Introduction to Convexity

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

Introduction

Notation and Conventions

Subsection 1

Notation and Conventions

Sets

- The empty set is denoted by Ø.
- A set consisting of a single element is called a singleton.
- We use the symbol {x₁,...,x_m}≠ to denote the set consisting of *distinct* elements x₁,...,x_m.
- If A and B are sets, then A\B is used to denote the set consisting of those elements belonging to A but not to B.
- Two sets are said to **meet** if they have a non-empty intersection, otherwise they are said to be **disjoint**.
- If A is a subset of some universal set X, then the set X\A is called the complement of A in X and is denoted by A^c.

Families

- The intersection (union) of an empty family of subsets of the universal set X is taken to be X (Ø).
- Let $(A_i : i \in I)$ be a family of subsets of X indexed by some index set I.
- Then the family is said to be pairwise disjoint if A_i and A_j are disjoint whenever i, j ∈ I with i ≠ j.
- De Morgan's complementation laws assert that

$$\begin{array}{rcl} (\bigcup(A_i:i\in I))^c &=& \bigcap(A_i^c:i\in I),\\ (\bigcap(A_i:i\in I))^c &=& \bigcup(A_i^c:i\in I). \end{array}$$

Injective, Surjective and Bijective Mappings

- Consider a mapping $f: X \to Y$, where X and Y are non-empty sets.
- Then f is said to be injective if f(x) = f(x'), where x, x' ∈ X, implies that x = x';
- it is said to be surjective if, for each y ∈ Y, there exists x ∈ X such that f(x) = y.
- A mapping which is both injective and surjective is said to be **bijective**.
- An injective (surjective, bijective) mapping is called an **injection** (surjection, bijection).
- Each bijection f: X → Y gives rise to an inverse mapping f⁻¹: Y → X defined by the condition that f⁻¹(y) = x if and only if f(x) = y, where x ∈ X, y ∈ Y.

mage, Inverse Image and Composition

- Let $f: X \to Y$, $A \subseteq X$ and $B \subseteq Y$.
- The image f(A) of A under f is the subset $\{f(a) : a \in A\}$ of Y.
- The inverse image $f^{-1}(B)$ of B under f is the subset $\{x \in X : f(x) \in B\}$ of X.
- If $f: X \to Y$ and $g: Y \to Z$ are mappings, then the composite mapping $g \circ f: X \to Z$ is defined by the equation

 $(g \circ f)(x) = g(f(x)), \text{ for } x \in X.$

Bolzano-Weierstrass Theorem and Infinite Products

- We assume the rudiments of real analysis, including sequences, series, and the continuity, differentiability and integration of functions.
- One important result is the Bolzano-Weierstrass Theorem:
 - Every bounded sequence of real numbers contains a convergent subsequence.
- The infinite product notation is used in the following sense:
 If the real sequence a₁, a₂,..., a_k,... is such that the sequence of partial products a₁, a₁a₂,..., a₁a₂..., a_k,... converges to the real number a, then this is indicated by writing

$$a=\prod_{k=1}^{\infty}a_k.$$

First Mean Value Theorem and Side Derivatives

 The First Mean Value Theorem (of the differential calculus) states: If the function f : [a, b] → ℝ is continuous on [a, b] and differentiable on (a, b), then there exists c in (a, b), such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

- If the real function f is such that the one-sided limit lim_{x→a⁺} f(x)-f(a)/(x-a) exists, then its value is denoted by f'₊(a) and is called the right derivative of f at a.
- Similar remarks apply to the **left derivative** $f'_{-}(a)$ of f at a.
- If both $f'_{-}(a)$ and $f'_{+}(a)$ exist, then f is continuous at a.
- If, in addition, $f'_{-}(a) = f'_{+}(a)$, then f is differentiable at a.
- A superficial knowledge of the differentiability of a real function of *n* real variables is assumed, since the chain rule is used.

Vector Spaces and the Dimension Theorem

- We also assume a basic understanding of elementary linear algebra, including a knowledge of vector spaces, bases, dimension, linear transformations and eigenvectors.
- The only vector space considered here is the real *n*-dimensional space \mathbb{R}^n whose points are real *n*-tuples $\mathbf{x} = (x_1, \dots, x_n)$, and in which addition and scalar multiplication are defined coordinatewise.
- One result that will be needed is the **Dimension Theorem**: If A and B are finite dimensional subspaces of a vector space, then

 $\dim(A+B) + \dim(A \cap B) = \dim A + \dim B,$

where dimA etc. denotes the dimension of A.

Inner Products and Norms

The inner product x · y of vectors x = (x₁,...,x_n) and y = (y₁,...,y_n) in Rⁿ is the real number defined by the equation

$$\boldsymbol{x} \cdot \boldsymbol{y} = x_1 y_1 + \dots + x_n y_n.$$

The norm or length ||x|| of a vector x = (x₁,...,x_n) in ℝⁿ is the nonnegative number defined by the equations

$$\|\boldsymbol{x}\| = \sqrt{\boldsymbol{x} \cdot \boldsymbol{x}} = \sqrt{x_1^2 + \dots + x_n^2}.$$

Cauchy-Schwarz and Triangle Inequalities

- Two important inequalities relating to the inner product and the norm are the Cauchy-Schwarz and the Triangle Inequalities.
- The Cauchy-Schwarz Inequality:

 $|\boldsymbol{x} \cdot \boldsymbol{y}| \leq \|\boldsymbol{x}\| \|\boldsymbol{y}\|.$

• The Triangle Inequality:

 $\|x+y\| \le \|x\| + \|y\|.$

Orthogonal Complement and Unique Decomposition

The orthogonal complement A[⊥] of a subspace A of ℝⁿ is the subspace of ℝⁿ defined by the equation

$$A^{\perp} = \{ x \in \mathbb{R}^n : \boldsymbol{x} \cdot \boldsymbol{a} = 0 \text{ for all } \boldsymbol{a} \in A \}.$$

We have

$$\dim A + \dim A^{\perp} = n.$$

• Each point x of \mathbb{R}^n can be expressed uniquely in the form

$$\boldsymbol{x} = \boldsymbol{a} + \boldsymbol{b},$$

where $\boldsymbol{a} \in A$ and $\boldsymbol{b} \in A^{\perp}$.

Matrices

- All matrices considered in the book are real.
- They are denoted by bold, upper case letters and expressed using square brackets.
- Thus we write **A** is the $m \times n$ matrix $[a_{ij}]$ to indicate that **A** is the $m \times n$ matrix having the element a_{ij} in its *i*th row and *j*th column.
- A zero matrix, i.e., one all of whose elements are zero, is denoted by **0**, its size being determined by the context.
- The identity matrix I_n is the $n \times n$ matrix having ones along its leading diagonal and zeros elsewhere.
- The transpose of a matrix \mathbf{A} is denoted by \mathbf{A}^{T} .
- The determinant of a square matrix **A** is denoted by det**A**.
- A square matrix **A** that has a non-zero determinant is said to be **non-singular** and has an inverse matrix **A**⁻¹.

Linear Equations and Transformations

- Matrices can be used to represent both systems of linear equations and linear transformations.
- A general system of *m* linear equations in *n* unknowns x_1, \ldots, x_n can be represented by the matrix form Ax = b, where *A* is an $m \times n$ matrix, $x \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$, *x* and *b* being regarded as column matrices.
- When b = 0, the system is said to be homogeneous.
- Such a homogeneous system for which *m* < *n* always has a non-trivial solution.
- A transformation $f : \mathbb{R}^n \to \mathbb{R}^m$ is linear if and only if it can be expressed in the form $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$, where \mathbf{A} is an $m \times n$ matrix and $\mathbf{x} \in \mathbb{R}^n$.

Rank of a Matrix

• The set of all linear combinations of the columns of an $m \times n$ matrix is a subspace of \mathbb{R}^m called the **column space** of **A**.

Its dimension is called the **column rank** of **A**.

The set of all linear combinations of the rows of an m×n matrix is a subspace of Rⁿ called the row space of A.

Its dimension is called the row rank of A.

• The column rank and the row rank of a matrix are always equal, and are referred to simply as the **rank** of the matrix.

Symmetric Matrices and Quadratic Forms

- Let **A** be a symmetric $n \times n$ matrix.
- Then the eigenvalues of **A** are all real.
- Moreover, there exists an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of A.
- The matrix **A** gives rise to a quadratic function $q : \mathbb{R}^n \to \mathbb{R}$ of *n* real variables x_1, \ldots, x_n defined by the equation

$$q(\boldsymbol{x}) = \boldsymbol{x}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{x},$$

where $\mathbf{x} = (x_1, \dots, x_n)$ and the 1×1 matrix $\mathbf{x}^T \mathbf{A} \mathbf{x}$ is identified with the real number defining it.

- We say that **A** is non-negative semi-definite if $x^T A x \ge 0$ for all x, and positive definite if $x^T A x > 0$ when $x \ne 0$.
- If **A** is non-negative semi-definite (positive definite), then its eigenvalues are non-negative (positive).