Introduction to Complex Analysis

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science

Lake Superior State University

LSSU Math 413

(1) Integration in the Complex Plane

- Real Integrals
- Complex Integrals
- Cauchy-Goursat Theorem
- Independence of Path
- Cauchy's Integral Formulas
- Consequences of the Integral Formulas

Subsection 1

Real Integrals

Definite Integrals

- If $F(x)$ is an antiderivative of a continuous function f, i.e., F is a function for which $F^{\prime}(x)=f(x)$, then the definite integral of f on the interval $[a, b]$ is the number

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

- Example: $\int_{-1}^{2} x^{2} d x=\left.\frac{1}{3} x^{3}\right|_{-1} ^{2}=\frac{8}{3}-\frac{-1}{3}=3$.
- The fundamental theorem of calculus is a method of evaluating $\int_{a}^{b} f(x) d x$; it is not the definition of $\int_{a}^{b} f(x) d x$.
- We next define:
- The definite (or Riemann) integral of a function f;
- Line integrals in the Cartesian plane.

Both definitions rest on the limit concept.

Steps Leading to the Definition of the Definite Integral

1. Let f be a function of a single variable x defined at all points in a closed interval $[a, b]$.
2. Let P be a partition:

$$
a=x_{0}<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b
$$

of $[a, b]$ into n subintervals $\left[x_{k-1}, x_{k}\right]$ of length $\Delta x_{k}=x_{k}-x_{k-1}$.
3. Let $\|P\|$ be the norm of the partition P of $[a, b]$, i.e., the length of the longest subinterval.
4. Choose a number x_{k}^{*} in each subinterval $\left[x_{k-1}, x_{k}\right]$ of $[a, b]$.

5. Form n products $f\left(x_{k}^{*}\right) \Delta x_{k}, k=1,2, \ldots, n$, and then sum these products:

$$
\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}
$$

The Definition of the Definite Integral

Definition (Definite Integral)

The definite integral of f on $[a, b]$ is

$$
\int_{a}^{b} f(x) d x=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}
$$

- Whenever the limit exists we say that f is integrable on the interval $[a, b]$ or that the definite integral of f exists.
- It can be proved that if f is continuous on $[a, b]$, then the integral exists.

Terminology About Curves

- Suppose a curve C in the plane is parametrized by a set of equations $x=x(t), y=y(t), a \leq t \leq b$, where $x(t)$ and $y(t)$ are continuous real functions. Let the initial and terminal points of $C(x(a), y(a))$, $(x(b), y(b))$ be denoted by A, B. We say that:
(i) C is a smooth curve if x^{\prime} and y^{\prime} are continuous on the closed interval $[a, b]$ and not simultaneously zero on the open interval (a, b).
(ii) C is a piecewise smooth curve if it consists of a finite number of smooth curves $C_{1}, C_{2}, \ldots, C_{n}$ joined end to end, i.e., the terminal point of one curve C_{k} coinciding with the initial point of the next curve C_{k+1}.
(iii) C is a simple curve if the curve C does not cross itself except possibly at $t=a$ and $t=b$.
(iv) C is a closed curve if $A=B$.
(v) C is a simple closed curve if the curve C does not cross itself and $A=B$, i.e., C is simple and closed.

(a) Smooth curve and simple

(b) Piecewise smooth curve and simple

(c) Closed but not simple

(d) Simple closed curve

Steps Leading to the Definition of Line Integrals

1. Let G be a function of two real variables x and y, defined at all points on a smooth curve C that lies in some region of the $x y$-plane. Let C be defined by the parametrization $x=x(t), y=y(t)$, $a \leq t \leq b$.
2. Let P be a partition of the parameter interval $[a, b]$ into n subintervals $\left[t_{k-1}, t_{k}\right]$ of length $\Delta t_{k}=t_{k}-t_{k-1}$:

$$
a=t_{0}<t_{1}<t_{2}<\cdots<t_{n-1}<t_{n}=b .
$$

The partition P induces a partition of the curve C into n subarcs of length Δs_{k}. Let the projection of each subarc onto the x - and y-axes have lengths Δx_{k} and Δy_{k}, respectively.

Steps Leading to the Definition of Line Integrals (Cont'd)

3. Let $\|P\|$ be the norm of the partition P of $[a, b]$, that is, the length of the longest subinterval.
4. Choose a point $\left(x_{k}^{*}, y_{k}^{*}\right)$ on each subarc of C.
5. Form n products $G\left(x_{k}^{*}, y_{k}^{*}\right) \Delta x_{k}, G\left(x_{k}^{*}, y_{k}^{*}\right) \Delta y_{k}, G\left(x_{k}^{*}, y_{k}^{*}\right) \Delta s_{k}$, $k=1,2, \ldots, n$, and then sum these products

$$
\sum_{k=1}^{n} G\left(x_{k}^{*}, y_{k}^{*}\right) \Delta x_{k}, \quad \sum_{k=1}^{n} G\left(x_{k}^{*}, y_{k}^{*}\right) \Delta y_{k}, \quad \sum_{k=1}^{n} G\left(x_{k}^{*}, y_{k}^{*}\right) \Delta s_{k} .
$$

The Definition of Line Integrals

Definition (Line Integrals in the Plane)

(i) The line integral of G along C with respect to x is

$$
\int_{C} G(x, y) d x=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} G\left(x_{k}^{*}, y_{k}^{*}\right) \Delta x_{k}
$$

(ii) The line integral of G along C with respect to y is

$$
\int_{C} G(x, y) d y=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} G\left(x_{k}^{*}, y_{k}^{*}\right) \Delta y_{k}
$$

(iii) The line integral of G along C with respect to arc length s is

$$
\int_{C} G(x, y) d s=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} G\left(x_{k}^{*}, y_{k}^{*}\right) \Delta s_{k} .
$$

- If G is continuous on C, then the three types of line integrals exist.
- The curve C is referred to as the path of integration.

Method of Evaluation: C Defined Parametrically

- Convert a line integral to a definite integral in a single variable.
- If C is a smooth curve parametrized by $x=x(t), y=y(t)$, $a \leq t \leq b$, then replace
- x and y in the integral by the functions $x(t)$ and $y(t)$;
- the appropriate differential $d x, d y$, or $d s$ by

$$
x^{\prime}(t) d t, \quad y^{\prime}(t) d t, \quad \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
$$

- The term $d s=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t$ is called the differential of the arc length.
- The line integrals become definite integrals in which the variable of integration is the parameter t :

$$
\begin{aligned}
\int_{C} G(x, y) d x & =\int_{a}^{b} G(x(t), y(t)) x^{\prime}(t) d t \\
\int_{C} G(x, y) d y & =\int_{a}^{b} G(x(t), y(t)) y^{\prime}(t) d t \\
\int_{C} G(x, y) d s & =\int_{a}^{b} G(x(t), y(t)) \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
\end{aligned}
$$

Evaluation of a Line Integral I

- Evaluate $\int_{C} x y^{2} d x$, where the path of integration C is the quarter circle defined by $x=4 \cos t, y=4 \sin t, 0 \leq t \leq \frac{\pi}{2}$.

We have

$$
d x=-4 \sin t d t
$$

Thus,

$$
\begin{aligned}
\int_{C} x y^{2} d x & =\int_{0}^{\pi / 2}(4 \cos t)(4 \sin t)^{2}(-4 \sin t d t) \\
& =-256 \int_{0}^{\pi / 2} \sin ^{3} t \cos t d t \\
& =-256\left[\frac{1}{4} \sin ^{4} t\right]_{0}^{\pi / 2} \\
& =-64
\end{aligned}
$$

Evaluation of a Line Integral II

- Evaluate $\int_{C} x y^{2} d y$, where the path of integration C is the quarter circle defined by $x=4 \cos t, y=4 \sin t, 0 \leq t \leq \frac{\pi}{2}$.
We have

$$
d y=4 \cos t d t
$$

Thus,

$$
\begin{aligned}
\int_{C} x y^{2} d y & =\int_{0}^{\pi / 2}(4 \cos t)(4 \sin t)^{2}(4 \cos t d t) \\
& =256 \int_{0}^{\pi / 2} \sin ^{2} t \cos ^{2} t d t \\
& =256 \int_{0}^{\pi / 2} \frac{1}{4} \sin ^{2} 2 t d t \\
& =64 \int_{0}^{\pi / 2} \frac{1}{2}(1-\cos 4 t) d t \\
& =32\left[t-\frac{1}{4} \sin 4 t\right]_{0}^{\pi / 2}=16 \pi
\end{aligned}
$$

Evaluation of a Line Integral III

- Evaluate $\int_{C} x y^{2} d s$, where the path of integration C is the quarter circle defined by $x=4 \cos t, y=4 \sin t, 0 \leq t \leq \frac{\pi}{2}$.
We have

$$
d s=\sqrt{16\left(\sin ^{2} t+\cos ^{2} t\right)} d t=4 d t
$$

Therefore,

$$
\begin{aligned}
\int_{C} x y^{2} d s & =\int_{0}^{\pi / 2}(4 \cos t)(4 \sin t)^{2}(4 d t) \\
& =256 \int_{0}^{\pi / 2} \sin ^{2} t \cos t d t \\
& =256\left[\frac{1}{3} \sin ^{3} t\right]_{0}^{\pi / 2} \\
& =\frac{256}{3}
\end{aligned}
$$

Method of Evaluation: C Defined by a Function

- If the path of integration C is the graph of an explicit function $y=f(x), a \leq x \leq b$, then we can use x as a parameter:
- The differential of y is $d y=f^{\prime}(x) d x$, and the differential of arc length is $d s=\sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$.
- We, thus, obtain the definite integrals:

$$
\begin{aligned}
\int_{C} G(x, y) d x & =\int_{a}^{b} G(x, f(x)) d x \\
\int_{C} G(x, y) d y & =\int_{a}^{b} G(x, f(x)) f^{\prime}(x) d x \\
\int_{C} G(x, y) d s & =\int_{a}^{b} G(x, f(x)) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x .
\end{aligned}
$$

- A line integral along a piecewise smooth curve C is defined as the sum of the integrals over the various smooth pieces.
- Example: To evaluate $\int_{C} G(x, y) d s$ when C is composed of two smooth curves C_{1} and C_{2}, we write

$$
\int_{C} G(x, y) d s=\int_{C_{1}} G(x, y) d s+\int_{C_{2}} G(x, y) d s
$$

Notation for Line Integrals

- In many applications, line integrals appear as a sum

$$
\int_{C} P(x, y) d x+\int_{C} Q(x, y) d y
$$

- It is common practice to write this sum as one integral without parentheses as

$$
\int_{C} P(x, y) d x+Q(x, y) d y
$$

or simply

$$
\int_{C} P d x+Q d y
$$

- A line integral along a closed curve C is usually denoted by

$$
\oint_{C} P d x+Q d y
$$

C Defined by an Explicit Function

- Evaluate $\int_{C} x y d x+x^{2} d y$, where C is the graph of $y=x^{3},-1 \leq x \leq 2$.
We have $d y=3 x^{2} d x$. Therefore,

$$
\begin{aligned}
\int_{C} x y d x+x^{2} d y & =\int_{-1}^{2} x x^{3} d x+x^{2} 3 x^{2} d x \\
& =\int_{-1}^{2}\left(x^{4}+3 x^{4}\right) d x \\
& =\int_{-1}^{2} 4 x^{4} d x \\
& =\left.\frac{4}{5} x^{5}\right|_{-1} ^{2} \\
& =\frac{4}{5}(32-(-1))=\frac{132}{5}
\end{aligned}
$$

C a Closed Curve

- Evaluate $\oint_{C} x d x$, where C is the circle defined by $x=\cos t, y=\sin t$, $0 \leq t \leq 2 \pi$.
We have $d x=-\sin t d t$, whence:

$$
\begin{aligned}
\oint_{C} x d x & =\int_{0}^{2 \pi} \cos t(-\sin t d t) \\
& =\left.\frac{1}{2} \cos ^{2} t\right|_{0} ^{2 \pi} \\
& =\frac{1}{2}(1-1) \\
& =0 .
\end{aligned}
$$

C Another Closed Curve

- Evaluate $\oint_{C} y^{2} d x-x^{2} d y$, where C is the closed curve shown on the left.

C is piecewise smooth. So, the given integral is expressed as a sum of integrals, i.e., we write $\oint_{C}=$ $\int_{C_{1}}+\int_{C_{2}}+\int_{C_{3}}$, with C_{1}, C_{2}, C_{3} as shown on the right.
- On C_{1}, with x as a parameter: $\int_{C_{1}} y^{2} d x-x^{2} d y=\int_{0}^{2} 0 d x-x^{2}(0)=0$.
- On C_{2}, with y as a parameter:

$$
\int_{C_{2}} y^{2} d x-x^{2} d y=\int_{0}^{4} y^{2}(0)-4 d y=-\int_{0}^{4} 4 d y=-16
$$

- On C_{3}, we again use x as a parameter. From $y=x^{2}$, we get $d y=2 x d x$. Thus, $\int_{C_{3}} y^{2} d x-x^{2} d y=\int_{2}^{0}\left(x^{2}\right)^{2} d x-x^{2}(2 x d x)=$ $\int_{2}^{0}\left(x^{4}-2 x^{3}\right) d x=\left.\left(\frac{1}{5} x^{5}-\frac{1}{2} x^{4}\right)\right|_{2} ^{0}=\frac{8}{5}$.
Hence, $\oint_{C} y^{2} d x-x^{2} d y=\int_{C_{1}}+\int_{C_{2}}+\int_{C_{3}}=0+(-16)+\frac{8}{5}=-\frac{72}{5}$.

Orientation of a Curve

- If C is not a closed curve, then we say the positive direction on C, or that C has positive orientation, if we traverse C from its initial point A to its terminal point B, i.e., if $x=x(t), y=y(t), a \leq t \leq b$, are parametric equations for C, then the positive direction on C corresponds to increasing values of the parameter t.
- If C is traversed in the sense opposite to that of the positive orientation, then C is said to have negative orientation.
- If C has an orientation (positive or negative), then the opposite curve, the curve with the opposite orientation, will be denoted $-C$.
- Then
or, equivalently

$$
\int_{-C} P d x+Q d y=-\int_{C} P d x+Q d y
$$

$$
\int_{-C} P d x+Q d y+\int_{C} P d x+Q d y=0
$$

- A line integral is independent of the parametrization of C, provided C is given the same orientation.

Subsection 2

Complex Integrals

Curves Revisited

- Suppose the continuous real-valued functions $x=x(t), y=y(t)$, $a \leq t \leq b$, are parametric equations of a curve C in the complex plane.
- By considering $z=x+i y$, we can describe the points z on C by means of a complex-valued function of a real variable t, called a parametrization of $C: z(t)=x(t)+i y(t), a \leq t \leq b$.
Example: The parametric equations $x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$, describe a unit circle centered at the origin. A parametrization of this circle is $z(t)=\cos t+i \sin t$, or $z(t)=e^{i t}, 0 \leq t \leq 2 \pi$.
- The point $z(a)=x(a)+i y(a)$ or $A=$ $(x(a), y(a))$ is called the initial point of C. and $z(b)=x(b)+i y(b)$ or $B=(x(b), y(b))$ the terminal point.
As t varies from $t=a$ to $t=b, C$ is being traced out by the moving arrowhead of the vector corresponding to $z(t)$.

Smooth Curves and Contours

- Suppose the derivative of $z(t)=x(t)+i y(t), a \leq t \leq b$, is $z^{\prime}(t)=x^{\prime}(t)+i y^{\prime}(t)$.
- We say C is smooth if $z^{\prime}(t)$ is continuous and never zero in the interval $a \leq t \leq b$.

Since the vector $z^{\prime}(t)$ is not zero at any point P on C, the vector $z^{\prime}(t)$ is tangent to C at P. In other words, a smooth curve has a continuously turning tangent.

- A piecewise smooth curve C has a continuously turning tangent, except possibly at the points where the component smooth curves $C_{1}, C_{2}, \ldots, C_{n}$ are joined together.
- A curve C in the complex plane is simple if $z\left(t_{1}\right) \neq z\left(t_{2}\right)$, for $t_{1} \neq t_{2}$, except possibly for $t=a$ and $t=b$.
- C is a closed curve if $z(a)=z(b)$.
- C is a simple closed curve if it is simple and closed.
- A piecewise smooth curve C is also called a contour or path.

Positive and Negative Directions

- We define the positive direction on a contour C to be the direction on the curve corresponding to increasing values of the parameter t. It is also said that the curve C has positive orientation.
- In the case of a simple closed curve C, the positive direction roughly corresponds to the counterclockwise direction or the direction that a person must walk on C in order to keep the interior of C to the left.

- The negative direction on a contour C is the direction opposite the positive direction.
- If C has an orientation, the opposite curve, that is, a curve with opposite orientation, is denoted by $-C$.
- On a simple closed curve, the negative direction corresponds to the clockwise direction.

Steps Leading to the Definition of the Complex Integral I

1. Let f be a function of a complex variable z defined at all points on a smooth curve C that lies in some region of the plane. Suppose C is defined by the parametrization $z(t)=x(t)+i y(t)$, $a \leq t \leq b$.
2. Let P be a partition of the parameter interval $[a, b]$ into n subintervals $\left[t_{k-1}, t_{k}\right]$ of length $\Delta t_{k}=t_{k}-t_{k-1}$:

$$
a=t_{0}<t_{1}<t_{2}<\cdots<t_{n-1}<t_{n}=b
$$

The partition P induces a partition of the curve C into n subarcs whose initial and terminal points are the pairs of numbers

$$
\begin{array}{ll}
z_{0}=x\left(t_{0}\right)+i y\left(t_{0}\right), & z_{1}=x\left(t_{1}\right)+i y\left(t_{1}\right), \\
z_{1}=x\left(t_{1}\right)+i y\left(t_{1}\right), & z_{2}=x\left(t_{2}\right)+i y\left(t_{2}\right), \\
\vdots & \vdots \\
z_{n-1}=x\left(t_{n-1}\right)+i y\left(t_{n-1}\right), & z_{n}=x\left(t_{n}\right)+i y\left(t_{n}\right)
\end{array}
$$

Let $\Delta z_{k}=z_{k}-z_{k-1}, k=1,2, \ldots, n$.

Steps Leading to the Definition of the Complex Integral II

3. Let $\|P\|$ be the norm of the partition P of $[a, b]$, i.e., the length of the longest subinterval.
4. Choose a point $z_{k}^{*}=x_{k}^{*}+i y_{k}^{*}$ on each subarc of C.

5. Form n products $f\left(z_{k}^{*}\right) \Delta z_{k}, k=1,2, \ldots, n$, and then sum these products: $\sum_{k=1}^{n} f\left(z_{k}^{*}\right) \Delta z_{k}$.

The Definition of the Complex Integral

Definition (Complex Integral)

The complex integral of f on C is

$$
\int_{C} f(z) d z=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(z_{k}^{*}\right) \Delta z_{k}
$$

- If the limit exists, f is said to be integrable on C.
- The limit exists whenever f is continuous at all points on C and C is either smooth or piecewise smooth.
- Thus, we always assume that these conditions are fulfilled.
- By convention, we will use the notation $\oint_{C} f(z) d z$ to represent a complex integral around a positively oriented closed curve C.
- The notations $\oint_{C} f(z) d z, \oint_{C} f(z) d z$ denote more explicitly integration in the positive and negative directions, respectively.
- We shall refer to $\int_{C} f(z) d z$ as a contour integral.

Complex-Valued Function of a Real Variable

- Example: If t represents a real variable, then $f(t)=(2 t+i)^{2}$ is a complex number. For $t=2, f(2)=(4+i)^{2}=16+8 i+i^{2}=15+8 i$.
- If f_{1} and f_{2} are real-valued functions of a real variable t, then $f(t)=f_{1}(t)+i f_{2}(t)$ is a complex-valued function of a real variable t.
- We are interested in integration of a complex-valued function $f(t)=f_{1}(t)+i f_{2}(t)$ of a real variable t carried out over a real interval.
- Example: On the interval $0 \leq t \leq 1$, it seems reasonable for $f(t)=(2 t+i)^{2}$ to write

$$
\int_{0}^{1}(2 t+i)^{2} d t=\int_{0}^{1}\left(4 t^{2}-1+4 t i\right) d t=\int_{0}^{1}\left(4 t^{2}-1\right) d t+i \int_{0}^{1} 4 t d t
$$

The integrals $\int_{0}^{1}\left(4 t^{2}-1\right) d t$ and $\int_{0}^{1} 4 t d t$ are real, and could be called the real and imaginary parts of $\int_{0}^{1}(2 t+i)^{2} d t$. Each can be evaluated using the fundamental theorem of calculus to get:

$$
\int_{0}^{1}(2 t+i)^{2} d t=\left.\left(\frac{4}{3} t^{3}-t\right)\right|_{0} ^{1}+\left.i 2 t^{2}\right|_{0} ^{1}=\frac{1}{3}+2 i
$$

Integral of Complex Valued Function of a Real Variable

- If f_{1} and f_{2} are real-valued functions of a real variable t continuous on a common interval $a \leq t \leq b$, then we define the integral of the complex-valued function $f(t)=f_{1}(t)+i f_{2}(t)$ on $a \leq t \leq b$ by

$$
\int_{a}^{b} f(t) d t=\int_{a}^{b} f_{1}(t) d t+i \int_{a}^{b} f_{2}(t) d t
$$

- The continuity of f_{1} and f_{2} on $[a, b]$ guarantees that both integrals on the right exist.
- If $f(t)=f_{1}(t)+i f_{2}(t)$ and $g(t)=g_{1}(t)+i g_{2}(t)$, are complex-valued functions of a real variable t continuous on $a \leq t \leq b$, then
- $\int_{a}^{b} k f(t) d t=k \int_{a}^{b} f(t) d t, k$ a complex constant;
- $\int_{a}^{b}(f(t)+g(t)) d t=\int_{a}^{b} f(t) d t+\int_{a}^{b} g(t) d t$;
- $\int_{a}^{b} f(t) d t=\int_{a}^{c} f(t) d t+\int_{c}^{b} f(t) d t$, if $c \in[a, b]$;
- $\int_{b}^{a} f(t) d t=-\int_{a}^{b} f(t) d t$.

Evaluation of Contour Integrals

- If we use $u+i v$ for $f, \Delta x+i \Delta y$ for $\Delta z, \lim$ for $\lim _{\|P\| \rightarrow 0}$ and \sum for $\sum_{k=1}^{n}$, we get $\int_{C} f(z) d z=\lim \sum(u+i v)(\Delta x+i \Delta y)=$ $\lim \left[\sum(u \Delta x-v \Delta y)+i \sum(v \Delta x+u \Delta y)\right]$.
- Thus, we have

$$
\int_{C} f(z) d z=\int_{C} u d x-v d y+i \int_{C} v d x+u d y
$$

- If $x=x(t), y=y(t), a \leq t \leq b$, are parametric equations of C, then $d x=x^{\prime}(t) d t, d y=y^{\prime}(t) d t$.
- Now we obtain $\int_{a}^{b}\left[u(x(t), y(t)) x^{\prime}(t)-v(x(t), y(t)) y^{\prime}(t)\right] d t+$ $i \int_{a}^{b}\left[v(x(t), y(t)) x^{\prime}(t)+u(x(t), y(t)) y^{\prime}(t)\right] d t$.
- This is the same as $\int_{a}^{b} f(z(t)) z^{\prime}(t) d t$ when the integrand $f(z(t)) z^{\prime}(t)=[u(x(t), y(t))+i v(x(t), y(t))]\left[x^{\prime}(t)+i y^{\prime}(t)\right]$ is multiplied out and $\int_{a}^{b} f(z(t)) z^{\prime}(t) d t$ is expressed in terms of its real and imaginary parts.

Evaluating of a Contour Integral

Theorem (Evaluation of a Contour Integral)

If f is continuous on a smooth curve C given by $z(t)=x(t)+i y(t)$, $a \leq t \leq b$, then

$$
\int_{C} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t
$$

- Example: Evaluate $\int_{C} \bar{z} d z$, where C is given by $x=3 t, y=t^{2}$, $-1 \leq t \leq 4$.
A parametrization of the contour C is $z(t)=3 t+i t^{2}$. Thus, since $f(z)=\bar{z}$, we have $f(z(t))=\overline{3 t+i t^{2}}=3 t-i t^{2}$. Also, $z^{\prime}(t)=3+2 i t$. Now, we have

$$
\begin{aligned}
\int_{C} \bar{z} d z & =\int_{-1}^{4}\left(3 t-i t^{2}\right)(3+2 i t) d t \\
& =\int_{-1}^{4}\left(2 t^{3}+9 t\right) d t+i \int_{-1}^{4} 3 t^{2} d t \\
& =\left.\left(\frac{1}{2} t^{4}+\frac{9}{2} t^{2}\right)\right|_{-1} ^{4}+\left.i t^{3}\right|_{-1} ^{4}=195+65 i
\end{aligned}
$$

Another Evaluation of a Contour Integral

- Evaluate $\oint_{C} \frac{1}{z} d z$, where C is the circle $x=\cos t, y=\sin t$, $0 \leq t \leq 2 \pi$. In this case $z(t)=\cos t+i \sin t=e^{i t}, z^{\prime}(t)=i e^{i t}$, and $f(z(t))=\frac{1}{z(t)}=e^{-i t}$. Hence,

$$
\begin{aligned}
\oint_{c} \frac{1}{z} d z & =\int_{0}^{2 \pi}\left(e^{-i t}\right) i e^{i t} d t \\
& =i \int_{0}^{2 \pi} d t \\
& =2 \pi i .
\end{aligned}
$$

Using x as a Parameter

- For some curves the real variable x itself can be used as the parameter.
- Example: Evaluate $\int_{C}\left(8 x^{2}-i y\right) d z$ on the line segment $y=5 x$, $0 \leq x \leq 2$.
We write $z=x+5 x i$, whence $d z=(1+5 i) d x$. Therefore,

$$
\begin{aligned}
\int_{C}\left(8 x^{2}-i y\right) d z & =(1+5 i) \int_{0}^{2}\left(8 x^{2}-5 i x\right) d x \\
& =\left.(1+5 i) \frac{8}{3} x^{3}\right|_{0} ^{2}-\left.(1+5 i) i \frac{5}{2} x^{2}\right|_{0} ^{2} \\
& =\frac{214}{3}+\frac{290}{3} i .
\end{aligned}
$$

- If x and y are related by means of a continuous real function $y=f(x)$, then the corresponding curve C can be parametrized by $z(x)=x+i f(x)$.

Properties of Contour Integrals

Theorem (Properties of Contour Integrals)

Suppose the functions f and g are continuous in a domain D, and C is a smooth curve lying entirely in D. Then:
(i) $\int_{C} k f(z) d z=k \int_{C} f(z) d z, k$ a complex constant.
(ii) $\int_{C}[f(z)+g(z)] d z=\int_{C} f(z) d z+\int_{C} g(z) d z$.
(iii) $\int_{C} f(z) d z=\int_{C_{1}} f(z) d z+\int_{C_{2}} f(z) d z$, where C consists of the smooth curves C_{1} and C_{2} joined end to end.
(iv) $\int_{-C} f(z) d z=-\int_{C} f(z) d z$, where $-C$ denotes the curve having the opposite orientation of C.

- The four parts of the theorem also hold if C is a piecewise smooth curve in D.

C a Piecewise Smooth Curve

- Evaluate $\int_{C}\left(x^{2}+i y^{2}\right) d z$, where C is the contour shown:

We write $\int_{C}\left(x^{2}+i y^{2}\right) d z=\int_{C_{1}}\left(x^{2}+i y^{2}\right) d z+$ $\int_{C_{2}}\left(x^{2}+i y^{2}\right) d z$.
Since the curve C_{1} is defined by $y=x$, we use x as a parameter: $z(x)=x+i x, z^{\prime}(x)=1+i$, $f(z)=x^{2}+i y^{2}, f(z(x))=x^{2}+i x^{2}$,
whence, finally, $\int_{C_{1}}\left(x^{2}+i y^{2}\right) d z=\int_{0}^{1}\left(x^{2}+i x^{2}\right)(i+1) d x=$ $(1+i)^{2} \int_{0}^{1} x^{2} d x=\frac{(1+i)^{2}}{3}=\frac{2}{3} i$.
The curve C_{2} is defined by $x=1,1 \leq y \leq 2$. If we use y as a parameter, then $z(y)=1+i y, z^{\prime}(y)=i, f(z(y))=1+i y^{2}$, and $\int_{C_{2}}\left(x^{2}+i y^{2}\right) d z=\int_{1}^{2}\left(1+i y^{2}\right) i d y=-\int_{1}^{2} y^{2} d y+i \int_{1}^{2} d y=-\frac{7}{3}+i$.
Therefore $\int_{C}\left(x^{2}+i y^{2}\right) d z=\frac{2}{3} i+\left(-\frac{7}{3}+i\right)=-\frac{7}{3}+\frac{5}{3} i$.

A Bounding Theorem

- We find an upper bound for the modulus of a contour integral.
- Recall the length of a plane curve $L=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t$. If $z^{\prime}(t)=x^{\prime}(t)+i y^{\prime}(t)$, then $\left|z^{\prime}(t)\right|=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}}$, whence $L=\int_{a}^{b}\left|z^{\prime}(t)\right| d t$.

Theorem (A Bounding Theorem)

If f is continuous on a smooth curve C and if $|f(z)| \leq M$, for all z on C, then $\left|\int_{C} f(z) d z\right| \leq M L$, where L is the length of C.

- By triangle inequality, $\left|\sum_{k=1}^{n} f\left(z_{k}^{*}\right) \Delta z_{k}\right| \leq \sum_{k=1}^{n}\left|f\left(z_{k}^{*}\right)\right|\left|\Delta z_{k}\right|$ $\leq M \sum_{k=1}^{n}\left|\Delta z_{k}\right|$. Because $\left|\Delta z_{k}\right|=\sqrt{\left(\Delta x_{k}\right)^{2}+\left(\Delta y_{k}\right)^{2}}$, we can interpret $\left|\Delta z_{k}\right|$ as the length of the chord joining the points z_{k} and z_{k-1} on C. Moreover, since the sum of the lengths of the chords cannot be greater than L, we get $\left|\sum_{k=1}^{n} f\left(z_{k}^{*}\right) \Delta z_{k}\right| \leq M L$. Finally, the continuity of f guarantees that $\int_{C} f(z) d z$ exists. Thus, letting $\|P\| \rightarrow 0$, the last inequality yields $\left|\int_{C} f(z) d z\right| \leq M L$.

A Bound for a Contour Integral

- Find an upper bound for the absolute value of $\int_{C} \frac{e^{z}}{z+1} d z$ where C is the circle $|z|=4$.
First, the length L (circumference) of the circle of radius 4 is 8π.
Next, for all points z on the circle, we have that
$|z+1| \geq|z|-1=4-1=3$. Thus, $\left|\frac{e^{z}}{z+1}\right| \leq \frac{\left|e^{z}\right|}{|z|-1}=\frac{\left|e^{z}\right|}{3}$. In
addition, $\left|e^{z}\right|=\left|e^{x}(\cos y+i \sin y)\right|=e^{x}$. For points on the circle $|z|=4$, the maximum that $x=\operatorname{Re}(z)$ can be is 4 , whence
$\left|\frac{e^{z}}{z+1}\right| \leq \frac{e^{4}}{3}$. From the theorem, we have

$$
\left|\int_{C} \frac{e^{z}}{z+1} d z\right| \leq \frac{8 \pi e^{4}}{3}
$$

Single Contour: Many Parametrizations

- There is no unique parametrization for a contour C.
- Example: All of the following:

$$
\begin{aligned}
& z(t)=e^{i t}=\cos t+i \sin t, \quad 0 \leq t \leq 2 \pi \\
& z(t)=e^{2 \pi i t}=\cos 2 \pi t+i \sin 2 \pi t, \quad 0 \leq t \leq 1 \\
& z(t)=e^{\pi i t / 2}=\cos \frac{\pi t}{2}+i \sin \frac{\pi t}{2}, \quad 0 \leq t \leq 4
\end{aligned}
$$

are all parametrizations, oriented in the positive direction, for the unit circle $|z|=1$.

Subsection 3

Cauchy-Goursat Theorem

Simply and Multiply Connected Domains

- A domain is an open connected set in the complex plane.
- A domain D is simply connected if every simple closed contour C lying entirely in D can be shrunk to a point without leaving D.

Example: The entire complex plane is a simply connected domain. The annulus defined by $1<|z|<2$ is not simply connected.

- A domain that is not simply connected is called a multiply connected domain.
- A domain with one "hole" is doubly connected;
- A domain with two "holes" triply connected, and so on.

Example: The open disk $|z|<2$ is a simply connected domain. The open circular annulus $1<|z|<2$ is doubly connected.

Cauchy's Theorem

Cauchy's Theorem (1825)

Suppose that a function f is analytic in a simply connected domain D and that f^{\prime} is continuous in D. Then, for every simple closed contour C in D,

$$
\oint_{C} f(z) d z=0 .
$$

- We apply Green's theorem and the Cauchy-Riemann equations. Recall from calculus that, if C is a positively oriented, piecewise smooth, simple closed curve forming the boundary of a region R within D, and if the real-valued functions $P(x, y)$ and $Q(x, y)$ along with their first-order partial derivatives are continuous on a domain that contains C and R, then $\oint_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$. Since f^{\prime} is continuous throughout D, the real and imaginary parts of $f(z)=u+i v$ and their first partial derivatives are continuous throughout D.

Proof of Cauchy's Theorem

- We have by Green's Theorem

$$
\oint_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A .
$$

By continuity of u, v and their first partial derivatives, $\oint_{C} f(z) d z=\oint_{C} u(x, y) d x-v(x, y) d y+i \oint_{C} v(x, y) d x+u(x, y) d y=$ $\iint_{R}\left(-\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) d A+i \iint_{R}\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right) d A$. f being analytic in D, u and v satisfy the Cauchy-Riemann equations: $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$.
Therefore,

$$
\begin{aligned}
\oint_{C} f(z) d z & =\iint_{R}\left(-\frac{\partial v}{\partial x}+\frac{\partial v}{\partial x}\right) d A+i \iint_{R}\left(\frac{\partial v}{\partial y}-\frac{\partial v}{\partial y}\right) d A \\
& =0 .
\end{aligned}
$$

The Cauchy-Goursat Theorem

- Edouard Goursat proved in 1883 that the assumption of continuity of f^{\prime} is not necessary to reach the conclusion of Cauchy's theorem:

Cauchy-Goursat Theorem

Suppose that a function f is analytic in a simply connected domain D. Then, for every simple closed contour C in D,

$$
\oint_{C} f(z) d z=0
$$

- Since the interior of a simple closed contour is a simply connected domain, the Cauchy-Goursat theorem can also be stated as:
If f is analytic at all points within and on a simple closed contour C, then $\oint_{C} f(z) d z=0$.

Applying the Cauchy-Goursat Theorem I

- Evaluate $\oint_{C} e^{z} d z$, where the contour C is shown below.

$f(z)=e^{z}$ is entire. Thus, it is analytic at all
points within and on the simple closed con-
tour C. It follows from the Cauchy-Goursat
theorem that $\oint_{C} e^{z} d z=0$.
- We have $\oint_{C} e^{z} d z=0$, for any simple closed contour in the complex plane.
- Moreover, for any simple closed contour C and any entire function f, such as $f(z)=\sin z, f(z)=\cos z$, and $p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots$ $+a_{1} z+a_{0}, n=0,1,2, \ldots$, we also have

$$
\oint_{C} \sin z d z=0, \oint_{C} \cos z d z=0, \oint_{C} p(z) d z=0, \text { etc. }
$$

Applying the Cauchy-Goursat Theorem II

- Evaluate $\oint_{C} \frac{1}{z^{2}} d z$, where C is the ellipse $(x-2)^{2}+\frac{1}{4}(y-5)^{2}=1$. The rational function $f(z)=\frac{1}{z^{2}}$ is analytic everywhere except at $z=0$. But $z=0$ is not a point interior to or on the simple closed elliptical contour C.

Thus, again by the Cauchy-Goursat Theorem, we get

$$
\oint_{C} \frac{1}{z^{2}} d z=0 .
$$

Cauchy-Goursat Theorem for Multiply Connected Domains

- If f is analytic in a multiply connected domain D, then we cannot conclude that $\oint_{C} f(z) d z=0$, for every simple closed contour C in D.
- Suppose that D is a doubly connected domain and C and C_{1} are simple closed contours placed as follows:

Abstract

Suppose, also, that f is analytic on each contour and at each point interior to C but exterior to C_{1}.

By introducing the crosscut $A B$, the region bounded between the curves is now simply connected. So: $\oint_{C} f(z) d z+\int_{A B} f(z) d z$ $+\oint_{-C_{1}} f(z) d z+\int_{-A B} f(z) d z=0$ or $\oint_{C} f(z) d z=\oint_{C_{1}} f(z) d z$.

- This is sometimes called the principle of deformation of contours.
- It allows evaluation of an integral over a complicated simple closed contour C by replacing C with a more convenient contour C_{1}.

Applying Deformation of Contours

- Evaluate $\oint_{C} \frac{1}{z-i} d z$, where C is the black contour:

We choose the more convenient circular contour C_{1} drawn in blue. By taking the radius of the circle to be $r=1$, we are guaranteed that C_{1} lies within $C . C_{1}$ is the circle $|z-i|=1$. It can be parametrized by

$$
z=i+e^{i t}, 0 \leq t \leq 2 \pi
$$

From $z-i=e^{i t}$ and $d z=i e^{i t} d t$, we get:

$$
\begin{aligned}
\oint_{C} \frac{1}{z-i} d z & =\oint_{C_{1}} \frac{1}{z-i} d z=\int_{0}^{2 \pi} \frac{i e^{i t}}{e^{i t}} d t \\
& =i \int_{0}^{2 \pi} d t=2 \pi i
\end{aligned}
$$

A Generalization

- This result can be generalized: If z_{0} is any constant complex number interior to any simple closed contour C, and n an integer, we have

$$
\oint_{C} \frac{1}{\left(z-z_{0}\right)^{n}} d z= \begin{cases}2 \pi i, & \text { if } n=1 \\ 0, & \text { if } n \neq 1\end{cases}
$$

- That the integral is zero when $n \neq 1$ follows only partially from the Cauchy-Goursat theorem.
- When $n=0$ or negative, $\frac{1}{\left(z-z_{0}\right)^{n}}$ is a polynomial and therefore entire. Then, clearly, $\oint_{C} \frac{1}{\left(z-z_{0}\right)^{n}} d z=0$.
- It is not very difficult to see that the integral is still zero when n is a positive integer different from 1.
- Analyticity of the function f at all points within and on a simple closed contour C is sufficient to guarantee that $\oint_{C} f(z) d z=0$.
- This result emphasizes that analyticity is not necessary, i.e., it can happen that $\oint_{C} f(z) d z=0$ without f being analytic within C. Example: If C is the circle $|z|=1$, then $\oint_{C} \frac{1}{z^{2}} d z=0$, but $f(z)=\frac{1}{z^{2}}$ is not analytic at $z=0$ within C.

Applying the Formula for the Integral of $1 /\left(z-z_{0}\right)^{n}$

- Evaluate $\oint_{C} \frac{5 z+7}{z^{2}+2 z-3} d z$, where C is circle $|z-2|=2$.

The denominator factors as $z^{2}+2 z-3=(z-1)(z+3)$. Thus, the integrand fails to be analytic at $z=1$ and $z=-3$.

Of these two points, only $z=1$ lies within the contour C, which is a circle centered at $z=2$ of radius $r=2$. By partial fractions

$$
\frac{5 z+7}{z^{2}+2 z-3}=\frac{3}{z-1}+\frac{2}{z+3} .
$$

Hence, $\oint_{C} \frac{5 z+7}{z^{2}+2 z-3} d z=3 \oint_{C} \frac{1}{z-1} d z+2 \oint_{C} \frac{1}{z+3} d z$. The first integral has the value $2 \pi i$, whereas the value of the second integral is 0 by the Cauchy-Goursat theorem. Hence,

$$
\oint_{C} \frac{5 z+7}{z^{2}+2 z-3} d z=3(2 \pi i)+2(0)=6 \pi i
$$

Cauchy-Goursat Theorem: Multiply Connnected Domains

- If C, C_{1}, and C_{2} are simple closed contours as shown below
 and f is analytic on each of the three contours as well as at each point interior to C but exterior to both C_{1} and C_{2},
then by introducing crosscuts between C_{1} and C and between C_{2} and C, we get $\oint_{C} f(z) d z+\oint_{-C_{1}} f(z) d z+\oint_{-C_{2}} f(z) d z=0$, whence $\oint_{C} f(z) d z=\oint_{C_{1}} f(z) d z+\oint_{C_{2}} f(z) d z$.

Cauchy-Goursat Theorem for Multiply Connnected Domains

Suppose C, C_{1}, \ldots, C_{n} are simple closed curves with a positive orientation, such that $C_{1}, C_{2}, \ldots, C_{n}$ are interior to C, but the regions interior to each $C_{k}, k=1,2, \ldots, n$, have no points in common. If f is analytic on each contour and at each point interior to C but exterior to all the C_{k}, $k=1,2, \ldots, n$, then $\oint_{C} f(z) d z=\sum_{k=1}^{n} \oint_{C_{k}} f(z) d z$.

Integrals in Multiply Connected Domains

- Evaluate $\oint_{C} \frac{1}{z^{2}+1} d z$, where C is the circle $|z|=4$.

The denominator of the integrand factors as $z^{2}+1=(z-i)(z+i)$.
So, the integrand $\frac{1}{z^{2}+1}$ is not analytic at $z=i$ and at $z=-i$. Both points lie within C. Using partial fractions, $\frac{1}{z^{2}+1}=\frac{1}{2 i} \frac{1}{z-i}-\frac{1}{2 i} \frac{1}{z+i}$. whence $\oint_{C} \frac{1}{z^{2}+1} d z=\frac{1}{2 i} \oint_{C}\left(\frac{1}{z-i}-\frac{1}{z+i}\right) d z$.
Surround $z=i$ and $z=-i$ by circular contours C_{1} and C_{2}, respectively, that lie entirely within C. The choice $|z-i|=\frac{1}{2}$ for C_{1} and $|z+i|=\frac{1}{2}$ for C_{2} will suffice.
We have $\oint_{C} \frac{1}{z^{2}+1} d z=$

$$
\begin{aligned}
& \frac{1}{2 i} \oint_{C_{1}}\left(\frac{1}{z-i}-\frac{1}{z+i}\right) d z+\frac{1}{2 i} \oint_{C_{2}}\left(\frac{1}{z-i}-\frac{1}{z+i}\right) d z=\frac{1}{2 i} \oint_{C_{1}} \frac{1}{z-i} d z- \\
& \frac{1}{2 i} \oint_{C_{1}} \frac{1}{z+i} d z+\frac{1}{2 i} \oint_{C_{2}} \frac{1}{z-i} d z-\frac{1}{2 i} \oint_{C_{2}} \frac{1}{z+i} d z=\frac{1}{2 i} 2 \pi i-0+0-\frac{1}{2 i} 2 \pi i=0 .
\end{aligned}
$$

Non-Simple Closed Contours

- Throughout the foregoing discussion we assumed that C was a simple closed contour, in other words, C did not intersect itself.
- It can be shown that the Cauchy-Goursat theorem is valid for any closed contour C in a simply connected domain D.
- For a contour C that is closed but not simple, if f is analytic in D, then

$$
\oint_{C} f(z) d z=0
$$

Subsection 4

Independence of Path

Path Independence

Definition (Independence of the Path)

Let z_{0} and z_{1} be points in a domain D. A contour integral $\int_{C} f(z) d z$ is said to be independent of the path if its value is the same for all contours C in D with initial point z_{0} and terminal point z_{1}.

- The Cauchy-Goursat theorem holds for closed contours, not just simple closed contours, in a simply connected domain D.
- Suppose that C and C_{1} are two contours lying entirely in a simply connected domain D and both with initial point z_{0} and terminal point z_{1}. C joined with $-C_{1}$ forms a closed contour. Thus, if f is analytic in $D, \int_{C} f(z) d z+$ $\int_{-C_{1}} f(z) d z=0$. Therefore, $\int_{C} f(z) d z=\int_{C_{1}} f(z) d z$.

Theorem (Analyticity Implies Path Independence)

Suppose that a function f is analytic in a simply connected domain D and C is any contour in D. Then $\int_{C} f(z) d z$ is independent of the path C.

Choosing a Different Path

- Evaluate $\int_{C} 2 z d z$, where C is the contour shown in blue.

The function $f(z)=2 z$ is entire. By the theorem, we can replace the piecewise smooth path C by any convenient contour C_{1} joining $z_{0}=-1$ and $z_{1}=-1+i$. We choose the contour C_{1} to be the vertical line segment $x=-1,0 \leq y \leq 1$.
Since $z=-1+i y, d z=i d y$. Therefore,

$$
\begin{aligned}
\int_{C} 2 z d z & =\int_{C_{1}} 2 z d z \\
& =\int_{0}^{1} 2(-1+i y) i d y \\
& =\int_{0}^{1}(-2 i-2 y) d y \\
& =\left.\left(-2 i y-y^{2}\right)\right|_{0} ^{1} \\
& =-1-2 i .
\end{aligned}
$$

Antiderivatives

- A contour integral $\int_{C} f(z) d z$ that is independent of the path C is usually written $\int_{z_{0}}^{z_{1}} f(z) d z$, where z_{0} and z_{1} are the initial and terminal points of C.

Definition (Antiderivative)

Suppose that a function f is continuous on a domain D. If there exists a function F such that $F^{\prime}(z)=f(z)$, for each z in D, then F is called an antiderivative of f.

Example: The function $F(z)=-\cos z$ is an antiderivative of $f(z)=\sin z$ since $F^{\prime}(z)=\sin z$.

- The most general antiderivative, or indefinite integral, of a function $f(z)$ is written $\int f(z) d z=F(z)+C$, where $F^{\prime}(z)=f(z)$ and C is some complex constant.
- Differentiability implies continuity, whence, since an antiderivative F of a function f has a derivative at each point in a domain D, it is necessarily analytic and hence continuous at each point in D.

Fundamental Theorem for Contour Integrals

Fundamental Theorem for Contour Integrals

Suppose that a function f is continuous on a domain D and F is an antiderivative of f in D. Then, for any contour C in D with initial point z_{0} and terminal point z_{1},

$$
\int_{C} f(z) d z=F\left(z_{1}\right)-F\left(z_{0}\right)
$$

- We prove the FTCl in the case when C is a smooth curve parametrized by $z=z(t), a \leq t \leq b$. The initial and terminal points on C are $z(a)=z_{0}$ and $z(b)=z_{1}$. Since $F^{\prime}(z)=f(z)$, for all z in D,

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{a}^{b} f(z(t)) z^{\prime}(t) d t=\int_{a}^{b} F^{\prime}(z(t)) z^{\prime}(t) d t \\
& =\int_{a}^{b} \frac{d}{d t} F(z(t)) d t=\left.F(z(t))\right|_{a} ^{b} \\
& =F(z(b))-F(z(a)) \\
& =F\left(z_{1}\right)-F\left(z_{0}\right) .
\end{aligned}
$$

Applying the Fundamental Theorem I

- The integral $\int_{C} 2 z d z$, where C is shown

is independent of the path. Since $f(z)=2 z$ is an entire function, it is continuous. Moreover, $F(z)=z^{2}$ is an antiderivative of f since $F^{\prime}(z)=2 z=f(z)$. Hence, by the Fundamental Theorem, we have

$$
\begin{aligned}
\int_{-1}^{-1+i} 2 z d z & =\left.z^{2}\right|_{-1} ^{-1+i} \\
& =(-1+i)^{2}-(-1)^{2} \\
& =-1-2 i .
\end{aligned}
$$

Applying the Fundamental Theorem II

- Evaluate $\int_{C} \cos z d z$, where C is any contour with initial point $z_{0}=0$ and terminal point $z_{1}=2+i$.
$F(z)=\sin z$ is an antiderivative of $f(z)=\cos z$, since $F^{\prime}(z)=\cos z=f(z)$. Therefore, by the Fundamental Theorem, we have

$$
\begin{aligned}
\int_{C} \cos z d z & =\int_{0}^{2+i} \cos z d z \\
& =\left.\sin z\right|_{0} ^{2+i} \\
& =\sin (2+i)-\sin 0 \\
& =\sin (2+i)
\end{aligned}
$$

Some Conclusions

- Observe that if the contour C is closed, then $z_{0}=z_{1}$ and, consequently, $\oint_{C} f(z) d z=F\left(z_{1}\right)-F\left(z_{0}\right)=0$.
- Since the value of $\int_{C} f(z) d z$ depends only on the points z_{0} and z_{1}, this value is the same for any contour C in D connecting these points:
If a continuous function f has an antiderivative F in D, then $\int_{C} f(z) d z$ is independent of the path.
- Moreover, we have a sufficient condition:

If f is continuous and $\int_{C} f(z) d z$ is independent of the path C in a domain D, then f has an antiderivative everywhere in D.

- Assume f is continuous and $\int_{C} f(z) d z$ is independent of the path in a domain D and that F is a function defined by $F(z)=\int_{z_{0}}^{z} f(s) d s$, where s denotes a complex variable, z_{0} is a fixed point in D, and z represents any point in D. We wish to show that $F^{\prime}(z)=f(z)$, i.e., that $F(z)=\int_{z_{0}}^{z} f(s) d s$ is an antiderivative of f in D.

$F(z)=\int_{z_{0}}^{z} f(s) d s$ is an Antiderivative of f in D

- We have
$F(z+\Delta z)-F(z)=\int_{z_{0}}^{z+\Delta z} f(s) d s-\int_{z_{0}}^{z} f(s) d s=\int_{z}^{z+\Delta z} f(s) d s$. Because D is a domain, we can choose Δz so that $z+\Delta z$ is in D. Moreover, z and $z+\Delta z$ can be joined by a straight segment. With z fixed, we can write $f(z) \Delta z=f(z) \int_{z}^{z+\Delta z} d s=\int_{z}^{z+\Delta z} f(z) d s$ or $f(z)=\frac{1}{\Delta z} \int_{z}^{z+\Delta z} f(z) d s$. Therefore, we have $\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)=\frac{1}{\Delta z} \int_{z}^{z+\Delta z}[f(s)-f(z)] d s$. Since f is continuous at the point z, for any $\varepsilon>0$, there exists a $\delta>0$, so that $|f(s)-f(z)|<\epsilon$ whenever $|s-z|<\delta$. Consequently, if we choose Δz so that $|\Delta z|<\delta$, it follows from the ML-inequality, that

$$
\begin{aligned}
& \left|\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)\right|=\left|\frac{1}{\Delta z} \int_{z}^{z+\Delta z}[f(s)-f(z)] d s\right|= \\
& \left|\frac{1}{\Delta z}\right|\left|\int_{z}^{z+\Delta z}[f(s)-f(z)] d s\right| \leq\left|\frac{1}{\Delta z}\right| \varepsilon|\Delta z|=\varepsilon . \text { Hence, }
\end{aligned}
$$

$$
\lim _{\Delta z \rightarrow 0} \frac{F(z+\Delta z)-F(z)}{\Delta z}=f(z) \text { or } F^{\prime}(z)=f(z)
$$

Existence of Antiderivative

- If f is an analytic function in a simply connected domain D, it is continuous throughout D. This implies, by the Path Independence Theorem, that path independence holds for f in D. Therefore,

Theorem (Existence of Antiderivative)

Suppose that a function f is analytic in a simply connected domain D. Then f has an antiderivative in D, i.e., there exists a function F such that $F^{\prime}(z)=f(z)$, for all z in D.

- We have seen that, for $|z|>0,-\pi<\arg (z)<\pi, \frac{1}{z}$ is the derivative of Lnz. Thus, under some circumstances Lnz is an antiderivative of $\frac{1}{z}$, but one must be careful!
If D is the entire complex plane without the origin, $\frac{1}{z}$ is analytic in this multiply connected domain. If C is any simple closed contour containing the origin, it does not follow that $\oint_{C} \frac{1}{z} d z=0$. In this case, $\operatorname{Ln} z$ is not an antiderivative of $\frac{1}{z}$ in D since Lnz is not analytic in D (Lnz fails to be analytic on the non-positive real axis).

Using the Logarithmic Function

- Evaluate $\int_{C} \frac{1}{z} d z$, where C is the contour shown:

Suppose that D is the simply connected domain defined by $x>0, y>0$, i.e., the first quadrant. In this case, Lnz is an antiderivative of $\frac{1}{z}$ since both these functions are analytic in D.

Therefore,

$$
\int_{C} \frac{1}{z} d z=\int_{3}^{2 i} \frac{1}{z} d z=\left.\operatorname{Ln} z\right|_{3} ^{2 i}=\operatorname{Ln}(2 i)-\operatorname{Ln} 3
$$

Recall $\operatorname{Ln}(2 i)=\log _{e} 2+\frac{\pi}{2} i$ and $\operatorname{Ln} 3=\log _{e} 3$. Hence, $\int_{C} \frac{1}{z} d z=\log _{e} 2+\frac{\pi}{2} i-\log _{e} 3=\log _{e} \frac{2}{3}+\frac{\pi}{2} i$.

Using an Antiderivative of $z^{-1 / 2}$

- Evaluate $\int_{C} \frac{1}{z^{1 / 2}} d z$, where C is the line segment between $z_{0}=i$ and $z_{1}=9$.
We take $f_{1}(z)=z^{1 / 2}$ to be the principal branch of the square root function. In the domain $|z|>0,-\pi<\arg (z)<\pi$, the function $\frac{1}{f_{1}(z)}=\frac{1}{z^{1 / 2}}=z^{-1 / 2}$ is analytic and possesses the antiderivative $F(z)=2 z^{1 / 2}$. Hence,

$$
\begin{aligned}
\int_{C} \frac{1}{z^{1 / 2}} d z & =\int_{i}^{9} \frac{1}{z^{1 / 2}} d z \\
& =\left.2 z^{1 / 2}\right|_{i} ^{9} \\
& =2\left[3-\left(\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right)\right] \\
& =(6-\sqrt{2})-i \sqrt{2}
\end{aligned}
$$

Integration-By-Parts

- In calculus indefinite integrals of certain kinds can be evaluated by integration by parts:

$$
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int g(x) f^{\prime}(x) d x
$$

More compactly, $\int u d v=u v-\int v d u$.

- Suppose f and g are analytic in a simply connected domain D. Then

$$
\int f(z) g^{\prime}(z) d z=f(z) g(z)-\int g(z) f^{\prime}(z) d z
$$

- In addition, if z_{0} and z_{1} are the initial and terminal points of a contour C lying entirely in D, then

$$
\int_{z_{0}}^{z_{1}} f(z) g^{\prime}(z) d z=\left.f(z) g(z)\right|_{z_{0}} ^{z_{1}}-\int_{z_{0}}^{z_{1}} g(z) f^{\prime}(z) d z
$$

The Mean Value Theorem for Definite Integrals

- The Mean Value Theorem for Definite Integrals: If f is a real function continuous on the closed interval $[a, b]$, then there exists a number c in the open interval (a, b), such that

$$
\int_{a}^{b} f(x) d x=f(c)(b-a)
$$

- Let f be a complex function analytic in a simply connected domain D. Then, f is continuous at every point on a contour C in D with initial point z_{0} and terminal point z_{1}.
Unfortunately, no analog of the Mean Value Theorem exists for the contour integral $\int_{z_{0}}^{z_{1}} f(z) d z$.

Subsection 5

Cauchy's Integral Formulas

Cauchy's First Formula

- If f is analytic in a simply connected domain D and z_{0} is a point in D, the quotient $\frac{f(z)}{z-z_{0}}$ is not defined at z_{0} and, hence, is not analytic in D.
- Therefore, we cannot conclude that the integral of $\frac{f(z)}{z-z_{0}}$ around a simple closed contour C that contains z_{0} is zero.
- Indeed, the integral of $\frac{f(z)}{z-z_{0}}$ around C has the value $2 \pi i f\left(z_{0}\right)$.

Theorem (Cauchy's Integral Formula)

Suppose that f is analytic in a simply connected domain D and C is any simple closed contour lying entirely within D. Then, for any point z_{0} within C,

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} d z
$$

- Let D be a simply connected domain, C a simple closed contour in D, and z_{0} an interior point of C. In addition, let C_{1} be a circle centered at z_{0} with radius small enough so that C_{1} lies within the interior of C. By the principle of deformation of contours, $\oint_{C} \frac{f(z)}{z-z_{0}} d z=\oint_{C_{1}} \frac{f(z)}{z-z_{0}} d z$.

Proof of Cauchy's Integral Formula

- From $\oint_{C} \frac{f(z)}{z-z_{0}} d z=\oint_{C_{1}} \frac{f(z)}{z-z_{0}} d z$, we get by adding and subtracting $f\left(z_{0}\right)$ in the numerator: $\oint_{C} \frac{f(z)}{z-z_{0}} d z=\oint_{C_{1}} \frac{f\left(z_{0}\right)-f\left(z_{0}\right)+f(z)}{z-z_{0}} d z=$ $f\left(z_{0}\right) \oint_{C_{1}} \frac{1}{z-z_{0}} d z+\oint_{C_{1}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z$. We know that $\oint_{C_{1}} \frac{1}{z-z_{0}} d z=2 \pi i$, whence $\oint_{C} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right)+\oint_{C_{1}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z$.
Since f is continuous at z_{0}, for any $\varepsilon>0$, there exists a $\delta>0$, such that $\left|f(z)-f\left(z_{0}\right)\right|<\varepsilon$, whenever $\left|z-z_{0}\right|<\delta$. In particular, if we choose C_{1} to be $\left|z-z_{0}\right|=\frac{1}{2} \delta<\delta$, then by the $M L$-inequality, $\left|\oint_{C_{1}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z\right| \leq \frac{\varepsilon}{\delta / 2} 2 \pi \frac{\delta}{2}=2 \pi \varepsilon$. Thus, the absolute value of the integral can be made arbitrarily small by taking the radius of the circle C_{1} to be sufficiently small. This implies that the integral is 0 . We conclude that $\oint_{C} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right)$.

Using Cauchy's Integral Formula

- Cauchy's integral formula shows that the values of an analytic function f at points z_{0} inside a simple closed contour C are determined by the values of f on the contour C.
- Since we often work problems without a simply connected domain explicitly defined, a more practical restatement is:
If f is analytic at all points within and on a simple closed contour C, and z_{0} is any point interior to C, then $f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} d z$.
- Example: Evaluate $\oint_{C} \frac{z^{2}-4 z+4}{z+i} d z$, where C is the circle $|z|=2$. We identify $f(z)=z^{2}-4 z+4$ and $z_{0}=-i$ as a point within the circle C. Next, we observe that f is analytic at all points within and on the contour C. Thus, by the Cauchy integral formula, $\oint_{C} \frac{z^{2}-4 z+4}{z+i} d z=2 \pi i f(-i)=2 \pi i(3+4 i)=\pi(-8+6 i)$.

Another Application of Cauchys Integral Formula

- Evaluate $\oint_{C} \frac{z}{z^{2}+9} d z$, where C is the circle $|z-2 i|=4$.

By factoring the denominator as $z^{2}+9=$ $(z-3 i)(z+3 i)$, we see that $3 i$ is the only point within the closed contour C at which the integrand fails to be analytic. By rewriting the integrand as $\frac{z}{z^{2}+9}=\frac{\frac{z}{z+3 i}}{z-3 i}$, we identify $f(z)=\frac{z}{z+3 i}$

The function f is analytic at all points within and on the contour C. Hence, by Cauchy's integral formula
$\oint_{C} \frac{z}{z^{2}+9} d z=\oint_{C} \frac{z}{z+3 i} d z=2 \pi i f(3 i)=2 \pi i \frac{3 i}{6 i}=\pi i$.

Cauchy's Second Formula

- We prove that the values of the derivatives $f^{(n)}\left(z_{0}\right), n=1,2,3, \ldots$ of an analytic function are also given by an integral formula.

Theorem (Cauchy's Integral Formula for Derivatives)

Suppose that f is analytic in a simply connected domain D and C is any simple closed contour lying entirely within D. Then, for any point z_{0} within C,

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

- Partial Proof (for $n=1$): By the definition of the derivative and Cauchy's Integral Formula, $f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}=$ $\lim _{\Delta z \rightarrow 0} \frac{1}{2 \pi i \Delta z}\left[\oint_{C} \frac{f(z)}{z-\left(z_{0}+\Delta z\right)} d z-\oint_{C} \frac{f(z)}{z-z_{0}} d z\right]=$ $\lim _{\Delta z \rightarrow 0} \frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}-\Delta z\right)\left(z-z_{0}\right)} d z$.

Prof of Cauchy's Second Formula for $n=1$

- We work out some preliminaries:
- Continuity of f on the contour C guarantees that f is bounded, i.e., there exists real number M, such that $|f(z)| \leq M$, for all points z on C.
- In addition, let L be the length of C and let δ denote the shortest distance between points on C and the point z_{0}. Thus, for all points z on C, we have $\left|z-z_{0}\right| \geq \delta$, or $\frac{1}{\left|z-z_{0}\right|^{2}} \leq \frac{1}{\delta^{2}}$.
- Furthermore, if we choose $|\Delta z| \leq \frac{1}{2} \delta$, then $\left|z-z_{0}-\Delta z\right| \geq$

$$
\left|\left|z-z_{0}\right|-|\Delta z|\right| \geq \delta-|\Delta z| \geq \frac{1}{2} \delta, \text { whence } \frac{1}{\left|z-z_{0}-\Delta z\right|} \leq \frac{1}{\delta} \text {. }
$$

Now, $\left|\oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z-\oint_{C} \frac{f(z)}{\left(z-z_{0}-\Delta z\right)\left(z-z_{0}\right)} d z\right|=$
$\left|\oint_{C} \frac{-\Delta z f(z)}{\left(z-z_{0}-\Delta z\right)\left(z-z_{0}\right)^{2}} d z\right| \leq \frac{2 M L|\Delta z|}{\delta^{3}}$. The last expression
approaches zero as $\Delta z \rightarrow 0$, whence
$f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z$.

Using Cauchy's Integral Formula for Derivatives

- Evaluate $\oint_{C} \frac{z+1}{z^{4}+2 i z^{3}} d z$, where C is the circle $|z|=1$. Inspection of the integrand shows that it is not analytic at $z=0$ and $z=-2 i$, but only $z=0$ lies within the closed contour. By writing the integrand as $\frac{z+1}{z^{4}+2 i z^{3}}=\frac{\frac{z+1}{z+2 i}}{z^{3}}$ we can identify, $z_{0}=0, n=2$, and $f(z)=\frac{z+1}{z+2 i}$. The quotient rule gives $f^{\prime}(z)=\frac{-1+2 i}{(z+2 i)^{2}}$ and $f^{\prime \prime}(z)=\frac{2-4 i}{(z+2 i)^{3}}$, whence $f^{\prime \prime}(0)=\frac{2 i-1}{4 i}$. Therefore, we get

$$
\begin{aligned}
\oint_{C} \frac{z+1}{z^{4}+4 z^{3}} d z & =\frac{2 \pi i}{2!} f^{\prime \prime}(0) \\
& =\frac{2 \pi i}{2!} \frac{2 i-1}{4 i} \\
& =-\frac{\pi}{4}+\frac{\pi}{2} i
\end{aligned}
$$

Another Application of the Integral Formula for Derivatives

- Evaluate $\oint_{C} \frac{z^{3}+3}{z(z-i)^{2}} d z$, where C is the figure-eight contour shown below:

Although C is not a simple closed contour, we can think of it as the union of two simple closed contours C_{1} and C_{2}. We write $\oint_{C} \frac{z^{3}+3}{z(z-i)^{2}} d z=\oint_{C_{1}} \frac{z^{3}+3}{z(z-i)^{2}} d z+$ $\oint_{C_{2}} \frac{z^{3}+3}{z(z-i)^{2}} d z=-\oint_{-C_{1}} \frac{\frac{z^{3}+3}{(z-i)^{2}}}{z} d z+\oint_{C_{2}} \frac{\frac{z^{3}+3}{z}}{(z-i)^{2}} d z=$ $-I_{1}+I_{2}$.

- $I_{1}=\oint_{-c_{1}} \frac{\frac{z^{3}+3}{(z-i)^{2}}}{z} d z=2 \pi i f(0)=2 \pi i(-3)=-6 \pi i$.
- For $I_{2}, f(z)=\frac{z^{3}+3}{z}$, whence $f^{\prime}(z)=\frac{2 z^{3}-3}{z^{2}}$, and $f^{\prime}(i)=3+2 i$. Thus,

$$
I_{2}=\oint_{C_{2}} \frac{\frac{z^{3}+3}{z}}{(z-i)^{2}} d z=\frac{2 \pi i}{1!} f^{\prime}(i)=2 \pi i(3+2 i)=-4 \pi+6 \pi i .
$$

Finally, $\oint_{C} \frac{z^{3}+3}{z(z-i)^{2}} d z=-l_{1}+l_{2}=6 \pi i+(-4 \pi+6 \pi i)=-4 \pi+12 \pi i$.

Subsection 6

Consequences of the Integral Formulas

The Derivatives of an Analytic Function are Analytic

Theorem (Derivative of an Analytic Function Is Analytic)

Suppose that f is analytic in a simply connected domain D. Then f possesses derivatives of all orders at every point z in D. The derivatives $f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}, \ldots$ are analytic functions in D.

- If $f(z)=u(x, y)+i v(x, y)$ is analytic in a simply connected domain D, its derivatives of all orders exist at any point z in D. Thus, $f^{\prime}, f^{\prime \prime}$, $f^{\prime \prime \prime}, \ldots$ are continuous. From

$$
\begin{aligned}
f^{\prime}(z) & =\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}, \\
f^{\prime \prime}(z) & =\frac{\partial^{2} u}{\partial x^{2}}+i \frac{\partial^{2} v}{\partial x^{2}}=\frac{\partial^{2} v}{\partial y \partial x}-i \frac{\partial^{2} u}{\partial y \partial x}
\end{aligned}
$$

we can also conclude that the real functions u and v have continuous partial derivatives of all orders at a point of analyticity.

Cauchy's Inequality

Theorem (Cauchy's Inequality)

Suppose that f is analytic in a simply connected domain D and C is a circle defined by $\left|z-z_{0}\right|=r$ that lies entirely in D. If $|f(z)| \leq M$, for all points z on C, then

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M}{r^{n}} .
$$

- From the hypothesis, $\left|\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\right|=\frac{|f(z)|}{r^{n+1}} \leq \frac{M}{r^{n+1}}$. Thus, by Cauchy's Formula for Derivatives and the $M L$-inequality,

$$
\left|f^{(n)}\left(z_{0}\right)\right|=\frac{n!}{2 \pi}\left|\oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z\right| \leq \frac{n!}{2 \pi} \frac{M}{r^{n+1}} 2 \pi r=\frac{n!M}{r^{n}} .
$$

- The number M depends on the circle $\left|z-z_{0}\right|=r$. But, if $n=0$, then $M \geq\left|f\left(z_{0}\right)\right|$, for any circle C centered at z_{0}, as long as C lies within D. Thus, an upper bound M of $|f(z)|$ on C cannot be smaller than $\left|f\left(z_{0}\right)\right|$.

Liouville's Theorem

- Although the next result is known as "Liouville's Theorem", it was probably first proved by Cauchy.
- The gist of the theorem is that an entire function f, one that is analytic for all z, cannot be bounded unless f itself is a constant:

Theorem (Liouville's Theorem)

The only bounded entire functions are constants.

- Suppose f is an entire bounded function, i.e., $|f(z)| \leq M$, for all z. Then, for any point z_{0}, by Cauchy's Inequality, $\left|f^{\prime}\left(z_{0}\right)\right| \leq \frac{M}{r}$. By making r arbitrarily large we can make $\left|f^{\prime}\left(z_{0}\right)\right|$ as small as we wish. This means $f^{\prime}\left(z_{0}\right)=0$, for all points z_{0} in the complex plane. Hence, by a preceding theorem, f must be a constant.

Fundamental Theorem of Algebra

- Liouville's Theorem enables us to establish the celebrated

Fundamental Theorem of Algebra

If $p(z)$ is a nonconstant polynomial, then the equation $p(z)=0$ has at least one root.

- Suppose that the polynomial $p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$, $n>0$, is not 0 for any complex number z. This implies that the reciprocal of $p, f(z)=\frac{1}{p(z)}$, is an entire function. Now

$$
\begin{aligned}
|f(z)| & =\frac{1}{\left|a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}\right|} \\
& =\frac{1}{|z|^{n}\left|a_{n}+\frac{a_{n-1}}{z}+\cdots+\frac{a_{1}}{z^{n-1}}+\frac{a_{0}}{z^{n}}\right|} .
\end{aligned}
$$

Thus, $|f(z)| \rightarrow 0$ as $|z| \rightarrow \infty$. So the function f must be bounded for finite z. By Liouville's Theorem, f is a constant. Hence, p is a constant. But this contradicts p not being a constant polynomial. Therefore, there must exist at least one z for which $p(z)=0$.

Morera's Theorem

- Morera's theorem, which gives a sufficient condition for analyticity, is often taken to be the converse of the Cauchy-Goursat Theorem:

Theorem (Morera's Theorem)

If f is continuous in a simply connected domain D and if $\oint_{C} f(z) d z=0$, for every closed contour C in D, then f is analytic in D.

- By the hypotheses of continuity of f and $\oint_{C} f(z) d z=0$, for every closed contour C in D, we conclude that $\int_{C} f(z) d z$ is independent of the path. Then, the function F, defined by $F(z)=\int_{z_{0}}^{z} f(s) d s$ (where s denotes a complex variable, z_{0} is a fixed point in D, and z any point in D) is an antiderivative of f, i.e., $F^{\prime}(z)=f(z)$. Hence, F is analytic in D. In addition, $F^{\prime}(z)$ is analytic in view of the analyticity of the derivative of any analytic function. Since $f(z)=F^{\prime}(z)$, we see that f is analytic in D.

The Maximum Modulus Theorem

- We saw that, if a function f is continuous on a closed and bounded region R, then f is bounded, i.e., there exists some constant M, such that $|f(z)| \leq M$, for z in R.
- If the boundary of R is a simple closed curve C, then the modulus $|f(z)|$ assumes its maximum value at some z on the boundary C :

Theorem (Maximum Modulus Theorem)

Suppose that f is analytic and nonconstant on a closed region R bounded by a simple closed curve C. Then the modulus $|f(z)|$ attains its maximum on C.

- If the stipulation that $f(z) \neq 0$, for all z in R, is added to the hypotheses, then the modulus $|f(z)|$ also attains its minimum on C.

Finding The Maximum Modulus

- Find the maximum modulus of $f(z)=2 z+5 i$ on the closed circular region defined by $|z| \leq 2$.
We know that $|z|^{2}=z \cdot \bar{z}$. By replacing z by $2 z+5 i$, we have $|2 z+5 i|^{2}=(2 z+5 i)(\overline{2 z+5 i})=(2 z+5 i)(2 \bar{z}-5 i)=$ $4 z \bar{z}-10 i(z-\bar{z})+25$. But, $z-\bar{z}=2 i \operatorname{lm}(z)$, whence $|2 z+5 i|^{2}=4|z|^{2}+20 \operatorname{lm}(z)+25$. Because f is a polynomial, it is analytic on the region defined by $|z| \leq 2$. Thus, max $|2 z+5 i|$ occurs $|z| \leq 2$
on the boundary $|z|=2$. There, $|2 z+5 i|=\sqrt{41+20 \operatorname{lm}(z)}$. This attains its maximum when $\operatorname{Im}(z)$ attains its maximum on $|z|=2$, namely, at the point $z=2 i$. Thus, $\max _{|z| \leq 2}|2 z+5 i|=\sqrt{81}=9$.
- Note that $f(z)=0$ only at $z=-\frac{5}{2} i$ and that this point is outside the region defined by $|z| \leq 2$. Hence we can conclude that we have a minimum when $\operatorname{Im}(z)$ attains its minimum on $|z|=2$ at $z=-2 i$. As a result, $\min _{|z| \leq 2}|2 z+5 i|=\sqrt{1}=1$.

