Introduction to Convexity

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

- Notation and Conventions

Subsection 1

Notation and Conventions

Sets

- The empty set is denoted by \varnothing.
- A set consisting of a single element is called a singleton.
- We use the symbol $\left\{x_{1}, \ldots, x_{m}\right\}_{\neq}$to denote the set consisting of distinct elements x_{1}, \ldots, x_{m}.
- If A and B are sets, then $A \backslash B$ is used to denote the set consisting of those elements belonging to A but not to B.
- Two sets are said to meet if they have a non-empty intersection, otherwise they are said to be disjoint.
- If A is a subset of some universal set X, then the set $X \backslash A$ is called the complement of A in X and is denoted by A^{c}.

Families

- The intersection (union) of an empty family of subsets of the universal set X is taken to be $X(\varnothing)$.
- Let $\left(A_{i}: i \in I\right)$ be a family of subsets of X indexed by some index set I.
- Then the family is said to be pairwise disjoint if A_{i} and A_{j} are disjoint whenever $i, j \in l$ with $i \neq j$.
- De Morgan's complementation laws assert that

$$
\begin{aligned}
\left(\cup\left(A_{i}: i \in I\right)\right)^{c} & =\cap\left(A_{i}^{c}: i \in I\right), \\
\left(\cap\left(A_{i}: i \in I\right)\right)^{c} & =\bigcup\left(A_{i}^{c}: i \in I\right) .
\end{aligned}
$$

Injective, Surjective and Bijective Mappings

- Consider a mapping $f: X \rightarrow Y$, where X and Y are non-empty sets.
- Then f is said to be injective if $f(x)=f\left(x^{\prime}\right)$, where $x, x^{\prime} \in X$, implies that $x=x^{\prime}$;
- it is said to be surjective if, for each $y \in Y$, there exists $x \in X$ such that $f(x)=y$.
- A mapping which is both injective and surjective is said to be bijective.
- An injective (surjective, bijective) mapping is called an injection (surjection, bijection).
- Each bijection $f: X \rightarrow Y$ gives rise to an inverse mapping $f^{-1}: Y \rightarrow X$ defined by the condition that $f^{-1}(y)=x$ if and only if $f(x)=y$, where $x \in X, y \in Y$.

Image, Inverse Image and Composition

- Let $f: X \rightarrow Y, A \subseteq X$ and $B \subseteq Y$.
- The image $f(A)$ of A under f is the subset $\{f(a): a \in A\}$ of Y.
- The inverse image $f^{-1}(B)$ of B under f is the subset $\{x \in X: f(x) \in B\}$ of X.
- If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are mappings, then the composite mapping $g \circ f: X \rightarrow Z$ is defined by the equation

$$
(g \circ f)(x)=g(f(x)), \text { for } x \in X
$$

Bolzano-Weierstrass Theorem and Infinite Products

- We assume the rudiments of real analysis, including sequences, series, and the continuity, differentiability and integration of functions.
- One important result is the Bolzano-Weierstrass Theorem:
- Every bounded sequence of real numbers contains a convergent subsequence.
- The infinite product notation is used in the following sense:

If the real sequence $a_{1}, a_{2}, \ldots, a_{k}, \ldots$ is such that the sequence of partial products $a_{1}, a_{1} a_{2}, \ldots, a_{1} a_{2} \cdots a_{k}, \ldots$ converges to the real number a, then this is indicated by writing

$$
a=\prod_{k=1}^{\infty} a_{k} .
$$

First Mean Value Theorem and Side Derivatives

- The First Mean Value Theorem (of the differential calculus) states: If the function $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b), then there exists c in (a, b), such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} .
$$

- If the real function f is such that the one-sided limit $\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a}$ exists, then its value is denoted by $f_{+}^{\prime}(a)$ and is called the right derivative of f at a.
- Similar remarks apply to the left derivative $f_{-}^{\prime}(a)$ of f at a.
- If both $f_{-}^{\prime}(a)$ and $f_{+}^{\prime}(a)$ exist, then f is continuous at a.
- If, in addition, $f_{-}^{\prime}(a)=f_{+}^{\prime}(a)$, then f is differentiable at a.
- A superficial knowledge of the differentiability of a real function of n real variables is assumed, since the chain rule is used.

Vector Spaces and the Dimension Theorem

- We also assume a basic understanding of elementary linear algebra, including a knowledge of vector spaces, bases, dimension, linear transformations and eigenvectors.
- The only vector space considered here is the real n-dimensional space \mathbb{R}^{n} whose points are real n-tuples $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$, and in which addition and scalar multiplication are defined coordinatewise.
- One result that will be needed is the Dimension Theorem:

If A and B are finite dimensional subspaces of a vector space, then

$$
\operatorname{dim}(A+B)+\operatorname{dim}(A \cap B)=\operatorname{dim} A+\operatorname{dim} B
$$

where $\operatorname{dim} A$ etc. denotes the dimension of A.

Inner Products and Norms

- The inner product $\boldsymbol{x} \cdot \boldsymbol{y}$ of vectors $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ in \mathbb{R}^{n} is the real number defined by the equation

$$
\boldsymbol{x} \cdot \boldsymbol{y}=x_{1} y_{1}+\cdots+x_{n} y_{n} .
$$

- The norm or length $\|\boldsymbol{x}\|$ of a vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{R}^{n} is the nonnegative number defined by the equations

$$
\|\boldsymbol{x}\|=\sqrt{\boldsymbol{x} \cdot \boldsymbol{x}}=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}
$$

Cauchy-Schwarz and Triangle Inequalities

- Two important inequalities relating to the inner product and the norm are the Cauchy-Schwarz and the Triangle Inequalities.
- The Cauchy-Schwarz Inequality:

$$
|x \cdot y| \leq\|x\|\|y\| .
$$

- The Triangle Inequality:

$$
\|x+y\| \leq\|x\|+\|y\| .
$$

Orthogonal Complement and Unique Decomposition

- The orthogonal complement A^{\perp} of a subspace A of \mathbb{R}^{n} is the subspace of \mathbb{R}^{n} defined by the equation

$$
A^{\perp}=\left\{x \in \mathbb{R}^{n}: \boldsymbol{x} \cdot \boldsymbol{a}=0 \text { for all } \boldsymbol{a} \in A\right\} .
$$

- We have

$$
\operatorname{dim} A+\operatorname{dim} A^{\perp}=n
$$

- Each point \boldsymbol{x} of \mathbb{R}^{n} can be expressed uniquely in the form

$$
x=a+b
$$

where $\boldsymbol{a} \in A$ and $\boldsymbol{b} \in A^{\perp}$.

Matrices

- All matrices considered in the book are real.
- They are denoted by bold, upper case letters and expressed using square brackets.
- Thus we write \boldsymbol{A} is the $m \times n$ matrix $\left[a_{i j}\right]$ to indicate that \boldsymbol{A} is the $m \times n$ matrix having the element $a_{i j}$ in its i th row and j th column.
- A zero matrix, i.e., one all of whose elements are zero, is denoted by $\mathbf{0}$, its size being determined by the context.
- The identity matrix \boldsymbol{I}_{n} is the $n \times n$ matrix having ones along its leading diagonal and zeros elsewhere.
- The transpose of a matrix \boldsymbol{A} is denoted by \boldsymbol{A}^{T}.
- The determinant of a square matrix \boldsymbol{A} is denoted by $\operatorname{det} \boldsymbol{A}$.
- A square matrix \boldsymbol{A} that has a non-zero determinant is said to be non-singular and has an inverse matrix \boldsymbol{A}^{-1}.

Linear Equations and Transformations

- Matrices can be used to represent both systems of linear equations and linear transformations.
- A general system of m linear equations in n unknowns x_{1}, \ldots, x_{n} can be represented by the matrix form $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, where \boldsymbol{A} is an $m \times n$ matrix, $\boldsymbol{x} \in \mathbb{R}^{n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}, \boldsymbol{x}$ and \boldsymbol{b} being regarded as column matrices.
- When $\boldsymbol{b}=\mathbf{0}$, the system is said to be homogeneous.
- Such a homogeneous system for which $m<n$ always has a non-trivial solution.
- A transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear if and only if it can be expressed in the form $f(\boldsymbol{x})=\boldsymbol{A} \boldsymbol{x}$, where \boldsymbol{A} is an $m \times n$ matrix and $x \in \mathbb{R}^{n}$.

Rank of a Matrix

- The set of all linear combinations of the columns of an $m \times n$ matrix is a subspace of \mathbb{R}^{m} called the column space of \boldsymbol{A}. Its dimension is called the column rank of \boldsymbol{A}.
- The set of all linear combinations of the rows of an $m \times n$ matrix is a subspace of \mathbb{R}^{n} called the row space of \boldsymbol{A}. Its dimension is called the row rank of \boldsymbol{A}.
- The column rank and the row rank of a matrix are always equal, and are referred to simply as the rank of the matrix.

Symmetric Matrices and Quadratic Forms

- Let \boldsymbol{A} be a symmetric $n \times n$ matrix.
- Then the eigenvalues of \boldsymbol{A} are all real.
- Moreover, there exists an orthonormal basis for \mathbb{R}^{n} consisting of eigenvectors of \boldsymbol{A}.
- The matrix \boldsymbol{A} gives rise to a quadratic function $q: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of n real variables x_{1}, \ldots, x_{n} defined by the equation

$$
q(x)=x^{\top} A x
$$

where $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and the 1×1 matrix $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}$ is identified with the real number defining it.

- We say that \boldsymbol{A} is non-negative semi-definite if $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x} \geq 0$ for all \boldsymbol{x}, and positive definite if $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}>0$ when $\boldsymbol{x} \neq \mathbf{0}$.
- If \boldsymbol{A} is non-negative semi-definite (positive definite), then its eigenvalues are non-negative (positive).

