Fundamental Concepts of Mathematics

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science

Lake Superior State University

LSSU Math 215

(1) More on Proofs

- Contradiction
- Smallest Counterexample
- Induction
- Recurrence Relations

Subsection 1

Contradiction

The Contrapositive

- The statement "If A, then B " is logically equivalent to the statement "If $(\operatorname{not} B)$, then $(\operatorname{not} A)$ ".
- The statement "If (not B), then (not A)" is called the contrapositive of "If A, then B."
- Why are a statement and its contrapositive logically equivalent?
- For "If A, then B " to be true, it must be the case that whenever A is true, B must also be true. If it ever should happen that B is false, then it must have been the case that A was false. In other words, if B is false, then A must be false. Thus we have "If (not B), then (not A)."
- Alternatively, "If A, then B " is logically equivalent to "(not A) or B ". By the same reasoning, "If (not B), then (not A)" is equivalent to "(not $(\operatorname{not} B))$ or $(\operatorname{not} A)$ ", but "not (not $B)$ " is the same as B, so this becomes " B or $(\operatorname{not} A)$ ", which is equivalent to " $(\operatorname{not} A)$ or B ".
- In symbols,

$$
a \rightarrow b=(\neg a) \vee b=(\neg(\neg b)) \vee(\neg a)=(\neg b) \rightarrow(\neg a) .
$$

Equivalence of $a \rightarrow b$ and $(\neg b) \rightarrow(\neg a)$

- We can also verify the equivalence of $a \rightarrow b$ and $(\neg b) \rightarrow(\neg a)$ mechanically by looking at truth tables:

$$
\begin{array}{cc|c|ccc}
a & b & a \rightarrow b & \neg b & \neg a & (\neg b) \rightarrow(\neg a) \\
\hline T & T & T & F & F & T \\
T & F & F & T & F & F \\
F & T & T & F & T & T \\
F & F & T & T & T & T
\end{array}
$$

Therefore, $a \rightarrow b$ and $(\neg b) \rightarrow(\neg a)$ are logically equivalent.

Proof by Contraposition

Proposition

Let R be an equivalence relation on a set A and let $a, b \in A$. If $a R b$, then $[a] \cap[b]=\emptyset$.

- Let R be an equivalence relation on a set A and let $a, b \in A$.
- We prove the contrapositive of the statement:
- Suppose $[a] \cap[b] \neq \emptyset$.
- Thus, there is an $x \in[a] \cap[b]$.
- This means that $x \in[a]$ and $x \in[b]$.
- Hence $\times R$ a and $\times R b$.
- By symmetry, a R x.
- Since $\times R b$, by transitivity, a $R b$.

Reductio ad Absurdum (Proof by Contradiction)

- Proof by contrapositive is an alternative to direct proof. If we cannot find a direct proof, we try to prove the contrapositive.
- A proof technique that combines direct proof and proof by contrapositive is called proof by contradiction or, in Latin, reductio ad absurdum.
- We want to prove "If A, then B ".
- We show that it is impossible for A to be true while B is false. In other words, we show that " A and (not B)" is impossible.
- How do we prove that something is impossible? We suppose the impossible thing is true and prove that this supposition leads to an absurd conclusion. If a statement implies something clearly wrong, then that statement must have been false!
- To prove "If A, then B ", we assume the hypothesis A and we assume the opposite of the conclusion, (not B). From these two assumptions, we try to reach a clearly false statement.

Equivalence of $a \rightarrow b$ and $(a \wedge \neg b) \rightarrow F$

- We can also verify the equivalence of $a \rightarrow b$ and $(a \wedge \neg b) \rightarrow F$ mechanically by looking at truth tables:

a	b	$a \rightarrow b$	$\neg b$	$a \wedge \neg b$	$(a \wedge \neg b) \rightarrow F$
T	T	T	F	F	T
T	F	F	T	T	F
F	T	T	F	F	T
F	F	T	T	F	T

Therefore, $a \rightarrow b$ and $(a \wedge \neg b) \rightarrow F$ are logically equivalent.

Proof by Contradiction: An Example

Proposition

No integer is both even and odd.

- Let x be an integer.
- Suppose, for the sake of contradiction, that x is both even and odd.
- Since x is even, we know $2 \mid x$.
- Thus, there is an integer a such that $x=2 a$.
- Since x is odd, we know that there is an integer b such that $x=2 b+1$.
- Therefore, $2 a=2 b+1$.
- Dividing both sides by 2 gives $a=b+\frac{1}{2}$, i.e., $a-b=\frac{1}{2}$.
- But $a-b$ is an integer (since a and b are integers) whereas $\frac{1}{2}$ is not an integer, which is a contradiction!
- Therefore, x is not both even and odd, and the proposition is proved.

Special Cases: Emptiness of a Set and Uniqueness

- To prove a set is empty:
- Assume the set is nonempty and argue to a contradiction.
- To prove there is at most one object that satisfies conditions:
- Suppose there are two different objects, x and y, that satisfy conditions. Argue to a contradiction.

Proposition

Let a and b be numbers with $a \neq 0$. There is at most one number x with $a x+b=0$.

- Suppose there are two different numbers x and y such that $a x+b=0$ and $a y+b=0$. This gives $a x+b=a y+b$. Subtracting b from both sides gives $a x=a y$. Since $a \neq 0$, we can divide both sides by a to give $x=y$. This is a contradiction!

Subsection 2

Smallest Counterexample

Proof by Contradiction: Counterexample View

- The method of proof by contradiction:
- We want to prove a result of the form "If A, then B ".
- Suppose this result were false. Then, there would be a counterexample to the statement. That is, there would be an instance where A is true and B is false.
- We analyze the alleged counterexample and produce a contradiction. Since the supposition that there is a counterexample leads to an absurd conclusion (a contradiction), that supposition must be wrong; there is no counterexample.
- Since there is no counterexample, the result must be true.
- Example: No integer could be both even and odd.
- Suppose the statement "No integer is both even and odd" were false.
- Then there would be an integer x that is both even and odd.
- Since x is even, there is an integer a such that $x=2 a$.
- Since x is odd, there is an integer b such that $x=2 b+1$.
- Thus $2 a=2 b+1$, which implies $a-b=\frac{1}{2}$.
- Since a and b are integers, so is $a-b=\frac{1}{2}$, a contradiction!

Smallest Counterexample: Main Idea

Proposition

Every natural number is either even or odd.

- If not all natural numbers are even or odd, there is a smallest natural number, x, that is neither even nor odd. We know $x \neq 0$ because 0 is even. Therefore $x \geq 1$. Since $0 \leq x-1<x$, we see that $x-1$ is smaller than x, so $x-1$ is either even or odd.
- If $x-1$ is odd, then $x-1=2 a+1$ for some integer a. Thus, $x=2 a+2=2(a+1)$, so x is even, a contradiction!
- If $x-1$ is even, then $x-1=2 b$ for some integer b. Thus, $x=2 b+1$, so x is odd, a contradiction!
In every case, we have a contradiction, so the supposition is false!
- We observe that in the Smallest Counterexample Proof:
- We use proof by contradiction;
- We consider a smallest counterexample to the result.
- We need to treat the very smallest possibility as a special case.
- We descend to a smaller case for which the theorem is true and work back.

Extending the Proposition to Integers

Proposition

Every integer is either even or odd.

- The key idea is that either $x \geq 0$ (in which case we are finished by the previous Proposition) or else $x<0$ (in which case $-x \in \mathbb{N}$, and again we can use the previous Proposition).
- Let x be any integer.
- If $x \geq 0$, then $x \in \mathbb{N}$, so by the previous proposition, x is either even or odd.
- Otherwise, $x<0$. In this case $-x>0$, so $-x$ is either even or odd.
- If $-x$ is even, then $-x=2 a$ for some integer a. But then $x=-2 a=2(-a)$, so x is even.
- If $-x$ is odd, then $-x=2 b+1$ for some integer b. From this we have $x=-2 b-1=2(-b-1)+1$, so x is odd.
In every case, x is either even or odd.

Another Proof by Smallest Counterexample

Proposition

Let n be a positive integer. The sum of first n odd natural numbers is n^{2}.

- The first n odd natural numbers are $1,3,5, \ldots, 2 n-1$. The proposition claims that $1+3+5+\cdots+(2 n-1)=n^{2}$ or, $\sum_{k=1}^{n}(2 k-1)=n^{2}$.
- Suppose the statement is false. There is a smallest positive integer x for which the statement is false (i.e., the sum of the first x odd numbers is not $\left.x^{2}\right)$. So $1+3+5+\cdots+(2 x-1) \neq x^{2}$.
- Note that $x \neq 1$ because the sum of the first 1 odd number is $1=1^{2}$. So $x>1$.
- Since x is the smallest counterexample and $x>1$, the sum of the first $x-1$ odd numbers must equal $(x-1)^{2}$. So $1+3+5+\cdots+[2(x-1)-1]=(x-1)^{2}$. We add $2 x-1$ to both sides: $1+3+5+\cdots+[2(x-1)-1]+(2 x-1)=(x-1)^{2}+(2 x-1)=$ $\left(x^{2}-2 x+1\right)+(2 x-1)=x^{2}$, which is a contradiction!

Never Omit the Basis Step!!

A False Proposition

Every natural number is both even and odd.

- We give a bogus proof using the Smallest Counterexample method, but omitting the basis step.
- Suppose the statement is false. Then there is a smallest natural number x that is not both even and odd. Consider $x-1$. Since $x-1<x, x-1$ is not a counterexample. Therefore $x-1$ is both even and odd.
- Since $x-1$ is even, $x-1=2 a$ for some integer a, whence $x=2 a+1$, and x is odd.
- Since $x-1$ is odd, $x-1=2 b+1$ for some integer b, and so

$$
x=2 b+2=2(b+1), \text { so } x \text { is even. }
$$

Thus x is both even and odd, a contradiction!

- Where is the mistake? The error is in the sentence "Therefore $x-1$ is both even and odd." It is correct that $x-1$ is not a counterexample, but we do not know that $x-1$ is a natural number!

Not Applicable for Integers or Rational Numbers

Another False Proposition

Every nonnegative rational number is an integer.

- Recall that a rational number is any number that can be expressed as a fraction a / b, where $a, b \in \mathbb{Z}$ and $b \neq 0$.
- This statement is asserting that numbers such as $\frac{1}{4}$ are integers. Obviously false!
- The following is a bogus proof:
- Suppose the statement is false.
- Let x be a smallest counterexample.
- Notice that $x=0$ is not a counterexample because 0 is an integer.
- Since x is a nonnegative rational, so is $x / 2$. Furthermore, since $x \neq 0$, we know that $x / 2<x$, so $x / 2$ being smaller than x, is not a counterexample, and $x / 2$ must be an integer.
- Now $x=2(x / 2)$, and 2 times an integer is an integer;
- Therefore x is an integer, a contradiction!

The Well-Ordering Principle

- What is wrong with this "proof"?

It looks like we followed the right steps, and even remembered to do a basis step.

- The problem is in the sentence "Let x be a smallest counterexample." There are infinitely many counterexamples to this statement, including $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$ These form an infinite descent of counterexamples, and so there can be no smallest counterexample!
- When can we be certain to find a smallest counterexample?

The Well-Ordering Principle

Every nonempty set of natural numbers contains a least element.

Examples

- Let $P=\{x \in \mathbb{N}: x$ is prime $\}$.

This set is a non empty subset of the natural numbers. By the Well-Ordering Principle, P contains a least element. Of course, the least element in P is 2 .

- Consider the set $X=\{x \in \mathbb{N}: x$ is even and odd $\}$.

We know that this set is empty because we have shown that no natural number is both even and odd. But for the sake of contradiction, we suppose that $X \neq \emptyset$; then, by the Well-Ordering Principle, X would contain a smallest element. This is the central idea in the proof that showed that $X=\emptyset$.

- In contradistinction, consider the set $Y=\{y \in \mathbb{Q}: y \geq 0, y \notin \mathbb{Z}\}$. The bogus proof we studied sought a least element of Y. We subsequently realized that Y has no least element, and that was the error in our "proof." The Well-Ordering Principle applies to \mathbb{N}, but not to \mathbb{Q}.

Sum of a Geometric Series

Proposition

Let $n \in \mathbb{N}$. If $a \neq 0$ and $a \neq 1$, then

$$
\sum_{k=0}^{n} a^{k}=a^{0}+a^{1}+a^{2}+\cdots+a^{n}=\frac{a^{n+1}-1}{a-1}
$$

- Suppose, for the sake of contradiction, that the statement is false.
- Let X be the set of counterexamples: $X=\left\{n \in \mathbb{N}: \sum_{k=0}^{n} a^{k} \neq \frac{a^{n+1}-1}{a-1}\right\} \neq \emptyset$. Since $X \neq \emptyset$ subset of \mathbb{N}, by the Well-Ordering Principle, it contains a least element x.
- Note that for $n=0$, the equation gives $a^{0}=\frac{a^{1}-1}{a-1}$ and this is true. This means that $n=0$ is not a counterexample. Thus $x \neq 0$.
- Since $x>0, x-1 \in \mathbb{N}$ and $x-1 \notin X$ because $x-1$ is smaller than the least element of X. Therefore, $a^{0}+a^{1}+\cdots+a^{x-1}+a^{x}=$ $\frac{a^{x}-1}{a-1}+a^{x}=\frac{a^{x}-1+a^{x}(a-1)}{a-1}=\frac{a^{x}-1+a^{x+1}-a^{x}}{a-1}=\frac{a^{x+1}-1}{a-1}$, This shows that x satisfies the proposition contradicting $x \in X$.

Proving an Inequality

Proposition

For all integers $n \geq 5$, we have $2^{n}>n^{2}$.

- Suppose that the statement is false.
- Let X be the set of counterexamples: $X=\left\{n \in \mathbb{Z}: n \geq 5,2^{n} \ngtr n^{2}\right\} \neq \emptyset$. By the Well-Ordering Principle, X contains a least element x.
- We claim that $x \neq 5$. Note that $2^{5}=32>25=5^{2}$, so 5 is not a counterexample to the proposition. Thus $x \geq 6$.
- Since $x \geq 6$, we have $x-1 \geq 5$, and, since x is the least element of X, we know that the proposition is true for $n=x-1$. Thus, $2^{x-1}>(x-1)^{2} \Rightarrow \frac{1}{2} \cdot 2^{x}>x^{2}-2 x+1 \Rightarrow 2^{x}>2 x^{2}-4 x+2$. Now it suffices to show $2 x^{2}-4 x+2 \geq x^{2}$. This is equivalent to $x^{2}-4 x+4 \geq 2$, i.e., to $(x-2)^{2} \geq 2$, which clearly holds for all $x \geq 6$! But this contradicts $x \in X$.

The Fibonacci Sequence

- The Fibonacci numbers are the list of integers $(1,1,2,3,5,8, \ldots)$ $=\left(F_{0}, F_{1}, F_{2}, \ldots\right)$, where $F_{0}=1, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$, for $n \geq 2$.

Proposition

For all $n \in \mathbb{N}$, we have $F_{n} \leq 1.7^{n}$.

- Suppose that the statement is false.
- Let X be the set of counterexamples $X=\left\{n \in \mathbb{N}: F_{n} \not \leq 1.7^{n}\right\} \neq \emptyset$. By the Well-Ordering Principle, X contains a least element x.
- Observe that $x \neq 0$ because $F_{0}=1=1.7^{0}$ and $x \neq 1$ because $F_{1}=1 \leq 1.7^{1}$. Thus, $x \geq 2$.
- Now we know that $F_{x}=F_{x-1}+F_{x-2}$ and, since $x-1$ and $x-2$ are natural numbers less than $x, F_{x-1} \leq 1.7^{x-1}$ and $F_{x-2} \leq 1.7^{x-2}$. We work as follows: $F_{x}=F_{x-1}+F_{x-2} \leq 1.7^{x-1}+1.7^{x-2}$
$=1.7^{x-2}(1.7+1)=1.7^{x-2}(2.7)<1.7^{x-2}(2.89)=1.7^{x-2}\left(1.7^{2}\right)$
$=1.7^{x}$. Therefore the statement is true for $n=x$, contradicting $x \in X$.

Subsection 3

Induction

Illustrating with a Proof

Proposition

Let n be a positive integer. The sum of first n odd natural numbers is n^{2}.

- We would like to prove

$$
1+3+5+\cdots+(2 n-1)=n^{2}
$$

- We prove that the statement is true for $n=1: 1=1^{2}$.
- We assume that it is true for $n=k$:

$$
1+3+5+\cdots+(2 k-1)=k^{2}
$$

- We now try to show it is true for $n=k+1$:

$$
\begin{aligned}
& 1+3+5+\cdots+(2 k-1)=k^{2} \\
& 1+3+5+\cdots+(2 k-1)+(2 k+1)=k^{2}+(2 k+1) \\
& 1+3+5+\cdots+(2 k-1)+(2 k+1)=(k+1)^{2}
\end{aligned}
$$

Now we conclude that $1+3+5+\cdots+(2 n-1)=n^{2}$, for all natural numbers $n \geq 1$!

The Principle of Mathematical Induction

Theorem (Principle of Mathematical Induction)

Let A be a set of natural numbers. If

- $0 \in A$;
- For all $k \in \mathbb{N}, k \in A \Rightarrow k+1 \in A$, then $A=\mathbb{N}$.
- We use the Well-Ordering and argue by Least Counterexample;
- Suppose that $A \neq \mathbb{N}$.
- Let $X=\mathbb{N}-A \neq \emptyset$. By the Well-Ordering Principle, since X is a nonempty set of natural numbers, it contains a least element x.
Thus, x is the smallest natural number not in A.
- Note $x \neq 0$ because, by hypothesis, $0 \in A$, so $0 \notin X$. Therefore, $x \geq 1$.
- Thus $x-1 \geq 0$, so $x-1 \in \mathbb{N}$. and, since x is the smallest element not in A, we have $x-1 \in A$. Now the second condition of the theorem says that whenever a natural number is in A, so is the next larger natural number. Since $x-1 \in A$, we know that $(x-1)+1=x$ is in A. This contradicts $x \notin A$.

Proof by Induction I

Proposition

Let n be a natural number. Then $0^{2}+1^{2}+2^{2}+\cdots+n^{2}=\frac{(2 n+1)(n+1)(n)}{6}$.

- Let A be the set of natural numbers for which the statement is true.
- $0 \in A$ because $0^{2}=\frac{(2 \cdot 0+1)(0+1)(0)}{6}$.
- Suppose the result is true for $n=k$, i.e., assume

$$
0^{2}+1^{2}+\cdots+k^{2}=\frac{(2 k+1)(k+1)(k)}{6} ;
$$

We must show that the equation is true for $n=k+1$, i.e., that $0^{2}+1^{2}+\cdots+k^{2}+(k+1)^{2}=\frac{(2 k+3)(k+2)(k+1)}{6} ;$

$$
\begin{aligned}
0^{2}+1^{2}+\cdots+k^{2}+(k+1)^{2} & =\frac{(2 k+1)(k+1)(k)}{6}+(k+1)^{2} \\
& =\left[\frac{(2 k+1)(k)}{6}+k+1\right](k+1) \\
& =\left[\frac{2 k^{2}+k+6 k+6}{6}\right](k+1) \\
& =\frac{(2 k+3)(k+2)(k+1)}{6} .
\end{aligned}
$$

- We have shown $0 \in A$ and $k \in A \Rightarrow(k+1) \in A$. Therefore, by induction, $A=\mathbb{N}$; so the proposition is true for all natural numbers.

Proof by Induction II

Proposition

Let n be a positive integer. Then $2^{0}+2^{1}+\cdots+2^{n-1}=2^{n}-1$.

- We prove this by induction on n.
- For $n=1,2^{0}=2^{1}-1$ holds.
- Suppose the result is true for $n=k$, i.e., assume $2^{0}+2^{1}+\cdots+2^{k-1}=2^{k}-1$;
We must show that the equation is true for $n=k+1$, i.e., that $2^{0}+2^{1}+\cdots+2^{k-1}+2^{k}=2^{k+1}-1 ;$

$$
\begin{aligned}
2^{0}+2^{1}+\cdots+2^{k-1}+2^{k} & =2^{k}-1+2^{k} \\
& =2 \cdot 2^{k}-1 \\
& =2^{k+1}-1
\end{aligned}
$$

- Thus, the proposition is true for all positive integers.

Proof by Induction III

Proposition

Let n be a positive integer. Then $1 \cdot 1!+2 \cdot 2!+\cdots+n \cdot n!=(n+1)!-1$.

- We prove this by induction on n.
- For $n=1,1 \cdot 1$! $=(1+1)$! -1 holds.
- Suppose the result is true for $n=k$, i.e., assume

$$
1 \cdot 1!+2 \cdot 2!+\cdots+k \cdot k!=(k+1)!-1
$$

We must show that the equation is true for $n=k+1$, i.e., that $1 \cdot 1!+2 \cdot 2!+\cdots+k \cdot k!+(k+1) \cdot(k+1)!=(k+2)!-1$;

$$
\begin{aligned}
& 1 \cdot 1!+2 \cdot 2!+\cdots+k \cdot k!+(k+1) \cdot(k+1)! \\
& =(k+1)!-1+(k+1) \cdot(k+1)! \\
& =(1+(k+1)) \cdot(k+1)!-1 \\
& =(k+2) \cdot(k+1)!-1 \\
& =(k+2)!-1 .
\end{aligned}
$$

- Thus, the proposition is true for all positive integers.

Proof of an Inequality by Induction

Proposition

Let n be a natural number. Then $10^{0}+10^{1}+\cdots+10^{n}<10^{n+1}$.

- We prove this by induction on n.
- For $n=0,10^{0}<10^{1}$ holds.
- Suppose the result is true for $n=k$, i.e., assume

$$
10^{0}+10^{1}+\cdots+10^{k}<10^{k+1}
$$

We must show that the equation is true for $n=k+1$, i.e., that $10^{0}+10^{1}+\cdots+10^{k}+10^{k+1}<10^{k+2}$;

$$
\begin{aligned}
10^{0}+10^{1}+\cdots+10^{k}+10^{k+1} & <10^{k+1}+10^{k+1} \\
& =2 \cdot 10^{k+1} \\
& <10 \cdot 10^{k+1} \\
& =10^{k+2} .
\end{aligned}
$$

- Thus, the proposition is true for all positive integers.

Proof of a Divisibility Relation by Induction

Proposition

Let n be a natural number. Then $4^{n}-1$ is divisible by 3 .

- We prove this by induction on n.
- For $n=0,4^{0}-1$ is divisible by 3 .
- Suppose the result is true for $n=k$, i.e., $3 \mid\left(4^{k}-1\right)$. This means that $4^{k}-1=3$ a for some integer a.
We must show that the statement is true for $n=k+1$, i.e., that $3 \mid\left(4^{k+1}-1\right)$;

$$
\begin{aligned}
4^{k+1}-1 & =4 \cdot 4^{k}-1 \\
& =4\left(4^{k}-1\right)+3 \\
& =4 \cdot 3 a+3 \\
& =3(4 a+1) .
\end{aligned}
$$

- Thus, the proposition is true for all natural numbers.

L-Shaped Triominoes

0

We wish to cover a chess board with special tiles called L-shaped triominoes, or Ltriominoes. These are tiles formed from three 1×1 squares joined at their edges to form an L shape. It is not possible to tile a standard 8×8 chess board with L-triominoes because there are 64 squares on the chess board and 64 is not divisible by 3 . However, it is possible to cover all but one square of the chess board, and such a tiling is shown in the figure.

- Is it possible to tile larger chess boards?

A $2^{n} \times 2^{n}$ chess board has 4^{n} squares, and, since we proved $4^{n}-1$ is divisible by 3 , there is a hope that we may be able to cover all but one of the squares.

Proof of a Tiling by Induction

Proposition

Let n be a positive integer. For every square on a $2^{n} \times 2^{n}$ chess board, there is a tiling by L-triominoes of the remaining $4^{n}-1$ squares.

- We prove this by induction on n.
- The basis case, $n=1$, is obvious since placing an L-triomino on a 2×2 chess board covers all but one of the squares, and by rotating the triomino we can select which square is missed.
- Suppose that the Proposition has been proved for $n=k$. We are given a $2^{k+1} \times 2^{k+1}$ chess board with one square selected. Divide the board into four $2^{k} \times 2^{k}$ subboards. The selected square is in one of these.
 Place an L-triomino overlapping three corners from the remaining subboards as shown. We now have four $2^{k} \times 2^{k}$ subboards each with one square that does not need to be covered. By induction, the remaining squares in the subboards can be tiled by L-triominoes.
- Thus, the proposition is true for all positive integers.

Strong Version of Mathematical Induction

Theorem (Mathematical Induction - Strong Version)

Let A be a set of natural numbers. If

- $0 \in A$;
- for all $k \in \mathbb{N}$, if $0,1,2, \ldots, k \in A$, then $k+1 \in A$ then $A=\mathbb{N}$.
- Why is this called strong induction?
- Suppose we use induction to prove a proposition.
- In both standard and strong induction, we begin by showing the basis case $(0 \in A)$.
- In standard induction, we assume the induction hypothesis ($k \in A$; i.e., the proposition is true for $n=k$) and then use that to prove $k+1 \in A$ (i.e., the proposition is true for $n=k+1$).
- Strong induction gives a stronger induction hypothesis: We may assume $0,1,2, \ldots, k \in A$ (the proposition is true for all $n=0, \ldots, k$) and use that to prove $k+1 \in A$ (the proposition is true for $n=k+1$).

Triangulating a Polygon

-

Let P be a polygon in the plane. To triangulate a polygon is to draw diagonals through the interior of the polygon so that

- the diagonals do not cross each other;
- every region created is a triangle.
- The shaded triangles are called exterior triangles because two of their three sides are on the exterior of the polygon.

Proposition

If a polygon with four or more sides is triangulated, then at least two of the triangles formed are exterior.

Proof of the Proposition

- Let n denote the number of sides of the polygon. We apply strong induction on n.
- Basis case: Since this result makes sense only for $n \geq 4$, the basis case is $n=4$. The only way to triangulate a quadrilateral is to draw in one of the two possible diagonals. Either way, the two triangles formed must be exterior.
- Strong induction hypothesis: Suppose the statement is true for all polygons on $n=4,5, \ldots, k$ sides.
- Induction Step: Let P be any triangulated polygon with $k+1$ sides. We must prove that at least two of its triangles are exterior.

Let d be one of the diagonals. This diagonal separates P into two polygons A and B. A and B are triangulated polygons with fewer sides than P.

Proof of the Proposition (Induction Step Continued)

- We continue the analysis of the Induction Step:
- We drew d that separates P into two polygons A and B that are triangulated polygons with fewer sides than P.
- If A is not a triangle, then, since A has at least four, but at most k sides, by strong induction we know that two or more of A 's triangles are exterior. Are those exterior triangles of P? Not necessarily. If one of A 's exterior triangles uses the diagonal d, then it is not an exterior triangle of P. Nonetheless, the other exterior triangle of A cannot also use the diagonal d; So at least one exterior triangle of A is also an exterior triangle of P.
- If B is not a triangle, as in the previous case, B contributes at least one exterior triangle to P.
- If A is a triangle, then A is an exterior triangle of P.
- If B is a triangle, then B is an exterior triangle of P.
- In every case, both A and B contribute at least one exterior triangle to P. So P has at least two exterior triangles.

Identity Involving Binomials and Fibonacci Numbers

Proposition

Let $n \in \mathbb{Z}$ and let F_{n} denote the nth Fibonacci number. Then $\binom{n}{0}+\binom{n-1}{1}+\binom{n-2}{2}+\cdots+\binom{0}{n}=F_{n}$.

- We use strong induction.
- Basis case: The result is true for $n=0$: We get $\binom{0}{0}=1=F_{1}$; The result is also true for $n=1$: Indeed, $\binom{1}{0}+\binom{0}{1}=1+0=1=F_{1}$.
- Strong induction hypothesis: Suppose the statement is true for all values of n from 0 to k. We may also assume $k \geq 1$ since we have already proved the result for $n=0$ and $n=1$.
- Induction Step: We want to prove the statement for $n=k+1$, i.e., $\binom{k+1}{0}+\binom{k}{1}+\cdots+\binom{0}{k+1}=F_{k+1}$.
By the strong induction hypothesis:

$$
\begin{aligned}
F_{k-1} & =\binom{k-1}{0}+\binom{k-2}{1}+\binom{k-3}{2}+\cdots+\binom{0}{k-1} \\
F_{k} & =\binom{k}{0}+\binom{k-1}{1}+\binom{k-2}{2}+\cdots+\binom{1}{k-1}+\binom{0}{k} ;
\end{aligned}
$$

Binomials and Fibonacci Numbers (Cont'd)

- We obtained by the Strong Induction hypothesis:

$$
\begin{array}{rlr}
F_{k-1} & = & \binom{k-1}{0}+\binom{k-2}{1}+\binom{k-3}{2}+\cdots+\binom{1}{k-2}+\binom{0}{k-1} \\
F_{k} & = & \binom{k}{0}+\binom{1-1}{1}+\binom{k-2}{2}+\binom{k-3}{3}+\cdots+\binom{1}{k-1}+\binom{0}{k}
\end{array}
$$

We add these two lines to get

$$
\begin{aligned}
F_{k+1} & =F_{k}+F_{k-1}= \\
& =\binom{k}{0}+\binom{k-1}{0}+\binom{k-1}{1}+\binom{k-2}{1}+\binom{k-2}{2} \cdots+\binom{0}{k-1}+\binom{0}{k} \\
& =\binom{k}{1}+\binom{k-1}{2}+\cdots+\binom{1}{k-1}+\binom{2}{k}+0 \\
& =\binom{k+1}{0}+\binom{k}{1}+\binom{(-1}{2}+\cdots+\binom{0}{k-1}+\binom{1}{k}+\binom{0}{k+1} .
\end{aligned}
$$

This concludes the induction step.

Subsection 4

Recurrence Relations

Recurrence Relations and Solutions

- A recurrence relation is a formula that specifies how each term of a sequence is produced from earlier terms.
- Example: $a_{n}=3 a_{n-1}+4 a_{n-2}$, with $a_{0}=3, a_{1}=2$.
- Solving a recurrence relation means obtaining an explicit formula for the n-th term of the sequence.
- Example: The solution of $a_{n}=3 a_{n-1}+4 a_{n-2}$, with $a_{0}=3, a_{1}=2$, is $a_{n}=4^{n}+2 \cdot(-1)^{n}$.
- Example: Consider the recurrence $a_{n}=s a_{n-1}$, with given a_{0}; We obtain

$$
a_{n}=s a_{n-1}=s^{2} a_{n-2}=s^{3} a_{n-3}=\cdots=s^{n} a_{0} ;
$$

Thus, the solution is $a_{n}=a_{0} s^{n}$;

Solving a Recurrence Relation

Proposition

All solutions to the recurrence relation $a_{n}=s a_{n-1}+t$, where $s \neq 1$, have the form $a_{n}=c_{1} s^{n}+c_{2}$, where c_{1} and c_{2} are specific numbers.

$$
\begin{aligned}
& a_{0}=a_{0} \\
& a_{1}=s a_{0}+t \\
& a_{2}=s a_{1}+t=s\left(s a_{0}+t\right)+t=s^{2} a_{0}+(s+1) t \\
& a_{3}=s a_{2}+t=s\left(s^{2} a_{0}+(s+1) t\right)+t=s^{3} a_{0}+\left(s^{2}+s+1\right) t \\
& a_{4}=s a_{3}+t=s\left(s^{3} a_{0}+\left(s^{2}+s+1\right) t\right)=s^{4} a_{0}+\left(s^{3}+s^{2}+s+1\right) t .
\end{aligned}
$$

Continuing with this pattern, we see that

$$
a_{n}=s^{n} a_{0}+\left(s^{n-1}+s^{n-2}+\cdots+s+1\right) t .
$$

Therefore, we obtain:

$$
a_{n}=s^{n} a_{0}+\frac{s^{n}-1}{s-1} t=\left(a_{0}+\frac{t}{s-1}\right) s^{n}-\frac{t}{s-1} .
$$

An Example

- Solve the recurrence $a_{n}=5 a_{n-1}+3$ where $a_{0}=1$.
- The given recurrence is of the form $a_{n}=s a_{n-1}+t$, with $s=5 \neq 1$. Therefore, the form of its solution is $a_{n}=c_{1} s^{n}+c_{2}$. To find c_{1} and c_{2}, note that

$$
\begin{aligned}
& 1=a_{0}=c_{1}+c_{2} \\
& 8=a_{1}=5 c_{1}+c_{2}
\end{aligned}
$$

Solving these equations, we find $c_{1}=\frac{7}{4}$ and $c_{2}=-\frac{3}{4}$ and so

$$
a_{n}=\frac{7}{4} \cdot 5^{n}-\frac{3}{4} .
$$

$a_{n}=s a_{n-1}+t:$ The Case $s=1$

Proposition

The solution to the recurrence relation $a_{n}=a_{n-1}+t$ is $a_{n}=a_{0}+n t$.

- We obtain

$$
\begin{aligned}
a_{n} & =a_{n-1}+t \\
& =\left(a_{n-2}+t\right)+t=a_{n-2}+2 t \\
& =\left(a_{n-3}+t\right)+2 t=a_{n-3}+3 t \\
& =\cdots \\
& =a_{1}+(n-1) t \\
& =\left(a_{0}+t\right)+(n-1) t \\
& =a_{0}+n t .
\end{aligned}
$$

Second-Order Recurrence Relations

- A second-order recurrence relation gives each term of a sequence in terms of the previous two terms.
- Example: $a_{n}=5 a_{n-1}-6 a_{n-2}$.

Proposition

Let s_{1}, s_{2} be given numbers and suppose r is a root of the quadratic equation $x^{2}-s_{1} x-s_{2}=0$. Then $a_{n}=r^{n}$ is a solution to the recurrence relation $a_{n}=s_{1} a_{n-1}+s_{2} a_{n-2}$.

- Let r be a root of $x^{2}-s_{1} x-s_{2}=0$. Observe that $s_{1} r^{n-1}+s_{2} r^{n-2}=r^{n-2}\left(s_{1} r+s_{2}\right)=r^{n-2} r^{2}=r^{n}$.
Therefore r^{n} satisfies the recurrence $a_{n}=s_{1} a_{n-1}+s_{2} a_{n-2}$.

Example

- Find a solution to the second-order recurrence relation $a_{n}=5 a_{n-1}-6 a_{n-2}$.
- According to the Proposition, if r is a solution of $x^{2}-5 x+6=0$, then $a_{n}=r^{n}$ will be a solution to the given recurrence. We get $x^{2}-5 x+6=0 \Rightarrow(x-2)(x-3)=0 \Rightarrow x=2$ or $x=3$. Therefore, one solution is $a_{n}=2^{n}$ and another solution is $a_{n}=3^{n}$.

The General Solution of $a_{n}=s_{1} a_{n-1}+s_{2} a_{n-2}$

Theorem

Let s_{1}, s_{2} be numbers and let r_{1}, r_{2} be roots of the equation $x^{2}-s_{1} x-s_{2}=0$. If $r_{1} \neq r_{2}$, then every solution to the recurrence $a_{n}=s_{1} a_{n-1}+s_{2} a_{n-2}$ is of the form $a_{n}=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}$.

- We know that, if r is a solution of $x^{2}-s_{1} x-s_{2}=0$, then r^{n} is a solution of $a_{n}=s_{1} a_{n-1}+s_{2} a_{n-2}$. But, if a_{n} is a solution, then so is any constant multiple of a_{n}, i.e., $c a_{n}$ is also a solution. Moreover, if a_{n} and a_{n}^{\prime} are two solutions, then so is their sum $a_{n}+a_{n}^{\prime}$. Therefore, if r_{1} and r_{2} are roots of the polynomial $x^{2}-s_{1} x-s_{2}=0$, then $a_{n}=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}$ is a solution of the recurrence relation.
- The expression $c_{1} r_{1}^{n}+c_{2} r_{2}^{n}$ gives all solutions provided it can produce a_{0} and a_{1}. If we can choose c_{1} and c_{2} so that $a_{0}=c_{1}+c_{2}$ and $a_{1}=r_{1} c_{1}+r_{2} c_{2}$, then every possible sequence that satisfies the recurrence is of the form $c_{1} r_{1}^{n}+c_{2} r_{2}^{n}$. Solving for c_{1} and c_{2} gives $c_{1}=\frac{a_{1}-a_{0} r_{2}}{r_{1}-r_{2}}, c_{2}=\frac{-a_{1}+a_{0} r_{1}}{r_{1}-r_{2}}$. So this is possible when $r_{1} \neq r_{2}$.

Example: Two Real Roots

- Find the solution to the recurrence relation $a_{n}=3 a_{n-1}+4 a_{n-2}$, with $a_{0}=3$ and $a_{1}=2$.
- First, find the roots of the quadratic equation $x^{2}-3 x-4=0$.

$$
x^{2}-3 x-4=0 \Rightarrow(x-4)(x+1)=0 \Rightarrow x=4 \text { or } x=-1
$$

Therefore, $a_{n}=c_{1} 4^{n}+c_{2}(-1)^{n}$.
To determine c_{1} and c_{2}, we note

$$
\begin{aligned}
& 3=a_{0}=c_{1}+c_{2} \\
& 2=a_{1}=c_{1} \cdot 4+c_{2} \cdot(-1)
\end{aligned}
$$

Solving the system, we get $c_{1}=1$ and $c_{2}=2$. Thus, $a_{n}=4^{n}+2(-1)^{n}$.

The Fibonacci Numbers

- The Fibonacci numbers were defined by the recurrence relation $F_{n}=F_{n-1}+F_{n-2}$. We find a closed form formula for F_{n}.
- First, solve the quadratic equation $x^{2}-x-1=0$. Its roots are $x=\frac{1 \pm \sqrt{5}}{2}$. Therefore, there is a formula for F_{n} of the form

$$
F_{n}=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

To determine c_{1} and c_{2}, we note

$$
\begin{aligned}
& 1=F_{0}=c_{1}+c_{2} \\
& 1=F_{1}=c_{1} \frac{1+\sqrt{5}}{2}+c_{2} \frac{1-\sqrt{5}}{2}
\end{aligned}
$$

Solving the system, we get $c_{1}=\frac{5+\sqrt{5}}{10}$ and $c_{2}=\frac{5-\sqrt{5}}{10}$. Thus, $F_{n}=\frac{5+\sqrt{5}}{10}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\frac{5-\sqrt{5}}{10}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$.

Example: Two Complex Conjugate Roots

- Solve the recurrence relation $a_{n}=2 a_{n-1}-2 a_{n-2}$, where $a_{0}=1$ and $a_{1}=3$.
- The associated quadratic equation is $x^{2}-2 x+2=0$. This has two complex roots: $x=1 \pm i$. So we seek a formula of the form $a_{n}=c_{1}(1+i)^{n}+c_{2}(1-i)^{n}$. To determine c_{1} and c_{2}, we note

$$
\begin{aligned}
& 1=a_{0}=c_{1}+c_{2} \\
& 3=a_{1}=c_{1}(1+i)+c_{2}(1-i)
\end{aligned}
$$

Solving the system, we get $c_{1}=\frac{1}{2}-i$ and $c_{2}=\frac{1}{2}+i$. Thus,

$$
a_{n}=\left(\frac{1}{2}-i\right)(1+i)^{n}+\left(\frac{1}{2}+i\right)(1-i)^{n} .
$$

The Case of Repeated Roots

Theorem

Let s_{1}, s_{2} be numbers so that the quadratic equation $x^{2}-s_{1} x-s_{2}=0$ has exactly one root $r \neq 0$. Then every solution to the recurrence relation $a_{n}=s_{1} a_{n-1}+s_{2} a_{n-2}$ is of the form $a_{n}=c_{1} r^{n}+c_{2} n r^{n}$.

- Since the quadratic equation has a single root, it must be of the form $(x-r)(x-r)=x^{2}-2 r x+r^{2}$. Thus the recurrence must be $a_{n}=2 r a_{n-1}-r^{2} a_{n-2}$. We show that a_{n} satisfies the recurrence and that c_{1}, c_{2} can be chosen so as to produce all possible a_{0}, a_{1}.
- To see that a_{n} satisfies the recurrence, note $2 r a_{n-1}-r^{2} a_{n-2}$

$$
\begin{aligned}
& =2 r\left(c_{1} r^{n-1}+c_{2}(n-1) r^{n-1}\right)-r^{2}\left(c_{1} r^{n-2}+c_{2}(n-2) r^{n-2}\right) \\
& =\left(2 c_{1} r^{n}-c_{1} r^{n}\right)+\left(2 c_{2}(n-1) r^{n}-c_{2}(n-2) r^{n}\right) \\
& =c_{1} r^{n}+c_{2} n r^{n}=a_{n} .
\end{aligned}
$$

- To see that we can choose c_{1}, c_{2} to produce all possible a_{0}, a_{1}, we solve

$$
\begin{aligned}
& a_{0}=c_{1} r^{0}+c_{2} \cdot 0 \cdot r_{0}=c_{1} \\
& a_{1}=c_{1} r^{1}+c_{2} \cdot 1 \cdot r=r\left(c_{1}+c_{2}\right) .
\end{aligned}
$$

So long as $r \neq 0$, we can solve these: $c_{1}=a_{0}$ and $c_{2}=\frac{a_{0} r-a_{1}}{r}$.

Example: A Repeated Root

- Solve the recurrence relation $a_{n}=4 a_{n-1}-4 a_{n-2}$, where $a_{0}=1$ and $a_{1}=3$.
- The associated quadratic equation is $x^{2}-4 x+4=0$. We get

$$
x^{2}-4 x+4=0 \Rightarrow(x-2)^{2}=0 \Rightarrow x=2
$$

So we seek a formula of the form $a_{n}=c_{1} 2^{n}+c_{2} n 2^{n}$. To determine c_{1} and c_{2}, we note

$$
\begin{aligned}
& 1=a_{0}=c_{1} \\
& 3=a_{1}=c_{1} \cdot 2+c_{2} \cdot 1 \cdot 2
\end{aligned}
$$

Solving the system, we get $c_{1}=1$ and $c_{2}=\frac{1}{2}$. Thus,

$$
a_{n}=2^{n}+\frac{1}{2} \cdot n \cdot 2^{n} .
$$

The Difference Operator

- Let $a_{0}, a_{1}, a_{2}, \ldots$ be a sequence of numbers. Let Δa denote a new sequence in which each term is the difference of two consecutive terms of the original sequence. That is, Δa is the sequence whose n-th term is

$$
\Delta a_{n}=a_{n+1}-a_{n} .
$$

We call Δ the difference operator.

- Example: Let a be the sequence

$$
0,2,7,15,26,40,57, \ldots
$$

The sequence Δa is

$$
2,5,8,11,14,17, \ldots
$$

We may write the sequence a on one row and Δa on a second row with Δa_{n} written between a_{n} and a_{n+1} :

Reduction of Degree

Proposition

Let a be a sequence of numbers in which a_{n} is given by a degree d polynomial in n where $d \geq 1$. Then Δa is a sequence given by a polynomial of degree $d-1$.

- Suppose $a_{n}=c_{d} n^{d}+c_{d-1} n^{d-1}+\cdots+c_{1} n+c_{0}, c_{d} \neq 0$ and $d \geq 1$. We calculate Δa_{n} :

$$
\begin{aligned}
\Delta a_{n}= & a_{n+1}-a_{n} \\
= & {\left[c_{d}(n+1)^{d}+c_{d-1}(n+1)^{d-1}+\cdots+c_{1}(n+1)+c_{0}\right] } \\
& -\left[c_{d} n^{d}+c_{d-1} n^{d-1}+\cdots+c_{1} n+c_{0}\right] \\
= & {\left[c_{d}(n+1)^{d}-c_{d} n^{d}\right]+\left[c_{d-1}(n+1)^{d-1}-c_{d-1} n^{d-1}\right] } \\
& +\cdots+\left[c_{1}(n+1)-c_{1} n\right]+\left[c_{0}-c_{0}\right]
\end{aligned}
$$

Each term on the last line is of the form $c_{j}(n+1)^{j}-c_{j} n^{j}$. We expand the $(n+1)^{j}$ using the Binomial Theorem.

Reduction of Degree (Cont'd)

- We have $\Delta a_{n}=\left[c_{d}(n+1)^{d}-c_{d} n^{d}\right]+\left[c_{d-1}(n+1)^{d-1}-\right.$ $\left.c_{d-1} n^{d-1}\right]+\cdots+\left[c_{1}(n+1)-c_{1} n\right]+\left[c_{0}-c_{0}\right]$.
- We look at $c_{j}(n+1)^{j}-c_{j} n^{j}$:

$$
\begin{aligned}
& c_{j}(n+1)^{j}-c_{j} n^{j} \\
= & c_{j}\left[n^{j}+\binom{j}{1} n^{j-1}+\binom{j}{2} n^{j-2}+\cdots+\binom{j}{j} n^{0}\right]-c_{j} n^{j} \\
= & c_{j}\left[\binom{j}{1} n^{j-1}+\binom{j}{2} n^{j-2}+\cdots+\binom{j}{j}\right] .
\end{aligned}
$$

So $c_{j}(n+1)^{j}-c_{j} n^{j}$ is a polynomial of degree $j-1$. Therefore, $c_{d}(n+1)^{d}-c_{d} n^{d}$ is a polynomial of degree $d-1$. Moreover, none of the subsequent terms in Δa_{n} can cancel the n^{d-1} term because they all have degree less than $d-1$. Therefore, Δa_{n} is given by a polynomial of degree $d-1$.

Repeated Application of the Difference Operator

- If a is given by a polynomial of degree d, then Δa is given by a polynomial of degree $d-1$. Therefore, $\Delta^{2} a=\Delta(\Delta a)$ is given by a polynomial of degree $d-2$, etc.
- Since each subsequent sequence is a polynomial of degree one lower, we eventually reach a polynomial of degree zero, i.e., a constant. One more application yields the all-zero sequence!

Corollary

If a sequence a is generated by a polynomial of degree d, then $\Delta^{d+1} a$ is the all-zeros sequence.

- Example: The sequence $0,2,7,15,26,40,57, \ldots$ is generated by a polynomial. We get:

a	0	2		7		15		26		40		57
Δa		2		5		8		11		14		17
$\Delta^{2} a$			3	3		3		3		3		
$\Delta^{3} a$			0		0		0		0			

Linearity of Difference

- If there is a positive integer k such that $\Delta^{k} a_{n}$ is the all-zeros
sequence, then a_{n} is given by a polynomial formula. In addition, there is a simple method for deducing the polynomial that generates a_{n}.

Proposition (Linearity of Difference)

Let a, b and c be sequences of numbers and s a number.
(1) If, for all $n, c_{n}=a_{n}+b_{n}$, then $\Delta c_{n}=\Delta a_{n}+\Delta b_{n}$.
(2) If, for all $n, b_{n}=s a_{n}$, then $\Delta b_{n}=s \Delta a_{n}$.

More succinctly, $\Delta\left(a_{n}+b_{n}\right)=\Delta a_{n}+\Delta b_{n}$ and $\Delta\left(s a_{n}\right)=s \Delta a_{n}$.

- If $c_{n}=a_{n}+b_{n}$, then $\Delta c_{n}=c_{n+1}-c_{n}=\left(a_{n+1}+b_{n+1}\right)-\left(a_{n}+b_{n}\right)=$

$$
\left(a_{n+1}-a_{n}\right)+\left(b_{n+1}-b_{n}\right)=\Delta a_{n}+\Delta b_{n}
$$

- Similarly, if $b_{n}=s a_{n}$, then

$$
\Delta b_{n}=b_{n+1}-b_{n}=s a_{n+1}-s a_{n}=s\left(a_{n+1}-a_{n}\right)=s \Delta a_{n} .
$$

Binomial Coefficients and Difference

Proposition

Let k be a positive integer and let $a_{n}=\binom{n}{k}$, for all $n \geq 0$. Then $\Delta a_{n}=\binom{n}{k-1}$.

- We need to show that $\Delta\binom{n}{k}=\binom{n}{k-1}$, for all $n \geq 0$. This is equivalent to $\binom{n+1}{k}-\binom{n}{k}=\binom{n}{k-1}$ which is the same as $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$, which holds by Pascal's Identity whenever $0<k<n+1$. So we only need to prove it when $n+1 \leq k$ (i.e., $n \leq k-1$).
- If $n<k-1$, all three terms equal zero.
- If $n=k-1$, we have $\binom{n+1}{k}=\binom{k}{k}=1,\binom{n}{k}=\binom{k-1}{k}=0$ and

$$
\binom{n}{k-1}=\binom{k-1}{k-1}=1 .
$$

Determinacy Based on First Term and Differences

Proposition

Let a and b be sequences of numbers and let k be a positive integer.
Suppose that

- $\Delta^{k} a_{n}=\Delta^{k} b_{n}=0$, for all n;
- $a_{0}=b_{0}$;
- $\Delta^{j} a_{0}=\Delta^{j} b_{0}$, for all $1 \leq j<k$.

Then $a_{n}=b_{n}$, for all n.

- The proof is by induction on k.
- Basis: $k=1$. In this case, $\Delta a_{n}=\Delta b_{n}=0$ for all n. This means that $a_{n+1}-a_{n}=0$ for all n. So $a_{n+1}=a_{n}$ for all n, i.e., all terms in a_{n} are identical. Likewise for b_{n}. Since, by hypothesis, $a_{0}=b_{0}$, the two sequences are the same.
- Induction Hypothesis: The Proposition has been proved for $k=l$.
- Induction Step: We must prove the result in the case $k=I+1$.

Determinacy Based on First Term and Differences (Cont'd)

- We are continuing the Induction;
- Induction Step: We are assuming that the Proposition has been proved for $k=l$ and are working to prove it for $k=l+1$. Let a and b be sequences such that
- $\Delta^{I+1} a_{n}=\Delta^{I+1} b_{n}=0$, for all n,
- $a_{0}=b_{0}$ and
- $\Delta^{j} a_{0}=\Delta^{j} b_{0}$, for all $1 \leq j<I+1$.

Consider the sequences $a_{n}^{\prime}=\Delta a_{n}$ and $b_{n}^{\prime}=\Delta b_{n}$. By our hypotheses we see that $\Delta^{\prime} a_{n}^{\prime}=\Delta^{\prime} b_{n}^{\prime}=0$, for all $n, a_{0}^{\prime}=b_{0}^{\prime}$, and $\Delta^{j} a_{0}^{\prime}=\Delta^{j} b_{0}^{\prime}$, for all $1 \leq j<1$. Therefore, by induction, a^{\prime} and b^{\prime} are identical. Now use smallest counterexample proof to show that $a_{n}=b_{n}$, for all n. Let m be the smallest subscript so that $a_{m} \neq b_{m}$.

- $m \neq 0$ because we are given $a_{0}=b_{0}$; Thus $m>0$.
- Now, we know $a_{m-1}=b_{m-1}$ and $a_{m-1}^{\prime}=b_{m-1}^{\prime}$. But then

$$
\begin{aligned}
& a_{m}=\left(a_{m}-a_{m-1}\right)+a_{m-1}=a_{m-1}^{\prime}+a_{m-1}=b_{m-1}^{\prime}+b_{m-1}= \\
& \left(b_{m}-b_{m-1}\right)+b_{m-1}=b_{m}, \text { a contradiction! }
\end{aligned}
$$

Deriving a Sequence from its Differences I

Theorem

Let $a_{0}, a_{1}, a_{2}, \ldots$ be a sequence of numbers. The terms a_{n} can be expressed as polynomial expressions in n if and only if there is a nonnegative integer k such that for all $n \geq 0$ we have $\Delta^{k+1} a_{n}=0$. Then,

$$
a_{n}=a_{0}\binom{n}{0}+\left(\Delta a_{0}\right)\binom{n}{1}+\left(\Delta^{2} a_{0}\right)\binom{n}{2}+\cdots+\left(\Delta^{k} a_{0}\right)\binom{n}{k} .
$$

- If a_{n} is given by a polynomial of degree d, then $\Delta^{d+1} a_{n}=0$, for all n.
- Suppose now that, for some k and for all $n, \Delta^{k+1} a_{n}=0$. We prove that a_{n} is given by a polynomial expression by showing that a_{n} is equal to $b_{n}=a_{0}\binom{n}{0}+\left(\Delta a_{0}\right)\binom{n}{1}+\left(\Delta^{2} a_{0}\right)\binom{n}{2}+\cdots+\left(\Delta^{k} a_{0}\right)\binom{n}{k}$. By the previous proposition, we need
- $\Delta^{k+1} a_{n}=\Delta^{k+1} b_{n}=0$, for all n;
- $a_{0}=b_{0}$ and
- $\Delta^{j} a_{0}=\Delta^{j} b_{0}$, for all $1 \leq j \leq k$.

We show all three in the next slide.

Deriving a Sequence from its Differences II

- Recall $b_{n}=a_{0}\binom{n}{0}+\left(\Delta a_{0}\right)\binom{n}{1}+\left(\Delta^{2} a_{0}\right)\binom{n}{2}+\cdots+\left(\Delta^{k} a_{0}\right)\binom{n}{k}$.
- Showing $\Delta^{k+1} a_{n}=\Delta^{k+1} b_{n}=0$, for all n :
$\Delta^{k+1} a_{n}=0$ holds by hypothesis. Since b_{n} is a polynomial of degree k, $\Delta^{k+1} b_{n}=0$ also.
- Showing $a_{0}=b_{0}$:

$$
b_{0}=a_{0}\binom{0}{0}+\left(\Delta a_{0}\right)\binom{0}{1}+\left(\Delta^{2} a_{0}\right)\binom{0}{2}+\cdots+\left(\Delta^{k} a_{0}\right)\binom{0}{k}=a_{0} .
$$

- Showing $\Delta^{j} a_{0}=\Delta^{j} b_{0}$, for all $1 \leq j \leq k$:

Set $c_{j}=\Delta^{j} a_{0}, 1 \leq j \leq k$. Then, we get
$b_{n}=c_{0}\binom{n}{0}+c_{1}\binom{n}{1}+\cdots+c_{k}\binom{n}{k}$. We have

$$
\begin{array}{rll}
\Delta^{j} b_{n} & \stackrel{\Delta^{j}}{=}\left[c_{0}\binom{n}{0}+c_{1}\binom{n}{1}+\cdots+c_{k}\binom{n}{k}\right] \\
& \text { Linearity } \\
& c_{0} \Delta^{j}\binom{n}{0}+c_{1} \Delta^{j}\binom{n}{1}+\cdots+c_{k} \Delta^{j}\binom{n}{k} \\
& \text { Binomials } & 0+\cdots+0+c^{j} \Delta^{j}\binom{n}{j}+c_{j+1} \Delta^{j}\binom{n}{j+1}+\cdots+c_{k} \Delta^{j}\binom{n}{k} \\
& = & c_{j}\binom{n}{0}+c_{j+1}\binom{n}{1}+\cdots+c_{k}\binom{n}{k-j} .
\end{array}
$$

So, setting $n=0$ yields $\Delta^{j} b_{0}=c_{j}=\Delta^{j} a_{0}$.

Revisiting an Example

- Recall the sequence $0,2,7,15,26,40,57, \ldots$ whose differences we have computed before:

a	0		2		7		15		26		40	
Δa		2		5		8		11		14		17
$\Delta^{2} a$		3		3		3		3		3		
$\Delta^{3} a$			0		0		0		0			

By the Theorem

$$
\begin{aligned}
a_{n} & =a_{0}\binom{n}{0}+\left(\Delta a_{0}\right)\binom{n}{1}+\left(\Delta^{2} a_{0}\right)\binom{n}{2} \\
& =0\binom{n}{0}+2\binom{n}{1}+3\binom{n}{2} \\
& =2 \frac{n!}{1!(n-1)!}+3 \frac{n!}{2!(n-2)!} \\
& =2 n+3 \frac{n(n-1)}{2}=\frac{3 n^{2}+n}{2}=\frac{n(3 n+1)}{2} .
\end{aligned}
$$

Deriving a Formula for the Sum of Squares

- Our goal is to use the theorem to show:

$$
0^{2}+1^{2}+2^{2}+\cdots+n^{2}=\frac{(2 n+1)(n+1)(n)}{6}
$$

Let $a_{n}=0^{2}+1^{2}+\cdots+n^{2}$. Then, we have

Therefore,

$$
\begin{aligned}
a_{n} & =0\binom{n}{0}+1\binom{n}{1}+3\binom{n}{2}+2\binom{n}{3} \\
& =0+n+\frac{3}{2} n(n-1)+\frac{2}{6} n(n-1)(n-2) \\
& =\frac{2 n^{3}+3 n^{2}+n}{6}=\frac{(2 n+1)(n+1)(n)}{6} .
\end{aligned}
$$

