Constant Rules: $\frac{d}{d z} c=0$ and $\frac{d}{d z} c f(z)=c f^{\prime}(z)$;
- Sum Rule: $\frac{d}{d z}[f(z) \pm g(z)]=f^{\prime}(z) \pm g^{\prime}(z)$;
- Product Rule: $\frac{d}{d z}[f(z) g(z)]=f^{\prime}(z) g(z)+f(z) g^{\prime}(z)$;
- Quotient Rule: $\frac{d}{d z}\left[\frac{f(z)}{g(z)}\right]=\frac{f^{\prime}(z) g(z)-f(z) g^{\prime}(z)}{[g(z)]^{2}}$;
- Chain Rule: $\frac{d}{d z} f(g(z))=f^{\prime}(g(z)) g^{\prime}(z)$.
- The power rule for differentiation of powers of z is also valid:

$$
\frac{d}{d z} z^{n}=n z^{n-1}, n \text { an integer }
$$

- Therefore, we also have the power rule for functions:

$$
\frac{d}{d z}[g(z)]^{n}=n[g(z)]^{n-1} g^{\prime}(z), n \text { an integer }
$$

Using the Rules of Differentiation

- Differentiate:
(a) $f(z)=3 z^{4}-5 z^{3}+2 z$
(b) $f(z)=\frac{z^{2}}{4 z+1}$
(c) $f(z)=\left(i z^{2}+3 z\right)^{5}$
(a) $f^{\prime}(z)=3 \cdot 4 z^{3}-5 \cdot 3 z^{2}+2 \cdot 1=12 z^{3}-15 z^{2}+2$.
(b) $f^{\prime}(z)=\frac{2 z \cdot(4 z+1)-z^{2} \cdot 4}{(4 z+1)^{2}}=\frac{4 z^{2}+2 z}{(4 z+1)^{2}}$.
(c) $f^{\prime}(z)=5\left(i z^{2}+3 z\right)^{4} \frac{d}{d z}\left(i z^{2}+3 z\right)=5\left(i z^{2}+3 z\right)^{4}(2 i z+3)$.

Complex Differentiability

- For a complex function f to be differentiable at a point z_{0}, we know from the preceding chapter that the limit $\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}$ must exist and equal the same complex number from any direction, i.e., the limit must exist regardless how Δz approaches 0 .
- In complex analysis, the requirement of differentiability of a function $f(z)$ at a point z_{0} is a far greater demand than in real calculus of functions $f(x)$ where we can approach a real number x_{0} on the number line from only two directions.
- If a complex function is made up by specifying its real and imaginary parts u and v, such as $f(z)=x+4 i y$, there is a good chance that it is not differentiable.

A Nowhere Differentiable Complex Function

- The function $f(z)=x+4 i y$ is not differentiable at any point z. Let z be any point in the complex plane. With $\Delta z=\Delta x+i \Delta y$, $f(z+\Delta z)-f(z)=(x+\Delta x)+4 i(y+\Delta y)-x-4 i y=\Delta x+4 i \Delta y$ and so $\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{\Delta x+4 i \Delta y}{\Delta x+i \Delta y}$.
- If we let $\Delta z \rightarrow 0$ along a line parallel to the x-axis, then $\Delta y=0$, $\Delta z=\Delta x$ and $\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{\Delta x}{\Delta x}=1$.
- If we let $\Delta z \rightarrow 0$ along a line parallel to the y-axis, then $\Delta x=0$, and $\Delta z=i \Delta y$, so that $\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{4 i \Delta y}{i \Delta y}=4$.
Since the two values are different, $f(z)=x+4 i y$ is nowhere differentiable, i.e., f is not differentiable at any point z.

Analytic Functions

- There is an important class of functions whose members satisfy even more severe requirements than just differentiability.

Definition (Analyticity at a Point)

A complex function $w=f(z)$ is said to be analytic at a point z_{0} if f is differentiable at z_{0} and at every point in some neighborhood of z_{0}.

- A function f is analytic in a domain D if it is analytic at every point in D. Sometimes "analytic on a domain D " is also used.
- A function f that is analytic throughout a domain D is called holomorphic or regular.

Analyticity versus Differentiability

- It is very important to notice that analyticity at a point is not the same as differentiability at a point:
- Analyticity at a point is a neighborhood property, i.e., analyticity is a property that is defined over an open set.
- Example: The function $f(z)=|z|^{2}$ is differentiable at $z=0$ but is not differentiable anywhere else. Even though $f(z)=|z|^{2}$ is differentiable at $z=0$, it is not analytic at $z=0$ because there exists no neighborhood of $z=0$ throughout which f is differentiable. Hence the function $f(z)=|z|^{2}$ is nowhere analytic.
- Example: The simple polynomial $f(z)=z^{2}$ is differentiable at every point z in the complex plane. Hence, $f(z)=z^{2}$ is analytic everywhere.

Entire Functions

- A function that is analytic at every point z in the complex plane is said to be an entire function.
- The differentiation rules allow us to conclude that:
- Polynomial functions are differentiable at every point z in the complex plane;
- Rational functions are analytic throughout any domain D that contains no points at which the denominator is zero.

Theorem (Polynomial and Rational Functions)

(i) A polynomial function

$$
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}
$$

where n is a nonnegative integer, is an entire function.
(ii) A rational function $f(z)=\frac{p(z)}{q(z)}$, where p and q are polynomial functions, is analytic in any domain D that contains no point z_{0} for which $q\left(z_{0}\right)=0$.

Singular Points

- Since the rational function

$$
f(z)=\frac{4 z}{z^{2}-2 z+2}
$$

is discontinuous at $1+i$ and $1-i, f$ fails to be analytic at $1 \pm i$.
By the preceding theorem, f is not analytic in any domain containing one or both of these points.

- In general, a point z at which a complex function $w=f(z)$ fails to be analytic is called a singular point of f.

Analyticity of Sum, Product, and Quotient

If the functions f and g are analytic in a domain D, then:

- The sum $f(z)+g(z)$, difference $f(z)-g(z)$, and product $f(z) g(z)$ are analytic.
- The quotient $\frac{f(z)}{g(z)}$ is analytic provided $g(z) \neq 0$ in D.

An Alternative Definition of $f^{\prime}(z)$

- Since $\Delta z=z-z_{0}$, then $z=z_{0}+\Delta z$. Thus, we get

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

- If we wish to compute f^{\prime} at a general point z, then we replace z_{0} by the symbol z after the limit is computed.

Theorem (Differentiability Implies Continuity)

If f is differentiable at a z_{0} in a domain D, then f is continuous at z_{0}.

- The limits $\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ and $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)$ exist and equal $f^{\prime}\left(z_{0}\right)$ and 0 , respectively. Hence, we can write $\lim _{z \rightarrow z_{0}}\left(f(z)-f\left(z_{0}\right)\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \cdot\left(z-z_{0}\right)=$ $\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \cdot \lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)=f^{\prime}\left(z_{0}\right) \cdot 0=0$. From $\lim _{z \rightarrow z_{0}}\left(f(z)-f\left(z_{0}\right)\right)=0$, we conclude that $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$. Thus, f is continuous at z_{0}.

L'Hôpital's Rule

- The converse of the preceding theorem is not true, i.e., continuity of a function f at a point does not guarantee that f is differentiable at the point.
- Example: The simple function $f(z)=x+4 i y$ is continuous everywhere because the real and imaginary parts of $f, u(x, y)=x$ and $v(x, y)=4 y$ are continuous at any point (x, y). Yet we have seen that $f(z)=x+4 i y$ is not differentiable at any point z.
- L'Hôpital's rule for computing limits of the indeterminate form $0 / 0$, carries over to complex analysis:

Theorem (L'Hôpital's Rule)

Suppose f and g are functions that are analytic at a point z_{0} and $f\left(z_{0}\right)=0, g\left(z_{0}\right)=0$, but $g^{\prime}\left(z_{0}\right) \neq 0$. Then

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}=\frac{f^{\prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}
$$

Applying L'Hôpital's Rule I

- Compute $\lim _{z \rightarrow 2+i} \frac{z^{2}-4 z+5}{z^{3}-z-10 i}$

Let $f(z)=z^{2}-4 z+5$ and $g(z)=z^{3}-z-10 i$. Then $f(2+i)=0$ and $g(2+i)=0$. Thus, the given limit has the indeterminate form $0 / 0$. Since f and g are polynomial functions, both functions are necessarily analytic at $z_{0}=2+i$. We also have $f^{\prime}(z)=2 z-4$, $g^{\prime}(z)=3 z^{2}-1, f^{\prime}(2+i)=2 i, g^{\prime}(2+i)=8+12 i$. Therefore, $\lim _{z \rightarrow 2+i} \frac{z^{2}-4 z+5}{z^{3}-z-10 i}=\frac{f^{\prime}(2+i)}{g^{\prime}(2+i)}=\frac{2 i}{8+12 i}=\frac{3}{26}+\frac{1}{13} i$.

Applying L'Hôpital's Rule II

- In a preceding example, we used factoring and cancelation to compute the limit

$$
\lim _{z \rightarrow 1+\sqrt{3} i} \frac{z^{2}-2 z+4}{z-1-\sqrt{3} i} .
$$

This limit also has the indeterminate form $0 / 0$.
With $f(z)=z^{2}-2 z+4, g(z)=z-1-\sqrt{3} i$, we have $f^{\prime}(z)=2 z-2$, and $g^{\prime}(z)=1$. L'Hôpital's Rule gives

$$
\lim _{z \rightarrow 1+\sqrt{3} i} \frac{z^{2}-2 z+4}{z-1-\sqrt{3} i}=\frac{f^{\prime}(1+\sqrt{3} i)}{1}=2(1+\sqrt{3} i-1)=2 \sqrt{3} i .
$$

Interpreting the Derivative

- In real calculus the derivative of a function $y=f(x)$ at a point x has many interpretations.
- $f^{\prime}(x)$ is the slope of the tangent line to the graph of f at $(x, f(x))$. When the slope is positive, negative, or zero, the function, in turn, is increasing, decreasing, and possibly has a maximum or minimum.
- Also, $f^{\prime}(x)$ is the instantaneous rate of change of f at x. In a physical setting, this rate can be interpreted as velocity of a moving object.
- None of these interpretations carry over to complex calculus.
- In complex analysis the primary concern is not what a derivative is or represents, but rather, whether a function f has a derivative.
- The fact that a complex function f possesses a derivative tells us a lot about the function.
- E.g., in the theory of mappings by complex functions: Under a mapping defined by an analytic function f, the magnitude and sense of an angle between two curves that intersect a point z_{0} in the z-plane is preserved in the w-plane at all points at which $f^{\prime}(z) \neq 0$.

Some Differences With Real Analysis

- $f(z)=|z|^{2}$ is differentiable only at $z=0$, but $f(x)=|x|^{2}$ is differentiable everywhere. $f(x)=x$ is differentiable everywhere, but $f(z)=x=\operatorname{Re}(z)$ is nowhere differentiable.
- The differentiation formulas are important, but not as important as in real analysis. In complex analysis we deal with functions such as $f(z)=4 x^{2}-i y$ and $g(z)=x y+i(x+y)$, which, even if they possess derivatives, cannot be differentiated by those formulas.
- Higher-order derivatives of complex functions are defined in exactly the same manner as in real analysis.
- In real analysis, if a function f possesses a first derivative, there is no guarantee that f possesses any other higher derivatives.
- In complex analysis, if a function f is analytic in a domain D, then, by assumption, f possesses a derivative at each point in D and, we will see that this fact alone guarantees that f possesses higher-order derivatives at all points in D. Indeed, an analytic function f on a domain D is infinitely differentiable in D.

Real Analyticity and L'Hôpital's Rule

- The definition of "analytic at a point a " in real analysis differs from the usual definition of that concept in complex analysis.
- In real analysis, analyticity of a function is defined in terms of power series: A function $y=f(x)$ is analytic at a point a if f has a Taylor series at a that represents f in some neighborhood of a.
- As in real calculus, it may be necessary to apply L' Hôpital's rule several times in succession to calculate a limit. In other words, if $f\left(z_{0}\right), g\left(z_{0}\right), f^{\prime}\left(z_{0}\right)$, and $g^{\prime}\left(z_{0}\right)$ are all zero, the limit $\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}$ may still exist. In general, if f, g, and their first $n-1$ derivatives are zero at z_{0} and $g^{(n)}\left(z_{0}\right) \neq 0$, then

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}=\frac{f^{(n)}\left(z_{0}\right)}{g^{(n)}\left(z_{0}\right)}
$$

Subsection 2

Cauchy-Riemann Equations

Revisiting Analyticity and Differentiability

- We saw that a function f of a complex variable z is analytic at a point z when f is differentiable at z and differentiable at every point in some neighborhood of z.
- We emphasized that this requirement is more stringent than just differentiability at a point because a complex function can be differentiable at a point z but yet be differentiable nowhere else.
- A function f is analytic in a domain D if f is differentiable at all points in D.
- We now present a test for analyticity of a complex function

$$
f(z)=u(x, y)+i v(x, y)
$$

based on partial derivatives of its real and imaginary parts u and v.

The Cauchy-Riemann Equations

Theorem (Cauchy-Riemann Equations)

Suppose $f(z)=u(x, y)+i v(x, y)$ is differentiable at a point $z=x+i y$. Then at z the first-order partial derivatives of u and v exist and satisfy the Cauchy-Riemann equations

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

- The derivative of f at z is given by $f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}$. By writing $f(z)=u(x, y)+i v(x, y)$ and $\Delta z=\Delta x+i \Delta y$, we get $f^{\prime}(z)=$

$$
\lim _{\Delta z \rightarrow 0} \frac{u(x+\Delta x, y+\Delta y)+i v(x+\Delta x, y+\Delta y)-u(x, y)-i v(x, y)}{\Delta x+i \Delta y} .
$$

Since the limit is assumed to exist, Δz can approach zero from any convenient direction.

The Cauchy-Riemann Equations (Cont'd)

- In particular, if we choose to let $\Delta z \rightarrow 0$ along a horizontal line, then $\Delta y=0$ and $\Delta z=\Delta x$. We then get
$f^{\prime}(z)=\lim _{\Delta x \rightarrow 0} \frac{u(x+\Delta x, y)-u(x, y)+i[v(x+\Delta x, y)-v(x, y)]}{\Delta x}=$ $\lim _{\Delta x \rightarrow 0} \frac{u(x+\Delta x, y)-u(x, y)}{\Delta x}+i \lim _{\Delta x \rightarrow 0} \frac{v(x+\Delta x, y)-v(x, y)}{\Delta x}$. The existence of $f^{\prime}(z)$ implies that each limit exists. These limits are the definitions of the first-order partial derivatives with respect to x of u and v, respectively. Hence, we have shown that $\frac{\partial u}{\partial x}$ and $\frac{\partial v}{\partial x}$ exist at the point z, and that the derivative of f is $f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}$.
- We now let $\Delta z \rightarrow 0$ along a vertical line. With $\Delta x=0$ and
$\Delta z=i \Delta y$, we get
$f^{\prime}(z)=\lim _{\Delta y \rightarrow 0} \frac{u(x, y+\Delta y)-u(x, y)}{i \Delta y}+i \lim _{\Delta y \rightarrow 0} \frac{v(x, y+\Delta y)-v(x, y)}{i \Delta y}$. In this case, we obtain that $\frac{\partial u}{\partial y}$ and $\frac{\partial v}{\partial y}$ exist at z and that $f^{\prime}(z)=-i \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}$.
Equate real and imaginary parts to obtain the Cauchy-Riemann Equations.

Application of the Equations

- The Cauchy-Riemann equations hold at z as a necessary consequence of f being differentiable at z.
- Thus, even though we cannot use the theorem to determine where f is differentiable, it can tell us where f does not possess a derivative: If the equations are not satisfied at a point z, then f cannot be differentiable at z.
- Example: We saw that $f(z)=x+4 i y$ is not differentiable at any point z. If we identify $u=x$ and $v=4 y$, then

$$
\frac{\partial u}{\partial x}=1, \quad \frac{\partial v}{\partial y}=4, \quad \frac{\partial u}{\partial y}=0, \quad \frac{\partial v}{\partial x}=0
$$

In view of $\frac{\partial u}{\partial x}=1 \neq 4=\frac{\partial v}{\partial y}$ the Cauchy-Riemann equations cannot be satisfied at any point z. Thus, f is nowhere differentiable.

- Note that, if a complex function $f(z)=u(x, y)+i v(x, y)$ is analytic throughout a domain D, then the real functions u and v satisfy the Cauchy-Riemann equations at every point in D.

Verifying the Equations

- The polynomial function $f(z)=z^{2}+z$ is analytic for all z and can be written in terms of x, y as $f(z)=x^{2}-y^{2}+x+i(2 x y+y)$. Thus, $u(x, y)=x^{2}-y^{2}+x$ and $v(x, y)=2 x y+y$. For any point (x, y) in the complex plane, we see that the Cauchy-Riemann equations are satisfied:

$$
\frac{\partial u}{\partial x}=2 x+1=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-2 y=-\frac{\partial v}{\partial x} .
$$

Criterion for Non-analyticity

Criterion for Non-analyticity

If the Cauchy-Riemann equations are not satisfied at every point z in a domain D, then the function $f(z)=u(x, y)+i v(x, y)$ cannot be analytic in D.

- Example: Show that the complex function $f(z)=2 x^{2}+y+i\left(y^{2}-x\right)$ is not analytic at any point.
We identify $u(x, y)=2 x^{2}+y$ and $v(x, y)=y^{2}-x$. From $\frac{\partial u}{\partial x}=4 x$, $\frac{\partial v}{\partial y}=2 y, \frac{\partial u}{\partial y}=1$ and $\frac{\partial v}{\partial x}=-1$. we see that $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$, but that the equality $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ is satisfied only on the line $y=2 x$. However, for any point z on the line, there is no neighborhood or open disk about z in which f is differentiable at every point. We conclude that f is nowhere analytic.

A Sufficient Condition for Analyticity

- The Cauchy-Riemann equations are not sufficient for analyticity of a function $f(z)=u(x, y)+i v(x, y)$ at a point $z=x+i y$: It is possible for the Cauchy-Riemann equations to be satisfied at z without $f(z)$ being differentiable at z, or, with $f(z)$ being differentiable at z, but nowhere else. In either case, f is not analytic at z.
- However, when we add the condition of continuity to u and v and to the four partial derivatives $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}$, and $\frac{\partial v}{\partial y}$, it can be shown that the Cauchy-Riemann equations are not only necessary but also sufficient to guarantee analyticity of $f(z)=u(x, y)+i v(x, y)$ at z.

Theorem (Criterion for Analyticity)

Suppose the real functions $u(x, y)$ and $v(x, y)$ are continuous and have continuous first-order partial derivatives in a domain D. If u and v satisfy the Cauchy-Riemann equations at all points of D, then the complex function $f(z)=u(x, y)+i v(x, y)$ is analytic in D.

- The proof is long and complicated and we omit it.

An Application of the Theorem

- For the function $f(z)=\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}}$, the real functions $u(x, y)=\frac{x}{x^{2}+y^{2}}$ and $v(x, y)=-\frac{y}{x^{2}+y^{2}}$ are continuous except at the point where $x^{2}+y^{2}=0$, i.e., at $z=0$. Moreover, the first four first-order partial derivatives $\frac{\partial u}{\partial x}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}, \frac{\partial u}{\partial y}=-\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}$, $\frac{\partial v}{\partial x}=\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}$ and $\frac{\partial v}{\partial y}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}$ are continuous except at $z=0$. Finally, we see from $\frac{\partial u}{\partial x}=\frac{y^{2} x^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{\partial v}{\partial y}$ and
$\frac{\partial u}{\partial y}=-\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}=-\frac{\partial v}{\partial x}$ that the Cauchy-Riemann equations are satisfied except at $z=0$. Thus, we conclude that f is analytic in any domain D that does not contain the point $z=0$.

Formulas for $f^{\prime}(z)$

- The components of the Cauchy Riemann Equations were obtained under the assumption that f was differentiable at the point z.
- They provide a formula for computing the derivative $f^{\prime}(z)$:

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}
$$

- Example: We know that $f(z)=z^{2}$ is entire and so is differentiable for all z. With $u(x, y)=x^{2}-y^{2}, \quad \frac{\partial u}{\partial x}=2 x, v(x, y)=2 x y$, and $\frac{\partial v}{\partial x}=2 y$, we have $f^{\prime}(z)=2 x+i 2 y=2(x+i y)=2 z$.

Sufficient Conditions for Differentiability

- Recall that analyticity implies differentiability but not conversely. The following is a criterion for differentiability:

Sufficient Conditions for Differentiability

If the real functions $u(x, y)$ and $v(x, y)$ are continuous and have continuous first-order partial derivatives in some neighborhood of a point z, and if u and v satisfy the Cauchy-Riemann equations at z, then the complex function $f(z)=u(x, y)+i v(x, y)$ is differentiable at z and $f^{\prime}(z)$ is given by

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}
$$

Application of the Sufficient Conditions

- Example: We saw that the complex function

$$
f(z)=2 x^{2}+y+i\left(y^{2}-x\right)
$$

is nowhere analytic, but yet the Cauchy-Riemann equations were satisfied on the line $y=2 x$. Since the functions $u(x, y)=2 x^{2}+y$, $\frac{\partial u}{\partial x}=4 x, \frac{\partial u}{\partial y}=1, v(x, y)=y^{2}-x, \frac{\partial v}{\partial x}=-1$ and $\frac{\partial v}{\partial y}=2 y$ are continuous at every point, it follows that f is differentiable on the line $y=2 x$. Moreover, the derivative of f at points on this line is given by $f^{\prime}(z)=4 x-i=2 y-i$.

Theorem (Constant Functions)

Suppose the function $f(z)=u(x, y)+i v(x, y)$ is analytic in a domain D.
(i) If $|f(z)|$ is constant in D, then so is $f(z)$.
(ii) If $f^{\prime}(z)=0$ in D, then $f(z)=c$ in D, where c is a constant.

Polar Coordinates

- We saw that a complex function can be expressed in terms of polar coordinates in the form $f(z)=u(r, \theta)+i v(r, \theta)$.
- In polar coordinates the Cauchy-Riemann equations become

$$
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta} .
$$

- The polar version of $f^{\prime}(z)$ at a point z whose polar coordinates are (r, θ) is then

$$
f^{\prime}(z)=e^{-i \theta}\left(\frac{\partial u}{\partial r}+i \frac{\partial v}{\partial r}\right)=\frac{1}{r} e^{-i \theta}\left(\frac{\partial v}{\partial \theta}-i \frac{\partial u}{\partial \theta}\right)
$$

- Remarks: In real calculus, one of the noteworthy properties of the exponential function $f(x)=e^{x}$ is that $f^{\prime}(x)=e^{x}$.
We gave the definition of the complex exponential $f(z)=e^{z}$. We can now show that $f(z)=e^{z}$ is differentiable everywhere and shares the same derivative property $f^{\prime}(z)=f(z)$.

Subsection 3

Harmonic Functions

A Preview of Harmonic Functions

- We will see that when a complex function $f(z)=u(x, y)+i v(x, y)$ is analytic at a point z, then all the derivatives of $f: f^{\prime}(z), f^{\prime \prime}(z)$, $f^{\prime \prime \prime}(z)$, etc., are also analytic at z. Thus, all partial derivatives of the real functions $u(x, y)$ and $v(x, y)$ are continuous at z. So the second-order mixed partial derivatives are equal.
- This last fact, coupled with the Cauchy-Riemann equations, will be used now to demonstrate that there is a connection between the real and imaginary parts of an analytic function $f(z)=u(x, y)+i v(x, y)$ and the second-order partial differential equation

$$
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0
$$

- This equation is known as Laplace's Equation in two variables.
- The sum $\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}$ of the two second partial derivatives is denoted by $\nabla^{2} \phi$ and is called the Laplacian of ϕ.
- Thus, Laplace's equation is written $\nabla^{2} \phi=0$.

Harmonic Functions

- A solution $\phi(x, y)$ of Laplaces equation in a domain D of the plane is given a special name:

Definition (Harmonic Function)

A real-valued function ϕ of two real variables x and y that has continuous first and second-order partial derivatives in a domain D and satisfies Laplace's equation is said to be harmonic in D.

Theorem (Harmonic Functions)

Suppose the complex function $f(z)=u(x, y)+i v(x, y)$ is analytic in a domain D. Then the functions $u(x, y)$ and $v(x, y)$ are harmonic in D.

- Assume $f(z)=u(x, y)+i v(x, y)$ is analytic in a domain D and that u and v have continuous second-order partial derivatives in D. Since f is analytic, the Cauchy-Riemann equations are satisfied at every point z.

Harmonic Functions(Cont'd)

- Differentiating both sides of $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ with respect to x, we get $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} v}{\partial x \partial y}$. Differentiating both sides of $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$ with respect to y gives $\frac{\partial^{2} u}{\partial y^{2}}=-\frac{\partial^{2} v}{\partial y \partial x}$. With the assumption of continuity, the mixed partials $\frac{\partial^{2} v}{\partial x \partial y}$ and $\frac{\partial^{2} v}{\partial y \partial x}$ are equal. Hence, by adding the two equations we get $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ or $\nabla^{2} u=0$. This shows that $u(x, y)$ is harmonic.
Now differentiating both sides of $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ with respect to y, we get $\frac{\partial^{2} u}{\partial y \partial x}=\frac{\partial^{2} v}{\partial y^{2}}$. Differentiating both sides of $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$ with respect to x gives $\frac{\partial^{2} u}{\partial x \partial y}=-\frac{\partial^{2} v}{\partial^{2} x}$. Subtracting the last two equations yields $\nabla^{2} v=0$.
- Example: The function $f(z)=z^{2}=x^{2}-y^{2}+2 x y i$ is entire. Thus, the functions $u(x, y)=x^{2}-y^{2}$ and $v(x, y)=2 x y$ are necessarily harmonic in any domain D of the complex plane.

Harmonic Conjugate Functions

- If a function $f(z)=u(x, y)+i v(x, y)$ is analytic in a domain D, then its real and imaginary parts u and v are necessarily harmonic in D.
- Now suppose $u(x, y)$ is a given real function that is known to be harmonic in D. If it is possible to find another real harmonic function $v(x, y)$ so that u and v satisfy the Cauchy-Riemann equations throughout the domain D, then the function $v(x, y)$ is called a harmonic conjugate of $u(x, y)$.
- By combining the functions as $u(x, y)+i v(x, y)$, we obtain a function that is analytic in D.

Example of Harmonic Conjugate Functions

(a) Verify that $u(x, y)=x^{3}-3 x y^{2}-5 y$ is harmonic in the entire complex plane.
(b) Find the harmonic conjugate function of u.
(a) From the partial derivatives $\frac{\partial u}{\partial x}=3 x^{2}-3 y^{2}, \frac{\partial^{2} u}{\partial x^{2}}=6 x$, $\frac{\partial u}{\partial y}=-6 x y-5, \frac{\partial^{2} u}{\partial y^{2}}=-6 x$ we see that u satisfies Laplace's equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=6 x-6 x=0$.
(b) v must satisfy the Cauchy-Riemann equations $\frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}$ and $\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}$, i.e., we must have $\frac{\partial v}{\partial y}=3 x^{2}-3 y^{2}$ and $\frac{\partial v}{\partial x}=6 x y+5$. Partial integration of the first equation with respect to y gives $v(x, y)=3 x^{2} y-y^{3}+h(x)$. The partial derivative with respect to x of this last equation is $\frac{\partial v}{\partial x}=6 x y+h^{\prime}(x)$. When this result is substituted into the second equation we obtain $h^{\prime}(x)=5$, and so $h(x)=5 x+C$, where C is a real constant. Therefore, the harmonic conjugate of u is $v(x, y)=3 x^{2} y-y^{3}+5 x+C$.

Using Transformations to Solve $\nabla^{2} \phi=0$

- We have seen if $f(z)=u(x, y)+i v(x, y)$ is an analytic function in a domain D, then both functions u and v satisfy $\nabla^{2} \phi=0$ in D.
- There is another important connection between analytic functions and Laplace's equation:
- In applied mathematics we often wish to solve Laplace's equation $\nabla^{2} \phi=0$ in a domain D in the $x y$-plane, and for reasons that depend on the shape of D, it simply may not be possible to determine ϕ.
- It may be possible to devise a special analytic mapping $f(z)=u(x, y)+i v(x, y)$ or $u=u(x, y), v=v(x, y)$ from the $x y$-plane to the $u v$-plane so that D^{\prime}, the image of D under the mapping, has a more convenient shape and the function $\phi(x, y)$ that satisfies Laplace's equation in D also satisfies Laplace's equation in D^{\prime}.
- We then solve Laplace's equation in D^{\prime} (the solution Φ will be a function of u and v) and then return to the $x y$-plane and $\phi(x, y)$ by means of the preceding equations.

