
Fundamental Concepts of Mathematics

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 215

George Voutsadakis (LSSU) Fundamental Concepts January 2014 1 / 71



Outline

1 Counting and Relations
Relations
Equivalence Relations
Partitions
Binomial Coefficients
Counting Multisets
The Inclusion-Exclusion Principle

George Voutsadakis (LSSU) Fundamental Concepts January 2014 2 / 71



Counting and Relations Relations

Subsection 1

Relations

George Voutsadakis (LSSU) Fundamental Concepts January 2014 3 / 71



Counting and Relations Relations

Introducing Relations

A relation is a comparison between two objects. The two objects
either are or are not related according to some rule.

Example: Less than (<) is a relation defined on integers. Some pairs
of numbers, such as (2, 8), satisfy the less-than relation, but other
pairs of numbers do not, such as (10, 3).

There are many other relations defined on the integers, such as
divisibility, greater than, equality, and so on.

There are relations on other sorts of objects. We can ask whether a
pair of sets satisfies the ⊆ relation or whether a pair of triangles
satisfies the “is-congruent-to” relation.

Our purpose is to study the relations themselves.
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Counting and Relations Relations

Relations More Formally

A relation is a set of ordered pairs.

Example: R = {(1, 2), (1, 3), (3, 0)} is a relation.

In truth, we think of a relation R as a “test.” If x and y are related
by R - if they pass the test - then we write x R y . Otherwise, if they
are not related by the relation R , we put a slash through the relation
symbol, as in x 6= y or A * B .

The set of ordered pairs should be understood as a complete listing of
all pairs of objects that “satisfy” the relation.

Example: Think again of R = {(1, 2), (1, 3), (3, 0)}. This says that,
for the relation R , 1 is related to 2, 1 is related to 3, and 3 is related
to 0, and for any other objects x , y , it is not the case that x is related
to y . We can write, (1, 2) ∈ R , (1, 3) ∈ R , (3, 0) ∈ R , (5, 6) 6∈ R . This
means that (1, 2), (1, 3) and (3, 0) are related by R , but (5, 6) is not.
We would usually write, 1 R 2, 1 R 3, 3 R 0, 5 6R 6.

x R y means (x , y) ∈ R and x 6Ry means (x , y) 6∈ R .
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Counting and Relations Relations

Familiar Relations

The familiar relations of mathematics can be thought of in these
terms.

For example, the “less-than-or-equal-to” relation on the set of
integers can be written as

{(x , y) : x , y ∈ Z and y − x ∈ N}.

This says that (x , y) is in the relation provided y − x ∈ N, i.e.,
provided y − x is a nonnegative integer, which is equivalent to x ≤ y .

We re-emphasize two important points:
A relation R is a set of ordered pairs (x , y). We include an ordered pair
in R just when (x , y) “satisfies” the relation R . Any set of ordered
pairs constitutes a relation, and a relation does not have to be specified
by a general “rule” or special principle.
Even though relations are sets of ordered pairs, we usually do not write
(x , y) ∈ R . Rather, we write x R y and say, “x is related to y (by the
relation R).”
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Counting and Relations Relations

Relation On/Between Sets

Let R be a relation and let A and B be sets.

We say R is a relation on A provided R ⊆ A× A.
We say R is a relation from A to B provided R ⊆ A× B.

Example: Let A = {1, 2, 3, 4} and B = {4, 5, 6, 7}. Consider

R = {(1, 1), (2, 2), (3, 3), (4, 4)},
S = {(1, 2), (3, 2)},
T = {(1, 4), (1, 5), (4, 7)},
U = {(4, 4), (5, 2), (6, 2), (7, 3)},
V = {(1, 7), (7, 1)}.

R is a relation on A. Note that it is the equality relation on A.
S is a relation on A. Note that element 4 is never mentioned.
T is a relation from A to B. Note that elements 2, 3 ∈ A, and 6 ∈ B

are never mentioned.
U is a relation from B to A. Note that 1 ∈ A is never mentioned.
V is a relation, but it is neither a relation from A to B nor a relation
from B to A.
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Counting and Relations Relations

Set Operations and Inverse Relations

Since a relation is a set, all the various set operations apply to
relations, such as intersection, union, etc.

Let R be a relation. The inverse of R , denoted R−1, is the relation
formed by reversing the order of all the ordered pairs in R . In symbols,

R−1 = {(x , y) : (y , x) ∈ R}.

Example: Let R = {(1, 5), (2, 6), (3, 7), (3, 8)}. Then
R−1 = {(5, 1), (6, 2), (7, 3), (8, 3)}.
If R is a relation on A, so is R−1.

If R is a relation from A to B , then R−1 is a relation from B to A.

Proposition

Let R be a relation. Then (R−1)−1 = R .

Suppose (x , y) ∈ R . Then (y , x) ∈ R−1 and thus (x , y) ∈ (R−1)−1.
Now suppose (x , y) ∈ (R−1)−1. Then (y , x) ∈ R−1 and so (x , y) ∈ R .
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Counting and Relations Relations

Properties of Relations

Let R be a relation defined on a set A.

If for all x ∈ A we have x R x , we call R reflexive.
If for all x ∈ A we have x 6R x , we call R irrefiexive.
If for all x , y ∈ A we have x R y ⇒ y R x , we call R symmetric.
If for all x , y ∈ A we have (x R y ∧ y R x) ⇒ x = y , we call R
antisymmetric.
If for all x , y , z ∈ A we have (x R y ∧ y R z) ⇒ x R z , we call R
transitive.
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Counting and Relations Relations

Examples I

Consider the relation = (equality) on the integers. It is

reflexive (any integer is equal to itself),
symmetric (if x = y , then y = x),
transitive (if x = y and y = z , then we must have x = z).

The relation = is also antisymmetric. However, it is not irreflexive
(which would say that x 6= x for all x ∈ Z).

Consider the relation ≤ (less than or equal to) on the integers. Note
that ≤ is

reflexive because for any integer x , it is true that x ≤ x ;
transitive, since x ≤ y and y ≤ z imply that x ≤ z .

The relation ≤ is not symmetric because that would mean that
x ≤ y ⇒ y ≤ x , which is false. However, ≤ is antisymmetric: If we
know x ≤ y and y ≤ x , it must be the case that x = y . Finally, ≤ is
not irreflexive; for instance, 5 ≤ 5.
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Counting and Relations Relations

Examples II

Consider the relation < (strict less than) on the integers.
< is not reflexive because, for example, 3 < 3 is false.
Further, < is irreflexive because x < x is never true.
The relation < is not symmetric because x < y does not imply y < x ;
for example, 0 < 5 but 5 ≮ 0.
The relation < is antisymmetric, but it fulfills the condition vacuously.
The condition states (x < y and y < x) ⇒ x = y . However, it is
impossible to have both x < y and y < x , so the hypothesis of this
if-then statement can never be satisfied. Therefore it is true.
Finally, < is transitive.

Consider the relation | (divides) on the natural numbers.
| is antisymmetric because, if x and y are natural numbers with x | y
and y | x , then x = y . However, the relation | on the integers is not
antisymmetric. For example, 3 | −3 and −3 | 3, but 3 6= −3.
Also notice that | is not symmetric (e.g., 3 | 9, but 9 ∤ 3).

The properties of relations depend on the context of the relation. The
| on the integers is different from the | on the natural numbers.
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Counting and Relations Equivalence Relations

Subsection 2

Equivalence Relations
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Counting and Relations Equivalence Relations

Definition of Equivalence Relation

Certain relations bear a strong resemblance to the relation equality. A
good example (from geometry) is the “is-congruent-to” relation
(often denoted by ∼=) on the set of triangles. Congruent triangles are
not equal, but in a sense, they act like equal triangles. What is
special about ∼= that it acts like equality?

Of the five properties of relations, ∼= is reflexive, symmetric, and
transitive (but it is neither irreflexive nor antisymmetric). Relations
with these three properties are akin to equality.

Definition (Equivalence Relation)

Let R be a relation on a set A. We say R is an equivalence relation

provided it is reflexive, symmetric, and transitive.
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Counting and Relations Equivalence Relations

Equipotence Relation on Finite Sets

Consider the “has-the-same-size-as” relation on finite sets. For finite
sets of integers A and B , let A R B provided |A| = |B |.
R is reflexive, symmetric, and transitive and, therefore, is an
equivalence relation. It is not the case that two sets with the same
size are the same. For example, {1, 2, 3} R {2, 3, 4}, but
{1, 2, 3} 6= {2, 3, 4}. Nonetheless, sets related by R are “like” each
other in that they share a common property: their size.
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Counting and Relations Equivalence Relations

Congruence Modulo n

Let n be a positive integer. We say that integers x and y are
congruent modulo n, and we write

x ≡ y (mod n)

provided n | (x − y).

In other words, x ≡ y (mod n) if and only if x and y differ by a
multiple of n.

Example:

3 ≡ 13 (mod 5) because 3− 13 = −10 is a multiple of 5.
4 ≡ 4 (mod 5) because 4− 4 = 0 is a multiple of 5.
16 6≡ 3 (mod 5) because 16− 3 = 13 is not a multiple of 5.
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Counting and Relations Equivalence Relations

Congruence Modulo n is an Equivalence Relation on Z

Theorem

Let n be a positive integer. The “is-congruent-to-mod-n” relation is an
equivalence relation on the set of integers.

Let n be a positive integer and let ≡ denote congruence mod n. We
need to show that ≡ is reflexive, symmetric, and transitive.

≡ is reflexive: Let x be an arbitrary integer. Since 0 · n = 0, we have
n | 0, which we can rewrite as n | (x − x). Therefore x ≡ x .
≡ is symmetric: Let x and y be integers and suppose x ≡ y . This
means that n | (x − y). So there is an integer k such that (x − y) = kn.
But then (y − x) = (−k)n. And so n | (y − x). Therefore y ≡ x .
≡ is transitive: Let x , y and z be integers and suppose x ≡ y and
y ≡ z . This means that n | (x − y) and n | (y − z). So there are
integers k , l such that (x − y) = kn and (y − z) = ln. But then

x − z = (x − y) + (y − z) = kn + ln = (k + l)n.

And so n | (x − z). Thus, x ≡ z . Therefore, ≡ is transitive.

So ≡ is an equivalence relation.
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Counting and Relations Equivalence Relations

Equivalence Classes

Let R be an equivalence relation on a set A and let a ∈ A. The
equivalence class of a, denoted [a], is the set of all elements of A
related by R to a; that is,

[a] = {x ∈ A : x R a}.

Example: Consider the equivalence relation “congruence mod 2”.
What is [1]? By definition, [1] = {x ∈ Z : x ≡ 1 (mod 2)}. This is
the set of all integers x such that 2 | (x − 1) i.e., x − 1 = 2k for some
k . So x = 2k + 1 (i.e., x is odd)! The set [1] is the set of odd
numbers.
Similarly, it is not hard to see that [0] is the set of even numbers.
Consider [3]. We can prove that [3] is the set of odd numbers, so
[1] = [3].
The equivalence relation “congruence mod 2” has only two
equivalence classes: the set of odd integers [1] and the set of even
integers [0].
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Counting and Relations Equivalence Relations

Equipotency Classes

Let R be the “has-the-same-size-as” relation defined on the set of
finite subsets of Z.
What is [∅]? By definition, [∅] = {A ⊆ Z : |A| = 0} = {∅}.
What is [{2, 4, 6, 8}]? The set of all finite subsets of Z related to
{2, 4, 6, 8} are exactly those of size 4:
[{2, 4, 6, 8}] = {A ⊆ Z : |A| = 4}.
The relation R separates the set of finite subsets of Z into infinitely
many equivalence classes (one for each element of N). Every class
contains sets that are related to each other but not to any elements
outside that class.
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Counting and Relations Equivalence Relations

Properties of Equivalence Classes I

Proposition (Equivalence Classes Are Not Empty)

Let R be an equivalence relation on a set A and let a ∈ A. Then a ∈ [a].

By definition [a] = {x ∈ A : x R a}. To show that a ∈ [a], we just
need to show that a R a. This is true by definition since R is reflexive.

Proposition (Equality of Classes of Related Elements)

Let R be an equivalence relation on a set A and let a, b ∈ A. Then a R b

if and only if [a] = [b].

Suppose a R b. We need to show that [a] and [b] are the same.
Suppose x ∈ [a]. This means that x R a. Since a R b, transitivity
yields x R b. Therefore, x ∈ [b].
Suppose y ∈ [b]. This means that y R b. We are given a R b, and we
get, by symmetry, b R a. By transitivity, y R a. Therefore y ∈ [a].

Hence [a] = [b].

Suppose [a] = [b]. We know that a ∈ [a] = [b]. Therefore a R b.
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Counting and Relations Equivalence Relations

Properties of Equivalence Classes II

Proposition (Elements in the Same Class are Related)

Let R be an equivalence relation on a set A and let a, x , y ∈ A. If
x , y ∈ [a], then x R y .

Suppose x , y ∈ [a]. Then x R a and y R a. By symmetry, a R y and,
by transitivity, x R y .

Proposition (Different Classes are Disjoint)

Let R be an equivalence relation on A and [a] ∩ [b] 6= ∅. Then [a] = [b].

Suppose [a] ∩ [b] 6= ∅. There is an x ∈ [a] ∩ [b]. So x ∈ [a] and
x ∈ [b]. Thus, x R a and x R b. By symmetry, a R x . By transitivity,
a R b. By previous slide, [a] = [b].

Corollary (Equivalence Classes Partition A)

Let R be an equivalence relation on a set A. The equivalence classes of R
are nonempty, pairwise disjoint subsets of A whose union is A.
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Counting and Relations Partitions

Subsection 3

Partitions
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Counting and Relations Partitions

Partitions

We saw that if R be an equivalence rela-
tion on a set A, the equivalence classes of
R are nonempty, pairwise disjoint subsets of
A whose union is A.

Definition (Partition)

Let A be a set. A partition of (or on) A is a set of nonempty, pairwise
disjoint sets whose union is A.

There are four key points in this definition:
A partition is a set of sets; each member of a partition is a subset of A.
The members of the partition are called parts.
The parts of a partition are nonempty. The empty set is never a part.
The parts of a partition are pairwise disjoint. No two parts have an
element in common.
The union of the parts is the original set.
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Counting and Relations Partitions

Examples

Let A = {1, 2, 3, 4, 5, 6} and let P = {{1, 2}, {3}, {4, 5, 6}}. This is a
partition of A into three parts. The three parts are {1, 2}, {3} and
{4, 5, 6}. They are nonempty, pairwise disjoint, and their union is A.
The partition {{1, 2}, {3}, {4, 5, 6}} is not the only partition of
A = {1, 2, 3, 4, 5, 6}. Two more partitions are

{{1, 2, 3, 4, 5, 6}}; Just one part containing all the elements of A.
{{1}, {2}, {3}, {4}, {5}, {6}}. Six parts, each with just one element.

Corollary

Let R be an equivalence relation on a set A. The equivalence classes of R
form a partition of the set A.

Given an equivalence relation on a set, the equivalence classes of that
relation form a partition of the set. We start with an equivalence
relation, and we form a partition.

We can also go the other way: given a partition, there is a natural
way to construct an equivalence relation.
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Counting and Relations Partitions

From Partitions to Equivalence Relations

Let P be a partition of a set A. We use P to form a relation on A.
We call this relation the “is-in-the-same-part-as” relation and denote

it by
P
≡.

If a, b ∈ A, then

a
P
≡ b ⇐⇒ ∃P ∈ P, a, b ∈ P .

In words, a and b are related by
P
≡ provided there is some part of the

partition P that contains both a and b.

Proposition (
P
≡ is an Equivalence Relation)

Let A be a set and let P be a partition on A. The relation
P
≡ is an

equivalence relation on A.
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Counting and Relations Partitions

P
≡ is an Equivalence Relation

To show that
P
≡ is an equivalence relation, we must show that it is

reflexive, symmetric and transitive.
P

≡ is reflexive: Let a be an arbitrary element of A. Since P is a
partition, i.e., the union of the parts is A, there must be a part P ∈ P

that contains a. We have a
P

≡ a, since a, a ∈ P ∈ P .
P

≡ is symmetric: Suppose a
P

≡ b for a, b ∈ A. This means there is a
P ∈ P such that a, b ∈ P . Since b and a are in the same part of P , we

have b
P

≡ a.
P

≡ is transitive: Let a, b, c ∈ A and suppose a
P

≡ b and b
P

≡ c . Since

a
P

≡ b, there is a part P ∈ P containing both a and b. Since b
P

≡ c ,
there is a part Q ∈ P with b, c ∈ Q. Notice that b is in both P and Q.
Thus, parts P and Q have a common element. Since parts of a
partition must be pairwise disjoint, it must be the case that P = Q.
Therefore, all three of a, b, c are together in the same part of P . Since

a, c are in a common part of P , we have a
P

≡ c .
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Counting and Relations Partitions

Equivalence Classes of
P
≡

Proposition (Classes of
P
≡ and Parts of P)

Let P be a partition on a set A and let
P
≡ be the “is-in-the-same-part-as”

relation. The equivalence classes of
P
≡ are exactly the parts of P.

For x ∈ A, let [x ] denote the equivalence class of x in
P
≡ and Px the

part of P in which x belongs. We want to show {[a] : a ∈ A} = P.

Indeed, we have: [a] = {b ∈ A : b
P
≡ a} = {b ∈ A : b ∈ Pa} = Pa.

Thus, equivalence relations and partitions are flip sides of the same
mathematical coin.

Given a partition, we can form the “in-the-same-part-as” equivalence
relation.
Given an equivalence relation, we can form the partition into
equivalence classes.
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Counting and Relations Partitions

Counting Words With Different Letters

In how many ways can the letters in the word WORD be rearranged?

A word is simply a list of letters. We have a list of four possible
letters, and we want to count lists using each of them exactly once.
This is a problem we have already solved. The answer is 4! = 24.
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Counting and Relations Partitions

Counting Words With Repeated Letters

In how many ways can the letters in the word HELLO be rearranged?
If there were no repeated letters, then the answer would be 5! = 120.
Imagine for a moment that the two Ls are different letters, for
instance, one larger than the other: HELLO. If we were to write down
all 120 different ways to rearrange the letters in HELLO, we would
have a chart that looks like this:

HELLO HELOL HELLO HELOL HEOLL HEOLL
...

Now we shrink the large Ls back to their proper size. When we do,
we can no longer distinguish between HELLO and HELLO, or
between LEHLO and LEHLO. There are 120 entries in the chart and
each rearrangement of HELLO appears exactly twice on the chart. So
there are exactly 60 different arrangements!
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Counting and Relations Partitions

Using Equivalence Relations to Count

Think about this by using equivalence relations and partitions.

The set A is the set of all 120 different rearrangements of HELLO.
Suppose a and b are elements of A (anagrams of HELLO). Define a
relation R with a R b provided that a and b give the same
rearrangement of HELLO when we shrink L to L. For example,
(HELOL) R (HELOL).
R is reflexive, symmetric, and transitive and so it is an equivalence
relation.

The equivalence classes of R are all the different ways of rearranging
HELLO that look the same when we shrink L. For example,
[HLEOL] = {HLEOL,HLEOL}.
The important point is that the number of ways to rearrange the
letters in HELLO is exactly the same as the number of equivalence
classes of R!
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Counting and Relations Partitions

Finishing Up the Arithmetic

Let’s do the arithmetic:
1 There are 120 different ways to rearrange the letters in HELLO (i.e.,

|A| = 120).
2 The relation R partitions the set A into a certain number of equivalence

classes. Each equivalence class has exactly two elements in it.

3 So all told, there are
120

2
= 60 different equivalence classes.

4 Hence, there are 60 different ways to rearrange HELLO.
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Counting and Relations Partitions

Another Example

In how many different ways can we rearrange the letters in the word
AARDVARK?

This 8-letter word features two Rs and three As. We use R and R and
A, A and A, so the word is AARDVARK.

Let X be the set of all rearrangements of AARDVARK.

We consider two spellings to be related by relation R if they are the
same once their letters are restored to black. R is an equivalence
relation on X .

We want to count the number of equivalence classes. Let us consider
the size of the equivalence class [RADAKRAV]. These are all the
rearrangements that become RADAKRAV when their letters are all
the same color. How many are there?
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Counting and Relations Partitions

Counting the Number in [RADAKRAV]

We want to count the number of lists wherein the entries on the list
satisfy the following restrictions:

Elements 3, 5, and 8 of the list must be D, K, and V;
Elements 1 and 6 must be one each of two different colors of R;
Elements 2, 4, and 7 must be one each of three different colors of A.

In how many ways can we build this list?
There are two choices for the first position (we can use R or R);
There are three choices for the second position (we can use A, A or A);
There is only one choice for position 3 (it must be D);
Now, given the choices thus far, there are only two choices for position
4 (the first A has already been selected);
For each of the remaining positions, there is only one choice (the K
and V are predetermined, and we have one choice each on A and R).

Therefore, the number of rearrangements of AARDVARK in
[RADAKRAV] is 2 · 3 · 1 · 2 · 1 · 1 · 1 · 1 = 3! · 2! = 12.

All equivalence classes have the same size! So the number of
rearrangements of AARDVARK is 8!

3!2! =
40320
12 = 3360.
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Counting and Relations Partitions

Counting Theorem

Theorem (Counting Using Equivalence Classes)

Let R be an equivalence relation on a finite set A. If all the equivalence
classes of R have the same size m, then the number of equivalence classes
is |A|/m.

There is an important hypothesis in this result: The equivalence
classes must all be the same size. This does not always happen.

Example: Let A = 2{1,2,3,4}, i.e., the set of all subsets of {1, 2, 3, 4}.
Let R be the “has-the-same-size-as” relation. This relation partitions
A into five parts (subsets of size 0 through 4). The sizes of these
equivalence classes are not all the same!
For example, [∅] contains only ∅, so that class has size 1.
However, [{1}] = {{1}, {2}, {3}, {4}}, so this class contains four
members of A.
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Counting and Relations Binomial Coefficients

Subsection 4

Binomial Coefficients
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Counting and Relations Binomial Coefficients

Definition of Binomial Coefficients

How many subsets of size k does an n-element set have?

Definition (Binomial Coefficients)

Let n, k ∈ N. The symbol
(
n
k

)
denotes the number of k-element subsets of

an n-element set.

We call the number
(
n
k

)
a binomial coefficient because

(
n
k

)
are the

coefficients in the expansion of the binomial (x + y)n.

Example: Evaluate
(
5
0

)
.

We need to count the number of subsets of a 5-element set that have
zero elements. The only possible such set is ∅, so

(
5
0

)
= 1.

Example: Evaluate
(5
1

)
.

We need to count the number of subsets of a 5-element set that have
one element. For example, if the set is {1, 2, 3, 4, 5}, then the subsets
are {1}, {2}, {3}, {4}, {5}, so the answer is

(
5
1

)
= 5.

In general
(
n
0

)
= 1 and

(
n
1

)
= n;
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Counting and Relations Binomial Coefficients

Number of 2-Element Subsets

Evaluate
(5
2

)
.

The symbol
(
5
2

)
stands for the number of 2-element subsets of a

5-element set.
The simplest thing to do is to list all the possibilities:

{1, 2} {1, 3} {1, 4} {1, 5}
{2, 3} {2, 4} {2, 5}
{3, 4} {3, 5}
{4, 5}

Therefore, there are 10 2-element subsets of a five-element set,
which yields

(5
2

)
= 4 + 3 + 2 + 1 = 10.
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Counting and Relations Binomial Coefficients

2-Element Subsets of an n-Element Set

Suppose that the n-element set is {1, 2, 3, . . . , n}.
We can make a chart as in the example.

The first row lists the 2-element subsets whose smaller element is 1;
The second row lists those 2-element subsets whose smaller element is
2, and so on;
The last row lists the (one and only) 2-element subset whose smaller
element is n − 1 (i.e., {n− 1, n}).

Our chart exhausts all the possibilities and no duplication takes place.
The number of sets

in the first row is n − 1;
in the second row is n − 2;
in row k there are n − k elements.

Proposition

Let n be an integer with n ≥ 2. Then

(
n
2

)
= 1 + 2 + 3 + . . .+ (n − 1) =

n−1∑

k=1

k .
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2-Element and 3-Element Subsets of a 5-Element Set

Evaluate
(5
3

)
.

We simply list the three-element subsets of {1, 2, 3, 4, 5}:
{1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5}
{1, 4, 5} {2, 3, 4} {2, 3, 5} {2, 4, 5} {3, 4, 5}

There are ten such sets, so
(5
3

)
= 10.

Notice that
(
5
2

)
=

(
5
3

)
= 10. Why are these two numbers equal?

Because there is a natural way to match up the 2-element subsets of
{1, 2, 3, 4, 5} with the 3-element subsets. More precisely, we take the
complement of a 2-element subset to form a 3-element subset, or vice
versa:

A A A A

{1, 2} {3, 4, 5} {2, 4} {1, 3, 5}
{1, 3} {2, 4, 5} {2, 5} {1, 3, 4}
{1, 4} {2, 3, 5} {3, 4} {1, 2, 5}
{1, 5} {2, 3, 4} {3, 5} {1, 2, 4}
{2, 3} {1, 4, 5} {4, 5} {1, 2, 3}

The A ↔ A is a one-to-one correspondence between the 2-element
and 3-element subsets of {1, 2, 3, 4, 5}.
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Obtaining a General Combinatorial Formula

Instead of forming the complement of the two-element subsets of
{1, 2, . . . , n}, we can form the complements of subsets of another size.

What are the complements of the k-element subsets of {1, 2, . . . , n}?
They are the (n − k)-element subsets.

The correspondence A ↔ A gives a one-to-one pairing of the
k-element and (n − k)-element subsets of {1, 2, . . . , n}.

Thus, the number of k- and (n − k)-element subsets of an n-element
set must be the same:

Proposition

Let n, k ∈ N with 0 ≤ k ≤ n. Then
(
n
k

)
=

(
n

n−k

)
.
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Alternative Interpretation of
(
n
k

)
=

(
n

n−k

)

Imagine a class with n children. The teacher has k identical candy
bars to give to exactly k of the children. In how many ways can the
candy bars be distributed?

The answer is
(
n
k

)
because we are selecting a set of k lucky children

to get candy.

But, alternatively, we can select the unfortunate children who will not
be receiving candy.
There are n− k children who do not get candy, and we can select
that subset in

(
n

n−k

)
ways.

Since the two counting problems are clearly the same, we must have
(
n
k

)
=

(
n

n−k

)
.
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Extending the Symbol
(
n
k

)
for k > n

Thus far we have evaluated
(5
0

)
,
(5
1

)
,
(5
2

)
and

(5
3

)
.

By the previous Proposition
(5
4

)
=

(5
1

)
= 5.

Also by the previous Proposition
(5
5

)
=

(5
0

)
= 1.

If we attempted to use the same proposition for
(
5
6

)
, we get

(5
6

)
=

( 5
5−6

)
=

( 5
−1

)
. Not only do we not know what

( 5
−1

)
is, but, in

addition, it does not make sense to ask for the number of subsets of a
five-element set that have −1 elements! However, a set can have six
elements, so

(
5
6

)
is not nonsense; it is simply zero.

Similarly,
(5
7

)
=

(5
8

)
= · · · = 0;

Summary:
The values of

(
5
k

)
are 1, 5, 10, 10, 5, 1, 0, 0, . . ., for k = 0, 1, 2, . . .;

(
n

0

)
= 1 and

(
n

1

)
= n;

(
n
2

)
= 1 + 2 + · · ·+ (n − 1).

(
n
k

)
=

(
n

n−k

)
;

If k > n,
(
n

k

)
= 0.
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The Binomial Theorem

We found that the nonzero values of
(5
k

)
are 1, 5, 10, 10, 5, 1.

If we expand (x + y)5, we get

(x + y)5 = 1x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + 1y5

=
(5
0

)
x5 +

(5
1

)
x4y +

(5
2

)
x3y2 +

(5
3

)
x2y3 +

(5
4

)
xy4 +

(5
5

)
y5;

This suggests a way to calculate
(
n
k

)
: Expand (x + y)n and

(
n
k

)
is the

coefficient of xn−kyk .

Binomial Theorem

Let n ∈ N. Then

(x + y)n =

n∑

k=0

(
n

k

)

xn−kyk .
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Proof of the Binomial Theorem

Think about how we multiply polynomials: When we multiply
(x + y)2, we calculate as follows: (x + y)2 = (x + y)(x + y) =
xx + xy + yx + yy and then we collect like terms to get x2 +2xy + y2.

The procedure for (x + y)n is similar: Write n factors:
(x + y)
︸ ︷︷ ︸

factor 1

(x + y)
︸ ︷︷ ︸

factor 2

· · · (x + y)
︸ ︷︷ ︸

factor n

. Form all possible terms by taking either

an x or a y from factors 1, 2, . . . , n. This is like forming all possible
n-element lists where each element is either an x or a y .

How many terms in (x + y)n have precisely k ys (and n − k xs)?
We can specify all the lists with k ys (and n− k xs) by reporting the
positions of the ys (the xs fill in the remaining positions). For
example, if n = 10 and we say that the set of y positions is {2, 3, 7},
then we know we are speaking of the term xyyxxxyxxx . So the
number of lists with k ys and n − k xs is exactly the same as the
number of k-element subsets of {1, 2, . . . , n}. Therefore the number
of xn−kyk terms is

(
n
k

)
.
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Pascal’s Identity

Theorem (Pascal’s Identity)

Let n and k be integers with 0 < k < n. Then

(
n

k

)

=

(
n − 1

k − 1

)

+

(
n − 1

k

)

.

Consider the question: How many k-element subsets does the set
{1, 2, 3, . . . , n} have?

Answer 1:
(
n

k

)
by definition;

Answer 2: Distinguish an element • from the given n-element set. To
pick k elements from the n-element set, we either

include • and we pick k − 1 more elements from the remaining n − 1

elements, which can be done in
(

n−1
k−1

)

ways, or

we do no include • and we pick all k elements from the n − 1 other

elements, which can be done in
(

n−1
k

)

ways.

These mutually exclusive possibilities cover all cases. The sum of these
two must equal the total number

(
n
k

)
of k subsets of the n-element set.
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An Example of Pascal’s Identity

We show that
(6
2

)
=

(5
1

)
+
(5
2

)
by listing all the two-element subsets of

{1, 2, 3, 4, 5, 6}.

Let us consider 6 a distinguished element.

There are
(
5
1

)
= 5 two-element subsets that include the distinguished

element 6:
{1, 6} {2, 6} {3, 6} {4, 6} {5, 6}.

There are
(
5
2

)
= 10 two-element subsets that do not include 6:

{1, 2} {1, 3} {1, 4} {1, 5} {2, 3}
{2, 4} {2, 5} {3, 4} {3, 5} {4, 5}

These 15 =
(
6
2

)
sets are all 2-element subsets of {1, 2, 3, 4, 5, 6}; So,

we get an illustration of why
(
6
2

)
=

(
5
1

)
+

(
5
2

)
.
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A Formula for
(
n
k

)

Theorem (Formula for
(
n
k

)
)

Let n and k be integers with 0 ≤ k ≤ n. Then
(
n

k

)

=
n!

k!(n − k)!
.

We want to count the number of k-element subsets of {1, 2, . . . , n}.

Instead, we consider the k-element, repetition-free lists we can form
from {1, 2, . . . , n}.
The number of k-element, repetition-free lists we can form from

{1, 2, . . . , n} is (n)k =
n!

(n − k)!
.

We declare two lists equivalent if they contain the same members.
The number of elements in each equivalence class is k!.

We compute the number of equivalence classes to calculate
(
n
k

)
.

The number of equivalence classes is
(n)k
k!

=
n!

k!(n − k)!
.
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Examples

Find the number of 16-element subsets of a 20-element set.

(
20

16

)

=
20!

16! · 4!
=

20 · 19 · 18 · 17

4 · 3 · 2 · 1
= 4845.

In how many ways can a subcommittee of 3 people be formed out of
the members of a committee of 25 people?

(
25

3

)

=
25!

3! · 22!
=

25 · 24 · 23

3 · 2 · 1
= 2300.
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Subsection 5

Counting Multisets
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Multisets and Equality

A given object either is or is not in a set. An element cannot be in a
set ”twice”. So, the following sets are all identical:
{1, 2, 3} = {3, 1, 2} = {1, 1, 2, 2, 3, 3} = {1, 2, 3, 1, 2, 3, 1, 1, 1, 1}.
A multiset is a generalization of a set.

A multiset is, like a set, an unordered collection of elements.
However, in a multiset, an object may be considered to be in the
multiset more than once.

We write a multiset as 〈1, 2, 3, 3〉. This multiset contains four
elements: 1, 2, and 3 counted twice. We say that 3 has multiplicity 2
in the multiset 〈1, 2, 3, 3〉.

The multiplicity of an element is the number of times it is a member
of the multiset.

Two multisets are the same or equal provided they contain the same
elements with the same multiplicities. For example,
〈1, 2, 3, 3〉 = 〈3, 1, 3, 2〉, but 〈1, 2, 3, 3〉 6= 〈1, 2, 3, 3, 3〉.
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Cardinality and the Symbol
((

n
k

))

The cardinality of a multi set is the sum of the multiplicities of its
elements, i.e., the number of elements in the multi set where we take
into account the number of times each element is present.

If M is a multiset, then |M| denotes its cardinality. |〈1, 2, 3, 3〉| = 4.

How many k-element multisets can we form by choosing elements
from an n-element set? I.e., how many unordered length-k lists can
we form using the elements {1, 2, . . . , n} with repetition allowed?

Definition of
((

n
k

))

Let n, k ∈ N. The symbol
((

n
k

))
denotes the number of multisets with

cardinality equal to k whose elements belong to an n-element set such as
{1, 2, . . . , n}.

Example: Evaluate
((

n
1

))
.

How many one-element multisets can be formed from {1, 2, . . . , n}?
The multisets are 〈1〉, 〈2〉, . . . , 〈n〉, whence

((
n
1

))
= n.
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More Examples I

Let k be a positive integer. Evaluate (
(1
k

)
).

This asks for the number of k-element multisets whose elements are
selected from {1}. Since there is only one possible member and the
multiset has cardinality k , the only possibility is 〈1, 1, . . . , 1〉

︸ ︷︷ ︸
k occurrences

. So

(
(1
k

)
) = 1.

Evaluate (
(2
2

)
).

We need to count the number of 2-element multisets whose elements
are selected from the set {1, 2}. We list all the possibilities:

〈1, 1〉 〈1, 2〉 〈2, 2〉.

Therefore (
(2
2

)
) = 3.
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More Examples II

Evaluate (
(2
k

)
).

We need to form a k-element multiset using only the elements 1 and
2. We can decide how many 1s are in the multiset (k + 1
possibilities), and then the remaining elements of the multiset must
be 2s. Therefore (

(
2
k

)
) = k + 1.

Evaluate (
(
3
3

)
).

We need to count the number of 3-element multi sets whose elements
are selected from the set {1, 2, 3}. We list all the possibilities:

〈1, 1, 1〉 〈1, 1, 2〉 〈1, 1, 3〉 〈1, 2, 2〉 〈1, 2, 3〉
〈1, 3, 3〉 〈2, 2, 2〉 〈2, 2, 3〉 〈2, 3, 3〉 〈3, 3, 3〉

Therefore (
(3
3

)
) = 10.
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A Pascal-Like Identity

Theorem

Let n, k be positive integers. Then
((

n

k

))

=

((
n − 1

k

))

+

((
n

k − 1

))

.

We use a combinatorial proof: How many multisets of size k can we
form using the elements {1, 2, . . . , n}?

Answer 1: A simple answer to this question is
((

n

k

))
.

Answer 2: Next, if we must use element n when forming a k-element
multiset, we may complete the multiset by picking k − 1 more elements
from {1, 2, . . . , n}. The number of ways to do that is precisely (

(
n

k−1

)
).

If element n is never used, then we can form the multiset in (
(
n−1
k

)
)

ways. Clearly the multisets of size k containing at least one occurrence
of n together with those containing no occurrences of n cover all
multisets of size k .
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Illustration of the Proof

Consider (
(3
4

)
) = (

(2
4

)
) + (

(3
3

)
).

We list all the multisets of size 4 we can form using the elements
{1, 2, 3}.

First, we list all those that do not use element 3. There are (
(
2
4

)
) = 5 of

them. They are

〈1, 1, 1, 1〉 〈1, 1, 1, 2〉 〈1, 1, 2, 2〉 〈1, 2, 2, 2〉 〈2, 2, 2, 2〉

Second, we list all those that include the element 3 (at least once).
They are

〈1, 1, 1, 3〉 〈1, 1, 2, 3〉 〈1, 1, 3, 3〉 〈1, 2, 2, 3〉 〈1, 2, 3, 3〉
〈1, 3, 3, 3〉 〈2, 2, 2, 3〉 〈2, 2, 3, 3〉 〈2, 3, 3, 3〉 〈3, 3, 3, 3〉

If we ignore the mandatory 3, we have listed all the 3-element
multisets we can form from the elements in {1, 2, 3}. There are
(
(
3
3

)
) = 10 of them.
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Connection Between (
( )

) and
( )

Theorem

Let n, k ∈ N. Then
((

n

k

))

=

(
n + k − 1

k

)

.

We work with n > 0 and develop a way to encode multisets and then
count their encodings. To find

((
n
k

))
, we list all (encodings of) the

k-element multisets we can form using the integers 1 through n.
Let M be a k-element multiset formed using the integers 1 through n.
We denote M by a “stars-and-bars” notation that contains exactly k

⋆S (one for each element of M) and exactly n − 1 |s (to separate n

different compartments). Given any sequence of k ⋆s and n− 1 |s, we
can recover a unique multiset of cardinality k whose elements are
chosen from the integers 1 through n.

George Voutsadakis (LSSU) Fundamental Concepts January 2014 55 / 71



Counting and Relations Counting Multisets

Connection Between (
( )

) and
( )

(Cont’d)

For example, if n = 5 and the multi set is M = 〈1, 1, 1, 2, 3, 3, 5〉, we
get the “stars-and-bars” code

⋆ ⋆ ⋆ | ⋆ | ⋆⋆ || ⋆.

It is easy to count the number of such “stars-and-bars” lists.
Each contains exactly n + k − 1 symbols, of which exactly k are ⋆s.
The number of such lists is

(
n+k−1

k

)
because we can think of choosing

exactly k positions on the length-(n + k − 1) list to be ⋆s.

Therefore
((

n
k

))
=

(
n+k−1

k

)
.
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An Example

Size three mutisets formed using the integers 1, 2 and 3.

Multiset Stars-and-bars Subset

〈1, 1, 1〉 ⋆ ⋆⋆ || {1, 2, 3}
〈1, 1, 2〉 ⋆ ⋆ | ⋆ | {1, 2, 4}
〈1, 1, 3〉 ⋆ ⋆ || ⋆ {1, 2, 5}
〈1, 2, 2〉 ⋆ | ⋆⋆ | {1, 3, 4}
〈1, 2, 3〉 ⋆ | ⋆ | ⋆ {1, 3, 5}
〈1, 3, 3〉 ⋆ || ⋆ ⋆ {1, 4, 5}
〈2, 2, 2〉 | ⋆ ⋆ ⋆ | {2, 3, 4}
〈2, 2, 3〉 | ⋆⋆ | ⋆ {2, 3, 5}
〈2, 3, 3〉 | ⋆ | ⋆ ⋆ {2, 4, 5}
〈3, 3, 3〉 || ⋆ ⋆ ⋆ {3, 4, 5}

We now list their “stars-and-bars” notation.

The column labeled “Subset” lists those of the five positions in the
“stars-and-bars” encoding that are occupied by ⋆s.

George Voutsadakis (LSSU) Fundamental Concepts January 2014 57 / 71



Counting and Relations Counting Multisets

Summary

We considered the problem of counting the number of k-element
multisets that can be formed with elements selected from
{1, 2, . . . , n}.

The answer is denoted by
((

n
k

))
.

We showed using an encoding that
((

n
k

))
=

(
n+k−1

k

)
.

We have studied four counting problems:

counting lists with repetitions,
counting lists without repetitions,
counting subsets,
counting multisets.

Repetition Allowed Repetition Forbidden

Ordered nk (n)k
Unordered

((
n
k

)) (
n
k

)
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Subsection 6

The Inclusion-Exclusion Principle
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Inclusion-Exclusion for Two and Three Sets

For finite sets A and B , we have

|A|+ |B | = |A ∪ B |+ |A ∩ B |.

The identity can be rewritten as

|A ∪ B | = |A|+ |B | − |A ∩ B |.

This result can be extended to three sets A, B and C :

|A∪B ∪C | = |A|+ |B |+ |C |−|A∩B |−|A∩C |−|B ∩C |+ |A∩B ∩C |.

The size of the union is expressed in terms of the sizes of the
individual sets and their various intersections.

These equations are called inclusion-exclusion formulas.
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Inclusion-Exclusion Principle

Theorem (Inclusion-Exclusion Principle)

Let A1,A2, . . . ,An be finite sets. Then
|A1 ∪ A2 ∪ · · · ∪ An| = |A1|+ |A2|+ · · ·+ |An|

−|A1 ∩ A2| − |A1 ∩ A3| − · · · − |An−1 ∩ An|
+|A1 ∩ A2 ∩ A3|+ |A1 ∩ A2 ∩ A4|+ · · ·

+ |An−2 ∩ An−1 ∩ An|
− · · · + · · · · · ·
±|A1 ∩ A2 ∩ · · · ∩ An|.

The idea is that when we add up all the sizes of the individual sets,
we have added too much because some elements may be in more
than one set. So we subtract off the sizes of the pairwise intersections
to compensate, but now we may have subtracted too much. Thus we
correct back by adding in the sizes of the triple intersections, but this
overcounts, so we have to subtract, and so on.
We will show that, at the end, everything is in perfect balance.
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An Example

At an art academy, there are 43 students taking ceramics, 57 students
taking painting, and 29 students taking sculpture. There are 10
students in both ceramics and painting, 5 in both painting and
sculpture, 5 in both ceramics and sculpture, and 2 taking all three
courses. How many students are taking at least one course at the art
academy?

Let C , P and S denote the sets of students taking ceramics, painting,
and sculpture, respectively. We want to calculate |C ∪ P ∪ S |.
Applying Inclusion-Exclusion gives

|C ∪ P ∪ S | = |C |+ |P |+ |S |
− |C ∩ P | − |P ∩ S | − |C ∩ S |
+ |C ∩ P ∩ S |

= 43 + 57 + 29− 10− 5− 5 + 2
= 111.
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Proof of Inclusion-Exclusion I

Let the n sets be A1,A2, . . . ,An and let the elements in their union
be named x1, x2, . . . , xm.

We create a chart:

The rows of the chart are labeled by the elements x1 through xm.
The chart has 2n − 1 columns that correspond to all the terms on the
right-hand side of the inclusion-exclusion formula.

The first n columns are labeled A1 through An.

The next
(

n

2

)

columns are labeled by all the pairwise intersections from

A1 ∩ A2 through An−1 ∩ An.

The next
(

n

3

)

columns are labeled by the triple intersections, and so on.

If the element labeling a row is not in the set labeling the column, the
entry in that position is blank. If the element is a member of the set,
we put a + sign when the column label is an intersection of an odd
number of sets or else a − sign when the column label is an
intersection of an even number of sets.
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Proof of Inclusion-Exclusion II

Notice the following:

The number of marks in each column is the cardinality of that
column’s set.
The sign of the mark (+ or −) corresponds to whether we are adding
or subtracting that set’s cardinality in the Inclusion-Exclusion formula.
So, if we add 1 for every + sign in the chart and subtract 1 for every −
sign, we get precisely the right-hand side of the inclusion-exclusion
formula.
There is always one more + than − in each row. If we can prove this,
we will be finished because, then, the net effect of all the +s and −s is
to count 1 for each element in the union of the sets A1 ∪ A2 ∪ · · · ∪ An.

Can we prove that every row has exactly one more + than −?
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Proof that every row has exactly one more + than −

Let x be an element of A1 ∪ A2 ∪ · · · ∪ An. Suppose it is in exactly k
of the Ais. How many +s and −s are in x ’s row?

In the columns indexed by single sets, there will be k =
(
k

1

)
+s.

In the columns indexed by pairwise intersections, there will be
(
k

2

)
−s.

In the columns indexed by triple intersections, there will be
(
k
3

)
+s.

In general, in the columns indexed by j-fold intersections, there will be
(
k
j

)
marks. The marks are + if j is odd and − if j is even.

Thus the number of +s is
(
k
1

)
+

(
k
3

)
+

(
k
5

)
+ · · ·, and the number of

−s is
(
k
2

)
+

(
k
4

)
+

(
k
6

)
+ · · ·; Note the term

(
k
0

)
is absent.

It can be seen that
(
k
0

)
−

(
k
1

)
+

(
k
2

)
− · · · ±

(
k
k

)
= 0. So

1 =
(
k
0

)
=

[(
k
1

)
+

(
k
3

)
+

(
k
5

)
+ · · ·

]

−
[(

k
2

)
+

(
k
4

)
+

(
k
6

)
+ · · ·

]

.

This finishes the proof.
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Counting Lists I

The number of length-k lists whose elements are chosen from the set
{1, 2, . . . , n} is nk . How many of these lists use all of the elements in
{1, 2, . . . , n} at least once?

Let U be the set of all length-k lists whose elements are chosen from
{1, 2, . . . , n}. Thus |U| = nk .
We call “good” the ones that contain all the elements of {1, 2, . . . , n}
and “bad” the ones that miss one or more elements in {1, 2, . . . , n}.
If we can count the number of bad lists, we’ll be finished because the
number of good lists is nk minus the number of bad lists.

Let B1 be the set of all lists in U that do not contain the element 1.
Let B2 be the set of all lists in U that do not contain the element 2,
etc.
and let Bn be the set of all lists in U that do not contain the element n.

The set B1∪B2∪ · · · ∪Bn contains precisely all the bad lists. We want
to calculate the size of this union. We can apply inclusion-exclusion!
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Counting Lists II
To calculate the size of B1 ∪ · · · ∪ Bn, we need to calculate the sizes
of each of the sets Bi and all possible intersections;

We calculate the size of B1. This is the number of length-k lists whose
elements are chosen from {2, 3, . . . , n}. So |B1| = (n − 1)k . The
analysis is exactly the same as for |B2|, |B3|, etc. Thus,
|Bj | = (n − 1)k , for all j = 1, . . . , n.
The number |B1 ∩ B2| is the number of lists that do not include the
element 1 and do not include the element 2. So, it equals the number
of length-k lists whose elements are chosen from the set {3, 4, . . . , n}.
The number of these lists is |B1 ∩ B2| = (n − 2)k . The same analysis
works for Bi ∩ Bj , i 6= j . Note that there are

(
n

2

)
pairwise intersections

of n sets. Therefore
−|B1 ∩ B2| − |B1 ∩ B3| − · · · − |Bn−1 ∩ Bn| = −

(
n

2

)
(n − 2)k .

The size of a j-fold intersection of the B sets consists of the number of
the length-k lists that avoid all j elements. So, it is equal to (n − j)k .
Moreover, there are

(
n

j

)
such intersections. Thus, the j-th term in the

inclusion-exclusion is ±
(
n

j

)
(n − j)k . The sign is positive when j is odd

and negative when j is even.
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Counting Lists III

Applying now Inclusion-Exclusion, we get

|B1 ∪ · · · ∪ Bn| =
(
n
1

)
(n − 1)k −

(
n
2

)
(n − 2)k + · · · ±

(
n
n

)
(n − n)k

=
n∑

j=1

(−1)j+1
(
n
j

)
(n − j)k .

Therefore,

# of good lists = nk −# of bad lists

= nk −
n∑

j=1

(−1)j+1
(
n
j

)
(n − j)k

=

n∑

j=0

(−1)j
(
n
j

)
(n − j)k .
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Counting Derangements I

There are n! ways to make lists of length n using the elements of
{1, 2, . . . , n} without repetition. Such a list is called a derangement

if the number j does not occupy position j for any j = 1, 2, . . . , n.
How many derangements are there?

There are n! lists under consideration. The “good” lists are the
derangements. The “bad” lists are the lists in which at least one j in
{1, 2, . . . , n} appears at position j of the list.
We count the number of bad lists and subtract from n! to count the
good lists. There are n ways in which a list might be bad:

1 might be in position 1,
2 might be in position 2, and so forth, and
n might be in position n.

So we define the following sets:
B1 = {lists with 1 in position 1}
B2 = {lists with 2 in position 2} etc.
Bn = {lists with n in position n}.

Our goal is to count |B1 ∪ · · · ∪ Bn| and finally to subtract from n!.
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Counting Derangements II

To compute the size of a union, we use Inclusion-Exclusion.

|B1| is the number of lists with 1 in position 1. The other n− 1
elements may be anywhere. There are (n − 1)! such lists. The same
reasoning yields |Bi | = (n − 1)!, for all i . Therefore,
|B1|+ |B2|+ · · ·+ |Bn| = n(n − 1)!.
|B1 ∩ B2| is the number of lists in which 1 must be in position 1, 2
must be in position 2, and the remaining n − 2 elements may be
anywhere. There are (n − 2)! such lists. Indeed, for any i 6= j , we have
|Bi ∩ Bj | = (n − 2)!. Since, there are

(
n

2

)
pairwise intersections, and

they all have size (n − 2)!, we get
−|B1 ∩ B2| − · · · − |Bn−1 ∩ Bn| = −

(
n
2

)
(n − 2)!.

For each of the
(
n
k

)
k-fold intersections, such as B1 ∩ B2 ∩ · · · ∩ Bk , we

have |B1 ∩ B2 ∩ · · · ∩ Bk | = (n − k)!. Therefore, their contribution to
the Inclusion-Exclusion sum is ±

(
n
k

)
(n − k)!.
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Counting Derangements III

The Inclusion-Exclusion Formula gives

|B1 ∪ B2 ∪ · · · ∪ Bn| =

(
n

1

)

(n − 1)!−

(
n

2

)

(n − 2)! + · · · ±

(
n

n

)

(n − n)!.

Recall that to compute the number of derangements, we must
subtract |B1 ∪ B2 ∪ · · · ∪ Bn| from n!:

n!−
(
n
1

)
(n − 1)! +

(
n
2

)
(n − 2)!−

(
n
3

)
(n − 3)! + · · · ∓

(
n
n

)
(n − n)!

=
n∑

k=0

(−1)k
(
n
k

)
(n − k)! =

n∑

k=0

(−1)k
n!

k!(n − k)!
(n − k)!

=

n∑

k=0

(−1)k
n!

k!
= n!

n∑

k=0

(−1)k

k!
.
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