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Integration in the Complex Plane Real Integrals

Subsection 1

Real Integrals
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Integration in the Complex Plane Real Integrals

Definite Integrals

If F (x) is an antiderivative of a continuous function f , i.e., F is a
function for which F ′(x) = f (x), then the definite integral of f on the
interval [a, b] is the number

ˆ b

a

f (x)dx = F (x)|ba = F (b)− F (a).

Example:
´ 2
−1 x

2dx = 1
3x

3
∣

∣

2

−1
= 8

3 − −1
3 = 3.

The fundamental theorem of calculus is a method of evaluating
´ b

a
f (x)dx ; it is not the definition of

´ b

a
f (x)dx .

We next define:

The definite (or Riemann) integral of a function f ;
Line integrals in the Cartesian plane.

Both definitions rest on the limit concept.
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Integration in the Complex Plane Real Integrals

Steps Leading to the Definition of the Definite Integral

1. Let f be a function of a single variable x defined at all points in a
closed interval [a, b].

2. Let P be a partition:

a = x0 < x1 < x2 < · · · < xn−1 < xn = b

of [a, b] into n subintervals [xk−1, xk ] of length ∆xk = xk − xk−1.

3. Let ‖P‖ be the norm of the partition P of [a, b], i.e., the length of
the longest subinterval.

4. Choose a number x∗k in each subinterval [xk−1, xk ] of [a, b].

5. Form n products f (x∗k )∆xk , k = 1, 2, . . . , n, and then sum these
products: n

∑

k=1

f (x∗k )∆xk .
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Integration in the Complex Plane Real Integrals

The Definition of the Definite Integral

Definition (Definite Integral)

The definite integral of f on [a, b] is

ˆ b

a

f (x)dx = lim
‖P‖→0

n
∑

k=1

f (x∗k )∆xk .

Whenever the limit exists we say that f is integrable on the interval
[a, b] or that the definite integral of f exists.

It can be proved that if f is continuous on [a, b], then the integral
exists.
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Integration in the Complex Plane Real Integrals

Terminology About Curves

Suppose a curve C in the plane is parametrized by a set of equations
x = x(t), y = y(t), a ≤ t ≤ b, where x(t) and y(t) are continuous
real functions. Let the initial and terminal points of C (x(a), y(a)),
(x(b), y(b)) be denoted by A, B . We say that:
(i) C is a smooth curve if x ′ and y ′ are continuous on the closed interval

[a, b] and not simultaneously zero on the open interval (a, b).
(ii) C is a piecewise smooth curve if it consists of a finite number of

smooth curves C1,C2, . . . ,Cn joined end to end, i.e., the terminal point
of one curve Ck coinciding with the initial point of the next curve Ck+1.

(iii) C is a simple curve if the curve C does not cross itself except possibly
at t = a and t = b.

(iv) C is a closed curve if A = B.
(v) C is a simple closed curve if the curve C does not cross itself and

A = B, i.e., C is simple and closed.
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Integration in the Complex Plane Real Integrals

Steps Leading to the Definition of Line Integrals

1. Let G be a function of two real variables x and y , defined at all points
on a smooth curve C that lies in some region of the xy -plane. Let C
be defined by the parametrization x = x(t), y = y(t), a ≤ t ≤ b.

2. Let P be a partition of the parameter interval [a, b] into n

subintervals [tk−1, tk ] of length ∆tk = tk − tk−1:

a = t0 < t1 < t2 < · · · < tn−1 < tn = b.

The partition P induces a partition of
the curve C into n subarcs of length
∆sk . Let the projection of each sub-
arc onto the x- and y -axes have lengths
∆xk and ∆yk , respectively.
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Integration in the Complex Plane Real Integrals

Steps Leading to the Definition of Line Integrals (Cont’d)

3. Let ‖P‖ be the norm of the partition P of [a, b], that is, the length
of the longest subinterval.

4. Choose a point (x∗k , y
∗
k ) on each subarc of C .

5. Form n products G (x∗k , y
∗
k )∆xk , G (x∗k , y

∗
k )∆yk , G (x∗k , y

∗
k )∆sk ,

k = 1, 2, . . . , n, and then sum these products
n

∑

k=1

G (x∗k , y
∗
k )∆xk ,

n
∑

k=1

G (x∗k , y
∗
k )∆yk ,

n
∑

k=1

G (x∗k , y
∗
k )∆sk .
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Integration in the Complex Plane Real Integrals

The Definition of Line Integrals

Definition (Line Integrals in the Plane)

(i) The line integral of G along C with respect to x is
ˆ

C

G (x , y)dx = lim
‖P‖→0

n
∑

k=1

G (x∗k , y
∗
k )∆xk .

(ii) The line integral of G along C with respect to y is
ˆ

C

G (x , y)dy = lim
‖P‖→0

n
∑

k=1

G (x∗k , y
∗
k )∆yk .

(iii) The line integral of G along C with respect to arc length s is
ˆ

C

G (x , y)ds = lim
‖P‖→0

n
∑

k=1

G (x∗k , y
∗
k )∆sk .

If G is continuous on C , then the three types of line integrals exist.

The curve C is referred to as the path of integration.
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Integration in the Complex Plane Real Integrals

Method of Evaluation: C Defined Parametrically

Convert a line integral to a definite integral in a single variable.
If C is a smooth curve parametrized by x = x(t), y = y(t),
a ≤ t ≤ b, then replace

x and y in the integral by the functions x(t) and y(t);
the appropriate differential dx , dy , or ds by

x ′(t)dt, y ′(t)dt,
√

[x ′(t)]2 + [y ′(t)]2dt.

The term ds =
√

[x ′(t)]2 + [y ′(t)]2dt is called the differential of the

arc length.

The line integrals become definite integrals in which the variable of
integration is the parameter t:

´

C
G (x , y)dx =

´ b

a
G (x(t), y(t))x ′(t)dt,

´

C
G (x , y)dy =

´ b

a
G (x(t), y(t))y ′(t)dt,

´

C
G (x , y)ds =

´ b

a
G (x(t), y(t))

√

[x ′(t)]2 + [y ′(t)]2dt.
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Integration in the Complex Plane Real Integrals

Evaluation of a Line Integral I

Evaluate
´

C
xy2dx , where the path of inte-

gration C is the quarter circle defined by
x = 4cos t, y = 4 sin t, 0 ≤ t ≤ π

2 .

We have
dx = − 4 sin tdt.

Thus,

´

C
xy2dx =

´ π/2
0 (4 cos t)(4 sin t)2(−4 sin tdt)

= − 256
´ π/2
0 sin3 t cos tdt

= − 256[14 sin
4 t]

π/2
0

= − 64.
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Integration in the Complex Plane Real Integrals

Evaluation of a Line Integral II

Evaluate
´

C
xy2dy , where the path of integration C is the quarter

circle defined by x = 4cos t, y = 4 sin t, 0 ≤ t ≤ π
2 .

We have
dy = 4cos tdt.

Thus,

´

C
xy2dy =

´ π/2
0 (4 cos t)(4 sin t)2(4 cos tdt)

= 256
´ π/2
0 sin2 t cos2 tdt

= 256
´ π/2
0

1
4 sin

2 2tdt

= 64
´ π/2
0

1
2(1− cos 4t)dt

= 32[t − 1
4 sin 4t]

π/2
0 = 16π.
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Integration in the Complex Plane Real Integrals

Evaluation of a Line Integral III

Evaluate
´

C
xy2ds, where the path of integration C is the quarter

circle defined by x = 4cos t, y = 4 sin t, 0 ≤ t ≤ π
2 .

We have

ds =

√

16(sin2 t + cos2 t)dt = 4dt.

Therefore,

´

C
xy2ds =

´ π/2
0 (4 cos t)(4 sin t)2(4dt)

= 256
´ π/2
0 sin2 t cos tdt

= 256[13 sin
3 t]

π/2
0

= 256
3 .
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Integration in the Complex Plane Real Integrals

Method of Evaluation: C Defined by a Function

If the path of integration C is the graph of an explicit function
y = f (x), a ≤ x ≤ b, then we can use x as a parameter:

The differential of y is dy = f ′(x)dx , and the differential of arc length
is ds =

√

1 + [f ′(x)]2dx .
We, thus, obtain the definite integrals:

´

C
G (x , y)dx =

´ b

a
G (x , f (x))dx ,

´

C
G (x , y)dy =

´ b

a
G (x , f (x))f ′(x)dx ,

´

C
G (x , y)ds =

´ b

a
G (x , f (x))

√

1 + [f ′(x)]2dx .

A line integral along a piecewise smooth curve C is defined as the
sum of the integrals over the various smooth pieces.

Example: To evaluate
´

C
G (x , y)ds when C is composed of two

smooth curves C1 and C2, we write
ˆ

C

G (x , y)ds =

ˆ

C1

G (x , y)ds +

ˆ

C2

G (x , y)ds.
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Integration in the Complex Plane Real Integrals

Notation for Line Integrals

In many applications, line integrals appear as a sum
ˆ

C

P(x , y)dx +

ˆ

C

Q(x , y)dy .

It is common practice to write this sum as one integral without
parentheses as

ˆ

C

P(x , y)dx + Q(x , y)dy

or simply
ˆ

C

Pdx + Qdy .

A line integral along a closed curve C is usually denoted by
˛

C

Pdx + Qdy .
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Integration in the Complex Plane Real Integrals

C Defined by an Explicit Function

Evaluate
´

C
xydx + x2dy , where C is the graph

of y = x3, −1 ≤ x ≤ 2.

We have dy = 3x2dx . Therefore,

´

C
xydx + x2dy =

´ 2
−1 xx

3dx + x23x2dx

=
´ 2
−1 (x

4 + 3x4)dx

=
´ 2
−1 4x

4dx

= 4
5x

5
∣

∣

2

−1

= 4
5(32 − (−1)) = 132

5 .
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Integration in the Complex Plane Real Integrals

C a Closed Curve

Evaluate
¸

C
xdx , where C is the circle defined by x = cos t, y = sin t,

0 ≤ t ≤ 2π.

We have dx = − sin tdt, whence:

¸

C
xdx =

´ 2π
0 cos t(− sin tdt)

= 1
2 cos

2 t
∣

∣

2π

0
= 1

2(1− 1)
= 0.
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Integration in the Complex Plane Real Integrals

C Another Closed Curve

Evaluate
¸

C
y2dx − x2dy , where C is the closed curve shown on the

left.
C is piecewise smooth. So, the
given integral is expressed as a sum
of integrals, i.e., we write

¸

C
=

´

C1
+
´

C2
+
´

C3
, with C1,C2,C3 as

shown on the right.

On C1, with x as a parameter:
´

C1
y2dx − x2dy =

´ 2

0 0dx − x2(0) = 0.
On C2, with y as a parameter:
´

C2
y2dx − x2dy =

´ 4

0
y2(0)− 4dy = −

´ 4

0
4dy = − 16.

On C3, we again use x as a parameter. From y = x2, we get

dy = 2xdx . Thus,
´

C3
y2dx − x2dy =

´ 0

2
(x2)2dx − x2(2xdx) =

´ 0

2
(x4 − 2x3)dx = ( 15x

5 − 1
2x

4)
∣

∣

0

2
= 8

5 .

Hence,
¸

C
y2dx − x2dy =

´

C1
+
´

C2
+
´

C3
= 0 + (−16) + 8

5 = − 72
5 .
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Integration in the Complex Plane Real Integrals

Orientation of a Curve

If C is not a closed curve, then we say the positive direction on C ,
or that C has positive orientation, if we traverse C from its initial
point A to its terminal point B , i.e., if x = x(t), y = y(t), a ≤ t ≤ b,
are parametric equations for C , then the positive direction on C

corresponds to increasing values of the parameter t.

If C is traversed in the sense opposite to that of the positive
orientation, then C is said to have negative orientation.

If C has an orientation (positive or negative), then the opposite

curve, the curve with the opposite orientation, will be denoted −C .

Then
ˆ

−C

Pdx + Qdy = −
ˆ

C

Pdx + Qdy ,

or, equivalently
ˆ

−C

Pdx + Qdy +

ˆ

C

Pdx + Qdy = 0.

A line integral is independent of the parametrization of C , provided C

is given the same orientation.

George Voutsadakis (LSSU) Complex Analysis October 2014 20 / 83



Integration in the Complex Plane Complex Integrals

Subsection 2

Complex Integrals
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Integration in the Complex Plane Complex Integrals

Curves Revisited

Suppose the continuous real-valued functions x = x(t), y = y(t),
a ≤ t ≤ b, are parametric equations of a curve C in the complex
plane.

By considering z = x + iy , we can describe the points z on C by
means of a complex-valued function of a real variable t, called a
parametrization of C : z(t) = x(t) + iy(t), a ≤ t ≤ b.

Example: The parametric equations x = cos t, y = sin t, 0 ≤ t ≤ 2π,
describe a unit circle centered at the origin. A parametrization of this
circle is z(t) = cos t + i sin t, or z(t) = e it , 0 ≤ t ≤ 2π.

The point z(a) = x(a) + iy(a) or A =
(x(a), y(a)) is called the initial point of C .
and z(b) = x(b) + iy(b) or B = (x(b), y(b))
the terminal point.
As t varies from t = a to t = b, C is being
traced out by the moving arrowhead of the
vector corresponding to z(t).
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Integration in the Complex Plane Complex Integrals

Smooth Curves and Contours

Suppose the derivative of z(t) = x(t) + iy(t), a ≤ t ≤ b, is
z ′(t) = x ′(t) + iy ′(t).
We say C is smooth if z ′(t) is continuous and never zero in the
interval a ≤ t ≤ b.

Since the vector z ′(t) is not zero at any point P on C ,
the vector z ′(t) is tangent to C at P . In other words,
a smooth curve has a continuously turning tangent.

A piecewise smooth curve C has a continuously turning tangent,
except possibly at the points where the component smooth curves
C1,C2, . . . ,Cn are joined together.
A curve C in the complex plane is simple if z(t1) 6= z(t2), for t1 6= t2,
except possibly for t = a and t = b.
C is a closed curve if z(a) = z(b).

C is a simple closed curve if it is simple and closed.
A piecewise smooth curve C is also called a contour or path.
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Integration in the Complex Plane Complex Integrals

Positive and Negative Directions

We define the positive direction on a contour C to be the direction
on the curve corresponding to increasing values of the parameter t. It
is also said that the curve C has positive orientation.
In the case of a simple closed curve C , the positive direction roughly
corresponds to the counterclockwise direction or the direction that a
person must walk on C in order to keep the interior of C to the left.

The negative direction on a contour C is the direction opposite the
positive direction.
If C has an orientation, the opposite curve, that is, a curve with
opposite orientation, is denoted by −C .
On a simple closed curve, the negative direction corresponds to the
clockwise direction.
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Integration in the Complex Plane Complex Integrals

Steps Leading to the Definition of the Complex Integral I

1. Let f be a function of a complex variable z defined at all points on a
smooth curve C that lies in some region of the plane. Suppose C is
defined by the parametrization z(t) = x(t) + iy(t), a ≤ t ≤ b.

2. Let P be a partition of the parameter interval [a, b] into n

subintervals [tk−1, tk ] of length ∆tk = tk − tk−1:

a = t0 < t1 < t2 < · · · < tn−1 < tn = b.

The partition P induces a partition of the curve C into n subarcs
whose initial and terminal points are the pairs of numbers

z0 = x(t0) + iy(t0), z1 = x(t1) + iy(t1),
z1 = x(t1) + iy(t1), z2 = x(t2) + iy(t2),
...

...
zn−1 = x(tn−1) + iy(tn−1), zn = x(tn) + iy(tn).

Let ∆zk = zk − zk−1, k = 1, 2, . . . , n.
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Integration in the Complex Plane Complex Integrals

Steps Leading to the Definition of the Complex Integral II

3. Let ‖P‖ be the norm of the partition P of [a, b], i.e., the length of
the longest subinterval.

4. Choose a point z∗k = x∗k + iy∗k on each subarc of C .

5. Form n products f (z∗k )∆zk , k = 1, 2, . . . , n, and then sum these
products:

∑n
k=1 f (z

∗
k )∆zk .
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Integration in the Complex Plane Complex Integrals

The Definition of the Complex Integral

Definition (Complex Integral)

The complex integral of f on C is
ˆ

C

f (z)dz = lim
‖P‖→0

n
∑

k=1

f (z∗k )∆zk .

If the limit exists, f is said to be integrable on C .
The limit exists whenever f is continuous at all points on C and C is
either smooth or piecewise smooth.
Thus, we always assume that these conditions are fulfilled.
By convention, we will use the notation

¸

C
f (z)dz to represent a

complex integral around a positively oriented closed curve C .
The notations

�

C
f (z)dz,

ff

C
f (z)dz denote more explicitly integration

in the positive and negative directions, respectively.
We shall refer to

´

C
f (z)dz as a contour integral.
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Integration in the Complex Plane Complex Integrals

Complex-Valued Function of a Real Variable

Example: If t represents a real variable, then f (t) = (2t + i)2 is a
complex number. For t = 2, f (2) = (4 + i)2 = 16+ 8i + i2 = 15+ 8i .

If f1 and f2 are real-valued functions of a real variable t, then
f (t) = f1(t) + if2(t) is a complex-valued function of a real variable t.

We are interested in integration of a complex-valued function
f (t) = f1(t)+ if2(t) of a real variable t carried out over a real interval.

Example: On the interval 0 ≤ t ≤ 1, it seems reasonable for
f (t) = (2t + i)2 to write
ˆ 1

0
(2t + i)2dt =

ˆ 1

0
(4t2 − 1 + 4ti)dt =

ˆ 1

0
(4t2 − 1)dt + i

ˆ 1

0
4tdt.

The integrals
´ 1
0 (4t2 − 1)dt and

´ 1
0 4tdt are real, and could be called

the real and imaginary parts of
´ 1
0 (2t + i)2dt. Each can be evaluated

using the fundamental theorem of calculus to get:
´ 1
0 (2t + i)2dt = (43 t

3 − t)
∣

∣

1

0
+ i 2t2

∣

∣

1

0
= 1

3 + 2i .
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Integration in the Complex Plane Complex Integrals

Integral of Complex Valued Function of a Real Variable

If f1 and f2 are real-valued functions of a real variable t continuous on
a common interval a ≤ t ≤ b, then we define the integral of the
complex-valued function f (t) = f1(t) + if2(t) on a ≤ t ≤ b by

ˆ b

a

f (t)dt =

ˆ b

a

f1(t)dt + i

ˆ b

a

f2(t)dt.

The continuity of f1 and f2 on [a, b] guarantees that both integrals on
the right exist.

If f (t) = f1(t) + if2(t) and g(t) = g1(t) + ig2(t), are complex-valued
functions of a real variable t continuous on a ≤ t ≤ b, then

´ b

a
kf (t)dt = k

´ b

a
f (t)dt , k a complex constant;

´ b

a
(f (t) + g(t))dt =

´ b

a
f (t)dt +

´ b

a
g(t)dt;

´ b

a
f (t)dt =

´ c

a
f (t)dt +

´ b

c
f (t)dt , if c ∈ [a, b];

´ a

b
f (t)dt = −

´ b

a
f (t)dt .
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Integration in the Complex Plane Complex Integrals

Evaluation of Contour Integrals

If we use u + iv for f , ∆x + i∆y for ∆z , lim for lim‖P‖→0 and
∑

for
∑n

k=1, we get
´

C
f (z)dz = lim

∑

(u + iv)(∆x + i∆y) =
lim [

∑

(u∆x − v∆y) + i
∑

(v∆x + u∆y)].

Thus, we have
ˆ

C

f (z)dz =

ˆ

C

udx − vdy + i

ˆ

C

vdx + udy .

If x = x(t), y = y(t), a ≤ t ≤ b, are parametric equations of C , then
dx = x ′(t)dt, dy = y ′(t)dt.

Now we obtain
´ b

a
[u(x(t), y(t))x ′(t)− v(x(t), y(t))y ′(t)]dt +

i
´ b

a
[v(x(t), y(t))x ′(t) + u(x(t), y(t))y ′(t)]dt.

This is the same as
´ b

a
f (z(t))z ′(t)dt when the integrand

f (z(t))z ′(t) = [u(x(t), y(t)) + iv(x(t), y(t))][x ′(t) + iy ′(t)] is
multiplied out and

´ b

a
f (z(t))z ′(t)dt is expressed in terms of its real

and imaginary parts.
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Integration in the Complex Plane Complex Integrals

Evaluating of a Contour Integral

Theorem (Evaluation of a Contour Integral)

If f is continuous on a smooth curve C given by z(t) = x(t) + iy(t),
a ≤ t ≤ b, then ˆ

C

f (z)dz =

ˆ b

a

f (z(t))z ′(t)dt.

Example: Evaluate
´

C
zdz, where C is given by x = 3t, y = t2,

−1 ≤ t ≤ 4.

A parametrization of the contour C is z(t) = 3t + it2. Thus, since
f (z) = z, we have f (z(t)) = 3t + it2 = 3t − it2. Also,
z ′(t) = 3 + 2it. Now, we have

´

C
zdz =

´ 4
−1 (3t − it2)(3 + 2it)dt

=
´ 4
−1 (2t

3 + 9t)dt + i
´ 4
−1 3t

2dt

= (12 t
4 + 9

2t
2)
∣

∣

4

−1
+ i t3

∣

∣

4

−1
= 195 + 65i .

George Voutsadakis (LSSU) Complex Analysis October 2014 31 / 83



Integration in the Complex Plane Complex Integrals

Another Evaluation of a Contour Integral

Evaluate
¸

C
1
z
dz , where C is the circle x = cos t, y = sin t,

0 ≤ t ≤ 2π.

In this case z(t) = cos t + i sin t = e it , z ′(t) = ie it , and
f (z(t)) = 1

z(t) = e−it . Hence,

¸

c
1
z
dz =

´ 2π
0 (e−it)ie itdt

= i
´ 2π
0 dt

= 2πi .
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Integration in the Complex Plane Complex Integrals

Using x as a Parameter

For some curves the real variable x itself can be used as the
parameter.

Example: Evaluate
´

C
(8x2 − iy)dz on the line segment y = 5x ,

0 ≤ x ≤ 2.

We write z = x + 5xi , whence dz = (1 + 5i)dx . Therefore,

´

C
(8x2 − iy)dz = (1 + 5i)

´ 2
0 (8x2 − 5ix)dx

= (1 + 5i) 8
3x

3
∣

∣

2

0
− (1 + 5i)i 5

2x
2
∣

∣

2

0
= 214

3 + 290
3 i .

If x and y are related by means of a continuous real function
y = f (x), then the corresponding curve C can be parametrized by
z(x) = x + if (x).
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Properties of Contour Integrals

Theorem (Properties of Contour Integrals)

Suppose the functions f and g are continuous in a domain D, and C is a
smooth curve lying entirely in D. Then:

(i)
´

C
kf (z)dz = k

´

C
f (z)dz, k a complex constant.

(ii)
´

C
[f (z) + g(z)]dz =

´

C
f (z)dz +

´

C
g(z)dz .

(iii)
´

C
f (z)dz =

´

C1
f (z)dz +

´

C2
f (z)dz , where C consists of the smooth

curves C1 and C2 joined end to end.

(iv)
´

−C
f (z)dz = −

´

C
f (z)dz, where −C denotes the curve having the

opposite orientation of C .

The four parts of the theorem also hold if C is a piecewise smooth

curve in D.
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C a Piecewise Smooth Curve

Evaluate
´

C
(x2 + iy2)dz , where C is the contour shown:

We write
´

C
(x2 + iy2)dz =

´

C1
(x2 + iy2)dz +

´

C2
(x2 + iy2)dz .

Since the curve C1 is defined by y = x , we use
x as a parameter: z(x) = x + ix , z ′(x) = 1+ i ,
f (z) = x2 + iy2, f (z(x)) = x2 + ix2,

whence, finally,
´

C1
(x2 + iy2)dz =

´ 1
0 (x2 + ix2)(i + 1)dx =

(1 + i)2
´ 1
0 x2dx = (1+i)2

3 = 2
3 i .

The curve C2 is defined by x = 1, 1 ≤ y ≤ 2. If we use y as a
parameter, then z(y) = 1 + iy , z ′(y) = i , f (z(y)) = 1 + iy2, and
´

C2
(x2 + iy2)dz =

´ 2
1 (1 + iy2)idy = −

´ 2
1 y2dy + i

´ 2
1 dy = − 7

3 + i .

Therefore
´

C
(x2 + iy2)dz = 2

3 i + (−7
3 + i) = − 7

3 +
5
3 i .
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A Bounding Theorem

We find an upper bound for the modulus of a contour integral.

Recall the length of a plane curve L =
´ b

a

√

[x ′(t)]2 + [y ′(t)]2dt. If

z ′(t) = x ′(t) + iy ′(t), then |z ′(t)| =
√

[x ′(t)]2 + [y ′(t)]2, whence

L =
´ b

a
|z ′(t)|dt.

Theorem (A Bounding Theorem)

If f is continuous on a smooth curve C and if |f (z)| ≤ M, for all z on C ,
then |

´

C
f (z)dz | ≤ ML, where L is the length of C .

By triangle inequality, |∑n
k=1 f (z

∗
k )∆zk | ≤

∑n
k=1 |f (z∗k )||∆zk |

≤ M
∑n

k=1 |∆zk |. Because |∆zk | =
√

(∆xk)2 + (∆yk)2, we can
interpret |∆zk | as the length of the chord joining the points zk and
zk−1 on C . Moreover, since the sum of the lengths of the chords
cannot be greater than L, we get |∑n

k=1 f (z
∗
k )∆zk | ≤ ML. Finally,

the continuity of f guarantees that
´

C
f (z)dz exists. Thus, letting

‖P‖ → 0, the last inequality yields |
´

C
f (z)dz | ≤ ML.
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A Bound for a Contour Integral

Find an upper bound for the absolute value of
´

C
ez

z+1dz where C is
the circle |z | = 4.

First, the length L (circumference) of the circle of radius 4 is 8π.
Next, for all points z on the circle, we have that

|z + 1| ≥ |z | − 1 = 4− 1 = 3. Thus,

∣

∣

∣

∣

ez

z + 1

∣

∣

∣

∣

≤ |ez |
|z | − 1

=
|ez |
3

. In

addition, |ez | = |ex (cos y + i sin y)| = ex . For points on the circle
|z | = 4, the maximum that x = Re(z) can be is 4, whence
∣

∣

∣

∣

ez

z + 1

∣

∣

∣

∣

≤ e4

3
. From the theorem, we have

∣

∣

∣

∣

ˆ

C

ez

z + 1
dz

∣

∣

∣

∣

≤ 8πe4

3
.
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Single Contour: Many Parametrizations

There is no unique parametrization for a contour C .

Example: All of the following:

z(t) = e it = cos t + i sin t, 0 ≤ t ≤ 2π,
z(t) = e2πit = cos 2πt + i sin 2πt, 0 ≤ t ≤ 1,

z(t) = eπit/2 = cos πt
2 + i sin πt

2 , 0 ≤ t ≤ 4,

are all parametrizations, oriented in the positive direction, for the unit
circle |z | = 1.
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Subsection 3

Cauchy-Goursat Theorem
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Simply and Multiply Connected Domains

A domain is an open connected set in the complex plane.

A domain D is simply connected if every simple closed contour C
lying entirely in D can be shrunk to a point without leaving D.

Example: The entire complex plane is a simply connected domain.
The annulus defined by 1 < |z | < 2 is not simply connected.
A domain that is not simply connected is called a multiply
connected domain.

A domain with one “hole” is doubly connected;
A domain with two “holes” triply connected, and so on.

Example: The open disk |z | < 2 is a simply connected domain. The
open circular annulus 1 < |z | < 2 is doubly connected.
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Cauchy’s Theorem

Cauchy’s Theorem (1825)

Suppose that a function f is analytic in a simply connected domain D and
that f ′ is continuous in D. Then, for every simple closed contour C in D,

˛

C

f (z)dz = 0.

We apply Green’s theorem and the Cauchy-Riemann equations.
Recall from calculus that, if C is a positively oriented, piecewise
smooth, simple closed curve forming the boundary of a region R

within D, and if the real-valued functions P(x , y) and Q(x , y) along
with their first-order partial derivatives are continuous on a domain
that contains C and R , then

¸

C
Pdx + Qdy =

˜

R
(∂Q∂x − ∂P

∂y )dA.

Since f ′ is continuous throughout D, the real and imaginary parts of
f (z) = u + iv and their first partial derivatives are continuous
throughout D.
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Proof of Cauchy’s Theorem

We have by Green’s Theorem

˛

C

Pdx + Qdy =

¨

R

(
∂Q

∂x
− ∂P

∂y
)dA.

By continuity of u, v and their first partial derivatives,
¸

C
f (z)dz =

¸

C
u(x , y)dx − v(x , y)dy + i

¸

C
v(x , y)dx + u(x , y)dy =

˜

R
(−∂v

∂x − ∂u
∂y )dA+ i

˜

R
(∂u∂x − ∂v

∂y )dA. f being analytic in D, u and

v satisfy the Cauchy-Riemann equations: ∂u
∂x = ∂v

∂y ,
∂u
∂y = −∂v

∂x .
Therefore,

¸

C
f (z)dz =

˜

R
(−∂v

∂x + ∂v
∂x )dA+ i

˜

R
(∂v∂y − ∂v

∂y )dA

= 0.
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The Cauchy-Goursat Theorem

Edouard Goursat proved in 1883 that the assumption of continuity of
f ′ is not necessary to reach the conclusion of Cauchy’s theorem:

Cauchy-Goursat Theorem

Suppose that a function f is analytic in a simply connected domain D.
Then, for every simple closed contour C in D,

˛

C

f (z)dz = 0.

Since the interior of a simple closed contour is a simply connected
domain, the Cauchy-Goursat theorem can also be stated as:

If f is analytic at all points within and on a simple closed contour
C , then

¸

C
f (z)dz = 0.
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Applying the Cauchy-Goursat Theorem I

Evaluate
¸

C
ezdz, where the contour C is shown below.

f (z) = ez is entire. Thus, it is analytic at all
points within and on the simple closed con-
tour C . It follows from the Cauchy-Goursat
theorem that

¸

C
ezdz = 0.

We have
¸

C
ezdz = 0, for any simple closed contour in the complex

plane.

Moreover, for any simple closed contour C and any entire function f ,
such as f (z) = sin z , f (z) = cos z , and p(z) = anz

n + an−1z
n−1 + · · ·

+a1z + a0, n = 0, 1, 2, . . ., we also have
˛

C

sin zdz = 0,

˛

C

cos zdz = 0,

˛

C

p(z)dz = 0, etc.
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Applying the Cauchy-Goursat Theorem II

Evaluate
¸

C
1
z2
dz, where C is the ellipse (x − 2)2 + 1

4(y − 5)2 = 1.

The rational function f (z) = 1
z2

is analytic everywhere except at
z = 0. But z = 0 is not a point interior to or on the simple closed
elliptical contour C .

Thus, again by the Cauchy-Goursat Theorem, we get
˛

C

1

z2
dz = 0.
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Cauchy-Goursat Theorem for Multiply Connected Domains

If f is analytic in a multiply connected domain D, then we cannot
conclude that

¸

C
f (z)dz = 0, for every simple closed contour C in D.

Suppose that D is a doubly connected domain and C and C1 are
simple closed contours placed as follows:

Suppose, also, that f is
analytic on each contour
and at each point inte-
rior to C but exterior to
C1.

By introducing the crosscut AB , the region bounded between the
curves is now simply connected. So:

¸

C
f (z)dz +

´

AB
f (z)dz

+
¸

−C1
f (z)dz +

´

−AB
f (z)dz = 0 or

¸

C
f (z)dz =

¸

C1
f (z)dz.

This is sometimes called the principle of deformation of contours.

It allows evaluation of an integral over a complicated simple closed
contour C by replacing C with a more convenient contour C1.
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Applying Deformation of Contours

Evaluate
¸

C
1

z−i
dz , where C is the black contour:

We choose the more convenient circular contour
C1 drawn in blue. By taking the radius of the
circle to be r = 1, we are guaranteed that C1

lies within C . C1 is the circle |z − i | = 1.
It can be parametrized by

z = i + e it , 0 ≤ t ≤ 2π.

From z − i = e it and dz = ie itdt, we get:
˛

C

1

z − i
dz =

˛

C1

1

z − i
dz =

ˆ 2π

0

ie it

e it
dt

= i

ˆ 2π

0
dt = 2πi .
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A Generalization

This result can be generalized: If z0 is any constant complex number
interior to any simple closed contour C , and n an integer, we have
˛

C

1

(z − z0)n
dz =

{

2πi , if n = 1
0, if n 6= 1

.

That the integral is zero when n 6= 1 follows only partially from the
Cauchy-Goursat theorem.

When n = 0 or negative, 1
(z−z0)n

is a polynomial and therefore entire.

Then, clearly,
¸

C
1

(z−z0)n
dz = 0.

It is not very difficult to see that the integral is still zero when n is a
positive integer different from 1.

Analyticity of the function f at all points within and on a simple
closed contour C is sufficient to guarantee that

¸

C
f (z)dz = 0.

This result emphasizes that analyticity is not necessary, i.e., it can
happen that

¸

C
f (z)dz = 0 without f being analytic within C .

Example: If C is the circle |z | = 1, then
¸

C
1
z2
dz = 0, but f (z) = 1

z2

is not analytic at z = 0 within C .
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Applying the Formula for the Integral of 1/(z − z0)
n

Evaluate
¸

C
5z+7

z2+2z−3
dz, where C is circle |z − 2| = 2.

The denominator factors as z2 + 2z − 3 = (z − 1)(z + 3). Thus, the
integrand fails to be analytic at z = 1 and z = −3.

Of these two points, only z = 1 lies within
the contour C , which is a circle centered at
z = 2 of radius r = 2. By partial fractions

5z + 7

z2 + 2z − 3
=

3

z − 1
+

2

z + 3
.

Hence,
¸

C
5z+7

z2+2z−3
dz = 3

¸

C
1

z−1dz + 2
¸

C
1

z+3dz. The first integral
has the value 2πi , whereas the value of the second integral is 0 by the
Cauchy-Goursat theorem. Hence,

˛

C

5z + 7

z2 + 2z − 3
dz = 3(2πi) + 2(0) = 6πi .
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Cauchy-Goursat Theorem: Multiply Connnected Domains

If C , C1, and C2 are simple closed contours as shown below

and f is analytic on each of
the three contours as well as
at each point interior to C but
exterior to both C1 and C2,

then by introducing crosscuts between C1 and C and between C2 and
C , we get

¸

C
f (z)dz +

¸

−C1
f (z)dz +

¸

−C2
f (z)dz = 0, whence

¸

C
f (z)dz =

¸

C1
f (z)dz +

¸

C2
f (z)dz.

Cauchy-Goursat Theorem for Multiply Connnected Domains

Suppose C ,C1, . . . ,Cn are simple closed curves with a positive orientation,
such that C1,C2, . . . ,Cn are interior to C , but the regions interior to each
Ck , k = 1, 2, . . . , n, have no points in common. If f is analytic on each
contour and at each point interior to C but exterior to all the Ck ,
k = 1, 2, . . . , n, then

¸

C
f (z)dz =

∑n
k=1

¸

Ck
f (z)dz .
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Integrals in Multiply Connected Domains

Evaluate
¸

C
1

z2+1
dz, where C is the circle |z | = 4.

The denominator of the integrand factors as z2 + 1 = (z − i)(z + i).
So, the integrand 1

z2+1
is not analytic at z = i and at z = −i . Both

points lie within C . Using partial fractions, 1
z2+1

= 1
2i

1
z−i

− 1
2i

1
z+i

.

whence
¸

C
1

z2+1
dz = 1

2i

¸

C
( 1
z−i

− 1
z+i

)dz .

Surround z = i and z = −i by circular con-
tours C1 and C2, respectively, that lie entirely
within C . The choice |z − i | = 1

2 for C1 and
|z + i | = 1

2 for C2 will suffice.
We have

¸

C
1

z2+1
dz =

1
2i

¸

C1
( 1
z−i

− 1
z+i

)dz + 1
2i

¸

C2
( 1
z−i

− 1
z+i

)dz = 1
2i

¸

C1

1
z−i

dz −
1
2i

¸

C1

1
z+i

dz+ 1
2i

¸

C2

1
z−i

dz− 1
2i

¸

C2

1
z+i

dz = 1
2i 2πi−0+0− 1

2i 2πi = 0.
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Non-Simple Closed Contours

Throughout the foregoing discussion we assumed that C was a simple
closed contour, in other words, C did not intersect itself.

It can be shown that the Cauchy-Goursat theorem is valid for any
closed contour C in a simply connected domain D.

For a contour C that is closed but not simple,
if f is analytic in D, then

˛

C

f (z)dz = 0.
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Subsection 4

Independence of Path
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Path Independence

Definition (Independence of the Path)

Let z0 and z1 be points in a domain D. A contour integral
´

C
f (z)dz is

said to be independent of the path if its value is the same for all
contours C in D with initial point z0 and terminal point z1.

The Cauchy-Goursat theorem holds for closed contours, not just
simple closed contours, in a simply connected domain D.

Suppose that C and C1 are two contours lying entirely in
a simply connected domain D and both with initial point
z0 and terminal point z1. C joined with −C1 forms a
closed contour. Thus, if f is analytic in D,

´

C
f (z)dz +

´

−C1
f (z)dz = 0. Therefore,

´

C
f (z)dz =

´

C1
f (z)dz .

Theorem (Analyticity Implies Path Independence)

Suppose that a function f is analytic in a simply connected domain D and
C is any contour in D. Then

´

C
f (z)dz is independent of the path C .
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Choosing a Different Path

Evaluate
´

C
2zdz, where C is the contour shown in blue.

The function f (z) = 2z is entire. By the
theorem, we can replace the piecewise smooth
path C by any convenient contour C1 joining
z0 = −1 and z1 = −1 + i . We choose the
contour C1 to be the vertical line segment
x = −1, 0 ≤ y ≤ 1.

Since z = − 1 + iy , dz = idy . Therefore,
´

C
2zdz =

´

C1
2zdz

=
´ 1
0 2(−1 + iy)idy

=
´ 1
0 (−2i − 2y)dy

= (−2iy − y2)
∣

∣

1

0
= − 1− 2i .
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Antiderivatives

A contour integral
´

C
f (z)dz that is independent of the path C is

usually written
´ z1
z0

f (z)dz, where z0 and z1 are the initial and
terminal points of C .

Definition (Antiderivative)

Suppose that a function f is continuous on a domain D. If there exists a
function F such that F ′(z) = f (z), for each z in D, then F is called an
antiderivative of f .

Example: The function F (z) = − cos z is an antiderivative of
f (z) = sin z since F ′(z) = sin z .

The most general antiderivative, or indefinite integral, of a function
f (z) is written

´

f (z)dz = F (z) + C , where F ′(z) = f (z) and C is
some complex constant.

Differentiability implies continuity, whence, since an antiderivative F

of a function f has a derivative at each point in a domain D, it is
necessarily analytic and hence continuous at each point in D.
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Fundamental Theorem for Contour Integrals

Fundamental Theorem for Contour Integrals

Suppose that a function f is continuous on a domain D and F is an
antiderivative of f in D. Then, for any contour C in D with initial point z0
and terminal point z1,

ˆ

C

f (z)dz = F (z1)− F (z0).

We prove the FTCI in the case when C is a smooth curve
parametrized by z = z(t), a ≤ t ≤ b. The initial and terminal points
on C are z(a) = z0 and z(b) = z1. Since F ′(z) = f (z), for all z in D,

´

C
f (z)dz =

´ b

a
f (z(t))z ′(t)dt =

´ b

a
F ′(z(t))z ′(t)dt

=
´ b

a
d
dt
F (z(t))dt = F (z(t))|ba

= F (z(b))− F (z(a))
= F (z1)− F (z0).
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Applying the Fundamental Theorem I

The integral
´

C
2zdz, where C is shown

is independent of the path. Since f (z) = 2z is an entire function, it is
continuous. Moreover, F (z) = z2 is an antiderivative of f since
F ′(z) = 2z = f (z). Hence, by the Fundamental Theorem, we have

´ −1+i

−1 2zdz = z2
∣

∣

−1+i

−1

= (−1 + i)2 − (−1)2

= − 1− 2i .
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Applying the Fundamental Theorem II

Evaluate
´

C
cos zdz, where C is any contour with initial point z0 = 0

and terminal point z1 = 2 + i .

F (z) = sin z is an antiderivative of f (z) = cos z , since
F ′(z) = cos z = f (z). Therefore, by the Fundamental Theorem, we
have

´

C
cos zdz =

´ 2+i

0 cos zdz

= sin z |2+i
0

= sin (2 + i)− sin 0
= sin (2 + i).
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Some Conclusions

Observe that if the contour C is closed, then z0 = z1 and,
consequently,

¸

C
f (z)dz = F (z1)− F (z0) = 0.

Since the value of
´

C
f (z)dz depends only on the points z0 and z1,

this value is the same for any contour C in D connecting these points:

If a continuous function f has an antiderivative F in D, then
´

C
f (z)dz is independent of the path.

Moreover, we have a sufficient condition:

If f is continuous and
´

C
f (z)dz is independent of the path C

in a domain D, then f has an antiderivative everywhere in D.

Assume f is continuous and
´

C
f (z)dz is independent of the path in a

domain D and that F is a function defined by F (z) =
´ z

z0
f (s)ds,

where s denotes a complex variable, z0 is a fixed point in D, and z

represents any point in D. We wish to show that F ′(z) = f (z), i.e.,
that F (z) =

´ z

z0
f (s)ds is an antiderivative of f in D.
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F (z) =
´ z

z0
f (s)ds is an Antiderivative of f in D

We have
F (z +∆z)− F (z) =

´ z+∆z

z0
f (s)ds −

´ z

z0
f (s)ds =

´ z+∆z

z
f (s)ds .

Because D is a domain, we can choose ∆z so that z +∆z is in D.
Moreover, z and z +∆z can be joined by a straight segment. With z

fixed, we can write f (z)∆z = f (z)
´ z+∆z

z
ds =

´ z+∆z

z
f (z)ds or

f (z) = 1
∆z

´ z+∆z

z
f (z)ds. Therefore, we have

F (z+∆z)−F (z)
∆z

− f (z) = 1
∆z

´ z+∆z

z
[f (s)− f (z)]ds. Since f is

continuous at the point z , for any ε > 0, there exists a δ > 0, so that
|f (s)− f (z)| < ǫ whenever |s − z | < δ. Consequently, if we choose
∆z so that |∆z | < δ, it follows from the ML-inequality, that
∣

∣

∣

F (z+∆z)−F (z)
∆z

− f (z)
∣

∣

∣
=

∣

∣

∣

1
∆z

´ z+∆z

z
[f (s)− f (z)]ds

∣

∣

∣
=

∣

∣

1
∆z

∣

∣

∣

∣

∣

´ z+∆z

z
[f (s)− f (z)]ds

∣

∣

∣
≤ | 1

∆z
|ε|∆z | = ε. Hence,

lim∆z→0
F (z+∆z)−F (z)

∆z
= f (z) or F ′(z) = f (z).
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Integration in the Complex Plane Independence of Path

Existence of Antiderivative

If f is an analytic function in a simply connected domain D, it is
continuous throughout D. This implies, by the Path Independence
Theorem, that path independence holds for f in D. Therefore,

Theorem (Existence of Antiderivative)

Suppose that a function f is analytic in a simply connected domain D.
Then f has an antiderivative in D, i.e., there exists a function F such that
F ′(z) = f (z), for all z in D.

We have seen that, for |z | > 0, −π < arg(z) < π, 1
z
is the derivative

of Lnz . Thus, under some circumstances Lnz is an antiderivative of
1
z
, but one must be careful!

If D is the entire complex plane without the origin, 1
z
is analytic in

this multiply connected domain. If C is any simple closed contour
containing the origin, it does not follow that

¸

C
1
z
dz = 0. In this case,

Lnz is not an antiderivative of 1
z
in D since Lnz is not analytic in D

(Lnz fails to be analytic on the non-positive real axis).
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Using the Logarithmic Function

Evaluate
´

C
1
z
dz , where C is the contour shown:

Suppose that D is the simply connected do-
main defined by x > 0, y > 0, i.e., the first
quadrant. In this case, Lnz is an antideriva-
tive of 1

z
since both these functions are ana-

lytic in D.

Therefore,
ˆ

C

1

z
dz =

ˆ 2i

3

1

z
dz = Lnz |2i3 = Ln(2i)− Ln3.

Recall Ln(2i) = loge 2 +
π
2 i and Ln3 = loge 3. Hence,

´

C
1
z
dz = loge 2 +

π
2 i − loge 3 = loge

2
3 + π

2 i .
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Using an Antiderivative of z−1/2

Evaluate
´

C
1

z1/2
dz, where C is the line segment between z0 = i and

z1 = 9.

We take f1(z) = z1/2 to be the principal branch of the square root
function. In the domain |z | > 0, −π < arg(z) < π, the function
1

f1(z)
= 1

z1/2
= z−1/2 is analytic and possesses the antiderivative

F (z) = 2z1/2. Hence,

ˆ

C

1

z1/2
dz =

ˆ 9

i

1

z1/2
dz

= 2z1/2
∣

∣

9

i

= 2[3− (
√
2
2 + i

√
2
2 )]

= (6−
√
2)− i

√
2.
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Integration-By-Parts

In calculus indefinite integrals of certain kinds can be evaluated by
integration by parts:

ˆ

f (x)g ′(x)dx = f (x)g(x) −
ˆ

g(x)f ′(x)dx .

More compactly,
´

udv = uv −
´

vdu.

Suppose f and g are analytic in a simply connected domain D. Then
ˆ

f (z)g ′(z)dz = f (z)g(z)−
ˆ

g(z)f ′(z)dz .

In addition, if z0 and z1 are the initial and terminal points of a
contour C lying entirely in D, then

ˆ z1

z0

f (z)g ′(z)dz = f (z)g(z)|z1z0 −
ˆ z1

z0

g(z)f ′(z)dz .
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The Mean Value Theorem for Definite Integrals

The Mean Value Theorem for Definite Integrals: If f is a real
function continuous on the closed interval [a, b], then there exists a
number c in the open interval (a, b), such that

ˆ b

a

f (x)dx = f (c)(b − a).

Let f be a complex function analytic in a simply connected domain
D. Then, f is continuous at every point on a contour C in D with
initial point z0 and terminal point z1.

Unfortunately, no analog of the Mean Value Theorem exists for the
contour integral

´ z1
z0

f (z)dz .
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Subsection 5

Cauchy’s Integral Formulas

George Voutsadakis (LSSU) Complex Analysis October 2014 67 / 83



Integration in the Complex Plane Cauchy’s Integral Formulas

Cauchy’s First Formula

If f is analytic in a simply connected domain D and z0 is a point in D,
the quotient f (z)

z−z0
is not defined at z0 and, hence, is not analytic in D.

Therefore, we cannot conclude that the integral of f (z)
z−z0

around a
simple closed contour C that contains z0 is zero.

Indeed,the integral of f (z)
z−z0

around C has the value 2πif (z0).

Theorem (Cauchy’s Integral Formula)

Suppose that f is analytic in a simply connected domain D and C is any
simple closed contour lying entirely within D. Then, for any point z0
within C ,

f (z0) =
1

2πi

˛

C

f (z)

z − z0
dz .

Let D be a simply connected domain, C a simple closed contour in D,
and z0 an interior point of C . In addition, let C1 be a circle centered
at z0 with radius small enough so that C1 lies within the interior of C .
By the principle of deformation of contours,

¸

C

f (z)
z−z0

dz =
¸

C1

f (z)
z−z0

dz.
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Proof of Cauchy’s Integral Formula

From
¸

C

f (z)
z−z0

dz =
¸

C1

f (z)
z−z0

dz, we get by adding and subtracting

f (z0) in the numerator:
¸

C

f (z)
z−z0

dz =
¸

C1

f (z0)−f (z0)+f (z)
z−z0

dz =

f (z0)
¸

C1

1
z−z0

dz +
¸

C1

f (z)−f (z0)
z−z0

dz. We know that
¸

C1

1
z−z0

dz = 2πi ,

whence
¸

C
f (z)
z−z0

dz = 2πif (z0) +
¸

C1

f (z)−f (z0)
z−z0

dz.

Since f is continuous at z0, for any ε > 0, there exists a δ > 0, such
that |f (z)− f (z0)| < ε, whenever |z − z0| < δ. In particular, if we
choose C1 to be |z − z0| = 1

2δ < δ, then by the ML-inequality,
∣

∣

∣

¸

C1

f (z)−f (z0)
z−z0

dz
∣

∣

∣
≤ ε

δ/22π
δ
2 = 2πε. Thus, the absolute value of the

integral can be made arbitrarily small by taking the radius of the
circle C1 to be sufficiently small. This implies that the integral is 0.
We conclude that

¸

C

f (z)
z−z0

dz = 2πif (z0).
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Using Cauchy’s Integral Formula

Cauchy’s integral formula shows that the values of an analytic
function f at points z0 inside a simple closed contour C are
determined by the values of f on the contour C .

Since we often work problems without a simply connected domain
explicitly defined, a more practical restatement is:

If f is analytic at all points within and on a simple closed contour
C , and z0 is any point interior to C , then f (z0) =

1
2πi

¸

C

f (z)
z−z0

dz.

Example: Evaluate
¸

C
z2−4z+4

z+i
dz , where C is the circle |z | = 2.

We identify f (z) = z2 − 4z + 4 and z0 = − i as a point within the
circle C . Next, we observe that f is analytic at all points within and
on the contour C . Thus, by the Cauchy integral formula,
¸

C
z2−4z+4

z+i
dz = 2πif (−i) = 2πi(3 + 4i) = π(−8 + 6i).
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Another Application of Cauchys Integral Formula

Evaluate
¸

C
z

z2+9
dz, where C is the circle |z − 2i | = 4.

By factoring the denominator as z2 + 9 =
(z − 3i)(z + 3i), we see that 3i is the only
point within the closed contour C at which
the integrand fails to be analytic. By rewrit-

ing the integrand as
z

z2 + 9
=

z
z+3i

z − 3i
, we

identify f (z) = z
z+3i

The function f is analytic at all points within and on the contour C .
Hence, by Cauchy’s integral formula
˛

C

z

z2 + 9
dz =

˛

C

z
z+3i

z − 3i
dz = 2πif (3i) = 2πi

3i

6i
= πi .
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Cauchy’s Second Formula

We prove that the values of the derivatives f (n)(z0), n = 1, 2, 3, . . . of
an analytic function are also given by an integral formula.

Theorem (Cauchy’s Integral Formula for Derivatives)

Suppose that f is analytic in a simply connected domain D and C is any
simple closed contour lying entirely within D. Then, for any point z0
within C ,

f (n)(z0) =
n!

2πi

˛

C

f (z)

(z − z0)n+1
dz.

Partial Proof (for n = 1): By the definition of the derivative and

Cauchy’s Integral Formula, f ′(z0) = lim∆z→0
f (z0+∆z)−f (z0)

∆z
=

lim∆z→0
1

2πi∆z

[
˛

C

f (z)

z − (z0 +∆z)
dz −

˛

C

f (z)

z − z0
dz

]

=

lim∆z→0
1

2πi

˛

C

f (z)

(z − z0 −∆z)(z − z0)
dz .
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Prof of Cauchy’s Second Formula for n = 1

We work out some preliminaries:

Continuity of f on the contour C guarantees that f is bounded, i.e.,
there exists real number M , such that |f (z)| ≤ M , for all points z on C .
In addition, let L be the length of C and let δ denote the shortest
distance between points on C and the point z0. Thus, for all points z
on C , we have |z − z0| ≥ δ, or 1

|z−z0|2
≤ 1

δ2
.

Furthermore, if we choose |∆z | ≤ 1
2δ, then |z − z0 −∆z | ≥

||z − z0| − |∆z || ≥ δ − |∆z | ≥ 1
2δ, whence

1
|z−z0−∆z| ≤ 2

δ
.

Now,

∣

∣

∣

∣

˛

C

f (z)

(z − z0)2
dz −

˛

C

f (z)

(z − z0 −∆z)(z − z0)
dz

∣

∣

∣

∣

=
∣

∣

∣

∣

˛

C

−∆z f (z)

(z − z0 −∆z)(z − z0)2
dz

∣

∣

∣

∣

≤ 2ML|∆z |
δ3

. The last expression

approaches zero as ∆z → 0, whence

f ′(z0) = lim∆z→0
f (z0 +∆z)− f (z0)

∆z
=

1

2πi

˛

C

f (z)

(z − z0)2
dz.
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Using Cauchy’s Integral Formula for Derivatives

Evaluate
¸

C
z+1

z4+2iz3
dz, where C is the circle |z | = 1.

Inspection of the integrand shows that it is not analytic at z = 0 and
z = −2i , but only z = 0 lies within the closed contour. By writing

the integrand as
z + 1

z4 + 2iz3
=

z+1
z+2i

z3
we can identify, z0 = 0, n = 2,

and f (z) = z+1
z+2i . The quotient rule gives f ′(z) = −1+2i

(z+2i)2
and

f ′′(z) = 2−4i
(z+2i)3

, whence f ′′(0) = 2i−1
4i . Therefore, we get

˛

C

z + 1

z4 + 4z3
dz =

2πi

2!
f ′′(0)

=
2πi

2!

2i − 1

4i

= − π

4
+

π

2
i .
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Another Application of the Integral Formula for Derivatives

Evaluate
¸

C
z3+3

z(z−i)2
dz , where C is the figure-eight contour shown

below:
Although C is not a simple closed contour, we can
think of it as the union of two simple closed contours
C1 and C2. We write

¸

C
z3+3

z(z−i)2
dz =

¸

C1

z3+3
z(z−i)2

dz +

¸

C2

z3+3
z(z−i)2

dz = −
¸

−C1

z3+3
(z−i)2

z
dz +

¸

C2

z3+3
z

(z − i)2
dz =

− I1 + I2.

I1 =
¸

−C1

z3+3
(z−i)2

z
dz = 2πif (0) = 2πi(−3) = − 6πi .

For I2, f (z) =
z3+3
z

, whence f ′(z) = 2z3−3
z2

, and f ′(i) = 3 + 2i . Thus,

I2 =
¸

C2

z3+3
z

(z − i)2
dz = 2πi

1! f
′(i) = 2πi(3 + 2i) = − 4π + 6πi .

Finally,
¸

C
z3+3

z(z−i)2
dz = − I1+ I2 = 6πi +(−4π+6πi) = − 4π+12πi .
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Subsection 6

Consequences of the Integral Formulas
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Integration in the Complex Plane Consequences of the Integral Formulas

The Derivatives of an Analytic Function are Analytic

Theorem (Derivative of an Analytic Function Is Analytic)

Suppose that f is analytic in a simply connected domain D. Then f

possesses derivatives of all orders at every point z in D. The derivatives
f ′, f ′′, f ′′′, . . . are analytic functions in D.

If f (z) = u(x , y) + iv(x , y) is analytic in a simply connected domain
D, its derivatives of all orders exist at any point z in D. Thus, f ′, f ′′,
f ′′′, . . . are continuous. From

f ′(z) = ∂u
∂x + i ∂v∂x = ∂v

∂y − i ∂u∂y ,

f ′′(z) = ∂2u
∂x2

+ i ∂
2v

∂x2
= ∂2v

∂y∂x − i ∂2u
∂y∂x

...

we can also conclude that the real functions u and v have continuous
partial derivatives of all orders at a point of analyticity.
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Cauchy’s Inequality

Theorem (Cauchy’s Inequality)

Suppose that f is analytic in a simply connected domain D and C is a
circle defined by |z − z0| = r that lies entirely in D. If |f (z)| ≤ M, for all
points z on C , then

|f (n)(z0)| ≤
n!M

rn
.

From the hypothesis,
∣

∣

∣

f (z)
(z−z0)n+1

∣

∣

∣
= |f (z)|

rn+1 ≤ M
rn+1 . Thus, by Cauchy’s

Formula for Derivatives and the ML-inequality,

|f (n)(z0)| =
n!

2π

∣

∣

∣

∣

˛

C

f (z)

(z − z0)n+1
dz

∣

∣

∣

∣

≤ n!

2π

M

rn+1
2πr =

n!M

rn
.

The number M depends on the circle |z − z0| = r . But, if n = 0, then
M ≥ |f (z0)|, for any circle C centered at z0, as long as C lies within
D. Thus, an upper bound M of |f (z)| on C cannot be smaller than
|f (z0)|.
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Liouville’s Theorem

Although the next result is known as “Liouville’s Theorem”, it was
probably first proved by Cauchy.

The gist of the theorem is that an entire function f , one that is
analytic for all z , cannot be bounded unless f itself is a constant:

Theorem (Liouville’s Theorem)

The only bounded entire functions are constants.

Suppose f is an entire bounded function, i.e., |f (z)| ≤ M, for all z .
Then, for any point z0, by Cauchy’s Inequality, |f ′(z0)| ≤ M

r
. By

making r arbitrarily large we can make |f ′(z0)| as small as we wish.
This means f ′(z0) = 0, for all points z0 in the complex plane. Hence,
by a preceding theorem, f must be a constant.

George Voutsadakis (LSSU) Complex Analysis October 2014 79 / 83



Integration in the Complex Plane Consequences of the Integral Formulas

Fundamental Theorem of Algebra

Liouville’s Theorem enables us to establish the celebrated

Fundamental Theorem of Algebra

If p(z) is a nonconstant polynomial, then the equation p(z) = 0 has at
least one root.

Suppose that the polynomial p(z) = anz
n+ an−1z

n−1+ · · ·+ a1z + a0,
n > 0, is not 0 for any complex number z . This implies that the
reciprocal of p, f (z) = 1

p(z) , is an entire function. Now

|f (z)| = 1
|anzn+an−1zn−1+···+a1z+a0|

=
1

|z |n|an + an−1

z
+ · · ·+ a1

zn−1 +
a0
zn
| .

Thus, |f (z)| → 0 as |z | → ∞. So the function f must be bounded
for finite z . By Liouville’s Theorem, f is a constant. Hence, p is a
constant. But this contradicts p not being a constant polynomial.
Therefore, there must exist at least one z for which p(z) = 0.
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Morera’s Theorem

Morera’s theorem, which gives a sufficient condition for analyticity, is
often taken to be the converse of the Cauchy-Goursat Theorem:

Theorem (Morera’s Theorem)

If f is continuous in a simply connected domain D and if
¸

C
f (z)dz = 0,

for every closed contour C in D, then f is analytic in D.

By the hypotheses of continuity of f and
¸

C
f (z)dz = 0, for every

closed contour C in D, we conclude that
´

C
f (z)dz is independent of

the path. Then, the function F , defined by F (z) =
´ z

z0
f (s)ds (where

s denotes a complex variable, z0 is a fixed point in D, and z any
point in D) is an antiderivative of f , i.e., F ′(z) = f (z). Hence, F is
analytic in D. In addition, F ′(z) is analytic in view of the analyticity
of the derivative of any analytic function. Since f (z) = F ′(z), we see
that f is analytic in D.
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The Maximum Modulus Theorem

We saw that, if a function f is continuous on a closed and bounded
region R , then f is bounded, i.e., there exists some constant M, such
that |f (z)| ≤ M, for z in R .

If the boundary of R is a simple closed curve C , then the modulus
|f (z)| assumes its maximum value at some z on the boundary C :

Theorem (Maximum Modulus Theorem)

Suppose that f is analytic and nonconstant on a closed region R bounded
by a simple closed curve C . Then the modulus |f (z)| attains its maximum
on C .

If the stipulation that f (z) 6= 0, for all z in R , is added to the
hypotheses, then the modulus |f (z)| also attains its minimum on C .
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Finding The Maximum Modulus

Find the maximum modulus of f (z) = 2z + 5i on the closed circular
region defined by |z | ≤ 2.

We know that |z |2 = z · z. By replacing z by 2z + 5i , we have
|2z + 5i |2 = (2z + 5i)(2z + 5i) = (2z + 5i)(2z − 5i) =
4zz − 10i(z − z) + 25. But, z − z = 2i Im(z), whence
|2z + 5i |2 = 4|z |2 + 20Im(z) + 25. Because f is a polynomial, it is
analytic on the region defined by |z | ≤ 2. Thus, max

|z |≤2
|2z + 5i | occurs

on the boundary |z | = 2. There, |2z + 5i | =
√

41 + 20Im(z). This
attains its maximum when Im(z) attains its maximum on |z | = 2,
namely, at the point z = 2i . Thus, max|z |≤2 |2z + 5i | =

√
81 = 9.

Note that f (z) = 0 only at z = − 5
2 i and that this point is outside

the region defined by |z | ≤ 2. Hence we can conclude that we have a
minimum when Im(z) attains its minimum on |z | = 2 at z = −2i . As
a result, min|z |≤2 |2z + 5i | =

√
1 = 1.

George Voutsadakis (LSSU) Complex Analysis October 2014 83 / 83


	Integration in the Complex Plane
	Real Integrals
	Complex Integrals
	Cauchy-Goursat Theorem
	Independence of Path
	Cauchy's Integral Formulas
	Consequences of the Integral Formulas


