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Introduction to Conformal Mapping

We saw that a nonconstant linear mapping acts by rotating,
magnifying, and translating points in the complex plane.

As a result, the angle between any two intersecting arcs in the z-plane
is equal to the angle between the images of the arcs in the w -plane
under a linear mapping.

Complex mappings that have this angle-preserving property are called
conformal mappings.

We will formally define conformal mappings and show that any
analytic complex function is conformal at points where the derivative
is nonzero.

Consequently, all of the elementary functions we studied previously
are conformal in some domain D.
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The Angle Between Two Smooth Curves at a Point

Suppose that w = f (z) is a complex mapping defined in a domain D.

Assume that C1 and C2 are smooth curves in D that intersect at z0
and have a fixed orientation.

Let z1(t) and z2(t) be parametrizations of C1 and C2 such that
z1(t0) = z2(t0) = z0, and such that the orientations on C1 and C2

correspond to the increasing values of the parameter t.

Because C1 and C2 are smooth, the
tangent vectors z ′1 = z ′1(t0) and
z ′2 = z ′2(t0) are both nonzero.

We define the angle between C1 and C2

to be the angle θ in the interval [0, π]
between the tangent vectors z ′1 and z ′2.
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Equality of Angles in Magnitude and in Sense

Suppose that under the complex mapping w = f (z) the curves C1

and C2 in the z-plane are mapped onto the curves C ′

1 and C ′

2 in the
w -plane, respectively.

Because C1 and C2 intersect at z0, we must have that C ′

1 and C ′

2

intersect at f (z0).

If C ′

1 and C ′

2 are smooth, then the angle between C ′

1 and C ′

2 at f (z0)
is the angle φ in [0, π] between the tangent vectors w ′

1 and w ′

2.

We say that the angles θ and φ are equal in magnitude if θ = φ.

In the z-plane, the vector z ′1, whose initial point is z0, can be rotated
through the angle θ onto the vector z ′2. This rotation in the z-plane
can be in either direction.

In the w -plane, the vector w ′

1, whose initial point is f (z0), can be
rotated in one direction through an angle of φ onto the vector w ′

2.

If the rotation in the z-plane is the same direction as the rotation in
the w -plane, we say that the angles θ and φ are equal in sense.
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Magnitude and Sense of Angles

The smooth curves C1 and C2 shown are
given by z1(t) = t + (2t − t2)i and
z2(t) = t + 1

2(t
2 + 1)i , 0 ≤ t ≤ 2,

respectively. These curves intersect at
z0 = z1(1) = z2(1) = 1 + i . The tan-
gent vectors at z0 are z ′1 = z ′1(1) = 1
and z ′2 = z ′2(1) = 1 + i .
The angle between C1 and C2 at z0 is θ = π

4 .

Under the complex mapping w = z ,
the images of C1 and C2 are the curves
C ′

1 and C ′

2. They are parametrized by
w1(t) = t − (2t − t2)i and w2(t) =
t− 1

2(t
2+1)i , 0 ≤ t ≤ 2, and intersect

at the point w0 = f (z0) = 1− i .
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Magnitude and Sense of Angles (Cont’d)

At w0, the tangent vectors to C ′

1 and C ′

2 are w ′

1 = w ′

1(1) = 1 and
w ′

2 = w ′

2(1) = 1− i .

The angle between C ′
1 and C ′

2 at w0 is φ = π
4 . Therefore, the angles θ

and φ are equal in magnitude.
The rotation through π

4 of the vector z ′1 onto z ′2 must be
counterclockwise, whereas the rotation through π

4 of w ′
1 onto w ′

2 must
be clockwise. Thus, φ and θ are not equal in sense.
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Conformal Mapping

Definition (Conformal Mapping)

Let w = f (z) be a complex mapping defined in a domain D and let z0 be
a point in D. We call w = f (z) conformal at z0 if, for every pair of
smooth oriented curves C1 and C2 in D intersecting at z0, the angle
between C1 and C2 at z0 is equal to the angle between the image curves
C ′

1 and C ′

2 at f (z0) in both magnitude and sense.

The term conformal mapping will also be used to refer to a complex
mapping w = f (z) that is conformal at z0.

If w = f (z) maps a domain D onto a domain D ′ and if w = f (z) is
conformal at every point in D, then we call w = f (z) a conformal

mapping of D onto D ′.

Example: If f (z) = az + b is a linear function with a 6= 0, then
w = f (z) is conformal at every point in the complex plane.

Example: We just saw that w = z is not a conformal mapping at the
point z0 = 1 + i since θ and φ are not equal in sense.
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Angles between Curves

Consider smooth curves C1 and C2, parametrized by z1(t) and z2(t),
respectively, which intersect at z1(t0) = z2(t0) = z0.

The requirement that C1 is smooth ensures that the tangent vector to
C1 at z0, given by z ′1 = z ′1(t0), is nonzero, and, so, arg(z

′

1) is defined
and represents an angle between z ′1 and the positive x-axis.

The tangent vector to C2 at z0, given by z ′2 = z ′2(t0), is nonzero, and
arg(z ′2) represents an angle between z ′2 and the positive x-axis.

The angle θ between C1 and C2 at z0 is the
value arg(z ′2)− arg(z ′1) in [0, π], provided that
we can rotate z ′1 counterclockwise about 0
through the angle θ onto z ′2. In the case that
a clockwise rotation is needed, then −θ is the
value in the interval (−π, 0). In either case,
we get both the magnitude and sense of the
angle between C1 and C2 at z0.
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Example of Angles between Curves

Consider again the smooth curves C1 and C2 given by
z1(t) = t + (2t − t2)i and z2(t) = t + 1

2(t
2 + 1)i , 0 ≤ t ≤ 2,

respectively, that intersect at the point z0 = z1(1) = z2(1) = 1 + i .

Their images under w = z are w1(t) = t − (2t − t2)i and
w2(t) = t − 1

2(t
2 + 1)i , 0 ≤ t ≤ 2, and intersect at the point

w0 = f (z0) = 1− i .

The unique value of arg(z ′2)− arg(z ′1) = arg(1 + i)− arg(1) =
π
4 + 2nπ, n = 0,±1,±2, . . ., that lies in the interval [0, π] is π

4 .
Therefore, the angle between C1 and C2 is θ = π

4 , and the rotation of
z ′1 onto z ′2 is counterclockwise.

The expression arg(w ′

2)− arg(w ′

2) = arg(1− i)− arg(1) = −π
4 + 2nπ,

n = 0,±1,±2, . . ., has no value in [0, π], but has the unique value
−π

4 in the interval (−π, 0). Thus, the angle between C ′

1 and C ′

2 is
φ = π

4 , and the rotation of w ′

1 onto w ′

2 is clockwise.
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Analytic Functions

Theorem (Conformal Mapping)

If f is an analytic function in a domain D containing z0, and if f ′(z0) 6= 0,
then w = f (z) is a conformal mapping at z0.

Suppose that f is analytic in a domain D containing z0, and that
f ′(z0) 6= 0. Let C1 and C2 be two smooth curves in D parametrized
by z1(t) and z2(t), respectively, with z1(t0) = z2(t0) = z0. Assume
that w = f (z) maps the curves C1 and C2 onto the curves C ′

1 and C ′

2.
We wish to show that the angle θ between C1 and C2 at z0 is equal
to the angle φ between C ′

1 and C ′

2 at f (z0) in both magnitude and
sense. We may assume, by renumbering C1 and C2, if necessary, that
z ′1 = z ′1(t0) can be rotated counterclockwise about 0 through the
angle θ onto z ′2 = z ′2(t0). The angle θ is the unique value of
arg(z ′2)− arg(z ′1) in the interval [0, π]. C ′

1 and C ′

2 are parametrized by
w1(t) = f (z1(t)) and w2(t) = f (z2(t)).
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Proof of the Conformal Mapping Theorem

C ′

1 and C ′

2 are parametrized by w1(t) = f (z1(t)) and w2(t) =
f (z2(t)). Using the chain rule w ′

1 = w ′

1(t0) = f ′(z1(t0)) · z ′1(t0) =
f ′(z0) · z ′1, and w ′

2 = w ′

2(t0) = f ′(z2(t0)) · z ′2(t0) = f ′(z0) · z ′2. Since
C1 and C2 are smooth, both z ′1 and z ′2 are nonzero. Furthermore, by
hypothesis, f ′(z0) 6= 0. Therefore, both w ′

1 and w ′

2 are nonzero, and
the angle φ between C ′

1 and C ′

2 at f (z0) is a value of
arg(w ′

2)− arg(w ′

1) = arg(f ′(z0) · z ′2)− arg(f ′(z0) · z ′1). Now we obtain:

arg(f ′(z0) · z ′2)− arg(f ′(z0) · z ′1)
= arg(f ′(z0)) + arg(z ′2)− [arg(f ′(z0)) + arg(z ′1)]
= arg(z ′2)− arg(z ′1).

The unique value in [0, π] is θ. Therefore, θ = φ in both magnitude
and sense, and consequently w = f (z) is a conformal mapping at z0.

Example: (a) The entire function f (z) = ez is conformal at every
point in the complex plane since f ′(z) = ez 6= 0, for all z in C.
(b) The entire g(z) = z2 is conformal at all points z , z 6= 0.
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Critical Points

The function g(z) = z2 is not a conformal mapping at z0 = 0
because g ′(0) = 0.

In general, if a complex function f is analytic at a point z0 and if
f ′(z0) = 0, then z0 is called a critical point of f .

Although it does not follow from the Conformal Mapping Theorem, it
is true that analytic functions are not conformal at critical points.

More specifically, the following magnification of angles occurs at a
critical point:

Theorem (Angle Magnification at a Critical Point)

Let f be analytic at the critical point z0. If n > 1 is an integer such that
f ′(z0) = f ′′(z0) = · · · = f (n−1)(z0) = 0 and f (n)(z0) 6= 0, then the angle
between any two smooth curves intersecting at z0 is increased by a factor
of n by the complex mapping w = f (z). In particular, w = f (z) is not a
conformal mapping at z0.

George Voutsadakis (LSSU) Complex Analysis October 2014 14 / 50



Conformal Mapping Conformal Mapping

Angle Magnification at Critical Points

Example: Find all points where the mapping f (z) = sin z is conformal.

The function f (z) = sin z is entire and we have that f ′(z) = cos z .

Moreover, cos z = 0 if and only if z = (2n+1)π
2 , n = 0,±1,±2, . . .,

and so each of these points is a critical point of f .

Therefore, by the Conformal Mapping Theorem, w = sin z is a

conformal mapping at z , for all z 6= (2n+1)π
2 , n = 0,±1,±2, . . ..

Furthermore, by the Angle Magnification Theorem, w = sin z is not a

conformal mapping at z if z = (2n+1)π
2 , n = 0,±1,±2, . . .. Because

f ′′(z) = − sin z = ±1 at the critical points of f , the theorem indicates
that angles at these points are increased by a factor of 2.
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Subsection 2

Linear Fractional Transformations
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Linear Fractional Transformations

We studied complex linear mappings w = az + b where a and b are
complex constants and a 6= 0. Such mappings act by rotating,
magnifying, and translating points in the complex plane.
We also looked at the complex reciprocal mapping w = 1

z
. An

important property, when defined on the extended complex plane, is
that it maps certain lines to circles and certain circles to lines.
A more general type of mapping that has similar properties is a linear
fractional transformation:

Definition (Linear Fractional Transformation)

If a, b, c and d are complex constants with ad − bc 6= 0, then the complex
function defined by:

T (z) =
az + b

cz + d

is called a linear fractional transformation.

These are also called Möbius or bilinear transformations.
If c = 0, then T is a linear mapping.
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Properties of Linear Fractional Transformations

If c 6= 0, then we can write T (z) = az+b

cz+d
= bc−ad

c

1
cz+d

+ a

c
. Setting

A = bc−ad

c
and B = a

c
, we see that the transformation T is written as

the composition T (z) = f ◦ g ◦ h(z), where

f (z) = Az + B , h(z) = cz + d , g(z) =
1

z
.

The domain of T is the set of all z , such that z 6= −d

c
.

Since T ′(z) = ad−bc

(cz+d)2
and ad − bc 6= 0, linear fractional

transformations are conformal on their domains.

The condition ad − bc 6= 0 also ensures that T is one-to-one.

If c 6= 0, then T (z) = az+b

cz+d
=

a

c
(z+ b

a
)

z+ d

c

= φ(z)

z−(− d

c
)
, where

φ(z) = a

c
(z + b

a
). Because ad − bc 6= 0, we have that φ(−d

c
) 6= 0,

and, hence, the point z = −d

c
is a simple pole of T .
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Linear Fractional Transformation on the Extended Plane

Since T is defined for all points in the extended plane except the pole
z = −d

c
and the ideal point ∞, we need only extend the definition of

T to include these points.

Because lim
z→− d

c

cz+d

az+b
= 0

a(− d

c
)+b

= 0
−ad+bc

= 0, it follows that

limz→−d/c
az+b

cz+d
= ∞.

Moreover, limz→∞
az+b

cz+d
= limz→0

a/z+b

c/z+d
= limz→0

a+zb

c+zd
= a

c
.

Thus, if c 6= 0, we regard T as a one-to-one mapping of the extended

complex plane defined by: T (z) =







az+b

cz+d
, if z 6= −d

c
,∞

∞, if z = −d

c
a

c
, if z = ∞
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A Linear Fractional Transformation

Find the images of the points 0, 1 + i , i and ∞ under the linear
fractional transformation

T (z) =
2z + 1

z − i
.

For z = 0, T (0) =
2(0) + 1

0− i
=

1

−i
= i .

For z = 1 + i , T (1 + i) =
2(1 + i) + 1

(1 + i)− i
=

3 + 2i

1
= 3 + 2i .

For z = i , T (i) = ∞.

Finally, for z = ∞, T (∞) =
2

1
= 2.
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Circle-Preserving Property

The reciprocal mapping w = 1
z
has two important properties:

The image of a circle centered at z = 0 is a circle;
The image of a circle with center on the x- or y -axis and containing
the pole z = 0 is a vertical or horizontal line.

Linear fractional transformations have a similar mapping property:

Theorem (Circle-Preserving Property)

If C is a circle in the z-plane and if T is a linear fractional transformation,
then the image of C under T is either a circle or a line in the extended
w -plane. The image is a line if and only if c 6= 0 and the pole z = −d

c
is

on the circle C .

When c = 0, T is a linear function, and we saw that linear functions
map circles onto circles.
Assume that c 6= 0. Then T (z) = f ◦ g ◦ h(z), where f (z) = Az + B

and h(z) = cz + d are linear functions and g(z) = 1
z
is the reciprocal

function. Since h is a linear mapping, the image C ′ of the circle C

under h is a circle.
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Proof of the Circle-Preserving Property

z w✲

h(z) = cz + d
ξ✲

g(w) = 1/w
✲

f (ξ) = Aξ + B

We examine two cases:
Case 1: Assume that the origin w = 0 is on the circle C ′. This occurs
if and only if the pole z = − d

c
is on the circle C . If w = 0 is on C ′,

then the image of C ′ under g(z) = 1
z
is either a horizontal or vertical

line L. Since f is linear, the image of L under f is also a line. Thus, if
the pole z = − d

c
is on C , then the image of C under T is a line.

Case 2: Assume that the point w = 0 is not on C ′, i.e., the pole
z = − d

c
is not on the circle C . Let C ′ be the circle |w −w0| = ρ. If we

set ξ = g(w) = 1
w

and ξ0 = g(w0) =
1
w0
, then for any point w on C ′

we have |ξ − ξ0| =
∣

∣

∣

1
w
− 1

w0

∣

∣

∣
= |w−w0|

|w|·|w0|
= ρ|ξ0||ξ|. It can be shown that

the ξ satisfying |ξ − a| = λ|ξ − b| form a line if λ = 1 and a circle if
0 < λ 6= 1. A comparison with a = ξ0, b = 0, and λ = ρ|ξ0|, taking
into account that w = 0 is not on C ′, yields |w0| 6= ρ, or, equivalently,
λ = ρ|ξ0| 6= 1. This implies that the set of points ξ is a circle. Finally,
since f is a linear function, the image of this circle under f is again a
circle. We conclude that the image of C under T is a circle.
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Mapping Lines to Circles with T (z)

The key observation in the foregoing proof was that a linear fractional
transformation can be written as a composition of the reciprocal
function and two linear functions.

The image of any line L under the reciprocal mapping w = 1
z
is a line

or a circle.

Therefore, using similar reasoning, we can show:

Proposition (Mapping Lines to Circles with T (z))

If T is a linear fractional transformation, then the image of a line L under
T is either a line or a circle. The image is a circle if and only if c 6= 0 and
the pole z = −d

c
is not on the line L.
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Image of a Circle I

Find the image of the unit circle |z | = 1 under the linear fractional
transformation T (z) = z+2

z−1 . What is the image of the interior |z | < 1
of this circle?

The pole of T is z = 1 and this point is on the unit circle |z | = 1.
Thus, by the Circle-Preserving Theorem, the image of the unit circle is
a line. Since the image is a line, it is determined by any two points.
Because T (−1) = − 1

2 and T (i) = − 1
2 − 3

2 i , we see that the image is
the line u = − 1

2 .
For the second question, note that a linear fractional transformation is
a rational function, and so it is continuous on its domain. As a
consequence, the image of the interior |z | < 1 of the unit circle is
either the half-plane u < − 1

2 or the half-plane u > − 1
2 . Using z = 0 as

a test point, we find that T (0) = −2, which is to the left of the line
u = − 1

2 , and so the image is the half-plane u < − 1
2 .
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Illustration of Example I

The unit circle |z | = 1 is mapped by T = z+2
z−1 onto the line u = −1

2 :

Moreover, the interior |z | < 1 is mapped onto the half-plane u < −1
2 .
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Image of a Circle II

Find the image of the unit circle |z | = 2 under the linear fractional
transformation T (z) = z+2

z−1 . What is the image of the disk |z | ≤ 2
under T?

The pole z = 1 does not lie on the circle |z | = 2. The Circle Mapping
Theorem indicates that the image of |z | = 2 is a circle C ′. The circle
|z | = 2 is symmetric with respect to the x-axis. So, if z is on the circle

|z | = 2, then so is z . Moreover, for all z , T (z) = z+2
z−1 = z+2

z−1
=

( z+2
z−1) = T (z). Hence, if z and z are on |z | = 2, then we must have

that both w = T (z) and w = T (z) = T (z) are on the circle C ′. It
follows that C ′ is symmetric with respect to the u-axis. Since z = 2
and −2 are on the circle |z | = 2, the two points T (2) = 4 and
T (−2) = 0 are on C ′. The symmetry of C ′ implies that 0 and 4 are
endpoints of a diameter, and so C ′ is the circle |w − 2| = 2.
Using z = 0 as a test point, we find that w = T (0) = −2, which is
outside the circle |w − 2| = 2. Therefore, the image of the interior of
the circle |z | = 2 is the exterior of the circle |w − 2| = 2.
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Illustration of Example II

The circle |z | = 2 is mapped by T = z+2
z−1 onto the circle |w − 2| = 2:

Moreover, the interior |z | < 2 is mapped onto the exterior |w −2| > 2.
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Linear Fractional Transformations as Matrices

With the linear fractional transformation T (z) = az+b

cz+d
we associate

the matrix A =

(

a b

c d

)

.

The assignment is not unique because, if e is a nonzero complex
number, then T (z) = az+b

cz+d
= eaz+eb

ecz+ed
. But, if e 6= 1, then the two

matrices A =

(

a b

c d

)

and B =

(

ea eb

ec ed

)

= eA are not equal.

It is easy to verify that the composition T2 ◦ T1 of T1(z) =
a1z+b1
c1z+d1

and T2(z) =
a2z+b2
c2z+d2

is represented by the product of matrices
(

a2 b2
c2 d2

)(

a1 b1
c1 d1

)

=

(

a2a1 + b2c1 a2b1 + b2d1
c2a1 + d2c1 c2b1 + d2d1

)

.
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Inverse Linear Fractional Transformations and Matrices

The formula for T−1(z) can be computed by solving the equation
w = T (z) for z . This formula is represented by the inverse of the

matrix A =

(

a b

c d

)

:

A−1 =

(

a b

c d

)−1

=
1

ad − bc

(

d −b

−c a

)

. By identifying

e = 1
ad−bc

in the multiplicative relation between matrices
corresponding to the same linear fractional transformation, we can

also represent T−1(z) by the matrix

(

d −b

−c a

)

.
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Using Matrices

Suppose S(z) = z−i

iz−1 and T (z) = 2z−1
z+2 . Use matrices to find

S−1(T (z)).

We represent the linear fractional transformations S and T by the

matrices

(

1 −i

i −1

)

and

(

2 −1
1 2

)

. The transformation S−1 is

given by

(

−1 i

−i 1

)

. So, the composition S−1 ◦ T is given by
(

−1 i

−i 1

)(

2 −1
1 2

)

=

(

−2 + i 1 + 2i
1− 2i 2 + i

)

. Therefore,

S−1(T (z)) =
(−2 + i)z + 1 + 2i

(1− 2i)z + 2 + i
.
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Cross-Ratio

The cross-ratio is a method to construct a linear fractional
transformation w = T (z), which maps three given distinct points z1,
z2 and z3 on the boundary of D to three given distinct points w1, w2

and w3 on the boundary of D ′.

Definition (Cross-Ratio)

The cross-ratio of the complex numbers z , z1, z2 and z3 is the complex

number
z − z1

z − z3

z2 − z3

z2 − z1
.

When computing a cross-ratio, we must be careful with the order of
the complex numbers. E.g., the cross-ratio of 0, 1, i and 2 is 3

4 + 1
4 i ,

whereas the cross-ratio of 0, i , 1 and 2 is 1
4 − 1

4 i .

The cross-ratio can be extended to include points in the extended
complex plane by using the limit formula. E.g., the cross-ratio of, say,

∞, z1, z2 and z3 is given by limz→∞

z − z1

z − z3

z2 − z3

z2 − z1
.
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Conformal Mapping Linear Fractional Transformations

Cross-Ratios and Linear Fractional Transformations

Theorem (Cross-Ratios and Linear Fractional Transformations)

If w = T (z) is a linear fractional transformation that maps the distinct
points z1, z2 and z3 onto the distinct points w1, w2 and w3, respectively,
then, for all z , z − z1

z − z3

z2 − z3

z2 − z1
=

w − w1

w − w3

w2 − w3

w2 − w1
.

Let R(z) = z−z1
z−z3

z2−z3
z2−z1

. Note that R(z1) = 0, R(z2) = 1, R(z3) = ∞.

Let S(z) = z−w1
z−w3

w2−w3
w2−w1

. For S , S(w1) = 0, S(w2) = 1, S(w3) = ∞.
Therefore, the points z1, z2 and z3 are mapped onto the points
w1,w2 and w3, respectively, by the linear fractional transformation
S−1(R(z)). Hence, 0, 1 and ∞ are mapped onto 0, 1 and ∞,
respectively, by the composition T−1(S−1(R(z))). The only linear
fractional transformation that maps 0, 1 and ∞ onto 0, 1, and ∞ is
the identity. Thus, T−1(S−1(R(z))) = z , or R(z) = S(T (z)). With
w = T (z), we get R(z) = S(w), i.e., z−z1

z−z3

z2−z3
z2−z1

= w−w1
w−w3

w2−w3
w2−w1

.
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Conformal Mapping Linear Fractional Transformations

Constructing a Linear Fractional Transformation I

Construct a linear fractional transformation that maps the points 1, i
and −1 on the unit circle |z | = 1 onto the points −1, 0, 1 on the real
axis. Determine the image of the interior |z | < 1 under this
transformation.

Identifying

z1 = 1, z2 = i , z3 = − 1, w1 = − 1, w2 = 0, w3 = 1,

the desired mapping w = T (z) must satisfy

z − 1

z − (−1)

i − (−1)

i − 1
=

w − (−1)

w − 1

0− 1

0− (−1)
.

We get i(w − 1)(z − 1) = (w + 1)(z + 1), whence
w(z − 1)i − w(z + 1) = (z + 1) + (z − 1), giving

w =
(z + 1) + (z − 1)i

−(z + 1) + (z − 1)i
=

(z − i)(i + 1)

(iz − 1)(i + 1)
=

z − i

iz − 1
.

Using the test point z = 0, we obtain T (0) = i . Therefore, the image
of the interior |z | < 1 is the upper half-plane v > 0.
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Conformal Mapping Linear Fractional Transformations

Constructing a Linear Fractional Transformation II

Construct a linear fractional transformation that maps the points
−i , 1 and ∞ on the line y = x − 1 onto the points 1, i and −1 on the
unit circle |w | = 1.

The cross-ratio of z , z1 = −i , z2 = 1, and z3 = ∞ is
limz3→∞

z+i

z−z3

1−z3
1+i

= limz3→0
z+i

z−1/z3

1−1/z3
1+i

= limz3→0
z+i

zz3−1
z3−1
1+i

=
z+i

1+i
. By the theorem, with w1 = 1, w2 = i and w3 = −1, the desired

mapping w = T (z) must satisfy

z + i

1 + i
=

w − 1

w + 1

i + 1

i − 1
.

After solving for w and simplifying we obtain

w = T (z) =
z + 1

−z + 1− 2i
.
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Conformal Mapping Schwarz-Christoffel Transformations

Subsection 3

Schwarz-Christoffel Transformations
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Conformal Mapping Schwarz-Christoffel Transformations

Polygonal Regions

A polygonal region in the complex plane is a region that is bounded
by a simple, connected, piecewise smooth curve consisting of a finite
number of line segments.

The boundary curve of a polygonal region is called a polygon and the
endpoints of the line segments in the polygon are called vertices.

If a polygon is a closed curve, then the region enclosed by the polygon
is called a bounded polygonal region.

A polygonal region that
is not bounded is called
an unbounded polygo-

nal region.

In the case of an unbounded polygonal region, the ideal point ∞ is
also called a vertex of the polygon.
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Conformal Mapping Schwarz-Christoffel Transformations

Special Cases I

Before providing a general formula for a conformal mapping of the
upper half-plane y ≥ 0 onto a polygonal region, we examine the
complex mapping

w = f (z) = (z − x1)
α/π,

where x1 and α are real numbers and 0 < α < 2π.
This mapping is the composition of a translation T (z) = z − x1
followed by the real power function F (z) = zα/π.

T translates in a direction parallel to the real axis. The x-axis is
mapped onto the u-axis with z = x1 mapping onto w = 0.
For F , we replace z by re iθ to obtain: F (z) = (re iθ)α/π = rα/πe i(αθ/π).
Thus, the complex mapping w = zα/π:

magnifies or contracts the modulus r of z to the modulus rα/π of w ;
rotates z through α

π
radians about the origin to increase or decrease an

argument θ of z to an argument αθ
π

of w .

Thus, w = F (T (z)) = (z − x1)
α/π maps a ray emanating from x1

and making an angle of φ radians with the real axis onto a ray
emanating from 0 making an angle of αφ

π radians with the real axis.
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Conformal Mapping Schwarz-Christoffel Transformations

Mapping of the Upper Half-Plane

Consider again w = f (z) = (z − x1)
α/π on the half-plane y ≥ 0. This

set consists of the point z = x1 together with the set of rays
arg(z − x1) = φ, 0 ≤ φ ≤ π. The image under w = (z − x1)

α/π

consists of the point w = 0 together with the set of rays
arg(w) = αφ

π , 0 ≤ αφ
π ≤ α.

We conclude that the image of the half-plane y ≥ 0 is the point
w = 0 together with the wedge 0 ≤ arg(w) ≤ α. The function f has
derivative: f ′(z) = α

π (z − x1)
(α/π)−1. Since f ′(z) 6= 0 if z = x + iy

and y > 0, it follows that w = f (z) is a conformal mapping at any
point z with y > 0.
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Conformal Mapping Schwarz-Christoffel Transformations

Mapping f , with f
′(z) = A(z − x1)

(α1/π)−1(z − x2)
(α2/π)−1

Consider a new function f , analytic in y > 0 and whose derivative is:

f ′(z) = A(z − x1)
(α1/π)−1(z − x2)

(α2/π)−1,

where x1, x2, α1 and α2 are real, x1 < x2, and A is a complex constant.

Note a parametrization w(t), a < t < b, gives a line segment if and
only if there is a constant value of arg(w ′(t)) for all a < t < b.
We determine the images of the intervals (−∞, x1), (x1, x2) and
(x2,∞) on the real axis under w = f (z).

If we parametrize (−∞, x1) by z(t) = t, −∞ < t < x1, then
w(t) = f (z(t)) = f (t), −∞ < t < x1. Thus, w

′(t) = f ′(t) =
A(t − x1)

(α1/π)−1(t − x2)
(α2/π)−1. An argument of w ′(t) is then given

by: Arg(A) + (α1

π − 1)Arg(t − x1) + (α2

π − 1)Arg(t − x2). Since
−∞ < t < x1, t − x1 < 0, and, so Arg(t − x1) = π. Since x1 < x2,
t − x2 < 0, whence Arg(t − x2) = π. Hence, Arg(A) + α1 + α2 − 2π is
a constant value of arg(w ′(t)) for all t in (−∞, x1). We conclude that
the interval (−∞, x1) is mapped onto a line segment by w = f (z).

George Voutsadakis (LSSU) Complex Analysis October 2014 39 / 50



Conformal Mapping Schwarz-Christoffel Transformations

Mapping f (Cont’d)

By similar reasoning we determine that both (x1, x2) and (x2,∞) also
map onto line segments:

Interval An Argument of w ′ Change in Argument

(−∞, x1) Arg(A) + α1 + α2 − 2π 0
(x1, x2) Arg(A) + α2 − π π − α1

(x2,∞) Arg(A) π − α2

Since f is an analytic (and, hence, continuous) mapping, the image of
the half-plane y ≥ 0 is an unbounded polygonal region.

The exterior angles between successive sides of the boundary are

the changes in argu-
ment of w ′. Thus, the
interior angles of the
polygon are α1 and α2.
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Conformal Mapping Schwarz-Christoffel Transformations

Schwarz-Christoffel Formula

The foregoing discussion can be generalized to produce a formula for
the derivative f ′ of a function f that maps the half-plane y ≥ 0 onto
a polygonal region with any number of sides.

Theorem (Schwarz-Christoffel Formula)

Let f be a function that is analytic in the domain y > 0 and has the
derivative

f ′(z) = A(z − x1)
(α1/π)−1(z − x2)

(α2/π)−1 · · · (z − xn)
(αn/π)−1,

where x1 < x2 < · · · < xn, 0 < αi < 2π, for 1 ≤ i ≤ n, and A is a complex
constant. Then the upper half-plane y ≥ 0 is mapped by w = f (z) onto
an unbounded polygonal region with interior angles α1, α2, . . . , αn.

By the Conformal Mapping Theorem, the function given by the
Schwarz-Christoffel formula is a conformal mapping in y > 0.

Even though the mapping from the upper half-plane onto a polygonal
region is defined for y ≥ 0, it is only conformal in y > 0.
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Conformal Mapping Schwarz-Christoffel Transformations

Remarks on the Schwarz-Christoffel Formula

In practice we usually have some freedom in the selection of the
points xk on the x-axis. A judicious choice can simplify the
computation of f (z).

The Schwarz-Christoffel Theorem provides a formula only for the
derivative of f . A general formula for f is given by an integral f (z) =
A
´

(z − x1)
(α1/π)−1(z − x2)

(α2/π)−1 · · · (z − xn)
(αn/π)−1dz + B ,

where A and B are complex constants. Thus, f is the composition of
g(z) =

´

(z − x1)
(α1/π)−1(z − x2)

(α2/π)−1 · · · (z − xn)
(αn/π)−1dz and

the linear mapping h(z) = Az + B . The linear mapping h allows us to
rotate, magnify (or contract), and translate the polygonal region
produced by g .

The Schwarz-Christoffel Formula can also be used to construct a
mapping of the upper half-plane y ≥ 0 onto a bounded polygonal
region. To do so, we apply the formula using only n − 1 of the n

interior angles of the bounded polygonal region.
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Conformal Mapping Schwarz-Christoffel Transformations

Using the Schwarz-Christoffel Formula I

Use the formula to construct a conformal mapping from the upper
half-plane onto the polygonal region defined by u ≥ 0, −1 ≤ v ≤ 1.

The polygonal region defined by u ≥ 0, −1 ≤ v ≤ 1, is the
semi-infinite strip:

The interior angles are α1 = α2 =
π
2 , and the vertices are w1 = − i

and w2 = i . To find the desired mapping, we set x1 = −1 and x2 = 1.
Then f ′(z) = A(z + 1)−1/2(z − 1)−1/2. By the Theorem, w = f (z) is
a conformal mapping from the half-plane y ≥ 0 onto the polygonal
region u ≥ 0, −1 ≤ v ≤ 1.
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Conformal Mapping Schwarz-Christoffel Transformations

Using the Schwarz-Christoffel Formula I (Cont’d)

For f(z), f ′(z) = A(z + 1)−1/2(z − 1)−1/2 is integrated.

Since z is in the upper half-plane y ≥ 0, we first use the principal
square root to write f ′(z) = A

(z2−1)1/2
. Since (−1)1/2 = i , we have

f ′(z) = A

(z2−1)1/2
= A

[−1(1−z2)]1/2
= A

i

1
(1−z2)1/2

= − Ai 1
(1−z2)1/2

. An

antiderivative is given by f (z) = − Ai sin−1 z + B , where sin−1 z is
the single-valued function obtained by using the principal square root
and principal value of the logarithm and where A and B are complex
constants.

If we choose f (−1) = −i and f (1) = i , then the constants A and B

must satisfy

{

− Ai sin−1 (−1) + B = Ai π2 + B = − i

− Ai sin−1 (1) + B = − Ai π2 + B = i .

}

. By

adding these two equations we see that 2B = 0, or, B = 0. By
substituting B = 0 into either equation we obtain A = − 2

π .
Therefore, f (z) = i 2π sin−1 z .
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Conformal Mapping Schwarz-Christoffel Transformations

Using the Schwarz-Christoffel Formula II

Use the formula to construct a conformal mapping from the upper
half-plane onto the polygonal region shown:

This is an unbounded polygonal region with interior angles α1 =
3π
2

and α2 =
π
2 at the vertices w1 = i and w2 = 0, respectively. If we

select x1 = −1 and x2 = 1 to map onto w1 and w2, respectively, then
f ′(z) = A(z + 1)1/2(z − 1)−1/2. Note (z + 1)1/2(z − 1)−1/2 =
(

z+1
z−1

)1/2
= z+1

(z2−1)1/2
. Therefore, f ′(z) = A

[

z

(z2−1)1/2
+ 1

(z2−1)1/2

]

.
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Conformal Mapping Schwarz-Christoffel Transformations

Using the Schwarz-Christoffel Formula II (Cont’d)

An antiderivative of f ′(z) = A
[

z

(z2−1)1/2
+ 1

(z2−1)1/2

]

is given by

f (z) = A[(z2 − 1)1/2 + cosh−1 z ] + B , where A and B are complex
constants, and where (z2 − 1)1/2 and cosh−1 z represent branches of
the square root and inverse hyperbolic cosine functions defined on the
domain y > 0. Because f (−1) = i and f (1) = 0, the constants A and
B must satisfy the system of equations
{

A(0 + cosh−1 (−1)) + B = Aπi + B = i

A(0 + cosh−1 1) + B = B = 0

}

. Therefore,

A = 1
π , B = 0, and the desired mapping is

f (z) = 1
π (z

2 − 1)1/2 + cosh−1 z .
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Conformal Mapping Schwarz-Christoffel Transformations

Using the Schwarz-Christoffel Formula III

Use the formula to construct a conformal mapping from the upper
half-plane onto the polygonal region bounded by the equilateral
triangle with vertices w1 = 0, w2 = 1, and w3 =

1
2 +

1
2

√
3i .

The region has interior angles α1 = α2 = α3 =
π
3 . Since the region is

bounded, we can find a desired mapping by using the formula with
n − 1 = 2 of the interior angles. After selecting x1 = 0 and x2 = 1,
f ′(z) = Az−2/3(z − 1)−2/3.
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Conformal Mapping Schwarz-Christoffel Transformations

Using the Schwarz-Christoffel Formula III (Cont’d)

There is no antiderivative of f ′(z) = Az−2/3(z − 1)−2/3 that can be
expressed in terms of elementary functions. Since f ′ is analytic in the
simply connected domain y > 0, we know that an antiderivative f

does exist in this domain. It is given by the integral formula

f (z) = A

ˆ

z

0

1

s2/3(s − 1)2/3
ds + B ,

where A and B are complex constants. Requiring that f (0) = 0
allows us to solve for the constant B . We have

f (0) = A

ˆ 0

0

1
s2/3(s−1)2/3

ds + B = 0 + B = B , and, so, B = 0. If we

also require that f (1) = 1, then f (1) = A

ˆ 1

0

1
s2/3(s−1)2/3

ds = 1. If Γ

denotes value of the integral Γ =

ˆ 1

0

1
s2/3(s−1)2/3

ds, then A = 1
Γ .
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Conformal Mapping Schwarz-Christoffel Transformations

Using the Schwarz-Christoffel Formula IV

Use the formula to construct a conformal mapping from the upper
half-plane onto the non-polygonal region defined by v ≥ 0, with the
horizontal half-line v = π, −∞ < u ≤ 0, deleted.

Let u0 be a point on the non-positive u-axis in the w -plane. We can
approximate the non-polygonal region by a polygonal region: The
vertices of this polygonal region are w1 = πi and w2 = u0, with
corresponding interior angles α1 and α2. If we choose the points
z1 = −1 and z2 = 0 to map onto the vertices w1 = πi and w2 = u0,
respectively, then f ′(z) = A(z + 1)(α1/π)−1z (α2/π)−1.
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Conformal Mapping Schwarz-Christoffel Transformations

Using the Schwarz-Christoffel Formula IV (Cont’d)

As u0 approaches −∞ along the u-axis, the interior angle α1

approaches 2π and the interior angle α2 approaches 0. With these
limiting values, f ′(z) = A(z + 1)(α1/π)−1z (α2/π)−1 suggests that our
desired mapping f has derivative f ′(z) = A(z + 1)1z−1 = A(1 + 1

z
).

Thus, f (z) = A(z + Lnz) + B , with A and B complex constants.
Consider g(z) = z + Lnz on the upper half-plane y ≥ 0.

For the half-line y = 0,−∞ < x < 0, if z = x + 0i , then Arg(z) = π,

and so g(z) = x + log
e
|x |+ iπ. When x < 0, x + log

e
|x | takes on all

values from −∞ to −1. Thus, the image of the negative x-axis under
g is the horizontal half-line v = π, −∞ < u < −1.
For the half-line y = 0, 0 < x < ∞, if z = x + 0i , then Arg(z) = 0,
and so g(z) = x + log

e
|x |. When x > 0, x + log

e
|x | takes on all values

from −∞ to ∞. Therefore, the image of the positive x-axis under g is
the u-axis.

The image of the half-plane y ≥ 0 under g(z) = z + Lnz is the region
v ≥ 0, with the horizontal half-line v = π, −∞ < u < −1 deleted.

In order to obtain the region we want, we should compose g with a
translation by 1. Hence, the desired mapping is f (z) = z + Ln(z) + 1.
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