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Functions Functions

Definition of Function

Intuitively, a function is a “rule” or “mechanism” that transforms one
quantity into another.

Example: The function f (x) = x2 + 4 takes an integer x and
transforms it into the integer x2 + 4. The function g(x) = |x | takes
the integer x and returns x if x ≥ 0 and −x if x < 0.

Definition of Function

A function is a relation f that satisfies (a, b) ∈ f and (a, c) ∈ f imply
b = c .

Equivalently, a relation f is not a function if there exist a, b, c with
(a, b) ∈ f and (a, c) ∈ f , and b 6= c .

Example: Let f = {(1, 2), (2, 3), (3, 1), (4, 7)} and
g = {(1, 2), (1, 3), (4, 7)}.
The relation f is a function. The relation g is not because
(1, 2), (1, 3) ∈ g and 2 6= 3.
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Functions Functions

Ordinary Function Notation F (•)

When expressed as a set of ordered pairs, functions do not look like
rules for transforming one object into another. However, the ordered
pairs in f associate “input” values (the first elements in the lists in f )
with “output” values (the second elements in the lists).

What makes f a function is that for each input there can be at most
one output.

We rarely use the notation (1, 2) ∈ f , even though this is formally
correct. Instead, we use the f (•) notation:

Function Notation

Let f be a function and let a be an object. The notation f (a) is defined
provided there exists an object b such that (a, b) ∈ f . In this case, f (a)
equals b. Otherwise, f (a) is undefined.
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Functions Functions

Function Notation: An Example

Express the integer function f (x) = x2 as a set of ordered pairs.

We might use list notation:

f = {. . . , (−3, 9), (−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4), (3, 9), . . .}.

It is much clearer if we use set-builder notation:

f = {(x , y) : x , y ∈ Z, y = x2}.
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Functions Functions

The Domain and the Image of a Function

Domain and Image

Let f be a function. The set of all possible first elements of the ordered
pairs in f is called the domain of f and is denoted domf . The set of all
possible second elements of the ordered pairs in f is called the image of f

and is denoted imf .

In logical notation

domf = {a : ∃b, (a, b) ∈ f } and imf = {b : ∃a, (a, b) ∈ f }.

Example: Let f = {(1, 2), (2, 3), (3, 1), (4, 7)}. Then
domf = {1, 2, 3, 4} and imf = {1, 2, 3, 7}.

Example: Let f be the function f = {(x , y) : x , y ∈ Z, y = x2}. The
domain of f is Z and the image of f is the set of all perfect squares.
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Functions Functions

Functions from A to B

A Function from A to B

Let f be a function and let A and B be sets. We say that f is a function

from A to B provided domf = A and imf ⊆ B . In this case, we write
f : A → B . We also say that f is a mapping from A to B .

So we have f : A → B if

f is a function;
domf = A;
imf ⊆ B.

Example: Consider the sine function. It is defined for every real
number and returns a real value. The domain of the sine function is
R and the image is [−1, 1]. Thus, we can write sin : R → R. Is it
correct to write sin : R → [−1, 1]?
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Functions Functions

Graphs of Functions from R to R

To draw the graph of a function whose inputs and outputs are real
numbers, we plot a point in the plane at coordinates (x , f (x)), for
every x ∈ domf .

Formally, the graph of a function is the set {(x , y) : y = f (x)}. Thus,
to speak of “the graph of a function” is redundant because it actually
is the function!

To verify that a picture represents a function from reals to reals, we
can apply the vertical line test: Every vertical line in the plane may
intersect the graph of a function in at most one point.

If a vertical line hit the graph twice we would have two different
points (x , y1) and (x , y2), both on the graph, i.e., such that
(x , y1), (x , y2) ∈ f with y1 6= y2, which is forbidden by the definition
of function.
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Functions Functions

Functions f : A → B with A,B Finite I

Let A = {1, 2, 3, 4, 5, 6} and B = {1, 2, 3, 4, 5} and consider the
function f : A → B defined by f = {(1, 2), (2, 1), (3, 2), (4, 4), (5, 5),
(6, 2)}. A picture of f is created by drawing two sets of dots: one for
A on the left and one for B on the right. We draw an arrow from a
dot a ∈ A to a dot b ∈ B just when (a, b) ∈ f , i.e., f (a) = b.

The picture, makes it easy to see that imf = {1, 2, 4, 5}.
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Functions Functions

Functions f : A → B with A,B Finite II

Now consider g defined by g = {(1, 3), (2, 1), (2, 4), (3, 2), (4, 4),
(5, 5)}. Let A = {1, 2, 3, 4, 5, 6} and B = {1, 2, 3, 4, 5}. Then
g : A → B is false.

First, 6 ∈ A but 6 6∈ domg . Thus domg 6= A.
In the picture, there are no arrows emanating
from element 6.

Second, g is not a function (from any set to
any set). Notice that (2, 1), (2, 4) ∈ g . In the
picture, there are two arrows emanating from
element 2.

If f is a function from A to B (f : A → B), its picture satisfies the
condition:
Every dot on the left (in A) has exactly one arrow leaving it,
ending at the right (in B).
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Functions Functions

Number of Functions

Proposition

Let A and B be finite sets with |A| = a and |B | = b. The number of
functions from A to B is ba.

Choose A = {1, 2, . . . , a} and B = {1, 2, . . . , b}.
Every function f : A → B can be written out as

f = {(1, ?), (2, ?), (3, ?), . . . , (a, ?)},

where the ? entries are elements from B . In how many ways can we
replace the ?s with elements in B?
There are b choices for the element ? in (1, ?), and for each such
choice, there are b choices for the ? in (2, ?), etc., and finally b

choices for the ? in (a, ?) given all the previous choices. Thus, all
told, there are b · b · · · · · b

︸ ︷︷ ︸
a times

= ba choices.
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Functions Functions

An Example

Let A = {1, 2, 3} and B = {4, 5}. Find all functions f : A → B .

The Proposition tells that there are 23 = 8 such functions. They are

{(1, 4), (2, 4), (3, 4)} {(1, 5), (2, 4), (3, 4)}
{(1, 4), (2, 4), (3, 5)} {(1, 5), (2, 4), (3, 5)}
{(1, 4), (2, 5), (3, 4)} {(1, 5), (2, 5), (3, 4)}
{(1, 4), (2, 5), (3, 5)} {(1, 5), (2, 5), (3, 5)}
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Functions Functions

Inverse Relations of Functions

We defined the inverse of a relation R , denoted R−1 as the relation
formed from R by reversing all its ordered pairs.

Since a function f is a relation, we may also consider f −1.

If f is a function from A to B , is f −1 a function from B to A?

Example:
Let A = {0, 1, 2, 3, 4} and B = {5, 6, 7, 8, 9}. Let
f : A → B be defined by

f = {(0, 5), (1, 7), (2, 8), (3, 9), (4, 7)}.

Then

f −1 = {(5, 0), (7, 1), (8, 2), (9, 3), (7, 4)}.

So f −1 is not a function from B to A.

First, f −1 is not a function.

Second, domf −1 = {5, 7, 8, 9} 6= B.
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Functions Functions

One-to-one Functions

Definition of One-to-one Functions

A function f is called one-to-one provided that, whenever
(x , b), (y , b) ∈ f , we must have x = y . Equivalently, if x 6= y , then
f (x) 6= f (y).

Proposition

Let f be a function.

The inverse relation f −1 is a function if and only if f is one-to-one.

If f −1 is also a function, then domf = imf −1 and imf = domf −1.

f −1 is a function iff ((b, x), (b, y) ∈ f −1 imply x = y) iff
((x , b), (y , b) ∈ f imply x = y) iff f is one-to-one.

imf −1 = {a ∈ A : ∃b ∈ B , (b, a) ∈ f −1} = {a ∈ A : ∃b ∈ B , (a, b) ∈
f } = domf . Similarly for imf = domf −1.

George Voutsadakis (LSSU) Fundamental Concepts January 2014 15 / 77



Functions Functions

Methods for Proving a Function is One-to-one

Three methods to show f is one-to-one:
Direct method: Suppose f (x) = f (y). Prove that x = y .
Contrapositive method: Suppose x 6= y . Show that f (x) 6= f (y).
Contradiction method: Suppose f (x) = f (y) but x 6= y . Derive a
contradiction!

Example: Let f : Z → Z be defined by f (x) = 3x + 4. Prove that f
is one-to-one.
Suppose f (x) = f (y). Then 3x + 4 = 3y + 4. Subtracting 4 from
both sides gives 3x = 3y . Dividing both sides by 3 gives x = y .
Therefore f is one-to-one.

To prove that a function is not one-to-one requires us to present a
counterexample, i.e., objects x and y with x 6= y but f (x) = f (y).

Example: Let f : Z → Z be defined by f (x) = x2. Prove that f is
not one-to-one.
Notice that f (3) = f (−3) = 9, but 3 6= −3. Therefore f is not
one-to-one.
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Functions Functions

Onto Functions

Let f : A → B . When is f −1 is a function from B to A?
First, f −1 needs to be a function.
Second, every element in B must have an incoming arrow.

Consider f : A → B shown in the figure.

Clearly f is one-to-one, so f −1 is a function.

However, f −1 is not a function from B to A

because there is an element b ∈ B for which
f −1(b) is undefined. For f −1 : B → A, there
must be an f -arrow pointing to every element
of B.

Definition of Onto Function

Let f : A → B . We say that f is onto B provided that for every b ∈ B

there is an a ∈ A so that f (a) = b. Equivalently, imf = B .

The sentence “f : A → B is onto” is a promise that (a) f is a
function; (b) domf = A; and (c) imf = B .
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Functions Functions

Example

Let A = {1, 2, 3, 4, 5, 6} and B = {7, 8, 9, 10}. Let

f = {(1, 7), (2, 7), (3, 8), (4, 9), (5, 9), (6, 10)}
g = {(1, 7), (2, 7), (3, 7), (4, 9), (5, 9), (6, 10)}.

f : A → B is onto because for each element b of B , we can find one
or more elements a ∈ A such that f (a) = b. Equivalently, it is easy to
check that imf = B .
g : A → B is not onto. Note that 8 ∈ B , but there is no a ∈ A, with
g(a) = 8. Also, img = {7, 9, 10} 6= B .

The condition that f : A → B is onto can be expressed using the
quantifiers: ∀b ∈ B ,∃a ∈ A, f (a) = b.

The condition that f : A → B is not onto can be similarly expressed:
∃b ∈ B ,∀a ∈ A, f (a) 6= b.
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Functions Functions

Proving a Function is Onto

To show f : A → B is onto:

Direct method: Let b be an arbitrary element of B. Explain how to
find/construct an element a ∈ A such that f (a) = b.
Set method: Show that the sets B and imf are equal.

Example: Let f : Q → Q be defined by f (x) = 3x + 4. Prove that f
is onto Q.

Let b ∈ Q be arbitrary. We seek an a ∈ Q, such that f (a) = b. By
reverse engineering, let a = b−4

3 . Since b is a rational number, so is a.
Moreover,

f (a) = 3
b − 4

3
+ 4 = (b − 4) + 4 = b.

Therefore f : Q → Q is onto.
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Functions Functions

Invertibility of Functions

Theorem (Invertibility of Functions)

Let A and B be sets and let f : A → B . The inverse relation f −1 is a
function from B to A if and only if f is one- to-one and onto B .

Let f : A → B .

Suppose, first, f is one-to-one and onto B. We need to prove that
f −1 : B → A.
By a previous proposition, we get f −1 is a function, since f is

one-to-one, domf −1 = imf
onto
= B and imf −1 = domf = A. Therefore,

f −1 : B → A.
Suppose f : A → B and f −1 : B → A. Since f −1 is a function, f is
one-to-one. Since imf = domf −1 = B, we see that f is onto B.
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Functions Functions

Bijections

Definition of Bijection

Let f : A → B . We call f a bijection provided it is both one-to-one and
onto.

Example: Let A be the set of even integers and let B be the set of
odd integers. The function f : A → B defined by f (x) = x + 1 is a
bijection.

We must prove that f is both one-to-one and onto.
To see that f is one-to-one, suppose f (x) = f (y) where x and y are
even integers. Thus, f (x) = f (y) ⇒ x + 1 = y + 1 ⇒ x = y . Hence
f is one-to-one.
To see that f is onto B, let b ∈ B (i.e., b is an odd integer). By
definition, b = 2k + 1 for some integer k . Let a = 2k . Clearly, a is
even, i.e., a ∈ A. Moreover, f (a) = a+ 1 = 2k + 1 = b, so f is onto.

Since f is both one-to-one and onto, f is a bijection.
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Functions Functions

Some More Counting of Functions

Let A and B be finite sets with |A| = a and |B | = b. How many
functions f : A → B are one-to-one and how many are onto?

If |A| > |B|, then f cannot be one-to-one. This happens, since, if f is
one-to-one, for distinct elements x , y ∈ A, f (x) and f (y) are distinct
elements of B.
If |A| < |B|, then f cannot be onto. In this case, there are not enough
elements in A to “cover” all the elements in B!

Proposition (Pigeonhole Principle)

Let A and B be finite sets and let f : A → B . If |A| > |B |, then f is not
one-to-one. If |A| < |B |, then f is not onto.

Stated in the contrapositive,
if f : A → B is one-to-one, then |A| ≤ |B|;
if f : A → B is onto, then |A| ≥ |B|.

Proposition

Let A and B be finite sets and f : A → B . If f is a bijection, |A| = |B |.
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Functions Functions

Counting One-to-one and Onto Functions

Theorem

Let A and B be finite sets with |A| = a and |B | = b.
1 The number of functions from A to B is ba.

2 If a ≤ b, the number of one-to-one functions f : A → B is
(b)a = b(b − 1) · · · (b − a + 1) = b!

(b−a)! .
If a > b, the number of such functions is zero.

3 If a ≥ b, the number of onto functions f : A → B is
∑b

j=0(−1)j
(
b
j

)
(b− j)a. If a < b, the number of such functions is zero.

4 If a = b, the number of bijections f : A → B is a!.
If a 6= b, the number of such functions is zero.

If A = {1, 2, . . . , a} and B = {1, 2, . . . , b}, a one-to-one function
from A to B is of the form f = {(1, ?), (2, ?), (3, ?), . . . , (a, ?)} where
the ?s are filled in with elements of B without repetition.

For counting onto functions, we want to fill in the ?s with elements of
B so that every element is used at least once.
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Functions The Pigeonhole Principle

Subsection 2

The Pigeonhole Principle
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Functions The Pigeonhole Principle

The Pigeonhole Principle

If A and B are finite sets with |A| > |B |, then there can be no
one-to-one function f : A → B .
This is called the Pigeonhole Principle, since, if p pigeons try to
occupy h coop holes, then

if p ≤ h, then the coop is large enough so that pigeons do not have to
share holes;
if p > h, then there are not enough holes for private quarters for all.

Proposition

Let n ∈ N. Then, there exist positive integers a and b, with a 6= b, such
that na − nb is divisible by 10.

We use the fact that a natural number is divisible by 10 if and only if
its last digit is a zero. Consider the 11 natural numbers
n1, n2, . . . , n11. The ones digits of these numbers take on values in the
set {0, 1, 2, . . . , 9}. Since there are only ten possible ones digits, and
we have 11 different numbers, two of these numbers (say na and nb)
must have the same ones digit. Therefore, na − nb is divisible by 10.
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Functions The Pigeonhole Principle

A Geometric Application

A point whose coordinates are both integers is called a lattice point.

Proposition

Given five distinct lattice points in the plane, at least one of the line
segments determined by these points has a lattice point as its midpoint.

We are given five distinct lattice points in the plane. The various
coordinates are integers and hence are either even or odd. Given a
lattice point’s coordinates, we can classify it as one of four types:

(even, even), (even, odd), (odd, even), (odd, odd).

Since we have five lattice points, but only four parity categories, by
the Pigeonhole Principle, two of these points must have the same
parity type. Suppose these two points have coordinates (a, b) and
(c , d). The midpoint of this segment has coordinates (a+c

2 , b+d
2 ).

Since a and c have the same parity, a + c is even, and so a+c
2 is an

integer. Likewise, b+d
2 is an integer. Therefore, the midpoint is a

lattice point.
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Functions The Pigeonhole Principle

Sequences and Monotone Subsequences

A sequence is simply a list.

Given a sequence of integers, a subsequence is a list formed by
deleting elements from the original list and keeping the remaining
elements in the same order in which they originally appeared.

Example: The sequence

9 10 8 3 7 5 2 6 4

contains the subsequence 9 8 6 4. Notice that the four numbers
in the subsequence are in decreasing order. So, we call it a
decreasing subsequence. Similarly, a subsequence whose elements
are in increasing order is called an increasing subsequence.

We claim that every sequence of ten distinct integers must contain a
subsequence of four elements that is either increasing or decreasing.
The sequence above has a decreasing subsequence of length four and
also an increasing subsequence of length four.
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Functions The Pigeonhole Principle

Theorem of Erdős and Szekeres

Example: The sequence

10 9 8 7 6 5 4 3 2

has several length-four decreasing subsequences, but no length-four
increasing subsequence.

A sequence that is either increasing or decreasing is called monotone.

Our claim is that every sequence of ten distinct integers must contain
a monotone, length-four subsequence.

Theorem of Erdős and Szekeres

Let n be a positive integer. Every sequence of n2 + 1 distinct integers
must contain a monotone subsequence of length n + 1.
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Functions The Pigeonhole Principle

Proof of the Theorem of Erdős and Szekeres: Labeling

Let n be a positive integer. Suppose there is a sequence S of n2 + 1
distinct integers that does not contain a monotone subsequence of
length n + 1, i.e., all monotone subsequences of S have length at
most n.
Let x be an element of the sequence S . Label x with a pair of
integers (ux , dx), where:

The integer ux is the length of a longest increasing subsequence of S
that starts at x .
The integer dx is the length of a longest decreasing subsequence of S
that starts at x .

For example, the sequence 1 9 10 8 3 7 5 2 6 4 would
be labeled as follows:

1
(4,1)

9
(2,5)

10
(1,5)

8
(1,4)

3
(3,2)

7
(1,3)

5
(2,2)

2
(2,1)

6
(1,2)

4
(1,1)
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Functions The Pigeonhole Principle

Proof of the Theorem of Erdős and Szekeres: Pigeonholing

Note that:
Because there are no monotone subsequences of length n + 1 (or
longer), the labels on the sequence S use only the integers 1 through n.
Hence, we use at most n2 labels.
Two distinct elements of the sequence cannot have the same label.
Let x and y be distinct elements, with x appearing before y , having
labels (ux , dx) and (uy , dy ). Because the numbers on the list are
distinct, either x < y or x > y .

If x < y , then ux > uy : There is an increasing subsequence of length uy

starting at y . If we insert x at the beginning of this subsequence, we
get an increasing subsequence of length uy + 1. Thus ux ≥ uy + 1, or,
equivalently, ux > uy . So x and y have different labels.
Similarly, if x > y , then we have dx > dy . So again we conclude that x
and y have different labels.

Now, there are only n2 different labels, and S has n2 + 1 elements.
By the Pigeonhole Principle, two of the elements must have the same
label. This contradicts the second observation that no two elements
can have the same label.
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Functions The Pigeonhole Principle

Bijections and Infinities

Pigeonhole Principle: If |A| > |B |, there can be no one-to-one
function f : A → B . If |A| < |B |, there can be no onto function
f : A → B .

So, if f : A → B is both one-to-one and onto, then |A| = |B |.

Even though, these assertions are meaningful only if A and B are
finite sets, it is possible to find bijections between infinite sets.

Example: The function f : N → Z, with

f (n) =

{
−n/2, if n is even
(n + 1)/2, if n is odd

is a bijection from N to Z.

n 0 1 2 3 4 5 6 7 8 9
f (n) 0 1 − 1 2 − 2 3 − 3 4 − 4 5

Since there is a bijection from N to Z, it makes sense to write
|N| = |Z|. This means that N and Z are “just as infinite”! This may
seem counterintuitive because Z ought to be “twice as infinite” as N.
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Functions The Pigeonhole Principle

Cantor’s Theorem

Is it possible for two infinite sets not to have the same “size”?

We define two sets as having the same size provided there is a
bijection between them. In this sense, N and Z have the same size.

Do all infinite sets have the same size? The answer is no!

Cantor’s Theorem

Let A be a set. If f : A → 2A, then f is not onto.

Let A be a set and let f : A → 2A. To show that f is not onto, we
must find a B ∈ 2A (i.e., B ⊆ A), such that there is no a ∈ A with
f (a) = B . In other words, B is a set that f “misses.”
Let B = {x ∈ A : x 6∈ f (x)}. Suppose, there is an a ∈ A, such that
f (a) = B . Is a ∈ B?

If a ∈ B, then, since B = f (a), we have a ∈ f (a) = B. So, by
definition of B, a 6∈ B, a contradiction!
If a 6∈ B = f (a), then, by definition of B, a ∈ B, a contradiction!

Both a ∈ B and a 6∈ B lead to contradictions. So, f is not onto.
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Functions The Pigeonhole Principle

Aleph Naught ℵ0

Example: Let A = {1, 2, 3}. Let f : A → 2A be given by

a f (a) a ∈ f (a)?

1 {1, 2} yes
2 {3} no
3 ∅ no

Now B = {x ∈ A : x 6∈ f (x)}. We have B = {2, 3}. Notice that
there is no a ∈ A with f (a) = B .

The implication of Cantor’s Theorem is that |Z| 6= |2Z|. Therefore, in
the sense we are exploring, 2Z is more infinite than Z.

Cantor proved that the smallest infinite sets have the same size as N.

The size of N is the smallest infinite cardinal ℵ0 (aleph naught).
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Subsection 3

Composition
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Functions Composition

Composition of Functions

Definition of Composition

Let A,B and C be sets and let f : A → B and g : B → C . Then the
function g ◦ f is a function from A to C defined by (g ◦ f )(a) = g [f (a)],
where a ∈ A. The function g ◦ f is called the composition of f and g .

Example: Let A = {1, 2, 3, 4, 5},
B = {6, 7, 8, 9}, and
C = {10, 11, 12, 13, 14}. Let f : A → B

and g : B → C be defined by
f = {(1, 6), (2, 6), (3, 9), (4, 7), (5, 7)},
and g = {(6, 10), (7, 11), (8, 12), (9, 13)}.
Then (g ◦ f ) is the function (g ◦ f ) =
{(1, 10), (2, 10), (3, 13), (4, 11), (5, 11)}.
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Functions Composition

Another Example and Some Remarks

Let f : Z → Z be f (x) = x2 + 1 and g : Z → Z be g(x) = 2x − 3.

What is (g ◦ f )(4)?
We calculate
(g ◦ f )(4) = g [f (4)] = g(42 + 1) = g(17) = 2 · 17− 3 = 31.
In general,
(g ◦f )(x) = g [f (x)] = g(x2+1) = 2(x2+1)−3 = 2x2+2−3 = 2x2−1.

The notation g ◦ f means that we do first f and then g .

The domain of g ◦ f is the same as the domain of f
dom(g ◦ f ) = domf .
In order for g ◦ f to make sense, every output of f must be an
acceptable input to g . Properly said, we need imf ⊆ domg . The
requirements f : A → B and g : B → C ensure that the functions fit
together when we form g ◦ f .
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Commutativity Does Not Hold

Let A = {1, 2, 3, 4, 5} and f : A → A and g : A → A be defined by

f = {(1, 1), (2, 1), (3, 1), (4, 1), (5, 1)}
g = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}.

Then:
g ◦ f = {(1, 5), (2, 5), (3, 5), (4, 5), (5, 5)}
f ◦ g = {(1, 1), (2, 1), (3, 1), (4, 1), (5, 1)}.

Thus, g ◦ f 6= f ◦ g .

Recall the functions f and g from Z to Z, given by f (x) = x2 + 1
and g(x) = 2x − 3.
For these, we have (g ◦ f )(4) = g [f (4)] = g(17) = 31 and
(f ◦ g)(4) = f [g(4)] = f (5) = 26. Therefore, g ◦ f 6= f ◦ g .
More generally,
(g ◦ f )(x) = g [f (x)] = g [x2 + 1] = 2[x2 + 1]− 3 = 2x2 − 1 and
(f ◦ g)(x) = f [g(x)] = f [2x − 3] = (2x − 3)2 + 1 = 4x2 − 12x + 10.
Therefore, g ◦ f 6= f ◦ g .
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Associativity

Proposition (Associativity of Composition)

Let A,B ,C and D be sets and let f : A → B , g : B → C and h : C → D.
Then h ◦ (g ◦ f ) = (h ◦ g) ◦ f .

Let f and g be functions. To prove f = g :
Prove that domf = domg ;
Prove that for every x in the common domain, f (x) = g(x).

To show h ◦ (g ◦ f ) = (h ◦ g) ◦ f :
Check that the domains of h ◦ (g ◦ f ) and (h ◦ g) ◦ f are the same.
Since dom(g ◦ f ) = domf , we have
dom[h ◦ (g ◦ f )] = dom(g ◦ f ) = domf = A and
dom[(h ◦ g) ◦ f ] = domf = A. So both functions have domain A.
Check that for any a ∈ A, the two functions produce the same value.
Compute [h ◦ (g ◦ f )](a) = h[(g ◦ f )(a)] = h[g [f (a)]] and
[(h ◦ g) ◦ f ](a) = (h ◦ g)[f (a)] = h[g [f (a)]]. Hence
h ◦ (g ◦ f ) = (h ◦ g) ◦ f .
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Functions Composition

Identity Functions

The integer 1 is the identity element for multiplication, and ∅ is the
identity element for union.

What serves as an identity element for composition? There is no
single identity element.

Definition of Identity Functions

Let A be a set. The identity function on A is the function idA whose
domain is A, and for all a ∈ A, idA(a) = a. I.e., idA = {(a, a) : a ∈ A}.

Proposition

Let A and B be sets. Let f : A → B . Then f ◦ idA = idB ◦ f = f .

To show that the functions f ◦ idA and f are the same:
dom(f ◦ idA) = dom idA = A = domf .
For all a ∈ A, (f ◦ idA)(a) = f (idA(a)) = f (a) so f ◦ idA and f give the
same value for all a ∈ A.

The argument that idB ◦ f = f is similar.
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Composing With Inverses

Just as multiplying a rational number by its reciprocal gives 1,
composing a function with its inverse gives an identity function.

Proposition (Composition with Inverse Functions)

Let A and B be sets and suppose f : A → B is one-to-one and onto. Then
f ◦ f −1 = idB and f −1 ◦ f = idA.

Let us show f ◦ f −1 = idB :

dom(f ◦ f −1) = domf −1 = B = dom idB .
Let b ∈ B. Since f is one-to-one and onto, there exists unique a ∈ A,
such that (a, b) ∈ f . Then
(f ◦ f −1)(b) = f (f −1(b)) = f (a) = b = idB(b).

Therefore, f ◦ f −1 = idB .

A similar argument shows that f ◦ f −1 = idB .
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Subsection 4

Permutations
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Functions Permutations

Permutations and the Symmetric Group Sn

Definition of Permutations

Let A be a set. A permutation on A is a bijection from A to itself.

Example: Let A = {1, 2, 3, 4, 5} and let f : A → A be

f = {(1, 2), (2, 4), (3, 1), (4, 3), (5, 5)}.

Since f is a one-to-one and onto function (i.e., a bijection) from A to
A, it is a permutation. Because f is a bijection, the list (f (1), f (2),
f (3), f (4), f (5)) = (2, 4, 1, 3, 5) is simply a reordering of (1, 2, 3, 4, 5).

It is customary to use lowercase Greek letters (especially π, σ and τ)
to stand for permutations.

The set of all permutations on {1, 2, . . . , n} has a special notation:

The Symmetric Group Sn

The set of all permutations on the set {1, 2, . . . , n} is denoted Sn. Sn is
called the symmetric group on n elements.
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Properties of Sn

The identity function id{1,2,...,n} is a permutation and therefore in Sn.
We usually denote the identity function by ι.

Proposition

There are n! permutations in Sn. The set Sn satisfies:

∀π, σ ∈ Sn, π ◦ σ ∈ Sn;

∀π, σ, τ ∈ Sn, π ◦ (σ ◦ τ) = (π ◦ σ) ◦ τ ;

∀π ∈ Sn, π ◦ ι = ι ◦ π = π;

∀π ∈ Sn, π
−1 ∈ Sn and π ◦ π−1 = π−1 ◦ π = ι;

We are missing only the proof of the first property in the list!
If i , j ∈ {1, 2, . . . , n}, then (π ◦ σ)(i) = (π ◦ σ)(j) ⇒ π(σ(i)) =

π(σ(j))
one-to-one
⇒ σ(i) = σ(j)

one-to-one
⇒ i = j . So π ◦ σ is one-to-one.

If k ∈ {1, 2, . . . , n}, since π is onto, there exists j ∈ {1, 2, . . . , n}, such
that π(j) = k . Thus, since σ is onto, there exists i ∈ {1, 2, . . . , n},
such that σ(i) = j . Now (π ◦ σ)(i) = π(σ(i)) = π(j) = k . So π ◦ σ is
also onto.
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Cycle Notation

Considered the following permutation in S5:
π = {(1, 2), (2, 4), (3, 1), (4, 3), (5, 5)}.

There are some alternative ways of expressing permutations in Sn.
We can write a 2× n array of integers: The top row contains the
integers 1 through n in their usual order; the bottom row contains

π(1) through π(n): π =

[
1 2 3 4 5
2 4 1 3 5

]

The top row is not necessary! We could express the permutation π
simply by reporting the bottom row: π = [2, 4, 1, 3, 5].

Another notation for expressing permutations is known as cycle

notation: For π =

[
1 2 3 4 5
2 4 1 3 5

]

the cycle notation is

π = (1, 2, 4, 3)(5). The two lists (1, 2, 4, 3) and (5), are called cycles.
The cycle (1, 2, 4, 3) means that 1 7→ 2 7→ 4 7→ 3 7→ 1. So each
number k is followed by π(k) and, finally, we “return to the start”.
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Writing a Permutation in Cycle Notation

Let π =

[
1 2 3 4 5 6 7 8 9
2 7 5 6 3 8 1 4 9

]

. Express π in cycle

notation.

Note that π(1) = 2, π(2) = 7 and π(7) = 1. So π = (1, 2, 7) . . ..

The first element we have not considered is 3. Restarting from 3, we
have π(3) = 5 and π(5) = 3, so the next cycle is (3, 5). So far we
have π = (1, 2, 7)(3, 5) . . ..

The next element we have yet to consider is 4. We have
π(4) = 6, π(6) = 8 and π(8) = 4 to complete the cycle. So far we
have π = (1, 2, 7)(3, 5)(4, 6, 8) . . ..

Finally, we have π(9) = 9, so the last cycle is just (9).

The permutation π in cycle notation is π = (1, 2, 7)(3, 5)(4, 6, 8)(9).

George Voutsadakis (LSSU) Fundamental Concepts January 2014 45 / 77



Functions Permutations

The Cycle Representation

Theorem (Existence and Uniqueness of the Cycle Representation)

Every permutation of a finite set can be expressed as a collection of
pairwise disjoint cycles. Furthermore, this representation is unique up to
rearranging the cycles and the cyclic order of the elements within cycles.

Let π ∈ Sn. Consider the sequence 1, π(1), (π ◦ π)(1),
(π ◦ π ◦ π)(1), . . . which we can rewrite 1, π(1), π(2)(1), π(3)(1), . . ..
This is a sequence of integers in {1, 2, . . . , n}, so eventually it must

repeat itself. Suppose the first repeat is at π(k)(1).
We show π(k)(1) = 1.
Suppose, for the sake of contradiction, that π(k)(1) 6= 1. In this case,
we have π(k)(1) = π(j)(1), where 0 < j < k . Because this is the first
repeat, we have π(k−1)(1) 6= π(j−1)(1). Since π is one-to-one, applying
π to both sides yields π(k)(1) 6= π(j)(1) a contradiction!

The cycle starting at element 1 might not include all the elements of
{1, 2, . . . , n}. In this case, we can restart with an “unused” element
and start building a new cycle.
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Functions Permutations

Existence of the Cycle Representation (Cont’d)

Is it possible that a new cycle “runs into” an existing cycle?

We show that, if the element s is not an element of the cycle (t, π(t),
π(2)(t), . . .), it is not possible that π(k)(s) is an element of this cycle
for any k ≥ 0.
Suppose that s is not an element of the cycle (t, π(t), π(2)(t), . . .). To
show that π(k)(s) is not an element of this cycle for any k ≥ 0, we use
the smallest counterexample method. Let k be the smallest natural
number for which π(k)(s) is in (t, π(t), π(2)(t), . . .), say
π(k)(s) = π(j)(t).

By hypothesis, since s not in (t, π(t), π(2)(t), . . .), k > 0.
Consider π(k−1)(s). By the smallest property of k , π(k−1)(s) is not in
(t, π(t), π(2)(t), . . .), so π

(k−1)(s) 6= π
(j−1)(t). Since π is one-to-one,

π
(k)(s) 6= π

(j)(t), a contradiction!

Therefore we can write π as a collection of pairwise disjoint cycles;
i.e., such that no two of the cycles have a common element.
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Functions Permutations

Uniqueness of the Cycle Representation

Is it possible to write the same permutation as a collection of disjoint
cycles in two different ways?

We may write, for example,

π = (1, 2, 7)(3, 5)(4, 6, 8)(9) = (5, 3)(6, 8, 4)(9)(7, 1, 2).

However, on closer inspection, the two representations of π have the
same cycles.

There is only one way to write π as a collection of disjoint cycles.

Suppose, for the sake of contradiction, that we had two ways to write
π. Then an element, say element 1, would be listed in one cycle in the
first representation and in a different cycle in the second
representation. However, if we consider the sequence, 1, π(1), π(2)(1),
π(3)(1), . . . we see that the two different cycles would predict two
different sequences. This is impossible since the sequence is solely
dependent on π and not on the notation in which π is written.
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Functions Permutations

Inverting Permutations

How do we compute the inverse of a permutation expressed in cycle
notation?
If π maps a 7→ b, then π−1 maps b 7→ a. Thus, if (a, b, c , . . .) is a
cycle of π, then (. . . , c , b, a) is a cycle of π−1.

Example: Let π = (1, 2, 7, 9, 8)(5, 6, 3)(4) ∈ S9. Calculate π−1.

π−1 = (8, 9, 7, 2, 1)(3, 6, 5)(4).

Check that for k ∈ {1, 2, . . . , 9}, if π(k) = j (j follows k in a cycle in
π), then π−1(j) = k (k follows j in a cycle of π−1).
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Composing Permutations

We compute the composition of two permutations in cycle notation.

Example: Let π, σ ∈ S9 be given by π = (1, 3, 5)(4, 6)(2, 7, 8, 9), and
σ = (1, 4, 7, 9)(2, 3)(5)(6, 8). We compute π ◦ σ.
To do this, we calculate (π ◦ σ)(k) for all k ∈ {1, 2, . . . , 9}.
We begin with (π ◦ σ)(1). (π ◦ σ)(1) = π(4) = 6, and we can write
π ◦ σ = (1, 6, . . .. To continue the cycle, we calculate (π ◦ σ)(6).
π ◦ σ maps 6 7→ 9. Now we have π ◦ σ = (1, 6, 9, . . .. Next we
compute (π ◦ σ)(9) = π(1) = 3, so π ◦ σ = (1, 6, 9, 3, . . .. Continuing
in this fashion, we get 1 7→ 6 7→ 9 7→ 3 7→ 7 7→ 2 7→ 5 7→ 1 and we
have completed a cycle! Thus (1, 6, 9, 3, 7, 2, 5) is a cycle of π ◦ σ.
Notice that 4 is not on this cycle, so we start over computing
(π ◦ σ)(4). We find 4 7→ 8. The second cycle in π ◦ σ begins (4, 8, . . ..
Now we calculate (π ◦ σ)(8) = 4, so the entire cycle is simply (4, 8).
The two cycles (1, 6, 9, 3, 7, 2, 5) and (4, 8) exhaust all the elements of
{1, 2, . . . , 9}, and so we are finished. We have found
π ◦ σ = (1, 6, 9, 3, 7, 2, 5)(4, 8).
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Transpositions

The simplest permutation is the identity permutation ι; it satisfies
ι(x) = x for every x in its domain.

The next simplest type of permutation is called a transposition;
transpositions map almost all elements to themselves, except that
they exchange one pair of elements, as, e.g., in
τ = (1)(2)(3, 6)(4)(5)(7)(8)(9) ∈ S9.

Definition of Transpositions

A permutation τ ∈ Sn is called a transposition provided

there exist i , j ∈ {1, 2, . . . , n} with i 6= j so that τ(i) = j and τ(j) = i ;

for all k ∈ {1, 2, . . . , n} with k 6= i and k 6= j , we have τ(k) = k .

When a transposition is written in cycle notation, the vast majority of
the cycles are singletons. So it is more convenient not to write out all
these 1-cycles and to write just τ = (3, 6) instead of
τ = (1)(2)(3, 6)(4)(5)(7)(8)(9).
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Converting a Cycle Into Composition of Transpositions

Trick for converting a cycle into a composition of transpositions:

Example: Let π = (1, 2, 3, 4, 5). Write π as the composition of
transpositions.
(1, 2, 3, 4, 5) = (1, 5) ◦ (1, 4) ◦ (1, 3) ◦ (1, 2).

Let π = (1, 2, 3, 4, 5)(6, 7, 8)(9)(10, 11). Write π as the composition
of transpositions.
π = [(1, 5) ◦ (1, 4) ◦ (1, 3) ◦ (1, 2)] ◦ [(6, 8) ◦ (6, 7)] ◦ (10, 11).

Theorem (Transposition Representation)

Let π be any permutation on a finite set. Then π can be expressed as the
composition of transpositions defined on that set.

Let π be any permutation. Write π as a composition of disjoint cycles.
Using the technique above, rewrite each of its cycles as a composition
of transpositions. The cycles are disjoint, so there is no effect of one
cycle on another. Thus, we can string together the transpositions for
the various cycles into one long composition of cycles.
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Uniqueness of Parity

The decomposition of a permutation into transpositions is not unique.
For example, we can write

(1, 2, 3, 4) = (1, 4) ◦ (1, 3) ◦ (1, 2)
= (1, 2) ◦ (2, 3) ◦ (3, 4)
= (1, 2) ◦ (1, 4) ◦ (2, 3) ◦ (1, 4) ◦ (3, 4).

These ways of writing (1, 2, 3, 4) are not rearrangements of one
another. They do not even have the same length.

However, they do have something in common! All three compositions
consist of an odd number of transpositions.
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Inversions in a Permutation I

Definition of Inversion in a Permutation

Let π ∈ Sn and let i , j ∈ {1, 2, . . . , n} with i < j . The pair i , j is called an
inversion in π if π(i) > π(j).

We calculate the number of inversions in a transposition (a, b) ∈ Sn.
Let us assume a < b so we can write this as (a, b) =
[
1 2 · · · a − 1 a a + 1 · · · b − 1 b b + 1 · · · n

1 2 · · · a − 1 b a + 1 · · · b − 1 a b + 1 · · · n

]

.

The only inversions possible are those that involve a or b. We count
three types of inversions:

Those involving only a: Element a has advanced from column a to
column b. In so doing, it has skipped past elements a + 1, a+ 2,
. . . , b − 1 and creates inversions with those elements. It is still in its
proper order with respect to all other columns. The number of
inversions of this sort is (b − 1)− (a+ 1) + 1 = b − a− 1.
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Inversions in a Permutation II

We continue counting inversions in the transposition (a, b) =
[
1 2 · · · a − 1 a a + 1 · · · b − 1 b b + 1 · · · n

1 2 · · · a − 1 b a + 1 · · · b − 1 a b + 1 · · · n

]

.

Those involving only b: Element b has retreated from column b to
column a. In so doing, it has ducked under elements
a+ 1, a+ 2, . . . , b − 1 and creates inversions with those elements. It is
still in its proper order with respect to all other columns. The number
of inversions of this sort is, again, (b − 1)− (a + 1) + 1 = b − a− 1.
Those involving both a and b: This is just one inversion.

The total number of inversions is 2(b − a − 1) + 1, an odd number.

Note the number of inversions involving a but not b equals the
number of inversions involving b but not a. Further, all these
inversions involve the elements appearing between a and b.
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Evenness of the Identity

Lemma

If the identity permutation is written as a composition of transpositions,
then that composition must use an even number of transpositions. That
is, if ι = τ1 ◦ τ2 ◦ · · · ◦ τa, where the τs are transpositions, then a must be
even.

Write ι as a composition of transpositions: ι = τa ◦ τa−1 ◦ · · · ◦ τ2 ◦ τ1.
Our goal is to prove that a is even. We apply the transpositions τi
one at a time.

We first apply τ1. The resulting number of inversions is now odd.
We show that as we apply each τi , the number of inversions changes by
an odd amount.

The number of inversions at the start and at the end is zero. Since
each transposition increases or decreases the number of inversions by
an odd amount, the number of transpositions must be even.
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Evenness of the Identity (Cont’d)

We wrote ι = τa ◦ τa−1 ◦ · · · ◦ τ2 ◦ τ1.

Suppose τk = (a, b) and

τk−1 ◦ · · · ◦ τ1 =

[
· · · i · · · m · · · j · · ·
· · · a · · · x · · · b · · ·

]

. When we apply

τk = (a, b), the effect is

τk ◦ τk−1 ◦ · · · ◦ τ1 =

[
· · · i · · · m · · · j · · ·
· · · b · · · x · · · a · · ·

]

. The only

change is that a and b are exchanged in the bottom row. What has
happened to the number of inversions?

For a pair of columns including neither column i nor column j , there is
no change.
Columns to the left of column i and columns to the right of column j

are unaffected by the interchange of a and b; these elements do not
change their order with respect to these outer columns. Therefore we
only need to pay attention to columns between columns i and j .
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Evenness of the Identity (Cont’d)

Let’s say that column m is between i and j , and the entry in column
m is x . When we exchange a and b, the bottom row changes from
[· · · a · · · x · · · b · · · ] to [· · · b · · · x · · · a · · · ]. Consider cases depending
on x ’s size compared to a and b:

If x < a and x < b, then there is no change in the number of inversions
involving x and a or b. Before applying τk we had a and x inverted,
but x and b were in natural order. After applying τk we have x and b

inverted, but x and a are in their natural order.
If x > a and x > b, then there is no change in the number of inversions
involving x and a or b; the argument is similar.
If a < x < b, then upon switching a and b, we gain two inversions
involving a and x and involving b and x .
If a > x > b, then upon switching a and b, we lose two inversions.

In every case, the number of inversions either stays the same or
changes by two. The exchange of a and b either increases the number
of inversions by one (if a < b) or decreases the number of inversions
by one (if a > b). The cumulative effect is an odd change.
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Parity Theorem

Theorem (Uniqueness of Parity)

Let π ∈ Sn be decomposed into transpositions as π = τ1 ◦ τ2 ◦ · · · ◦ τa and
π = σ1 ◦ σ2 ◦ · · · ◦ σb. Then a and b have the same parity, i.e., they are
both odd or both even.

Let π be a permutation decomposed into transpositions as
π = τ1 ◦ τ2 ◦ · · · ◦ τa and π = σ1 ◦ σ2 ◦ · · · ◦ σb.
We can write π−1 = σb ◦ σb−1 ◦ · · · ◦ σ2 ◦ σ1. So
ι = π ◦ π−1 = τ1 ◦ τ2 ◦ · · · ◦ τa ◦ σb ◦ σb−1 ◦ · · · ◦ σ2 ◦ σ1.
This is a decomposition of ι into a + b transpositions. Hence, by the
previous lemma, a+ b is even, and so a and b have the same parity.
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Even and Odd Permutations

Definition of Even and Odd Permutations

Let π be a permutation on a finite set.

We call π even provided it can be written as the composition of an
even number of transpositions.

Otherwise, it can be written as the composition of an odd number of
transpositions, in which case we call π odd.

The sign of a permutation is ±1 depending on whether the
permutation is odd or even.
The sign of π is:

sgnπ =

{
+1, if π is even
−1, if π is odd

.
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Permutation Diagrams

We may draw a picture of a permutation:

Given π ∈ Sn, we make a figure in which

the numbers 1, 2, . . . , n are represented by points;
if π(a) = b, we draw an arrow from a to b.

In case π(a) = a, we draw a looping arrow from a to itself.

Example: If π = (1, 2, 3, 4, 5, 6)(7, 8, 9), then

Each cycle of π corresponds precisely to a closed path in the diagram.

Suppose we compose a permutation π with a transposition τ . What
is the effect on the diagram of π?
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Composing With a Transposition

Suppose π, τ ∈ Sn and τ = (a, b) where a 6= b and
a, b ∈ {1, 2, . . . , n}.

When we express π as disjoint cycles, cycles that contain neither a
nor b are the same in π and π ◦ τ .

The only cycles that are affected are ones that contain a or b.

If a and b are in the same cycle, then π is of the form
π = (p, a, q, . . . , s, b, t, . . . , z)(· · · ). Then π ◦ (a, b) will be of the form
π ◦ (a, b) = (p, a, q, . . . , s, b, t, . . . , z)(· · · ) ◦ (a, b) =
(p, a, t, . . . , z)(q, . . . , s, b)(· · · ). In other words, the cycle containing a

and b in π is split into two cycles in π ◦ (a, b): one containing a and
the other containing b.
If a and b are in different cycles, the opposite effect occurs. In this
case, π is of the form π = (p, a, q, . . .)(s, b, t, . . .)(· · · ) and so π ◦ (a, b)
has the form π ◦ (a, b) = (p, a, q, . . .)(s, b, t, . . .)(· · · ) ◦ (a, b) =
(p, a, t, . . . , s, b, q, . . .)(· · · ). The cycles containing a and b in π are
merged into a single cycle in π ◦ (a, b).
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An Example

Suppose π = (1, 2, 3, 4, 5)(6, 7, 8, 9) and let σ = π ◦ (4, 7).
Then, σ = (1, 2, 3, 4, 8, 9, 6, 7, 5). Because 4 and 7 are in separate
cycles of π, they are in a common cycle of π ◦ (4, 7).

Conversely, 4 and 7 are in the same cycle of σ but are split into
separate cycles in σ ◦ (4, 7).
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Connections With the Parity Theorem

Proposition

Let n be a positive integer and π, τ ∈ Sn, and suppose τ is a transposition.
Then the number of cycles in the disjoint cycle representations of π and
π ◦ τ differ by exactly one.

Suppose π ∈ Sn and π = τ1 ◦ τ2 ◦ · · · ◦ τa, where the τs are
transpositions. We will show that

a = n − c(π) (mod 2), (1)

where c(π) is the number of cycles in the unique disjoint cycle
representation of π.

So the parity of the number of transpositions in Equation (1) equals
the parity of n − c(π).

This implies that two different decompositions of π into transpositions
will both have an even or both have an odd number of terms.
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Expression for the Sign of a Permutation

Consider the sequence ι, τ1, τ1 ◦ τ2, τ1 ◦ τ2 ◦ τ3, . . . , π. Each term is
formed from the previous by appending the appropriate τj . We
calculate n − c(•) for each of these permutations

σ ι τ1 τ1 ◦ τ2 τ1 ◦ τ2 ◦ τ3 · · · π

n − c(σ) 0 1 1± 1 1± 1± 1 · · · 1± 1± · · · ± 1
︸ ︷︷ ︸

a terms

Note that the parity of the expression 1± 1± 1± · · · ± 1 (with a

terms) is exactly the same as the parity of a, and the result follows.

Corollary

Let n be a positive integer and π ∈ Sn. Then sgnπ = (−1)n−c(π).
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Subsection 5

Symmetry
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Introduction

We close by briefly studying the concept of symmetry.

What does it mean to say that “an object is symmetric”?

The word symmetry typically refers to geometric figures.

An informal definition of symmetry of a figure is as a motion that,
when applied to an object, results in a figure that looks exactly the
same as the original.

Example: If we rotate a square sitting on the plane counterclockwise
about its center through an angle of 90◦, the resulting figure is
exactly the same as the original. However, if we rotate the square
through an angle of, say, 30◦, the resulting figure is not the same as
the original. Therefore, a 90◦ rotation is a symmetry of the square,
but a 30◦ rotation is not.
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Symmetries of a Square: Rotations

Rotating a square 90◦ counterclockwise through its center leaves the
square unchanged.

What are the other motions we can apply to a square that leave it
unchanged?

Write the numbers 1 through 4 in the corners of the square.

We call the counterclockwise rotation through 90◦ symmetry R90.
We may also rotate the square counterclockwise through 180◦. We call
this symmetry R180. We might also rotate the square clockwise
through 180◦, but the end result is identical with R180.
We can rotate the square through 270◦ and leave the image
unchanged. We call this symmetry R270.
Finally, we can rotate the square through 360◦ and the result is
unchanged. Instead of R360, we call this symmetry I , for identity.

So far we have found four symmetries: I ,R90,R180 and R270. Are
there more?
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Symmetries of a Square: Reflections or Flips

We can pick the square up, flip it over, and set it back down in the
plane.

We can flip the square over along a horizontal axis. We call this
symmetry FH for “flip-horizontal.”
We can also flip the square over along its vertical axis. We call that
motion FV , or “flip-vertical.”
We can also hold the square by two opposite corners and flip it over
along its diagonal. If we rotate through the upper-right to lower-left
corner axis, we call this symmetry F/ or “flip along the / diagonal.”
We can also rotate along the upper-left to lower-right corner axis and
flip over along the \ diagonal. We call this symmetry F\.

The eight symmetries found thus far are I ,R90,R180,R270, FH ,FV ,F/,
and F\.
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The Eight Symmetries of the Square

Are there any duplications? The answer is no. We observe that no
two of the squares are labeled the same.
Are there any other symmetries? The answer to this question is also
no. Where could the corner labeled 1 possibly go?

It might end up in the northeast, northwest, southeast, or southwest.
Once we have decided where corner 1 goes, there are only two choices
for corner 2, since it must end up next to corner 1.
Once we have placed corners 1 and 2, the remaining corners are forced
into position.

Therefore, there are 4 x 2 = 8 choices, so we have found all the
symmetries.

George Voutsadakis (LSSU) Fundamental Concepts January 2014 70 / 77



Functions Symmetry

Symmetries as Permutations

The symmetry R90 can be expressed as

[
1 2 3 4
2 3 4 1

]

. The first

column means that label 1 moves to position 2, the second column
means that label 2 moves to position 3, and so on.

Since it is a permutation, we can express it in cycle form as (1, 2, 3, 4).

All eight symmetries of the square can be expressed in this notation.
Name 1 2 3 4 Cycle Form

I 1 2 3 4 (1)(2)(3)(4)
R90 2 3 4 1 (1, 2, 3, 4)
R180 3 1 4 2 (1, 3)(2, 4)
R270 4 1 2 3 (1, 4, 3, 2)
FH 2 1 4 3 (1, 2)(3, 4)
FV 4 3 2 1 (1, 4)(2, 3)
F/ 3 2 1 4 (1, 3)(2)(4)

F\ 1 4 3 2 (1)(2, 4)(3)
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Combining Symmetries

What happens if we first flip the square horizontally and then rotate it
through 90◦?

The net effect is a flip along the / diagonal, (i.e., F/). This is written
R90 ◦ FH = F/ (◦ denoting “symmetry combination”).

Recall that in g ◦ f , the function f is applied first and then g .

Since the symmetries of the square can be thought of as relabeling
permutations of its corners, we get

R90 ◦ FH = (1, 2, 3, 4) ◦ (1, 2)(3, 4) = (1, 3)(2)(4) = F/.

Even though the first ◦ stands for combining symmetries, and the
second ◦ is permutation composition, the calculation gives the correct
answer for the symmetries.
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How Combination Works

We first do FH , which we can express as π = (1, 2)(3, 4). The effect
is to take whatever is in position 1 (label 1) to position 2. Then
σ = (1, 2, 3, 4) takes whatever is in position 2 (label 2) to position 3.
So the net effect is 1 7→ 2 7→ 3. The other corners work the same way.

We can make an 8× 8 chart showing the combined effect of each pair
of symmetries:

◦ I R90 R180 R210 FH FV F/ F\
I I R90 R180 R270 FH FV F/ F\

R90 R90 R180 R270 I F/ F\ FV FH
R180 R180 R270 I R90 FV FH F\ F/
R270 R270 I R90 R180 F\ F/ FH FV
FH FH F\ FV F/ I R180 R270 R90

FV FV F/ FH F\ R180 I R90 R270

F/ F/ FH F\ FV R90 R270 I R180

F\ F\ FV F/ FH R270 R90 R180 I
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Properties of Combination

The operation ◦ is not commutative. For instance, R90 ◦ FH = F/ but
FH ◦ R90 = F\.

Element I is an identity element for ◦.

Every element has an inverse. For example, R−1
90 = R270 because

R90 ◦ R270 = R270 ◦ R90 = I . Most of the elements are their own
inverse.

The operation ◦ is associative. We noted that we can replace
symmetries by permutations and then interpret ◦ as composition.

In summary, the operation ◦ is associative, has an identity element,
and every symmetry has an inverse.

The operation of composition on the set of all permutations of n
elements, Sn, also exhibits these same properties.
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Isometry

A geometric figure, e.g., a square, is a set of points in the plane R2.

Example: The following set is a square:

S = {(x , y) ∈ R2 : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1}.

The distance between points (a, b) and (c , d) is

dist[(a, b), (c , d)] =
√

(a − c)2 + (b − d)2.

where dist[(a, b), (c , d)] stands for the distance between the points
(a, b) and (c , d).

Definition of Isometry

Let f : R2 → R2. We call f an isometry provided

∀(a, b), (c , d) ∈ R2, dist[(a, b), (c , d)] = dist[f (a, b), f (c , d)].

A synonym for isometry is a distance-preserving function.
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Symmetry

Let X ⊆ R2 (i.e., X is a geometric figure).

If f : R2 → R2, writing f (X ) is nonsense because X is a set of points
and the domain of f is the set of points in the plane.

However, we define f (X ) to mean

f (X ) = {f (a, b) : (a, b) ∈ X}.

So, f (X ) is the set we obtain by evaluating f at all the points in X .

Definition of Symmetry

Let X ⊆ R2. A symmetry of X is an isometry f : R2 → R2 such that
f (X ) = X .
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Symmetries of the Square Revisited

Consider again the square

S = {(x , y) ∈ R2 : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1}.

The symmetries of S are

l(a, b) = (a, b) FH(a, b) = (a,−b)
R90(a, b) = (−b, a) FV (a, b) = (−a, b)
R180(a, b) = (−a,−b) F/(a, b) = (b, a)

R270(a, b) = (b,−a) F\(a, b) = (−b,−a).

Even though we focused on geometric figures in the plane, all these
ideas can be extended to three-dimensional space and beyond.
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