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Exponential Functions
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Elementary Functions Exponential Functions

Complex Exponential Function

We repeat the definition of the complex exponential function:

Definition (Complex Exponential Function)

The function ez defined by

ez = ex cos y + iex sin y

is called the complex exponential function.

This function agrees with the real exponential function when z is real:
in fact, if z = x + 0i ,

ex+0i = ex(cos 0 + i sin 0) = ex(1 + i · 0) = ex .

The complex exponential function also shares important differential
properties of the real exponential function:

ex is differentiable everywhere;
d

dx
ex = ex , for all x .
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Elementary Functions Exponential Functions

Analyticity of ez

Theorem (Analyticity of ez)

The exponential function ez is entire and its derivative is d
dz
ez = ez .

We use the criterion based on the real and imaginary parts.
u(x , y) = ex cos y and v(x , y) = ex sin y are continuous real functions
and have continuous first-order partial derivatives, for all (x , y). In
addition, the Cauchy-Riemann equations in u and v are easily verified:
∂u
∂x = ex cos y = ∂v

∂y and ∂u
∂y = − ex sin y = −∂v

∂x . Therefore, the
exponential function ez is entire. The derivative of an analytic
function f is given by f ′(z) = ∂u

∂x + i ∂v∂x . So the derivative of ez is:
d
dz
ez = ∂u

∂x + i ∂v∂x = ex cos y + iex sin y = ez .

Since the real and imaginary parts of an analytic function are
harmonic conjugates, we can show the only entire function f that
agrees with the real exponential function ex for real input and that
satisfies f ′(z) = f (z) is the complex exponential function ez .
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Elementary Functions Exponential Functions

Derivatives of Exponential Functions

Find the derivative of each of the following functions:

(a) iz4(z2 − ez)

(b) ez
2
−(1+i)z+3

We use the various rules for complex derivatives:

(a)
d
dz
(iz4(z2 − ez)) = d

dz
(iz4)(z2 − ez) + iz4 d

dz
(z2 − ez)

= 4iz3(z2 − ez) + iz4(2z − ez)
= 6iz5 − iz4ez − 4iz3ez .

(b)

d
dz
(ez

2
−(1+i)z+3) = ez

2
−(1+i)z+3 · d

dz
(z2 − (1 + i)z + 3)

= ez
2
−(1+i)z+3 · (2z − 1− i).
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Elementary Functions Exponential Functions

Modulus, Argument, and Conjugate

If we express the complex number w = ez in polar form:

w = ex cos y + iex sin y = r(cos θ + i sin θ),

we see that r = ex and θ = y + 2nπ, for n = 0,±1, ± 2, . . . .
Because r is the modulus and θ is an argument of w , we have:

|ez | = ex , arg(ez ) = y + 2nπ, n = 0,±1, ± 2, . . . .

We know from calculus that ex > 0, for all real x , whence |ez | > 0.
This implies that ez 6= 0, for all complex z , i.e., w = 0 is not in the
range of w = ez .

Note, however, that ez may be a negative real number: E.g., if
z = πi , then eπi is real and eπi < 0.

A formula for the conjugate of the complex exponential ez is found
using the even-odd properties of the real cosine and sine functions:
ez = ex cos y − iex sin y = ex cos (−y) + iex sin (−y) = ex−iy = ez .
Therefore, for all complex z , ez = ez .
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Elementary Functions Exponential Functions

Algebraic Properties

Theorem (Algebraic Properties of ez )

If z1 and z2 are complex numbers, then:

(i) e0 = 1;

(ii) ez1ez2 = ez1+z2;

(iii) ez1

ez2
= ez1−z2 .

(iv) (ez1)n = enz1 , n = 0,±1,±2, . . ..

(i) Clearly, e0+0i = e0(cos 0 + i sin 0) = 1.

(ii) Let z1 = x1 + iy1 and z2 = x2 + iy2. Hence
ez1ez2 = (ex1 cos y1 + iex1 sin y1)(e

x2 cos y2 + iex2 sin y2) =
ex1+x2(cos y1 cos y2− sin y1 sin y2)+ iex1+x2(sin y1 cos y2+cos y1 sin y2).
Using the addition formulas for the real cosine and sine functions, we
get ez1ez2 = ex1+x2 cos (y1 + y2) + iex1+x2 sin (y1 + y2). The
right-hand side is ez1+z2.

The proofs of (iii) and (iv) are similar.
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Elementary Functions Exponential Functions

Periodicity

The most striking difference between the real and complex
exponential functions is the periodicity of ez .

We say that a complex function f is periodic with period T if

f (z + T ) = f (z), for all complex z .

The real exponential function is not periodic, but the complex
exponential function is because it is defined using the real cosine and
sine functions, which are periodic.

We have

ez+2πi = eze2πi = ez(cos 2π + i sin 2π) = ez .

The complex exponential function ez is periodic with a pure
imaginary period 2πi .

That is, for f (z) = ez , we have f (z + 2πi) = f (z), for all z .
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Elementary Functions Exponential Functions

The Fundamental Region

We saw that, for all values of z , ez+2πi = ez .
Thus, we also have e(z+2πi)+2πi = ez+2πi = ez .

By repeating, we find that ez+2nπi = ez , for n = 0,±1,±2, . . ..

This means that −2πi , 4πi , 6πi , and so on, are also periods of ez .
If ez maps the point z onto the point w , then it also maps the points
z ± 2πi , z ± 4πi , z ± 6πi , and so on, onto the point w .

Thus, ez is not one-to-one, and all values ez are assumed in any
infinite horizontal strip of width 2π in the z-plane. That is, all values
are assumed in −∞ < x < ∞, y0 < y ≤ y0 + 2π, y0 a real constant.

The infinite horizontal strip defined by:
−∞ < x < ∞, −π < y ≤ π, is called
the fundamental region of the com-
plex exponential function.
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Elementary Functions Exponential Functions

The Exponential Mapping

Since all values of the complex exponential function ez are assumed in
the fundamental region, the image of this region under the mapping
w = ez is the same as the image of the entire complex plane.

Note that this region consists of the collection of vertical line
segments z(t) = a + it, −π < t ≤ π, where a is any real number.

The image of z(t) = a + it, −π < t ≤ π, under w = ez is
parametrized by w(t) = ez(t) = ea+it = eae it , −π < t ≤ π, and,
thus, w(t) defines a circle centered at the origin with radius ea.

Because a can be any real number, the radius ea of this circle can be
any nonzero positive real number.

Thus, the image of the fundamental region under the exponential
mapping consists of the collection of all circles centered at the origin
with nonzero radius, i.e., the image of the fundamental region
−∞ < x < ∞, −π < y ≤ π, under w = ez is the set of all complex
w with w 6= 0, or, equivalently, the set |w | > 0.
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Elementary Functions Exponential Functions

Using Horizontal Lines to Determine the Image

The image can also be found by using horizontal lines in the
fundamental region.

Consider the horizontal line y = b. This line can be parametrized by
z(t) = t + ib, −∞ < t < ∞. So its image under w = ez is given by
w(t) = ez(t) = et+ib = ete ib, −∞ < t < ∞.

Defining a new parameter s = et , and observing that 0 < s < ∞, the
image is given by W (s) = e ibs, 0 < s < ∞, which, is the set
consisting of all points w 6= 0 in the ray emanating from the origin
and containing the point e ib = cos b + i sin b.

Thus, the image of the horizontal line y = b under the mapping
w = ez is the set of all points w 6= 0 in the ray emanating from the
origin and making an angle of b radians with the positive u-axis, i.e.,
the set of all w , satisfying arg(w) = b.
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Elementary Functions Exponential Functions

Exponential Mapping Properties

Exponential Mapping Properties

(i) w = ez maps the fundamental region −∞ < x < ∞, −π < y ≤ π,
onto the set |w | > 0.

(ii) w = ez maps the ver-
tical line segment x =
a, −π < y ≤ π, onto
the circle |w | = ea.

(iii) w = ez maps the hor-
izontal line y = b,
−∞ < x < ∞, onto
the ray arg(w) = b.
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Elementary Functions Exponential Functions

Exponential Mapping of a Grid

Find the image of the grid shown below left under w = ez .
The grid consists of the verti-
cal line segments x = 0, 1, 2,
−2 ≤ y ≤ 2, and the hor-
izontal line segments y =
−2,−1, 0, 1, 2, 0 ≤ x ≤ 2.

Using the properties of the exponential mapping, we have that:
the image of the vertical line segment x = 0, −2 ≤ y ≤ 2, is the
circular arc |w | = e0 = 1, −2 ≤ arg(w) ≤ 2.
The segments x = 1 and x = 2, −2 ≤ y ≤ 2, map onto the arcs
|w | = e and |w | = e2, −2 ≤ arg(w) ≤ 2, respectively.
The horizontal segment y = 0, 0 ≤ x ≤ 2, maps onto the portion of
the ray emanating from the origin defined by arg(w) = 0, 1 ≤ |w | ≤ e2.
The segments y = −2,−1, 1, 2 map onto the segments defined by
arg(w) = −2, arg(w) = −1, arg(w) = 1, arg(w) = 2, 1 ≤ |w | ≤ e2.

The end result is shown on the right.

George Voutsadakis (LSSU) Complex Analysis October 2014 14 / 83
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Subsection 2

Logarithmic Functions

George Voutsadakis (LSSU) Complex Analysis October 2014 15 / 83



Elementary Functions Logarithmic Functions

Complex Logarithm

In real analysis, the natural logarithm function ln x is often defined as
an inverse function of the real exponential function ex . We use loge x
to represent the real logarithmic function.

The situation is different in complex analysis because the complex
exponential function ez is not a one-to-one function on its domain C.

Given a fixed nonzero complex number z , the equation ew = z has
infinitely many solutions e.g., 1

2πi ,
5
2πi , and −3

2πi are all solutions to
ew = i .

In general, if w = u + iv is a solution of ew = z , then |ew | = |z | and
arg(ew ) = arg(z). Thus, eu = |z | and v = arg(z), or, equivalently,
u = loge |z | and v = arg(z). Therefore, given a nonzero complex
number z we have shown that: if ew = z , then w = loge |z |+ iarg(z).

This set of values defines a multiple-valued function w = G (z), called
the complex logarithm of z and denoted by ln z .
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Elementary Functions Logarithmic Functions

Definition of the Complex Logarithmic Function

Definition (Complex Logarithm)

The multiple-valued function ln z defined by:

ln z = loge |z |+ iarg(z)

is called the complex logarithm.

The notation ln z will always be used to denote the multiple valued
complex logarithm.

By switching to exponential notation z = re iθ, we obtain the
following alternative description of the complex logarithm:

ln z = loge r + i(θ + 2nπ), n = 0,±1,±2, . . . .

The complex logarithm can be used to find all solutions to the
exponential equation ew = z , when z is a nonzero complex number.
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Elementary Functions Logarithmic Functions

Solving Exponential Equations I

Find all complex solutions to the equation ew = i .

For each equation ew = z , the set of solutions is given by w = ln z ,
where w = loge |z |+ iarg(z). For z = i , we have |z | = 1 and
arg(z) = π

2 + 2nπ. Thus, we get w = ln i = loge 1 + i(π2 + 2nπ),
whence

w =
(4n + 1)π

2
i , n = 0, ± 1, ± 2, . . . .

Therefore, each of the values: w = . . . ,−7π
2 i ,−3π

2 i , π2 i ,
5π
2 i , . . .

satisfies the equation ew = i .
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Elementary Functions Logarithmic Functions

Solving Exponential Equations II

Find all complex solutions to the equation ew = 1 + i and to the
equation ew = −2.

For z = 1 + i , we have |z | =
√
2 and arg(z) = π

4 + 2nπ. Thus, we get

w = ln (1 + i) = loge
√
2 + i(π4 + 2nπ)

= 1
2 loge 2 +

(8n+1)π
4 i , n = 0, ± 1, ± 2, . . . .

Since z = −2, we have |z | = 2 and arg(z) = π + 2nπ. Thus,
w = ln (−2) = loge 2 + i(π + 2nπ). That is,

w = loge 2 + (2n + 1)πi , n = 0,±1,±2, . . . .
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Elementary Functions Logarithmic Functions

Logarithmic Identities

Complex logarithm satisfies the following identities, which are
analogous to identities for the real logarithm:

Theorem (Algebraic Properties of ln z)

If z1 and z2 are nonzero complex numbers and n is an integer, then

(i) ln (z1z2) = ln z1 + ln z2;

(ii) ln z1
z2

= ln z1 − ln z2;

(iii) ln zn1 = n ln z1.

ln z1 + ln z2 = loge |z1|+ iarg(z1) + loge |z2|+ iarg(z2) =
loge |z1|+ loge |z2|+ i(arg(z1) + arg(z2)).
The real logarithm satisfies loge a + loge b = loge (ab), for a > 0 and
b > 0, so loge |z1z2| = loge |z1|+ loge |z2|. Also, arg(z1) + arg(z2) =
arg(z1z2). Therefore, ln z1 + ln z2 = loge |z1z2|+ iarg(z1z2) =
ln (z1z2).

Parts (ii) and (iii) are similar.
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Elementary Functions Logarithmic Functions

Principal Value of Complex Logarithm

The complex logarithm of a positive real has infinitely many values.

Example: ln 5 is the set of values loge 5 + 2nπi , where n is any
integer, whereas loge 5 has a single value loge 5 = 1.6094. The unique
value of ln 5 corresponding to n = 0 is the same as loge 5.

In general, this value of the complex logarithm is called the principal

value of the complex logarithm since it is found by using the
principal argument Arg(z) in place of the argument arg(z).

We denote the principal value of the logarithm by the symbol Lnz ,
which, thus, defines a function, whereas ln z is multi-valued.

Definition (Principal Value of the Complex Logarithm)

The complex function Lnz defined by:

Lnz = loge |z |+ iArg(z)

is called the principal value of the complex logarithm.
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Elementary Functions Logarithmic Functions

Computing the Principal Value of the Complex Logarithm

Compute the principal value of the complex logarithm Lnz for

(a) z = i (b) z = 1 + i (c) z = −2

(a) For z = i , we have |z | = 1 and Arg(z) = π
2 . So we get

Lni = loge 1 +
π

2
i =

π

2
i .

(b) For z = 1 + i , we have |z | =
√
2 and Arg(z) = π

4 . Thus,

Ln(1 + i) = loge
√
2 +

π

4
i =

1

2
loge 2 +

π

4
i .

(c) For z = −2, we have |z | = 2 and Arg(z) = π, whence

Ln(−2) = loge 2 + πi .

Warning! The algebraic identities for the complex logarithm are not
necessarily satisfied by the principal value of the complex logarithm.
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Elementary Functions Logarithmic Functions

Lnz as an Inverse Function

Because Lnz is one of the values of the complex logarithm ln z , it
follows that: eLnz = z , for all z 6= 0.

This suggests that the logarithmic function Lnz is an inverse function
of ez .

Because the complex exponential function is not one-to-one on its
domain, this statement is not accurate.

The relationship between these functions is similar to the relationship
between the squaring function z2 and the principal square root
function z1/2 =

√

|z |e iArg(z)/2.
The exponential function must first be restricted to a domain on
which it is one-to-one in order to have a well-defined inverse function.

In fact, ez is a one-to-one function on the fundamental region
−∞ < x < ∞, −π < y ≤ π.
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Elementary Functions Logarithmic Functions

Lnz as an Inverse Function (Cont’d)

We show that if the domain of ez is restricted to the fundamental
region, then Lnz is its inverse function.

Consider a point z = x + iy , −∞ < x < ∞, −π < y ≤ π. We have
|ez | = ex and arg(ez ) = y + 2nπ, n an integer. Thus, y is an
argument of ez . Since z is in the fundamental region, we also have
−π < y ≤ π, whence y is the principal argument of ez , i.e.,
Arg(ez ) = y . In addition, for the real logarithm we have loge e

x = x ,
and so Lnez = loge |ez |+ iArg(ez) = loge e

x + iy = x + iy . Thus, we
have shown that Lnez = z , if −∞ < x < ∞ and −π < y ≤ π.

Lnz as an Inverse Function of ez

If the complex exponential f (z) = ez is defined on the fundamental region
−∞ < x < ∞, −π < y ≤ π, then f is one-to-one and the inverse function
of f is the principal value of the complex logarithm f −1(z) = Lnz .
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Elementary Functions Logarithmic Functions

Discontinuities of Lnz

The principal value of the complex logarithm Lnz is discontinuous at
z = 0 since this function is not defined there.

Lnz turns out to also be discontinuous at every point on the negative
real axis.

This may be intuitively clear since the value
of Lnz for a point z near the negative x-axis
in the second quadrant has imaginary part
close to π, whereas the value of a nearby
point in the third quadrant has imaginary
part close to −π.

The function Lnz is, however, continuous on the set consisting of the
complex plane excluding the non-positive real axis.
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Elementary Functions Logarithmic Functions

Continuity

Recall that a complex function f (z) = u(x , y) + iv(x , y) is continuous
at a point z = x + iy if and only if both u and v are continuous real
functions at (x , y).

The real and imaginary parts of Lnz are u(x , y) = loge |z | =
loge

√

x2 + y2 and v(x , y) = Arg(z), respectively.

From calculus, we know that the function u(x , y) = loge
√

x2 + y2 is
continuous at all points in the plane except (0, 0) and the function
v(x , y) = Arg(z) is continuous on |z | > 0, −π < arg(z) < π.

Therefore, it follows that Lnz is a con-
tinuous function on the domain |z | > 0,
−π < arg(z) < π, i.e., f1 defined by:
f1(z) = loge r + iθ is continuous on the do-
main where r = |z | > 0 and −π < θ =
arg(z) < π.
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Elementary Functions Logarithmic Functions

Analyticity

Since the function f1 agrees with the principal value of the complex
logarithm Lnz where they are both defined, it follows that f1 assigns
to the input z one of the values of the multiple-valued function
F (z) = ln z .

I.e., we have shown that the function f1 is a branch of the
multiple-valued function F (z) = ln z .

This branch is called the principal branch of the complex

logarithm. The nonpositive real axis is a branch cut for f1 and the
point z = 0 is a branch point.

The branch f1 is an analytic function on its domain:

Theorem (Analyticity of the Principal Branch of ln z)

The principal branch f1 of the complex logarithm is an analytic function

and its derivative is given by: f ′1(z) =
1

z
.

We prove that f1 is analytic by using polar coordinates.
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Analyticity (Proof)

Because f1 is defined on the domain r > 0 and −π < θ < π, if z is a
point in this domain, then we can write z = re iθ, with −π < θ < π.
Since the real and imaginary parts of f1 are u(r , θ) = loge r and
v(r , θ) = θ, respectively, we find that: ∂u

∂r = 1
r
, ∂v

∂θ = 1, ∂v
∂r = 0, and

∂u
∂θ = 0. Thus, u and v satisfy the Cauchy-Riemann equations in polar

coordinates ∂u
∂r = 1

r
∂v
∂θ and ∂v

∂r = −1
r
∂u
∂θ . Because u, v , and the first

partial derivatives of u and v are continuous at all points in the
domain, it follows that f1 is analytic in this domain. In addition, the
derivative of f1 is given by: f ′1(z) = e−iθ(∂u∂r + i ∂v∂r ) =

1
re iθ

= 1
z
.

Because f1(z) = Lnz , for each point z in the domain, it follows that
Lnz is differentiable in this domain, and that its derivative is given by
f ′1 . That is, if |z | > 0 and −π < arg(z) < π then:

d

dz
Lnz =

1

z
.
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Elementary Functions Logarithmic Functions

Derivatives of Logarithmic Functions I

Find the derivatives of the function zLnz in an appropriate domain.

The function zLnz is differentiable at all points where both of the
functions z and Lnz are differentiable. Because z is entire and Lnz is
differentiable on the domain |z | > 0,−π < arg(z) < π, zLnz is
differentiable on the domain defined by |z | > 0,−π < arg(z) < π:

d

dz
[zLnz ] =

d

dz
z · Lnz + z

d

dz
Lnz = Lnz + z

1

z
= Lnz + 1.
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Derivatives of Logarithmic Functions II

Find the derivatives of the function Ln(z + 1) in an appropriate
domain.

The function Ln(z + 1) is a composition of the functions Lnz and
z + 1. Because the function z + 1 is entire, it follows from the chain
rule that Ln(z + 1) is differentiable at all points w = z + 1 such that
|w | > 0 and −π < arg(w) < π. To determine the corresponding
values of z for which Ln(z + 1) is not differentiable, we first solve for
z in terms of w to obtain z = w − 1. The equation z = w − 1 defines
a linear mapping of the w -plane onto the z-plane given by translation
by −1. Under this mapping the non-positive real axis is mapped onto
the ray emanating from z = −1 and containing the point z = −2.
Thus, Ln(z + 1) is differentiable at all points z that are not on this
ray.

d

dz
Ln(z + 1) =

1

z + 1
· 1 =

1

z + 1
.
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Logarithmic Mapping

The complex logarithmic mapping w = Lnz can be understood in
terms of the exponential mapping w = ez since these functions are
inverses of each other.

Recall w = ez maps the fundamental region −∞ < x < ∞,
−π < y ≤ π, in the z-plane onto the set |w | > 0 in the w -plane.
Hence, that inverse mapping w = Lnz maps the set |z | > 0 in the
z-plane onto the region −∞ < u < ∞, −π < v ≤ π, in the w -plane.

We summarize the relevant properties of the logarithmic mapping:

Logarithmic Mapping Properties

(i) w = Lnz maps the set |z | > 0 onto the region −∞ < u < ∞, −π < v ≤ π.

(ii) w = Lnz maps the circle |z | = r onto the vertical line segment u = loge r ,
−π < v ≤ π.

(iii) w = Lnz maps the ray arg(z) = θ onto the horizontal line v = θ,
−∞ < u < ∞.
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Example Involving the Logarithmic Mapping

Find the image of the annulus 2 ≤ |z | ≤ 4 under the logarithmic
mapping w = Lnz .
The boundary circles |z | = 2 and |z | = 4 of the annulus map onto the
vertical line segments u = loge 2 and u = loge 4, −π < v ≤ π. In a
similar manner, each circle |z | = r , 2 ≤ r ≤ 4, maps onto a vertical
line segment u = loge r , −π < v ≤ π. Since the real log is increasing,
u = loge r takes on all values in loge 2 ≤ u ≤ loge 4 when 2 ≤ r ≤ 4.
Therefore, the image of 2 ≤ |z | ≤ 4 is the rectangular region
loge 2 ≤ u ≤ loge 4, −π < v ≤ π:
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Other Branches of ln z

The principal branch of the complex logarithm f1 is just one of many
possible branches of the multiple valued function F (z) = ln z .

We can define other branches of F by simply changing the interval
defining θ to a different interval of length 2π.

For example, f2(z) = loge r + iθ, −π
2 < θ < 3π

2 , defines a branch of F
whose branch cut is the non-positive imaginary axis.

For the branch f2 we have f2(1) = 0, f2(2i) = loge 2 +
1
2πi , and

f2(−1− i) = 1
2 loge 2 +

5
4πi .

It can also be shown that any branch

fk(z) = loge r + iθ, θ0 < θ < θ0 + 2π,

of F (z) = ln z is analytic on its domain, and its derivative is given by:

f ′k(z) =
1

z
.

George Voutsadakis (LSSU) Complex Analysis October 2014 33 / 83



Elementary Functions Logarithmic Functions

Comparisons with Real Analysis

Although the complex exponential and logarithmic functions are
similar to the real exponential and logarithmic functions in many
ways, it is important to keep in mind their differences:

The real exponential function is one-to-one, but the complex
exponential is not.
loge x is a single-valued function, but ln z is multiple-valued.
Many properties of real logarithms apply to the complex logarithm,
such as ln (z1z2) = ln z1 + ln z2, but these properties do not always hold
for the principal value Lnz .
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Riemann Surfaces

Consider the mapping w = ez on the half-plane x ≤ 0.

Each half-infinite strip Sn defined by (2n − 1)π < y ≤ (2n + 1)π,
x ≤ 0, for n = 0,±1,±2, . . . is mapped onto the punctured unit disk
0 < |w | ≤ 1:

Thus, w = ez describes an infinite-to-one covering of the punctured
unit disk. To visualize this covering, we imagine there being a
different image disk Bn for each half-infinite strip Sn.
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Riemann Surfaces (Cont’d)

Cut each disk Bn open along the segment −1 ≤ u < 0. We construct
a Riemann surface for w = ez by attaching, for each n, the cut disk
Bn to the cut disk Bn+1 along the edge that represents the image of
the half-infinite line y = (2n + 1)π. In xyz-space, the images
. . . , z−1, z0, z1, . . . of z in . . . ,B−1,B0,B1, . . ., respectively, lie directly
above the point w = ez in the xy -plane.

By projecting the points of the Riemann
surface vertically down onto the xy -plane
we see the infinite-to-one nature of the
mapping w = ez .

The multiple-valued function F (z) = ln z
may be visualized by considering all points
in the Riemann surface lying directly above
a point in the xy -plane.
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Subsection 3

Complex Powers
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Complex Powers

Complex powers, such as (1 + i)i , are defined in terms of the complex
exponential and logarithmic functions.

Recall from that z = e ln z , for all nonzero complex numbers z .

Thus, when n is an integer, zn can be written as

zn = (e ln z)n = en ln z .

This formula, which holds for integer exponents n, suggests the
following definition for the complex power zα, for any complex
exponent α:

Definition (Complex Powers)

If α is a complex number and z 6= 0, then the complex power zα is defined
to be:

zα = eα ln z .
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Complex Power Function

zα = eα ln z gives an infinite set of values because the complex
logarithm ln z is multiple-valued.

When n is an integer, the expression is single-valued (in agreement
with fact that zn is a function when n is an integer).

To see this, note zn = en ln z = en[loge |z |+iarg(z)] = en loge |z |enarg(z)i . If
θ = Arg(z), then arg(z) = θ + 2kπ, where k is an integer. So
enarg(z)i = en(θ+2kπ)i = enθie2nkπi . But, by definition,
e2nkπi = cos (2nkπ) + i sin (2nkπ). Because n and k are integers, we
have 2nkπ is an even multiple of π, and so cos (2nkπ) = 1 and
sin (2nkπ) = 0. Consequently, e2nkπi = 1 and we get
zn = en loge |z |enArg(z)i , which is single-valued.

In general, zα = eα ln z defines a multiple-valued function.

It is called a complex power function.
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Computing Complex Powers

Find the values of the given complex power:

(a) i2i (b) (1 + i)i .

(a) We have seen that ln i = (4n+1)π
2 i . Thus, we obtain:

i2i = e2i ln i = e2i [(4n+1)πi/2] = e−(4n+1)π ,

for n = 0,±1,±2, . . ..

(b) We have also seen that ln (1 + i) = 1
2 loge 2 +

(8n+1)π
4 i , for

n = 0,±1,±2, . . .. Thus, we obtain:

(1 + i)i = e i ln (1+i) = e i [(loge 2)/2+(8n+1)πi/4],

or (1 + i)i = e−(8n+1)π/4+i(loge 2)/2,

for n = 0,±1,±2, . . ..
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Properties of Complex Powers

Complex powers satisfy the following properties that are analogous to
properties of real powers:

zα1zα2 = zα1+α2 ;
zα1

zα2
= zα1−α2 ;

(zα)n = znα, for n = 0,±1,±2, . . ..

Each of these properties can be derived from the definition of
complex powers and the algebraic properties of the complex
exponential function ez :

For example, by the definition, zα1zα2 = eα1 ln zeα2 ln z . By using
properties of the exponential, zα1zα2 = eα1 ln z+α2 ln z = e(α1+α2) ln z . By
the definition, e(α1+α2) ln z = zα1+α2 . Thus, zα1zα2 = zα1+α2 .
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Principal Value of a Complex Power

The complex power zα is, in general, multiple-valued because it is
defined using the multiple-valued complex logarithm ln z .

We can assign a unique value to zα by using the principal value of the
complex logarithm Lnz in place of ln z .

This value of the complex power is called the principal value of zα.

Example: Since Lni = π
2 i , the principal value of i2i is

i2i = e2iLni = e2i
π
2
i = e−π.

Definition (Principal Value of a Complex Power)

If α is a complex number and z 6= 0, then the function defined by:

zα = eαLnz

is called the principal value of the complex power zα.

Notation: zα will be used to denote both the multiple-valued power
function F (z) = zα and the principal value power function.
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Computing the Principal Value of a Complex Power

Find the principal value of each complex power:

(a) (−3)i/π (b) (2i)1−i .

(a) For z = −3, we have |z | = 3 and Arg(−3) = π, and so
Ln(−3) = loge 3 + iπ. Thus, we obtain:

(−3)i/π = e(i/π)Ln(−3) = e(i/π)(loge 3+iπ) = e−1+i(loge 3)/π.

Finally, since e−1+i(loge 3)/π = e−1[cos loge 3
π + i sin loge 3

π ],

(−3)i/π = e−1[cos loge 3
π + i sin loge 3

π ].

(b) For z = 2i , we have |z | = 2 and Arg(z) = π
2 , and so

Ln2i = loge 2 + i π2 . Thus, we obtain:

(2i)1−i = e(1−i)Ln2i = e(1−i)(loge 2+iπ/2) = e loge 2+π/2−i(loge 2−π/2).

Since (2i)1−i = e loge 2+π/2[cos (loge 2− π
2 )− i sin (loge 2− π

2 )], we

finally get (2i)1−i = e loge 2+π/2[cos (loge 2− π
2 )− i sin (loge 2− π

2 )].
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Analyticity

In general, the principal value of a complex power zα is not a
continuous function on the complex plane because the function Lnz is
not continuous on the complex plane.

The function eαz is continuous on the entire complex plane and the
function Lnz is continuous on the domain |z | > 0, −π < arg(z) < π,
so zα is continuous on the domain |z | > 0, −π < arg(z) < π.

Using polar coordinates r = |z | and θ = arg(z), we have found that
f1(z) = eα(loge r+iθ), −π < θ < π is a branch of F (z) = zα = eα ln z .

It is called the principal branch of the complex power zα. Its
branch cut is the non-positive real axis, and z = 0 is a branch point.

The branch f1 agrees with the principal value zα on the domain
|z | > 0, −π < arg(z) < π. Consequently, the derivative of f1 can be
found using the chain rule:

f ′1(z) =
d

dz
eαLnz = eαLnz

d

dz
[αLnz ] = eαLnz

α

z
.

Using the principal value zα = eαLnz , we find f ′1(z) =
αzα

z
= αzα−1.
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Derivative of a Power Function

Find the derivative of the principal value z i at the point z = 1 + i .

Because the point z = 1 + i is in the domain |z | > 0,
−π < arg(z) < π, it follows that d

dz
z i = iz i−1, and so,

d
dz
z i
∣

∣

z=1+i
= iz i−1

∣

∣

z=1+i
= i(1 + i)i−1. We can rewrite this value as:

i(1 + i)i−1 = i(1 + i)i (1 + i)−1 = i(1 + i)i
1

1 + i
=

1 + i

2
(1 + i)i .

Moreover, the principal value of (1 + i)i is:
(1 + i)i = e−π/4+i(loge 2)/2, and so

d

dz
z i
∣

∣

∣

∣

z=1+i

=
1 + i

2
e−π/4+i(loge 2)/2.
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Remarks

(i) There are some properties of real powers that are not satisfied by
complex powers. One example of this is that for complex powers,
(zα1)α2 6= zα1α2 unless α2 is an integer.

(ii) As with complex logarithms, some properties that hold for complex
powers do not hold for principal values of complex powers.

For example, we can prove that (z1z2)
α = zα1 z

α
2 , for any nonzero

complex numbers z1 and z2. However, this property does not hold for
principal values of these complex powers:

If z1 = −1, z2 = i , and α = i , then the principal value of (−1 · i)i is
e iLn(−i) = eπ/2. On the other hand, the product of the principal
values of (−1)i and i i is e iLn(−1)e iLni = e−πe−π/2 = e−3π/2.
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Subsection 4

Complex Trigonometric Functions
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Complex Sine and Cosine Functions

If x is a real variable, then

e ix = cos x + i sin x and e−ix = cos x − i sin x .

By adding these equations and simplifying, we get:

cos x =
e ix + e−ix

2
.

If we subtract the two equations, then we obtain

sin x =
e ix − e−ix

2i
.

The formulas for the real cosine and sine functions can be used to
define the complex sine and cosine functions.

Definition (Complex Sine and Cosine Functions)

The complex sine and cosine functions are defined by:

sin z =
e iz − e−iz

2i
and cos z =

e iz + e−iz

2
.
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The Complex Tangent, Cotangent, Secant, and Cosecant

The complex sine and cosine functions agree, by definition, with the
real sine and cosine functions for real input.

Analogous to real trigonometric functions, we next define the complex
tangent, cotangent, secant, and cosecant functions using the complex
sine and cosine:

tan z =
sin z

cos z
, cot z =

cos z

sin z
,

sec z =
1

cos z
, csc z =

1

sin z
.

These functions also agree with their real counterparts for real input.
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Values of Complex Trigonometric Functions

Express the value of the given trigonometric function in the form
a + ib.

(a) cos i (b) sin (2 + i) (c) tan (π − 2i).

(a) cos i =
e i ·i + e−i ·i

2
=

e−1 + e

2
.

(b) sin (2 + i) =
e i(2+i) − e−i(2+i)

2i
=

e−1+2i − e1−2i

2i
=

e−1(cos 2 + i sin 2)− e(cos (−2) + i sin (−2))

2i
.

(c) tan (π − 2i) =
(e i(π−2i) − e−i(π−2i))/2i

(e i(π−2i) + e−i(π−2i))/2
=

e i(π−2i) − e−i(π−2i)

(e i(π−2i) + e−i(π−2i))i
=

e2 − e−2

(e2 + e−2)i
= − e2 − e−2

e2 + e−2
i .
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Identities

We now list some of the more useful of the trigonometric identities:
sin (−z) = − sin z and cos (−z) = cos z ;
cos2 z + sin2 z = 1;
sin (z1 ± z2) = sin z1 cos z2 ± cos z1 sin z2;
cos (z1 ± z2) = cos z1 cos z2 ∓ sin z1 sin z2.

Because of the sum/difference formulas, we also have the
double-angle formulas:

sin 2z = 2 sin z cos z and cos 2z = cos2 z − sin2 z .

We only verify cos2 z + sin2 z = 1:

cos2 z + sin2 z = ( e
iz+e−iz

2 )2 + ( e
iz−e−iz

2i )2

= e2iz+2+e−2iz

4 − e2iz−2+e−2iz

4 = 1.
Some properties of the real trigonometric functions are not satisfied
by their complex counterparts:
E.g., | sin x | ≤ 1 and | cos x | ≤ 1, for all real x , but | cos i | > 1 and
| sin (2 + i)| > 1 .
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Periodicity

We know that the complex exponential function is periodic with a
pure imaginary period of 2πi , i.e., ez+2πi = ez , for all complex z .

Replacing z with iz , we get e iz+2πi = e i(z+2π) = e iz .

Thus, e iz is a periodic function with real period 2π.

Similarly, e−i(z+2π) = e−iz , i.e., e−iz is periodic with period of 2π.

It now follows that:

sin (z + 2π) =
e i(z+2π) − e−i(z+2π)

2i
=

e iz − e−iz

2i
= sin z .

A similar statement also holds for the complex cosine function.

Thus, the complex sine and cosine are periodic functions with a real
period of 2π.

The periodicity of the secant and cosecant functions follows
immediately from the definitions.

Moreover, the complex tangent and cotangent are periodic with a real
period of π.
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Trigonometric Equations

Since the complex sine and cosine functions are periodic, there are
always infinitely many solutions to equations of the form sin z = w or
cos z = w .

One approach to solving such equations is to use the definition in
conjunction with the quadratic formula:

Example: Find all solutions to the equation sin z = 5.

sin z = 5 is equivalent to the equation e iz−e−iz

2i = 5. By multiplying
this equation by e iz and simplifying we obtain e2iz − 10ie iz − 1 = 0.
This equation is quadratic in e iz , i.e., (e iz)2 − 10i(e iz )− 1 = 0. By
the quadratic formula that the solutions are given by

e iz = 10i+(−96)1/2

2 = 5i ± 2
√
6i = (5± 2

√
6)i . In order to find the

values of z , we must solve the two resulting exponential equations
using the complex logarithm.
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Trigonometric Equations (Cont’d)

We must solve e iz = (5± 2
√
6)i using the complex logarithm.

If e iz = (5 + 2
√
6)i , then iz = ln (5i + 2

√
6i) or

z = − i ln [(5 + 2
√
6)i ]. Because (5 + 2

√
6)i is a pure imaginary

number and 5 + 2
√
6 > 0, we have arg[(5 + 2

√
6)i ] = 1

2π + 2nπ. Thus,

z = −i ln [(5 + 2
√
6)i ] = − i [loge (5 + 2

√
6) + i(π2 + 2nπ)] or

z = (4n+1)π
2 − i loge (5 + 2

√
6), for n = 0,±1,±2, . . ..

Similarly, if e iz = (5− 2
√
6)i , then z = − i ln [(5 − 2

√
6)i ]. Since

(5− 2
√
6)i is a pure imaginary number and 5− 2

√
6 > 0, it has an

argument of π
2 , and so:

z = −i ln [(5 − 2
√
6)i ] = − i [loge (5− 2

√
6) + i(π2 + 2nπ)] or

z = (4n+1)π
2 − i loge (5− 2

√
6) for n = 0,±1,±2, . . ..
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sin z and cos z in terms of x and y

To find a formula in terms of x and y for the modulus of the sine and
cosine functions, we replace z by x + iy in sin z :

sin z =
e−y+ix − ey−ix

2i

=
e−y (cos x + i sin x)− ey (cos x − i sin x)

2i

= sin x
ey + e−y

2
+ i cos x

ey − e−y

2
.

Since the real hyperbolic sine and cosine functions are defined by

sinh y =
ey − e−y

2
and cosh y =

ey + e−y

2
, we can rewrite as

sin z = sin x cosh y + i cos x sinh y .

A similar computation gives

cos z = cos x cosh y − i sin x sinh y .
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Modulus of Sine and Cosine

By the expression for sin z :

| sin z | =
√

sin2 x cosh2 y + cos2 x sinh2 y .

Recall cos2 x + sin2 x = 1 and cosh2 y = 1 + sinh2 y :

| sin z | =
√

sin2 x(1 + sinh2 y) + cos2 x sinh2 y

=
√

sin2 x + (cos2 x + sin2 x) sinh2 y ,

| sin z | =
√

sin2 x + sinh2 y .

Similarly, for the modulus of the complex cosine function:

| cos z | =
√

cos2 x + sinh2 y .

Since sinh x is unbounded, the complex sine and cosine functions are
not bounded on the complex plane, i.e., there does not exist a real
constant M so that | sin z | < M, for all z in C, nor does there exist a
real constant M so that | cos z | < M, for all z in C.
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Zeros

The zeros of the real sine occur at integer multiples of π and the
zeros of the real cosine occur at odd integer multiples of π

2 .

These zeros of the real sine and cosine functions are also zeros of the
complex sine and cosine, respectively.

To find all zeros, we must solve sin z = 0 and cos z = 0.

sin z = 0 is equivalent to | sin z | = 0, i.e.,
√

sin2 x + sinh2 y = 0,
which is equivalent to: sin2 x + sinh2 y = 0.
Since sin2 x and sinh2 y are nonnegative real numbers, we must have
sin x = 0 and sinh y = 0.

sin x = 0 occurs when x = nπ, n = 0,±1,±2, . . ..
sinh y = 0 occurs only when y = 0.

So, the only solutions of sin z = 0 in the complex plane are the real
numbers z = nπ, n = 0,±1,±2, . . ., i.e., the zeros of the complex
sine function are the same as the zeros of the real sine.

Similarly, the only zeros of the complex cosine function are the real
numbers z = (2n+1)π

2 , n = 0,±1,±2, . . ..
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Analyticity

The derivatives of the complex sine and cosine functions are found
using the chain rule:

d
dz

sin z = d
dz

e iz−e−iz

2i = ie iz+ie−iz

2i

= e iz+e−iz

2 = cos z .

Since this derivative is defined for all complex z , sin z is entire.

Similarly, d
dz

cos z = − sin z .

The derivatives of sin z and cos z can then be used to compute the
derivatives of all of the complex trigonometric functions:

d
dz

sin z = cos z d
dz

cos z = − sin z d
dz

tan z = sec2 z
d
dz

cot z = − csc2 z d
dz

sec z = sec z tan z d
dz

csc z = − csc z cot z

The sine and cosine functions are entire, but the tangent, cotangent,
secant, and cosecant functions are only analytic at those points where
the denominator is nonzero.
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Trigonometric Mapping

Since sin z is periodic with a real period of 2π, it takes on all values in
any infinite vertical strip x0 < x ≤ x0 + 2π, −∞ < y < ∞.

This allows us to study the mapping w = sin z on the entire complex
plane by analyzing it on any one of these strips.

Consider the strip −π < x ≤ π, −∞ < y < ∞.

Observe that sin z is not one-to-one on this region, e.g., z1 = 0 and
z2 = π are in this region and sin 0 = sinπ = 0.

From sin (−z + π) = sin z , it follows that the image of the strip
−π < x ≤ −π

2 , −∞ < y < ∞, is the same as the image of the strip
π
2 < x ≤ π, −∞ < y < ∞, under w = sin z .

Therefore, we need only consider the mapping w = sin z on the
region −π

2 ≤ x ≤ π
2 , −∞ < y < ∞, to gain an understanding of this

mapping on the entire z-plane.

One can show that the complex sine function is one-to-one on the
domain −π

2 < x < π
2 , −∞ < y < ∞.
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The Mapping w = sin z

Describe the image of the region −π
2 ≤ x ≤ π

2 , −∞ < y < ∞, under
the complex mapping w = sin z .
We determine the image of vertical lines x = a with −π

2 ≤ a ≤ π
2 .

Assume that a 6= −π
2 , 0,

π
2 . The image of the vertical line x = a is

given by: u = sin a cosh y , v = cos a sinh y , −∞ < y < ∞. Since
−π

2 < a < π
2 and a 6= 0, it follows that sin a 6= 0 and cos a 6= 0, whence

cosh y = u
sin a and sinh y = v

cos a . The identity cosh2 y − sinh2 y = 1
gives: ( u

sin a )
2 − ( v

cos a )
2 = 1. It represents a hyperbola with vertices at

(± sin a, 0) and slant asymptotes v = ±( cos asin a )u.
Because the point (a, 0) is on the line x = a, the point (sin a, 0) must
be on the image of the line. Therefore, the image of the vertical line
x = a, with −π

2 < a < π
2 and a 6= 0, under w = sin z is the branch of

the hyperbola that contains the point (sin a, 0).
Because sin (−z) = − sin z , for all z , the image of the line x = −a is a
branch of the hyperbola containing the point (− sin a, 0).
Therefore, the pair x = a and x = −a, with −π

2 < a < π
2 and a 6= 0,

are mapped onto the full hyperbola.
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The Mapping w = sin z (Cont’d)

Summary:

The image of the line x = −π
2 is the set of points u ≤ −1 on the

negative real axis.
The image of the line x = π

2 is the set of points u ≥ 1 on the positive
real axis.
The image of the line x = 0 is the imaginary axis u = 0.

In summary, the image of the infinite vertical strip −π
2 ≤ x ≤ π

2 ,
−∞ < y < ∞, under w = sin z , is the entire w -plane.
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Following Horizontal Line Segments

The image could also be found using horizontal line segments y = b,
−π

2 ≤ x ≤ π
2 , instead of vertical lines.

The images are: u = sin x cosh b, v = cos x sinh b, −π
2 < x < π

2 .
When b 6= 0, we get ( u

cosh b )
2 + ( v

sinh b )
2 = 1, which is an ellipse with

u-intercepts at (± cosh b, 0) and v -intercepts at (0, ± sinh b).
If b > 0, then the image of the segment y = b is the upper-half of the
ellipse and the image of the segment y = −b the bottom-half.

Observe that if b = 0, then the image of the line segment y = 0,
−π

2 < x < π
2 , is the line segment −1 ≤ u ≤ 1, v = 0 on the real axis.
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Riemann Surface I

Since the complex sine function is periodic, the mapping w = sin z is
not one-to-one on the complex plane. A Riemann surface helps
visualize w = sin z .

Consider the mapping on the square S0 defined by −π
2 ≤ x ≤ π

2 ,
−π

2 ≤ y ≤ π
2 .

S0 is mapped onto the elliptical region E .

Similarly, the adjacent square S1 defined by π
2 ≤ x ≤ 3π

2 ,
−π

2 ≤ y ≤ π
2 , also maps onto E .
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Riemann Surface II

A Riemann surface is constructed by starting with two copies of E , E0

and E1, representing the images of S0 and S1, respectively. We cut E0

and E1 open along the line segments in the real axis from 1 to
cosh (π2 ) and from −1 to − cosh (π2 ).

Part of the Riemann surface consists of the two elliptical regions E0

and E1 with the black segments glued together and the dashed
segments glued together.

To complete the Riemann surface, we take for
every integer n an elliptical region En repre-
senting the image of the square Sn defined by
(2n−1)π

2 ≤ x ≤ (2n+1)π
2 , −π

2 ≤ y ≤ π
2 . Each

region En is cut open, as E0 and E1 were, and
En is glued to En+1 along their boundaries in a
manner analogous to that used for E0 and E1.
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Subsection 5

Complex Hyperbolic Functions
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Complex Hyperbolic Sine and Cosine

The real hyperbolic sine and hyperbolic cosine functions are defined
using the real exponential by sinh x = ex−e−x

2 and cosh x = ex+e−x

2 .

Definition (Complex Hyperbolic Sine and Cosine)

The complex hyperbolic sine and hyperbolic cosine functions are
defined by:

sinh z =
ez − e−z

2
and cosh z =

ez + e−z

2
.

These agree with the real hyperbolic functions for real input.

Unlike the real hyperbolic functions, the complex hyperbolic functions
are periodic and have infinitely many zeros.

The complex hyperbolic tangent, cotangent, secant, and
cosecant:

tanh z =
sinh z

cosh z
, coth z =

cosh z

sinh z

sechz =
1

cosh z
, cschz =

1

sinh z
.

George Voutsadakis (LSSU) Complex Analysis October 2014 66 / 83



Elementary Functions Complex Hyperbolic Functions

Derivatives of Complex Hyperbolic Functions

The hyperbolic sine and cosine functions are entire because the
functions ez and e−z are entire.

Moreover, we have:

d

dz
sinh z =

d

dz

ez − e−z

2
=

ez + e−z

2
= cosh z .

A similar computation for cosh z yields

d

dz
cosh z = sinh z .

Derivatives of Complex Hyperbolic Functions

d

dz
sinh z = cosh z ,

d

dz
cosh z = sinh z ,

d

dz
tanh z = sech

2
z ,

d

dz
coth z = −csch

2
z ,

d

dz
sechz = −sechz tanh z ,

d

dz
cschz = −cschz coth z .
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Relation To Sine and Cosine

The real trigonometric and the real hyperbolic functions share many
similar properties, e.g., d

dx
sin x = cos x and d

dx
sinh x = cosh x .

There is a simple connection between the complex trigonometric and
hyperbolic functions: Replace z with iz in the definition of sinh z :

sinh (iz) =
e iz − e−iz

2
= i

e iz − e−iz

2i
= i sin z ,

or −i sinh (iz) = sin z .

Substituting iz for z in sin z , we find sinh z = −i sin (iz).

After repeating this process for cos z and cosh z , we obtain:

sin z = −i sinh (iz) and cos z = cosh (iz),
sinh z = −i sin (iz) and cosh z = cos (iz).

Other relations can be similarly derived:

tan (iz) =
sin (iz)

cos (iz)
= i

sinh z

cosh z
= i tanh z .
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Obtaining Hyperbolic Identities

Some of the more commonly used hyperbolic identities:

sinh (−z) = − sinh z and cosh (−z) = cosh z ;
cosh2 z − sinh2 z = 1;
sinh (z1 ± z2) = sinh z1 cosh z2 ± cosh z1 sinh z2;
cosh (z1 ± z2) = cosh z1 cosh z2 ± sinh z1 sinh z2.

Example: Verify that cosh (z1 + z1) = cosh z1 cosh z2 + sinh z1 sinh z2,
for all complex z1 and z2.

We have cosh (z1 + z2) = cos (iz1 + iz2). So by a trigonometric
identity and additional applications of the preceding identities,

cosh (z1 + z2) = cos (iz1 + iz2)
= cos iz1 cos iz2 − sin iz1 sin iz2
= cos iz1 cos iz2 + (−i sin iz1)(−i sin iz2)
= cosh z1 cosh z2 + sinh z1 sinh z2.
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Real versus Complex Trig and Hyperbolic Trig Functions

(i) In real analysis, the exponential function was just one of a number of
apparently equally important elementary functions. In complex
analysis, however, the complex exponential function assumes a much
greater role: All of the complex elementary functions can be defined
solely in terms of the complex exponential and logarithmic functions.
The exponential and logarithmic functions can be used to evaluate,
differentiate, integrate, and map using elementary functions.

(ii) As functions of a real variable x , sinh x and cosh x are not periodic.
In contrast, the complex functions sinh z and cosh z are periodic.
Moreover, cosh x has no zeros and sinh x has a single zero at x = 0.
The complex functions sinh z and cosh z , on the other hand, both
have infinitely many zeros.
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Subsection 6

Inverse Trigonometric and Hyperbolic Functions
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Inverse Sine

The complex sine function is periodic with a real period of 2π.

Moreover, the sine function maps the complex plane onto the
complex plane: Range(sin z) = C.

Thus, for any complex number z there exists infinitely many solutions
w to the equation sinw = z . Rewrite as e iw−e−iw

2i = z or
e2iw − 2ize iw − 1 = 0. Use the quadratic formula to solve
e iw = iz + (1− z2)1/2.. This expression involves the two square roots
of 1− z2. We solve for w using the complex logarithm:
iw = ln [iz + (1− z2)1/2] or w = − i ln [iz + (1− z2)1/2].

Definition (Inverse Sine)

The multiple-valued function sin−1 z defined by:

sin−1 z = −i ln [iz + (1− z2)1/2]

is called the inverse sine or arcsine, sometimes written arcsin z .
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Values of Inverse Sine

Find all values of sin−1
√
5.

Set z =
√
5 in the formula defining sin−1 z :

sin−1
√
5 = − i ln [i

√
5 + (1− (

√
5)2)1/2] = − i ln [i

√
5 + (−4)1/2].

The two square roots (−4)1/2 of −4 are found to be ±2i . So
sin−1

√
5 = − i ln [i

√
5± 2i ] = − i ln [(

√
5± 2)i ]. Because (

√
5± 2)i

is a pure imaginary number with positive imaginary part, we have
|(
√
5± 2)i | =

√
5± 2 and arg([(

√
5± 2)i ]) = π

2 . Thus, we have

ln [(
√
5± 2)i ] = loge (

√
5± 2) + i(π2 + 2nπ) for n = 0,±1,±2, . . ..

Observe that loge (
√
5− 2) = loge

1√
5+2

= loge 1− loge (
√
5 + 2) =

0− loge (
√
5 + 2), and so loge (

√
5± 2) = ± loge (

√
5 + 2).

Therefore, −i ln [(
√
5± 2)i ] = − i [loge (

√
5± 2) + i(π2 + 2nπ)] =

− i [± loge (
√
5 + 2) + i

(4n+1)π
2 ], and so

sin−1
√
5 = (4n+1)π

2 ± i loge (
√
5 + 2), for n = 0,±1,±2, . . ..

George Voutsadakis (LSSU) Complex Analysis October 2014 73 / 83



Elementary Functions Inverse Trigonometric and Hyperbolic Functions

Inverse Cosine and Tangent

Similarly, we may solve the equations cosw = z and tanw = z .

Definition (Inverse Cosine and Inverse Tangent)

The multiple-valued function cos−1 z defined by:

cos−1 z = −i ln [z + i(1− z2)1/2]

is called the inverse cosine. The multiple-valued function tan−1 z defined
by:

tan−1 z =
i

2
ln (

i + z

i − z
)

is called the inverse tangent.

The inverse cosine and inverse tangent are multiple-valued functions
since they are defined in terms of the complex logarithm ln z .

The expression (1− z2)1/2 represents the two square roots of the
complex number 1− z2.

Every value of w = cos−1 z satisfies the equation cosw = z , and,
similarly, every value of w = tan−1 z satisfies the equation tanw = z .
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Defining a Univalued Inverse Function

The inverse sine and inverse cosine are multiple-valued functions that
can be made single-valued by specifying a single value of the square
root to use for the expression (1− z2)1/2 and a single value of the
complex logarithm.

The inverse tangent can be made single-valued by just specifying a
single value of ln z .

Example: If z =
√
5, then the principal square root of

1− (
√
5)2 = −4 is 2i , and Ln(i

√
5 + 2i) = loge (

√
5 + 2) + πi

2 . Using

the definition, we get f (
√
5) = π

2 − i loge (
√
5 + 2). Thus, the value

of the function f at z =
√
5 is the value of sin−1

√
5 associated to

n = 0 and the square root 2i in the preceding example.
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Branches and Analyticity

Determining domains of branches of inverse trigonometric functions is
complicated and not discussed.

The derivatives of branches can be found using implicit differentiation:

Suppose that f1 is a branch of F (z) = sin−1 z . If w = f1(z), then
z = sinw . By differentiating both sides with respect to z and
applying the chain rule, 1 = cosw · dw

dz
, or dw

dz
= 1

cosw . From the

trigonometric identity cos2 w + sin2 w = 1, cosw = (1− sin2 w)1/2,
and, since z = sinw , cosw = (1− z2)1/2. After substituting this
expression for cosw , we obtain f ′1(z) =

dw
dz

= 1
(1−z2)1/2

.

If we let sin−1 z denote the branch f1, then this formula may be
restated as:

d

dz
sin−1 z =

1

(1− z2)1/2
.

We must use the same branch of the square root function that
defined sin−1 z when finding values of its derivative.
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Derivatives of Branches sin−1
z , cos−1

z and tan−1
z

In a similar manner, derivatives of branches of the inverse cosine and
the inverse tangent can be found.

In the following formulas, the symbols sin−1 z , cos−1 z , and tan−1 z

represent branches of the corresponding multiple-valued functions, so,
the formulas for the derivatives hold only on the domains of these
branches:

Derivatives of Branches sin−1 z , cos−1 z and tan−1 z

d

dz
sin−1 z =

1

(1− z2)1/2
,
d

dz
cos−1 z =

−1

(1− z2)1/2
,
d

dz
tan−1 z =

1

1 + z2

Again, when finding the value of a derivative, we must use the same
square root as is used to define the branch.

The formulas are similar to those for the derivatives of the real inverse
trigonometric functions. The difference is the specific choice of a
branch of the square root function.
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Derivative of a Branch of Inverse Sine

Let sin−1 z represent a branch of the inverse sine obtained by using
the principal branches of the square root and the logarithm. Find the
derivative of this branch at z = i .

Note that this branch is differentiable at z = i because 1− i2 = 2 is
not on the branch cut of the principal branch of the square root
function, and because i(i) + (1− i2)1/2 = −1 +

√
2 is not on the

branch cut of the principal branch of the complex logarithm.

We have:

d

dz
sin−1 z

∣

∣

∣

∣

z=i

=
1

(1− z2)1/2

∣

∣

∣

∣

z=i

=
1

(1− i2)1/2
=

1

21/2
.

Using the principal branch of the square root, we obtain 21/2 =
√
2.

Therefore, the derivative is 1√
2
or 1

2

√
2.
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Inverse Hyperbolic Functions

The inverses of the hyperbolic functions are also defined in terms of
the complex logarithm because the hyperbolic functions are defined in
terms of the complex exponential.

Definition (Inverse Hyperbolic Sine, Cosine, and Tangent)

The multiple-valued functions sinh−1 z , cosh−1 z , and tanh−1 z , defined
by:

sinh−1 z = ln [z + (z2 + 1)1/2], cosh−1 z = ln [z + (z2 − 1)1/2],

tanh−1 z = 1
2 ln (

1+z
1−z

)

are called the inverse hyperbolic sine, the inverse hyperbolic cosine,
and the inverse hyperbolic tangent, respectively.

The expressions given in the definition allow us to solve equations
involving the complex hyperbolic functions.

In particular, if w = sinh−1 z , then sinhw = z ; if w = cosh−1 z , then
coshw = z ; and if w = tanh−1 z , then tanhw = z .
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Analyticity

Branches of the inverse hyperbolic functions are defined by choosing
branches of the square root and complex logarithm.

The derivative of a branch can be found using implicit differentiation:
Here sinh−1 z , cosh−1 z and tanh−1 z represent branches of the
corresponding multiple-valued functions.

Derivatives of Branches sinh−1 z , cosh−1 z , tanh−1 z

d
dz

sinh−1 z = 1
(z2+1)1/2

, d
dz

cosh−1 z = 1
(z2−1)1/2

,

d
dz

tanh−1 z = 1
1−z2

.

We must be consistent in our use of branches when evaluating
derivatives.

The formulas are the same as the ones for the derivatives of the real
inverse hyperbolic functions except for the choice of branch.
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Computing Inverse Hyperbolic Cosine

Let cosh−1 z represent the branch of the inverse hyperbolic cosine
obtained by using the branch f2(z) =

√
re iθ/2, 0 < θ < 2π, of the

square root and the principal branch of the complex logarithm. Find

the values: (a) cosh−1
√
2
2 (b) d

dz
cosh−1 z

∣

∣

z=
√
2/2

.

(a) We use cosh−1 z = ln [z + (z2 − 1)1/2] with z = 1
2

√
2 and the stated

branches of the square root and logarithm. When z = 1
2

√
2, we have

that z2 − 1 = − 1
2 . Since −1

2 has exponential form 1
2e

iπ, the square

root given by the branch f2 is: f2(
1
2e

iπ) =
√

1
2e

iπ/2 = 1√
2
i =

√
2
2 i .

The value of our branch of the inverse cosine is then given by:

cosh−1
√
2
2 = ln [z + (z2 − 1)1/2] = ln [

√
2
2 +

√
2
2 i ]. Because

|12
√
2 + 1

2

√
2i | = 1 and Arg(12

√
2 + 1

2

√
2i) = π

4 , the principal branch

of the logarithm is loge 1 + i π4 = πi
4 . Therefore, cosh

−1
√
2
2 = πi

4 .
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Computing The Derivative of Inverse Hyperbolic Cosine

(b) We have

d

dz
cosh−1 z

∣

∣

∣

∣

z=
√
2/2

=
1

(z2 − 1)1/2

∣

∣

∣

∣

z=
√
2/2

=
1

[(
√
2/2)2 − 1]1/2

=
1

(−1/2)1/2
.

After using f2 to find the square root in this expression we obtain:

d

dz
cosh−1 z

∣

∣

∣

∣

z=
√
2/2

=
1√
2i/2

= −
√
2i .
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The Riemann Surface of the Sine Revisited

The multiple-valued function F (z) = sin−1 z can be visualized using
the Riemann surface constructed for sin z previously.

In order to see the image of a point z0 under
the multiple-valued mapping w = sin−1 z , we
imagine that z0 is lying in the xy -plane. We
then consider all points on the Riemann surface
lying directly over z0.

Each of these points on the surface corresponds
to a unique point in one of the squares Sn de-
scribed previously.

Thus, this infinite set of points in the Riemann surface represents the
infinitely many images of z0 under w = sin−1 z .
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