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Consequences and Applications of the Residue Theorem

Overview of Consequences of the Residue Theorem

The residue theory can be used to evaluate real integrals of the forms
´ 2π

0 F (cos θ, sin θ)dθ;
´

∞

−∞
f (x)dx ;

´

∞

−∞
f (x) cosαxdx ;

´

∞

−∞
f (x) sinαxdx .

Here F and f are rational functions of the form f (x) = p(x)
q(x) in which

the polynomials p and q are assumed to have no common factors.

Residues can be used to evaluate real improper integrals that require
integration along a branch cut.

A relationship exists between the residue theory and the zeros of an
analytic function.

Residues can, in certain cases, be used to find the sum of an infinite
series.
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Consequences and Applications of the Residue Theorem Evaluation of Real Trigonometric Integrals

Subsection 1

Evaluation of Real Trigonometric Integrals
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Consequences and Applications of the Residue Theorem Evaluation of Real Trigonometric Integrals

Integrals of the Form
´ 2π

0 F (cos θ, sin θ)dθ

The basic idea is to convert those into a complex integral, where the
contour C is the unit circle |z | = 1 centered at the origin.

To do this we parametrize this contour by z = e iθ, 0 ≤ θ ≤ 2π. We
write dz = ie iθdθ, cos θ = e iθ+e−iθ

2 , sin θ = e iθ−e−iθ

2i . Since
dz = ie iθdθ = izdθ and z−1 = 1

z
= e−iθ, these three quantities are

equivalent to dθ = dz
iz
, cos θ = 1

2(z + z−1), sin θ = 1
2i (z − z−1). The

conversion of the given integral into a contour integral is

˛

C

F

(

1

2
(z + z−1),

1

2i
(z − z−1)

)

dz

iz
,

where C is the unit circle |z | = 1.
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Consequences and Applications of the Residue Theorem Evaluation of Real Trigonometric Integrals

A Real Trigonometric Integral

Evaluate
´ 2π
0

1
(2+cos θ)2

dθ.

We use the substitutions:
¸

C
1

(2+ 1
2
(z+z−1))2

dz
iz

=
¸

C
1

(2+ z2+1
2z

)2
dz
iz
.

Simplifying, 4
i

¸

C
z

(z2+4z+1)2
dz. Factoring the denominator

z2 + 4z + 1 = (z − z1)(z − z2), where z1 = − 2−
√
3 and

z2 = − 2 +
√
3. Thus, z

(z2+4z+1)2
= z

(z−z1)2(z−z2)2
. Only z2 is inside

the unit circle C . Thus, we have
¸

C
z

(z2+4z+1)2
dz = 2πiRes(f (z), z2).

To calculate the residue, note that z2 is a pole of order 2:
Res(f (z), z2) = lim

z→z2

d
dz
(z − z2)

2f (z) = lim
z→z2

d
dz

z
(z−z1)2

=

lim
z→z2

−z−z1
(z−z1)3

= 1
6
√
3
.

Hence,
4

i

˛

C

z

(z2 + 4z + 1)2
dz =

4

i
· 2πiRes(f (z), z1) =

4

i
· 2πi · 1

6
√
3

and, finally,

ˆ 2π

0

1

(2 + cos θ)2
dθ =

4π

3
√
3
.
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Subsection 2

Evaluation of Real Improper Integrals
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Integrals of the Form
´∞
−∞ f (x)dx

Suppose y = f (x) is a real function that is defined and continuous on
the interval [0,∞).

In elementary calculus the improper integral I1 =
´∞
0 f (x)dx is

defined as the limit I1 =
´∞
0 f (x)dx = limR→∞

´ R

0 f (x)dx . If the
limit exists, the integral I1 is said to be convergent; otherwise, it is
divergent.

The improper integral I2 =
´ 0
−∞ f (x)dx is defined similarly:

I2 =
´ 0
−∞ f (x)dx = limR→∞

´ 0
−R

f (x)dx .

Finally, if f is continuous on (−∞,∞), then

ˆ ∞

−∞
f (x)dx =

ˆ 0

−∞
f (x)dx +

ˆ ∞

0
f (x)dx = I1 + I2,

provided both integrals I1 and I2 are convergent. If either one, I1 or
I2, is divergent, then

´∞
−∞ f (x)dx is divergent.
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Cauchy Principal Value of
´∞
−∞ f (x)dx

It is important to remember that
limR→∞

´ 0
−R

f (x)dx + limR→∞
´ R

0 f (x)dx is not the same as

limR→∞ (
´ 0
−R

f (x)dx +
´ R

0 f (x)dx) = limR→∞
´ R

−R
f (x)dx .

For the integral
´∞
−∞ f (x)dx to be convergent, the limits

limR→∞
´ 0
−R

f (x)dx and limR→∞
´ R

0 f (x)dx must exist independently
of one another.

In the event that we know (a priori) that an improper integral
´∞
−∞ f (x)dx converges, we can then evaluate it by means of the single

limiting process
´∞
−∞ f (x)dx = limR→∞

´ R

−R
f (x)dx .

On the other hand, the symmetric limit may exist even though the
improper integral

´∞
−∞ f (x)dx is divergent.

The limit limR→∞
´ R

−R
f (x)dx , if it exists, is called the Cauchy

principal value (P.V.) of the integral and is written

P.V.
´∞
−∞ f (x)dx = limR→∞

´ R

−R
f (x)dx .
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Principal Value and Integrals of Even Functions

Suppose f (x) is continuous on (−∞,∞) and is an even function, i.e.,
f (−x) = f (x). Then its graph is symmetric with respect to the

y -axis. As a consequence,
´ 0
−R

f (x)dx =
´ R

0 f (x)dx . Therefore,
´ R

−R
f (x)dx =

´ 0
−R

f (x)dx +
´ R

0 f (x)dx = 2
´ R

0 f (x)dx .

If the Cauchy principal value exists,
´∞
0 f (x)dx and

´∞
−∞ f (x)dx

converge. The values of the integrals are

ˆ ∞

0
f (x)dx =

1

2
P.V.

ˆ ∞

−∞
f (x)dx

and
ˆ ∞

−∞
f (x)dx = P.V.

ˆ ∞

−∞
f (x)dx .
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Evaluation of Integral
´∞
−∞ f (x)dx

To evaluate
´∞
−∞ f (x)dx , where the rational function f (x) = p(x)

q(x) is

continuous on (−∞,∞),

we replace x by the complex variable z

and integrate the complex function f over a
closed contour C that consists of the inter-
val [−R ,R ] on the real axis and a semicircle
CR of radius large enough to enclose all the
poles of f (z) = p(z)

q(z) in the upper half-plane

Im(z) > 0.
Then,
¸

C
f (z)dz =

´

CR
f (z)dz +

´ R

−R
f (x)dx = 2πi

∑n
k=1 Res(f (z), zk),

where zk , k = 1, 2, . . . , n denotes poles in the upper half-plane. If we
can show that the

´

CR
f (z)dz → 0 as R → ∞, then we have

P.V.
´∞
−∞ f (x)dx = limR→∞

´ R

−R
f (x)dx = 2πi

∑n
k=1 Res(f (z), zk).
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Cauchy P.V. of an Improper Integral

Evaluate the Cauchy principal value of
´∞
−∞

1
(x2+1)(x2+9)

dx .

Let f (z) = 1
(z2+1)(z2+9)

.

Since (z2+1)(z2+9) = (z − i)(z + i)(z −
3i)(z+3i), we take C be the closed contour
consisting of the interval [−R ,R ] on the x-
axis and the semicircle CR of radius R > 3.

Then,
¸

C
1

(z2+1)(z2+9)
dz =

´ R

−R
1

(x2+1)(x2+9)
dx +

´

CR

1
(z2+1)(z2+9)

dz = I1 + I2

and I1 + I2 = 2πi [Res(f (z), i) + Res(f (z), 3i)]. At the simple poles
z = i and z = 3i we find Res(f (z), i) = 1

16i and
Res(f (z), 3i) = − 1

48i , whence I1 + I2 = 2πi [ 1
16i + (− 1

48i )] =
π
12 .
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Letting R → ∞

¸

C
1

(z2+1)(z2+9)
dz =

´ R

−R
1

(x2+1)(x2+9)
dx +

´

CR

1
(z2+1)(z2+9)

dz = π
12 .

Before letting R → ∞, note that |(z2 + 1)(z2 + 9)| =
|z2 + 1| · |z2 + 9| ≥ ||z2| − 1| · ||z2| − 9| = (R2 − 1)(R2 − 9). Since
the length L of the semicircle is πR , it follows, by the ML-inequality,

|I2| =
∣

∣

∣

´

CR

1
(z2+1)(z2+9)

dz

∣

∣

∣
≤ πR

(R2−1)(R2−9)
. Hence, |I2| → 0 as

R → ∞, and we conclude that limR→∞ I2 = 0. It follows that
limR→∞ I1 =

π
12 . I.e., limR→∞

´ R

−R
1

(x2+1)(x2+9)
dx = π

12 or

P.V.
´∞
−∞

1
(x2+1)(x2+9)

dx = π
12 .
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Behavior of Integral as R → ∞

To show that the contour integral along CR approaches zero as
R → ∞ the following sufficient conditions are useful:

Theorem (Behavior of Integral as R → ∞)

Suppose f (z) = p(z)
q(z) is a rational function, where the degree of p(z) is n

and the degree of q(z) is m ≥ n + 2. If CR is a semicircular contour
z = Re iθ, 0 ≤ θ ≤ π, then

´

CR
f (z)dz → 0 as R → ∞.

In other words, the integral along CR approaches zero as R → ∞
when the denominator of f is of a power at least 2 more than its
numerator.

The proof of this fact follows as in the preceding example, in which
degree of p(z) = 1 is 0 and degree of q(z) = (z2 + 1)(z2 + 9) is 4.
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Another Cauchy P.V. of an Improper Integral

Evaluate the Cauchy principal value of
´∞
−∞

1
x4+1

dx .

The conditions given in the preceding theorem are satisfied. Moreover,
f (z) = 1

z4+1
has simple poles in the upper half-plane at z1 = eπi/4

and z2 = e3πi/4. We have seen the residues at these poles are

Res(f (z), z1) = − 1

4
√
2
− 1

4
√
2
i and Res(f (z), z2) =

1

4
√
2
− 1

4
√
2
i .

Thus,

P.V.

ˆ ∞

−∞

1

x4 + 1
dx = 2πi [Res(f (z), z1) + Res(f (z), z2)] =

π√
2
.

Since the integrand is an even function, the original integral
converges to π√

2
.
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Integrals
´∞
−∞ f (x) sinαxdx and

´∞
−∞ f (x) cosαxdx

Integrals of Form
´∞
−∞ f (x) sinαxdx and

´∞
−∞ f (x) cosαxdx are

referred to as Fourier integrals.

They appear as the real and imaginary parts of
´∞
−∞ f (x)e iαxdx .

Suppose f (x) = p(x)
q(x) is a rational function continuous on (−∞,∞).

Then both Fourier integrals can be evaluated by considering the
complex integral

¸

C
f (z)e iαzdz, where α > 0, and the contour C

consists of [−R ,R ] and a semicircular contour CR with radius large
enough to enclose the poles of f (z) in the upper-half plane.

Sufficient conditions under which the contour integral along CR

approaches zero as R → ∞ are given by

Theorem (Behavior of Integral as R → ∞)

Suppose f (z) = p(z)
q(z) is a rational function, where the degree of p(z) is n

and the degree of q(z) is m ≥ n + 2. If CR is a semicircular contour
z = Re iθ, 0 ≤ θ ≤ π, and α > 0, then

´

CR
f (z)e iαzdz → 0 as R → ∞.
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Evaluating a Fourier Integral

Evaluate the Cauchy principal value of
´∞
0

x sin x
x2+9

dx .

First note that the limits of integration in the given integral are not
from −∞ to ∞ as required by the method just described. Since the
integrand is an even function of x ,

´∞
0

x sin x
x2+9

dx = 1
2

´∞
−∞

x sin x
x2+9

dx . We

now form the contour integral
¸

C
z

z2+9
e izdz, where C is the contour

described before, with R > 3. We have
´

CR

z
z2+9

e izdz +
´ R

−R
x

x2+9
e ixdx = 2πiRes(f (z)e iz , 3i), where

f (z) = z
z2+9

, and Res(f (z)e iz , 3i) = ze iz

z+3i

∣

∣

∣

z=3i
= e−3

2 . Since, by the

theorem,
´

CR
f (z)e izdz → 0 as R → ∞, we get

P.V.
´∞
−∞

x
x2+9

e ixdx = 2πi( e
−3

2 ) = π
e3
i . Note that

´∞
−∞

x
x2+9

e ixdx =
´∞
−∞

x cos x
x2+9

dx + i
´∞
−∞

x sin x
x2+9

dx = π
e3
i . Equating real and imaginary

parts: P.V.
´∞
−∞

x cos x
x2+9

dx = 0 and P.V.
´∞
−∞

x sin x
x2+9

dx = π
e3
. This

implies that
´∞
0

x sin x
x2+9

dx = 1
2

´∞
−∞

x sin x
x2+9

dx = π
2e3

.
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Indented Contours

Up to this point we considered improper integrals of functions
continuous on the interval (−∞,∞), i.e., the complex function

f (z) = p(z)
q(z) did not have poles on the real axis.

Suppose we want to evaluate
´∞
−∞ f (x)dx

by residues when f (z) has a pole at z = c ,
where c is a real number. Then we use an
indented contour: The symbol Cr denotes
a semicircular contour centered at z = c

and oriented in the positive direction.

Theorem (Behavior of Integral as r → 0)

Suppose f has a simple pole z = c on the real axis. If Cr is the contour
defined by z = c + re iθ, 0 ≤ θ ≤ π, then

lim
r→0

ˆ

Cr

f (z)dz = πiRes(f (z), c).
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Proof of the Theorem

Since f has a simple pole at z = c , its Laurent series is

f (z) =
a−1

z − c
+ g(z),

where a−1 = Res(f (z), c) and g is analytic at the point c . Using the
Laurent series and the parametrization of Cr , we have
ˆ

Cr

f (z)dz = a−1

ˆ π

0

ire iθ

re iθ
dθ + ir

ˆ π

0
g(c + re iθ)e iθdθ = I1 + I2.

I1 = a−1

´ π

0
ire iθ

re iθ
dθ = a−1

´ π

0
idθ = πia−1 = πiRes(f (z), c).

Since g is analytic at c , it is continuous at this point and bounded in a
neighborhood of the point. I.e., there exists an M > 0 for which
|g(c + re iθ)| ≤ M . Hence,

|I2| = |ir
ˆ π

0

g(c + re iθ)dθ| ≤ r

ˆ π

0

Mdθ = πrM .

It follows that limr→0 |I2| = 0 and, consequently, limr→0 I2 = 0.

By taking the limit of the sum as r → 0, we get the conclusion.
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Using an Indented Contour

Evaluate the Cauchy principal value of
´∞
−∞

sin x
x(x2−2x+2)

dx .

We consider
¸

C
e iz

z(z2−2z+2)
dz .

f (z) = 1
z(z2−2z+2)

has a pole at z = 0

and at z = 1 + i in the upper half-plane.
The contour C , is indented at the origin.
We have

¸

C
=
´

CR
+
´ −r

−R
+
´

−Cr
+
´ R

r
=

2πiRes(f (z)e iz , 1 + i),
´

−Cr
= −

´

Cr
.

If we take the limits as R → ∞ and as r → 0,
P.V.

´∞
−∞

e ix

x(x2−2x+2)
dx − πiRes(f (z)e iz , 0) = 2πiRes(f (z)e iz , 1 + i).

Now, Res(f (z)e iz , 0) = 1
2 and Res(f (z)e iz , 1 + i) = − e−1+i

4 (1 + i).

Therefore, P.V.
´∞
−∞

e ix

x(x2−2x+2)
dx = πi 12 + 2πi(− e−1+i

4 (1 + i)). Using

e−1+i = e−1(cos 1 + i sin 1) and equating real and imaginary parts:
P.V.

´∞
−∞

cos x
x(x2−2x+2)

dx = π
2 e

−1(sin 1 + cos 1),

P.V.
´∞
−∞

sin x
x(x2−2x+2)

dx = π
2 [1 + e−1(sin 1− cos 1)].
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Consequences and Applications of the Residue Theorem Integration along a Branch Cut

Subsection 3

Integration along a Branch Cut
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Consequences and Applications of the Residue Theorem Integration along a Branch Cut

Branch Point at z = 0

Suppose that, if f (x) is converted to a complex function, f (z) has, in
addition to poles, a nonisolated singularity at z = 0.

In that case, computing
´∞
0 f (x)dx requires a special type of contour.

Example: Consider the real integral
´∞
0

xα−1

x+1 dx , (21) where α is a

real constant restricted to the interval 0 < α < 1. When α = 1
2 and x

is replaced by z , the integrand becomes the multiple-valued function
1

z1/2(z+1)
. The origin is a branch point because z1/2 has two values

for any z 6= 0. Traveling in a complete circle around the origin z = 0,
starting from a point z = re iθ, r > 0, we return to the same starting
point z , but θ has increased by 2π. Thus, the value of z1/2 changes
from z1/2 =

√
re iθ/2 to a different value or different branch:

z1/2 =
√
re i(θ+2π)/2 =

√
re iθ/2e iπ = −√

re iπ/2.

Recall, we can force z1/2 to be single valued by restricting θ to some
interval of length 2π. E.g., by restricting θ to 0 < θ < 2π, we
guarantee that z1/2 =

√
re iθ/2 is single valued.
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Consequences and Applications of the Residue Theorem Integration along a Branch Cut

Integration along a Branch Cut

Evaluate
´∞
0

1√
x(x+1)

dx .

The real integral is improper for two reasons:
There is an infinite discontinuity at x = 0;
The limit of integration is infinite.

We form the integral
´

C
1

z1/2(z+1)
dz, where C

is the contour shown, which consists of

Cr and CR , which are portions of circles;

AB and ED, which are parallel horizontal
line segments running along opposite sides
of the branch cut.

The integrand f (z) of the contour integral is single valued and
analytic on and within C , except for the simple pole at z = −1 = eπi .
Hence, we can write

¸

C
1

z1/2(z+1)
dz = 2πiRes(f (z),−1) or

´

CR
+
´

ED
+
´

Cr
+
´

AB
= 2πiRes(f (z),−1).
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Consequences and Applications of the Residue Theorem Integration along a Branch Cut

Integration along a Branch Cut (Cont’d)

We think of AB as coinciding with the upper side of the positive real
axis for which θ = 0 and of ED with the lower side of the positive real
axis for which θ = 2π.

On AB , z = xe0i ;

On ED, z = xe(0+2π)i = xe2πi ; Thus,
´

ED
=
´ r

R

(xe2πi )−1/2

xe2πi+1
(e2πidx) = −

´ r

R
x−1/2

x+1 dx =
´ R

r
x−1/2

x+1 dx and
´

AB
=
´ R

r

(xe0i )−1/2

xe0i+1
(e0idx) =

´ R

r
x−1/2

x+1 dx .

Now with z = re iθ and z = Re iθ on Cr and CR , respectively, it can be
shown that

´

Cr
→ 0 as r → 0 and

´

CR
→ 0 as R → ∞. Thus,

lim r→0
R→∞

[
´

CR
+
´

ED
+
´

Cr
+
´

AB
= 2πiRes(f (z),−1)] is the same as

2
´∞
0

1√
x(x+1)

dx = 2πiRes(f (z),−1). Since

Res(f (z),−1) = z−1/2
∣

∣

z=eπi = e−πi/2 = − i ,
´∞
0

1√
x(x+1)

dx = π.
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Consequences and Applications of the Residue Theorem The Argument Principle and Rouché’s Theorem

Subsection 4

The Argument Principle and Rouché’s Theorem
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Consequences and Applications of the Residue Theorem The Argument Principle and Rouché’s Theorem

Number of Zeros and Poles

We apply residue theory to the location of zeros of an analytic
function.

In the first theorem we need to count the number of zeros and poles
of a function f that are located within a simple closed contour C ,
taking into account the order or multiplicity of each zero and pole.

Example: If f (z) = (z−1)(z−9)4(z+i)2

(z2−2z+2)2(z−i)6(z+6i)7
and C is taken to be the

circle |z | = 2, then:
Inspection of the numerator of f reveals that the zeros inside C are
z = 1 (a simple zero) and z = −i (a zero of order or multiplicity 2).
Therefore, the number N0 of zeros inside C is taken to be
N0 = 1 + 2 = 3.
Similarly , inspection of the denominator of f shows, after factoring
z2 − 2z + 2 = (z − 1− i)(z − 1 + i), that the poles inside C are
z = 1− i (pole of order 2), z = 1+ i (pole of order 2), and z = i (pole
of order 6). The number Np of poles inside C is taken to be
Np = 2 + 2 + 6 = 10.
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Argument Principle

Theorem (Argument Principle)

Let C be a simple closed contour lying entirely within a domain D.
Suppose f is analytic in D except at a finite number of poles inside C , and

that f (z) 6= 0 on C . Then 1
2πi

¸

C

f ′(z)
f (z) dz = N0 −Np , where N0 is the total

number of zeros of f inside C and Np is the total number of poles of f
inside C , counting their order or multiplicities.

The integrand f ′(z)
f (z) is analytic in and on the contour C except at the

points in the interior of C where f has a zero or a pole. If z0 is a zero
of order n of f inside C , then we can write f (z) = (z − z0)

nφ(z),
where φ is analytic at z0 and φ(z0) 6= 0. We differentiate f by the
product rule, f ′(z) = (z − z0)

nφ′(z) + n(z − z0)
n−1φ(z), and divide

this expression by f . In some punctured disk centered at z0, we have
f ′(z)
f (z) = (z−z0)

nφ′(z)+n(z−z0)
n−1φ(z)

(z−z0)nφ(z)
= φ′(z)

φ(z) + n
z−z0

. Thus, the integrand
f ′(z)
f (z) has a simple pole at z0.
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Proof of the Argument Principle

We found f ′(z)
f (z) = φ′(z)

φ(z) + n
z−z0

. The residue at z0 is Res( f
′(z)
f (z) , z0) =

lim
z→z0

(z − z0)
(

φ′(z)
φ(z) + n

z−z0

)

= lim
z→z0

(

(z−z0)φ′(z)
φ(z) + n

)

= 0 + n = n,

which is the order of the zero z0.

Now if zp is a pole of order m of f within C , then f (z) = g(z)
(z−zp)m

,

where g is analytic at zp and g(zp) 6= 0. By differentiating,
f ′(z) = (z − zp)

−mg ′(z)−m(z − zp)
−m−1g(z). Therefore, in some

punctured disk centered at zp,
f ′(z)
f (z) =

(z−zp)−mg ′(z)−m(z−zp)−m−1g(z)
(z−zp)−mg(z) = g ′(z)

g(z) + −m
z−zp

. Thus, f ′(z)
f (z) has

a simple pole at zp. We also see that the residue at zp is equal to
−m, which is the negative of the order of the pole of f .
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Proof of the Argument Principle (Cont’d)

Finally, suppose that z01 , z02 , . . . , z0r and zp1 , zp2 , . . . , zps are the
zeros and poles of f within C and that the order of the zeros are
n1, n2, . . . , nr and that order of the poles are m1,m2, . . . ,ms . Then

each of these points is a simple pole of the integrand f ′(z)
f (z) with

corresponding residues n1, n2, . . . , nr and −m1,−m2, . . . ,−ms . It

follows from the residue theorem that

˛

C

f ′(z)
f (z)

dz is equal to 2πi

times the sum of the residues at the poles:
˛

C

f ′(z)
f (z)

dz = 2πi
[

∑r
k=1 Res(

f ′(z)
f (z) , z0k ) +

∑s
k=1 Res(

f ′(z)
f (z) , zpk )

]

=

2πi (
∑r

k=1 nk +
∑s

k=1(−mk)) = 2πi [N0 − Np].
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Illustrating the Argument Principle

Suppose the simple closed contour is |z | = 2 and the function

f (z) =
(z − 1)(z − 9)4(z + i)2

(z2 − 2z + 2)2(z − i)6(z + 6i)7
.

In the evaluation of

˛

C

f ′(z)
f (z)

dz , each zero of f within C contributes

2πi times the order of multiplicity of the zero and each pole
contributes 2πi times the negative of the order of the pole:
˛

C

f ′(z)
f (z)

dz

= [2πi(1) + 2πi(2)] + [2πi(−2) + 2πi(−2) + 2πi(−6)] = − 14πi .

The name “argument principle” originates from a relation between
the number N0 − Np and arg(f (z)): We have

N0 − Np =
1

2π
[change in arg(f (z)) as z traverses C

once in the positive direction] .
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Rouché’s Theorem

The following theorem is helpful in determining the number of zeros
of an analytic function.

Theorem (Rouché’s Theorem)

Let C be a simple closed contour lying entirely within a domain D.
Suppose f and g are analytic in D. If the strict inequality
|f (z)− g(z)| < |f (z)| holds for all z on C , then f and g have the same
number of zeros, counting their order or multiplicities, inside C .

The hypothesis that |f (z)− g(z)| < |f (z)| holds, for all z on C ,
indicates that both f and g have no zeros on the contour C . From
|f (z)− g(z)| = |g(z)− f (z)|, we see that, by dividing the inequality

by |f (z)|. we have, for all z on C , |F (z)− 1| < 1, where F (z) = g(z)
f (z) .
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Proof of Rouché’s Theorem

We have |F (z)− 1| < 1, where F (z) = g(z)
f (z) .

This inequality shows that the image C ′ in
the w -plane of the curve C under the mapping
w = F (z) is a closed path and must lie within
the unit open disk |w − 1| < 1 centered at
w = 1.

As a consequence, the curve C ′ does not enclose w = 0, and
therefore 1

w
is analytic in and on C ′. By the Cauchy-Goursat

Theorem,
¸

C ′

1
w
dw = 0. Since w = F (z) and dw = F ′(z)dz ,

¸

C

F ′(z)
F (z) dz = 0. From the quotient rule, F ′(z) = f (z)g ′(z)−g(z)f ′(z)

[f (z)]2
,

we get F ′(z)
F (z) = g ′(z)

g(z) − f ′(z)
f (z) . Therefore,

¸

C
(g

′(z)
g(z) − f ′(z)

f (z) )dz = 0 or
¸

C

g ′(z)
g(z) dz =

¸

C

f ′(z)
f (z) dz. By the argument principle, the number of

zeros of g inside C is the same as the number of zeros of f inside C .
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Location of Zeros

Locate the zeros of the polynomial function g(z) = z9 − 8z2 + 5.

We begin by choosing f (z) = z9 because it has the same number of
zeros as g . Since f has a zero of order 9 at z = 0, we search for the
zeros of g by examining circles centered at z = 0. If we can establish
that |f (z)− g(z)| < |f (z)|, for all z on some circle |z | = R , then
Rouché’s Theorem asserts that f and g have the same number of
zeros within |z | < R .

By the triangle inequality, |f (z)− g(z)| = |z9 − (z9 − 8z2 + 5)| =
|8z2 − 5| ≤ 8|z |2 + 5. Also, |f (z)| = |z |9.
Since |f (z)− g(z)| < |f (z)| or 8|z |2 + 5 < |z |9 is not true for all z on
|z | = 1, we can draw no conclusion.
By expanding the search to the larger circle |z | = 3

2 , we see
|f (z)− g(z)| ≤ 8|z |2 + 5 = 8 · (32 )2 + 5 = 23 < (32)

9 = |f (z)|. Thus,
since f has a zero of order 9 within |z | < 3

2 , all nine zeros of g lie
within the same disk.
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Revisiting the Zeros of g I

By more refined reasoning, we can show that g(z) = z9 − 8z2 + 5 has
some zeros inside |z | < 1.

To see this suppose we choose f (z) = −8z2 + 5. Then, for all z on
|z | = 1,
|f (z)− g(z)| = |(−8z2 + 5)− (z9 − 8z2 + 5)| = | − z9| = |z |9 =
(1)9 = 1.
For all z on |z | = 1,
|f (z)| = | − f (z)| = |8z2 − 5| ≥ |8|z |2 − | − 5|| = |8− 5| = 3.
Therefore, for all z on |z | = 1, |f (z)− g(z)| < |f (z)|.
Because f has two zeros within |z | < 1 (namely, ±

√

5
8), we can

conclude, by Rouché’s Theorem, that two zeros of g also lie within
this disk.
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Revisiting the Zeros of g II

Continuing to reason about the zeros of g(z) = z9 − 8z2 +5, suppose
we choose f (z) = 5 and |z | = 1

2 . Then, for all z on |z | = 1
2 ,

|f (z)− g(z)| = |5− (z9 − 8z2 + 5)| = | − z9 + 8z2| ≤ |z |9 + 8|z |2 =
(12)

9 + 2 ≈ 2.002.
We now have |f (z)− g(z)| < |f (z)| = 5, for all z on |z | = 1

2 . Since f

has no zeros within the disk |z | < 1
2 , neither does g .

At this point we are able to conclude that all nine zeros of
g(z) = z9 − 8z2 + 5 lie within the annular region 1

2 < |z | < 3
2 .

Moreover, two of these zeros lie within 1
2 < |z | < 1.
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Subsection 5

Summing Infinite Series
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Using cotπz

The residues at the simple poles of cot πz can help find the sum of an
infinite series.

The zeros of sin z are the reals z = kπ, k = 0,±1,±2, . . .. Thus,
cot πz has simple poles at πz = kπ or z = k , k = 0,±1,±2, . . ..

If a polynomial function p(z) has (i) real coefficients; (ii) degree
n ≥ 2, and (iii) no integer zeros, then the function f (z) = π cot πz

p(z) has
an infinite number of simple poles z = 0,±1,±2, . . . from cotπz and
a finite number of poles zp1 , zp2 , . . . , zpr from the zeros of p(z).

The closed rectangular contour is C ,
where n is taken large enough so that
C encloses the simple poles z = 0,
±1,±2, . . . ,±n and all of the poles
zp1, zp2 , . . . , zpr . By the residue theo-
rem,
¸

C
π cotπz
p(z) dz = 2πi(

∑n
k=−n Res(

π cot πz
p(z) , k) +

∑r
j=1 Res(

π cot πz
p(z) , zpj )).
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Using cotπz (Cont’d)

Since it can be shown that
¸

C
π cot πz
p(z) dz → 0 as n → ∞, we get

0 =
∑

k residues +
∑

j residues. That is,

∞
∑

k=−∞
Res

(

π cot πz

p(z)
, k

)

= −
r

∑

j=1

Res

(

π cot πz

p(z)
, zpj

)

.

If a function f can be written as a quotient f (z) = g(z)
h(z) , where g and

h are analytic at z = z0, g(z0) 6= 0 and h has a zero of order 1 at z0,

then f has a simple pole at z = z0 and Res(f (z), z0) =
g(z0)
h′(z0)

.

Hence, with g(z) = π cos πz
p(z) and h(z) = sinπz, we get

Res(π cot πz
p(z) , k) =

π cos kπ
p(k)

π cos kπ = 1
p(k) .

Therefore, we arrive at
∞
∑

k=−∞

1

p(k)
= −

r
∑

j=1

Res(
π cot πz

p(z)
, zpj ).
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Using cscπz

If p(z) is a polynomial function satisfying the same assumptions, i.e.,

(i) has real coefficients;
(ii) has degree n ≥ 2, and
(iii) no integer zeros,

then the function f (z) = π cscπz
p(z) has an infinite number of simple

poles z = 0,±1,±2, . . . from csc πz and a finite number of poles
zp1, zp2 , . . . , zpr from the zeros of p(z).

In this case it can be shown that

∞
∑

k=−∞

(−1)k

p(k)
= −

r
∑

j=1

Res

(

π csc πz

p(z)
, zpj

)

.
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Summing an Infinite Series

Find the sum of the series
∑∞

k=0
1

k2+4
.

If we identify p(z) = z2 + 4, then the three assumptions (i)-(iii) are
satisfied. The zeros of p(z) are ±2i and correspond to simple poles of
f (z) = π cot πz

z2+4
. According to the formula

∑∞
k=−∞

1
k2+4

= − (Res(π cot πz
z2+4

,−2i) + Res(π cot πz
z2+4

, 2i)). Since

Res(π cot πz
z2+4

,−2i) = π cot 2πi
4i and Res(π cot πz

z2+4
, 2i) = π cot 2πi

4i , the sum
of the residues is π

2i cot 2πi . This sum is a real quantity because
π
2i cot 2πi =

π
2i

cosh (−2π)
(−i sinh (−2π)) = − π

2 coth 2π. Hence,

∞
∑

k=−∞

1

k2 + 4
=

π

2
coth 2π.
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Summing an Infinite Series (Cont’d)

To get the desired sum, we must manipulate the summation
∑∞

−∞ in
order to put it in the form

∑∞
k=0.

We have

∑∞
k=−∞

1
k2+4

=
∑−1

k=−∞
1

k2+4
+ 1

4 +
∑∞

k=1
1

k2+4

=
∑∞

k=1
1

(−k)2+4
+ 1

4 +
∑∞

k=1
1

k2+4

= 2
∑∞

k=1
1

k2+4
+ 1

4 = 2
∑∞

k=0
1

k2+4
− 1

4 .

Finally, since
∑∞

k=−∞
1

k2+4
= 2

∑∞
k=0

1
k2+4

− 1
4 = π

2 coth 2π, we
obtain ∞

∑

k=0

1

k2 + 4
=

1

8
+

π

4
coth 2π.
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Subsection 6

Laplace and Fourier Transforms
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Laplace and Inverse Laplace Transforms

The Laplace transform of a real function f is defined, for t ≥ 0, by
L{f (t)} =

´∞
0 e−st f (t)dt.

(i) The direct problem: Given a function f (t) satisfying certain conditions,
find its Laplace transform. When the integral converges, the result is a
function of s. The relationship between a function and its transform is
exhibited by using a lowercase letter to denote the function and the
corresponding uppercase letter to denote its Laplace transform, e.g.,
L{f (t)} = F (s), L{y(t)} = Y (s), and so on.

(ii) The inverse problem: Find the function f (t) that has a given transform
F (s). The function f (t) is called the inverse Laplace transform and
is denoted by L−1{F (s)}.

We will see that the inverse Laplace transform is not merely a symbol
but actually another integral transform, actually a special type of
complex contour integral.
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Integral Transforms

Suppose f (x , y) is a real-valued function of two real variables.

A definite integral of f with respect to one of the variables leads to a
function of the other variable.

Example: If we hold y constant, integration with respect to the real
variable x gives

´ 2
1 4xy2dx = 2x2y2

∣

∣

2

1
= 8y2 − 2y2 = 6y2.

Thus, a definite integral such as F (α) =
´ b

a
f (x)K (α, x)dx transforms

a function f of the variable x into a function F of the variable α.

We say that F (α) =
´ b

a
f (x)K (α, x)dx is an integral transform of

the function f .

Integral transforms appear in transform pairs, meaning that the
original function f can be recovered by another integral transform
f (x) =

´ d

c
F (α)H(α, x)dα, called the inverse transform.

The functions K (α, x) and H(α, x) are the kernels of the transforms.

If α represents a complex variable, then the second definite integral is
replaced by a contour integral.
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The Laplace Transform

Suppose that, in F (α) =
´ b

a
f (x)K (α, x)dx , α is replaced by the

symbol s, and that f represents a real function that is defined on the
unbounded interval [0,∞).

Then F (s) =
´∞
0 f (t)K (s, t)dt is an improper integral, defined by

ˆ ∞

0
K (s, t)f (t)dt = lim

b→∞

ˆ b

0
K (s, t)f (t)dt.

If the limit exists, we say that the integral exists or is convergent;
otherwise, the integral does not exist and is said to be divergent.

The choice K (s, t) = e−st , where s is a complex variable, gives the
Laplace transform L{f (t)} defined previously.

The integral that defines the Laplace transform may not converge for
certain kinds of functions f .

Example: Neither L{et2} nor L{1
t
} exists.

Also, the limit may exist for only certain values of the variable s.
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Existence of a Laplace Transform

The Laplace transform of f (t) = 1, t ≥ 0, is

L{1} =
´∞
0 e−st(1)dt

= limb→∞
´ b

0 e−stdt

= limb→∞ − e−st

s

∣

∣

∣

b

0

= limb→∞ [1−e−sb

s
].

If s = x + iy , then e−sb = e−bx (cos by − i sin by). Thus, e−sb → 0 as
b → ∞, if x > 0. In other words,

L{1} =
1

s
, provided Re(s) > 0.
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Existence of L{f (t)}

Conditions that are sufficient to guarantee the existence of L{f (t)}
are that f be piecewise continuous on [0,∞) and that f be of
exponential order.

Piecewise continuity on [0,∞) means that, on any interval, there are
at most a finite number of points tk , k = 1, 2, . . . , n, tk−1 < tk , at
which f has finite discontinuities and is continuous on each open
interval tk−1 < t < tk .
A function f is said to be of exponential order c if there exist
constants c ,M > 0, and T > 0, so that |f (t)| ≤ Mect , for t > T .
The condition |f (t)| ≤ Mect , for t > T , states that the graph of f on
the interval (T ,∞) does not grow faster than the graph of the
exponential function Mect .
Alternatively, e−ct |f (t)| is bounded, i.e., e−ct |f (t)| ≤ M , for t > T .

All bounded functions are necessarily of exponential order c = 0.
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Existence Theorem for L{f (t)}
Theorem (Sufficient Conditions for Existence)

Suppose f is piecewise continuous on [0,∞) and of exponential order c for
t > T . Then L{f (t)} exists for Re(s) > c .

We have L{f (t)} =
´ T

0 e−st f (t)dt +
´∞
T

e−st f (t)dt = I1 + I2.
The integral I1 exists since it can be written as a sum of integrals over
intervals on which e−st f (t) is continuous.
To prove the existence of I2, let s = x + iy . Then
|e−st| = |e−xt(cos yt − i sin yt)| = e−xt . Further, by the definition of
exponential order, |f (t)| ≤ Mect , t > T . Hence, |I2| ≤

´

∞

T
|e−st f (t)|dt

≤ M
´

∞

T
e−xtectdt = M

´

∞

T
e−(x−c)tdt = −M e−(x−c)t

x−c

∣

∣

∣

∞

T
=

M e−(x−c)T

x−c
, for x = Re(s) > c . Since

´

∞

T
Me−(x−c)tdt converges,

´

∞

T
|e−st f (t)|dt converges by the comparison test. This, in turn,

implies that I2 exists for Re(s) > c .

The existence of I1 and I2 implies that L{f (t)} =
´∞
0 e−st f (t)dt

exists for Re(s) > c .
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Analyticity of the Laplace Transform

The following theorem is stated without proof:

Theorem (Analyticity of the Laplace Transform)

Suppose f is piecewise continuous on [0,∞) and of exponential order c for
t ≥ 0. Then the Laplace transform of f ,

F (s) =

ˆ ∞

0
e−st f (t)dt

is an analytic function in the right half-plane defined by Re(s) > c .

Although the complex function F (s) is analytic to the right of the line
x = c in the complex plane, F (s) will, in general, have singularities to
the left of that line.
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The Inverse Laplace Transform

Theorem (Inverse Laplace Transform)

If f and f ′ are piecewise continuous on [0,∞) and f is of exponential
order c for t ≥ 0, and F (s) is a Laplace transform, then the inverse
Laplace transform L−1{F (s)} is

f (t) = L−1{F (s)} =
1

2πi
lim

R→∞

ˆ γ+iR

γ−iR

estF (s)ds,

where γ > c .

We write f (t) = L−1{F (s)} = 1
2πi

´ γ+i∞
γ−i∞ estF (s)ds , where the limits

of integration indicate that the integration is along the infinitely long
vertical-line contour Re(s) = x = γ.

γ is a positive real constant greater than c and greater than all the
real parts of the singularities in the left half-plane.

This integral is called a Bromwich contour integral.

The kernel of the inverse transform is H(s, t) = est

2πi .
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Evaluating the Inverse Laplace Transform

The Bromwich contour integral
f (t) = L−1{F (s)} = 1

2πi

´ γ+i∞
γ−i∞ estF (s)ds.

The fact that F (s) has singularities s1, s2, . . . , sn to the left of the line
x = γ makes it possible to evaluate the integral by using an
appropriate closed contour encircling the singularities.

A closed contour C that is commonly used consists of
a semicircle CR of radius R centered at (γ, 0) and a
vertical line segment LR parallel to the y -axis passing
through the point (γ, 0) and extending from y =
γ − iR to y = γ + iR . R is larger than the largest
number in {|s1|, |s2|, . . . , |sn|}.
With the contour C chosen in this manner, the integral can often be
evaluated using Cauchy’s residue theorem. If we allow the radius R of
the semicircle to approach ∞, the vertical part of the contour
approaches the infinite vertical line of the Bromwich integral.
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Inverse Laplace Transform Theorem

Theorem (Inverse Laplace Transform)

Suppose F (s) is a Laplace transform that has a finite number of poles
s1, s2, . . . , sn to the left of the vertical line Re(s) = γ and that C is the
contour on the preceding slide. If sF (s) is bounded as R → ∞, then
L−1{F (s)} =

∑n
k=1 Res(e

stF (s), sk).

By Cauchy’s residue theorem, we have
´

CR
estF (s)ds +

´

LR
estF (s)ds = 2πi

∑n
k=1 Res(e

stF (s), sk) or
1
2πi

´ γ+iR

γ−iR
estF (s)ds =

∑n
k=1 Res(e

stF (s), sk)− 1
2πi

´

CR
estF (s)ds .

We let R → ∞ and show that limR→∞
´

CR
estF (s)ds = 0.

If the semicircle CR is parametrized by s = γ + Re iθ, π
2 ≤ θ ≤ 3π

2 ,
then ds = Rie iθdθ = (s − γ)idθ, and so,
1
2πi

´

CR
estF (s)ds = 1

2πi

´ 3π/2
π/2 eγt+Rte iθF (γ + Re iθ)Rie iθdθ, whence

1
2π

∣

∣

∣

´

CR
estF (s)ds

∣

∣

∣
≤ 1

2π

´ 3π/2
π/2

∣

∣

∣
eγt+Rte iθ

∣

∣

∣

∣

∣F (γ + Re iθ)
∣

∣

∣

∣Rie iθ
∣

∣ dθ.
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Proof of the Inverse Laplace Transform Theorem

We examine the three moduli involved:
∣

∣

∣
eγt+Rte iθ

∣

∣

∣
=

∣

∣eγteRt(cos θ+i sin θ)
∣

∣ = eγteRt cos θ.

For |s| sufficiently large, we can write
∣

∣Rie iθ
∣

∣ = |s − γ||i | ≤ |s|+ |γ| < |s|+ |s| = 2|s|.
Finally, by hypothesis, |sF (s)| < M .

Thus, we get 1
2π

∣

∣

∣

´

CR
estF (s)ds

∣

∣

∣
≤

1
2π

´ 3π/2
π/2

∣

∣

∣
eγt+Rte iθ

∣

∣

∣

∣

∣F (γ + Re iθ)
∣

∣

∣

∣Rie iθ
∣

∣ dθ ≤ M
π e

γt
´ 3π/2
π/2 eRt cos θdθ.

Let θ = φ+ π
2 and notice that the integral becomes

´ π
0 e−Rt sinφdφ = 2

´ π/2
0 e−Rt sinφdφ. We have sinφ ≥ 2φ

π , whence

2
´ π/2
0 e−Rt sinφdφ ≤ 2

´ π/2
0 e−2Rtφ/πdφ = − π

Rt
e−2Rtφ/π

∣

∣

π/2

0
=

π
Rt
[1− e−Rt ]. We conclude that 1

2π

∣

∣

∣

´

CR
estF (s)ds

∣

∣

∣
≤ Meγt

Rt
[1− e−Rt ].

The right-hand side approaches zero as R → ∞ for t > 0, whence
limR→∞

´

CR
estF (s)ds = 0.
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An Inverse Laplace Transform

Evaluate L−1{ 1
s3
}, Re(s) > 0.

The function F (s) = 1
s3

has a pole of order 3 at s = 0. Thus, by the
theorem,

f (t) = L−1{ 1
s3
}

= Res(est 1
s3
, 0)

= 1
2 lims→0

d2

ds2
(s − 0)3 est

s3

= 1
2 lims→0

d2

ds2
est

= 1
2 lims→0

t2est

= 1
2t

2.
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Fourier Transform

Suppose now that f (x) is a real function defined on the interval
(−∞,∞).
Another important transform pair consists of

the Fourier transform

F{f (x)} =

ˆ

∞

−∞

f (x)e iαxdx = F (α).

the inverse Fourier transform

F
−1{F (α)} =

1

2π

ˆ

∞

−∞

F (α)e−iαxdα = f (x).

The kernel of the Fourier transform is K (α, x) = e iαx , whereas the

kernel of the inverse transform is H(α, x) = e−iαx

2π .

We assume that α is a real variable.

In contrast to the Laplace case, the inverse Fourier transform is not a
contour integral.
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Computing a Fourier Transform

Find the Fourier transform of f (x) = e−|x |.

We have f (x) =

{

ex , if x < 0
e−x , if x ≥ 0

. The Fourier transform of f is

F{f (x)} =
´ 0
−∞ exe iαxdx +

´∞
0 e−xe iαxdx = I1 + I2.

For I2, we have I2 = limb→∞

´ b

0 e−xe iαxdx =

limb→∞

´ b

0 e−x(1−αi)dx = limb→∞

e−x(1−αi)

αi−1

∣

∣

∣

b

0
= limb→∞

e−b(1−αi)
−1

αi−1 =

1
αi−1 limb→∞ (e−b cos bα+ ie−b sin bα− 1) = 1

1−αi
.

The integral I1 can be evaluate similarly to obtain I1 =
1

1+αi
.

Adding I1 and I2 gives the value of the Fourier transform:

F{f (x)} =
1

1− αi
+

1

1 + αi
=

2

1 + α2
.
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Computing an Inverse Fourier Transform

Find the inverse Fourier transform of F (α) = 2
1+α2 .

The idea here is to recover the function f of the preceding example.
We have F−1{F (α)} = 1

2π

´∞
−∞

2
1+α2 e

−iαxdα = f (x).

Let z be a complex variable and introduce
the contour integral

¸

C
1

π(1+z2)
e−izxdz.

The integrand has simple poles at z = ±i .
The contour C is shown in the figure.

We get
¸

C
1

π(1+z2)
e−izxdz = 2πiRes( 1

π(1+z2)
e−izx , i) = ex . The

contour integral along CR approaches zero as R → ∞ only if we
assume that x < 0. Thus, the answer is ex , x < 0.
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Computing an Inverse Fourier Transform (Cont’d)

If we consider
¸

C
1

π(1+z2)
e−izxdz , where C

is the contour on the left, it can be shown
that the integral along CR now approaches
zero as R → ∞ when x is assumed to be
positive. Hence,

¸

C
1

π(1+z2)
e−izxdz =

−2πiRes( 1
π(1+z2)

e−izx ,−i) = e−x , x > 0. The extra minus sign

appearing in front of the factor 2πi comes from the fact that on C ,
´

C
=
´

CR
+
´ −R

R
=
´

CR
−
´ R

−R
= 2πiRes(z = −i). As R → ∞,

´

CR
→ 0, for x > 0, whence − limR→∞

´ R

−R
= 2πiRes(z = −i) or

limR→∞
´ R

−R
= −2πiRes(z = −i).

By combining the findings, we get

F−1{F (α)} =
1

2π

ˆ ∞

−∞

2

1 + α2
e−iαxdα =

{

ex , if x < 0
e−x , if x > 0

.
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