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Consequences and Applications of the Residue Theorem

Overview of Consequences of the Residue Theorem

@ The residue theory can be used to evaluate real integrals of the forms
2 F(cos#,sin 0)do;

® Jo
o [T f(x)dx;
o [%_f(x)cosaxdx;
o [% f(x)sinaxdx.
Here F and f are rational functions of the form f(x) = %ﬁé in which

the polynomials p and g are assumed to have no common factors.

@ Residues can be used to evaluate real improper integrals that require
integration along a branch cut.

@ A relationship exists between the residue theory and the zeros of an
analytic function.

@ Residues can, in certain cases, be used to find the sum of an infinite
series.
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Consequences and Applications of the Residue Theorem Evaluation of Real Trigonometric Integrals

Subsection 1

Evaluation of Real Trigonometric Integrals
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Consequences and Applications of the Residue Theorem Evaluation of Real Trigonometric Integrals

Integrals of the Form f027T F(cos6,sinf)df

@ The basic idea is to convert those into a complex integral, where the
contour C is the unit circle |z| = 1 centered at the origin.

@ To do this we parametrize this contour by z = e, 0 < 6 < 27. We
i0 i0 io io
write dz = ie’?df), cosf = %, sinf = % Since
dz = ie"?df = izdf and z7 ! = % = e~ these three quantities are
equivalent to dff = %, cosf = 3(z +z71), sinf = % (z —z71). The

conversion of the given integral into a contour integral is

§1§CF <%(z +z7Y), %(Z - 2_1)> %’

where C is the unit circle |z| = 1.
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Consequences and Applications of the Residue Theorem Evaluation of Real Trigonometric Integrals

A Real Trigonometric Integral

@ Evaluate f027r md@

@ We use the substitutions: §C m B = §C ﬁ‘ljzz

Simplifying, % gﬁc mdz. Factoring the denominator

224+ 4z+1=(z—z1)(z — z2), where zz = —2 —+/3 and

zp= —2++/3. Thus, (22+4zz+1)2 = (2_21)22(2_22)2. Only z is inside
the unit circle C. Thus, we have §. e 9z = 2miRes(f(2), ).
To calculate the residue, note that z» is a poIe of order 2:

2 z _
Res(f(z2),z) = I|m dz(z — 2)°f(2) = zl|_>rr;2dzm =
—z—z _
Am == = o
4 z 4 . 4 |
Hence e o 2nReile) a) =5 i

Zis 1 47
d, finally, — _df=——.
and, finally /0 27 cos0)? 33
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Subsection 2

Evaluation of Real Improper Integrals
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Integrals of the Form [ f(x)dx

@ Suppose y = f(x) is a real function that is defined and continuous on
the interval [0, 00).

@ In elementary calculus the improper integral = fooo f(x)dx is

defined as the limit h = [~ f(x)dx = limr_ fo x)dx. If the
limit exists, the integral /; is sald to be convergent; otherW|se, it is
divergent.

@ The improper integral I, = fE f(x)dx is defined similarly:
b = fE f(x)dx = I|mR_>oof x)dx.
@ Finally, if f is continuous on (—oo,oo), then

/_C: f(x)dx = /_(; f(x)dx+/ooo F(x)dx = I + b,

provided both integrals /; and  are convergent. If either one, /; or
lo, is divergent, then [* f(x)dx is divergent.
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Cauchy Principal Value of [*°_f(x)dx

@ It is important to remember that
limg_ oo fSR f(x)dx + IimR_>Oo foR f(x)dx is not the same as

iMR-so0 (J° FOX)dx + [ F(x)dx) = limp_yo0 [ F(x)dx.
o For the integral [* f(x)dx to be convergent, the limits

MR 00 f_OR f(x)dx and limg_ o0 fOR f(x)dx must exist independently
of one another.

@ In the event that we know (a priori) that an improper integral
f(_)ooo f(x)dx converges, we can then evaluate it by means of the single
limiting process [* f(x)dx = limg_ f_RR f(x)dx.

@ On the other hand, the symmetric limit may exist even though the
improper integral ffooo f(x)dx is divergent.

@ The limit limg_ f_RR f(x)dx, if it exists, is called the Cauchy
principal value (P.V.) of the integral and is written
P.V. [% f(x)dx = limg_0 [5o F(x)dx.
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Principal Value and Integrals of Even Functions

@ Suppose f(x) is continuous on (—oo,00) and is an even function, i.e.,
f(—x) = f(x). Then its graph is symmetric with respect to the
y-axis. As a consequence, fER f(x)dx = fOR f(x)dx. Therefore,
fR f(x)dx = ff f(x)dx + fOR f(x)dx = 2f0R dx.

If the Cauchy principal value exists, [~ f(x)dx and f x)dx
converge. The values of the integrals are

Awf@Mx=%RV/Wf&Mx

— 00

and

[ZH@W=RV[ZH@W.
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Evaluation of Integral [~ f(x)dx

o To evaluate [*°_f(x)dx, where the rational function f(x) = %
continuous on (—o0, 00),
we replace x by the complex variable z
and integrate the complex function f over a
closed contour C that consists of the inter-
val [—R, R] on the real axis and a semicircle
Cr of radius large enough to enclose all the
poles of f(z) = % in the upper half-plane

Im(z) > 0.

Then,

¢ f(z)dz = fc f(z) dz—l—f x)dx = 2mi Y, _; Res(f(z), zx),
where zy, k = 1 2,...,n denotes poles in the upper half-plane. If we
can show that the fc f(z)dz — 0 as R — oo, then we have

P.V. [T f(x)dx = I|mR_>oof x)dx = 2mi Y ,_; Res(f(z), zx).
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Cauchy P.V. of an Improper Integral

@ Evaluate the Cauchy principal value of f mdx.

Let f(Z) = m v

Since (22 +1)(2°+9) = (z—i)(z+i)(z—
3i)(z+3i), we take C be the closed contour

consisting of the interval [-R, R] on the x-
axis and the semicircle Cg of radius R > 3. ——> > T
Then,

fe w2 = J-r e &+ o, wrEm = ht
and hi + h = 27i[Res(f(z), i) + Res(f(z), 3i)] At the simple poles
z=iand z=3i we find Res(f(z), /) = 16’ and

Res(f(z),3i) = — 7, whence hh + b = 2mi[{& + (— )] = 5.
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Letting R — o0

_
dz_12-

1 _ rk 1 1
° $c DT %2 = J-R 2160 OX T+ fCR (22+1)(2219)
Before letting R — oo, note that |(z% 4+ 1)(z% +9)| =
|22+ 1] - |22+ 9] > ||2%| — 1| - ||23| — 9] = (R? — 1)(R? — 9). Since

the length L of the semicircle is R, it follows, by the ML-inequality,
’/2’ ‘fCR mdz‘ _W Hence, ‘/2‘—>Oas
R — oo, and we conclude that limg_.o, /» = 0. It follows that

i _ i 1 _
limrooo h = 15 Le., limp_yoo [Tf T 0ET9) dx = {5 or

PV, [

0 x2+1)(x2+9)dx = 15
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Behavior of Integral as R — oo

@ To show that the contour integral along Cgr approaches zero as
R — oo the following sufficient conditions are useful:

Theorem (Behavior of Integral as R — o)

Suppose f(z) = % is a rational function, where the degree of p(z) is n

and the degree of g(z) is m > n-|— 2. If Cg is a semicircular contour
z=Re® 0<0 <, then [, f(z)dz—0as R~ oo.

@ In other words, the integral along Cr approaches zero as R — oo
when the denominator of f is of a power at least 2 more than its
numerator.

@ The proof of this fact follows as in the preceding example, in which
degree of p(z) = 1 is 0 and degree of q(z) = (2% + 1)(z% +9) is 4.
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Another Cauchy P.V. of an Improper Integral

@ Evaluate the Cauchy principal value of f_oo e dx.
The conditions given in the preceding theorem are satisfied. Moreover,

f(z) = ﬁ has simple poles in the upper half-plane at z; = e™//4

and z = €37/, \We have seen the residues at these poles are

1 1 1 1
Res(f(z),z1) = ———=——=i and Res(f(z),z) = ——%=——=I.
H@2)==105"w5 S N NG

Thus,

P.V. /Oo %de = 27i[Res(f(2), z1) + Res(f(z), )] = %

—00

Since the integrand is an even function, the original integral
converges to %

October 2014 15 / 58
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

o

Integrals [°_f(x)sinaxdx and [~ f(x) cosaxdx

o Integrals of Form [ f(x)sin axdx and [ f(x)cos axdx are
referred to as Fourier integrals.
@ They appear as the real and imaginary parts of ffooo f(x)e'**dx.

@ Suppose f(x) = % is a rational function continuous on (—o0, 00).
Then both Fourier integrals can be evaluated by considering the
complex integral § f(z)e'*?dz, where o > 0, and the contour C
consists of [—R, R] and a semicircular contour Cg with radius large
enough to enclose the poles of f(z) in the upper-half plane.

@ Sufficient conditions under which the contour integral along Cg

approaches zero as R — oo are given by

Theorem (Behavior of Integral as R — o)

Suppose f(z) = % is a rational function, where the degree of p(z) is n

and the degree of g(z) is m > n+ 2. If Cg is a semicircular contour
z=Re® 0<0 <7 and a >0, then [ f(z)e’*dz — 0as R — oo.
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Evaluating a Fourier Integral

o Evaluate the Cauchy principal value of [ fji—:gdx.

First note that the limits of integration in the given integral are not
from —oo to oo as required by the method just described Since the

integrand is an even function of x, foo Xz"ig = - foooo f;::g dx. We

eZdz, where C is the contour

now form the contour integral SBC 279¢
described before, with R > 3. We have
fCR 249 e?dz + ffR e eXdx = 27TiReS(f(Z)eizv 3i), where
f(z) = zzzﬁ, and Res(f(z)e?,3i) = z+3, s

theorem, [ f(z)e?dz — 0 as R — oo, we get

= 67_3 Since, by the

5 o =3 3 5
P.V. [%, Fge™dx = 2mi(%5-) = Zi. Note that [ Zse™dx =
o0 o0 . . . .
1o ’;‘;‘fédx +i 7 Xg'igdx = Z5i. Equating real and imaginary
o X Cos X o0 xsinx _ H
parts: P.V. [ o) dx =0 agod P V. [ redx =T This
o H xsmx Xxsin x _
implies that [ Bradx =3 L/° o e dx = 55
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Indented Contours

@ Up to this point we considered improper integrals of functions
continuous on the interval (—oo, 00), i.e., the complex function
f(z) = Zgzg did not have poles on the real axis.

@ Suppose we want to evaluate [* f(x)dx v
by residues when f(z) has a pole at z = ¢,
where c is a real number. Then we use an
indented contour: The symbol C, denotes
a semicircular contour centered at z = ¢

and oriented in the positive direction. -R

Theorem (Behavior of Integral as r — 0)

Suppose f has a simple pole z = ¢ on the real axis. If C, is the contour
defined by z = c + re®, 0 < 0 < 7, then

fig /C Fl2)dz = miRes(F(z), ).

r—0
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Proof of the Theorem

@ Since f has a simple pole at z = ¢, its Laurent series is
a—1
f(z) = ,
(1) =2~ +g(e)
where a_; = Res(f(z), ¢) and g is analytic at the point c. Using the

Laurent series and the parametrization of C,, we have

T ralf L . .
/ f(z)dz = 3—1/ T o + ir/ g(c+re®)e®ds = I + b.
r 0 0

reff

o h=a_y [y i dg=a_y [T id§ =mia_, = miRes(f(z), c).
o Since g is analytic at ¢, it is continuous at this point and bounded in a
neighborhood of the point. l.e., there exists an M > 0 for which

lg(c + re’®)| < M. Hence,
|| = |ir/ g(c+re'?)do| < r/ Mdo = 7rM.
0 0

It follows that lim,_o || = 0 and, consequently, lim,_,o kb = 0.
By taking the limit of the sum as r — 0, we get the conclusion.
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Consequences and Applications of the Residue Theorem Evaluation of Real Improper Integrals

Using an Indented Contour

@ Evaluate the Cauchy principal value of f 00 X2 —2xT2) Xzs'n2§+2)d
We consider ¢ 2(2%224_2)6/ - !

f(z) = m has a pole at z = 0
and at z = 14/ in the upper half-plane.
The contour C, is indented at the onEln

Wehaveﬁc—fCR-l-f I

2miRes(f(z)e?,1 4 i), f—Cr fCr'
If we take the limits as R — oo and as r — 0,

P.V. [%, md — miRes(f(z)e”?,0) = 2wiRes(f(z)e%,1 + i).
Now, Res(f(z)e’?,0) = and Res(f(z)e, 1+ i) = — €32 (1+ ).
Therefore, P.V. [~ dx = mi% + 2mi(— f’ (14 1)). Using

-R

oo x(x2— 2x+2)

e 1" = e71(cos1 + isin1) and equating real and imaginary parts:
P.V. [ %dx = Ze(sinl+ cosl),
P.V. [* 0 ﬁd =21+ e I(sinl —cos1)].
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Consequences and Applications of the Residue Theorem Integration along a Bra

Subsection 3

Integration along a Branch Cut

George Voutsadakis (LSSU) Complex Analysis October 2014 21 /58



Consequences and Applications of the Residue Theorem Integration along a Branch Cut

Branch Point at z =0

@ Suppose that, if f(x) is converted to a complex function, f(z) has, in
addition to poles, a nonisolated singularity at z = 0.

@ In that case, computing fooo f(x)dx requires a special type of contour.

o Example: Consider the real integral [;° X+1 " dx, (21) where « |s a
real constant restricted to the interval 0 < o < 1. When o = 5 and x
is replaced by z, the integrand becomes the multiple-valued function
m. The origin is a branch point because z!/2 has two values

for any z # 0. Traveling in a complete circle around the origin z =0,

starting from a point z = re’, r > 0, we return to the same starting

point z, but # has increased by 27. Thus, the value of z!/2 changes

from z1/2 = \/re’?/? to a different value or different branch:

Z1/2 — \/;ei(9+27r)/2 _ \/;ei9/2ei7r _ _\/FellT(/2.

Recall, we can force z1/2 to be single valued by restricting 6 to some

interval of length 2. E.g., by restricting 6 to 0 < 6 < 27, we

guarantee that z1/2 = /re/? is single valued.
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Consequences and Applications of the Residue Theorem Integration along a Branch Cut

Integration along a Branch Cut

@ Evaluate fo fx+1)d

The real integral is improper for two reasons:
@ There is an infinite discontinuity at x = 0;
o The limit of integration is infinite.

We form the integral fc 1/2(z+1)dz where C .
is the contour shown, which consists of
o C, and Cg, which are portions of circles; A B
D E

o AB and ED, which are parallel horizontal
line segments running along opposite sides
of the branch cut.

The integrand f(z) of the contour integral is single valued and
analytic on and within C, except for the simple pole at z = —1 = ™
Hence, we can write ¢ 72 +1)dz = 27miRes(f(z),—1) or

fcR + Jep + e, + Jap = 2miRes(f(z), -1).

George Voutsadakis (LSSU) Complex Analysis October 2014 23 / 58



Consequences and Applications of the Residue Theorem Integration along a Branch Cut

Integration along a Branch Cut (Cont'd)

@ We think of AB as coinciding with the upper side of the positive real
axis for which 8 = 0 and of ED with the lower side of the positive real
axis for which 6 = 27.

On AB, z = xe%;

On ED, z = xe(0+2m)i — xe27i: Thys,

Jeo = I Xez;’l”)+11/2(ez7ridx) = - fgxxi/lz = fR Xx;/:d and
fAB = er %(eo’.dx) = er XX__:/: .

Now with z = re’® and z = Re'” on C, and Cg, respectively, it can be
shown that fCr —~0asr—0and fCR — 0 as R — oco. Thus,

lim 10 [[c, + Jep + [, + Jap = 2miRes(f(2), —1)] is the same as
R—00 r
2, mdx = 2miRes(f(z),—1). Since

Res(f(Z), —1) = Z_l/2|z:e”f = e_7ri/2 = — I.’ fOOO 7\&(1_’_1) dX
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Consequences and Applications of the Residue Theorem The Argument Principle and Rouché’s Theorem

Subsection 4

The Argument Principle and Rouché’s Theorem
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Consequences and Applications of the Residue Theorem The Argument Principle and Rouché’s Theorem

Number of Zeros and Poles

@ We apply residue theory to the location of zeros of an analytic
function.

@ In the first theorem we need to count the number of zeros and poles
of a function f that are located within a simple closed contour C,
taking into account the order or multiplicity of each zero and pole.

zzfzzzi)é)z{(zgfi()zﬁzrzifmy and C is taken to be the

o Example: If f(z) = (

circle |z| = 2, then:
o Inspection of the numerator of f reveals that the zeros inside C are

z =1 (a simple zero) and z = —/ (a zero of order or multiplicity 2).
Therefore, the number Ny of zeros inside C is taken to be
No=1+2=3.

o Similarly , inspection of the denominator of f shows, after factoring
722 - 2z+4+2=(z—1—1i)(z—1+1), that the poles inside C are
z=1— (pole of order 2), z =1+ i (pole of order 2), and z =i (pole
of order 6). The number N, of poles inside C is taken to be
Np=2+4+2+6=10.
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Consequences and Applications of the Residue Theorem The Argument Principle and Rouché’s Theorem

Argument Principle

Theorem (Argument Principle)

Let C be a simple closed contour lying entirely within a domain D.
Suppose f is analytic in D except at a finite number of poles inside C, and
that f(z) # 0 on C. Then 2= ¢ = f}v ) dz = No — N, where Ny is the total
number of zeros of f inside C and N, is the total number of poles of f
inside C, counting their order or multiplicities.

@ The integrand % is analytic in and on the contour C except at the
points in the interior of C where f has a zero or a pole. If z is a zero
of order n of f inside C, then we can write f(z) = (z — z9)"¢(z2),
where ¢ is analytic at zp and ¢(zy) # 0. We differentiate f by the
product rule, f'(z) = (z — 20)"¢'(2) + n(z — 20)"~1¢(z), and divide
this expression by f. In some punctured disk centered at zy, we have
fl(zz); (zfzo)"¢;(zz_);r)1£;zzz)o)"71¢(z) = (Z((Zz)) + 225 Thus, the integrand

(Z) as a simple pole at z.

George Voutsadakis (LSSU) Complex Analysis October 2014 27 / 58



Consequences and Applications of the Residue Theorem The Argument Principle and Rouché’s Theorem

Proof of the Argument Principle

o We found f((z)) q;((zz)) + = The residue at zg is Res( f(z) ,zo) =
: ¢'(2) — (z2=20)¢'(2) _ _
ZI|_>n;O(z — 2p) (¢(z) + = 20> = z||_>r’r;0( (;EZ) + ) =0+ n=n,

which is the order of the zero z.
Now if z, is a pole of order m of f within C, then f(z) = &)

- (Z Z )m7
where g is analytlc at z, and g(z,) # 0. By differentiating,
f'(z) = (z — zp)"™g'(z) — m(z — z,) "™ 1g(z). Therefore, in some
punctured disk centered at zp,

fi(z _ —m ./ _ _ —m—1 z
i = e = 68 + 22 Thus, {3 has

a simple pole at z,. We also see that the residue at z, is equal to
—m, which is the negative of the order of the pole of f.
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Consequences and Applications of the Residue Theorem The Argument Principle and Rouché’s Theorem

Proof of the Argument Principle (Cont'd)

o Finally, suppose that zy,, zo,, ..., 20, and zp,, zp,, ..., zp, are the
zeros and poles of f within C and that the order of the zeros are
ny, no,...,n, and that order of the poles are my, my, ..., ms. Then
each of these points is a simple pole of the integrand % with
corresponding residues ny, n, ..., n,and —my, —myp, ..., —ms. It

- f'(z)
follows from the residue theorem that
c f(2)
times the sum of the residues at the poles:
f'(z)
y§c 7(2) dz = 2mi | >4 Res( ((z))’zok) +> ket Res( f(z) ,zpk)] =
2mi (Zk:l Nk + Zk:]_(_mk)) = 27’[’/[/\/0 = p]'

dz is equal to 27/
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Consequences and Applications of the Residue Theorem The Argument Principle and Rouché’s Theorem

lllustrating the Argument Principle

@ Suppose the simple closed contour is |z| = 2 and the function
(z—1)(z—-9)*z+i)?
(22 =2z +2)%(z — )%z + 6/)7"
f/
In the evaluation of;lg (2)
- cflz)
27i times the order of multiplicity of the zero and each pole
contributes 27/ times the negative of the order of the pole:
f'(z)
dz
c f(2)
= [2mi(1) 4+ 27i(2)] + [27i(—2) 4 27i(—2) 4 27i(—6)] = — 14mi.
@ The name “argument principle” originates from a relation between
the number Ng — N, and arg(f(z)): We have

f(z) =

dz, each zero of f within C contributes

1
No— N, = o [change in arg(f(z)) as z traverses C

once in the positive direction] .
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Consequences and Applications of the Residue Theorem The Argument Principle and Rouché’s Theorem

Rouché’'s Theorem

@ The following theorem is helpful in determining the number of zeros
of an analytic function.

Theorem (Rouché's Theorem)

Let C be a simple closed contour lying entirely within a domain D.
Suppose f and g are analytic in D. If the strict inequality

|f(z) — g(2)| < |f(2)| holds for all z on C, then f and g have the same
number of zeros, counting their order or multiplicities, inside C.

@ The hypothesis that |f(z) — g(z)| < |f(z)] holds, for all z on C,
indicates that both f and g have no zeros on the contour C. From
|f(z) — g(z2)| = |g(z) — f(2)|, we see that, by dividing the inequality

by |f(z)|. we have, for all zon C, |F(z) — 1| < 1, where F(z) = %.
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Consequences and Applications of the Residue Theorem The Argument Principle and Rouché’s Theorem

Proof of Rouché’'s Theorem

@ We have |F(z) — 1| < 1, where F(z) = gz).

This inequality shows that the image C’ in 7 \
the w-plane of the curve C under the mapping / 1

\\
w = F(z) is a closed path and must lie within \wc T
the unit open disk |w — 1| < 1 centered at N\ J/

w=1. N

As a consequence, the curve C’ does not enclose w = 0, and

therefore % is analytic in and on C’. By the Cauchy-Goursat

Theorem, §, 2dw = 0. Since w = F(z) and dw = F'(z)dz,

$c %dz = 0. From the quotient rule, F'(z) = f(z)g'(ff)(;ﬁgz)f'(z),
F'(z) _ g'(z) _ f'(2)

'(z f'(z
we get =5 = £5 — 5. Therefore, ¢ é;((z)) - f((z)))dz =0or

gﬂc é;((zz)) dz = @C ffl(zz)) dz. By the argument principle, the number of

zeros of g inside C is the same as the number of zeros of f inside C.
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Location of Zeros

@ Locate the zeros of the polynomial function g(z) = z° — 822 + 5.

We begin by choosing f(z) = z° because it has the same number of
zeros as g. Since f has a zero of order 9 at z = 0, we search for the
zeros of g by examining circles centered at z = 0. If we can establish
that |f(z) — g(z)| < |f(2)|, for all z on some circle |z| = R, then
Rouché’'s Theorem asserts that f and g have the same number of
zeros within |z| < R.

By the triangle inequality, |f(z) — g(2)| = |2° — (z° — 82% +5)| =
822 — 5| < 8|z|? + 5. Also, |f(2)| = |z|°.

Since |f(z) — g(2)| < |f(2)] or 8|z|> +5 < |z|° is not true for all z on
|z| = 1, we can draw no conclusion.

By expanding the search to the larger circle |z| = % we see

f(z) —g(2)] <8zP+5=8-(3)>+5=23 < (3)° = |f(2)|- Thus,
since f has a zero of order 9 within |z| < 3, all nine zeros of g lie
within the same disk.
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Revisiting the Zeros of g |

@ By more refined reasoning, we can show that g(z) = z° — 822 + 5 has
some zeros inside |z| < 1.

To see this suppose we choose f(z) = —82z2 + 5. Then, for all z on
z| =1,

f(z) — g(z)| = |(—82*> +5) — (2 —82° +5)| = | - 2°| = |2|° =
(1)° =1.

For all z on |z| =1,

f(z)| = | — f(z)| = 82> — 5] > [8]z]* — | - 5]| = |8 — 5| = 3.

Therefore, for all z on |z| =1, |f(z) — g(z)| < |f(2)].
Because f has two zeros within |z| < 1 (namely, j:\/g), we can
conclude, by Rouché’s Theorem, that two zeros of g also lie within

this disk.
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Revisiting the Zeros of g Il

o Continuing to reason about the zeros of g(z) = z° — 822 + 5, suppose
we choose f(z) =5 and |z| = 3. Then, for all z on |z| = 3,
f(z) — g(z)| = |5 — (2° =822 +5)| = | — 27 +82%| < [z° + 8|z =
(3)° + 2 =~ 2.002.
We now have |f(z) — g(z)| < |f(z)| =5, for all z on |z| = 3. Since f
has no zeros within the disk |z| < 3, neither does g.
At this point we are able to conclude that all nine zeros of
g(z) = z° — 822 + 5 lie within the annular region 3 < |z| < 3.
Moreover, two of these zeros lie within 3 < |z| < 1.
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Subsection 5

Summing Infinite Series
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Consequences and Applications of the Residue Theorem Summing Infinite Series

Using cot 7wz

@ The residues at the simple poles of cot mz can help find the sum of an
infinite series.

@ The zeros of sinz are the reals z = kw, k =0,4+1,42,.... Thus,
cot wz has simple poles at 1z = kmor z=k, k=0,+1,4+2,....

o If a polynomial function p(z) has (i) real coefficients; (ii) degree

n > 2, and (iii) no integer zeros, then the function f(z) = %;)“ has
an infinite number of simple poles z =0, +1,+2,... from cot7z and
a finite number of poles z,,, z,,, . .., zp, from the zeros of p(z).

@ The closed rectangular contour is C, w+prui v @Y i
where n is taken large enough so that .
C encloses the simple poles z = 0, .
+1,42,...,4+n and all of the poles B !
Zpi1Zpys- -+, 2Zp,- By the residue theo-
rem —(n+%) —ni (1n+%) —ni
$c “;c(’i;rz dz = 2mi(3_F__, Res(T575%, k) + 3071 Res(™575%, ;).
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Using cot mz (Cont'd)

@ Since it can be shown that §- %ﬁ)ﬂzdz — 0 as n — oo, we get

0=, residues + > residues. That is,

7TCOt7TZ mcotmz
o=t e ]

o Ifa functlon f can be written as a quotlent f(z) = %f )) where g and
h are analytic at z = zy, g(20) # 0 and h has a zero of order 1 at z,
then f has a simple pole at z = zy and Res(f(z),z) = h,((zz‘;))

@ Hence, with g(z) = % and h(z) =sin7z, we get

7 cos kT
T eotmz p(k) _ 1
Res( p(z) k) mcoskm — p(k)-

@ Therefore, we arrive at

o0

7rcot7rz
2 p(k) ZR o) )

k=—00
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Using cscrz

o If p(z) is a polynomial function satisfying the same assumptions, i.e.,
(i) has real coefficients;
(ii) has degree n > 2, and
(i) no integer zeros,

then the function f(z) = % has an infinite number of simple
poles z =0,£1,+2,... from cscmz and a finite number of poles
Zp1s Zpy, - - - 5 Zp, from the zeros of p(z).

@ In this case it can be shown that

i = 2=

[e.9]

> &

k=—o00
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Summing an Infinite Series

1
4

If we identify p(z) = z? + 4, then the three assumptions (i)-(iii) are
satisfied. The zeros of p(z) are +2/ and correspond to simple poles of

f(z) = =252 According to the formula
o] 1 mcotmz mcotmz o 2
D ko PE = (Res(2 el —2i) 4+ Res(* 252, /)g 'Slnce
mweotmz N\ __ mcot2mi mcotmz __ mcot2mi
Res( v ,—2!) = TG and Res(*2%,2i) = ST the sum
of the residues is 7; cot 27i. This sum is a real quantity because

iy . m COSh( 271') T
bH cot2mwi = 2 m = —3 coth 2. Hence,

@ Find the sum of the series > /% ) =7

Z k2 - 4 > coth 2.

k=—00
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Summing an Infinite Series (Cont'd)

@ To get the desired sum, we must manipulate the summation Z‘iooo in
order to put it in the form >~} ;.

We have
o) 1 _ -1 1 1 0 1
Zk:—oo K214 Zk:—oo K214 + 4 + Zk:l K214
— oo 1 1 o] 1
- Zk:l (—k)2+4 +37+ Zk:l k244
_ 0o 1 1 _ 0o 1 1
- 2Zk:l k2+4 tz= 2Zk:o K2+4 4
. . [e%e) 1 _ oo 1 1 _ =
Flnal_ly, since Zk:—oo 2ra = 2Zk:O Rra 1732 coth 27T, we
obtain

=1 1 =
———— = — 4+ — coth 27.
;)k2-|—4 8-|-4cot 7
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Subsection 6

Laplace and Fourier Transforms
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Laplace and Inverse Laplace Transforms

@ The Laplace transform of a real function f is defined, for t > 0, by
L{F(t)} =[5 e stf(t)dt.

(i) The direct problem: Given a function f(t) satisfying certain conditions,
find its Laplace transform. When the integral converges, the result is a
function of s. The relationship between a function and its transform is
exhibited by using a lowercase letter to denote the function and the
corresponding uppercase letter to denote its Laplace transform, e.g.,
L{f(t)} = F(s), L{y(t)} = Y(s), and so on.

(i) The inverse problem: Find the function f(t) that has a given transform

F(s). The function f(t) is called the inverse Laplace transform and
is denoted by L~1{F(s)}.

@ We will see that the inverse Laplace transform is not merely a symbol

but actually another integral transform, actually a special type of
complex contour integral.

George Voutsadakis (LSSU) Complex Analysis October 2014 43 / 58



Consequences and Applications of the Residue Theorem Laplace and Fourier Transforms

Integral Transforms

@ Suppose f(x,y) is a real-valued function of two real variables.

@ A definite integral of f with respect to one of the variables leads to a
function of the other variable.

Example: If we hold y constant, inte%ration with respect to the real
variable x gives flz 4xy?dx = 2x2y2‘1 = 8y? — 2y% = 6y°.

@ Thus, a definite integral such as F(a) = fab f(x)K (e, x)dx transforms
a function f of the variable x into a function F of the variable a.

o We say that F(«a) = fab f(x)K(a, x)dx is an integral transform of
the function f.

@ Integral transforms appear in transform pairs, meaning that the
original function f can be recovered by another integral transform
f(x) = fcd F(a)H(a, x)da, called the inverse transform.

@ The functions K(c, x) and H(a, x) are the kernels of the transforms.

o If a represents a complex variable, then the second definite integral is
replaced by a contour integral.

George Voutsadakis (LSSU) Complex Analysis October 2014 44 / 58



Consequences and Applications of the Residue Theorem Laplace and Fourier Transforms

The Laplace Transform

@ Suppose that, in F(a f f(x)K(a, x)dx, a is replaced by the
symbol s, and that f represents a real function that is defined on the
unbounded interval [0 oo)

@ Then F(s fo K(s, t)dt is an improper integral, defined by

b—oo

o0 b
/ K(s, t)f(t)dt = lim / K(s. t)F(£)dt.
0 0
o If the limit exists, we say that the integral exists or is convergent;
otherwise, the integral does not exist and is said to be divergent.
@ The choice K(s,t) = e, where s is a complex variable, gives the
Laplace transform L{f(t)} defined previously.
@ The integral that defines the Laplace transform may not converge for
certain kinds of functions f.
Example: Neither £{et"} nor L{1} exists.
@ Also, the limit may exist for only certain values of the variable s.
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Existence of a Laplace Transform

@ The Laplace transform of f(t) =1, t >0, is

L£{1} = fooo e t(1)dt
= limpoeo fy e tdt
. —st b
= limp 00 _es o
g __a—sb
= limpeo [2 —]
sb sb

If s = x + iy, then =% = e (cos by — isinby). Thus, e — 0 as

b — o0, if x > 0. In other words,

L{1} = %, provided Re(s) > 0.
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Existence of L{f(t)}

o Conditions that are sufficient to guarantee the existence of L{f(t)}
are that f be piecewise continuous on [0, 00) and that f be of
exponential order.

o Piecewise continuity on [0, c0) means that, on any interval, there are
at most a finite number of points tx, k =1,2,...,n, ty_1 < tx, at
which f has finite discontinuities and is continuous on each open
interval t,_1 < t < ty.

o A function f is said to be of exponential order c if there exist
constants ¢, M > 0, and T > 0, so that |[f(t)| < Me<, for t > T.
The condition |f(t)] < Me®, for t > T, states that the graph of f on
the interval (T, 00) does not grow faster than the graph of the
exponential function Me*t.

Alternatively, e=|f(t)| is bounded, i.e., e “|f(t)| < M, for t > T.

@ All bounded functions are necessarily of exponential order ¢ = 0.
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Existence Theorem for L{f(t)}

Theorem (Sufficient Conditions for Existence)

Suppose f is piecewise continuous on [0,00) and of exponential order ¢ for
t > T. Then L{f(t)} exists for Re(s) > c.

o We have L{f(t)} = [i] e tF(t)dt + [° e *tF(t)dt = h + b.
o The integral /; exists since it can be written as a sum of integrals over
intervals on which e™=tf(t) is continuous.
o To prove the existence of h, let s = x + iy. Then
|e~=t| = |e **(cos yt — isin yt)| = e~ **. Further, by the definition of
exponential order, |f(t)] < Met, t > T. Hence, |12| < [T lestf(t)|dt

SMIOO —xt ctdt_Mf (=)t — e~ =9 |0

X—C

T
, for x = Re(s) > c. Since [;~ Me~(=9)dt converges,

I |e_5tf( )|dt converges by the comparison test. This, in turn,
implies that / exists for Re(s) > c.

The existence of /; and k implies that L{f(t)} = [;~ e~'f(t)dt
exists for Re(s) > c.

exc
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Analyticity of the Laplace Transform

@ The following theorem is stated without proof:

Theorem (Analyticity of the Laplace Transform)

Suppose f is piecewise continuous on [0,00) and of exponential order ¢ for
t > 0. Then the Laplace transform of f,

F(s) = /o T et (t)dt

is an analytic function in the right half-plane defined by Re(s) > c.

@ Although the complex function F(s) is analytic to the right of the line
x = c in the complex plane, F(s) will, in general, have singularities to
the left of that line.
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The Inverse Laplace Transform

Theorem (Inverse Laplace Transform)

If f and f’ are piecewise continuous on [0,00) and f is of exponential

order ¢ for t > 0, and F(s) is a Laplace transform, then the inverse
Laplace transform £=1{F(s)} is

Y+iR
f(t) = L7HF(s)} = — ||m / e* F(s)ds,

where v > c.

o We write f(t) = L7{F(s)} = 5% JJFI';O et F(s)ds, where the limits

of integration indicate that the integration is along the infinitely long
vertical-line contour Re(s) = x = .

@ v is a positive real constant greater than ¢ and greater than all the
real parts of the singularities in the left half-plane.
@ This integral is called a Bromwich contour integral.

@ The kernel of the inverse transform is H(s, t) = 2—:1
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Evaluating the Inverse Laplace Transform

@ The Bromwich contour integral
F(t) = L7HF(s)} = 55 [ € F(s)ds.

@ The fact that F(s) has singularities s1, sy, ..., s, to the left of the line
x = v makes it possible to evaluate the integral by using an
appropriate closed contour encircling the singularities.
A closed contour C that is commonly used consists of
a semicircle Cg of radius R centered at (y,0) and a
vertical line segment Lg parallel to the y-axis passing
through the point (v,0) and extending from y =
v — iR toy =+ IiR. R is larger than the largest
number in {|s1],[s2|,- .-, |sn|}- Ly
With the contour C chosen in this manner, the integral can often be
evaluated using Cauchy’s residue theorem. If we allow the radius R of
the semicircle to approach oo, the vertical part of the contour
approaches the infinite vertical line of the Bromwich integral.
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Inverse Laplace Transform Theorem

Theorem (Inverse Laplace Transform)

Suppose F(s) is a Laplace transform that has a finite number of poles
S1,%,...,5n to the left of the vertical line Re(s) = 7 and that C is the
contour on the preceding slide. If sF(s) is bounded as R — oo, then
L7YF(s)} = >7_; Res(e*tF(s), sk).
@ By Cauchy'’s residue theorem, we have
fc e F(s)ds + [, e F(s)ds =2mi} ), Res(eStF(s) sk) or
— fﬂ’JrI;f et F(s)ds = > }_; Res(e*t F(s), sk) 27“ fCR e“tF(s)ds
We let R — oo and show that limgr_o [, €% F(s)ds = 0.

If the semicircle Cr is parametrized by s = v + Re', 5<0<
then ds = Rie'?df = (s — ~)idf, and so,

% fCR et F(s)ds = 5= :72/2 vt+Rte” £y 1 Rei®)Rie®df, whence

< 3
2

2mi
2 |Jc, et F(s)ds| < & [717 |e7t+Re" | |F(y + Rei®)| | Rie| d.
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Proof of the Inverse Laplace Transform Theorem

@ We examine the three moduli involved:

o ’e'yt+Rtei9 — ’e'yteRt(cose+isin9)’ — @YtgRtcost

o For |s| sufficiently large, we can write
|Rie”®| = |s —ylli] < Is| + 7] < |s| + |s| = 2]s].
s Finally, by hypothesis [sF(s)| < M.

Thus, we get - StF(s)ds‘ <
3m/2 ’yt+Rte’9 F R i0 Ri i0 do < M ~t 3m/2 thos&de
Efﬂ'/2 . | 7+ e )| | e ‘ =€ fﬂ'/2 e :

Let # = ¢ + 5 and notice that the integral becomes
2
T emResino g — 2 [T/2 g=Resind g, We have sin¢ > 22, whence
2fo7r/2 e—Rtsin¢d¢ < 2fo7r/2 —2Rt¢)/7rd¢ _ % —2Rt¢>/7r|g/2 _
Z[1 — e~Rf]. We conclude that % UCR eStF(s)ds‘ < Me’Yf [1—e R

The right-hand side approaches zero as R — oo for t > O, whence
iMpR_s oo fCR estF(s)ds = 0.
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An Inverse Laplace Transform

o Evaluate £~ 1{ S0 Re(s) > 0.
The function F(s) = 3 has a pole of order 3 at s = 0. Thus, by the

theorem,
5 = £ 4
= Res(e Stl ,0)
= %Iim%(s—OPZ—S;

_ 1|
= m e
5—)0‘7'2

= llimt%et
25550

— 2
12,

George Voutsadakis (LSSU) Complex Analysis October 2014 54 / 58



Consequences and Applications of the Residue Theorem Laplace and Fourier Transforms

Fourier Transform

@ Suppose now that f(x) is a real function defined on the interval
(=00, 00).
@ Another important transform pair consists of
o the Fourier transform

S{f(x)} = /00 f(x)e'*dx = F(a).
o the inverse Fourier transform
-1 _ i > —iox _
F H{F(a)} = > /_Oo Fla)e ' da = f(x).

@ The kernel of the Fourier transform is K(a,x) = e/®¥, whereas the
kernel of the inverse transform is H(a, x) = £5—
@ We assume that o is a real variable.

@ In contrast to the Laplace case, the inverse Fourier transform is not a
contour integral.
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Computing a Fourier Transform

o Find the Fourier transform of f(x) = e~XI.

.
We have f(x) = { :_’X ::); ;8

FF)} = [O eXel™dx + [ e el dx = h + b.

. The Fourier transform of f is

. b,

o For h, we have b = limy_.o [ e e dx =
1 o e—X(l—Oél) T e—b(l—o&l)71 .
im0 fo €=V dx = limposoe S| = limpoyoe S0t =

m limp_so0 (€72 cos ba + ie~Psin ba — 1) = ﬁ
@ The integral /; can be evaluate similarly to obtain h = ﬁ

Adding /1 and k gives the value of the Fourier transform:

1 1 2
N = T Trai ~ Tv e
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Computing an Inverse Fourier Transform

@ Find the inverse Fourier transform of F(a) = 1+2a2
The idea here is to recover the functlon. f of the preceding example.
We have S_l{F( )} = 27r o 1+2a2 e '"da = f(x).
Y

Let z be a complex variable and introduce
the contour integral ¢, — 1+ ez
The integrand has simple poles at z = =£i.
The contour C is shown in the figure.

- L.
> > X

-R R

We get §C _ 1+22) —lszz = 27TIReS( 1+z2) —sz’ I) — X The
contour integral along Cr approaches zero as R — oo only if we
assume that x < 0. Thus, the answer is %, x < 0.
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Computing an Inverse Fourier Transform (Cont'd)

° y If we consider ¢ me_"zxdz, where C

. is the contour on the left, it can be shown
that the integral along Cg now approaches
zero as R — oo when x is assumed to be
positive. Hence, ¢ — e ™dz =

1+ 2)

—27r/Res( 1+z2) e ">, —i) = e ¥, x > 0. The extra minus sign
appearing in front of the factor 2w/ comes from the fact that on C,
Je=Je,+ IR = Jc,— [Tz =2miRes(z = —i). As R = o0,
J¢, =0, for x > 0, whence — limg_ [Tz = 2iRes(z = —i) or
limg o [ 5 = —27iRes(z = —i).

@ By combining the findings, we get

_ 1 [~ 2 e, ifx<0
1 _ = iax _ 9
§ {F(O‘)}_zw/_oo1+a2e da {e‘x, if x > 0
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