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Series and Residues Sequences and Series

Subsection 1

Sequences and Series
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Series and Residues Sequences and Series

Sequences

o A sequence {z,} is a function whose domain is the set of positive
integers and whose range is a subset of the complex numbers C.
@ Example: The sequence {1+ i"}is1+i, 0 ,1—i, 2 1+, ....

n:ll7 n=2’ n=3 n=4 p=5

o If limp— o0 2z, = L, we say the sequence {z,} is convergent, i.e., {z,}
converges to the number L if, for each positive real number €, an N
can be found, such that |z, — L| < &, whenever n > N.

@ Since |z, — L] is distance, the terms z, of a y
sequence that converges to L can be made .
arbitrarily close to L. In a different way, when °
a sequence {z,} converges to L, then all but
a finite number of the terms of the sequence
are within every e-neighborhood of L. | x

@ A sequence that is not convergent is said to be divergent.
Example: The sequence {1+ i"} is divergent since the general term
7z, = 14 i" does not approach a fixed complex number as n — oc.
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Series and Residues Sequences and Series

An Example of a Convergent Sequence

I'n—l—l In—l—l
@ The sequence {—} converges since lim —— = 0. As we see from
n

n—oo n
i1 0 1
_17_5’5717_5’.“7
the terms of the sequence spiral in toward the point z=0as n
incre :
increases y
i
4

Ql|—

" _[/"\\%x
-1 A

L
2
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Series and Residues Sequences and Series

Criterion for Convergence

Theorem (Criterion for Convergence)

A sequence {z,} converges to a complex number L = a+ ib if and only if
Re(z,) converges to Re(L) = a and Im(z,) converges to Im(L) = b.

3 .
@ Example: Consider the sequence { o }

n—+2ni
34+ni  (3+ni)(n—2ni) 2n>+3n .n*>—6n
ot oni n? + 4n? B2 + 5n2
Thus, we get .
Re(z) 232 3 2
5n? 5 5n 5

Im(z,) n>—6n 1 6 N 1
Z === = = —.
" 5n? 5 51 5
By the theorem, the given sequence converges to a + ib = % T %i.
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Series and Residues Sequences and Series

Series and Geometric Series

o An infinite series or series of complex numbers Y02, zx = z1 + 2
+z3+ --- 4+ z,+ - is convergent if the sequence of partial sums
{S,}, where S, = z; + zo + z3+ - -+ + z, converges. If S, — L as
n — 0o, we say that the series converges to L or that the sum of
the series is L.

@ Geometric Series: A geometric series is any series of the form
S azk l=a+az+az?+ -+ az" 1+ ... . The n-th term of
the sequence of partial sumsis S, = a+az+az> + ---+az" 1. To
get a formula for S,, multiply by z: zS, = az+az?> + az3+ --- + az".
Subtract this from S,: S, — zS, = (a4 az + az?> + -+ +az""1) —
(az+az?+az3+ - +az" ! +az") =a— az". Thus,

a(l—2z")
(1-2)S,=a(l—z"), and, hence, S, = ——

o If [zl <1,2z2" = 0asn—o0. SoS, = 2. lLe, for |z] <1,
2 =ataz+az?+ - +az" 4.

o If |z| > 1, a geometric series diverges.
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Series and Residues Sequences and Series

Special Geometric Series

@ Recall the sum formulas
a(l—2z" a
Sn = ( z )v
1-—z 1-z
o If we set a =1, we get

:3+32+322+"'+32n_1+"'

1
——=14z+22+ 22+
1-z

@ If we then replace z by —2z:

1
1+Z:1—z+22—z3+---
=2 —14z+22+28 4+ 420 L
Rewriting the left S|de of the above equation as 11_2" = 1712 + 1__22,
we get N
—— =14z+2+2+ -+ 1+
11—~z 11—~z
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Series and Residues Sequences and Series

A Convergent Geometric Series

@ The infinite series

Z(1+2i)k_1+2i+(1+2i)2+(1+2i)3
5k 5 52 53

is a geometric series.
It has the standard form, with a = (1 +2i) and z = 1(1 4 2i). Since
|z| = % < 1, the series is convergent and its sum is given by:

== = _J.
1+2 _ 5
— L= = J 4 — 2 2

i1+2/)k L2 142 1,
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Series and Residues Sequences and Series

Necessary Condition for Convergence

@ We turn to some important theorems about convergence and
divergence of an infinite series:

Theorem (A Necessary Condition for Convergence)

If > 7o zk converges, then lim,_,o z, = 0.

@ Let L denote the sum of the series. Then S, — L and 5,1 — L as
n — oco. By taking the limit of both sides of S, — S,_1 = z, as
n — 0o, we obtain the desired conclusion.

Theorem (The n-th Term Test for Divergence)
If limp—o0 zn # 0, then Y77, z, diverges.

diverges, since z, = 2 — j £ 0 as

o Example: The series > ; %t3
n — oo.

The geometric series > 7, az diverges if |z| > 1 because even in
the case when lim,_, o |2"| exists, the limit is not zero.
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Series and Residues Sequences and Series

Absolute and Conditional Convergence

Definition (Absolute and Conditional Convergence)

An infinite series > %~ ; zx is said to be absolutely convergent if
k=1 _

Y ey |zk| converges. An infinite series )~ ; z is said to be

conditionally convergent if it converges but Y . ; |z| diverges.

o In elementary calculus a real series of the form » 27 ; k—lp is called a
p-series and
@ converges for p > 1;
o diverges for p < 1.

ik
5 2 o8] [/ o 0
o Example: The series ) ;7 7z Is absolutely convergent: The series
ik | . o
> kh—1 |7z| is the same as the real convergent p-series /2, %
@ As in real calculus, absolute convergence implies convergence.
. 3 co ik _ . 1 i
® Example: The series > /7| 15 =i — 35 — 37 + - -+ converges, because
it is was shown to be absolutely convergent.
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Series and Residues = Sequences and Series

Tests for Convergence

Theorem (The Ratio Test)
= L

Let >"77, zx be a series of nonzero terms, with limp_,

Zn+1
Zn

(i) If L <1, then the series converges absolutely.
(i) If L>1or L = oo, then the series diverges.
(iii) If L =1, the test is inconclusive.

Theorem (The Root Test)

Let > %2, zx be a series of complex terms, with lim,_,. ¥/|z,| = L.
k=1
(i) If L < 1, then the series converges absolutely.
(i) If L > 1 or L= 00, then the series diverges.

(iii) If L =1, the test is inconclusive.

@ We are interested primarily in applying these tests to power series.
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Series and Residues Sequences and Series

Power Series and Circle of Convergence

o An infinite series of the form >0° ) ak(z — z0)¥ = ag + a1(z — z0)+
ax(z — z9)? + - - -, where the coefficients aj are complex constants, is
called a power series in z — z.

@ The power series is said to be centered at zy and the complex point
zp is referred to as the center of the series.

o It is also convenient to define (z — z)° = 1 even when z = z.
@ Every complex power series has a radius it
of convergence and a circle of conver-
gence: It is the circle centered at zy of
largest radius R > 0 for which the series
converges at every point within the circle

|Z - Zo| = R divergence

lz—zyl =R

A power series converges absolutely at all points z satisfying
|z — zg| < R, and diverges at all points z, with |z — z| > R.
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Series and Residues Sequences and Series

Possibilities for Radius of Convergence

@ The radius of convergence can be:
(i) R =0 (series converges only at its center z = z);
(i) R a finite positive number (series converges in interior of |z — z| = R);
(iii) R = oo (series converges for all z).

A power series may converge at some, all, or at none of the points on

the actual circle of convergence. -
V4
. k+1 . . n+1
o Example: Consider >~°; £—. By the ratio test, lim,_, ;’:;11 =

limp—o0 73712| = |z]. Thus, the series converges absolutely for

|z| < 1. The circle of convergence is |z| = 1 and the radius of
convergence is R = 1. On the circle |z| =1, the series does not
converge absolutely since Y ; % is the well-known divergent
harmonic series. This does not mean that the series diverges on the
circle of convergence. In fact, at z = —1, 2, (—1Zk+1 is the
convergent alternating harmonic series. It can be shown that the

series converges at all points on the circle |z| = 1 except at z = 1.
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Series and Residues Sequences and Series

Dependence of the Radius on the Coefficients

@ For a power series
o0
Z k
ak(z — Zo) 9
k=0

the limit depends only on the coefficients ax. Thus:

(i) if lim || L # 0, the radius of convergence is R = %;
n—oo| ap

_— . a . .
(i) if lim S 0, the radius of convergence is R = oo;
n—oo| ap

(iii) if lim | 22| = oo, the radius of convergence is R = 0.
n—oo| an

@ Similar conclusions can be made for the root test by utilizing

lim {/[ap|. E.g., if lim {/]ap] = L # 0, then R = 7.
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Series and Residues Sequences and Series

Finding Radius of Convergence Using Ratio Test

_1)k+1
@ Consider the power series sl k)| (z2=1-—§)~
k=1 '
—1 n+1
With the identification a, = %, we have
n!
(_1)n+2
fin L = ffgp —— =6
n—oo | (=1)"+1 n—oon—+1

n!

Hence, the radius of convergence is co. The power series with center
zp = 1 + i converges absolutely for all z, i.e., for |z — 1 — | < occ.
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Series and Residues Sequences and Series

Finding Radius of Convergence Using Root Test

: & Bk 1\F _
@ Consider the power series Z <7> (z —2i)k.
— 2k +5

6 1\"
o With a, = <2Z i 5> , the root test gives
Y o B 6n+1\
n||—>ng>o |3n| o nll>ngo <2n+5) ==

We conclude that the radius of convergence of the series is R = %
The circle of convergence is |z — 2i| = %; the power series converges
absolutely for |z — 2i| < 1.
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Series and Residues Sequences and Series

The Arithmetic of Power Series

@ Some facts concerning power-series stated informally:

o A power series >~ ak(z — 2)* can be multiplied by a nonzero

complex constant ¢ without affecting its convergence or divergence.

o A power series > o ak(z — z0)* converges absolutely within its circle
of convergence. As a consequence, within the circle of convergence the
terms of the series can be rearranged and the rearranged series has the
same sum L as the original series.

o Two power series Y= ak(z — 20)* and 3", bk(z — 20)* can be
added and subtracted by adding or subtracting like terms:

Z a(z — z)k £ Z bi(z — z0)* = Z(ak + b )(z — 20)X.
k=0 k=0 k=0

o If both series have the same nonzero radius R of convergence, the
radius of convergence of 3"5° (ak & bi)(z — 20)" is R.
o If one series has radius of convergence r > 0 and the other R > 0,
where r # R, then >°3° (ak £ bk)(z — 20)* has radius of convergence
the smaller of r and R.
@ Two power series can (with care) be multiplied and divided.
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Series and Residues Sequences and Series

Final Remarks on Series and Power Series

o If z, = a, + ib, then the n-th term of the sequence of partial sums for
Ziolzk is S, =ZZ 1(ak+ibk) —ZZ 1ak+izz 1 bk. Thus,
> ey zi converges to L = a+ ib if and only if Re(S,) = >/ _; ax
converges to a and Im(S,) = > }_; bx converges to b.

@ In summation notation a geometric series need not start at k = 1 nor
does the general term have to appear precisely as az¥~1.

@ Example: ConS|der > e 3402k . It does not appear to match the

form > 72 g7 o & geometrlc series. By writing out three terms,

> i3 403 k+21—40 +40 3+4Oé4+ weseea:40£—52 and z = 1.
. 401

Since |z| = 3 < 1, the sum is 37 4Oéi—t21 =1 Z

;5

= —4+8i.

N|=.

o A power series > 77 ak(z — 20)k always possesses a radius of

an+1
an

convergence R. The ratio and root tests lead to % = limp_ 00
and % = lim,— 00 v/|an| assuming the appropriate limit exists.

George Voutsadakis (LSSU) Complex Analysis October 2014 19 /77



Series and Residues = Taylor Series

Subsection 2

Taylor Series
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Series and Residues = Taylor Series

Differentiation of Power Series

Theorem (Continuity)

. fo%) k . . .
A power series > 2 5 ax(z — z9)* represents a continuous function f within
its circle of convergence |z — zg| =

Theorem (Term-by-Term Differentiation)

A power series > 52 5 ak(z — z0)¥ can be differentiated term by term
within its circle of convergence |z — z| = R

° leFerentlatlng a power serles term-by-term g|ves

e Zak (z — z0)* Z (z—z0)k = Zakk(z — zp)k L.

k=0 k=1
@ Using the ratio test, it can be shown that the original series and the

differentiated series have the same circle of convergence.
@ Since the derivative of a power series is another power series, the first
series can be differentiated as many times as we wish.
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Series and Residues = Taylor Series

Integration of Power Series

Theorem (Term-by-Term Integration)

A power series Y7 o ax(z — 20)k can be integrated term-by-term within

its circle of convergence |z — zy| = R, for every contour C lying entirely
within the circle of convergence.

@ The theorem states that

/CZ ax(z — z0)Kdz = kzzo a /C (z — z0)<dz,

k=0
whenever C lies in the interior of |z — z5| = R.
@ Indefinite integration can also be carried out term by term:

/Zak(z—zo)kdz = Zak/(z—zo)kdz _ Z ak (z—zo)k+1-|—K.
k=0 k=0 k=0

k+1

@ The ratio test can be used to prove that both series have the same

circle of convergence.
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Series and Residues = Taylor Series

Analyticity

@ Suppose a power series represents a function f within |z — zp| = R,
e, f(z) =320 ak(z — 20)< =
ap + al(z = Zo) + 32(2 = 20)2 + 33(2 = 20)3 aF oo

@ Then, the derivatives of f are the series

fl(z) = > axk(z— 20)' = a1 +2ay(z — 20) + 3a3(z — 20)2 + - -
k=1

fl(z) = Y ack(k—1)(z— 20)*2 =212, + 3 2a3(z — z0) + - -
k=2

f1(z) = iakk(k 1) (k—2)(z—2)k3=3-2-1a3+--
k=3

@ Since the power series represents a differentiable function f within its
circle of convergence |z — zp| = R, it represents an analytic function
within its circle of convergence.
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Series and Residues = Taylor Series

Taylor Series and Maclaurin Series

o Evaluating the derivatives at z = zy gives

f(ZO) = dap, f,(ZO) = 1!31, f”(Zo) == 2!32, f/,/(Zo) == 3!33.

@ In general, f(")(zo) = nla,, or a, = % n>0.

@ When n = 0, we interpret the zero-order derivative as f(z) and
0! =1, so that the formula gives ap = f(zp).

@ Substituting into the series yields

% ()
fz) =Y T 2
k=0 ’

This series is called the Taylor series for f centered at z.
@ A Taylor series with center zy = 0,

< £k
f(z) = Z o) z~
k=0

k!

is referred to as a Maclaurin series.
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Series and Residues = Taylor Series

Taylor's Theorem

@ Since a power series converges in a circular domain, and a domain D
is generally not circular, the following question arises:
Can we expand f in one or more power series that are valid, i.e., a
power series that converges at z and the number to which the series
converges is f(z), in circular domains that are all contained in D?

Theorem (Taylor's Theorem)

Let f be analytic within a domain D and let zg be a point in D. Then f

. . (k) .
has the series representation f(z) = >";7 f k(!z")(z — 29)¥ valid for the

largest circle C with center at zy and radius R that lies entirely within D.

@ Let z be a fixed point within the circle C and

let s denote the variable of integration. The

circle C is then described by |s—z)| = R. We c
use the Cauchy integral formula to obtain the

value of f at z:
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Series and Residues = Taylor Series

Proof of Taylor's Theorem |

f
° f(z) = %fﬁc sfz)ds % EﬁC (s— zo)( ()z zo)ds -
1

— e (%) ds. By the power series for =, we get

z—29
s—2g

——]__|_z 20 4 <ﬂ>2+...+ <ﬂ)n_l+%
z—29 — s—2zp (S—Z)(S—Z())nfl’

1— S—2p S—2p
s—zg

whence, we get

f(Z 27n ¢c5 sz)od + Z2 2 §C (s— zo)zds+ = ZO) gSC (s— zo)3ds+
n—1
g =) ¢C — zo)nd5_|_ (z= z?) $c = Z)(S zo),,ds By Cauchy's

27i
mtegral formula for derivatives, f(z) =

Flzo) +T5 (e—20) + T (2 —20) 4 -+ TG (2 20) 4 Rae),

where R,(z) = Z;?) = z§ z) —y7ds. This is called Taylor’s
formula with remainder R,. The goal now is to show that

R.(z) =+ 0as n — .
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Series and Residues = Taylor Series

Proof of Taylor's Theorem Il

@ To see that R,(z) = (22;?) $c (s—z;((:)—zo)" ds — 0, it suffices to show
that |R,(z)| — 0 as n — oco. Since f is analytic in D, we know that
|f(z)| has a maximum value M on the contour C. In addition, since z
is inside C, |z — zp| < R and, consequently,
|s—z|=|s—zy—(z—2)| > |s — 20| — |z — 20| = R — d, where
d = |z — zp| is the distance from z to zy. The ML-inequality then
gives

" f M MR (d
|Rn(2)] = (22;?) bc = z)((j) zo)nds = 27r "(R=d)R" 2R = 774 (F) -
Because d < R, (4)" — 0 as n — oo, we conclude that |R,(z)| — 0

as n— oo It follows that the infinite series
F(20) + 782 (2 — zg) + T2 (2 — 2)> + - converges to f(2).
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Series and Residues = Taylor Series

Isolated Singularities and Important Maclaurin Series

@ An isolated singularity of a function f is a point at which f fails to
be analytic but is, nonetheless, analytic at all other points throughout
some neighborhood of the point.

Example: f(z) = - has an isolated singularity at z = 5i.

@ The radius of convergence R of a Taylor series for f is the distance

from the center zy of the series to the nearest isolated singularity of f.

@ Thus, if the function f is entire, then the radius of convergence of a
Taylor series centered at any point zg is necessarily R = oc.

@ We summarize some Important Maclaurin Series:

2 k
e = 1+§5+5+-=>2 20k
o 2k+1
sinz. = z‘?"‘%_"'_Zk ol— 1)k(2zk+1)|
4 2k
cosz = 145 =32 (12
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Series and Residues = Taylor Series

Finding Radius of Convergence

@ Suppose the function f(z) = 1%74’;2 is expanded in a Taylor series

with center zg = 4 — 2i. What is its radius of convergence R?

Observe that the function is analytic at every point except at
z = —1+ i, which is an isolated singularity of f. The distance from
z=—-14+itozg=4—2iis

2= 20 = /(-1 - 4)2 + (1 - (-2))2 = V34.

Thus, the radius of convergence for the Taylor series centered at

4 —2iis R =/34.
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Series and Residues = Taylor Series

Uniqueness of the Series Expansion

@ If two power series with center z,

0o oo
Z a(z — z9)* and Z bi(z — z9)¥
k=0 k=0
represent the same function f and have the same nonzero radius R of
convergence, then ax = by, = % k=0,1,2,....
@ Stated in another way, the power series expansion of a function, with
center zp, IS unique.

@ Thus, a power series expansion of an analytic function f centered at
2o, irrespective of the method used to obtain it, is the Taylor series
expansion of the function.
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Series and Residues = Taylor Series

Finding a Maclaurin Series

@ Find the Maclaurin expansion of f(z) = (=R

Recall that for |z| < 1,

=1+z4+224+28+-.
1—z

If we differentiate both sides of the last result with respect to z,

d 1 _d,  d . d, d,.
dzl1—z dz dz dz dz

or

1 o0
m=0+1+22+322+: Zkzk_l.

The radius of convergence of the last power series is the same as the
original series R = 1.
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Series and Residues = Taylor Series

Finding a Taylor Series

o Expand f(z) = X i

in a Taylor series with center zy = 2i.
We use again % 14z + z% +---. By adding and subtracting 2i

1 1 _ 1 _ 1 1
in the denominator, 1= = 15 = 15-z=2) = T =i
—Z21
We now write 17172, as a power series:
T 12
1 1 z-2i z=2i\? z=2i\3
-1 |1t t (1—2:’) + (1—2:‘) R

=t (1—12;)2 (z—-2i)+ (1—12,')3 (z—2i)2+ (1—12,')4 (z=2i)°+---.

Because the distance from the center zy = 2/ to the nearest
singularity z = 1 is /5, we conclude that the circle of convergence is

|z — 2i] = /5.
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Series and Residues = Taylor Series

Power Series for the Same Function

@ We have represented the same function f(z) = ﬁ by two different
power series; one with center zg = 0 and radius of convergence R = 1,
another with center zy = 2i and radius of convergence R = /5.

U The interior of the intersection of the two cir-

cles is the region where both series converge,
i.e., at a specified point z* in this region, both
series converge to same value f(z*) = .
Outside the colored region at least one of the
two series must diverge.

4
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Series and Residues Laurent Series

Subsection 3

Laurent Series
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Series and Residues Laurent Series

Isolated Singularities

@ Suppose that z = zj is a singularity of a complex function f, i.e., a
point at which f fails to be analytic.

@ The point z = zy is said to be an isolated singularity of the function
f if there exists some deleted neighborhood, or punctured open disk,
0 < |z — 29| < R of zy throughout which f is analytic.

Example: The points z = 2/ and z = —2/ are singularities of

f(z) = - Both 2i and —2i are isolated singularities since f is
analytic at every point in the neighborhood defined by |z — 2i| < 1,
except at z = 2/, and at every point in the neighborhood defined by
|z — (—2i)| < 1, except at z = —2i. In other words, f is analytic in
the deleted neighborhoods 0 < |z —2/| <1 and 0 < |z +2/| < 1.

@ A singular point z = zy of a function f is nonisolated if every
neighborhood of zy contains at least one singularity of f other than z.
Example: The branch point z =0 is a nonisolated singularity of Lnz
since every neighborhood of z = 0 contains points on the negative
real axis.
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Series and Residues Laurent Series

A New Kind of Series

@ If z = z is a singularity of a function f, then certainly f cannot be
expanded in a power series with zy as its center.

@ About an isolated singularity z = zp, it is still possible to represent f
by a series involving both negative and nonnegative integer powers of
z— 29, i.€.,

a_»o a_1

T e e e _ _ 2 DY
f(z) = +(Z—Zo)2 Z_ZO—i—ao—i—al(z 20) + ax(z — z0)° + .

o Example: Consider the function f(z) = -;. The point z=1is an
isolated singularity of f and, consequently, the function cannot be
expanded in a Taylor series centered at that point. Nevertheless, f
can expanded in a series of the previous form that is valid for all z
near 1: f(z) = ---—l—#—i—;ll+0+0-(z—1)+0-(z—1)2+---
This series representation is valid for 0 < |z — 1| < oo.
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Principal Part and Analytic Part

@ Using summation notation, we can rewrite
o o
—k k
z) = Za_k(z—zo) —i—Zak(z—zo) .
k=1 k=0

o The part with negative powers Y o ; a_x(z — z9) % = >3, (z ZO)k

is called the principal part of the series. It converges for ‘Z_Z

<r*
or, equivalently, for |z — z| > &% =r.

© The part consisting of the nonnegatwe powers > 2% o ak(z — z0)k, is
called the analytic part of the series. It converges for |z — zp| < R.

® Thus, the sum converges when z satisfies both |z — zg| > r and
|z — zg| < R, i.e., when z is a point in an annular domain defined by
r<lz—z| <R.

@ By summing over negative and nonnegative integers, we can rewrite

f(2) = Xk oo (2 — 20)"
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An Example

@ The function f(z) = Siznf is not analytic at the isolated singularity
z = 0 and hence cannot be expanded in a Maclaurin series.
@ However, sin z is an entire function having Maclaurin series

2 22 A 2

smz—z—a—i-—'—ﬁ-i-a— SR
which converges for |z| < co.
@ By dividing this power series by z* we obtain a series for f with

negative and positive integer powers of z:

principal part analytic part

£(2) sinz 1 1 z 28 N 25
2= —= — — — _ = — _— =

z4 z3 3lz 51 71 9l

@ The analytic part converges for |z| < oo.
@ The principal part is valid for |z| > 0.
@ The series converges for all z, but z =0, i.e., is valid for 0 < |z| < 0.
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Laurent Series and Laurent’s Theorem

@ A series representation of a function f consisting of both negative and
nonnegative powers of z — zy is called a Laurent series or a Laurent
expansion of f about zy on the annulus r < |z — z| < R.

Theorem (Laurent’s Theorem)

Let f be analytic within the annulus D defined by r < |z — z5| < R. Then
f has the series representation f(z) = >3 ax(z — 20) valid for
r<lz—z| <R.

The coefficients ay are given by

1 f(s)

7 N AC) S
KT omi Je (s —z)k L

k = 0,£1,£2,..., where C is a simple
closed curve that lies entirely within D and
has zp in its interior.

D
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Proof of Laurent’s Theorem |

@ Let C; and G be concentric circles with center
Zo and radii rp and Ry, where r < n < R <
R. Let z be a fixed point in D that satisfies
r < |z — z| < Rz. By introducing a crosscut
between C2 and C;, Cauchy's formula gives

f f
f(z) = 2m C, gds - % ) %ds
We can write 5 6 Z(Sz ds =Y 32 ak(z — z0)k, where
f f
= fﬁcz = Z(OS),(H ds, k=0,1,2,.... We have —5L 93C1 (_S)ds =
f(s) 1 f(s) 1
W¢C1 (z— zo)s(s zo) = 2mi Clz——szo<1 Szo)ds_
z ZO

1 f Z —Z n—1 _ n
ﬁgsclzi) (1+;zg+ +(§T._z;)> -I-%)ds:
f
Zk 1 (z zo)k + Ro(2), @k = 27r1 fﬁcl %ds,
f zp)"
Rn(Z) - Qﬂ;(z_zO)n SBCl (S)gs_s 0) ds.
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Proof of Laurent’s Theorem Il

@ Now let d = |z — zy| and let M denote the maximum value of |f(z)|
on Gi. Using |[s —zg| = and |z — s| = |z — zp — (5 — z9)]
> |z —zp| — \s — 29| =d — n, the l\/lL-inequaIity gives:

— f(s)(s=20)" 1 M n
|R,,(Z)| 27rl(z z0)" ¢c1 z— s0 ds| < 2nd" d— —d ril (%)

Because r; < d, (4)" —>Oasn—>oo andso|R,,(z)|—>Oasn—>oo.

Thus we have shown that —5L; ¢ fE) gs = 3% | a_w(z — 2.
@ Therefore, overall we have

(2) =) a(z—20)+)_ a(z - )
k=1 k=0

By summing over all integer powers,

f(2) = > alz—20)", a 235 Ldz, k=0,+1,42 ...

c (Z _ zO)k+1

k=—0c0
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Remarks

@ In the case when a_, =0 for k =1,2,..., the principal part is zero
and the Laurent series reduces to a Taylor series.

@ The annular domain r < |z — zp| < R need not have a “ring” shape.

Some other possible annular domains are:
(i) r=0, R finite; In this case, the series converges in 0 < |z — z5| < R,
i.e., the domain is a punctured open disk.
(i) r#0, R = o0; In this case, the annular domain is r < |z — z| and
consists of all points exterior to the circle |z — zy| = r.
(iii) r=0, R = o00; In this case, the domain is defined by 0 < |z — z|. This
represents the entire complex plane except the point z.

@ Finding the Laurent series of a function in a specified annular domain
is generally difficult, but in many instances we can obtain a desired
Laurent series by either

o employing a known power series expansion of a function; or by
o creative manipulation of a suitably chosen geometric series.
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Finding Laurent Expansions |

o Expand f(z) = ﬁ in a Laurent series valid for the following

annular domains.
(@A)o< |zl <1l (b)1<|z] ()O0<|z—=1]<1 (d)1<|z—1].

In parts (a) and (b) we want only powers of z, whereas in parts (c)
and (d) we want powers of z — 1.

f(z) = —%i = — % (1+z+ 2%+ 23+ ---). The infinite series in
the brackets converges for |z| < 1, but after we multiply this
expression by % the resulting series
f(z)=-1—-1-z—22—2%— ... converges for 0 < || < 1.

To obtain a series that converges for 1 < |z|, we start by constructing
a series that converges for |1/z| < 1 We write the given function

f(z)=ﬁli = (1+ + + 5+ -+ ). The series in the

brackets converges for |%| < 1 or equwalently for 1 < |z| Thus, the
required Laurent series is f(z) = 2 —|— —|— 7+ 5 L.
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Finding Laurent Expansions |

(c) We add and subtract 1 in the denominator: f(z) = m =

1 1 _ 1 2 3 _
L. —1+(z—1)—(z—1)2+---. The requirement that z # 1 is
equivalent to 0 < |z — 1|, and the geometric series in brackets
converges for |z — 1| < 1. Thus, the last series converges for z
satisfying 0 < [z — 1| < 1.
: _ 1 1 _ 1 1
As in part (b), f(z) = FITE) — IR
1 1 1 1 _
e (At t) =
— (2_11)5 + --- . Because the series within the

111
(z-17  (z-1® " (z-1)°
brackets converges for |-1<| < 1, the final series converges for
1<|z—1].
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More Laurent Series Expansions |

@ Expand f(z) = Wl(z_@ in a Laurent series valid for
(a)0<|z—-1] <2 (b)0o<|z-3| <2

(a) We need to express z — 3 in terms of z — 1. This can be done by

ertlng f(z) = z—l)%(z 3) = = 11)2 _2+:(I-z_1) = 2(2__11)2 1_]% =

(z 1) (Z 1) _

1
2(z—1)2  4(z-1) 8 E( _1)_"'
(b) To obtain powers of z—3, we write z — 1 = 2-|— (z—3) and
f(2) = iy = =38R+ =3P = a1+ 7 =

2= 3
.y 3)(1+( (2) (238) 4 (LA (223)% 4 LA (253) _|_>

The series in the brackets is valid for |£53| < 1 or |[z—3| <2
Multlplymg by =9 3) gives a series that is valid for 0 < |z — 3| < 2:

f(z) = 4(2 3 4+16(z 3)——(2—3)2+---
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More Laurent Series Expansions ||

@ Expand f(z) = z?ﬁi) in a Laurent series valid for 0 < |z| < 1.

By partial fractions we can rewrite f as f(z) = % — % + 1%92.
Now we have

9
1-=z
The foregoing geometric series converges for |z| < 1, but after we
add the term % to it, the resulting Laurent series

=94+9z4+92%+---.

1
f(z):;+9—|—9z-|—922-|—---

is valid for 0 < |z| < 1.
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More Laurent Series Expansions Il

o Expand f(z) = ﬁ in a Laurent series valid for 1 < |z — 2| < 2.

The center z = 2 is a point of analyticity of the function f. Our goal
now is to find two series involving integer powers of z — 2, one
converging for 1 < |z — 2| and the other converging for |z — 2| < 2.
Decompose f into partial fractions: f(z) = =t + -1 = fi(z) + f(2).

_-1_ -1 _ -1_1 _ -1 z—2 | (z=2)? .
°ﬂ(z)_7_2+z—2_71+z;22_T(I_T+T_"')—
;1+——(ZE32)2 (ZE—42)3—~-~.Thisseriesconvergesfor|ZT’2|<1
or |z—2| < 2.
_ 1 _ 1 _ 1 _1_ _ _1 1 1 —
s hE@) ==l =~ e )
ﬁ_(zj2)2+(zj2)3_(z 12)4—1- -+ . It converges for |15| < 1 or
1<|z-2|
Th t f(z)=---— 1L 11 1
us, we get f(z) = z-2F T =2 (@27 T =2
_oy2 _o)3 ) T .
+ —2 = (2232) + (22%) — - --. This representation is valid for z

satlsfymg 1<|z—2|<2.
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More Laurent Series Expansions IV

o Expand f(z) = 673 in a Laurent series valid for 0 < |z| < oo.
We know that for |z| < oo,

2 3
z _ L
e—1+z+2!+3!+ .

We obtain the Laurent series for f by simply replacing z by % when
z#0:
3 32 33
3/z _ 1424 2 4 2
¢ a2 T A

This series is valid for z # 0, that is, for 0 < |z| < co.
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Remarks

(i) Replacing the complex variable s with the usual symbol z, we see that
when k = —1, the formula for the Laurent series coefficients yields

f(z)dz,
277/?5 (2)
or more important,

35 f(z)dz = 2mia_;.
C

(ii) Regardless how a Laurent expansion of a function f is obtained in a
specified annular domain it is the Laurent series; i.e., the series we
obtain is unique.
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Subsection 4

Zeros and Poles
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Review of Laurent Series

@ Suppose z = zg is an isolated singularity of a complex function f, and
that

o0

f(z) = Z ak(z—zo Za k(z —2z0)” -I—Zakz—zo

k=—0o0

is the Laurent series representation of f valid for the punctured open
disk 0 < |z — z9| < R.
@ The part of the series with the negative powers of z — 7y, i.e

o0 o0 3

— —k
S aste-n) =Y s
k=1

— (z— =)

is the principal part of the series.

@ We will classify the isolated singularity z = zp according to the
number of terms in the principal part.
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Classification of Isolated Singular Points

@ An isolated singular point z = zy of a complex function f is given a
classification depending on whether the principal part of its Laurent
expansion

o0

f(z)= > alz—2)" =) awlz—2)"+) alz—2)*
k=1 k=0

k=—o00

contains zero, a finite number, or an infinite number of terms:
(i) If the principal part is zero, that is, all the coefficients a_x are zero,

then z = z is called a removable singularity.

(i) If the principal part contains a finite number of nonzero terms, then
z = zg is called a pole. If, in this case, the last nonzero coefficient in
Z‘,fo:l (za_;zg)k isa_, n>1, then z =z is called a pole of order n. If
z = 7y is a pole of order 1, then the principal part contains exactly one
term with coefficient a_; and the pole is called a simple pole.

(iii) If the principal part contains infinitely many nonzero terms, then

z = zg is called an essential singularity.
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Form of Laurent Series Based on Classification

@ The form of a Laurent series for a function f, when z = zy is one of
the various types of isolated singularities is summarized below:

z=2 | Laurent Series for 0 < |z — zo| < R
Removable Singularity | ag + a1(z — z0) + a2(z — z0)? + - -
d—n d_(n-1) a_i
Pole of Ord
ole of Order n z—2)" (z—zo)"—l +z—zo

+ag + 31(2 — Zo) + 32(2 — 20)2 qE oo

Simple Pole a1 +ap+ a1z — z0) + ax(z — 20)% + - -
Z— 2
Essential Singularity 200k = a-1

(z—20)> z—12
+ag + 31(2 — Zo) + 32(2 — 20)2 qF oo
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A Removable Singularity

@ Recall the Maclaurin series for sinz: sinz = z — % + % — «.-. Divide
by z to get
sinz 1 =
Z T 3atE o

Thus, all the coefficients in the principal part of the Laurent series
are zero. Hence, z = 0 is a removable singularity of the function
f‘(z) SInZ

o Ifa functlon f has a removable singularity at z = zy, then we can
supply an appropriate definition for the value of f(zy) so that f
becomes analytic at z = z.
Example: Since the right-hand side of the series above is 1 when we
set z =0, it makes sense to define f(0) = 1. Hence the function
f(z) = #2% is now defined and continuous at every complex number
z. Indeed, f is also analytic at z = 0 because it is represented by the

. 2 . .

Taylor series 1 — £ + &5 — - - - centered at 0 (a Maclaurin series).
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Poles and Essential Singularities

(a) Dividing sinz = z — §—? -+ f;—? — -+ by z2 shows that, for 0 < |z| < oo,
principal part
. =~
sinz 1 z o z3
22z 31 5l
Since a_1 # 0, z =0 is a simple pole of the function f(z) = *3*.

Similarly, z =0 is a pole of order 3 of the function f(z) = 5;#

(b) The Laurent series of f(z) = m for0<|z—-1] <2

principal part
-
1 1 1 z-1

2(z—12 4z-1) 8 16

Since a_p = —% = 0, we conclude that z =1 is a pole of order 2.

f(z)=

(c) The principal part of the Laurent expansion of f(z) = e3/7 valid for
0 < |z| < oo contains an infinite number of nonzero terms. This
shows that z = 0 is an essential singularity of f.
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Zeros and Multiplicities

@ A number z is a zero of a function f if f(z) = 0.

@ We say that an analytic function f has a zero of order n at z = z if
Zp is a zero of f and of its first n — 1 derivatives, but not of its n-th
derivative, i.e., f(z9) =0, f'(z0) =0, f"(z) =0, ..., f(""D(z) =0,
but £(")(z) # 0.

@ A zero of order n is also referred to as a zero of multiplicity n.
Example: Consider f(z) = (z — 5)3.

£(5) =0, (5) =0, f"(5) = 0, but f"(5) = 6 % 0.

Thus, f has a zero of order (or multiplicity) 3 at zg = 5.
@ A zero of order 1 is called a simple zero.
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Order of Zeros

Theorem (Zero of Order n)

A function f that is analytic in some disk |z — zp| < R has a zero of order
n at z = zp if and only if f can be written f(z) = (z — z9)"¢(z), where ¢
is analytic at z = zp and ¢(zp) # 0.

@ Partial Proof (“only if" Part): Given that f is analytic at z, it can be
expanded in a Taylor series that is centered at zy and is convergent
for |z — z0| < R. Since, in a Taylor series f(z) = >_7° ; ak(z — z0),

(k) . .
ax = fk—(,zo) k=0,1,..., it follows that the first n terms are zero.
So f(2) = an(z — 20)" + ant1(z — 20)™ + ant2(z — 20)"2 4 - =
(z—20)" (an + ant1(z — 20) + ant2(z — 20)2 + - -+ ) . Letting
#(z) = an + any1(z — 20) + ansr2(z — 20)® + - - -, we conclude
f(z) = (z — 20)"¢(z), where ¢ is an analytic function, such that
&(20) = an # 0 because a, = % #0.

George Voutsadakis (LSSU) Complex Analysis October 2014 57 /77



Series and Residues = Zeros and Poles

Computing the Order of a Zero Using a Power Series

@ The analytic function f(z) = zsin z? has a zero at z = 0.

If we replace z by z? in the Maclaurin series for sin z, we obtain

Then, by factoring z2 out, we can rewrite f as
f(z) = zsin 22 = 23¢(2),

where ¢(z)zl—§—?+§—?—--- and ¢(0) = 1.
This shows that z = 0 is a zero of order 3 of f.
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Poles of Order n

@ A pole of order n may be characterized analogously to the
characterization of zeros:

Theorem (Pole of Order n)

A function f analytic in a punctured disk 0 < |z — 25| < R has a pole of
#(2)

order n at z = zy if and only if f can be written f(z) = =z where ¢ is
analytic at z = zp and ¢(z) # 0.

@ Partial Proof (“only if" Part): Since f is assumed to have a pole of

order n at zo, it can be expanded in a Laurent series f(z) = (Za_*z';)"
+eot (z 20)2 + =L S +ao0+ai1(z—2)+ -, valid in some punctured
disk 0 < |z — z9| < R. By factoring out ﬁ f(z) = d’( ))n, where
¢(z) =a_,+--+ 3_2(2 _ Zo)n—2 4 a_1(z _ Zo)n—l + ao(Z - ZO)n
a1(z — z9)"t! + ---. This is a power series valid for the open disk

|z — zp| < R. Since z = zy is a pole of order n of f, a_, # 0.
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Zeros and Poles

@ A zero z = zp of an analytic function f is isolated in the sense that
there exists some neighborhood of z, for which f(z) # 0 at every
point z in that neighborhood except at z = z.

@ As a consequence, if zg is a zero of a nontrivial analytic function f,
then the function % has an isolated singularity at the point z = zj.

|

Theorem (Pole of Order n)
If the functions g and h are analytic at z = zp and h has a zero of order n
at z = zg and g(z) # 0, then the function f(z) = g(z) has a pole of order
n at z = zj.

@ Because h has a zero of order n, h(z) = (z — z9)"¢(z), where ¢ is

analytic at z = zp and ¢(zp) # 0. Thus, f can be written

f(z) = g(zz)/j’)z) Since g and ¢ are analytic at z = zp and ¢(z) # 0,
it follows that the function g/¢ is analytic at zp and g(z0)/¢(z0) # 0.
We conclude that the function f has a pole of order n at z.
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SETIES

(a) Inspection of the rational function

2z+5

f(z) = (z—1)(z +5)(z—2)*

shows that the denominator has zeros of order 1 at z =1 and

z = —5, and a zero of order 4 at z = 2. Since the numerator is not
zero at any of these points, it follows from the theorem that 7 has
simple poles at z =1 and z = —5, and a pole of order 4 at z = 2.

(b) z=0is a zero of order 3 of zsinz2. The reciprocal function

1
flz) = zsin z2

has a pole of order 3 at z = 0.
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Remarks

(i) If a function f has a pole at z = z, then |f(z)| — oo as z — zg from

any direction. Thus, we can write lim f(z) = oc.
Z— 2

(i) A function f is meromorphic if it is analytic throughout a domain D,
except possibly for poles in D. It can be proved that a meromorphic
function can have at most a finite number of poles in D.

E.g., the rational function

is meromorphic in the complex plane.
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Subsection 5

Residues and Residue Theorem
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Residue

@ If a complex function f has an isolated singularity at a point zp, then

f has a Laurent series representation f(z) =32 alz—=z2)=
-+ (z 20)2 + - +ao+ ai(z — zp) + - - -, which converges for all z

in some deleted ne|ghborhood 0<|z— zo\ < R of z,.

@ We now focus on the coefficient a_; and its importance in the
evaluation of contour integrals.

@ The coefficient a_; is called the residue of the function f at the
isolated singularity zy and denoted

a_1 = Res(f(z), z).

@ Recall, if the principal part of the series valid for 0 < |z — zp| < R
contains a finite number of terms with a_, the last nonzero
coefficient, then z is a pole of order n; if the principal part contains
an infinite number of terms with nonzero coefficients, then z is an
essential singularity.
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Examples of Residues

(a) We have seen that z =1 is a pole of order two of the function
f(z) = m The Laurent series valid for the deleted
neighborhood 0 < [z — 1| < 2is

Thus, the coefficient of L is a_1 = Res(f(2),1) = —%_
(b) We also saw that z = 0 is an essential singularity of f(z) = e%/%. Its
Laurent series is
3 & e

=1+ >+ 2 T gt 0< 2zl <oo.

Hence, the coefficient of L is a_; = Res(f(z),0) = 3.
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Residue at a Simple Pole

@ We examine ways of obtaining a_; when zy is a pole of a function f,
without the necessity of expanding f in a Laurent series at z.
@ We begin with the residue at a simple pole:

Theorem (Residue at a Simple Pole)

If f has a simple pole at z = zy, then

Res(f(z), zo) (z — 20)f(2).

= lim
zZ—2Z)

@ Since f has a simple pole at z = zp, its Laurent expansion convergent
on a punctured disk 0 < |z — 25| < R has the form

a_
f(Z)ZZ lz-l-ao-l-al(Z—Zo)+32(Z—Zo)2+"',
— 2

where a_; # 0. By multiplying both sides of this series by z — zy and
then taking the limit as z — zy we obtain lim,_,,, (z — z9)f(z) =
|imzﬁ20 [a,1 + ao(Z = Zo) + al(z = 20)2 =+ - ] =a_1= Res(f(z), Zo).
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Residue at a Pole of Order n

Theorem (Residue at a Pole of Order n)

If f has a pole of order n at z = z, then
1, gt
(n—1)! e dzn T

Res(f(z),z) = (z — 20)"f(2).

@ Since f has a pole of order n at z = zj, its Laurent expansion,
convergent on a punctured disk 0 < |z — z| < R, has the form
f(z) = = z)"+ —i—(z 20)2—1—2 Zo—i—ao—l—al(z—zo)—i— -+, where
a_p, # 0. We multiply by (z — z)", (z — 2)"f(z) = a_p+ -+
3_2(2 = ZQ)"_2 + 3_1(2 = Z())n_1 + ao(Z = ZQ)" + 31(2 = ZQ)"+1 + -
and then differentiate n — 1 times:

———(z—2))"f(z) = (n—1)la_1 + nlag(z — z9) + - - - .

Therefore, as z — zg, lim,_, j"n E (z—20)"f(z) =(n—1)la_;.

George Voutsadakis (LSSU) Complex Analysis October 2014 67 / 77



Series and Residues Residues and Residue Theorem

Finding Residue at a Pole

1

(z-1)%(z-3)
a pole of order 2 at z = 1. Use the theorems to find the residues.

Since z = 3 is a simple pole,

@ The function f(z) = has a simple pole at z =3 and

. . 1 1
Res(f(z),3) = Z|1n3 (z—-3)f(2) = ZI|_rI13 G- 7
At the pole of order 2,
1. d ) _d 1
Res(f(2).1) = qlimg(z-1VF(@) =Im7-—3
—  lim -1 _ 1
 z=1(z—-3)2 4
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Second Method for Computing a Residue at a Simple Pole

@ Suppose a function f can be written as a quotient f(z) = %
z
where g and h are analytic at z = zy. If g(z0) # 0 and if the function
h has a zero of order 1 at zp, then f has a simple pole at z = z and

Res(f(z), 0) = f;’(éz))

@ Since h has a zero of order 1 at zy, we must have h(z) = 0 and
h(zp) # 0. By definition of the derivative,

H (20) = limz sz, Lﬁézo) = “mz—)zo _zhfz; . Therefore,
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Applying the Second Method

@ The polynomial z* + 1 can be factored as
el — e —z),

where z;, zp, z3, and z4 are the four distinct roots of the equation

z* +1 =0 (or, equivalently, the four fourth roots of —1). It follows

that the function f(z) = ﬁ has four simple poles. By the root

formula z; = €™/4, zy = 3™/4, z3 = 5™/4 and z4 = e"™/*. We
compute the residues:

Res(f(z),z1) = 4_23 — %6—37ri/4 _ ﬁ _ ﬁ"
Res(f(z),z2) = 4_23 — lo—9mi/4 _ ﬁ o 4_\151_
Res(f(z),z3) = 4_;3 _ %6—157ri/4 _ ﬁ n ﬁ"
Res(f(z),z1) = 4_% - %e—2l7ri/4 _ 4_\15 v 4\%’_‘
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Using the Original Formula

@ We could have calculated each of the residues of f(z) = z++1 using
Res(f(z),zi) = lim,—, (z — z;)f(z).
o E.g., at z,

Res(f(Z), Z]_) = |imz_>zl (Z - 21)(Z—Zl)(Z—Zz)(Z—Z3)(Z—Z4)
1

(z1—22)(z1—23)(21 —241)

(eTri/4_e37ri/4)(eTri/4_657ri/4)(e7'ri/4_e77ri/4) .

In simplifying the denominator of the last expression considerably
more algebra is involved than using the second method.
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Cauchy's Residue Theorem

o Complex integrals ¢ f(z)dz can sometimes be evaluated by summing
the residues at the isolated singularities of f within C:

Theorem (Cauchy’s Residue Theorem)
Let D be a simply connected domain and C a simple closed contour lying
entirely within D. If a function f is analytic on and within C, except at a
finite number of isolated singular points z1, 25, . . . , z, within C, then

n

§£ f(2)dz = 2’y Res(f(2), z)-
C k=1

@ Suppose (1, Gy, ..., C, are circles centered at z1, 2z, ..., Z,,
respectively, such that Cy has a radius ry small enough so that
G, G, ..., C, are mutually disjoint and are interior to the simple
closed curve C. We saw that @C z)dz = 2miRes(f(z), zx), whence,

we have ¢ f(z)dz =3} 1¢C dZ—27TIZk 1 Res(f(2), zx).
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Evaluation by the Residue Theorem |

1
@ Evaluate émdz, where

(a) the contour C is the rectangle defined by x =0,x =4,y = -1,y =1,
(b) the contour C is the circle |z| = 2.

(a) Since both z =1 and z = 3 are poles within the rectangle, we have

ﬂémdz = 2mi[Res(f(z),1) + Res(f(2),3)]. We found
1

these residues already: —_——
c(z—1)*(z-3)

(b) Since only the pole z =1 lies within the circle |z| = 2, we have
= 2mi o 1\ _ _ w:
yfcmdz = 2miRes(f(z),1) = 2mi(—7) = — 5.

dz =2wi(-}+ ) =0.
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Evaluation by the Residue Theorem Il

2z+6
o Evaluate §£ —; + dz, where the contour C is the circle |z — i| = 2.
c”Z + 4

By factoring the denominator z2 + 4 = (z — 2i)(z + 2i), we see that
the integrand has simple poles at —2/ and 2i. Only 2/ lies within the

2246
contour C. Thus, yﬁ zz i dz = 27iRes(f(z),2i). But
c

Res(f(z),2i) = lim,_2i (z — )(Z 2,)”(Lzﬁ+2,) O+ = 3221 Hence,

2z+6 3+2i )
2 =2 - 21).
§£Cz2+4d ( 2i ) m(3+2i)
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Evaluation by the Residue Theorem IlI

e? . .
o Evaluate ) ————dz, where the contour C is the circle |z| = 2.
cz* 4523

Writing the denominator as z* + 523 = 2z3(z + 5) reveals that the
integrand f(z) has a pole of order 3 at z =0 and a simple pole at

z = —5. Only the pole z = 0 lies within the given contour. Thus, we
have 5
e 1 d 3 e
?%Wdz = 2miRes(f(2).0) = 2migy Iy 2% Az v5)
d e*(z+ 4) (22 +8z+17)e? 177,
milim ———=> = 7ilim = —1.
z—0dz (Z + 5) z—>0 (Z + 5)3 125

George Voutsadakis (LSSU) Complex Analysis October 2014 75 /17



Series and Residues Residues and Residue Theorem

Evaluation by the Residue Theorem IV

o Evaluate yftan zdz, where the contour C is the circle |z| = 2.
c

The integrand f(z) =tanz = ;‘)’;i has simple poles at the points
where cos z = 0. We saw that the only zeros of cos z are the real
numbers z = w n=0,%+1,+2,.... Only —7% and 7 are within

the circle |z| = 2. Thus, we have
tan zdz = 2mi[Res(f(z), — %) + Res(f(z), 5)]. With f(z) = g—)

where g(z) =sinz, h(z) = cosz, and h(z) = —sinz, we get
sin(—%) sin (%)
Res(f(z),—%) = —— 22~ = — 1. Res(f(2),2) = — 2~ = —1.
=(f(),~3) = g 55 (f(2).3) = g 5
Therefore, ygtan zdz = 2mi[-1— 1] = — 4nxi.
C
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Evaluation by the Residue Theorem V

o Evaluate ¢e3/zdz, where the contour C is the circle |z| = 1.
c

We saw that z = 0 is an essential singularity of the integrand
f(z) = e3/%. So we cannot use the formulas

Res(f(z),z) = in_)rr;0 (z — z0)f(2)

or 1 I n
Res(f(z),20) = (n—1)! le—tgo dzn—1 (z — 20)"f(2)

to find the residue of f at that point. Nevertheless, the Laurent series
of f at z =0 gives

Res(f(z),0) = 3.

Hence, we have

35 e%/Zdz = 2miRes(f(z),0) = 2mi(3) = 6mi.
C
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