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More on Proofs Contradiction

Subsection 1

Contradiction
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More on Proofs Contradiction

The Contrapositive

The statement “If A, then B” is logically equivalent to the statement
“If (not B), then (not A)”.
The statement “If (not B), then (not A)” is called the
contrapositive of “If A, then B .”
Why are a statement and its contrapositive logically equivalent?

For “If A, then B” to be true, it must be the case that whenever A is
true, B must also be true. If it ever should happen that B is false, then
it must have been the case that A was false. In other words, if B is
false, then A must be false. Thus we have “If (not B), then (not A).”
Alternatively, “If A, then B” is logically equivalent to “(not A) or B”.
By the same reasoning, “If (not B), then (not A)” is equivalent to
“(not (not B)) or (not A)”, but “not (not B)” is the same as B, so
this becomes “B or (not A)”, which is equivalent to “(not A) or B”.

In symbols,

a → b = (¬a) ∨ b = (¬(¬b)) ∨ (¬a) = (¬b) → (¬a).
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More on Proofs Contradiction

Equivalence of a → b and (¬b) → (¬a)

We can also verify the equivalence of a → b and (¬b) → (¬a)
mechanically by looking at truth tables:

a b a → b ¬b ¬a (¬b) → (¬a)
T T T F F T

T F F T F F

F T T F T T

F F T T T T

Therefore, a → b and (¬b) → (¬a) are logically equivalent.
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More on Proofs Contradiction

Proof by Contraposition

Proposition

Let R be an equivalence relation on a set A and let a, b ∈ A. If a 6R b,
then [a] ∩ [b] = ∅.

Let R be an equivalence relation on a set A and let a, b ∈ A.

We prove the contrapositive of the statement:

Suppose [a] ∩ [b] 6= ∅.
Thus, there is an x ∈ [a] ∩ [b].
This means that x ∈ [a] and x ∈ [b].
Hence x R a and x R b.
By symmetry, a R x .
Since x R b, by transitivity, a R b.
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More on Proofs Contradiction

Reductio ad Absurdum (Proof by Contradiction)

Proof by contrapositive is an alternative to direct proof. If we cannot
find a direct proof, we try to prove the contrapositive.

A proof technique that combines direct proof and proof by
contrapositive is called proof by contradiction or, in Latin, reductio
ad absurdum.

We want to prove “If A, then B”.
We show that it is impossible for A to be true while B is false. In other
words, we show that “A and (not B)” is impossible.
How do we prove that something is impossible? We suppose the
impossible thing is true and prove that this supposition leads to an
absurd conclusion. If a statement implies something clearly wrong,
then that statement must have been false!

To prove “If A, then B”, we assume the hypothesis A and we assume
the opposite of the conclusion, (not B). From these two assumptions,
we try to reach a clearly false statement.
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More on Proofs Contradiction

Equivalence of a → b and (a ∧ ¬b) → F

We can also verify the equivalence of a → b and (a ∧ ¬b) → F

mechanically by looking at truth tables:

a b a → b ¬b a ∧ ¬b (a ∧ ¬b) → F

T T T F F T

T F F T T F

F T T F F T

F F T T F T

Therefore, a → b and (a ∧ ¬b) → F are logically equivalent.
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More on Proofs Contradiction

Proof by Contradiction: An Example

Proposition

No integer is both even and odd.

Let x be an integer.

Suppose, for the sake of contradiction, that x is both even and odd.
Since x is even, we know 2 | x .
Thus, there is an integer a such that x = 2a.
Since x is odd, we know that there is an integer b such that x = 2b+1.
Therefore, 2a = 2b + 1.
Dividing both sides by 2 gives a = b + 1

2 , i.e., a− b = 1
2 .

But a− b is an integer (since a and b are integers) whereas 1
2 is not an

integer, which is a contradiction!
Therefore, x is not both even and odd, and the proposition is proved.
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More on Proofs Contradiction

Special Cases: Emptiness of a Set and Uniqueness

To prove a set is empty:

Assume the set is nonempty and argue to a contradiction.

To prove there is at most one object that satisfies conditions:

Suppose there are two different objects, x and y , that satisfy
conditions. Argue to a contradiction.

Proposition

Let a and b be numbers with a 6= 0. There is at most one number x with
ax + b = 0.

Suppose there are two different numbers x and y such that
ax + b = 0 and ay + b = 0. This gives ax + b = ay + b. Subtracting
b from both sides gives ax = ay . Since a 6= 0, we can divide both
sides by a to give x = y . This is a contradiction!
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More on Proofs Smallest Counterexample

Subsection 2

Smallest Counterexample
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More on Proofs Smallest Counterexample

Proof by Contradiction: Counterexample View

The method of proof by contradiction:
We want to prove a result of the form “If A, then B”.
Suppose this result were false. Then, there would be a counterexample
to the statement. That is, there would be an instance where A is true
and B is false.
We analyze the alleged counterexample and produce a contradiction.
Since the supposition that there is a counterexample leads to an absurd
conclusion (a contradiction), that supposition must be wrong; there is
no counterexample.
Since there is no counterexample, the result must be true.

Example: No integer could be both even and odd.
Suppose the statement “No integer is both even and odd” were false.
Then there would be an integer x that is both even and odd.
Since x is even, there is an integer a such that x = 2a.
Since x is odd, there is an integer b such that x = 2b + 1.
Thus 2a = 2b + 1, which implies a− b = 1

2 .
Since a and b are integers, so is a− b = 1

2 , a contradiction!
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More on Proofs Smallest Counterexample

Smallest Counterexample: Main Idea

Proposition

Every natural number is either even or odd.

If not all natural numbers are even or odd, there is a smallest natural
number, x , that is neither even nor odd. We know x 6= 0 because 0 is
even. Therefore x ≥ 1. Since 0 ≤ x − 1 < x , we see that x − 1 is
smaller than x , so x − 1 is either even or odd.

If x − 1 is odd, then x − 1 = 2a+ 1 for some integer a. Thus,
x = 2a+ 2 = 2(a+ 1), so x is even, a contradiction!
If x − 1 is even, then x − 1 = 2b for some integer b. Thus, x = 2b+ 1,
so x is odd, a contradiction!

In every case, we have a contradiction, so the supposition is false!
We observe that in the Smallest Counterexample Proof:

We use proof by contradiction;
We consider a smallest counterexample to the result.
We need to treat the very smallest possibility as a special case.
We descend to a smaller case for which the theorem is true and work
back.
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More on Proofs Smallest Counterexample

Extending the Proposition to Integers

Proposition

Every integer is either even or odd.

The key idea is that either x ≥ 0 (in which case we are finished by the
previous Proposition) or else x < 0 (in which case −x ∈ N, and again
we can use the previous Proposition).

Let x be any integer.

If x ≥ 0, then x ∈ N, so by the previous proposition, x is either even or
odd.
Otherwise, x < 0. In this case −x > 0, so −x is either even or odd.

If −x is even, then −x = 2a for some integer a. But then
x = − 2a = 2(−a), so x is even.
If −x is odd, then −x = 2b + 1 for some integer b. From this we have
x = − 2b − 1 = 2(−b − 1) + 1, so x is odd.

In every case, x is either even or odd.
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More on Proofs Smallest Counterexample

Another Proof by Smallest Counterexample

Proposition

Let n be a positive integer. The sum of first n odd natural numbers is n2.

The first n odd natural numbers are 1, 3, 5, . . . , 2n − 1. The
proposition claims that 1 + 3 + 5 + · · ·+ (2n − 1) = n2 or,
∑n

k=1(2k − 1) = n2.

Suppose the statement is false. There is a smallest positive integer x
for which the statement is false (i.e., the sum of the first x odd
numbers is not x2). So 1 + 3 + 5 + · · ·+ (2x − 1) 6= x2.

Note that x 6= 1 because the sum of the first 1 odd number is 1 = 12.
So x > 1.
Since x is the smallest counterexample and x > 1, the sum of the first
x − 1 odd numbers must equal (x − 1)2. So
1+3+5+ · · ·+[2(x − 1)− 1] = (x − 1)2. We add 2x − 1 to both sides:
1 + 3 + 5 + · · ·+ [2(x − 1)− 1] + (2x − 1) = (x − 1)2 + (2x − 1) =
(x2 − 2x + 1) + (2x − 1) = x2, which is a contradiction!
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More on Proofs Smallest Counterexample

Never Omit the Basis Step!!

A False Proposition

Every natural number is both even and odd.

We give a bogus proof using the Smallest Counterexample method,
but omitting the basis step.
Suppose the statement is false. Then there is a smallest natural
number x that is not both even and odd. Consider x − 1. Since
x − 1 < x , x − 1 is not a counterexample. Therefore x − 1 is both
even and odd.

Since x − 1 is even, x − 1 = 2a for some integer a, whence x = 2a+ 1,
and x is odd.
Since x − 1 is odd, x − 1 = 2b + 1 for some integer b, and so
x = 2b + 2 = 2(b + 1), so x is even.

Thus x is both even and odd, a contradiction!

Where is the mistake? The error is in the sentence “Therefore x − 1
is both even and odd.” It is correct that x − 1 is not a
counterexample, but we do not know that x − 1 is a natural number!
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More on Proofs Smallest Counterexample

Not Applicable for Integers or Rational Numbers

Another False Proposition

Every nonnegative rational number is an integer.

Recall that a rational number is any number that can be expressed
as a fraction a/b, where a, b ∈ Z and b 6= 0.

This statement is asserting that numbers such as 1
4 are integers.

Obviously false!

The following is a bogus proof:
Suppose the statement is false.
Let x be a smallest counterexample.
Notice that x = 0 is not a counterexample because 0 is an integer.
Since x is a nonnegative rational, so is x/2. Furthermore, since x 6= 0,
we know that x/2 < x , so x/2 being smaller than x , is not a
counterexample, and x/2 must be an integer.
Now x = 2(x/2), and 2 times an integer is an integer;
Therefore x is an integer, a contradiction!
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More on Proofs Smallest Counterexample

The Well-Ordering Principle

What is wrong with this “proof”?
It looks like we followed the right steps, and even remembered to do a
basis step.

The problem is in the sentence “Let x be a smallest counterexample.”
There are infinitely many counterexamples to this statement,
including 1

2 ,
1
3 ,

1
4 , . . . These form an infinite descent of

counterexamples, and so there can be no smallest counterexample!

When can we be certain to find a smallest counterexample?

The Well-Ordering Principle

Every nonempty set of natural numbers contains a least element.
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More on Proofs Smallest Counterexample

Examples

Let P = {x ∈ N : x is prime}.
This set is a non empty subset of the natural numbers. By the
Well-Ordering Principle, P contains a least element. Of course, the
least element in P is 2.

Consider the set X = {x ∈ N : x is even and odd}.
We know that this set is empty because we have shown that no
natural number is both even and odd. But for the sake of
contradiction, we suppose that X 6= ∅; then, by the Well-Ordering
Principle, X would contain a smallest element. This is the central
idea in the proof that showed that X = ∅.
In contradistinction, consider the set Y = {y ∈ Q : y ≥ 0, y 6∈ Z}.
The bogus proof we studied sought a least element of Y . We
subsequently realized that Y has no least element, and that was the
error in our “proof.” The Well-Ordering Principle applies to N, but
not to Q.
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More on Proofs Smallest Counterexample

Sum of a Geometric Series

Proposition

Let n ∈ N. If a 6= 0 and a 6= 1, then
n
∑

k=0

ak = a0 + a1 + a2 + · · ·+ an =
an+1 − 1

a− 1
.

Suppose, for the sake of contradiction, that the statement is false.

Let X be the set of counterexamples:

X = {n ∈ N :
∑n

k=0 a
k 6= an+1−1

a−1 } 6= ∅. Since X 6= ∅ subset of N, by
the Well-Ordering Principle, it contains a least element x .

Note that for n = 0, the equation gives a0 = a1−1
a−1 and this is true.

This means that n = 0 is not a counterexample. Thus x 6= 0.
Since x > 0, x − 1 ∈ N and x − 1 6∈ X because x − 1 is smaller than
the least element of X . Therefore, a0 + a1 + · · ·+ ax−1 + ax =
ax−1
a−1 + ax = ax−1+ax (a−1)

a−1 = ax−1+ax+1
−ax

a−1 = ax+1
−1

a−1 , This shows that x
satisfies the proposition contradicting x ∈ X .
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More on Proofs Smallest Counterexample

Proving an Inequality

Proposition

For all integers n ≥ 5, we have 2n > n2.

Suppose that the statement is false.

Let X be the set of counterexamples:
X = {n ∈ Z : n ≥ 5, 2n ≯ n2} 6= ∅. By the Well-Ordering Principle, X
contains a least element x .

We claim that x 6= 5. Note that 25 = 32 > 25 = 52, so 5 is not a
counterexample to the proposition. Thus x ≥ 6.
Since x ≥ 6, we have x − 1 ≥ 5, and, since x is the least element of X ,
we know that the proposition is true for n = x − 1. Thus,
2x−1 > (x − 1)2 ⇒ 1

2 · 2x > x2 − 2x + 1 ⇒ 2x > 2x2 − 4x + 2.
Now it suffices to show 2x2 − 4x + 2 ≥ x2. This is equivalent to
x2 − 4x + 4 ≥ 2, i.e., to (x − 2)2 ≥ 2, which clearly holds for all x ≥ 6!
But this contradicts x ∈ X .
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More on Proofs Smallest Counterexample

The Fibonacci Sequence

The Fibonacci numbers are the list of integers (1, 1, 2, 3, 5, 8, . . .)
= (F0,F1,F2, . . .), where F0 = 1, F1 = 1, and Fn = Fn−1 + Fn−2, for
n ≥ 2.

Proposition

For all n ∈ N, we have Fn ≤ 1.7n.

Suppose that the statement is false.

Let X be the set of counterexamples X = {n ∈ N : Fn � 1.7n} 6= ∅.
By the Well-Ordering Principle, X contains a least element x .

Observe that x 6= 0 because F0 = 1 = 1.70 and x 6= 1 because
F1 = 1 ≤ 1.71. Thus, x ≥ 2.
Now we know that Fx = Fx−1 + Fx−2 and, since x − 1 and x − 2 are
natural numbers less than x , Fx−1 ≤ 1.7x−1 and Fx−2 ≤ 1.7x−2. We
work as follows: Fx = Fx−1 + Fx−2 ≤ 1.7x−1 + 1.7x−2

= 1.7x−2(1.7 + 1) = 1.7x−2(2.7) < 1.7x−2(2.89) = 1.7x−2(1.72)
= 1.7x . Therefore the statement is true for n = x , contradicting x ∈ X .
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More on Proofs Induction

Subsection 3

Induction
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More on Proofs Induction

Illustrating with a Proof

Proposition

Let n be a positive integer. The sum of first n odd natural numbers is n2.

We would like to prove

1 + 3 + 5 + · · ·+ (2n − 1) = n2.

We prove that the statement is true for n = 1: 1 = 12.

We assume that it is true for n = k :

1 + 3 + 5 + · · ·+ (2k − 1) = k2.

We now try to show it is true for n = k + 1:

1 + 3 + 5 + · · · + (2k − 1) = k2

1 + 3 + 5 + · · · + (2k − 1) + (2k + 1) = k2 + (2k + 1)
1 + 3 + 5 + · · · + (2k − 1) + (2k + 1) = (k + 1)2.

Now we conclude that 1 + 3 + 5 + · · ·+ (2n − 1) = n2, for all natural
numbers n ≥ 1!
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More on Proofs Induction

The Principle of Mathematical Induction

Theorem (Principle of Mathematical Induction)

Let A be a set of natural numbers. If

0 ∈ A;

For all k ∈ N, k ∈ A ⇒ k + 1 ∈ A,

then A = N.

We use the Well-Ordering and argue by Least Counterexample;

Suppose that A 6= N.
Let X = N− A 6= ∅. By the Well-Ordering Principle, since X is a
nonempty set of natural numbers, it contains a least element x .
Thus, x is the smallest natural number not in A.

Note x 6= 0 because, by hypothesis, 0 ∈ A, so 0 6∈ X . Therefore, x ≥ 1.
Thus x − 1 ≥ 0, so x − 1 ∈ N. and, since x is the smallest element not
in A, we have x − 1 ∈ A. Now the second condition of the theorem
says that whenever a natural number is in A, so is the next larger
natural number. Since x − 1 ∈ A, we know that (x − 1) + 1 = x is in
A. This contradicts x 6∈ A.
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More on Proofs Induction

Proof by Induction I

Proposition

Let n be a natural number. Then 02 + 12 + 22 + · · ·+ n2 = (2n+1)(n+1)(n)
6 .

Let A be the set of natural numbers for which the statement is true.
0 ∈ A because 02 = (2·0+1)(0+1)(0)

6 .
Suppose the result is true for n = k , i.e., assume

02 + 12 + · · ·+ k2 = (2k+1)(k+1)(k)
6 ;

We must show that the equation is true for n = k + 1, i.e., that

02 + 12 + · · ·+ k2 + (k + 1)2 = (2k+3)(k+2)(k+1)
6 ;

02 + 12 + · · ·+ k2 + (k + 1)2 = (2k+1)(k+1)(k)
6 + (k + 1)2

= [ (2k+1)(k)
6 + k + 1](k + 1)

= [ 2k
2+k+6k+6

6 ](k + 1)

= (2k+3)(k+2)(k+1)
6 .

We have shown 0 ∈ A and k ∈ A ⇒ (k + 1) ∈ A. Therefore, by
induction, A = N; so the proposition is true for all natural numbers.
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More on Proofs Induction

Proof by Induction II

Proposition

Let n be a positive integer. Then 20 + 21 + · · · + 2n−1 = 2n − 1.

We prove this by induction on n.

For n = 1, 20 = 21 − 1 holds.
Suppose the result is true for n = k , i.e., assume
20 + 21 + · · ·+ 2k−1 = 2k − 1;
We must show that the equation is true for n = k + 1, i.e., that
20 + 21 + · · ·+ 2k−1 + 2k = 2k+1 − 1;

20 + 21 + · · ·+ 2k−1 + 2k = 2k − 1 + 2k

= 2 · 2k − 1
= 2k+1 − 1.

Thus, the proposition is true for all positive integers.
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More on Proofs Induction

Proof by Induction III

Proposition

Let n be a positive integer. Then 1 · 1! + 2 · 2! + · · ·+ n · n! = (n+1)!− 1.

We prove this by induction on n.

For n = 1, 1 · 1! = (1 + 1)!− 1 holds.
Suppose the result is true for n = k , i.e., assume
1 · 1! + 2 · 2! + · · ·+ k · k! = (k + 1)!− 1;
We must show that the equation is true for n = k + 1, i.e., that
1 · 1! + 2 · 2! + · · ·+ k · k! + (k + 1) · (k + 1)! = (k + 2)!− 1;

1 · 1! + 2 · 2! + · · ·+ k · k! + (k + 1) · (k + 1)!
= (k + 1)!− 1 + (k + 1) · (k + 1)!
= (1 + (k + 1)) · (k + 1)!− 1
= (k + 2) · (k + 1)!− 1
= (k + 2)!− 1.

Thus, the proposition is true for all positive integers.
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More on Proofs Induction

Proof of an Inequality by Induction

Proposition

Let n be a natural number. Then 100 + 101 + · · ·+ 10n < 10n+1.

We prove this by induction on n.

For n = 0, 100 < 101 holds.
Suppose the result is true for n = k , i.e., assume
100 + 101 + · · ·+ 10k < 10k+1;
We must show that the equation is true for n = k + 1, i.e., that
100 + 101 + · · ·+ 10k + 10k+1 < 10k+2;

100 + 101 + · · ·+ 10k + 10k+1 < 10k+1 + 10k+1

= 2 · 10k+1

< 10 · 10k+1

= 10k+2.

Thus, the proposition is true for all positive integers.
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More on Proofs Induction

Proof of a Divisibility Relation by Induction

Proposition

Let n be a natural number. Then 4n − 1 is divisible by 3.

We prove this by induction on n.

For n = 0, 40 − 1 is divisible by 3.
Suppose the result is true for n = k , i.e., 3 | (4k − 1). This means that
4k − 1 = 3a for some integer a.
We must show that the statement is true for n = k + 1, i.e., that
3 | (4k+1 − 1);

4k+1 − 1 = 4 · 4k − 1
= 4(4k − 1) + 3
= 4 · 3a+ 3
= 3(4a+ 1).

Thus, the proposition is true for all natural numbers.
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More on Proofs Induction

L-Shaped Triominoes

We wish to cover a chess board with spe-
cial tiles called L-shaped triominoes, or L-
triominoes. These are tiles formed from three
1× 1 squares joined at their edges to form an
L shape. It is not possible to tile a standard
8 × 8 chess board with L-triominoes because
there are 64 squares on the chess board and
64 is not divisible by 3. However, it is possible
to cover all but one square of the chess board,
and such a tiling is shown in the figure.

Is it possible to tile larger chess boards?
A 2n × 2n chess board has 4n squares, and, since we proved 4n − 1 is
divisible by 3, there is a hope that we may be able to cover all but
one of the squares.
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More on Proofs Induction

Proof of a Tiling by Induction

Proposition

Let n be a positive integer. For every square on a 2n × 2n chess board,
there is a tiling by L-triominoes of the remaining 4n − 1 squares.

We prove this by induction on n.
The basis case, n = 1, is obvious since placing an L-triomino on a 2× 2
chess board covers all but one of the squares, and by rotating the
triomino we can select which square is missed.
Suppose that the Proposition has been proved for n = k . We are given
a 2k+1 × 2k+1 chess board with one square selected. Divide the board
into four 2kx2k subboards. The selected square is in one of these.

Place an L-triomino overlapping three corners
from the remaining subboards as shown. We
now have four 2k×2k subboards each with one
square that does not need to be covered. By
induction, the remaining squares in the sub-
boards can be tiled by L-triominoes.

Thus, the proposition is true for all positive integers.
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More on Proofs Induction

Strong Version of Mathematical Induction

Theorem (Mathematical Induction - Strong Version)

Let A be a set of natural numbers. If

0 ∈ A;

for all k ∈ N, if 0, 1, 2, . . . , k ∈ A, then k + 1 ∈ A

then A = N.

Why is this called strong induction?
Suppose we use induction to prove a proposition.

In both standard and strong induction, we begin by showing the basis
case (0 ∈ A).
In standard induction, we assume the induction hypothesis (k ∈ A; i.e.,
the proposition is true for n = k) and then use that to prove k + 1 ∈ A

(i.e., the proposition is true for n = k + 1).
Strong induction gives a stronger induction hypothesis: We may
assume 0, 1, 2, . . . , k ∈ A (the proposition is true for all n = 0, . . . , k)
and use that to prove k + 1 ∈ A (the proposition is true for n = k + 1).

George Voutsadakis (LSSU) Fundamental Concepts January 2014 33 / 63



More on Proofs Induction

Triangulating a Polygon

Let P be a polygon in the plane. To triangu-
late a polygon is to draw diagonals through
the interior of the polygon so that

the diagonals do not cross each other;

every region created is a triangle.

The shaded triangles are called exterior triangles because two of
their three sides are on the exterior of the polygon.

Proposition

If a polygon with four or more sides is triangulated, then at least two of
the triangles formed are exterior.
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More on Proofs Induction

Proof of the Proposition

Let n denote the number of sides of the polygon. We apply strong
induction on n.

Basis case: Since this result makes sense only for n ≥ 4, the basis case
is n = 4. The only way to triangulate a quadrilateral is to draw in one
of the two possible diagonals. Either way, the two triangles formed
must be exterior.
Strong induction hypothesis: Suppose the statement is true for all
polygons on n = 4, 5, . . . , k sides.
Induction Step: Let P be any triangulated polygon with k + 1 sides.
We must prove that at least two of its triangles are exterior.

Let d be one of the diagonals. This diagonal
separates P into two polygons A and B. A

and B are triangulated polygons with fewer
sides than P .
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Proof of the Proposition (Induction Step Continued)

We continue the analysis of the Induction Step:
We drew d that separates P into two polygons A and B that are
triangulated polygons with fewer sides than P .

If A is not a triangle, then, since A has at least four, but at most k
sides, by strong induction we know that two or more of A’s triangles
are exterior. Are those exterior triangles of P? Not necessarily. If one of
A’s exterior triangles uses the diagonal d , then it is not an exterior
triangle of P. Nonetheless, the other exterior triangle of A cannot also
use the diagonal d ; So at least one exterior triangle of A is also an
exterior triangle of P.
If B is not a triangle, as in the previous case, B contributes at least one
exterior triangle to P.
If A is a triangle, then A is an exterior triangle of P.
If B is a triangle, then B is an exterior triangle of P.

In every case, both A and B contribute at least one exterior triangle to
P . So P has at least two exterior triangles.
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Identity Involving Binomials and Fibonacci Numbers

Proposition

Let n ∈ Z and let Fn denote the nth Fibonacci number. Then
(

n
0

)

+
(

n−1
1

)

+
(

n−2
2

)

+ · · ·+
(0
n

)

= Fn.

We use strong induction.
Basis case: The result is true for n = 0: We get

(

0
0

)

= 1 = F1; The

result is also true for n = 1: Indeed,
(

1
0

)

+
(

0
1

)

= 1 + 0 = 1 = F1.
Strong induction hypothesis: Suppose the statement is true for all
values of n from 0 to k . We may also assume k ≥ 1 since we have
already proved the result for n = 0 and n = 1.
Induction Step: We want to prove the statement for n = k + 1, i.e.,
(

k+1
0

)

+
(

k
1

)

+ · · ·+
(

0
k+1

)

= Fk+1.
By the strong induction hypothesis:

Fk−1 =
(

k−1
0

)

+
(

k−2
1

)

+
(

k−3
2

)

+ · · ·+
(

0
k−1

)

Fk =
(

k
0

)

+
(

k−1
1

)

+
(

k−2
2

)

+ · · ·+
(

1
k−1

)

+
(

0
k

)

;
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Binomials and Fibonacci Numbers (Cont’d)

We obtained by the Strong Induction hypothesis:

Fk−1 =
(

k−1
0

)

+
(

k−2
1

)

+
(

k−3
2

)

+ · · · +
( 1
k−2

)

+
( 0
k−1

)

Fk =
(

k
0

)

+
(

k−1
1

)

+
(

k−2
2

)

+
(

k−3
3

)

+ · · ·+
(

1
k−1

)

+
(

0
k

)

;

We add these two lines to get

Fk+1 = Fk + Fk−1 =

=
(

k
0

)

+
(

k−1
0

)

+
(

k−1
1

)

+
(

k−2
1

)

+
(

k−2
2

)

· · ·+
(

0
k−1

)

+
(

0
k

)

=
(

k
0

)

+
(

k
1

)

+
(

k−1
2

)

+ · · · +
( 2
k−1

)

+
(1
k

)

+ 0

=
(

k+1
0

)

+
(

k
1

)

+
(

k−1
2

)

+ · · ·+
( 2
k−1

)

+
(1
k

)

+
( 0
k+1

)

.

This concludes the induction step.
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Subsection 4

Recurrence Relations
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More on Proofs Recurrence Relations

Recurrence Relations and Solutions

A recurrence relation is a formula that specifies how each term of a
sequence is produced from earlier terms.

Example: an = 3an−1 + 4an−2, with a0 = 3, a1 = 2.

Solving a recurrence relation means obtaining an explicit formula
for the n-th term of the sequence.

Example: The solution of an = 3an−1 + 4an−2, with a0 = 3, a1 = 2, is
an = 4n + 2 · (−1)n.

Example: Consider the recurrence an = san−1, with given a0; We
obtain

an = san−1 = s2an−2 = s3an−3 = · · · = sna0;

Thus, the solution is an = a0s
n;
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Solving a Recurrence Relation

Proposition

All solutions to the recurrence relation an = san−1 + t, where s 6= 1, have
the form an = c1s

n + c2, where c1 and c2 are specific numbers.

a0 = a0
a1 = sa0 + t

a2 = sa1 + t = s(sa0 + t) + t = s2a0 + (s + 1)t
a3 = sa2 + t = s(s2a0 + (s + 1)t) + t = s3a0 + (s2 + s + 1)t
a4 = sa3 + t = s(s3a0 + (s2 + s + 1)t) = s4a0 + (s3 + s2 + s + 1)t.

Continuing with this pattern, we see that

an = sna0 + (sn−1 + sn−2 + · · ·+ s + 1)t.

Therefore, we obtain:

an = sna0 +
sn − 1

s − 1
t =

(

a0 +
t

s − 1

)

sn − t

s − 1
.
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An Example

Solve the recurrence an = 5an−1 + 3 where a0 = 1.

The given recurrence is of the form an = san−1 + t, with s = 5 6= 1.
Therefore, the form of its solution is an = c1s

n + c2. To find c1 and
c2, note that

1 = a0 = c1 + c2
8 = a1 = 5c1 + c2.

Solving these equations, we find c1 =
7
4 and c2 = − 3

4 and so

an =
7

4
· 5n − 3

4
.
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an = san−1 + t: The Case s = 1

Proposition

The solution to the recurrence relation an = an−1 + t is an = a0 + nt.

We obtain

an = an−1 + t

= (an−2 + t) + t = an−2 + 2t
= (an−3 + t) + 2t = an−3 + 3t
= · · ·
= a1 + (n − 1)t
= (a0 + t) + (n − 1)t
= a0 + nt.
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Second-Order Recurrence Relations

A second-order recurrence relation gives each term of a sequence
in terms of the previous two terms.

Example: an = 5an−1 − 6an−2.

Proposition

Let s1, s2 be given numbers and suppose r is a root of the quadratic
equation x2 − s1x − s2 = 0. Then an = rn is a solution to the recurrence
relation an = s1an−1 + s2an−2.

Let r be a root of x2 − s1x − s2 = 0. Observe that
s1r

n−1 + s2r
n−2 = rn−2(s1r + s2) = rn−2r2 = rn.

Therefore rn satisfies the recurrence an = s1an−1 + s2an−2.
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Example

Find a solution to the second-order recurrence relation
an = 5an−1 − 6an−2.

According to the Proposition, if r is a solution of x2 − 5x + 6 = 0,
then an = rn will be a solution to the given recurrence.
We get x2 − 5x + 6 = 0 ⇒ (x − 2)(x − 3) = 0 ⇒ x = 2 or x = 3.
Therefore, one solution is an = 2n and another solution is an = 3n.
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The General Solution of an = s1an−1 + s2an−2

Theorem

Let s1, s2 be numbers and let r1, r2 be roots of the equation
x2 − s1x − s2 = 0. If r1 6= r2, then every solution to the recurrence
an = s1an−1 + s2an−2 is of the form an = c1r

n
1 + c2r

n
2 .

We know that, if r is a solution of x2 − s1x − s2 = 0, then rn is a
solution of an = s1an−1 + s2an−2. But, if an is a solution, then so is
any constant multiple of an, i.e., can is also a solution. Moreover, if
an and a′n are two solutions, then so is their sum an + a′n. Therefore,
if r1 and r2 are roots of the polynomial x2 − s1x − s2 = 0, then
an = c1r

n
1 + c2r

n
2 is a solution of the recurrence relation.

The expression c1r
n
1 + c2r

n
2 gives all solutions provided it can produce

a0 and a1. If we can choose c1 and c2 so that a0 = c1 + c2 and
a1 = r1c1 + r2c2, then every possible sequence that satisfies the
recurrence is of the form c1r

n
1 + c2r

n
2 . Solving for c1 and c2 gives

c1 =
a1−a0r2
r1−r2

, c2 =
−a1+a0r1
r1−r2

. So this is possible when r1 6= r2.
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Example: Two Real Roots

Find the solution to the recurrence relation an = 3an−1 + 4an−2, with
a0 = 3 and a1 = 2.

First, find the roots of the quadratic equation x2 − 3x − 4 = 0.

x2 − 3x − 4 = 0 ⇒ (x − 4)(x + 1) = 0 ⇒ x = 4 or x = −1.

Therefore, an = c14
n + c2(−1)n.

To determine c1 and c2, we note

3 = a0 = c1 + c2
2 = a1 = c1 · 4 + c2 · (−1)

Solving the system, we get c1 = 1 and c2 = 2. Thus,
an = 4n + 2(−1)n.
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The Fibonacci Numbers

The Fibonacci numbers were defined by the recurrence relation
Fn = Fn−1 + Fn−2. We find a closed form formula for Fn.

First, solve the quadratic equation x2 − x − 1 = 0. Its roots are

x =
1±

√
5

2
. Therefore, there is a formula for Fn of the form

Fn = c1

(

1 +
√
5

2

)n

+ c2

(

1−
√
5

2

)n

.

To determine c1 and c2, we note

1 = F0 = c1 + c2

1 = F1 = c1
1+

√
5

2 + c2
1−

√
5

2

Solving the system, we get c1 = 5+
√
5

10 and c2 =
5−

√
5

10 . Thus,

Fn =
5 +

√
5

10

(

1 +
√
5

2

)n

+
5−

√
5

10

(

1−
√
5

2

)n

.
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Example: Two Complex Conjugate Roots

Solve the recurrence relation an = 2an−1 − 2an−2, where a0 = 1 and
a1 = 3.

The associated quadratic equation is x2 − 2x + 2 = 0. This has two
complex roots: x = 1± i . So we seek a formula of the form
an = c1(1 + i)n + c2(1− i)n. To determine c1 and c2, we note

1 = a0 = c1 + c2
3 = a1 = c1(1 + i) + c2(1− i)

Solving the system, we get c1 = 1
2 − i and c2 =

1
2 + i . Thus,

an = (
1

2
− i)(1 + i)n + (

1

2
+ i)(1− i)n.
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The Case of Repeated Roots

Theorem

Let s1, s2 be numbers so that the quadratic equation x2 − s1x − s2 = 0
has exactly one root r 6= 0. Then every solution to the recurrence relation
an = s1an−1 + s2an−2 is of the form an = c1r

n + c2nr
n.

Since the quadratic equation has a single root, it must be of the form
(x − r)(x − r) = x2 − 2rx + r2. Thus the recurrence must be
an = 2ran−1 − r2an−2. We show that an satisfies the recurrence and
that c1, c2 can be chosen so as to produce all possible a0, a1.

To see that an satisfies the recurrence, note 2ran−1 − r2an−2

= 2r(c1r
n−1 + c2(n − 1)rn−1)− r2(c1r

n−2 + c2(n − 2)rn−2)
= (2cl r

n − c1r
n) + (2c2(n − 1)rn − c2(n − 2)rn)

= c1r
n + c2nr

n = an.
To see that we can choose c1, c2 to produce all possible a0, a1, we solve

a0 = c1r
0 + c2 · 0 · r0 = c1

a1 = c1r
1 + c2 · 1 · r = r(c1 + c2).

So long as r 6= 0, we can solve these: c1 = a0 and c2 =
a0r−a1

r
.
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Example: A Repeated Root

Solve the recurrence relation an = 4an−1 − 4an−2, where a0 = 1 and
a1 = 3.

The associated quadratic equation is x2 − 4x + 4 = 0. We get

x2 − 4x + 4 = 0 ⇒ (x − 2)2 = 0 ⇒ x = 2.

So we seek a formula of the form an = c12
n + c2n2

n. To determine
c1 and c2, we note

1 = a0 = c1
3 = a1 = c1 · 2 + c2 · 1 · 2

Solving the system, we get c1 = 1 and c2 =
1
2 . Thus,

an = 2n +
1

2
· n · 2n.
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The Difference Operator

Let a0, a1, a2, . . . be a sequence of numbers. Let ∆a denote a new
sequence in which each term is the difference of two consecutive
terms of the original sequence. That is, ∆a is the sequence whose
n-th term is

∆an = an+1 − an.

We call ∆ the difference operator.

Example: Let a be the sequence

0, 2, 7, 15, 26, 40, 57, . . . .
The sequence ∆a is

2, 5, 8, 11, 14, 17, . . . .

We may write the sequence a on one row and ∆a on a second row
with ∆an written between an and an+1:

a 0 2 7 15 26 40 57
∆a 2 5 8 11 14 17
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Reduction of Degree

Proposition

Let a be a sequence of numbers in which an is given by a degree d

polynomial in n where d ≥ 1. Then ∆a is a sequence given by a
polynomial of degree d − 1.

Suppose an = cdn
d + cd−1n

d−1 + · · ·+ c1n + c0, cd 6= 0 and d ≥ 1.
We calculate ∆an:

∆an = an+1 − an
= [cd (n + 1)d + cd−1(n + 1)d−1 + · · ·+ c1(n + 1) + c0]

− [cdn
d + cd−1n

d−1 + · · ·+ c1n + c0]
= [cd (n + 1)d − cdn

d ] + [cd−1(n + 1)d−1 − cd−1n
d−1]

+ · · ·+ [c1(n + 1)− c1n] + [c0 − c0].

Each term on the last line is of the form cj (n+ 1)j − cjn
j . We expand

the (n + 1)j using the Binomial Theorem.
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Reduction of Degree (Cont’d)

We have ∆an = [cd (n + 1)d − cdn
d ] + [cd−1(n + 1)d−1 −

cd−1n
d−1] + · · ·+ [c1(n + 1)− c1n] + [c0 − c0].

We look at cj (n + 1)j − cjn
j :

cj (n + 1)j − cjn
j

= cj [n
j +
(

j
1

)

nj−1 +
(

j
2

)

nj−2 + · · ·+
(

j
j

)

n0]− cjn
j

= cj [
(

j
1

)

nj−1 +
(

j
2

)

nj−2 + · · ·+
(

j
j

)

].

So cj(n + 1)j − cjn
j is a polynomial of degree j − 1. Therefore,

cd (n+1)d − cdn
d is a polynomial of degree d − 1. Moreover, none of

the subsequent terms in ∆an can cancel the nd−1 term because they
all have degree less than d − 1. Therefore, ∆an is given by a
polynomial of degree d − 1.
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Repeated Application of the Difference Operator

If a is given by a polynomial of degree d , then ∆a is given by a
polynomial of degree d − 1. Therefore, ∆2a = ∆(∆a) is given by a
polynomial of degree d − 2, etc.

Since each subsequent sequence is a polynomial of degree one lower,
we eventually reach a polynomial of degree zero, i.e., a constant. One
more application yields the all-zero sequence!

Corollary

If a sequence a is generated by a polynomial of degree d , then ∆d+1a is
the all-zeros sequence.

Example: The sequence 0, 2, 7, 15, 26, 40, 57, . . . is generated by a
polynomial. We get:

a 0 2 7 15 26 40 57
∆a 2 5 8 11 14 17
∆2a 3 3 3 3 3
∆3a 0 0 0 0
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Linearity of Difference

If there is a positive integer k such that ∆kan is the all-zeros
sequence, then an is given by a polynomial formula. In addition, there
is a simple method for deducing the polynomial that generates an.

Proposition (Linearity of Difference)

Let a, b and c be sequences of numbers and s a number.

1 If, for all n, cn = an + bn, then ∆cn = ∆an +∆bn.

2 If, for all n, bn = san, then ∆bn = s∆an.

More succinctly, ∆(an + bn) = ∆an +∆bn and ∆(san) = s∆an.

If cn = an + bn, then ∆cn = cn+1 − cn = (an+1 + bn+1)− (an + bn) =
(an+1 − an) + (bn+1 − bn) = ∆an +∆bn.

Similarly, if bn = san, then
∆bn = bn+1 − bn = san+1 − san = s(an+1 − an) = s∆an.
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Binomial Coefficients and Difference

Proposition

Let k be a positive integer and let an =
(

n
k

)

, for all n ≥ 0. Then
∆an =

(

n
k−1

)

.

We need to show that ∆
(

n
k

)

=
(

n
k−1

)

, for all n ≥ 0. This is equivalent

to
(

n+1
k

)

−
(

n
k

)

=
(

n
k−1

)

which is the same as
(

n+1
k

)

=
(

n
k

)

+
(

n
k−1

)

,
which holds by Pascal’s Identity whenever 0 < k < n+ 1.
So we only need to prove it when n + 1 ≤ k (i.e., n ≤ k − 1).

If n < k − 1, all three terms equal zero.
If n = k − 1, we have

(

n+1
k

)

=
(

k
k

)

= 1,
(

n
k

)

=
(

k−1
k

)

= 0 and
(

n
k−1

)

=
(

k−1
k−1

)

= 1.
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Determinacy Based on First Term and Differences

Proposition

Let a and b be sequences of numbers and let k be a positive integer.
Suppose that

∆kan = ∆kbn = 0, for all n;

a0 = b0;

∆ja0 = ∆jb0, for all 1 ≤ j < k .

Then an = bn, for all n.

The proof is by induction on k .

Basis: k = 1. In this case, ∆an = ∆bn = 0 for all n. This means that
an+1 − an = 0 for all n. So an+1 = an for all n, i.e., all terms in an are
identical. Likewise for bn. Since, by hypothesis, a0 = b0, the two
sequences are the same.
Induction Hypothesis: The Proposition has been proved for k = l .
Induction Step: We must prove the result in the case k = l + 1.
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Determinacy Based on First Term and Differences (Cont’d)

We are continuing the Induction;
Induction Step: We are assuming that the Proposition has been proved
for k = l and are working to prove it for k = l + 1. Let a and b be
sequences such that

∆l+1an = ∆l+1bn = 0, for all n,
a0 = b0 and
∆ja0 = ∆jb0, for all 1 ≤ j < l + 1.

Consider the sequences a′n = ∆an and b′n = ∆bn. By our hypotheses
we see that ∆la′n = ∆lb′n = 0, for all n, a′0 = b′0, and ∆ja′0 = ∆jb′0, for
all 1 ≤ j < l . Therefore, by induction, a′ and b′ are identical. Now use
smallest counterexample proof to show that an = bn, for all n.
Let m be the smallest subscript so that am 6= bm.

m 6= 0 because we are given a0 = b0; Thus m > 0.
Now, we know am−1 = bm−1 and a′m−1 = b′

m−1. But then
am = (am − am−1) + am−1 = a′m−1 + am−1 = b′

m−1 + bm−1 =
(bm − bm−1) + bm−1 = bm, a contradiction!
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Deriving a Sequence from its Differences I

Theorem

Let a0, a1, a2, . . . be a sequence of numbers. The terms an can be
expressed as polynomial expressions in n if and only if there is a
nonnegative integer k such that for all n ≥ 0 we have ∆k+1an = 0. Then,

an = a0

(

n

0

)

+ (∆a0)

(

n

1

)

+ (∆2a0)

(

n

2

)

+ · · · + (∆ka0)

(

n

k

)

.

If an is given by a polynomial of degree d , then ∆d+1an = 0, for all n.

Suppose now that, for some k and for all n, ∆k+1an = 0. We prove
that an is given by a polynomial expression by showing that an is
equal to bn = a0

(

n
0

)

+ (∆a0)
(

n
1

)

+ (∆2a0)
(

n
2

)

+ · · ·+ (∆ka0)
(

n
k

)

. By
the previous proposition, we need

∆k+1an = ∆k+1bn = 0, for all n;
a0 = b0 and
∆ja0 = ∆jb0, for all 1 ≤ j ≤ k .

We show all three in the next slide.
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Deriving a Sequence from its Differences II

Recall bn = a0
(

n
0

)

+ (∆a0)
(

n
1

)

+ (∆2a0)
(

n
2

)

+ · · · + (∆ka0)
(

n
k

)

.

Showing ∆k+1an = ∆k+1bn = 0, for all n:
∆k+1an = 0 holds by hypothesis. Since bn is a polynomial of degree k ,
∆k+1bn = 0 also.
Showing a0 = b0:
b0 = a0

(

0
0

)

+ (∆a0)
(

0
1

)

+ (∆2a0)
(

0
2

)

+ · · ·+ (∆ka0)
(

0
k

)

= a0.
Showing ∆ja0 = ∆jb0, for all 1 ≤ j ≤ k :
Set cj = ∆ja0, 1 ≤ j ≤ k . Then, we get
bn = c0

(

n
0

)

+ c1
(

n
1

)

+ · · ·+ ck
(

n
k

)

. We have

∆jbn = ∆j [c0
(

n
0

)

+ c1
(

n
1

)

+ · · ·+ ck
(

n
k

)

]
Linearity
= c0∆

j
(

n

0

)

+ c1∆
j
(

n

1

)

+ · · ·+ ck∆
j
(

n

k

)

Binomials
= 0 + · · ·+ 0 + cj∆

j
(

n

j

)

+ cj+1∆
j
(

n

j+1

)

+ · · ·+ ck∆
j
(

n

k

)

= cj
(

n
0

)

+ cj+1

(

n
1

)

+ · · ·+ ck
(

n
k−j

)

.

So, setting n = 0 yields ∆jb0 = cj = ∆ja0.
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More on Proofs Recurrence Relations

Revisiting an Example

Recall the sequence 0, 2, 7, 15, 26, 40, 57, . . . whose differences we
have computed before:

a 0 2 7 15 26 40 57
∆a 2 5 8 11 14 17
∆2a 3 3 3 3 3
∆3a 0 0 0 0

By the Theorem

an = a0
(

n
0

)

+ (∆a0)
(

n
1

)

+ (∆2a0)
(

n
2

)

= 0
(

n
0

)

+ 2
(

n
1

)

+ 3
(

n
2

)

= 2 n!
1!(n−1)! + 3 n!

2!(n−2)!

= 2n + 3n(n−1)
2 = 3n2+n

2 = n(3n+1)
2 .
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More on Proofs Recurrence Relations

Deriving a Formula for the Sum of Squares

Our goal is to use the theorem to show:

02 + 12 + 22 + · · ·+ n2 =
(2n + 1)(n + 1)(n)

6
.

Let an = 02 + 12 + · · ·+ n2. Then, we have

an 0 1 5 14 30 55 91 140
∆an 1 4 9 16 25 36 49
∆2an 3 5 7 9 11 13
∆3an 2 2 2 2 2
∆4an 0 0 0 0

Therefore,

an = 0
(

n
0

)

+ 1
(

n
1

)

+ 3
(

n
2

)

+ 2
(

n
3

)

= 0 + n + 3
2n(n − 1) + 2

6n(n − 1)(n − 2)

= 2n3+3n2+n
6 = (2n+1)(n+1)(n)

6 .
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