Introduction to Complex Analysis

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 413

George Voutsadakis (LSSU)

October 2014 1 / 50

Conformal Mapping

- Conformal Mapping
- Linear Fractional Transformations
- Schwarz-Christoffel Transformations

Subsection 1

Conformal Mapping

Introduction to Conformal Mapping

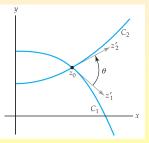
• We saw that a nonconstant linear mapping acts by rotating, magnifying, and translating points in the complex plane.

As a result, the angle between any two intersecting arcs in the z-plane is equal to the angle between the images of the arcs in the w-plane under a linear mapping.

- Complex mappings that have this angle-preserving property are called conformal mappings.
- We will formally define conformal mappings and show that any analytic complex function is conformal at points where the derivative is nonzero.
- Consequently, all of the elementary functions we studied previously are conformal in some domain *D*.

The Angle Between Two Smooth Curves at a Point

- Suppose that w = f(z) is a complex mapping defined in a domain D.
- Assume that C_1 and C_2 are smooth curves in D that intersect at z_0 and have a fixed orientation.
- Let $z_1(t)$ and $z_2(t)$ be parametrizations of C_1 and C_2 such that $z_1(t_0) = z_2(t_0) = z_0$, and such that the orientations on C_1 and C_2 correspond to the increasing values of the parameter t.
- Because C_1 and C_2 are smooth, the tangent vectors $z'_1 = z'_1(t_0)$ and $z'_2 = z'_2(t_0)$ are both nonzero.
- We define the angle between C₁ and C₂ to be the angle θ in the interval [0, π] between the tangent vectors z'₁ and z'₂.

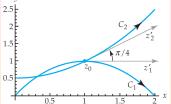


Equality of Angles in Magnitude and in Sense

- Suppose that under the complex mapping w = f(z) the curves C_1 and C_2 in the z-plane are mapped onto the curves C'_1 and C'_2 in the w-plane, respectively.
- Because C₁ and C₂ intersect at z₀, we must have that C'₁ and C'₂ intersect at f(z₀).
- If C'₁ and C'₂ are smooth, then the angle between C'₁ and C'₂ at f(z₀) is the angle φ in [0, π] between the tangent vectors w'₁ and w'₂.
- We say that the angles θ and ϕ are **equal in magnitude** if $\theta = \phi$.
- In the z-plane, the vector z'_1 , whose initial point is z_0 , can be rotated through the angle θ onto the vector z'_2 . This rotation in the z-plane can be in either direction.
- In the w-plane, the vector w'₁, whose initial point is f(z₀), can be rotated in one direction through an angle of φ onto the vector w'₂.
- If the rotation in the z-plane is the same direction as the rotation in the w-plane, we say that the angles θ and ϕ are **equal in sense**.

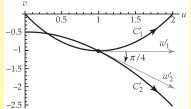
Magnitude and Sense of Angles

• The smooth curves C_1 and C_2 shown are given by $z_1(t) = t + (2t - t^2)i$ and $z_2(t) = t + \frac{1}{2}(t^2 + 1)i$, $0 \le t \le 2$, respectively. These curves intersect at $z_0 = z_1(1) = z_2(1) = 1 + i$. The tangent vectors at z_0 are $z'_1 = z'_1(1) = 1$ and $z'_2 = z'_2(1) = 1 + i$.

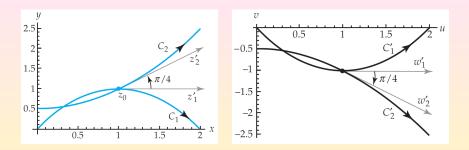


The angle between C_1 and C_2 at z_0 is $\theta = \frac{\pi}{4}$.

Under the complex mapping $w = \overline{z}$, the images of C_1 and C_2 are the curves -0.5 C'_1 and C'_2 . They are parametrized by -1 $w_1(t) = t - (2t - t^2)i$ and $w_2(t) =$ -1.5 $t - \frac{1}{2}(t^2 + 1)i, 0 \le t \le 2$, and intersect -2 at the point $w_0 = f(z_0) = 1 - i$. -2.5



Magnitude and Sense of Angles (Cont'd)



- At w_0 , the tangent vectors to C'_1 and C'_2 are $w'_1 = w'_1(1) = 1$ and $w'_2 = w'_2(1) = 1 i$.
 - The angle between C'_1 and C'_2 at w_0 is $\phi = \frac{\pi}{4}$. Therefore, the angles θ and ϕ are equal in magnitude.
 - The rotation through π/4 of the vector z'₁ onto z'₂ must be counterclockwise, whereas the rotation through π/4 of w'₁ onto w'₂ must be clockwise. Thus, φ and θ are not equal in sense.

Conformal Mapping

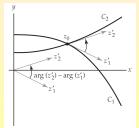
Definition (Conformal Mapping)

Let w = f(z) be a complex mapping defined in a domain D and let z_0 be a point in D. We call w = f(z) **conformal at** z_0 if, for every pair of smooth oriented curves C_1 and C_2 in D intersecting at z_0 , the angle between C_1 and C_2 at z_0 is equal to the angle between the image curves C'_1 and C'_2 at $f(z_0)$ in both magnitude and sense.

- The term **conformal mapping** will also be used to refer to a complex mapping w = f(z) that is conformal at z_0 .
- If w = f(z) maps a domain D onto a domain D' and if w = f(z) is conformal at every point in D, then we call w = f(z) a conformal mapping of D onto D'.
- Example: If f(z) = az + b is a linear function with $a \neq 0$, then w = f(z) is conformal at every point in the complex plane.
- Example: We just saw that $w = \overline{z}$ is not a conformal mapping at the point $z_0 = 1 + i$ since θ and ϕ are not equal in sense.

Angles between Curves

- Consider smooth curves C_1 and C_2 , parametrized by $z_1(t)$ and $z_2(t)$, respectively, which intersect at $z_1(t_0) = z_2(t_0) = z_0$.
- The requirement that C_1 is smooth ensures that the tangent vector to C_1 at z_0 , given by $z'_1 = z'_1(t_0)$, is nonzero, and, so, $\arg(z'_1)$ is defined and represents an angle between z'_1 and the positive x-axis.
- The tangent vector to C_2 at z_0 , given by $z'_2 = z'_2(t_0)$, is nonzero, and $\arg(z'_2)$ represents an angle between z'_2 and the positive x-axis.
- The angle θ between C_1 and C_2 at z_0 is the value $\arg(z'_2) \arg(z'_1)$ in $[0, \pi]$, provided that we can rotate z'_1 counterclockwise about 0 through the angle θ onto z'_2 . In the case that a clockwise rotation is needed, then $-\theta$ is the value in the interval $(-\pi, 0)$. In either case, we get both the magnitude and sense of the angle between C_1 and C_2 at z_0 .



Example of Angles between Curves

- Consider again the smooth curves C_1 and C_2 given by $z_1(t) = t + (2t - t^2)i$ and $z_2(t) = t + \frac{1}{2}(t^2 + 1)i$, $0 \le t \le 2$, respectively, that intersect at the point $z_0 = z_1(1) = z_2(1) = 1 + i$. Their images under $w = \overline{z}$ are $w_1(t) = t - (2t - t^2)i$ and $w_2(t) = t - \frac{1}{2}(t^2 + 1)i$, $0 \le t \le 2$, and intersect at the point $w_0 = f(z_0) = 1 - i$. The unique value of $\arg(z'_2) - \arg(z'_1) = \arg(1 + i) - \arg(1) = \frac{\pi}{4} + 2n\pi$, $n = 0, \pm 1, \pm 2, \ldots$, that lies in the interval $[0, \pi]$ is $\frac{\pi}{4}$.
 - Therefore, the angle between C_1 and C_2 is $\theta = \frac{\pi}{4}$, and the rotation of z'_1 onto z'_2 is counterclockwise.

The expression $\arg(w'_2) - \arg(w'_2) = \arg(1-i) - \arg(1) = -\frac{\pi}{4} + 2n\pi$, $n = 0, \pm 1, \pm 2, \ldots$, has no value in $[0, \pi]$, but has the unique value $-\frac{\pi}{4}$ in the interval $(-\pi, 0)$. Thus, the angle between C'_1 and C'_2 is $\phi = \frac{\pi}{4}$, and the rotation of w'_1 onto w'_2 is clockwise.

Analytic Functions

Theorem (Conformal Mapping)

If f is an analytic function in a domain D containing z_0 , and if $f'(z_0) \neq 0$, then w = f(z) is a conformal mapping at z_0 .

• Suppose that f is analytic in a domain D containing z_0 , and that $f'(z_0) \neq 0$. Let C_1 and C_2 be two smooth curves in D parametrized by $z_1(t)$ and $z_2(t)$, respectively, with $z_1(t_0) = z_2(t_0) = z_0$. Assume that w = f(z) maps the curves C_1 and C_2 onto the curves C'_1 and C'_2 . We wish to show that the angle θ between C_1 and C_2 at z_0 is equal to the angle ϕ between C'_1 and C'_2 at $f(z_0)$ in both magnitude and sense. We may assume, by renumbering C_1 and C_2 , if necessary, that $z'_1 = z'_1(t_0)$ can be rotated counterclockwise about 0 through the angle θ onto $z'_2 = z'_2(t_0)$. The angle θ is the unique value of $\arg(z'_2) - \arg(z'_1)$ in the interval $[0, \pi]$. C'_1 and C'_2 are parametrized by $w_1(t) = f(z_1(t))$ and $w_2(t) = f(z_2(t))$.

Proof of the Conformal Mapping Theorem

• C'_1 and C'_2 are parametrized by $w_1(t) = f(z_1(t))$ and $w_2(t) =$ $f(z_2(t))$. Using the chain rule $w'_1 = w'_1(t_0) = f'(z_1(t_0)) \cdot z'_1(t_0) =$ $f'(z_0) \cdot z'_1$, and $w'_2 = w'_2(t_0) = f'(z_2(t_0)) \cdot z'_2(t_0) = f'(z_0) \cdot z'_2$. Since C_1 and C_2 are smooth, both z'_1 and z'_2 are nonzero. Furthermore, by hypothesis, $f'(z_0) \neq 0$. Therefore, both w'_1 and w'_2 are nonzero, and the angle ϕ between C'_1 and C'_2 at $f(z_0)$ is a value of $\arg(w'_2) - \arg(w'_1) = \arg(f'(z_0) \cdot z'_2) - \arg(f'(z_0) \cdot z'_1)$. Now we obtain: $\arg(f'(z_0) \cdot z'_2) - \arg(f'(z_0) \cdot z'_1)$ $= \arg(f'(z_0)) + \arg(z'_2) - [\arg(f'(z_0)) + \arg(z'_1)]$ $= \arg(z_2') - \arg(z_1').$

The unique value in [0, π] is θ. Therefore, θ = φ in both magnitude and sense, and consequently w = f(z) is a conformal mapping at z₀.
Example: (a) The entire function f(z) = e^z is conformal at every point in the complex plane since f'(z) = e^z ≠ 0, for all z in C. (b) The entire g(z) = z² is conformal at all points z, z ≠ 0.

Critical Points

- The function g(z) = z² is not a conformal mapping at z₀ = 0 because g'(0) = 0.
- In general, if a complex function f is analytic at a point z_0 and if $f'(z_0) = 0$, then z_0 is called a **critical point** of f.
- Although it does not follow from the Conformal Mapping Theorem, it is true that analytic functions are not conformal at critical points.
- More specifically, the following magnification of angles occurs at a critical point:

Theorem (Angle Magnification at a Critical Point)

Let f be analytic at the critical point z_0 . If n > 1 is an integer such that $f'(z_0) = f''(z_0) = \cdots = f^{(n-1)}(z_0) = 0$ and $f^{(n)}(z_0) \neq 0$, then the angle between any two smooth curves intersecting at z_0 is increased by a factor of n by the complex mapping w = f(z). In particular, w = f(z) is not a conformal mapping at z_0 .

George Voutsadakis (LSSU)

Angle Magnification at Critical Points

- Example: Find all points where the mapping $f(z) = \sin z$ is conformal. The function $f(z) = \sin z$ is entire and we have that $f'(z) = \cos z$. Moreover, $\cos z = 0$ if and only if $z = \frac{(2n+1)\pi}{2}$, $n = 0, \pm 1, \pm 2, ...,$ and so each of these points is a critical point of f.
 - Therefore, by the Conformal Mapping Theorem, $w = \sin z$ is a conformal mapping at z, for all $z \neq \frac{(2n+1)\pi}{2}$, $n = 0, \pm 1, \pm 2, \dots$
 - Furthermore, by the Angle Magnification Theorem, $w = \sin z$ is not a conformal mapping at z if $z = \frac{(2n+1)\pi}{2}$, $n = 0, \pm 1, \pm 2, \ldots$ Because $f''(z) = -\sin z = \pm 1$ at the critical points of f, the theorem indicates that angles at these points are increased by a factor of 2.

Subsection 2

Linear Fractional Transformations

Linear Fractional Transformations

- We studied complex linear mappings w = az + b where a and b are complex constants and a ≠ 0. Such mappings act by rotating, magnifying, and translating points in the complex plane.
- We also looked at the complex reciprocal mapping $w = \frac{1}{z}$. An important property, when defined on the extended complex plane, is that it maps certain lines to circles and certain circles to lines.
- A more general type of mapping that has similar properties is a linear fractional transformation:

Definition (Linear Fractional Transformation)

If a, b, c and d are complex constants with $ad - bc \neq 0$, then the complex function defined by: az + b

$$T(z) = \frac{az+b}{cz+d}$$

is called a linear fractional transformation.

- These are also called Möbius or bilinear transformations.
- If c = 0, then T is a linear mapping.

Properties of Linear Fractional Transformations

• If $c \neq 0$, then we can write $T(z) = \frac{az+b}{cz+d} = \frac{bc-ad}{c} \frac{1}{cz+d} + \frac{a}{c}$. Setting $A = \frac{bc-ad}{c}$ and $B = \frac{a}{c}$, we see that the transformation T is written as the composition $T(z) = f \circ g \circ h(z)$, where

$$f(z) = Az + B$$
, $h(z) = cz + d$, $g(z) = \frac{1}{z}$

- The domain of T is the set of all z, such that $z \neq -\frac{d}{c}$.
- Since $T'(z) = \frac{ad-bc}{(cz+d)^2}$ and $ad bc \neq 0$, linear fractional transformations are conformal on their domains.
- The condition $ad bc \neq 0$ also ensures that T is one-to-one.
- If $c \neq 0$, then $T(z) = \frac{az+b}{cz+d} = \frac{\frac{a}{c}(z+\frac{b}{a})}{z+\frac{d}{c}} = \frac{\phi(z)}{z-(-\frac{d}{c})}$, where $\phi(z) = \frac{a}{c}(z+\frac{b}{a})$. Because $ad bc \neq 0$, we have that $\phi(-\frac{d}{c}) \neq 0$, and, hence, the point $z = -\frac{d}{c}$ is a simple pole of T.

Linear Fractional Transformation on the Extended Plane

- Since T is defined for all points in the extended plane except the pole $z = -\frac{d}{c}$ and the ideal point ∞ , we need only extend the definition of T to include these points.
 - Because $\lim_{z \to -\frac{d}{cz+d}} \frac{cz+d}{az+b} = \frac{0}{a(-\frac{d}{c})+b} = \frac{0}{-ad+bc} = 0$, it follows that $\lim_{z \to -d/c} \frac{az+b}{cz+d} = \infty$.
 - Moreover, $\lim_{z\to\infty} \frac{az+b}{cz+d} = \lim_{z\to0} \frac{a/z+b}{c/z+d} = \lim_{z\to0} \frac{a+zb}{c+zd} = \frac{a}{c}$.
- Thus, if $c \neq 0$, we regard T as a one-to-one mapping of the extended complex plane defined by: $T(z) = \begin{cases} \frac{az+b}{cz+d}, & \text{if } z \neq -\frac{d}{c}, \infty \\ \infty, & \text{if } z = -\frac{d}{c} \\ \frac{a}{c}, & \text{if } z = \infty \end{cases}$

A Linear Fractional Transformation

• Find the images of the points 0, 1 + i, i and ∞ under the linear fractional transformation

$$T(z)=\frac{2z+1}{z-i}.$$

• For
$$z = 0$$
, $T(0) = \frac{2(0) + 1}{0 - i} = \frac{1}{-i} = i$.
• For $z = 1 + i$, $T(1 + i) = \frac{2(1 + i) + 1}{(1 + i) - i} = \frac{3 + 2i}{1} = 3 + 2i$.
• For $z = i$, $T(i) = \infty$.
• Finally, for $z = \infty$, $T(\infty) = \frac{2}{1} = 2$.

Circle-Preserving Property

- The reciprocal mapping $w = \frac{1}{7}$ has two important properties:
 - The image of a circle centered at z = 0 is a circle;
 - The image of a circle with center on the x- or y-axis and containing the pole z = 0 is a vertical or horizontal line.

• Linear fractional transformations have a similar mapping property:

Theorem (Circle-Preserving Property)

If *C* is a circle in the *z*-plane and if *T* is a linear fractional transformation, then the image of *C* under *T* is either a circle or a line in the extended *w*-plane. The image is a line if and only if $c \neq 0$ and the pole $z = -\frac{d}{c}$ is on the circle *C*.

- When c = 0, T is a linear function, and we saw that linear functions map circles onto circles.
- Assume that $c \neq 0$. Then $T(z) = f \circ g \circ h(z)$, where f(z) = Az + Band h(z) = cz + d are linear functions and $g(z) = \frac{1}{z}$ is the reciprocal function. Since h is a linear mapping, the image C' of the circle C under h is a circle.

George Voutsadakis (LSSU)

Proof of the Circle-Preserving Property

•
$$z \xrightarrow{h(z) = cz + d} w \xrightarrow{g(w) = 1/w} \xi \xrightarrow{f(\xi) = A\xi + B}$$

We examine two cases:

- Case 1: Assume that the origin w = 0 is on the circle C'. This occurs if and only if the pole z = -d/c is on the circle C. If w = 0 is on C', then the image of C' under g(z) = 1/z is either a horizontal or vertical line L. Since f is linear, the image of L under f is also a line. Thus, if the pole z = -d/c is on C, then the image of C under T is a line.
 Case 2: Assume that the point w = 0 is not on C', i.e., the pole z = -d/c is not on the circle C. Let C' be the circle |w w₀| = ρ. If we set ξ = g(w) = 1/w and ξ₀ = g(w₀) = 1/w₀, then for any point w on C' we have |ξ ξ₀| = |1/w 1/w₀| = |w-w₀| = ρ|ξ₀||ξ|. It can be shown that
 - the ξ satisfying $|\xi a| = \lambda |\xi b|$ form a line if $\lambda = 1$ and a circle if $0 < \lambda \neq 1$. A comparison with $a = \xi_0$, b = 0, and $\lambda = \rho |\xi_0|$, taking into account that w = 0 is not on C', yields $|w_0| \neq \rho$, or, equivalently, $\lambda = \rho |\xi_0| \neq 1$. This implies that the set of points ξ is a circle. Finally, since f is a linear function, the image of this circle under f is again a circle. We conclude that the image of C under T is a circle.

Mapping Lines to Circles with T(z)

- The key observation in the foregoing proof was that a linear fractional transformation can be written as a composition of the reciprocal function and two linear functions.
- The image of any line L under the reciprocal mapping $w = \frac{1}{z}$ is a line or a circle.
- Therefore, using similar reasoning, we can show:

Proposition (Mapping Lines to Circles with T(z))

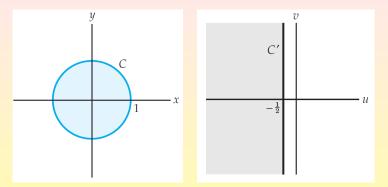
If T is a linear fractional transformation, then the image of a line L under T is either a line or a circle. The image is a circle if and only if $c \neq 0$ and the pole $z = -\frac{d}{c}$ is not on the line L.

Image of a Circle I

- Find the image of the unit circle |z| = 1 under the linear fractional transformation $T(z) = \frac{z+2}{z-1}$. What is the image of the interior |z| < 1 of this circle?
 - The pole of T is z = 1 and this point is on the unit circle |z| = 1. Thus, by the Circle-Preserving Theorem, the image of the unit circle is a line. Since the image is a line, it is determined by any two points. Because $T(-1) = -\frac{1}{2}$ and $T(i) = -\frac{1}{2} - \frac{3}{2}i$, we see that the image is the line $u = -\frac{1}{2}$.
 - For the second question, note that a linear fractional transformation is a rational function, and so it is continuous on its domain. As a consequence, the image of the interior |z| < 1 of the unit circle is either the half-plane $u < -\frac{1}{2}$ or the half-plane $u > -\frac{1}{2}$. Using z = 0 as a test point, we find that T(0) = -2, which is to the left of the line $u = -\frac{1}{2}$, and so the image is the half-plane $u < -\frac{1}{2}$.

Illustration of Example I

• The unit circle |z| = 1 is mapped by $T = \frac{z+2}{z-1}$ onto the line $u = -\frac{1}{2}$:



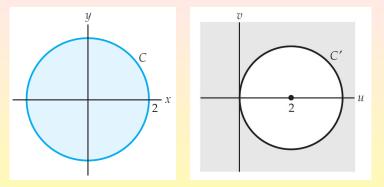
• Moreover, the interior |z| < 1 is mapped onto the half-plane $u < -\frac{1}{2}$.

Image of a Circle II

- Find the image of the unit circle |z| = 2 under the linear fractional transformation $T(z) = \frac{z+2}{z-1}$. What is the image of the disk $|z| \le 2$ under T?
 - The pole z = 1 does not lie on the circle |z| = 2. The Circle Mapping Theorem indicates that the image of |z| = 2 is a circle C'. The circle |z| = 2 is symmetric with respect to the x-axis. So, if z is on the circle |z| = 2, then so is \overline{z} . Moreover, for all z, $T(\overline{z}) = \frac{\overline{z}+2}{\overline{z}-1} = \frac{\overline{z}+2}{\overline{z}-1} = \frac{\overline{z}+2}{\overline{z}-1} = \overline{T(z)}$. Hence, if z and \overline{z} are on |z| = 2, then we must have that both w = T(z) and $\overline{w} = \overline{T(z)} = T(\overline{z})$ are on the circle C'. It follows that C' is symmetric with respect to the u-axis. Since z = 2and -2 are on the circle |z| = 2, the two points T(2) = 4 and T(-2) = 0 are on C'. The symmetry of C' implies that 0 and 4 are endpoints of a diameter, and so C' is the circle |w - 2| = 2.
 - Using z = 0 as a test point, we find that w = T(0) = −2, which is outside the circle |w − 2| = 2. Therefore, the image of the interior of the circle |z| = 2 is the exterior of the circle |w − 2| = 2.

Illustration of Example II

• The circle |z| = 2 is mapped by $T = \frac{z+2}{z-1}$ onto the circle |w-2| = 2:



• Moreover, the interior |z| < 2 is mapped onto the exterior |w-2| > 2.

Linear Fractional Transformations as Matrices

- With the linear fractional transformation $T(z) = \frac{az+b}{cz+d}$ we associate the matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.
- The assignment is not unique because, if *e* is a nonzero complex number, then $T(z) = \frac{az+b}{cz+d} = \frac{eaz+eb}{ecz+ed}$. But, if $e \neq 1$, then the two matrices $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $B = \begin{pmatrix} ea & eb \\ ec & ed \end{pmatrix} = eA$ are not equal.
- It is easy to verify that the composition $T_2 \circ T_1$ of $T_1(z) = \frac{a_1z+b_1}{c_1z+d_1}$ and $T_2(z) = \frac{a_2z+b_2}{c_2z+d_2}$ is represented by the product of matrices $\begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} = \begin{pmatrix} a_2a_1+b_2c_1 & a_2b_1+b_2d_1 \\ c_2a_1+d_2c_1 & c_2b_1+d_2d_1 \end{pmatrix}$.

Inverse Linear Fractional Transformations and Matrices

• The formula for $T^{-1}(z)$ can be computed by solving the equation w = T(z) for z. This formula is represented by the inverse of the matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$: $A^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. By identifying $e = \frac{1}{ad-bc}$ in the multiplicative relation between matrices corresponding to the same linear fractional transformation, we can also represent $T^{-1}(z)$ by the matrix $\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Using Matrices

• Suppose $S(z) = \frac{z-i}{iz-1}$ and $T(z) = \frac{2z-1}{z+2}$. Use matrices to find $S^{-1}(T(z))$.

We represent the linear fractional transformations S and T by the matrices $\begin{pmatrix} 1 & -i \\ i & -1 \end{pmatrix}$ and $\begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}$. The transformation S^{-1} is given by $\begin{pmatrix} -1 & i \\ -i & 1 \end{pmatrix}$. So, the composition $S^{-1} \circ T$ is given by $\begin{pmatrix} -1 & i \\ -i & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} -2+i & 1+2i \\ 1-2i & 2+i \end{pmatrix}$. Therefore, $S^{-1}(T(z)) = \frac{(-2+i)z+1+2i}{(1-2i)z+2+i}$.

Cross-Ratio

• The cross-ratio is a method to construct a linear fractional transformation w = T(z), which maps three given distinct points z_1 , z_2 and z_3 on the boundary of D to three given distinct points w_1 , w_2 and w_3 on the boundary of D'.

Definition (Cross-Ratio)

The cross-ratio of the complex numbers z, z_1 , z_2 and z_3 is the complex number $\frac{z - z_1}{z - z_3} \frac{z_2 - z_3}{z_2 - z_1}$.

- When computing a cross-ratio, we must be careful with the order of the complex numbers. E.g., the cross-ratio of 0, 1, i and 2 is ³/₄ + ¹/₄i, whereas the cross-ratio of 0, i, 1 and 2 is ¹/₄ ¹/₄i.
- The cross-ratio can be extended to include points in the extended complex plane by using the limit formula. E.g., the cross-ratio of, say, ∞, z_1, z_2 and z_3 is given by $\lim_{z\to\infty} \frac{z-z_1}{z-z_3} \frac{z_2-z_3}{z_2-z_1}$.

Cross-Ratios and Linear Fractional Transformations

Theorem (Cross-Ratios and Linear Fractional Transformations)

If w = T(z) is a linear fractional transformation that maps the distinct points z_1, z_2 and z_3 onto the distinct points w_1, w_2 and w_3 , respectively, then, for all z, $z - z_1 z_2 - z_3 = w - w_1 w_2 - w_3$

$$\frac{z-z_3}{z_2-z_1} = \frac{w-w_3}{w_2-w_1}$$

• Let $R(z) = \frac{z-z_1}{z-z_3} \frac{z_2-z_3}{z_2-z_1}$. Note that $R(z_1) = 0$, $R(z_2) = 1$, $R(z_3) = \infty$. Let $S(z) = \frac{z-w_1}{z-w_3} \frac{w_2-w_3}{w_2-w_1}$. For S, $S(w_1) = 0$, $S(w_2) = 1$, $S(w_3) = \infty$. Therefore, the points z_1 , z_2 and z_3 are mapped onto the points w_1, w_2 and w_3 , respectively, by the linear fractional transformation $S^{-1}(R(z))$. Hence, 0, 1 and ∞ are mapped onto 0, 1 and ∞ , respectively, by the composition $T^{-1}(S^{-1}(R(z)))$. The only linear fractional transformation that maps 0, 1 and ∞ onto 0, 1, and ∞ is the identity. Thus, $T^{-1}(S^{-1}(R(z))) = z$, or R(z) = S(T(z)). With w = T(z), we get R(z) = S(w), i.e., $\frac{z-z_1}{z-z_3} \frac{z_2-z_3}{z_2-z_1} = \frac{w-w_1}{w-w_3} \frac{w_2-w_3}{w_2-w_1}$.

Constructing a Linear Fractional Transformation I

- Construct a linear fractional transformation that maps the points 1, i and -1 on the unit circle |z| = 1 onto the points -1, 0, 1 on the real axis. Determine the image of the interior |z| < 1 under this transformation.
 - Identifying

$$z_1 = 1, \ z_2 = i, \ z_3 = -1, \quad w_1 = -1, \ w_2 = 0, \ w_3 = 1,$$

the desired mapping w = T(z) must satisfy

$$\frac{z-1}{z-(-1)}\frac{i-(-1)}{i-1} = \frac{w-(-1)}{w-1}\frac{0-1}{0-(-1)}.$$

We get $i(w-1)(z-1) = (w+1)(z+1)$, whence
 $v(z-1)i - w(z+1) = (z+1) + (z-1)$, giving
 $w = \frac{(z+1) + (z-1)i}{-(z+1) + (z-1)i} = \frac{(z-i)(i+1)}{(iz-1)(i+1)} = \frac{z-i}{iz-1}.$

• Using the test point z = 0, we obtain T(0) = i. Therefore, the image of the interior |z| < 1 is the upper half-plane v > 0.

Constructing a Linear Fractional Transformation II

 Construct a linear fractional transformation that maps the points -i, 1 and ∞ on the line y = x - 1 onto the points 1, i and -1 on the unit circle |w| = 1.

The cross-ratio of z, $z_1 = -i$, $z_2 = 1$, and $z_3 = \infty$ is $\lim_{z_3\to\infty} \frac{z+i}{z-z_3} \frac{1-z_3}{1+i} = \lim_{z_3\to0} \frac{z+i}{z-1/z_3} \frac{1-1/z_3}{1+i} = \lim_{z_3\to0} \frac{z+i}{zz_3-1} \frac{z_3-1}{1+i} = \frac{z+i}{1+i}$. By the theorem, with $w_1 = 1$, $w_2 = i$ and $w_3 = -1$, the desired mapping w = T(z) must satisfy

$$\frac{z+i}{1+i} = \frac{w-1}{w+1}\frac{i+1}{i-1}$$

After solving for w and simplifying we obtain

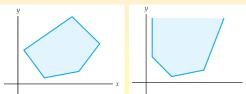
$$w=T(z)=\frac{z+1}{-z+1-2i}.$$

Subsection 3

Schwarz-Christoffel Transformations

Polygonal Regions

- A **polygonal region** in the complex plane is a region that is bounded by a simple, connected, piecewise smooth curve consisting of a finite number of line segments.
- The boundary curve of a polygonal region is called a **polygon** and the endpoints of the line segments in the polygon are called **vertices**.
- If a polygon is a closed curve, then the region enclosed by the polygon is called a **bounded polygonal region**.



A polygonal region that is not bounded is called an **unbounded polygonal region**.

In the case of an unbounded polygonal region, the ideal point $\,\infty$ is also called a vertex of the polygon.

Special Cases I

• Before providing a general formula for a conformal mapping of the upper half-plane $y \ge 0$ onto a polygonal region, we examine the complex mapping $w = f(z) = (z - y_z)^{\alpha/\pi}$

$$w=f(z)=(z-x_1)^{\alpha/\pi},$$

where x_1 and α are real numbers and $0 < \alpha < 2\pi$.

- This mapping is the composition of a translation $T(z) = z x_1$ followed by the real power function $F(z) = z^{\alpha/\pi}$.
 - T translates in a direction parallel to the real axis. The x-axis is mapped onto the u-axis with $z = x_1$ mapping onto w = 0.
 - For *F*, we replace *z* by $re^{i\theta}$ to obtain: $F(z) = (re^{i\theta})^{\alpha/\pi} = r^{\alpha/\pi}e^{i(\alpha\theta/\pi)}$. Thus, the complex mapping $w = z^{\alpha/\pi}$:
 - magnifies or contracts the modulus r of z to the modulus $r^{\alpha/\pi}$ of w;
 - rotates z through $\frac{\alpha}{\pi}$ radians about the origin to increase or decrease an argument θ of z to an argument $\frac{\alpha\theta}{\pi}$ of w.

Thus, $w = F(T(z)) = (z - x_1)^{\alpha/\pi}$ maps a ray emanating from x_1 and making an angle of ϕ radians with the real axis onto a ray emanating from 0 making an angle of $\frac{\alpha\phi}{\pi}$ radians with the real axis.

Mapping of the Upper Half-Plane

• Consider again $w = f(z) = (z - x_1)^{\alpha/\pi}$ on the half-plane $y \ge 0$. This set consists of the point $z = x_1$ together with the set of rays $\arg(z-x_1)=\phi, \ 0\leq\phi\leq\pi.$ The image under $w=(z-x_1)^{\alpha/\pi}$ consists of the point w = 0 together with the set of rays $\arg(w) = \frac{\alpha\phi}{\pi}, \ 0 \leq \frac{\alpha\phi}{\pi} \leq \alpha.$ x_1

We conclude that the image of the half-plane $y \ge 0$ is the point w = 0 together with the wedge $0 \le \arg(w) \le \alpha$. The function f has derivative: $f'(z) = \frac{\alpha}{\pi}(z - x_1)^{(\alpha/\pi)-1}$. Since $f'(z) \ne 0$ if z = x + iy and y > 0, it follows that w = f(z) is a conformal mapping at any point z with y > 0.

Mapping f, with $f'(z) = A(z-x_1)^{(lpha_1/\pi)-1}(z-x_2)^{(lpha_2/\pi)-1}$

• Consider a new function f, analytic in y > 0 and whose derivative is:

$$f'(z) = A(z - x_1)^{(\alpha_1/\pi) - 1}(z - x_2)^{(\alpha_2/\pi) - 1},$$

where x_1, x_2, α_1 and α_2 are real, $x_1 < x_2$, and A is a complex constant.

- Note a parametrization w(t), a < t < b, gives a line segment if and only if there is a constant value of $\arg(w'(t))$ for all a < t < b.
- We determine the images of the intervals $(-\infty, x_1), (x_1, x_2)$ and (x_2, ∞) on the real axis under w = f(z).
 - If we parametrize $(-\infty, x_1)$ by $z(t) = t, -\infty < t < x_1$, then $w(t) = f(z(t)) = f(t), -\infty < t < x_1$. Thus, w'(t) = f'(t) = $A(t - x_1)^{(\alpha_1/\pi)-1}(t - x_2)^{(\alpha_2/\pi)-1}$. An argument of w'(t) is then given by: Arg(A) + $(\frac{\alpha_1}{\pi} - 1)$ Arg $(t - x_1) + (\frac{\alpha_2}{\pi} - 1)$ Arg $(t - x_2)$. Since $-\infty < t < x_1, t - x_1 < 0$, and, so Arg $(t - x_1) = \pi$. Since $x_1 < x_2$, $t - x_2 < 0$, whence Arg $(t - x_2) = \pi$. Hence, Arg(A) + $\alpha_1 + \alpha_2 - 2\pi$ is a constant value of arg(w'(t)) for all t in $(-\infty, x_1)$. We conclude that the interval $(-\infty, x_1)$ is mapped onto a line segment by w = f(z).

Mapping f (Cont'd)

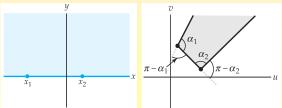
 By similar reasoning we determine that both (x₁, x₂) and (x₂, ∞) also map onto line segments:

Interval	An Argument of <i>w</i> ′	Change in Argument
$(-\infty, x_1)$	$Arg(A) + \alpha_1 + \alpha_2 - 2\pi$	0
(x_1, x_2)	$Arg(A) + lpha_2 - \pi$	$\pi - \alpha_1$
(x_2,∞)	Arg(A)	$\pi - \alpha_2$

Since f is an analytic (and, hence, continuous) mapping, the image of the half-plane $y \ge 0$ is an unbounded polygonal region.

The exterior angles between successive sides of the boundary are

the changes in argument of w'. Thus, the interior angles of the polygon are α_1 and α_2 .



Schwarz-Christoffel Formula

 The foregoing discussion can be generalized to produce a formula for the derivative f' of a function f that maps the half-plane y ≥ 0 onto a polygonal region with any number of sides.

Theorem (Schwarz-Christoffel Formula)

Let f be a function that is analytic in the domain y > 0 and has the derivative

$$f'(z) = A(z-x_1)^{(\alpha_1/\pi)-1}(z-x_2)^{(\alpha_2/\pi)-1}\cdots(z-x_n)^{(\alpha_n/\pi)-1},$$

where $x_1 < x_2 < \cdots < x_n$, $0 < \alpha_i < 2\pi$, for $1 \le i \le n$, and A is a complex constant. Then the upper half-plane $y \ge 0$ is mapped by w = f(z) onto an unbounded polygonal region with interior angles $\alpha_1, \alpha_2, \ldots, \alpha_n$.

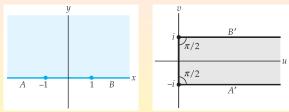
- By the Conformal Mapping Theorem, the function given by the Schwarz-Christoffel formula is a conformal mapping in y > 0.
- Even though the mapping from the upper half-plane onto a polygonal region is defined for $y \ge 0$, it is only conformal in y > 0.

Remarks on the Schwarz-Christoffel Formula

- In practice we usually have some freedom in the selection of the points x_k on the x-axis. A judicious choice can simplify the computation of f(z).
- The Schwarz-Christoffel Theorem provides a formula only for the derivative of f. A general formula for f is given by an integral $f(z) = A \int (z x_1)^{(\alpha_1/\pi)-1} (z x_2)^{(\alpha_2/\pi)-1} \cdots (z x_n)^{(\alpha_n/\pi)-1} dz + B$, where A and B are complex constants. Thus, f is the composition of $g(z) = \int (z x_1)^{(\alpha_1/\pi)-1} (z x_2)^{(\alpha_2/\pi)-1} \cdots (z x_n)^{(\alpha_n/\pi)-1} dz$ and the linear mapping h(z) = Az + B. The linear mapping h allows us to rotate, magnify (or contract), and translate the polygonal region produced by g.
- The Schwarz-Christoffel Formula can also be used to construct a mapping of the upper half-plane $y \ge 0$ onto a bounded polygonal region. To do so, we apply the formula using only n 1 of the n interior angles of the bounded polygonal region.

Using the Schwarz-Christoffel Formula I

• Use the formula to construct a conformal mapping from the upper half-plane onto the polygonal region defined by $u \ge 0$, $-1 \le v \le 1$. The polygonal region defined by $u \ge 0$, $-1 \le v \le 1$, is the semi-infinite strip:



The interior angles are $\alpha_1 = \alpha_2 = \frac{\pi}{2}$, and the vertices are $w_1 = -i$ and $w_2 = i$. To find the desired mapping, we set $x_1 = -1$ and $x_2 = 1$. Then $f'(z) = A(z+1)^{-1/2}(z-1)^{-1/2}$. By the Theorem, w = f(z) is a conformal mapping from the half-plane $y \ge 0$ onto the polygonal region $u \ge 0, -1 \le v \le 1$.

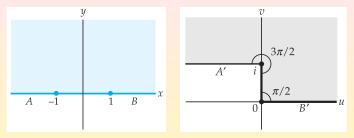
Using the Schwarz-Christoffel Formula I (Cont'd)

• For f(z), $f'(z) = A(z+1)^{-1/2}(z-1)^{-1/2}$ is integrated. Since z is in the upper half-plane $y \ge 0$, we first use the principal square root to write $f'(z) = \frac{A}{(z^2-1)^{1/2}}$. Since $(-1)^{1/2} = i$, we have $f'(z) = \frac{A}{(z^2-1)^{1/2}} = \frac{A}{(-1)^{1/2}(1-z^2)^{1/2}} = -Ai\frac{1}{(1-z^2)^{1/2}}$. An antiderivative is given by $f(z) = -Ai\sin^{-1}z + B$, where $\sin^{-1}z$ is the single-valued function obtained by using the principal square root and principal value of the logarithm and where A and B are complex constants.

If we choose f(-1) = -i and f(1) = i, then the constants A and Bmust satisfy $\begin{cases} -Ai\sin^{-1}(-1) + B = Ai\frac{\pi}{2} + B = -i \\ -Ai\sin^{-1}(1) + B = -Ai\frac{\pi}{2} + B = i. \end{cases}$. By adding these two equations we see that 2B = 0, or, B = 0. By substituting B = 0 into either equation we obtain $A = -\frac{2}{\pi}$. Therefore, $f(z) = i\frac{2}{\pi}\sin^{-1}z$.

Using the Schwarz-Christoffel Formula II

• Use the formula to construct a conformal mapping from the upper half-plane onto the polygonal region shown:



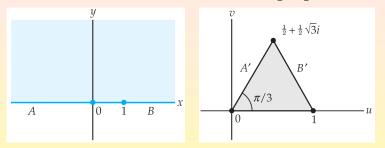
This is an unbounded polygonal region with interior angles $\alpha_1 = \frac{3\pi}{2}$ and $\alpha_2 = \frac{\pi}{2}$ at the vertices $w_1 = i$ and $w_2 = 0$, respectively. If we select $x_1 = -1$ and $x_2 = 1$ to map onto w_1 and w_2 , respectively, then $f'(z) = A(z+1)^{1/2}(z-1)^{-1/2}$. Note $(z+1)^{1/2}(z-1)^{-1/2} = \left(\frac{z+1}{(z^2-1)^{1/2}}\right)^{1/2} = \frac{z+1}{(z^2-1)^{1/2}}$. Therefore, $f'(z) = A\left[\frac{z}{(z^2-1)^{1/2}} + \frac{1}{(z^2-1)^{1/2}}\right]$.

Using the Schwarz-Christoffel Formula II (Cont'd)

• An antiderivative of $f'(z) = A \left| \frac{z}{(z^2-1)^{1/2}} + \frac{1}{(z^2-1)^{1/2}} \right|$ is given by $f(z) = A[(z^2 - 1)^{1/2} + \cosh^{-1} z] + B$, where A and B are complex constants, and where $(z^2 - 1)^{1/2}$ and $\cosh^{-1} z$ represent branches of the square root and inverse hyperbolic cosine functions defined on the domain y > 0. Because f(-1) = i and f(1) = 0, the constants A and *B* must satisfy the system of equations $\begin{cases} A(0 + \cosh^{-1}(-1)) + B = A\pi i + B = i \\ A(0 + \cosh^{-1}1) + B = B = 0 \end{cases}.$ Therefore, $A = \frac{1}{\pi}, B = 0$, and the desired mapping is $f(z) = \frac{1}{z}(z^2 - 1)^{1/2} + \cosh^{-1} z.$

Using the Schwarz-Christoffel Formula III

• Use the formula to construct a conformal mapping from the upper half-plane onto the polygonal region bounded by the equilateral triangle with vertices $w_1 = 0$, $w_2 = 1$, and $w_3 = \frac{1}{2} + \frac{1}{2}\sqrt{3}i$.



The region has interior angles $\alpha_1 = \alpha_2 = \alpha_3 = \frac{\pi}{3}$. Since the region is bounded, we can find a desired mapping by using the formula with n - 1 = 2 of the interior angles. After selecting $x_1 = 0$ and $x_2 = 1$, $f'(z) = Az^{-2/3}(z-1)^{-2/3}$.

Using the Schwarz-Christoffel Formula III (Cont'd)

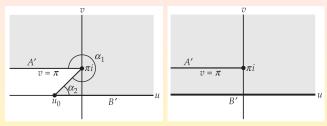
• There is no antiderivative of $f'(z) = Az^{-2/3}(z-1)^{-2/3}$ that can be expressed in terms of elementary functions. Since f' is analytic in the simply connected domain y > 0, we know that an antiderivative f does exist in this domain. It is given by the integral formula

$$f(z) = A \int_0^z \frac{1}{s^{2/3}(s-1)^{2/3}} ds + B,$$

where A and B are complex constants. Requiring that f(0) = 0allows us to solve for the constant B. We have $f(0) = A \int_0^0 \frac{1}{s^{2/3}(s-1)^{2/3}} ds + B = 0 + B = B$, and, so, B = 0. If we also require that f(1) = 1, then $f(1) = A \int_0^1 \frac{1}{s^{2/3}(s-1)^{2/3}} ds = 1$. If Γ denotes value of the integral $\Gamma = \int_0^1 \frac{1}{s^{2/3}(s-1)^{2/3}} ds$, then $A = \frac{1}{\Gamma}$.

Using the Schwarz-Christoffel Formula IV

• Use the formula to construct a conformal mapping from the upper half-plane onto the non-polygonal region defined by $v \ge 0$, with the horizontal half-line $v = \pi$, $-\infty < u \le 0$, deleted.



Let u_0 be a point on the non-positive *u*-axis in the *w*-plane. We can approximate the non-polygonal region by a polygonal region: The vertices of this polygonal region are $w_1 = \pi i$ and $w_2 = u_0$, with corresponding interior angles α_1 and α_2 . If we choose the points $z_1 = -1$ and $z_2 = 0$ to map onto the vertices $w_1 = \pi i$ and $w_2 = u_0$, respectively, then $f'(z) = A(z+1)^{(\alpha_1/\pi)-1} z^{(\alpha_2/\pi)-1}$.

Using the Schwarz-Christoffel Formula IV (Cont'd)

- As u_0 approaches $-\infty$ along the *u*-axis, the interior angle α_1 approaches 2π and the interior angle α_2 approaches 0. With these limiting values, $f'(z) = A(z+1)^{(\alpha_1/\pi)-1}z^{(\alpha_2/\pi)-1}$ suggests that our desired mapping f has derivative $f'(z) = A(z+1)^1z^{-1} = A(1+\frac{1}{z})$. Thus, $f(z) = A(z+\ln z) + B$, with A and B complex constants.
 - Consider $g(z) = z + \ln z$ on the upper half-plane $y \ge 0$.
 - For the half-line y = 0, -∞ < x < 0, if z = x + 0i, then Arg(z) = π, and so g(z) = x + log_e |x| + iπ. When x < 0, x + log_e |x| takes on all values from -∞ to -1. Thus, the image of the negative x-axis under g is the horizontal half-line v = π, -∞ < u < -1.
 - For the half-line y = 0, $0 < x < \infty$, if z = x + 0i, then $\operatorname{Arg}(z) = 0$, and so $g(z) = x + \log_e |x|$. When x > 0, $x + \log_e |x|$ takes on all values from $-\infty$ to ∞ . Therefore, the image of the positive x-axis under g is the u-axis.

The image of the half-plane $y \ge 0$ under $g(z) = z + \ln z$ is the region $v \ge 0$, with the horizontal half-line $v = \pi$, $-\infty < u < -1$ deleted.

In order to obtain the region we want, we should compose g with a translation by 1. Hence, the desired mapping is f(z) = z + Ln(z) + 1.