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Series and Residues Sequences and Series

Sequences

A sequence {zn} is a function whose domain is the set of positive
integers and whose range is a subset of the complex numbers C.

Example: The sequence {1 + in} is 1 + i
n=1

, 0
n=2

, 1− i
n=3

, 2
n=4

, 1 + i
n=5

, . . . .

If limn→∞ zn = L, we say the sequence {zn} is convergent, i.e., {zn}
converges to the number L if, for each positive real number ε, an N

can be found, such that |zn − L| < ε, whenever n > N.
Since |zn − L| is distance, the terms zn of a
sequence that converges to L can be made
arbitrarily close to L. In a different way, when
a sequence {zn} converges to L, then all but
a finite number of the terms of the sequence
are within every ε-neighborhood of L.

A sequence that is not convergent is said to be divergent.
Example: The sequence {1 + in} is divergent since the general term
zn = 1 + in does not approach a fixed complex number as n → ∞.
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Series and Residues Sequences and Series

An Example of a Convergent Sequence

The sequence

{
in+1

n

}

converges since lim
n→∞

in+1

n
= 0. As we see from

−1,− i

2
,
1

3
,
i

4
,−1

5
, . . . ,

the terms of the sequence spiral in toward the point z = 0 as n
increases.
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Series and Residues Sequences and Series

Criterion for Convergence

Theorem (Criterion for Convergence)

A sequence {zn} converges to a complex number L = a + ib if and only if
Re(zn) converges to Re(L) = a and Im(zn) converges to Im(L) = b.

Example: Consider the sequence

{
3 + ni

n + 2ni

}

.

zn =
3 + ni

n + 2ni
=

(3 + ni)(n − 2ni)

n2 + 4n2
=

2n2 + 3n

5n2
+ i

n2 − 6n

5n2
.

Thus, we get

Re(zn) =
2n2 + 3n

5n2
=

2

5
+

3

5n
→ 2

5

Im(zn) =
n2 − 6n

5n2
=

1

5
− 6

5n
→ 1

5
.

By the theorem, the given sequence converges to a + ib = 2
5 +

1
5 i .
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Series and Residues Sequences and Series

Series and Geometric Series

An infinite series or series of complex numbers
∑∞

k=1 zk = z1 + z2
+z3 + · · ·+ zn + · · · is convergent if the sequence of partial sums
{Sn}, where Sn = z1 + z2 + z3 + · · · + zn converges. If Sn → L as
n → ∞, we say that the series converges to L or that the sum of
the series is L.

Geometric Series: A geometric series is any series of the form
∑∞

k=1 az
k−1 = a + az + az2 + · · ·+ azn−1 + · · · . The n-th term of

the sequence of partial sums is Sn = a + az + az2 + · · ·+ azn−1. To
get a formula for Sn, multiply by z : zSn = az + az2+ az3+ · · ·+ azn.
Subtract this from Sn: Sn − zSn = (a + az + az2 + · · ·+ azn−1)−
(az + az2 + az3 + · · ·+ azn−1 + azn) = a− azn. Thus,

(1− z)Sn = a(1− zn), and, hence, Sn =
a(1− zn)

1− z
.

If |z | < 1, zn → 0 as n → ∞. So Sn → a
1−z

. I.e., for |z | < 1,
a

1−z
= a+ az + az2 + · · ·+ azn−1 + · · ·.

If |z | ≥ 1, a geometric series diverges.
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Series and Residues Sequences and Series

Special Geometric Series

Recall the sum formulas

Sn =
a(1− zn)

1− z
,

a

1− z
= a + az + az2 + · · ·+ azn−1 + · · · .

If we set a = 1, we get

1

1− z
= 1 + z + z2 + z3 + · · · .

If we then replace z by −z :

1

1 + z
= 1− z + z2 − z3 + · · · .

For the finite sum, we have 1−zn

1−z
= 1 + z + z2 + z3 + · · ·+ zn−1.

Rewriting the left side of the above equation as 1−zn

1−z
= 1

1−z
+ −zn

1−z
,

we get 1

1− z
= 1 + z + z2 + z3 + · · · + zn−1 +

zn

1− z
.
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Series and Residues Sequences and Series

A Convergent Geometric Series

The infinite series

∞∑

k=1

(1 + 2i)k

5k
=

1 + 2i

5
+

(1 + 2i)2

52
+

(1 + 2i)3

53
+ · · ·

is a geometric series.

It has the standard form, with a = 1
5(1 + 2i) and z = 1

5(1 + 2i). Since

|z | =
√
5
5 < 1, the series is convergent and its sum is given by:

∞∑

k=1

(1 + 2i)k

5k
=

1+2i
5

1− 1+2i
5

=
1 + 2i

4− 2i
=

1

2
i .
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Series and Residues Sequences and Series

Necessary Condition for Convergence

We turn to some important theorems about convergence and
divergence of an infinite series:

Theorem (A Necessary Condition for Convergence)

If
∑∞

k=1 zk converges, then limn→∞ zn = 0.

Let L denote the sum of the series. Then Sn → L and Sn−1 → L as
n → ∞. By taking the limit of both sides of Sn − Sn−1 = zn as
n → ∞, we obtain the desired conclusion.

Theorem (The n-th Term Test for Divergence)

If limn→∞ zn 6= 0, then
∑∞

k=1 zk diverges.

Example: The series
∑∞

k=1
ik+5
k

diverges, since zn = in+5
n

→ i 6= 0 as
n → ∞.
The geometric series

∑∞
k=1 az

k diverges if |z | ≥ 1 because even in
the case when limn→∞ |zn| exists, the limit is not zero.
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Series and Residues Sequences and Series

Absolute and Conditional Convergence

Definition (Absolute and Conditional Convergence)

An infinite series
∑∞

k=1 zk is said to be absolutely convergent if
∑∞

k=1 |zk | converges. An infinite series
∑∞

k=1 zk is said to be
conditionally convergent if it converges but

∑∞
k=1 |zk | diverges.

In elementary calculus a real series of the form
∑∞

k=1
1
kp

is called a
p-series and

converges for p > 1;
diverges for p ≤ 1.

Example: The series
∑∞

k=1
ik

k2
is absolutely convergent: The series

∑∞
k=1

∣
∣
∣
ik

k2

∣
∣
∣ is the same as the real convergent p-series

∑∞
k=1

1
k2
.

As in real calculus, absolute convergence implies convergence.

Example: The series
∑∞

k=1
ik

k2
= i − 1

22
− i

32
+ · · · converges, because

it is was shown to be absolutely convergent.
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Series and Residues Sequences and Series

Tests for Convergence

Theorem (The Ratio Test)

Let
∑∞

k=1 zk be a series of nonzero terms, with limn→∞

∣
∣
∣
zn+1

zn

∣
∣
∣ = L.

(i) If L < 1, then the series converges absolutely.

(ii) If L > 1 or L = ∞, then the series diverges.

(iii) If L = 1, the test is inconclusive.

Theorem (The Root Test)

Let
∑∞

k=1 zk be a series of complex terms, with limn→∞
n
√

|zn| = L.

(i) If L < 1, then the series converges absolutely.

(ii) If L > 1 or L = ∞, then the series diverges.

(iii) If L = 1, the test is inconclusive.

We are interested primarily in applying these tests to power series.

George Voutsadakis (LSSU) Complex Analysis October 2014 12 / 77



Series and Residues Sequences and Series

Power Series and Circle of Convergence

An infinite series of the form
∑∞

k=0 ak(z − z0)
k = a0 + a1(z − z0)+

a2(z − z0)
2 + · · ·, where the coefficients ak are complex constants, is

called a power series in z − z0.

The power series is said to be centered at z0 and the complex point
z0 is referred to as the center of the series.

It is also convenient to define (z − z0)
0 = 1 even when z = z0.

Every complex power series has a radius

of convergence and a circle of conver-

gence: It is the circle centered at z0 of
largest radius R > 0 for which the series
converges at every point within the circle
|z − z0| = R .

A power series converges absolutely at all points z satisfying
|z − z0| < R , and diverges at all points z , with |z − z0| > R .
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Series and Residues Sequences and Series

Possibilities for Radius of Convergence

The radius of convergence can be:
(i) R = 0 (series converges only at its center z = z0);
(ii) R a finite positive number (series converges in interior of |z − z0| = R);
(iii) R = ∞ (series converges for all z).

A power series may converge at some, all, or at none of the points on
the actual circle of convergence.

Example: Consider
∑∞

k=1
zk+1

k
. By the ratio test, limn→∞

∣
∣
∣
∣
∣

zn+2

n+1

zn+1

n

∣
∣
∣
∣
∣
=

limn→∞
n

n+1 |z | = |z |. Thus, the series converges absolutely for
|z | < 1. The circle of convergence is |z | = 1 and the radius of
convergence is R = 1. On the circle |z | = 1, the series does not
converge absolutely since

∑∞
k=1

1
k
is the well-known divergent

harmonic series. This does not mean that the series diverges on the

circle of convergence. In fact, at z = −1,
∑∞

k=1
(−1)k+1

k
is the

convergent alternating harmonic series. It can be shown that the
series converges at all points on the circle |z | = 1 except at z = 1.
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Series and Residues Sequences and Series

Dependence of the Radius on the Coefficients

For a power series
∞∑

k=0

ak(z − z0)
k ,

the limit depends only on the coefficients ak . Thus:

(i) if lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= L 6= 0, the radius of convergence is R = 1

L
;

(ii) if lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= 0, the radius of convergence is R = ∞;

(iii) if lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= ∞, the radius of convergence is R = 0.

Similar conclusions can be made for the root test by utilizing
lim
n→∞

n
√

|an|. E.g., if lim
n→∞

n
√

|an| = L 6= 0, then R = 1
L
.
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Series and Residues Sequences and Series

Finding Radius of Convergence Using Ratio Test

Consider the power series

∞∑

k=1

(−1)k+1

k!
(z − 1− i)k .

With the identification an =
(−1)n+1

n!
, we have

lim
n→∞

∣
∣
∣
∣
∣
∣

(−1)n+2

(n+1)!

(−1)n+1

n!

∣
∣
∣
∣
∣
∣

= lim
n→∞

1

n + 1
= 0.

Hence, the radius of convergence is ∞. The power series with center
z0 = 1 + i converges absolutely for all z , i.e., for |z − 1− i | < ∞.
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Series and Residues Sequences and Series

Finding Radius of Convergence Using Root Test

Consider the power series

∞∑

k=1

(
6k + 1

2k + 5

)k

(z − 2i)k .

With an =

(
6n + 1

2n + 5

)n

, the root test gives

lim
n→∞

n
√

|an| = lim
n→∞

(
6n + 1

2n + 5

)

= 3.

We conclude that the radius of convergence of the series is R = 1
3 .

The circle of convergence is |z − 2i | = 1
3 ; the power series converges

absolutely for |z − 2i | < 1
3 .
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Series and Residues Sequences and Series

The Arithmetic of Power Series

Some facts concerning power-series stated informally:
A power series

∑
∞

k=0 ak(z − z0)
k can be multiplied by a nonzero

complex constant c without affecting its convergence or divergence.
A power series

∑
∞

k=0 ak(z − z0)
k converges absolutely within its circle

of convergence. As a consequence, within the circle of convergence the
terms of the series can be rearranged and the rearranged series has the
same sum L as the original series.
Two power series

∑
∞

k=0 ak(z − z0)
k and

∑
∞

k=0 bk(z − z0)
k can be

added and subtracted by adding or subtracting like terms:
∞∑

k=0

ak(z − z0)
k ±

∞∑

k=0

bk(z − z0)
k =

∞∑

k=0

(ak ± bk)(z − z0)
k .

If both series have the same nonzero radius R of convergence, the
radius of convergence of

∑
∞

k=0(ak ± bk)(z − z0)
k is R.

If one series has radius of convergence r > 0 and the other R > 0,
where r 6= R, then

∑
∞

k=0(ak ± bk)(z − z0)
k has radius of convergence

the smaller of r and R.

Two power series can (with care) be multiplied and divided.
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Series and Residues Sequences and Series

Final Remarks on Series and Power Series

If zn = an + ibn then the n-th term of the sequence of partial sums for
∑∞

k=1 zk is Sn =
∑n

k=1(ak + ibk) =
∑n

k=1 ak + i
∑n

k=1 bk . Thus,∑∞
k=1 zk converges to L = a + ib if and only if Re(Sn) =

∑n
k=1 ak

converges to a and Im(Sn) =
∑n

k=1 bk converges to b.

In summation notation a geometric series need not start at k = 1 nor
does the general term have to appear precisely as azk−1.

Example: Consider
∑∞

k=3 40
ik+2

2k−1 . It does not appear to match the

form
∑∞

k=1 az
k−1 of a geometric series. By writing out three terms,

∑∞
k=3 40

ik+2

2k−1 = 40 i5

22
+40 i6

23
+40 i7

24
+ · · · we see a = 40 i5

22
and z = i

2 .

Since |z | = 1
2 < 1, the sum is

∑∞
k=3 40

ik+2

2k−1 =
40 i5

22

1− i
2

= −4 + 8i .

A power series
∑∞

k=0 ak(z − z0)
k always possesses a radius of

convergence R . The ratio and root tests lead to 1
R
= limn→∞

∣
∣
∣
an+1

an

∣
∣
∣

and 1
R
= limn→∞

n
√

|an| assuming the appropriate limit exists.
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Series and Residues Taylor Series

Subsection 2

Taylor Series
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Series and Residues Taylor Series

Differentiation of Power Series

Theorem (Continuity)

A power series
∑∞

k=0 ak(z − z0)
k represents a continuous function f within

its circle of convergence |z − z0| = R .

Theorem (Term-by-Term Differentiation)

A power series
∑∞

k=0 ak(z − z0)
k can be differentiated term by term

within its circle of convergence |z − z0| = R .

Differentiating a power series term-by-term gives,

d

dz

∞∑

k=0

ak(z − z0)
k =

∞∑

k=0

ak
d

dz
(z − z0)

k =

∞∑

k=1

akk(z − z0)
k−1.

Using the ratio test, it can be shown that the original series and the
differentiated series have the same circle of convergence.

Since the derivative of a power series is another power series, the first
series can be differentiated as many times as we wish.
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Series and Residues Taylor Series

Integration of Power Series

Theorem (Term-by-Term Integration)

A power series
∑∞

k=0 ak(z − z0)
k can be integrated term-by-term within

its circle of convergence |z − z0| = R , for every contour C lying entirely
within the circle of convergence.

The theorem states that
ˆ

C

∞∑

k=0

ak(z − z0)
kdz =

∞∑

k=0

ak

ˆ

C

(z − z0)
kdz,

whenever C lies in the interior of |z − z0| = R .

Indefinite integration can also be carried out term by term:
ˆ ∞∑

k=0

ak(z − z0)
kdz =

∞∑

k=0

ak

ˆ

(z − z0)
kdz =

∞∑

k=0

ak

k + 1
(z−z0)

k+1+K .

The ratio test can be used to prove that both series have the same
circle of convergence.
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Series and Residues Taylor Series

Analyticity

Suppose a power series represents a function f within |z − z0| = R ,
i.e., f (z) =

∑∞
k=0 ak(z − z0)

k =
a0 + a1(z − z0) + a2(z − z0)

2 + a3(z − z0)
3 + · · ·.

Then, the derivatives of f are the series

f ′(z) =

∞∑

k=1

akk(z − z0)
k−1 = a1 + 2a2(z − z0) + 3a3(z − z0)

2 + · · ·

f ′′(z) =

∞∑

k=2

akk(k − 1)(z − z0)
k−2 = 2 · 1a2 + 3 · 2a3(z − z0) + · · ·

f ′′′(z) =
∞∑

k=3

akk(k − 1)(k − 2)(z − z0)
k−3 = 3 · 2 · 1a3 + · · ·

...
Since the power series represents a differentiable function f within its
circle of convergence |z − z0| = R , it represents an analytic function
within its circle of convergence.
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Series and Residues Taylor Series

Taylor Series and Maclaurin Series

Evaluating the derivatives at z = z0 gives

f (z0) = a0, f ′(z0) = 1!a1, f ′′(z0) = 2!a2, f ′′′(z0) = 3!a3.

In general, f (n)(z0) = n!an, or an = f (n)(z0)
n! , n ≥ 0.

When n = 0, we interpret the zero-order derivative as f (z0) and
0! = 1, so that the formula gives a0 = f (z0).
Substituting into the series yields

f (z) =
∞∑

k=0

f (k)(z0)

k!
(z − z0)

k .

This series is called the Taylor series for f centered at z0.
A Taylor series with center z0 = 0,

f (z) =
∞∑

k=0

f (k)(0)

k!
zk

is referred to as a Maclaurin series.
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Series and Residues Taylor Series

Taylor’s Theorem

Since a power series converges in a circular domain, and a domain D
is generally not circular, the following question arises:

Can we expand f in one or more power series that are valid, i.e., a
power series that converges at z and the number to which the series
converges is f (z), in circular domains that are all contained in D?

Theorem (Taylor’s Theorem)

Let f be analytic within a domain D and let z0 be a point in D. Then f

has the series representation f (z) =
∑∞

k=0
f (k)(z0)

k! (z − z0)
k valid for the

largest circle C with center at z0 and radius R that lies entirely within D.

Let z be a fixed point within the circle C and
let s denote the variable of integration. The
circle C is then described by |s−z0| = R . We
use the Cauchy integral formula to obtain the
value of f at z :
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Series and Residues Taylor Series

Proof of Taylor’s Theorem I

f (z) = 1
2πi

¸

C

f (s)
s−z

ds = 1
2πi

¸

C

f (s)
(s−z0)−(z−z0)

ds =

1
2πi

¸

C

f (s)
s−z0

(

1

1− z−z0
s−z0

)

ds. By the power series for 1
1−z

, we get

1

1− z−z0
s−z0

= 1 + z−z0
s−z0

+
(
z−z0
s−z0

)2
+ · · ·+

(
z−z0
s−z0

)n−1
+ (z−z0)n

(s−z)(s−z0)n−1 ,

whence, we get

f (z) = 1
2πi

¸

C

f (s)
s−z0

ds + z−z0
2πi

¸

C

f (s)
(s−z0)2

ds + (z−z0)2

2πi

¸

C

f (s)
(s−z0)3

ds +

· · ·+ (z−z0)n−1

2πi

¸

C

f (s)
(s−z0)n

ds + (z−z0)n

2πi

¸

C

f (s)
(s−z)(s−z0)n

ds. By Cauchy’s

integral formula for derivatives, f (z) =

f (z0)+
f ′(z0)
1! (z−z0)+

f ′′(z0)
2! (z−z0)

2+ · · ·+ f (n−1)(z0)
(n−1)! (z−z0)

n−1+Rn(z),

where Rn(z) =
(z−z0)

n

2πi

¸

C

f (s)
(s−z)(s−z0)n

ds. This is called Taylor’s

formula with remainder Rn. The goal now is to show that
Rn(z) → 0 as n → ∞.
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Series and Residues Taylor Series

Proof of Taylor’s Theorem II

To see that Rn(z) =
(z−z0)n

2πi

¸

C

f (s)
(s−z)(s−z0)n

ds → 0, it suffices to show

that |Rn(z)| → 0 as n → ∞. Since f is analytic in D, we know that
|f (z)| has a maximum value M on the contour C . In addition, since z

is inside C , |z − z0| < R and, consequently,
|s − z | = |s − z0 − (z − z0)| ≥ |s − z0| − |z − z0| = R − d , where
d = |z − z0| is the distance from z to z0. The ML-inequality then
gives

|Rn(z)| =
∣
∣
∣
(z−z0)n

2πi

¸

C

f (s)
(s−z)(s−z0)n

ds

∣
∣
∣ ≤ dn

2π · M
(R−d)Rn ·2πR = MR

R−d

(
d
R

)n
.

Because d < R ,
(
d
R

)n → 0 as n → ∞, we conclude that |Rn(z)| → 0
as n → ∞. It follows that the infinite series
f (z0) +

f ′(z0)
1! (z − z0) +

f ′′(z0)
2! (z − z0)

2 + · · · converges to f (z).
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Series and Residues Taylor Series

Isolated Singularities and Important Maclaurin Series

An isolated singularity of a function f is a point at which f fails to
be analytic but is, nonetheless, analytic at all other points throughout
some neighborhood of the point.

Example: f (z) = 1
z−5i has an isolated singularity at z = 5i .

The radius of convergence R of a Taylor series for f is the distance
from the center z0 of the series to the nearest isolated singularity of f .

Thus, if the function f is entire, then the radius of convergence of a
Taylor series centered at any point z0 is necessarily R = ∞.

We summarize some Important Maclaurin Series:

ez = 1 + z
1! +

z2

2! + · · · =
∑∞

k=0
zk

k!

sin z = z − z3

3! +
z5

5! − · · · = ∑∞
k=0(−1)k z2k+1

(2k+1)!

cos z = 1− z2

2! +
z4

4! − · · · = ∑∞
k=0(−1)k z2k

(2k)!
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Finding Radius of Convergence

Suppose the function f (z) = 3−i
1−i+z

is expanded in a Taylor series
with center z0 = 4− 2i . What is its radius of convergence R?

Observe that the function is analytic at every point except at
z = −1 + i , which is an isolated singularity of f . The distance from
z = −1 + i to z0 = 4− 2i is

|z − z0| =
√

(−1− 4)2 + (1− (−2))2 =
√
34.

Thus, the radius of convergence for the Taylor series centered at
4− 2i is R =

√
34.
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Uniqueness of the Series Expansion

If two power series with center z0,

∞∑

k=0

ak(z − z0)
k and

∞∑

k=0

bk(z − z0)
k

represent the same function f and have the same nonzero radius R of

convergence, then ak = bk = f (k)(z0)
k! , k = 0, 1, 2, . . ..

Stated in another way, the power series expansion of a function, with
center z0, is unique.

Thus, a power series expansion of an analytic function f centered at
z0, irrespective of the method used to obtain it, is the Taylor series
expansion of the function.
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Finding a Maclaurin Series

Find the Maclaurin expansion of f (z) = 1
(1−z)2

.

Recall that for |z | < 1,

1

1− z
= 1 + z + z2 + z3 + · · · .

If we differentiate both sides of the last result with respect to z ,

d

dz

1

1− z
=

d

dz
1 +

d

dz
z +

d

dz
z2 +

d

dz
z3 + · · ·

or
1

(1− z)2
= 0 + 1 + 2z + 3z2 + · · · =

∞∑

k=1

kzk−1.

The radius of convergence of the last power series is the same as the
original series R = 1.
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Finding a Taylor Series

Expand f (z) = 1
1−z

in a Taylor series with center z0 = 2i .

We use again 1
1−z

= 1 + z + z2 + · · ·. By adding and subtracting 2i

in the denominator, 1
1−z

= 1
1−z+2i−2i =

1
1−2i−(z−2i) =

1
1−2i · 1

1− z−2i
1−2i

.

We now write 1
1− z−2i

1−2i

as a power series:

1
1−z

= 1
1−2i

[

1 + z−2i
1−2i +

(
z−2i
1−2i

)2
+

(
z−2i
1−2i

)3
+ · · ·

]

or

1
1−z

= 1
1−2i +

1
(1−2i)2

(z−2i)+ 1
(1−2i)3

(z−2i)2+ 1
(1−2i)4

(z−2i)3+ · · · .
Because the distance from the center z0 = 2i to the nearest
singularity z = 1 is

√
5, we conclude that the circle of convergence is

|z − 2i | =
√
5.
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Power Series for the Same Function

We have represented the same function f (z) = 1
1−z

by two different
power series; one with center z0 = 0 and radius of convergence R = 1;
another with center z0 = 2i and radius of convergence R =

√
5.

The interior of the intersection of the two cir-
cles is the region where both series converge,
i.e., at a specified point z∗ in this region, both
series converge to same value f (z∗) = 1

1−z∗
.

Outside the colored region at least one of the
two series must diverge.
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Subsection 3

Laurent Series
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Isolated Singularities

Suppose that z = z0 is a singularity of a complex function f , i.e., a
point at which f fails to be analytic.

The point z = z0 is said to be an isolated singularity of the function
f if there exists some deleted neighborhood, or punctured open disk,
0 < |z − z0| < R of z0 throughout which f is analytic.

Example: The points z = 2i and z = −2i are singularities of
f (z) = z

z2+4
. Both 2i and −2i are isolated singularities since f is

analytic at every point in the neighborhood defined by |z − 2i | < 1,
except at z = 2i , and at every point in the neighborhood defined by
|z − (−2i)| < 1, except at z = −2i . In other words, f is analytic in
the deleted neighborhoods 0 < |z − 2i | < 1 and 0 < |z + 2i | < 1.

A singular point z = z0 of a function f is nonisolated if every
neighborhood of z0 contains at least one singularity of f other than z0.

Example: The branch point z = 0 is a nonisolated singularity of Lnz
since every neighborhood of z = 0 contains points on the negative
real axis.
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A New Kind of Series

If z = z0 is a singularity of a function f , then certainly f cannot be
expanded in a power series with z0 as its center.

About an isolated singularity z = z0, it is still possible to represent f
by a series involving both negative and nonnegative integer powers of
z − z0, i.e.,

f (z) = · · ·+ a−2

(z − z0)2
+

a−1

z − z0
+ a0+ a1(z − z0)+ a2(z − z0)

2+ · · · .

Example: Consider the function f (z) = 1
z−1 . The point z = 1 is an

isolated singularity of f and, consequently, the function cannot be
expanded in a Taylor series centered at that point. Nevertheless, f
can expanded in a series of the previous form that is valid for all z
near 1: f (z) = · · ·+ 0

(z−1)2
+ 1

z−1 +0+0 · (z − 1)+ 0 · (z − 1)2 + · · · .
This series representation is valid for 0 < |z − 1| < ∞.
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Principal Part and Analytic Part

Using summation notation, we can rewrite

f (z) =

∞∑

k=1

a−k(z − z0)
−k +

∞∑

k=0

ak(z − z0)
k .

The part with negative powers
∑∞

k=1 a−k(z − z0)
−k =

∑∞
k=1

a−k

(z−z0)k

is called the principal part of the series. It converges for
∣
∣
∣

1
z−z0

∣
∣
∣ < r∗

or, equivalently, for |z − z0| > 1
r∗

= r .

The part consisting of the nonnegative powers
∑∞

k=0 ak(z − z0)
k , is

called the analytic part of the series. It converges for |z − z0| < R .

Thus, the sum converges when z satisfies both |z − z0| > r and
|z − z0| < R , i.e., when z is a point in an annular domain defined by
r < |z − z0| < R .

By summing over negative and nonnegative integers, we can rewrite
f (z) =

∑∞
k=−∞ ak(z − z0)

k .
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An Example

The function f (z) = sin z
z4

is not analytic at the isolated singularity
z = 0 and hence cannot be expanded in a Maclaurin series.

However, sin z is an entire function having Maclaurin series

sin z = z − z3

3!
+

z5

5!
− z7

7!
+

z9

9!
− · · · ,

which converges for |z | < ∞.

By dividing this power series by z4 we obtain a series for f with
negative and positive integer powers of z :

f (z) =
sin z

z4
=

principal part
︷ ︸︸ ︷

1

z3
− 1

3!z

analytic part
︷ ︸︸ ︷

+
z

5!
− z3

7!
+

z5

9!
− · · · .

The analytic part converges for |z | < ∞.

The principal part is valid for |z | > 0.

The series converges for all z , but z = 0, i.e., is valid for 0 < |z | < ∞.
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Laurent Series and Laurent’s Theorem

A series representation of a function f consisting of both negative and
nonnegative powers of z − z0 is called a Laurent series or a Laurent

expansion of f about z0 on the annulus r < |z − z0| < R .

Theorem (Laurent’s Theorem)

Let f be analytic within the annulus D defined by r < |z − z0| < R . Then
f has the series representation f (z) =

∑∞
k=−∞ ak(z − z0)

k valid for
r < |z − z0| < R .

The coefficients ak are given by

ak =
1

2πi

˛

C

f (s)

(s − z0)k+1
ds,

k = 0,±1,±2, . . ., where C is a simple
closed curve that lies entirely within D and
has z0 in its interior.
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Proof of Laurent’s Theorem I

Let C1 and C2 be concentric circles with center
z0 and radii r1 and R2, where r < r1 < R2 <
R . Let z be a fixed point in D that satisfies
r1 < |z − z0| < R2. By introducing a crosscut
between C2 and C1, Cauchy’s formula gives
f (z) = 1

2πi

¸

C2

f (s)
s−z

ds − 1
2πi

¸

C1

f (s)
s−z

ds.

We can write 1
2πi

¸

C2

f (s)
s−z

ds =
∑∞

k=0 ak(z − z0)
k , where

ak = 1
2πi

¸

C2

f (s)
(s−z0)k+1 ds, k = 0, 1, 2, . . .. We have − 1

2πi

¸

C1

f (s)
s−z

ds =

1
2πi

¸

C1

f (s)
(z−z0)−(s−z0)

ds = 1
2πi

¸

C1

f (s)
z−z0

(

1

1− s−z0
z−z0

)

ds =

1
2πi

¸

C1

f (s)
z−z0

(

1 + s−z0
z−z0

+ · · ·+
(

s−z0
z−z0

)n−1
+ (s−z0)

n

(z−s)(z−z0)n−1

)

ds =

∑n
k=1

a−k

(z−z0)k
+ Rn(z), a−k = 1

2πi

¸

C1

f (s)
(s−z0)−k+1 ds,

Rn(z) =
1

2πi(z−z0)n

¸

C1

f (s)(s−z0)
n

z−s
ds.
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Proof of Laurent’s Theorem II

Now let d = |z − z0| and let M denote the maximum value of |f (z)|
on C1. Using |s − z0| = r1 and |z − s| = |z − z0 − (s − z0)|
≥ |z − z0| − |s − z0| = d − r1, the ML-inequality gives:

|Rn(z)| =
∣
∣
∣

1
2πi(z−z0)n

¸

C1

f (s)(s−z0)n

z−s
ds
∣
∣
∣ ≤ 1

2πdn

Mrn1
d−r1

2πr1 = Mr1
d−r1

(
r1
d

)n
.

Because r1 < d ,
(
r1
d

)n → 0 as n → ∞, and so |Rn(z)| → 0 as n → ∞.

Thus we have shown that − 1
2πi

¸

C1

f (s)
s−z

ds =
∑∞

k=1 a−k(z − z0)
k .

Therefore, overall we have

f (z) =
∞∑

k=1

a−k(z − z0)
k +

∞∑

k=0

ak(z − z0)
k .

By summing over all integer powers,

f (z) =
∞∑

k=−∞

ak(z−z0)
k , ak =

˛

C

f (z)

(z − z0)k+1
dz, k = 0,±1,±2, . . . .
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Remarks

In the case when a−k = 0 for k = 1, 2, . . ., the principal part is zero
and the Laurent series reduces to a Taylor series.

The annular domain r < |z − z0| < R need not have a “ring” shape.
Some other possible annular domains are:

(i) r = 0, R finite; In this case, the series converges in 0 < |z − z0| < R ,
i.e., the domain is a punctured open disk.

(ii) r 6= 0, R = ∞; In this case, the annular domain is r < |z − z0| and
consists of all points exterior to the circle |z − z0| = r .

(iii) r = 0, R = ∞; In this case, the domain is defined by 0 < |z − z0|. This
represents the entire complex plane except the point z0.

Finding the Laurent series of a function in a specified annular domain
is generally difficult, but in many instances we can obtain a desired
Laurent series by either

employing a known power series expansion of a function; or by
creative manipulation of a suitably chosen geometric series.
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Finding Laurent Expansions I

Expand f (z) = 1
z(z−1) in a Laurent series valid for the following

annular domains.

(a) 0 < |z | < 1 (b) 1 < |z | (c) 0 < |z − 1| < 1 (d) 1 < |z − 1|.
In parts (a) and (b) we want only powers of z , whereas in parts (c)
and (d) we want powers of z − 1.

(a) f (z) = − 1
z

1
1−z

= − 1
z

(
1 + z + z2 + z3 + · · ·

)
. The infinite series in

the brackets converges for |z | < 1, but after we multiply this
expression by 1

z
, the resulting series

f (z) = − 1
z
− 1− z − z2 − z3 − · · · converges for 0 < |z | < 1.

(b) To obtain a series that converges for 1 < |z |, we start by constructing
a series that converges for |1/z | < 1. We write the given function
f (z) = 1

z2
1

1− 1
z

= 1
z2

(
1 + 1

z
+ 1

z2
+ 1

z3
+ · · ·

)
. The series in the

brackets converges for | 1
z
| < 1 or equivalently for 1 < |z |. Thus, the

required Laurent series is f (z) = 1
z2

+ 1
z3

+ 1
z4

+ 1
z5

+ · · ·.
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Finding Laurent Expansions I

(c) We add and subtract 1 in the denominator: f (z) = 1
(1−1+z)(z−1) =

1
z−1

1
1+(z−1) =

1
z−1

(
1− (z − 1) + (z − 1)2 − (z − 1)3 + · · ·

)
=

1
z−1 − 1 + (z − 1)− (z − 1)2 + · · · . The requirement that z 6= 1 is
equivalent to 0 < |z − 1|, and the geometric series in brackets
converges for |z − 1| < 1. Thus, the last series converges for z
satisfying 0 < |z − 1| < 1.

(d) As in part (b), f (z) = 1
z−1

1
1+(z−1) =

1
(z−1)2

1
1+ 1

z−1

=

1
(z−1)2

(

1− 1
z−1 +

1
(z−1)2

− 1
(z−1)3

+ · · ·
)

=
1

(z−1)2
− 1

(z−1)3
+ 1

(z−1)4
− 1

(z−1)5
+ · · · . Because the series within the

brackets converges for | 1
z−1 | < 1, the final series converges for

1 < |z − 1|.
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More Laurent Series Expansions I

Expand f (z) = 1
(z−1)2(z−3)

in a Laurent series valid for

(a) 0 < |z − 1| < 2 (b) 0 < |z − 3| < 2.

(a) We need to express z − 3 in terms of z − 1. This can be done by
writing f (z) = 1

(z−1)2(z−3)
= 1

(z−1)2
1

−2+(z−1) =
−1

2(z−1)2
1

1− z−1
2

=

−1
2(z−1)2

(

1 + z−1
2 + (z−1)2

22
+ (z−1)3

23
+ · · ·

)

=

− 1
2(z−1)2

− 1
4(z−1) − 1

8 − 1
16 (z − 1)− · · · .

(b) To obtain powers of z − 3, we write z − 1 = 2 + (z − 3) and
f (z) = 1

(z−1)2(z−3)
= 1

z−3 [2 + (z − 3)]−2 = 1
4(z−3) [1 +

z−3
2 ]−2 =

1
4(z−3)

(

1 + (−2)
1!

(
z−3
2

)
+ (−2)(−3)

2!

(
z−3
2

)2
+ (−2)(−3)(−4)

3!

(
z−3
2

)3
+ · · ·

)

.

The series in the brackets is valid for | z−3
2 | < 1 or |z − 3| < 2.

Multiplying by 1
4(z−3) gives a series that is valid for 0 < |z − 3| < 2:

f (z) = 1
4(z−3) − 1

4 + 3
16(z − 3)− 1

8(z − 3)2 + · · ·.
George Voutsadakis (LSSU) Complex Analysis October 2014 45 / 77



Series and Residues Laurent Series

More Laurent Series Expansions II

Expand f (z) = 8z+1
z(1−z) in a Laurent series valid for 0 < |z | < 1.

By partial fractions we can rewrite f as f (z) = 8z+1
z(1−z) =

1
z
+ 9

1−z
.

Now we have
9

1− z
= 9 + 9z + 9z2 + · · · .

The foregoing geometric series converges for |z | < 1, but after we
add the term 1

z
to it, the resulting Laurent series

f (z) =
1

z
+ 9 + 9z + 9z2 + · · ·

is valid for 0 < |z | < 1.
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More Laurent Series Expansions III

Expand f (z) = 1
z(z−1) in a Laurent series valid for 1 < |z − 2| < 2.

The center z = 2 is a point of analyticity of the function f . Our goal
now is to find two series involving integer powers of z − 2, one
converging for 1 < |z − 2| and the other converging for |z − 2| < 2.
Decompose f into partial fractions: f (z) = −1

z
+ 1

z−1 = f1(z)+ f2(z).

f1(z) =
−1
z

= −1
2+z−2 = −1

2
1

1+ z−2
2

= −1
2

(

1− z−2
2 + (z−2)2

22 − · · ·
)

=

−1
2 + z−2

22 − (z−2)2

23 + (z−2)3

24 − · · · . This series converges for | z−2
2 | < 1

or |z − 2| < 2.

f2(z) =
1

z−1 = 1
1+z−2 = 1

z−2
1

1+ 1
z−2

= 1
z−2

(

1− 1
z−2 +

1
(z−2)2 − · · ·

)

=

1
z−2 − 1

(z−2)2 +
1

(z−2)3 − 1
(z−2)4 + · · · . It converges for | 1

z−2 | < 1 or

1 < |z − 2|.
Thus, we get f (z) = · · · − 1

(z−2)4
+ 1

(z−2)3
− 1

(z−2)2
+ 1

z−2

−1
2 +

z−2
22

− (z−2)2

23
+ (z−2)3

24
− · · ·. This representation is valid for z

satisfying 1 < |z − 2| < 2.
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More Laurent Series Expansions IV

Expand f (z) = e3

z
in a Laurent series valid for 0 < |z | < ∞.

We know that for |z | < ∞,

ez = 1 + z +
z2

2!
+

z3

3!
+ · · · .

We obtain the Laurent series for f by simply replacing z by 3
z
, when

z 6= 0:

e3/z = 1 +
3

z
+

32

2!z2
+

33

3!z3
+ · · · .

This series is valid for z 6= 0, that is, for 0 < |z | < ∞.
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Remarks

(i) Replacing the complex variable s with the usual symbol z , we see that
when k = −1, the formula for the Laurent series coefficients yields

a−1 =
1

2πi

˛

C

f (z)dz,

or more important,
˛

C

f (z)dz = 2πia−1.

(ii) Regardless how a Laurent expansion of a function f is obtained in a
specified annular domain it is the Laurent series; i.e., the series we
obtain is unique.
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Subsection 4

Zeros and Poles
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Review of Laurent Series

Suppose z = z0 is an isolated singularity of a complex function f , and
that

f (z) =
∞∑

k=−∞

ak(z − z0)
k =

∞∑

k=1

a−k(z − z0)
−k +

∞∑

k=0

ak(z − z0)
k

is the Laurent series representation of f valid for the punctured open
disk 0 < |z − z0| < R .

The part of the series with the negative powers of z − z0, i.e.,

∞∑

k=1

a−k(z − z0)
−k =

∞∑

k=1

a−k

(z − z0)k

is the principal part of the series.

We will classify the isolated singularity z = z0 according to the
number of terms in the principal part.
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Classification of Isolated Singular Points

An isolated singular point z = z0 of a complex function f is given a
classification depending on whether the principal part of its Laurent
expansion

f (z) =

∞∑

k=−∞

ak(z − z0)
k =

∞∑

k=1

a−k(z − z0)
−k +

∞∑

k=0

ak(z − z0)
k

contains zero, a finite number, or an infinite number of terms:
(i) If the principal part is zero, that is, all the coefficients a−k are zero,

then z = z0 is called a removable singularity.
(ii) If the principal part contains a finite number of nonzero terms, then

z = z0 is called a pole. If, in this case, the last nonzero coefficient in
∑

∞

k=1
a
−k

(z−z0)k
is a−n, n ≥ 1, then z = z0 is called a pole of order n. If

z = z0 is a pole of order 1, then the principal part contains exactly one
term with coefficient a−1 and the pole is called a simple pole.

(iii) If the principal part contains infinitely many nonzero terms, then
z = z0 is called an essential singularity.
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Form of Laurent Series Based on Classification

The form of a Laurent series for a function f , when z = z0 is one of
the various types of isolated singularities is summarized below:

z = z0 Laurent Series for 0 < |z − z0| < R

Removable Singularity a0 + a1(z − z0) + a2(z − z0)
2 + · · ·

Pole of Order n
a−n

(z − z0)n
+

a−(n−1)

(z − z0)n−1
+ · · ·+ a−1

z − z0
+a0 + a1(z − z0) + a2(z − z0)

2 + · · ·
Simple Pole

a−1

z − z0
+ a0 + a1(z − z0) + a2(z − z0)

2 + · · ·

Essential Singularity · · ·+ a−2

(z − z0)2
+

a−1

z − z0
+a0 + a1(z − z0) + a2(z − z0)

2 + · · ·
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A Removable Singularity

Recall the Maclaurin series for sin z : sin z = z − z3

3! +
z5

5! − · · ·. Divide
by z to get

sin z

z
= 1− z2

3!
+

z4

5!
− · · · .

Thus, all the coefficients in the principal part of the Laurent series
are zero. Hence, z = 0 is a removable singularity of the function
f (z) = sin z

z
.

If a function f has a removable singularity at z = z0, then we can
supply an appropriate definition for the value of f (z0) so that f
becomes analytic at z = z0.

Example: Since the right-hand side of the series above is 1 when we
set z = 0, it makes sense to define f (0) = 1. Hence the function
f (z) = sin z

z
is now defined and continuous at every complex number

z . Indeed, f is also analytic at z = 0 because it is represented by the
Taylor series 1− z2

3! +
z4

5! − · · · centered at 0 (a Maclaurin series).

George Voutsadakis (LSSU) Complex Analysis October 2014 54 / 77



Series and Residues Zeros and Poles

Poles and Essential Singularities

(a) Dividing sin z = z − z3

3! +
z5

5! − · · · by z2 shows that, for 0 < |z | < ∞,

sin z

z2
=

principal part
︷︸︸︷

1

z
− z

3!
+

z3

5!
− · · · .

Since a−1 6= 0, z = 0 is a simple pole of the function f (z) = sin z
z2

.

Similarly, z = 0 is a pole of order 3 of the function f (z) = sin z
z4

.

(b) The Laurent series of f (z) = 1
(z−1)2(z−3)

for 0 < |z − 1| < 2:

f (z) =

principal part
︷ ︸︸ ︷

− 1

2(z − 1)2
− 1

4(z − 1)
−1

8
− z − 1

16
− · · · .

Since a−2 = −1
2 6= 0, we conclude that z = 1 is a pole of order 2.

(c) The principal part of the Laurent expansion of f (z) = e3/z valid for
0 < |z | < ∞ contains an infinite number of nonzero terms. This
shows that z = 0 is an essential singularity of f .
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Zeros and Multiplicities

A number z0 is a zero of a function f if f (z0) = 0.

We say that an analytic function f has a zero of order n at z = z0 if
z0 is a zero of f and of its first n − 1 derivatives, but not of its n-th
derivative, i.e., f (z0) = 0, f ′(z0) = 0, f ′′(z0) = 0, . . ., f (n−1)(z0) = 0,
but f (n)(z0) 6= 0.

A zero of order n is also referred to as a zero of multiplicity n.

Example: Consider f (z) = (z − 5)3.

f (5) = 0, f ′(5) = 0, f ′′(5) = 0, but f ′′′(5) = 6 6= 0.

Thus, f has a zero of order (or multiplicity) 3 at z0 = 5.

A zero of order 1 is called a simple zero.
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Order of Zeros

Theorem (Zero of Order n)

A function f that is analytic in some disk |z − z0| < R has a zero of order
n at z = z0 if and only if f can be written f (z) = (z − z0)

nφ(z), where φ
is analytic at z = z0 and φ(z0) 6= 0.

Partial Proof (“only if” Part): Given that f is analytic at z0, it can be
expanded in a Taylor series that is centered at z0 and is convergent
for |z − z0| < R . Since, in a Taylor series f (z) =

∑∞
k=0 ak(z − z0)

k ,

ak = f (k)(z0)
k! , k = 0, 1, . . ., it follows that the first n terms are zero.

So f (z) = an(z − z0)
n + an+1(z − z0)

n+1 + an+2(z − z0)
n+2 + · · · =

(z − z0)
n
(
an + an+1(z − z0) + an+2(z − z0)

2 + · · ·
)
. Letting

φ(z) = an + an+1(z − z0) + an+2(z − z0)
2 + · · ·, we conclude

f (z) = (z − z0)
nφ(z), where φ is an analytic function, such that

φ(z0) = an 6= 0 because an = f (n)(z0)
n! 6= 0.
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Computing the Order of a Zero Using a Power Series

The analytic function f (z) = z sin z2 has a zero at z = 0.

If we replace z by z2 in the Maclaurin series for sin z , we obtain

sin z2 = z2 − z6

3!
+

z10

5!
− · · · .

Then, by factoring z2 out, we can rewrite f as

f (z) = z sin z2 = z3φ(z),

where φ(z) = 1− z4

3! +
z8

5! − · · · and φ(0) = 1.
This shows that z = 0 is a zero of order 3 of f .
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Poles of Order n

A pole of order n may be characterized analogously to the
characterization of zeros:

Theorem (Pole of Order n)

A function f analytic in a punctured disk 0 < |z − z0| < R has a pole of

order n at z = z0 if and only if f can be written f (z) = φ(z)
(z−z0)n

, where φ is

analytic at z = z0 and φ(z0) 6= 0.

Partial Proof (“only if” Part): Since f is assumed to have a pole of
order n at z0, it can be expanded in a Laurent series f (z) = a−n

(z−z0)n

+ · · ·+ a−2

(z−z0)2
+ a−1

z−z0
+ a0 + a1(z − z0)+ · · ·, valid in some punctured

disk 0 < |z − z0| < R . By factoring out 1
(z−z0)n

, f (z) = φ(z)
(z−z0)n

, where

φ(z) = a−n + · · ·+ a−2(z − z0)
n−2 + a−1(z − z0)

n−1 + a0(z − z0)
n +

a1(z − z0)
n+1 + · · ·. This is a power series valid for the open disk

|z − z0| < R . Since z = z0 is a pole of order n of f , a−n 6= 0.
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Zeros and Poles

A zero z = z0 of an analytic function f is isolated in the sense that
there exists some neighborhood of z0 for which f (z) 6= 0 at every
point z in that neighborhood except at z = z0.

As a consequence, if z0 is a zero of a nontrivial analytic function f ,
then the function 1

f (z) has an isolated singularity at the point z = z0.

Theorem (Pole of Order n)

If the functions g and h are analytic at z = z0 and h has a zero of order n
at z = z0 and g(z0) 6= 0, then the function f (z) = g(z)

h(z) has a pole of order
n at z = z0.

Because h has a zero of order n, h(z) = (z − z0)
nφ(z), where φ is

analytic at z = z0 and φ(z0) 6= 0. Thus, f can be written

f (z) = g(z)/φ(z)
(z−z0)n

. Since g and φ are analytic at z = z0 and φ(z0) 6= 0,

it follows that the function g/φ is analytic at z0 and g(z0)/φ(z0) 6= 0.
We conclude that the function f has a pole of order n at z0.
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Examples

(a) Inspection of the rational function

f (z) =
2z + 5

(z − 1)(z + 5)(z − 2)4

shows that the denominator has zeros of order 1 at z = 1 and
z = −5, and a zero of order 4 at z = 2. Since the numerator is not
zero at any of these points, it follows from the theorem that f has
simple poles at z = 1 and z = −5, and a pole of order 4 at z = 2.

(b) z = 0 is a zero of order 3 of z sin z2. The reciprocal function

f (z) =
1

z sin z2

has a pole of order 3 at z = 0.
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Remarks

(i) If a function f has a pole at z = z0, then |f (z)| → ∞ as z → z0 from
any direction. Thus, we can write lim

z→z0
f (z) = ∞.

(ii) A function f is meromorphic if it is analytic throughout a domain D,
except possibly for poles in D. It can be proved that a meromorphic
function can have at most a finite number of poles in D.

E.g., the rational function

f (z) =
1

z2 + 1

is meromorphic in the complex plane.
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Subsection 5

Residues and Residue Theorem
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Residue

If a complex function f has an isolated singularity at a point z0, then
f has a Laurent series representation f (z) =

∑∞
k=−∞ ak(z − z0)

k =
· · ·+ a−2

(z−z0)2
+ a−1

z−z0
+ a0 + a1(z − z0) + · · ·, which converges for all z

in some deleted neighborhood 0 < |z − z0| < R of z0.

We now focus on the coefficient a−1 and its importance in the
evaluation of contour integrals.

The coefficient a−1 is called the residue of the function f at the
isolated singularity z0 and denoted

a−1 = Res(f (z), z0).

Recall, if the principal part of the series valid for 0 < |z − z0| < R

contains a finite number of terms with a−n the last nonzero
coefficient, then z0 is a pole of order n; if the principal part contains
an infinite number of terms with nonzero coefficients, then z0 is an
essential singularity.
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Examples of Residues

(a) We have seen that z = 1 is a pole of order two of the function
f (z) = 1

(z−1)2(z−3)
. The Laurent series valid for the deleted

neighborhood 0 < |z − 1| < 2 is

f (z) = − 1/2

(z − 1)2
+

−1/4

z − 1
− 1

8
− z − 1

16
− · · · .

Thus, the coefficient of 1
z−1 is a−1 = Res(f (z), 1) = −1

4 .

(b) We also saw that z = 0 is an essential singularity of f (z) = e3/z . Its
Laurent series is

e3/z = 1 +
3

z
+

32

2!z2
+

33

3!z3
+ · · · , 0 < |z | < ∞.

Hence, the coefficient of 1
z
is a−1 = Res(f (z), 0) = 3.
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Residue at a Simple Pole

We examine ways of obtaining a−1 when z0 is a pole of a function f ,
without the necessity of expanding f in a Laurent series at z0.

We begin with the residue at a simple pole:

Theorem (Residue at a Simple Pole)

If f has a simple pole at z = z0, then

Res(f (z), z0) = lim
z→z0

(z − z0)f (z).

Since f has a simple pole at z = z0, its Laurent expansion convergent
on a punctured disk 0 < |z − z0| < R has the form

f (z) =
a−1

z − z0
+ a0 + a1(z − z0) + a2(z − z0)

2 + · · · ,

where a−1 6= 0. By multiplying both sides of this series by z − z0 and
then taking the limit as z → z0 we obtain limz→z0 (z − z0)f (z) =
limz→z0 [a−1 + a0(z − z0) + a1(z − z0)

2 + · · · ] = a−1 = Res(f (z), z0).
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Residue at a Pole of Order n

Theorem (Residue at a Pole of Order n)

If f has a pole of order n at z = z0, then

Res(f (z), z0) =
1

(n − 1)!
lim
z→z0

dn−1

dzn−1
(z − z0)

nf (z).

Since f has a pole of order n at z = z0, its Laurent expansion,
convergent on a punctured disk 0 < |z − z0| < R , has the form
f (z) = a−n

(z−z0)n
+ · · ·+ a−2

(z−z0)2
+ a−1

z−z0
+ a0 + a1(z − z0) + · · · , where

a−n 6= 0. We multiply by (z − z0)
n, (z − z0)

nf (z) = a−n + · · · +
a−2(z − z0)

n−2 + a−1(z − z0)
n−1 + a0(z − z0)

n + a1(z − z0)
n+1 + · · ·

and then differentiate n − 1 times:

dn−1

dzn−1
(z − z0)

nf (z) = (n − 1)!a−1 + n!a0(z − z0) + · · · .

Therefore, as z → z0, limz→z0
dn−1

dzn−1 (z − z0)
nf (z) = (n − 1)!a−1.
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Finding Residue at a Pole

The function f (z) =
1

(z − 1)2(z − 3)
has a simple pole at z = 3 and

a pole of order 2 at z = 1. Use the theorems to find the residues.

Since z = 3 is a simple pole,

Res(f (z), 3) = lim
z→3

(z − 3)f (z) = lim
z→3

1

(z − 1)2
=

1

4
.

At the pole of order 2,

Res(f (z), 1) =
1

1!
lim
z→1

d

dz
(z − 1)2f (z) = lim

z→1

d

dz

1

z − 3

= lim
z→1

−1

(z − 3)2
= − 1

4
.
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Second Method for Computing a Residue at a Simple Pole

Suppose a function f can be written as a quotient f (z) =
g(z)

h(z)
,

where g and h are analytic at z = z0. If g(z0) 6= 0 and if the function
h has a zero of order 1 at z0, then f has a simple pole at z = z0 and

Res(f (z), z0) =
g(z0)

h′(z0)
.

Since h has a zero of order 1 at z0, we must have h(z0) = 0 and
h′(z0) 6= 0. By definition of the derivative,

h′(z0) = limz→z0

h(z)− h(z0)

z − z0
= limz→z0

h(z)

z − z0
. Therefore,

Res(f (z), z0) = limz→z0 (z − z0)
g(z)

h(z)
= limz→z0

g(z)
h(z)
z−z0

=
g(z0)

h′(z0)
.
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Applying the Second Method

The polynomial z4 + 1 can be factored as

(z − z1)(z − z2)(z − z3)(z − z4),

where z1, z2, z3, and z4 are the four distinct roots of the equation
z4 + 1 = 0 (or, equivalently, the four fourth roots of −1). It follows
that the function f (z) = 1

z4+1
has four simple poles. By the root

formula z1 = eπi/4, z2 = e3πi/4, z3 = e5πi/4, and z4 = e7πi/4. We
compute the residues:

Res(f (z), z1) =
1

4z31
= 1

4e
−3πi/4 = − 1

4
√
2
− 1

4
√
2
i

Res(f (z), z2) =
1

4z32
= 1

4e
−9πi/4 = 1

4
√
2
− 1

4
√
2
i

Res(f (z), z3) =
1

4z33
= 1

4e
−15πi/4 = 1

4
√
2
+ 1

4
√
2
i

Res(f (z), z4) =
1

4z34
= 1

4e
−21πi/4 = − 1

4
√
2
+ 1

4
√
2
i .
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Using the Original Formula

We could have calculated each of the residues of f (z) = 1
z4+1

using
Res(f (z), zi) = limz→zi (z − zi)f (z).

E.g., at z1,

Res(f (z), z1) = limz→z1 (z − z1)
1

(z−z1)(z−z2)(z−z3)(z−z4)

= 1
(z1−z2)(z1−z3)(z1−z4)

= 1
(eπi/4−e3πi/4)(eπi/4−e5πi/4)(eπi/4−e7πi/4)

.

In simplifying the denominator of the last expression considerably
more algebra is involved than using the second method.
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Cauchy’s Residue Theorem

Complex integrals
¸

C
f (z)dz can sometimes be evaluated by summing

the residues at the isolated singularities of f within C :

Theorem (Cauchy’s Residue Theorem)

Let D be a simply connected domain and C a simple closed contour lying
entirely within D. If a function f is analytic on and within C , except at a
finite number of isolated singular points z1, z2, . . . , zn within C , then

˛

C

f (z)dz = 2πi
n∑

k=1

Res(f (z), zk).

Suppose C1,C2, . . . ,Cn are circles centered at z1, z2, . . . , zn,
respectively, such that Ck has a radius rk small enough so that
C1,C2, . . . ,Cn are mutually disjoint and are interior to the simple
closed curve C . We saw that

¸

Ck
f (z)dz = 2πiRes(f (z), zk), whence,

we have
¸

C
f (z)dz =

∑n
k=1

¸

Ck
f (z)dz = 2πi

∑n
k=1 Res(f (z), zk).
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Evaluation by the Residue Theorem I

Evaluate

˛

C

1

(z − 1)2(z − 3)
dz, where

(a) the contour C is the rectangle defined by x = 0, x = 4, y = −1, y = 1;
(b) the contour C is the circle |z | = 2.

(a) Since both z = 1 and z = 3 are poles within the rectangle, we have
˛

C

1

(z − 1)2(z − 3)
dz = 2πi [Res(f (z), 1) + Res(f (z), 3)]. We found

these residues already:

˛

C

1

(z − 1)2(z − 3)
dz = 2πi(−1

4 + 1
4) = 0.

(b) Since only the pole z = 1 lies within the circle |z | = 2, we have
˛

C

1

(z − 1)2(z − 3)
dz = 2πiRes(f (z), 1) = 2πi(−1

4 ) = − π
2 i .

George Voutsadakis (LSSU) Complex Analysis October 2014 73 / 77



Series and Residues Residues and Residue Theorem

Evaluation by the Residue Theorem II

Evaluate

˛

C

2z + 6

z2 + 4
dz, where the contour C is the circle |z − i | = 2.

By factoring the denominator z2 + 4 = (z − 2i)(z + 2i), we see that
the integrand has simple poles at −2i and 2i . Only 2i lies within the

contour C . Thus,

˛

C

2z + 6

z2 + 4
dz = 2πiRes(f (z), 2i). But

Res(f (z), 2i) = limz→2i (z − 2i) 2z+6
(z−2i)(z+2i) =

6+4i
4i = 3+2i

2i . Hence,
˛

C

2z + 6

z2 + 4
dz = 2πi

(
3 + 2i

2i

)

= π(3 + 2i).
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Evaluation by the Residue Theorem III

Evaluate

˛

C

ez

z4 + 5z3
dz , where the contour C is the circle |z | = 2.

Writing the denominator as z4 + 5z3 = z3(z + 5) reveals that the
integrand f (z) has a pole of order 3 at z = 0 and a simple pole at
z = −5. Only the pole z = 0 lies within the given contour. Thus, we
have
˛

C

ez

z4 + 5z3
dz = 2πiRes(f (z), 0) = 2πi

1

2!
lim
z→0

d2

dz2
z3 · ez

z3(z + 5)
=

πi lim
z→0

d

dz

ez(z + 4)

(z + 5)2
= πi lim

z→0

(z2 + 8z + 17)ez

(z + 5)3
=

17π

125
i .
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Evaluation by the Residue Theorem IV

Evaluate

˛

C

tan zdz, where the contour C is the circle |z | = 2.

The integrand f (z) = tan z = sin z
cos z has simple poles at the points

where cos z = 0. We saw that the only zeros of cos z are the real
numbers z = (2n+1)π

2 , n = 0,±1,±2, . . .. Only −π
2 and π

2 are within
the circle |z | = 2. Thus, we have
˛

C

tan zdz = 2πi [Res(f (z),−π
2 ) + Res(f (z), π2 )]. With f (z) = g(z)

h(z) ,

where g(z) = sin z , h(z) = cos z , and h′(z) = − sin z , we get

Res(f (z),−π
2 ) =

sin (−π
2 )

− sin (−π
2 )

= − 1. Res(f (z), π2 ) =
sin (π2 )

− sin (π2 )
= − 1.

Therefore,

˛

C

tan zdz = 2πi [−1− 1] = − 4πi .
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Evaluation by the Residue Theorem V

Evaluate

˛

C

e3/zdz, where the contour C is the circle |z | = 1.

We saw that z = 0 is an essential singularity of the integrand
f (z) = e3/z . So we cannot use the formulas

Res(f (z), z0) = lim
z→z0

(z − z0)f (z)

or
Res(f (z), z0) =

1

(n − 1)!
lim
z→z0

dn−1

dzn−1
(z − z0)

nf (z)

to find the residue of f at that point. Nevertheless, the Laurent series
of f at z = 0 gives

Res(f (z), 0) = 3.

Hence, we have
˛

C

e3/zdz = 2πiRes(f (z), 0) = 2πi(3) = 6πi .

George Voutsadakis (LSSU) Complex Analysis October 2014 77 / 77


	Series and Residues
	Sequences and Series
	Taylor Series
	Laurent Series
	Zeros and Poles
	Residues and Residue Theorem


