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Definitions and Proofs Definition

Divisibility

The set of integers is Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .};

Definition (Divisibility)

Let a and b be integers. We say that a is divisible by b provided there is
an integer c such that bc = a. We also say b divides a, or b is a factor

of a, or b is a divisor of a. The notation for this is b | a.

Example: Is 12 divisible by 4?
The definition says that a = 12 is divisible by b = 4 if we can find an
integer c so that 4c = 12. There is such an integer, namely, c = 3.
Thus, 4 divides 12 or, equivalently, 4 is a factor or a divisor of 12.

Example: 12 is not divisible by 5 because there is no integer x for
which 5x = 12.
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Definitions and Proofs Definition

Even and Odd Integers

Definition (Even)

An integer is called even provided it is divisible by two.

Example: The number 12 is even because 2 | 12, since 2 · 6 = 12. On
the other hand, 13 is not even, because 13 is not divisible by 2; there
is no integer x for which 2x = 13.

Definition (Odd)

An integer a is called odd provided there is an integer x such that
a = 2x + 1.

Example: 13 is odd because we can choose x = 6 in the definition to
give 13 = 2 · 6 + 1.
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Definitions and Proofs Definition

Prime and Composite Integers

Definition (Prime)

An integer p is called prime provided that p > 1 and the only positive
divisors of p are 1 and p.

Example: 11 is prime because it satisfies both conditions in the
definition: First, 11 > 1, and second, the only positive divisors of 11
are 1 and 11. Is 1 a prime? No, because 1 ≯ 1!

Definition (Composite)

A positive integer a is called composite provided there is an integer b
such that 1 < b < a and b | a.

Example: The number 25 is composite because it satisfies the
condition of the definition: There is a number b with 1 < b < 25 and
b | 25; indeed, b = 5 is the only such number.
Similarly, the number 360 is composite. In this case, there are several
numbers b that satisfy 1 < b < 360 and b | 360.
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Definitions and Proofs Theorem

Statements and Theorems

There are several kinds of statements:

Questions, e.g., “Where is the newspaper?”
Commands, e.g., “Come to a complete stop!”
Declarative statements, a sentence that expresses an idea about how
something is, such as: “It’s going to rain tomorrow” or “The Yankees
won last night”.

A theorem is a declarative statement about mathematics for which
there is a proof.

Mathematical statements fall into four categories:

Statements we know to be true because we can prove them - we call
these theorems.
Statements whose truth we cannot ascertain - we call these
conjectures.
Statements that are false - we call these mistakes!
Statements that do not make sense - we call these nonsense!
An example is “The square root of a triangle is a circle.”
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Definitions and Proofs Theorem

If-then Statements

In the statement “If A, then B ,” we might have condition A true or
false, and we might have condition B true or false.

If the statement “If A, then B” is true, all that is promised is that
whenever A is true, B must be true as well.

If A is not true, then no claim about B is asserted by “If A, then B .”

There is an assortment of alternative ways to express “If A, then B .”:

“A implies B.” and, also, “B is implied by A.”
“Whenever A, we have B.” and, also, “B, whenever A.”
“A is sufficient for B.”
“In order for B to hold, it is enough that we have A.”
“B is necessary for A.”
“A, only if B.”
“A ⇒ B.”
“B ⇐ A.”
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Definitions and Proofs Theorem

If-then Statements: The Truth Table

Since in the statement “If A, then B”, we only want to ensure that B
is true whenever A is true and we do not really care about the case
when A is false, we assign to “If A, then B” the following truth table:

A B A ⇒ B

true true true
true false false
false true true
false false true
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Definitions and Proofs Theorem

Vacuous Truth

Consider an “if-then” statement in which the hypothesis is impossible:

Vacuous Statement

If an integer is both a perfect square and prime, then it is negative.

Is this statement true or false? We might be tempted to say that the
statement is false because square numbers and prime numbers cannot
be negative.

However, a statement of the form “If A, then B” is declared false
only in the case when A is true and B is false.

In the given statement, condition A is impossible; there are no
numbers that are both a perfect square and prime. So we cannot find
an integer that renders condition A true and condition B false.
Therefore, the statement is true!

Statements of the form “If A, then B” in which condition A is
impossible are called vacuous, and such statements are true because
they have no exceptions (i.e., A is false).
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Definitions and Proofs Theorem

And Statements

The statement “A and B” means that both A and B are true.

Example: “Every integer whose ones digit is 0 is divisible by 2 and is
divisible by 5.” This means that a number that ends in a zero, such as
230, is divisible both by 2 and by 5.

For “A and B”, the following truth table applies:

A B A and B

true true true
true false false
false true false
false false false
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Definitions and Proofs Theorem

If-and-only-if Statements

“If A then B , and if B then A” is written as “A if and only if B .”

Because both “A implies B” and “B implies A” have to be true for
“A if and only if B” to be true, the following truth table applies:

A B A ⇒ B B ⇒ A A if and only if B

true true true true true
true false false true false
false true true false false
false false true true true

There is also an assortment of alternative ways to express “A if and
only if B .”:

“A iff B.”
“A is necessary and sufficient for B.”
“A is equivalent to B.”
“A ⇔ B.”
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Definitions and Proofs Theorem

Example: Proving an If-and-Only-If Statement

Prove that an integer x is even if and only if x + 1 is odd.

We must show that “if x is even, then x + 1 is odd” and “if x + 1 is
odd, then x is even;
We show, first, that “if x is even, then x + 1 is odd”:

x is even; (hypothesis)
there exists an integer c , such that 2c = x ; (by the definition)
2c + 1 = x + 1; (by adding 1 to both sides)
x + 1 is odd; (by the definition)

We show, next, that “if x + 1 is odd, then x is even”:

x + 1 is odd; (hypothesis)
there exists an integer c , such that 2c +1 = x +1; (by the definition)
2c = x ; (by subtracting 1 from both sides)
x is even; (by the definition)
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Definitions and Proofs Theorem

Not Statements

The statement“not A” is true if and only if A is false.

Example: The statement “All primes are odd” is false. Thus, the
statement “Not all primes are odd” is true.

For “not A”, the following truth table applies:

A not A

true false
false true
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Definitions and Proofs Theorem

Or Statements

The statement “A or B” means that A is true, or B is true, or both A

and B are true.

Example: Consider the statement: “Suppose x and y are integers
with the property that x | y and y | x . Then x = y or x = −y .”
The conclusion says that we may have any one of the following:

x = y but not x = −y (e.g., take x = 3 and y = 3).
x = −y but not x = y (e.g., take x = −5 and y = 5).
x = y and x = −y , which is possible only when x = 0 and y = 0.

For “A or B”, the following truth table applies:

A B A or B

true true true
true false true
false true true
false false false
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Definitions and Proofs Theorem

Alternative Names for Theorems

Often, alternative names are used in place of theorem.
The word theorem carries the connotation of importance and
generality.

Result: A modest, generic word for a theorem. Both important and
unimportant theorems can be called results.
Fact: A very minor theorem. The statement ”6 + 3 = 9” is a fact.
Proposition: A minor theorem. A proposition is more important or
more general than a fact but not as prestigious as a theorem.
Lemma: A theorem whose main purpose is to help prove another, more
important theorem. Some theorems have complicated proofs that can
be broken down into smaller parts. The lemmas are the parts used to
build the more complicated proof.
Corollary: A result with a short proof whose main step involves the use
of another, previously proved theorem.
Claim: Similar to lemma. A claim is a theorem whose statement
usually appears inside the proof of a theorem to help organize key steps
in a proof. Often, the statement of a claim involves terms that make
sense only in the context of the proof.
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Definitions and Proofs Proof

Subsection 3

Proof
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Definitions and Proofs Proof

Direct Proof of an If-then Statement

Proposition

The sum of two even integers is even.

1 We show that if x and y are even integers, then x + y is an even
integer.

2 Let x and y be even integers.

3 Since x is even, x is divisible by 2.

4 Likewise, since y is even, 2 | y .

5 Since 2 | x , there is an integer a such that x = 2a.

6 Likewise, since 2 | y , there is an integer b such that y = 2b.

7 Now x + y = 2a + 2b = 2(a + b).

8 Therefore, there is an integer c = a + b such that x + y = 2c .

9 Thus, 2 | (x + y).

10 Therefore, x + y is even.
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Definitions and Proofs Proof

Another Direct Proof of an If-then Statement

Proposition

Let a, b and c be integers. If a | b and b | c , then a | c .

1 Suppose a, b and c are integers with a | b and b | c .

2 Since a | b, there is an integer x such that b = ax .

3 Likewise, there is an integer y such that c = by .

4 Then for z = xy ,

az = a(xy) = (ax)y = by = c .

5 Thus, there is an integer z = xy , such that c = az .

6 Therefore, a | c .
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Definitions and Proofs Proof

A Third Direct Proof of an If-then Statement

Proposition

Let x be an integer. If x > 1, then x3 + 1 is composite.

1 Let x be an integer and suppose x > 1.

2 We have x3 + 1 = (x + 1)(x2 − x + 1).

3 Since x is an integer, both x + 1 and x2 − x + 1 are integers.
Therefore (x + 1) | (x3 + 1).

4 Since x > 1, we have x + 1 > 1 + 1 = 2 > 1.

5 Also x > 1 implies x2 > x , and since x > 1, we have x2 > 1.
Multiplying both sides by x again yields x3 > x . Adding 1 to both
sides gives x3 + 1 > x + 1.

6 Thus x + 1 is an integer with 1 < x + 1 < x3 + 1.

7 Since x + 1 is a divisor of x3 + 1 and 1 < x + 1 < x3 + 1, we have
that x3 + 1 is composite.
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Definitions and Proofs Proof

Direct Proof of an If-and-only-if Statement

Proposition

Let x be an integer. Then x is odd if and only if x + 1 is even.

1 Let x be an integer.
2 First, show that if x is odd, then x + 1 is even.

Suppose x is odd.
This means that there exists an integer a, such that x = 2a+ 1.
Adding 1 to both sides, we get x + 1 = 2a+ 2 = 2(a+ 1).
Since a+ 1 is an integer, 2 | x + 1.
Therefore, x + 1 is even.

3 Next, show that, if x + 1 is even, then x is odd.

Suppose x + 1 is even.
Thus, 2 | (x + 1).
Hence, there is an integer b such that x + 1 = 2b.
Subtracting 1 from both sides gives x = 2b − 1 = 2(b − 1) + 1.
Since b − 1 is an integer, this shows that x is odd.

George Voutsadakis (LSSU) Fundamental Concepts January 2014 22 / 43



Definitions and Proofs Proof

Proving a Proposition Directly

Proposition

Let a, b, c and d be integers. If a | b, b | c , and c | d , then a | d .

1 Let a, b, c and d be integers with a | b, b | c , and c | d .

2 Since a | b, there is an integer x such that ax = b.

3 Since b | c , there is an integer y such that by = c .

4 Since c | d , there is an integer z such that cz = d .

5 Now we get

a(xyz) = (ax)(yz) = b(yz) = (by)z = cz = d .

6 Thus, there is an integer w = xyz such that aw = d .

7 Therefore, a | d .
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Definitions and Proofs Proof

Proving the same Proposition Using a Lemma

Recall that we proved:

Lemma

Let a, b and c be integers. If a | b and b | c , then a | c .

Suppose, next, that we would like to prove the

Proposition

Let a, b, c and d be integers. If a | b, b | c , and c | d , then a | d .

1 Let a, b, c and d be integers with a | b, b | c , and c | d .
2 Since a | b and b | c , by the Lemma we have a | c .
3 Now, since a | c and c | d , again by the Lemma we have a | d .
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Definitions and Proofs Proof

Proving an Easy Equality

Proposition

Let x be a real number. Then x + x = 2x .

x + x = 1 · x + 1 · x (1 is identity of multiplication)
= (1 + 1)x (distributivity)
= 2x ; (1 + 1 = 2)
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Definitions and Proofs Proof

Proving a More Complex Equality

Proposition

Let x and y be real numbers. Then (x − y)(x + y) = x2 − y2.

(x − y)(x + y) = x(x + y)− y(x + y) (distributivity)
= x2 + xy − yx − y2 (distributivity)
= x2 + xy − xy − y2 (commutativity)
= x2 + 1xy − 1xy − y2 (identity of multiplication)
= x2 + (1− 1)xy − y2 (distributivity)
= x2 + 0xy − y2 (1− 1 = 0)
= x2 + 0− y2 (absorption of 0)
= x2 − y2 (identity of addition)
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Definitions and Proofs Proof

Proving an Inequality

Proposition

If x is a real number, with x > 2, then x2 > x + 1.

1 We are given that x > 2.

2 Since x is positive, multiplying both sides by x gives x2 > 2x .

3 So we have
x2 > 2x

= x + x

> x + 2 (because x > 2)
> x + 1 (because 2 > 1)

4 Therefore x2 > x + 1.

George Voutsadakis (LSSU) Fundamental Concepts January 2014 27 / 43



Definitions and Proofs Counterexample

Subsection 4

Counterexample
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Definitions and Proofs Counterexample

Disproving by Providing a Counterexample

We use proofs to show that a given statement is true.

But not all statements about mathematics are true!

Given a statement, how do we show that it is false?

The typical way to disprove an if-then statement is to create a
counterexample.

A counterexample for the statement “If A, then B” is an instance
where A is true but B is false.

Example: Consider the statement “If x is a prime, then x is odd.”
This statement is false. To prove that it is false, we just have to give
an example of an integer that is prime but is not odd. The integer 2
has the requisite properties.
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Definitions and Proofs Counterexample

Disproving a Statement

A False Statement

Let a and b be integers. If a | b and b | a, then a = b.

Here is a counterexample:

Take a = 5 and b = −5.
We have 5 | −5 and −5 | 5.
We also have 5 6= −5.
So this is indeed a counterexample to the given if-then statement.
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Definitions and Proofs Counterexample

Disproving Another Statement

A False Statement

If a and b are nonnegative integers with a | b, then a ≤ b.

Here is a counterexample:

Take a = 5 and b = 0.
Since 5 · 0 = 0, we have that 5 | 0.
On the other hand, 5 � 0.
So this is indeed a counterexample to the given if-then statement.
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Definitions and Proofs Counterexample

Disproving A Third Statement

A False Statement

If a, b and c are positive integers with a | (bc), then a | b or a | c .

Here is a counterexample:

Take a = 6, b = 2 and c = 3.
We have that 6 | (2 · 3).
On the other hand, 6 ∤ 2 and 6 ∤ 3.
So this is indeed a counterexample to the given if-then statement.
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Definitions and Proofs Boolean Algebra

Subsection 5

Boolean Algebra
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Definitions and Proofs Boolean Algebra

Basics of Boolean Algbera

Boolean algebra provides a framework for applying algebra to
statements rather than to numbers.

We begin with basic statements, such as “x is prime,” and combine
them using connectives such as if-then, and, or, not etc.

Whereas in an ordinary algebraic expression, such as 3x − 4, letters
stand for numbers, and the operations are the familiar ones of
addition, subtraction, multiplication etc., in Boolean algebra the
letters (variables) stand for the values true T and false F .

There are several operations we can perform on the values T and F ,
the most basic among which are and (∧), or (∨), and not (¬).
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Definitions and Proofs Boolean Algebra

The Operation And ∧

The value of the expression x ∧ y is T when both x and y are T and
is F , otherwise.

In truth table form:
x y x ∧ y

T T T

T F F

F T F

F F F
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Definitions and Proofs Boolean Algebra

The Operation Or ∨

The value of the expression x ∨ y is T when at least one of x and y

are T and is F only when both are F .

In truth table form:
x y x ∨ y

T T T

T F T

F T T

F F F
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Definitions and Proofs Boolean Algebra

The Operation Not ¬

The value of the expression ¬x is T when x is F and is F when x is
T .

In truth table form:
x ¬x

T F

F T

Example: Calculate the value of T ∧ (¬F ∨ F ).

T ∧ (¬F ∨ F ) = T ∧ (T ∨ F )
= T ∧ T

= T .
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Definitions and Proofs Boolean Algebra

Boolean Versus Ordinary Identities

In algebra we learn how to manipulate formulas so we can derive
identities such as (x + y)2 = x2 + 2xy + y2.

In Boolean algebra we are interested in deriving similar identities,
such as x ∧ y = y ∧ x .

The meaning of (x + y)2 = x2 + 2xy + y2 being an identity is that,
for any (numeric) values for x and y , the two expressions (x + y)2

and x2 + 2xy + y2 must be equal.

Similarly, the Boolean identity x ∧ y = y ∧ x means that for all (truth)
values for x and y , the results x ∧ y and y ∧ x must be the same.

Even though it would be ridiculous to try to prove (x + y)2 =
x2 + 2xy + y2 by trying to substitute all possible values for x and y

(there are infinitely many possibilities), it is not hard to try all the
possibilities to prove a Boolean algebraic identity.

In the case of x ∧ y = y ∧ x , there are only four possibilities, which
can be easily summarized in the form of a truth table!
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Definitions and Proofs Boolean Algebra

Logical Equivalence

Example: Show that x ∧ y = y ∧ x .
We use a truth table to show that for all assignments of truth values
to x and y , the expressions x ∧ y and y ∧ x are equal.

x y x ∧ y y ∧ x

T T T T

T F F F

F T F F

F F F F

When two Boolean expressions, such as x ∧ y and y ∧ x , are equal for
all possible values of their variables, we call these expressions
logically equivalent.
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Definitions and Proofs Boolean Algebra

Another Logical Equivalence

Proposition

The Boolean expressions ¬(x ∧ y) and ¬x ∨ ¬y are logically equivalent.

We construct the truth table:

x y x ∧ y ¬(x ∧ y) ¬x ¬y ¬x ∨ ¬y

T T T F F F F

T F F T F T T

F T F T T F T

F F F T T T T

Since the columns for ¬(x ∧ y) and ¬x ∨ ¬y are the same, the two
expressions are logically equivalent!
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Definitions and Proofs Boolean Algebra

Summary of Some Logical Equivalences

Theorem (Some Logical Equivalences)

x ∧ y = y ∧ x and x ∨ y = y ∨ x . (Commutative properties)

(x ∧ y) ∧ z = x ∧ (y ∧ z) and (x ∨ y) ∨ z = x ∨ (y ∨ z). (Associative
properties)

x ∧ T = x and x ∨ F = x . (Identity elements)

¬(¬x) = x . (Double Negation)

x ∧ x = x and x ∨ x = x . (Idempotency)

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).
(Distributive properties)

x ∧ (¬x) = F and x ∨ (¬x) = T .

¬(x ∧ y) = (¬x) ∨ (¬y) and ¬(x ∨ y) = (¬x) ∧ (¬y). (De Morgan’s

Laws)
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Definitions and Proofs Boolean Algebra

Some Additional Boolean Operations

The operations ∧, ∨ and ¬ were created to replicate the formal use of
the words and, or, and not.

We now introduce two more operations → and ↔ designed to model
statements of the form “If A, then B” and “A if and only if B”,
respectively.

The simplest way to define these is through truth tables.

x y x → y

T T T

T F F

F T T

F F T

x y x ↔ y

T T T

T F F

F T F

F F T
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Definitions and Proofs Boolean Algebra

A Logical Equivalence Involving →

Proposition

The expressions x → y and (¬x) ∨ y are logically equivalent.

x y x → y ¬x y (¬x) ∨ y

T T T F T T

T F F F F F

F T T T T T

F F T T F T
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