
Introduction to Convexity

George Voutsadakis1

1Mathematics and Computer Science

Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU) Convexity July 2023 1 / 162



Outline

1 The Euclidean Space Rn

The Euclidean Space Rn

Flats
Dimension
Hyperplanes
Affine Transformations
Length, Distance and Angle
Open Sets and Closed Sets
Convergence and Compactness
Continuity

George Voutsadakis (LSSU) Convexity July 2023 2 / 162



The Euclidean Space Rn The Euclidean Space Rn

Subsection 1

The Euclidean Space Rn

George Voutsadakis (LSSU) Convexity July 2023 3 / 162



The Euclidean Space Rn The Euclidean Space Rn

Vector Space Operations in R3

In three-dimensional coordinate geometry a point or vector is
determined by its coordinates x ,y ,z relative to some rectangular
coordinate system.

We identify the point or vector with the ordered triple (x ,y ,z).

Vectors are added together according to a parallelogram law, which
is equivalent to the addition of corresponding coordinates.

The word scalar is used as a synonym for real number.

The product of a scalar and a vector is equivalent to the
multiplication of each coordinate of the vector by the scalar.

Thus, if (x ,y ,z) and (u,v ,w) are vectors, and λ is a scalar, then

(x ,y ,z)+ (u,v ,w) = (x +u,y +v ,z +w);
λ(x ,y ,z) = (λx ,λy ,λz).

These equations can be extended in the natural way to define vector
addition and scalar multiplication of real n-tuples.

George Voutsadakis (LSSU) Convexity July 2023 4 / 162



The Euclidean Space Rn The Euclidean Space Rn

Euclidean Space Rn

For each positive integer n, denote by Rn the set of all n-tuples
(x1, . . . ,xn) of real numbers.

Then Rn is called the n-dimensional Euclidean space.

Each element x = (x1, . . . ,xn) of Rn is called a point or vector of Rn

and the real numbers x1, . . . ,xn are called the coordinates of x .

For n= 1, we identify the 1-tuple x = (x1) with the real number x1

itself, so that R1 becomes simply R, the set of real numbers.

For n= 1,2,3, we often write x , (x ,y), (x ,y ,z) instead of (x1),
(x1,x2), (x1,x2,x3).

Geometrically, R1 can be thought of as a line, R2 as a plane, and R3

as the set of points in space.

Lower case Roman letters such as a,b,c ,x ,y ,z will denote points of
R

n, lower case Roman and Greek letters such as x ,y ,z ,λ,µ,ν will
denote scalars, and capital Roman letters such as A,B ,C will denote
subsets of Rn.
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The Euclidean Space Rn The Euclidean Space Rn

Addition and Scalar Multiplication

Addition and scalar multiplication in Rn are defined coordinatewise.

Thus, if x = (x1, . . . ,xn), y = (y1, . . . ,yn), and λ is a scalar, then

x +y = (x1+y1, . . . ,xn+yn) and λx = (λx1, . . . ,λxn).

The vector (0, . . . ,0) of Rn, all of whose coordinates are 0, is denoted
by 0 and is called the zero vector or origin of Rn.

The vector in Rn whose only non-zero coordinate is a 1 in the ith
position is denoted by e i and is called the ith elementary vector.

A point of Rn all of whose coordinates are integers is called a lattice

point.

The vector (−1)x is written simply as −x .

Vector subtraction is defined by the rule x −y = x + (−1)y .

It is sometimes convenient to write x
λ for 1

λx .
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The Euclidean Space Rn The Euclidean Space Rn

R
n as a Real Vector Space

The set Rn, equipped with the above operations of vector addition
and scalar multiplication, is a real vector space.

This means that, if x ,y ,z ∈Rn and λ,µ ∈R, then the following
relations hold:

(i) x +y = y +x ;
(ii) x + (y +z)= (x +y)+z ;
(iii) x +0= x ;
(iv) x + (−x)= 0;
(v) 1x = x ;
(vi) λ(µx)= (λµ)x ;
(vii) λ(x +y)=λx +λy ;
(viii) (λ+µ)x = λx +µx .
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The Euclidean Space Rn The Euclidean Space Rn

Extending Operations on Sets

We extend the operations of vector addition and scalar multiplication
to subsets of Rn by defining:

A+B = {a+b : a ∈A,b ∈B} and λA= {λa : a ∈A},

where A,B ⊆Rn and λ ∈R.

The set A+B is called the vector sum of A and B .

It follows from the above definitions that both sets A+B and λA are
empty when A is empty.

We write −A for the set (−1)A, and A−B for the set A+ (−B).

It is sometimes convenient to write A
λ

for 1
λ
A.
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The Euclidean Space Rn The Euclidean Space Rn

Symmetric Sets

The set A in Rn is said to be 0-symmetric, or simply symmetric, if
−A=A.

Geometrically, A is symmetric if it is its own reflection in the origin.

Examples of symmetric sets in R2 are:

ellipses centered at the origin;
parallelograms with centers at the origin;
lines through the origin;
R

2 itself.
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The Euclidean Space Rn The Euclidean Space Rn

Translates

The set {a}+B , where a ∈Rn, is often written as a+B and is called a
translate of B or, more precisely, the translate of B by a.

It is an easy exercise in set theory to show that

A+B =
⋃

(a+B : a ∈A),

i.e., A+B is the union of all translates of B by vectors a in A.

This result can help us to visualize A+B in simple cases.

George Voutsadakis (LSSU) Convexity July 2023 10 / 162



The Euclidean Space Rn The Euclidean Space Rn

Example

Suppose that A and B are the square and the circular disc in R2

defined by the equations

A= {(x ,y) : |x |, |y | ≤ 1}, B = {(x ,y) : x2+y2 ≤ 1}.

Then a+B is the circular disc with center a and radius 1;

A+B is the union of all such discs for a ∈A.

George Voutsadakis (LSSU) Convexity July 2023 11 / 162



The Euclidean Space Rn The Euclidean Space Rn

Caution with Set Operations

Vector addition and scalar multiplication, when applied to sets in Rn,
do not have all the properties one might expect, and the reader is
warned to be cautious.

For example, it is not always true that A+A= 2A.

To see this, let A consist of distinct points a and b in Rn.

Then A+A= {2a,2b,a+b}, whereas 2A= {2a,2b}.
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The Euclidean Space Rn The Euclidean Space Rn

Properties of Set Operations

Properties (i)-(viii) above do, however, partially generalize to give the
following easily verified results:

(i)∗ A+B =B +A;
(ii)∗ A+ (B +C )= (A+B)+C ;
(iii)∗ A+0=A;
(iv)∗ 0∈A+ (−A) when A 6= ;;
(v)∗ 1A=A;
(vi)∗ λ(µA)= (λµ)A;
(vii)∗ λ(A+B)=λA+λB;
(viii)∗ (λ+µ)A⊆ λA+µA.
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Subsection 2

Flats
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The Euclidean Space Rn Flats

Equation of a Line in R3

For each point x on the line through dis-
tinct points a and b of R3, there exists
a unique scalar λ such that

x = b+λ(a−b)
= λa+ (1−λ)b.

Conversely, each point x of this form lies on the line through a and b.

Thus the line through a and b is the set {λa+ (1−λ)b :λ ∈R}, which
can also be written in the symmetrical form {λa+µb :λ+µ= 1}.

We note that the subset

{λa+ (1−λ)b : 0≤λ≤ 1} = {λa+µb :λ,µ≥ 0,λ+µ= 1}

of the line through a and b is the line segment joining a and b.
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The Euclidean Space Rn Flats

Flats

The line through distinct points a and b of Rn is the set
{λa+µb :λ+µ= 1}.

Clearly this set contains both a and b, and its points can be placed
into a bijective correspondence with the points of the real line R itself.

The set A in Rn is called a flat if whenever it contains two points, it
also contains the entire line through them.

Expressed algebraically, A is a flat if λa+µb ∈A whenever a,b ∈A and
λ+µ= 1.

Equivalently, A is a flat if λA+µA⊆A whenever λ+µ= 1.

Synonyms for flat used by other authors are: affine set, affine

variety, affine manifold, linear variety, and linear manifold.

The empty set, singletons, lines, and Rn itself are examples of flats in
R

n. Planes are flats in R3.
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The Euclidean Space Rn Flats

Flats Containing the Origin

Let A be a flat in Rn which contains the origin.

Suppose that a,b ∈A and λ∈R.

Since A is a flat and a,0 ∈A, λa+ (1−λ)0 ∈A, i.e., λa ∈A. Thus A is
closed under scalar multiplication.

Since A is a flat and a,b ∈A, 1
2
a+ 1

2
b ∈A. But A is closed under

scalar multiplication. So 2(1
2
a+ 1

2
b) ∈A, i.e., a+b ∈A. Thus A is

closed under addition.

Hence A is a non-empty subset of Rn which is closed under addition
and scalar multiplication, i.e., A is a subspace of the real vector space
R

n.

Trivially, a subspace of Rn is a flat containing the origin.

We have shown that flats through the origin in Rn are precisely the
subspaces of Rn.
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The Euclidean Space Rn Flats

Relation Between Flats and Subspaces

Theorem

The non-empty flats in Rn are precisely the translates of subspaces of Rn.

Suppose first that A is a non-empty flat in Rn. Let a ∈A.

We show that A−a is a flat. Let x ,y ∈A−a and λ+µ= 1.

Then x +a,y +a ∈A. So

λ(x +a)+µ(y +a)=λx +µy +a ∈A.

Thus, λx +µy ∈A−a, and A−a is a flat.

Since A−a contains the origin, it must be a subspace of Rn.

Hence the non-empty flat A is the translate of the subspace A−a of
R

n by the vector a.
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The Euclidean Space Rn Flats

Relation Between Flats and Subspaces (Cont’d)

Suppose next that A is a subspace of Rn and that u ∈Rn.

We show that A+u is a flat. Let x ,y ∈A+u and λ+µ= 1.

Then there exist a,b ∈A such that x = a+u, y = b+u. So

λx +µy =λa+µb+u ∈A+u,

since λa+µb ∈A, as A is a subspace of Rn.

This shows that A+u is a flat.
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The Euclidean Space Rn Flats

Uniqueness of Subspace

Corollary

Each non-empty flat in Rn is the translate of precisely one subspace of Rn.

Let A be a non-empty flat in Rn. Suppose that A is a translate of
both the subspaces B and C of Rn. Then C must be a translate of B .
So there exists b ∈Rn such that C =B+b. Since 0 lies in C , it follows
that −b, and hence b, lies in B . Thus C =B +b⊆B . By symmetry,
B ⊆C . Hence B =C , and A is the translate of precisely one subspace
of Rn.
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The Euclidean Space Rn Flats

Parallel Flats

The observation that two (distinct) lines in R2 are parallel if and only
if one is a translate of the other prompts the following definition.

In Rn a flat A is said to be parallel to a flat B if each is a translate of
the other.

The relation of parallelism is an equivalence relation on the family of
all flats in Rn.

This notion of parallelism does not quite accord with that used in
elementary geometry on two counts:

Firstly, a flat is considered to be parallel to itself.
Secondly, it only allows parallelism between flats of the same dimension.
For example, we cannot speak of a line being parallel to a plane.

The preceding corollary shows that each non-empty flat in Rn is
parallel to precisely one subspace of Rn.
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The Euclidean Space Rn Flats

Closure Under Intersections

Theorem

The intersection of an arbitrary family of flats in Rn is a flat.

Let (Ai : i ∈ I ) be a family of flats in Rn.

Let a,b ∈
⋂

(Ai : i ∈ I ) and λ+µ= 1.

Then a,b ∈Ai . As Ai is a flat, λa+µb ∈Ai , for each i ∈ I .
Thus, λa+µb ∈⋂

(Ai : i ∈ I ).
This shows that the intersection is a flat.
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The Euclidean Space Rn Flats

Affine Hull

The affine hull affA of a set A in Rn is the intersection of all flats in
R

n containing A.

Such flats exist, since Rn is a flat containing A.

In view of the preceding theorem, affA is a flat which contains A.

Moreover, if B is any flat in Rn containing A, then affA⊆B .

Thus, we may refer to affA as the smallest flat in Rn containing A.

Clearly, A is a flat if and only if A= affA.

Moreover, aff(affA)= affA.

Another easy result is that, if A⊆B , then affA⊆ affB .
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The Euclidean Space Rn Flats

Affine Hull in R3

In the space R3:

The affine hull of two distinct points is the line through them;
The affine hull of three non-collinear points is the plane which they
determine;
The affine hull of four non-coplanar points is the whole space R3 itself.
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The Euclidean Space Rn Flats

Generalized Flat Relation

By definition, a set A in Rn is a flat if λa+µb ∈A whenever a,b ∈A
and λ+µ= 1.

This defining relation of a flat implies a more general one, as we now
establish in the following fundamental theorem.

Theorem

Let a1, . . . ,am be points of a flat A in Rn. Let λ1+·· ·+λm = 1. Then
λ1a1+·· ·+λmam ∈A.

Let a ∈A. Then the points a1−a, . . . ,am−a lie in the subspace A−a

of Rn, whence so too does the point

λ1(a1−a)+·· ·+λm(am−a)=λ1a1+·· ·+λmam−a.

Hence λ1a1+·· ·+λmam ∈A.
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The Euclidean Space Rn Flats

Affine Combinations and the Affine Hull

A point x is said to be an affine combination of points a1, . . . ,am in
R

n if there exist scalars λ1, . . . ,λm with λ1+·· ·+λm = 1 such that

x =λ1a1+·· ·+λmam.

The preceding theorem can now be expressed as: Every affine
combination of points of a flat in Rn belongs to that flat.

The affine hull of a set was defined by means of flats containing that
set.

The following theorem expresses the affine hull of a set in terms of
points of the set itself.

Theorem

Let A be a set in Rn. Then affA is the set of all affine combinations of
points of A.
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The Euclidean Space Rn Flats

Proof

Denote by B the set of all affine combinations of points of A.

That B ⊆ affA follows from the preceding theorem and the inclusion
A⊆ affA.

We next show that B is a flat. If x ,y ∈B , then x =λ1a1+·· ·+λmam,
y =µ1b1+·· ·+µpbp, for some a1, . . . ,am,b1, . . . ,bp ∈A, and scalars
λ1, . . . ,λm,µ1, . . . ,µp with λ1+·· ·+λm = 1, µ1+·· ·+µp = 1. Let
λ+µ= 1. Then

λx +µy =λλ1a1+·· ·+λλmam+µµ1b1+·· ·+µµpbp

and λλ1+·· ·+λλm+µµ1+·· ·+µµp

=λ(λ1+·· ·+λm)+µ(µ1+·· ·+µp)
=λ+µ= 1.

Thus λx +µy ∈B . So B is a flat. Since B is a flat and B ⊇A, it
follows that B ⊇ affA. Hence B = affA.
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The Euclidean Space Rn Flats

Example

Corollary

Let a1, . . . ,am ∈Rn. Then

aff{a1, . . . ,am} = {λ1a1+·· ·+λmam :λ1+·· ·+λm = 1}.

Example: Each point x = (x1, . . . ,xn) of Rn can be expressed as an
affine combination of the zero vector 0 and the elementary vectors
e1, . . . ,en as follows:

x = (1−x1−·· ·−xn)0+x1e1+·· ·+xnen.

The corollary now shows that aff{0,e1, . . . ,en} =Rn.

George Voutsadakis (LSSU) Convexity July 2023 28 / 162



The Euclidean Space Rn Flats

Linear Hull

Let A be a non-empty set in Rn.

We recall that a point of the form λ1a1+·· ·+λmam, where
a1, . . . ,am ∈A and λ1, . . . ,λm are scalars, is said to be a linear

combination of points of A.

The set of all such linear combinations is the smallest subspace of Rn

which contains A, and is called here the linear hull of A and we
denote it by linA.

Since linA is a flat containing A∪ {0}, it follows that aff(A∪ {0})⊆ linA.

On the other hand, aff(A∪ {0}) is a subspace of Rn containing A, so
linA⊆ aff(A∪ {0}).

We conclude that linA= aff(A∪ {0}).

We define lin;= {0}.

This ensures that lin; is the smallest subspace of Rn which contains
;, and that lin;= aff(;∪ {0}).
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The Euclidean Space Rn Flats

Addition and Scalar Multiplication

We conclude the section by examining how flats behave with respect
to the operations of addition and scalar multiplication.

Theorem

Let A,B be flats in Rn and let α be a scalar. Then A+B and αA are flats.

Let λ+µ= 1. Since A and B are flats, λA+µA⊆A and λB +µB ⊆B .
Thus,

λ(A+B)+µ(A+B)= (λA+µA)+ (λB +µB)⊆A+B ;
λ(αA)+µ(αA)=α(λA+µA)⊆αA.

This shows that A+B and αA are flats.

Corollary

Let A1, . . . ,Am be flats in Rn and let λ1, . . . ,λm be scalars. Then
λ1A1+·· ·+λmAm is a flat.
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The Euclidean Space Rn Flats

Scalar Distributivity

We saw in the last section that it is not in general true that A+A= 2A.

It is true, however, when A is a flat.

Theorem

Let A be a flat in Rn and let λ1, . . . ,λm be scalars with λ1+·· ·+λm 6= 0.
Then

(λ1+·· ·+λm)A=λ1A+·· ·+λmA.

Write λ=λ1+·· ·+λm. Then, using a previous theorem, we deduce
that

(λ1+·· ·+λm)A ⊆ λ1A+·· ·+λmA

= λ(λ1
λ A+·· ·+ λm

λ A)
⊆ λA

= (λ1+·· ·+λm)A.

Thus (λ1+·· ·+λm)A=λ1A+·· ·+λmA.
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Subsection 3

Dimension
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The Euclidean Space Rn Dimension

Affine Dependence

The set A in Rn is said to be affinely dependent if there exists a ∈A
such that a ∈ aff(A\{a}).

Thus in R3:

A set of three points is affinely dependent if and only if it is collinear;
A set of four points is affinely dependent if and only if it is coplanar;
Any set having more than four points is affinely dependent.
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The Euclidean Space Rn Dimension

Affine Independence

A set in Rn which is not affinely dependent is said to be affinely

independent.

In R3:

A set of three points is affinely independent precisely when it is the
vertex set of a non-degenerate triangle;
A set of four points is affinely independent precisely when it is the
vertex set of a non-degenerate tetrahedron.

In Rn, the empty set, every singleton, and every set consisting of two
points are affinely independent.

Since any set in Rn which contains an affinely dependent set is itself
affinely dependent, it follows that every subset of an affinely
independent set is affinely independent.
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The Euclidean Space Rn Dimension

Criterion for Affine Dependence

Theorem

Let A be a set in Rn. Then A is affinely dependent if and only if there exist
distinct points a1, . . . ,am of A and scalars λ1, . . . ,λm, not all zero, such that

λ1a1+·· ·+λmam =0 and λ1+·· ·+λm = 0.

Suppose that A is affinely dependent. Then there exists a1 ∈A such
that a1 ∈ aff(A\{a1}). By a previous theorem, there exist (distinct)
points a2, . . . ,am of A\{a1} and scalars µ2, . . . ,µm, such that
a1 =µ2a2+·· ·+µmam and µ2+·· ·+µm = 1. Write λ1 =−1, λ2 =µ2,
. . ., λm =µm. Then λ1, . . . ,λm are not all zero and satisfy the
conclusion.
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The Euclidean Space Rn Dimension

Criterion for Affine Dependence (Cont’d)

Suppose next that there exist distinct points a1, . . . ,am of A, and
scalars λ1, . . . ,λm, not all zero, which satisfy the hypothesis.

Suppose that λ1 6= 0. Then

a1 =−
1

λ1
(λ2a2+·· ·+λmam) and −

1

λ1
(λ2+·· ·+λm)= 1,

which shows that a1 is an affine combination of a2, . . . ,am. Hence
a1 ∈ aff{a2, . . . ,am} ⊆ aff(A\{a1}). So A is affinely dependent.

Corollary

A subset {a1, . . . ,am} of Rn is affinely dependent if and only if there exist
scalars λ1, . . . ,λm, not all zero, such that

λ1a1+·· ·+λmam =0 and λ1+·· ·+λm = 0.
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The Euclidean Space Rn Dimension

Uniqueness

Corollary

Let {a1, . . . ,am} be an affinely independent set in Rn. Then each point of
aff{a1, . . . ,am} can be expressed uniquely in the form

λ1a1+·· ·+λmam, where λ1+·· ·+λm = 1.

A previous corollary shows that each point of aff{a1, . . . ,am} can be
expressed in the desired form.

To establish the uniqueness, suppose that

λ1a1+·· ·+λmam =µ1a1+·· ·+µmam,

λ1+·· ·+λm =µ1+·· ·+µm = 1.
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The Euclidean Space Rn Dimension

Uniqueness (Cont’d)

Then
(λ1−µ1)a1+·· ·+ (λm−µm)am = 0

with (λ1−µ1)+·· ·+ (λm−µm)= 0.

Since {a1, . . . ,am}6= is affinely independent, the preceding corollary
shows that the scalars λ1−µ1, . . . ,λm−µm must be zero.

Thus λ1 =µ1, . . ., λm =µm, and the uniqueness is established.
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The Euclidean Space Rn Dimension

Cardinality of Affinely Independent Sets

We mentioned that any set of more than four points in R3 is affinely
dependent.

Corollary

An affinely independent set in Rn cannot contain more than n+1 points.

It suffices to show that every set of the form {a1, . . . ,am}6= in Rn,
where m> n+1, is affinely dependent. Let {a1, . . . ,am}6= be a set in
R

n, where m> n+1. Then the system of the n+1 linear simultaneous
equations

λ1a1+·· ·+λmam = 0, λ1+·· ·+λm = 0,

in the m unknowns λ1, . . . ,λm is homogeneous. Since m> n+1, it has
a non-trivial solution. Hence, {a1, . . . ,am}6=, is affinely dependent by a
previous corollary.
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The Euclidean Space Rn Dimension

Affine Hull and Affine Independence

Corollary

Let A be an affinely independent subset of Rn. Suppose that a is a point
of Rn not lying in affA. Then the set A∪ {a} is affinely independent.

We argue by contradiction. Suppose that A∪ {a} is affinely dependent.
Then there exist distinct points a1, . . . ,am of A and scalars
λ,λ1, . . . ,λm, not all zero, such that λa+λ1a1+·· ·+λmam = 0 and
λ+λ1+·· ·+λm = 0. The scalar λ cannot be zero, for then A is affinely
dependent. Thus the equation can be used to express a as an affine
combination of a1, . . . ,am. So a ∈ aff{a1, . . . ,am}. This, however,
contradicts the hypothesis that a 6∈ affA. Hence A∪ {a} is affinely
independent.
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The Euclidean Space Rn Dimension

Example

In Rn the set {0,e1, . . . ,en} is affinely independent.

To see this, suppose that the scalars λ,λ1, . . . ,λn satisfy

λ0+λ1e1+·· ·+λnen = 0 and λ+λ1+·· ·+λn = 0.

The first of these equations shows that λ1, . . . ,λn are all zero.

Hence λ must also be zero from the second equation.

The corollary now shows that the set {0,e1, . . . ,en} is affinely
independent.
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The Euclidean Space Rn Dimension

Independent Generators

In R3 as a simple case-by-case consideration shows, each
r -dimensional flat (r = 0,1,2,3) is the affine hull of some affinely
independent set of r +1 points.

For example, a plane is the affine hull of any three of its points which
are not collinear.

Previous examples show that R3 is the affine hull of the affinely
independent set {0,e1,e2,e3}.

This suggests that we might assign a dimension r to a flat in Rn if it
is the affine hull of some affinely independent set of r +1 points.

Before we can formalize this idea, however, two results need to be
established:

(i) Every flat in Rn is the affine hull of some finite affinely independent set;
(ii) If two affinely independent sets in Rn have the same affine hull, then

they have the same number of elements.

George Voutsadakis (LSSU) Convexity July 2023 42 / 162



The Euclidean Space Rn Dimension

Dimension Theorem

Theorem

Every flat in Rn is the affine hull of some finite affinely independent subset
of Rn. Moreover, the number of elements in such a subset is determined
uniquely by the flat itself.

Consider the non-trivial case of a flat A in Rn which is neither empty
nor a singleton. Let m be the largest positive integer such that A
contains an affinely independent subset of m+1 elements. Such an m

exists by a previous corollary, and m≥ 1, since A contains at least two
points. Let {a0,a1, . . . ,am} be an affinely independent subset of A.
Since A is a flat, aff{a0,a1, . . . ,am} ⊆A. Now A⊆ aff{a0,a1, . . . ,am},

for otherwise there would exist some point a of A not lying in
aff{a0,a1, . . . ,am} and, by a previous corollary, {a,a0,a1, . . . ,am} would
be an affinely independent subset of A having m+2 elements, so
contradicting the definition of m. Hence A= aff{a0,a1, . . . ,am}.
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The Euclidean Space Rn Dimension

Dimension Theorem (Cont’d)

We now complete the proof by showing that m is the dimension of the
unique subspace B of Rn that is parallel to A.

This we do by proving that the subset {a1−a0, . . . ,am−a0} of B is a
basis for B . Let b ∈B . Then b = x −a0 for some x ∈A. Thus, there
exist scalars λ0,λ1, . . . ,λm such that

x =λ0a0+λ1a1+·· ·+λmam

and λ0+λ1+·· ·+λm = 1. Hence,

b= x −a0 =λ1(a1−a0)+·· ·+λm(am−a0).

This shows that {a1−a0, . . . ,am−a0} spans B .
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The Euclidean Space Rn Dimension

Dimension Theorem (Cont’d)

Finally, suppose that µ1, . . . ,µm satisfy

µ1(a1−a0)+·· ·+µm(am−a0)= 0.

Then
−(µ1+·· ·+µm)a0+µ1a1+·· ·+µmam = 0,

−(µ1+·· ·+µm)+µ1+·· ·+µm = 0.

But {a0,a1, . . . ,am}6= is affinely independent. So all of µ1, . . . ,µm are
zero. Thus {a1−a0, . . . ,am−a0} is linearly independent. We conclude
that {a1−a0, . . . ,am−a0} is a basis for B .

Hence, m is the dimension of B , and so is uniquely determined by A.
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The Euclidean Space Rn Dimension

Dimension of Flats

A flat in Rn which is the affine hull of some affinely independent set of
r +1 points is said to have dimension r and is called an r -flat.

It follows from the theorem that each flat in Rn has a unique
dimension r attached to it, and from a previous corollary that r ≤ n.

The empty flat is the affine hull of the (affinely independent) empty
set, and so has dimension −1.

Clearly every singleton (point) has dimension 0 and every line has
dimension 1.

We have already seen that Rn is the affine hull of the affinely
independent set {0,e1, . . . ,en}, whence Rn has dimension n.
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The Euclidean Space Rn Dimension

Dimension of Subsets

The concept of dimension is extended to arbitrary subsets of Rn by
defining the dimension dimA of a set A in Rn to be the dimension of
the flat affA.

We note that when a flat in Rn is also a subspace of Rn its dimension
as defined above coincides with its dimension as a subspace of the real
vector space Rn.

Hence we may apply the term dimension unambiguously both to flats
and subspaces of Rn.
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The Euclidean Space Rn Dimension

Dimension Equation

Theorem

Let A and B be flats in Rn which have a non-empty intersection. Then

dim(A+B)+dim(A∩B)= dimA+dimB .

Let c ∈A∩B . Then A−c and B −c are subspaces of Rn. So, by the
dimension theorem of elementary linear algebra,
dim((A−c)+(B−c))+dim((A−c)∩(B−c))= dim(A−c)+dim(B−c),
that is, dim(A+B −2c)+dim((A∩B)−c)= dim(A−c)+dim(B −c).

The proof of the preceding theorem shows that the dimension of a
non-empty flat in Rn coincides with the dimension of the unique
subspace of Rn which is parallel to it. It follows from this last result
that the dimension of any translate of a flat is the same as the
dimension of the flat itself. Thus, the last equation above simplifies to
dim(A+B)+dim(A∩B)= dimA+dimB .
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The Euclidean Space Rn Dimension

Affine Bases

An affine basis for a flat in Rn is any affinely independent set in Rn

whose affine hull is that flat.

A previous theorem shows that every flat has an affine basis.

By definition, every affine basis for an r -flat has precisely r +1
elements.

Example: {0,e1, . . . ,en} is an affine basis for Rn.

The next result shows that every affinely independent subset of a set
in Rn can be extended to an affine basis for the affine hull of the set.
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The Euclidean Space Rn Dimension

Extension to an Affine Basis

Theorem

Let B be an affinely independent subset of a set A in Rn. Then there
exists an affine basis for affA that lies in A and contains B .

Consider the non-empty family F of all affinely independent subsets of
A which contain B . Since no affinely independent set in Rn contains
more than n+1 points, there must exist some member C of F that is
not properly contained in any other member of F . Since C is a subset
of A, we have affC ⊆ affA. We claim that affC = affA.

Suppose that affC ⊂ affA. Since affA is the smallest flat containing A,
we cannot have A⊆ affC , whence there exists some point a of A not
lying in affC . We can now use a previous corollary to deduce that
C ∪ {a} is a member of F which properly contains C . This contradicts
the choice of C . Thus affC = affA and C is an affine basis of affA.
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The Euclidean Space Rn Dimension

Barycentric Coordinates

Corollary

Let A be a subset of Rn. Then A contains an affine basis for affA.

Let {a0, . . . ,ar } be an affine basis for a non-empty r -flat A in Rn.

Then, by a previous corollary, each point x of A can be expressed
uniquely in the form

x =λ0a0+·· ·+λrar , where λ0+·· ·+λr = 1.

The scalars λ0, . . . ,λr are called the barycentric coordinates of x

relative to (the ordered affine basis) a0, . . . ,ar .

A previous example shows that the barycentric coordinates of a point
x = (x1, . . . ,xn) of Rn relative to 0,e1, . . . ,en are 1−x1−·· ·−xn,
x1, . . . ,xn.
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The Euclidean Space Rn Dimension

Scalars of Point Relative to Affine Basis

Theorem

Let {a0, . . . ,ar } be an affine basis for a non-empty r -flat A in Rn. Let
λ0, . . . ,λr be the barycentric coordinates of a point x = (x1, . . . ,xn) of A
relative to a0, . . . ,ar . Then there exist scalars aij (i = 0, . . . ,r , j = 0, . . . ,n)
such that, for i = 0, . . . ,r ,

λi = ai0+ai1x1+·· ·+ainxn.

Extend, if necessary, {a0, . . . ,ar } to an affine basis {a0, . . . ,an} for Rn.
Each point x = (x1, . . . ,xn) of Rn can be written uniquely in the form

x =λ0a0+·· ·+λnan, where λ0+·· ·+λn = 1.

In particular, each of the points 0,e1, . . . ,en can be so expressed.

Write e0 = 0.
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The Euclidean Space Rn Dimension

Scalars of Point (Cont’d)

Then there are scalars bij (i = 0, . . . ,n; j = 0, . . . ,n) such that, for
i = 0, . . . ,n,

e i = b0ia0+·· ·+bnian and b0i +·· ·+bni = 1.

Write x = (1−x1 −·· ·−xn)e0+x1e1+·· ·+xnen.

Then x =µ0a0+·· ·+µnan, where, for i = 0, . . . ,n,

µi = bi0(1−x1−·· ·−xn)+bi1x1+·· ·+binxn.

A routine verification shows that µ0+·· ·+µn = 1.

Since the representation of x in this form is unique, we can deduce
that λi =µi , for i = 0, . . . ,n.

We complete the proof by putting ai0 = bi0 for i = 0, . . . ,n, and
aij = bij −bi0 (i = 0, . . . ,n, j = 1, . . . ,n), and noting that x ∈A if and only
if λr+1 = 0, . . . ,λn = 0.

George Voutsadakis (LSSU) Convexity July 2023 53 / 162



The Euclidean Space Rn Dimension

Non-Meetings 1-Flats

Theorem

Let L and M be two lines that lie in a 2-flat A of Rn and which do not
meet. Then L and M are parallel.

Let a,b be distinct points of L, and let c ,d be distinct points of M.
Since {a,b,c} is affinely independent, it will form an affine basis for A.
Thus d =αa+βb+γc for some α,β,γ ∈R with α+β+γ= 1. A
typical point on M, the line joining c and d , has the form

(1−θ)c +θd = θαa+θβb+ (θ(γ−1)+1)c ,

for some θ ∈R. Since the latter point does not lie on L for any θ, we
must have γ= 1 and d =α(a−b)+c . Hence d −(c −a)=α(a−b)+c

−c +a = (α+1)a−αb ∈ L. Thus, M − (c −a)⊆ L. Since M − (c −a) is
a line, we must have M − (c −a)= L. Thus L and M are parallel.
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The Euclidean Space Rn Hyperplanes

Subsection 4

Hyperplanes
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The Euclidean Space Rn Hyperplanes

Linear Equations

Consider the following system of m linear equations in n real variables
x1, . . . ,xn:











a11x1+·· ·+a1nxn = a10

...
am1x1+·· ·+amnxn = am0

where aij are given scalars.

By the solution set of this system is meant the set of all n-tuples
(x1, . . . ,xn) of Rn that satisfy it.

The solution set of the system is clearly the intersection of the
solution sets of the m linear equations which comprise it.
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The Euclidean Space Rn Hyperplanes

Solution Sets and Hyperplanes

An easy verification shows that the solution set of any one of the
individual linear equations is a flat.

So the solution set of the whole system is a flat.

Later in the section, we shall show that every flat is the solution set of
some system of linear equations.

In general, the solution set of a single linear equation
a1x1+·· ·+anxn = a0 is an (n−1)-dimensional flat in Rn.

In the study of convexity in Rn, flats of dimension n−1 play a key
role, and are given their own name, hyperplanes.
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The Euclidean Space Rn Hyperplanes

Hyperplanes

To be precise, we should refer not to a hyperplane, but to a
hyperplane in Rn.

When no ambiguity is likely to arise, however, we do speak simply of a
hyperplane.

A hyperplane:

in R1 is a point;
in R2 is a line;
in R3 is a plane.

Thus:

A hyperplane in R2 has an equation of the form ax +by +c = 0, where
not both of a and b are zero;
A hyperplane in R3 has an equation of the form ax +by +cz +d = 0,
where not all of a, b and c are zero.

George Voutsadakis (LSSU) Convexity July 2023 58 / 162



The Euclidean Space Rn Hyperplanes

Characterization of Hyperplanes

Theorem

A set H in Rn is a hyperplane if and only if there exist scalars c0,c1, . . . ,cn,
where not all c1, . . . ,cn are zero, such that

H = {(x1, . . . ,xn) : c0+c1x1+·· ·+cnxn = 0}.

Let H = {(x1, . . . ,xn) : c0+c1x1+·· ·+cnxn = 0}, where c0,c1, . . . ,cn are
scalars and not all c1, . . . ,cn are zero, say c1 6= 0. Let u = (u1, . . . ,un),
v = (v1, . . . ,vn) lie in H and let λ+µ= 1. Then

c0+c1(λu1+µv1)+·· ·+cn(λun+µvn)
=λ(c0 +c1u1+·· ·+cnun)+µ(c0 +c1v1+·· ·+cnvn)
=λ0+µ0= 0.

Thus λu+µv ∈H and H is a flat.
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The Euclidean Space Rn Hyperplanes

Characterization of Hyperplanes (Cont’d)

Define points a1, . . . ,an of H by the equations a1 = (− c0

c1
,0,0, . . . ,0) and

a2 = (− c0+c2

c1
,1,0, . . . ,0), . . . ,an = (− c0+cn

c1
,0,0, . . . ,1). Since H is a flat,

aff{a1, . . . ,an} ⊆H.

We now establish the opposite inclusion. Let x ∈H. Then the
equations

x = (x1, . . . ,xn)= (1−x2 −·· ·−xn)a1+x2a2+·· ·+xnan

express x as an affine combination of a1, . . . ,an. So x ∈ aff{a1, . . . ,an}

Hence, H ⊆ aff{a1, . . . ,an} and, therefore, H = aff{a1, . . . ,an}.
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The Euclidean Space Rn Hyperplanes

Characterization of Hyperplanes (Cont’d)

To show that the set {a1, . . . ,an} is affinely independent, suppose that
λ1, . . . ,λn satisfy

λ1a1+·· ·+λnan = 0 and λ1+·· ·+λn = 0.

Comparing the ith coordinates (i = 2, . . . ,n) on both sides of the first
of these equations, we find that λ2, . . . ,λn are all zero. Thus, so too is
λ1, from the second equation.

So, {a1, . . . ,an} is affinely independent.

But H = aff{a1, . . . ,an}, and so H is an (n−1)-dimensional flat, i.e., H
is a hyperplane.
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The Euclidean Space Rn Hyperplanes

Characterization of Hyperplanes (Converse)

Conversely, suppose that H is a hyperplane in Rn. Let {b1, . . . ,bn} be
an affine basis for H. Extend this to an affine basis {b0,b1, . . . ,bn} for
R

n. Then each x = (x1, . . . ,xn) in Rn can be written uniquely in the
form

x =λ0b0+λ1b1+·· ·+λnbn, where λ0+λ1+·· ·+λn = 1.

Thus λ0,λ1, . . . ,λn are the barycentric coordinates of x relative to the
(ordered) affine basis b0,b1, . . . ,bn. By a previous theorem, there exist
scalars c0,c1, . . . ,cn such that

λ0 = c0+c1x1+·· ·+cnxn.

Since x ∈H iff λ0 = 0, H = {(x1, . . . ,xn) : c0+c1x1+·· ·+cnxn = 0}.

Not all of c1, . . . ,cn are zero, for this would imply that either H is
empty (if c0 6= 0) or Rn (if c0 = 0), both of which contradict the
assumption that H is an (n−1)-dimensional flat.
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The Euclidean Space Rn Hyperplanes

Characterization of r -Flats

Corollary

In Rn each r -flat (r =−1, . . . ,n) can be expressed as the intersection of
n− r hyperplanes, and so is the solution set of some system of n− r linear
equations.

The only (−1)-flat in Rn is the empty set, which is the intersection of
the n+1 hyperplanes x1 = 0, . . ., xn = 0, x1+·· ·+xn = 1.
The only n-flat in Rn is Rn itself, which is the intersection of no
hyperplanes.
Consider now the case of an r -flat A in Rn, where r = 0, . . . ,n−1. Let
{a0, . . . ,ar } be an affine basis for A. Extend this to an affine basis
{a0, . . . ,an} for Rn. Then each x in Rn can be expressed uniquely in
the form

x =λ0a0+·· ·+λnan, where λ0+·· ·+λn = 1.
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The Euclidean Space Rn Hyperplanes

Characterization of r -Flats (Cont’d)

Now A is the set in Rn consisting precisely of those x ’s whose
barycentric coordinates λr+1, . . . ,λn are all zero.

But each of the sets {x :λi = 0} is the hyperplane

aff{a0, . . . ,ai−1,ai+1, . . . ,an}.

It now follows that A is the intersection of the n− r hyperplanes with
equations λr+1 = 0, . . . ,λn = 0.
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The Euclidean Space Rn Hyperplanes

Uniqueness of Constants

Given a hyperplane H in Rn, there exist scalars c0,c1, . . . ,cn, with not
all c1, . . . ,cn zero, such that

H = {(x1, . . . ,xn) : c0+c1x1+·· ·+cnxn = 0}.

We now consider to what extent H determines the scalars c0,c1, . . . ,cn.

It certainly does not determine them uniquely, for the scalars
θc0,θc1, . . . ,θcn, where θ 6= 0, serve equally well in the equation for H.

Suppose that d0,d1, . . . ,dn are also scalars such that

H = {(x1, . . . ,xn) : d0+d1x1+·· ·+dnxn = 0}.

Assume that c1 6= 0, and let a1, . . . ,an be the points of H specified as
in the first part of the proof of the preceding theorem.
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The Euclidean Space Rn Hyperplanes

Uniqueness of Constants (Cont’d)

Substituting the coordinates of the ai into the above equation for H in
terms of the d ’s, we deduce that di = d1

c1
ci for i = 0, . . . ,n.

Since not all of d0,d1, . . . ,dn can be zero, we deduce that d1, and
hence d1

c1
, is not zero.

Writing θ = d1
c1

, we find that d0 = θc0,d1 = θc1, . . ., dn = θcn.

Thus the hyperplane H determines the scalars c0,c1, . . . ,cn to within a
common non-zero scalar multiple.
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The Euclidean Space Rn Hyperplanes

Halfspaces

The importance of hyperplanes in Rn is that they divide the whole
space into two halfspaces in a natural way.

Example: A line in R2 with equation ax +by +c = 0 divides R2 into
the two halfplanes determined by the inequalities ax +by +c ≤ 0 and
ax +by +c ≥ 0.

A hyperplane in Rn with equation c0+c1x1+·· ·+cnxn = 0 divides Rn

into the two halfspaces determined by the inequalities

c0+c1x1+·· ·+cnxn ≤ 0 and c0+c1x1+·· ·+cnxn ≥ 0.

Let c0,c1, . . . ,cn be scalars, where not all c1, . . . ,cn are zero.

Then a set of either of the forms

{(x1, . . . ,xn) : c0+c1x1+·· ·+cnxn ≤ 0} or
{(x1, . . . ,xn) : c0+c1x1+·· ·+cnxn ≥ 0}

is called a closed halfspace in Rn.
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The Euclidean Space Rn Hyperplanes

Halfspaces Determined by a Hyperplane

A set of either of the forms

{(x1, . . . ,xn) : c0+c1x1+·· ·+cnxn < 0} or
{(x1, . . . ,xn) : c0+c1x1+·· ·+cnxn > 0}

is called a open halfspace in Rn.

If the scalars c0,c1, . . . ,cn are replaced, respectively, by θc0,θc1, . . . ,θcn,
for some θ 6= 0, then we obtain the same pair of closed halfspaces and
the same pair of open halfspaces, although the order of the halfspaces
is reversed when θ < 0.

Thus, if H is a hyperplane in Rn with equation c0+c1x1+·· ·+cnxn =
0, then the above pair of closed halfspaces and the above pair of open
halfspaces are determined by H (independent of equation).
Hence we may refer unambiguously to the closed halfspaces and the
open halfspaces determined by H.

We say that the closed (open) halfspaces determined by H are
opposite to one another.
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The Euclidean Space Rn Hyperplanes

Example

Any line through two points lying in opposite halfspaces determined by
a hyperplane in Rn meets the hyperplane.

Suppose that the hyperplane H has equation c0+c1x1+·· ·+cnxn = 0,
and that the points a = (a1, . . . ,an) and b = (b1, . . . ,bn) lie in opposite
halfspaces determined by H.

Omitting the trivial case when either of a or b lies on H,

c0+c1a1+·· ·+cnan =α< 0 and c0+c1b1+·· ·+cnbn =β> 0.

The points on the line L through a and b are precisely those points of
the form (λa1+ (1−λ)b1, . . . ,λan+ (1−λ)bn), where the scalar λ

assumes all real values.

We find, by substituting these coordinates into the equation of H, that
λ= β

β−α corresponds to the unique point of intersection of L and H.

This value of λ satisfies 0≤λ≤ 1. So the portion of L lying, between
a and b, the so-called line segment joining a and b, meets H.
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The Euclidean Space Rn Hyperplanes

Characterization of Parallel Hyperplanes

Theorem

Let H and H ′ be hyperplanes in Rn with respective equations
c0+c1x1+·· ·+cnxn = 0 and c ′0+c ′1x1+·· ·+c ′nxn = 0. Then H and H ′ are
parallel if and only if there exists a scalar θ such that c ′1 = θc1, . . ., c ′n = θcn.

Suppose first that H and H ′ are parallel, say H ′ =H +a, where
a = (a1, . . . ,an). Then (x1, . . . ,xn) ∈H if and only if

c ′0+c ′1(x1+a1)+·· ·+c ′n(xn+an)
= c ′0+c ′1a1+·· ·+c ′nan+c ′1x1+·· ·+c ′nxn = 0.

Thus, by the above remarks on the representation of hyperplanes by
linear equations, there exists a θ, such that c ′1 = θc1, . . . ,c ′n = θcn.
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The Euclidean Space Rn Hyperplanes

Characterization of Parallel Hyperplanes

Suppose next that c ′1 = θc1, . . . ,c ′n = θcn, where θ is a (non-zero) scalar.

Then, for d0 =
c ′
0
θ , H ′ is represented by the equation

d0+c1x1+·· ·+cnxn = 0.

Let b= (b1, . . . ,bn) satisfy

c1b1+·· ·+cnbn = c0−d0.

Then H ′ also has the equation

c0+c1(x1−b1)+·· ·+cn(xn−bn)= 0.

Thus x = (x1, . . . ,xn) ∈H ′ if and only if x −b ∈H.

Hence H ′ =H +b. This shows that H and H ′ are parallel.
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The Euclidean Space Rn Hyperplanes

Relative Position of Hyperplanes

Corollary

Two parallel hyperplanes in Rn are either identical or disjoint. Two
non-parallel hyperplanes in Rn must meet.

Let H and H ′ be parallel hyperplanes in Rn. Then they have
respective equations

c0+c1x1+·· ·+cnxn = 0 and c ′0+θc1x1+·· ·+θcnxn = 0,

say, where θ is a non-zero scalar. If c ′0 = θc0, then H and H ′ are
identical. Otherwise they are disjoint.

George Voutsadakis (LSSU) Convexity July 2023 72 / 162



The Euclidean Space Rn Hyperplanes

Relative Position of Hyperplanes (Cont’d)

Let H and H ′ be non-parallel hyperplanes in Rn having respective
equations

c0+c1x1+·· ·+cnxn = 0 and c ′0+c ′1x1+·· ·+c ′nxn = 0.

Then there is no scalar θ such that c ′1 = θc1, . . . ,c ′n = θcn. It follows

that n≥ 2. Suppose that c1 6= 0. Then, for some j ∈ {2, . . . ,n}, c ′
j
6= c ′

1
c1
cj ,

say c ′2 6=
c ′
1

c1
c2. It is easily verified that the point

(

c ′0c2−c0c
′
2

c1c
′
2
−c ′

1
c2

,
c0c

′
1−c ′0c1

c1c
′
2
−c ′

1
c2

,0, . . . ,0

)

lies in H ∩H ′. So H and H ′ meet.
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The Euclidean Space Rn Affine Transformations

Subsection 5

Affine Transformations
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The Euclidean Space Rn Affine Transformations

Affine Transformations

A mapping T :Rn →Rm is called an affine transformation if
T (λx +µy)=λT (x)+µT (y ) whenever x ,y ∈Rn and λ+µ= 1.

A simple example of an affine transformation is the mapping
T :R3 →R3 defined by the equation T (x ,y ,z)= (x ,y ,1).

Geometrically, T is the orthogonal projection of R3 onto the plane
with equation z = 1.

For each vector q ∈Rn, the mapping T :Rn →Rn defined by the
equation T (x)= x +q is an affine transformation called the
translation of Rn through q.

George Voutsadakis (LSSU) Convexity July 2023 75 / 162



The Euclidean Space Rn Affine Transformations

Affine versus Linear Transformations

Clearly every linear transformation from R
n to Rm is also an affine

one.

That not every affine transformation from R
n to Rm is linear, follows

from the observation that it need not map the zero vector of Rn to
the zero vector of Rm.

See the two examples of affine transformations given above.

The exact relationship between linear and affine transformations is
given in the following result.
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Relation Between Affine and Linear Transformations

Theorem

Let T :Rn →Rm be an affine transformation. Then T is linear if and only
if T (0)= 0.

In view of the remarks above, it will suffice to show that T is linear
when T (0)=0.

Suppose, then, that T (0)= 0. Let x ,y ∈Rn and λ∈R. Then

T (λx)=T (λx + (1−λ)0)=λT (x)+ (1−λ)T (0)=λT (x).

Using this last result, we deduce that

T (x +y) = T
(

2
(

1
2
x + 1

2
y

))

= 2T
(

1
2
x + 1

2
y
)

= 2
(

1
2
T (x)+ 1

2
T (y)

)

=T (x)+T (y ).

Thus T is linear.
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Matrix Form of an Affine Transformation

In the following discussion, all vectors considered will be identified
with column vectors in the natural way.

Theorem

The affine transformations T :Rn →Rm are precisely those mappings
T :Rn →Rm which can be expressed in the form T (x)=Qx +q, for some
real m×n matrix Q and some real m×1 matrix q.

It is easily verified that a mapping of the type under consideration is
an affine transformation.

Assume, then, that T :Rn →Rm is an affine transformation. Let
T (0)= q. Then the mapping T ′ :Rn →Rm defined by the equation
T ′(x)=T (x)−q is readily shown to be an affine transformation with
T ′(0)= 0. The theorem shows that T ′ is linear, whence there is a real
m×n matrix Q such that T ′(x)=Qx . Thus T (x)=Qx +q.
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Remarks

The affine transformation T :Rn →Rm determines the matrices Q
and q uniquely:

The jth column of Q must be T (e j )−T (0);
q must be T (0).

The above representation of an affine transformation in terms of
matrices shows easily that, if T :Rn →Rm is an affine transformation,
a1, . . . ,ar ∈Rn and λ1+·· ·+λr = 1, then

T (λ1a1+·· ·+λrar )=λ1T (a1)+·· ·+λrT (ar ).
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The Euclidean Space Rn Affine Transformations

Affine Transformations and Flats

Corollary

Let T :Rn →Rm be an affine transformation and let A be a set in Rn.
Then T (affA)= affT (A). If A is a flat, then so too is T (A).

A point x lies in T (affA) if and only if there exist a1, . . . ,ar ∈A and
λ1, . . . ,λr with λ1+·· ·+λr = 1 such that

x =T (λ1a1+·· ·+λrar )=λ1T (a1)+·· ·+λrT (ar ),

that is, if and only if x ∈ affT (A). Thus T (affA)= affT (A).

If A is a flat, then affT (A)=T (affA)=T (A). This shows that T (A)
is a flat.
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Non-Singular Affine Transformations

Consider an affine transformation T :Rn →Rn of Rn into itself.

By the theorem, there exist a real n×n matrix Q and a real n×1
matrix q such that T (x)=Qx +q.

The affine transformation T is said to be non-singular if the
determinant detQ of the matrix Q is non-zero, that is if Q has an
inverse, i.e., is non-singular.
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The Euclidean Space Rn Affine Transformations

Invertible Affine Transformations

Theorem

Let T :Rn →Rn be an affine transformation. Then T has an inverse if and
only if T is non-singular. When T is non-singular, its inverse
T−1 :Rn →Rn is an affine transformation.

Let Q be a real n×n matrix and q a real n×1 matrix such that
T (x)=Qx +q for all x in Rn. Suppose first that Q is non-singular.
Then detQ is non-zero and Q has an inverse Q−1. For each y in Rn,
the equation T (x)= y has the unique solution x =Q−1y −Q−1q.

It follows that T has an inverse, which is the affine transformation
T−1 :Rn →Rn defined by the equation T−1(y)=Q−1y −Q−1q for y

in Rn.

Suppose next that detQ is zero. Then there exists a non-zero vector z

in Rn such that Q(z)= 0. Hence T (z)=T (0) and T is not injective.
Hence T has no inverse.
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Affine Transformations and Affinely Independent Sets

Theorem

Let {a0, . . . ,ar }6= and {b0, . . . ,br }6= be affinely independent sets in Rn. Then
there exists a non-singular affine transformation T :Rn →Rn such that
T (ai)= bi , for i = 0, . . . ,r .

Extend the sets {a0, . . . ,ar }6= and {b0, . . . ,br }6=, respectively, to affine
bases {a0, . . . ,an} and {b0, . . . ,bn} for Rn. Then each x in Rn can be
written uniquely in the form x =λ0a0+·· ·+λnan, λ0+·· ·+λn = 1.

Define a mapping T :Rn →Rn by the equation

T (x)=λ0b0+·· ·+λnbn.

It is routine to verify that T is a bijective affine transformation. Hence
T is a non-singular affine transformation such that T (ai )=bi , for
i = 0, . . . ,r .

George Voutsadakis (LSSU) Convexity July 2023 83 / 162



The Euclidean Space Rn Affine Transformations

Affine Transformations and Flats

Corollary

Let A and B be flats in Rn of the same dimension. Then there is a
non-singular affine transformation T :Rn →Rn such that T (A)=B .

If A and B are both empty, then T can be taken as the identity
mapping of Rn onto itself.

Suppose, then, that A and B are non-empty and have affine bases
{a0, . . . ,ar }6= and {b0, . . . ,br }6=, respectively.

Let T be as in the theorem. Then, by a previous corollary,

T (A)=T (aff{a0, . . . ,ar })= aff{b0, . . . ,br } =B .
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The Euclidean Space Rn Affine Transformations

r -Dimensional Flats in Rn

Suppose that B is an r -dimensional flat (r ≥ 1) in Rn and that
A= aff{0,e1, . . . ,e r }.

Then A and B are flats of the same dimension.

By the corollary, there exists a non-singular affine transformation
T :Rn →Rn such that T (A)=B .

The flat A consists precisely of those points (x1, . . . ,xn) for which
xr+1 = 0, . . ., xn = 0.

Hence A can be identified with Rr by associating the point (x1, . . . ,xn)
of A with the point (x1, . . . ,xr ) of Rr .

Under this identification T (Rr )=B .

Thus every r -dimensional flat (r ≥ 1) can be considered to be an affine
copy of Rr .

This identification is often helpful when working with r -dimensional
sets in Rn, for we may consider them as subsets of Rr and make use
of the resulting algebraic simplification.
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Subsection 6

Length, Distance and Angle

George Voutsadakis (LSSU) Convexity July 2023 86 / 162



The Euclidean Space Rn Length, Distance and Angle

The Inner Product

The inner product x ·y of vectors x = (x1, . . . ,xn) and y = (y1, . . . ,yn)
in Rn is the real number defined by the equation

x ·y = x1y1+·· ·+xnyn.

The following properties of the inner product are immediate
consequences of its definition.

For x ,y ,z ∈Rn and λ,µ ∈R:

(i) x ·x ≥ 0, and x ·x = 0 if and only if x = 0;
(ii) x ·y = y ·x ;
(iii) (λx +µy) ·z =λ(x ·z)+µ(y ·z).
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The Euclidean Space Rn Length, Distance and Angle

The Norm and the Distance

The norm or length ‖x‖ of a vector x = (x1, . . . ,xn) in Rn is the
non-negative real number defined by the equation

‖x‖=
p

x ·x , whence ‖x‖=
√

x2
1 +·· ·+x2

n .

The distance between points x = (x1, . . . ,xn) and y = (y1, . . . ,yn) of Rn

is the non-negative real number

‖x −y‖=
√

(x1−y1)2+·· ·+ (xn−yn)2,

i.e., the length of the vector x −y , or y −x .
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The Euclidean Space Rn Length, Distance and Angle

Properties of the Norm

The norm of the zero vector is 0.

The norm of each elementary vector e i is 1.

In general, any vector in Rn which has norm 1 is called a unit vector.

The following properties of the norm are simple consequences of its
definition.

For x ,y ∈Rn and λ,µ ∈R:

(i) ‖x‖≥ 0, and ‖x‖= 0 if and only if x = 0;
(ii) ‖λx‖ = |λ|‖x‖;
(iii) ‖λx +µy‖2 =λ2‖x‖2+2λµx ·y +µ2‖y‖2.
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The Euclidean Space Rn Length, Distance and Angle

Inequalities Involving the Norm

Theorem

Let x ,y ∈Rn. Then:

(i) |x ·y | ≤ ‖x‖‖y‖ (Cauchy-Schwarz Inequality);

(ii) ‖x +y‖≤ ‖x‖+‖y‖ (Triangle Inequality);

(iii) |‖x‖−‖y‖| ≤ ‖x −y‖;
(iv) if, for some α> 0, ‖x +λy‖≥ ‖x‖ whenever 0<λ<α, then x ·y ≥ 0.

We only prove (iv), since (i), (ii), and (iii) are standard results.

Let α> 0 be such that ‖x +λy‖≥ ‖x‖ whenever 0<λ<α. Then,
whenever 0<λ<α,

‖x‖2 ≤ ‖x +λy‖2 = ‖x‖2+2λx ·y +λ2‖y‖2
.

Hence x ·y + 1
2
λ‖y‖2 ≥ 0. Letting λ→ 0+ in the last inequality, we

deduce that x ·y ≥ 0.
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Angle Between Vectors

The Cauchy-Schwarz inequality allows us to introduce the concept of
angle into Rn.

The angle between non-zero vectors x and y of Rn is the unique real
number θ satisfying the conditions

cosθ =
x ·y

‖x‖‖y‖
and 0≤ θ ≤π.

This definition accords with the usual one of elementary geometry.

The angle between x and y is called acute or obtuse according as
x ·y is positive or negative.

Vectors x and y , whether zero or not, are said to be orthogonal if
x ·y = 0.
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Normal Vectors to a Hyperplane

Consider a hyperplane H in Rn with equation c0+c1x1+·· ·+cnxn = 0.

This equation can be written in the form c0+c ·x = 0, where c is the
non-zero vector (c1, . . . ,cn) and x is (x1, . . . ,xn).

Such a vector c is said to be a normal vector to H.

By the discussion on the representation of hyperplanes by means of
linear equations, it follows that the normal vectors of H are precisely
those vectors of the form λc for some non-zero scalar λ.

Thus H has exactly two unit normal vectors, namely ± c
‖c‖ .

Hence, given any hyperplane H in Rn, it may be assumed that it has
an equation of the form c0+c ·x = 0, where c is a unit vector.
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Normal Vectors to a Hyperplane (Cont’d)

This concept of a normal vector generalizes the one familiar in
elementary geometry.

Suppose that v and w lie in a hyperplane H in Rn with equation
c0+c ·x = 0. Then c0+c ·v = 0 and c0+c ·w = 0. So c · (w −v)= 0.

This shows that c is orthogonal to every vector which is the difference
of two vectors in H.
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Orthogonal Complement

Let A be a subspace of Rn.

Then the orthogonal complement A⊥ of A is the set of all those
vectors in Rn which are orthogonal to all the vectors in A, i.e.,

A⊥ = {x ∈Rn : x ·a = 0, for all a ∈A}.

It follows easily from this definition that A⊥ is a subspace of Rn which
intersects A in the set {0}.

A standard result of linear algebra asserts that each vector of Rn can
be expressed uniquely in the form a+b, where a ∈A and b ∈A⊥.

Thus A+A⊥ =Rn.
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Orthonormal Sequences

A sequence u1, . . . ,um of vectors in Rn is said to be an orthonormal

sequence if u i ·u j is 1 or 0 according as i = j or i 6= j .

The simplest example of such a sequence is the sequence e1, . . . ,en of
elementary vectors in Rn.

In an orthonormal sequence, each term is a unit vector, each two
terms are orthogonal, and no two terms are the same.

The terms of an orthonormal sequence u1, . . . ,um in Rn form a linearly
independent set {u1, . . . ,um}.

To see this, suppose that scalars λ1, . . . ,λm are such that
λ1u1+·· ·+λmum = 0. Then, for i = 1, . . . ,m,

λi = (λ1u1+·· ·+λmum) ·u i = 0 ·u i = 0.

This shows that {u1, . . . ,um} is linearly independent.

Hence {u1, . . . ,um} is an orthonormal basis for the subspace
lin{u1, . . . ,um} of Rn.
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Orthonormal Sequences (Cont’d)

Thus each point x of lin{u1, . . . ,um} can be written uniquely as a linear
combination of u1, . . . ,um, say

x =µ1u1+·· ·+µmum.

Then, for i = 1, . . . ,m,

x ·u i = (µ1u1+·· ·+µmum) ·u i =µi .

We conclude that

x = (x ·u1)u1+·· ·+ (x ·um)um.
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Congruences in R2

A congruence transformation in elementary plane geometry is a
transformation of the plane which preserves distance.

Examples of such transformations are reflections, rotations,
translations, and combinations of these.

Algebraically, the congruence transformations of R2 are precisely those
affine transformations T :R2 →R2 that can be expressed in the form

T (x)=Qx +q ,

where Q is a 2×2 orthogonal matrix and q is a 2×1 matrix.
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Congruence Transformations

A mapping T :Rn →Rn is said to be a congruence transformation

of Rn if
‖T (x)−T (y )‖ = ‖x −y‖, for all x ,y ∈Rn

,

i.e., T preserves distance.

We use a superscript T to denote the transpose of a matrix or a vector.

Thus, recalling that we identify a point x = (x1, . . . ,xn) of Rn with a
column vector in the natural way, we see that xTx is the 1×1 matrix
whose single element is the scalar x2

1 +·· ·+x2
n .

We identify this scalar with the matrix xTx itself, so that we may write

‖x‖2 = x2
1 +·· ·+x2

n = xTx .
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Affine Transformations and Congruences

We now show that an affine transformation T :Rn →Rn, which is
defined by an equation of the form T (x)=Qx +q, where Q is an
n×n orthogonal matrix and q is an n×1 matrix, is a congruence
transformation of Rn.

Let x ,y ∈Rn. Then

‖T (x)−T (y )‖2 = ‖Q(x −y)‖2

= (Q(x −y))T(Q(x −y))

= (x −y)TQTQ(x −y)
= (x −y)T(x −y)
= ‖x −y‖2.

Hence ‖T (x)−T (y )‖ = ‖x −y‖. This shows that T is a congruence
transformation of Rn.
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Congruences and Affine Transformations

Theorem

Let T :Rn →Rn be a congruence transformation of Rn. Then there exist
an n×n orthogonal matrix Q and an n×1 matrix q such that
T (x)=Qx +q, for all x in Rn.

Let x ,y ∈Rn. Define a mapping f :Rn →Rn by the equation
f (x)=T (x)−T (0). Since T preserves distance,

‖f (x)‖ = ‖T (x)−T (0)‖= ‖x −0‖ = ‖x‖.

So f preserves norms.

Also
‖f (x)− f (y)‖2 = ‖T (x)−T (y )‖2 =‖x −y‖2

.

So
‖f (x)‖2−2f (x) · f (y)+‖f (y)‖2 = ‖x‖2−2x ·y +‖y‖2

.
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Congruences and Affine Transformations (Cont’d)

Since ‖f (x)‖= ‖x‖ and ‖f (y)‖= ‖y‖, we can deduce from the last
equation that f (x) · f (y)= x ·y .

Thus, f preserves inner products.

It follows that f (e1), . . . , f (en) is an orthonormal sequence in Rn.

Hence

f (x)= (f (x) · f (e1))f (e1)+·· ·+ (f (x) · f (en))f (en).

Writing x for (x1, . . . ,xn) and Q for the n×n orthogonal matrix whose
columns are f (e1), . . . , f (en), we deduce that

f (x) = (x ·e1)f (e1)+·· ·+ (x ·en)f (en)
= x1f (e1)+·· ·+xnf (en)
= Qx .

The proof is completed by putting q =T (0).
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Congruent Subsets

We have thus identified the congruence transformations T :Rn →Rn

of Rn as being precisely those affine transformations T :Rn →Rn

which can be expressed in the form T (x)=Qx +q, where Q is an
n×n orthogonal matrix and q is an n×1 matrix.

Sets A and B in Rn are said to be congruent if there is a congruence
transformation T of Rn such that T (A)=B .

It is easy to verify that congruence is an equivalence relation on the
family of all subsets of Rn.

In elementary geometry, any two points are congruent, any two lines
are congruent, and any two planes are congruent.
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Congruent Flats

Theorem

Let A and B be r -flats in Rn. Then A and B are congruent.

We consider the non-trivial cases when r ≥ 1.

First we show that the r -flat A is congruent to the r -flat Rr defined by
the equation

Rr = {(x1, . . . ,xr ,0, . . . ,0) : x1, . . . ,xr ∈R}.

Let a ∈A. Then A−a is an r -dimensional subspace of Rn.

Let {u1, . . . ,un} be an orthonormal basis for Rn such that {u1, . . . ,ur } is
an orthonormal basis for A−a. Define a congruence transformation T

of Rn by the equation

T (x)= [u1, . . . ,un]x +a.

Then T (Rr )=A. So A and Rr are congruent. Similarly, B and Rr are
congruent. Thus A and B are congruent.
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Congruent Copies of a Set

We now show how, given any r -dimensional set A in Rn with
1≤ r ≤ n, it is possible to find a congruent copy of A in the space Rr .

Moreover, we show that any two such congruent copies of A in Rr are
themselves congruent to one another in Rr .

Let A be an r -dimensional (1≤ r ≤ n) set in Rn. Then affA is an
r -flat. So by the theorem, there is a congruence transformation of Rn

which maps affA onto the r -flat

Rr = {(x1, . . . ,xr ,0, . . . ,0) : x1, . . . ,xr ∈R}.

It follows that there is a set B in Rr , which is congruent to A.

Let i :Rr →Rr be the mapping that identifies each point (x1, . . . ,xr ,

0, . . . ,0) of Rr with the point (x1, . . . ,xr ) of Rr . Then i(B) is a set
lying in Rr which is a congruent copy of the set A in Rn.

In general, there will be an infinite number of such copies. We now
see how any two of these copies of A are related.

George Voutsadakis (LSSU) Convexity July 2023 104 / 162



The Euclidean Space Rn Length, Distance and Angle

Congruent Copies of a Set (Cont’d)

Let i(B) and i(C ) be congruent copies of A in Rr , where B and C are
congruent to A in Rn and lie in Rr .

Then there is a congruence transformation T of Rn such that
T (B)=C , and which maps Rr onto itself.

By considering the images of 0 and the elementary vectors e1, . . . ,er

under T , it follows that T can be expressed in the form

T (x)=
[

Q 0

0 ∗

]

x +
[

q

0

]

,

where Q is an r × r orthogonal matrix, q is an r ×1 matrix, and 0

represents zero matrices of suitable shapes and sizes.

Denote by Tr the congruence transformation of Rr defined by the
equation Tr (x)=Qx +q, where x = (x1, . . . ,xr ).

Then Tr (i(B))= i(C ). This shows that the congruent copies i(B) and
i(C ) of A in Rr are congruent to one another in Rr .
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Subsection 7

Open Sets and Closed Sets
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The Euclidean Space Rn Open Sets and Closed Sets

Open and Closed Balls

Let a ∈Rn and r > 0.

Then the open ball B(a;r) (closed ball B [a;r ]) with center a and
radius r is the set of all points of Rn whose distance from a is less
than (less than or equal to) r , i.e.,

B(a;r) = {x ∈Rn : ‖x −a‖< r };

B [a;r ] = {x ∈Rn : ‖x −a‖≤ r }.

In R1 the open (closed) ball with center a and radius r is the open
(closed) interval (a− r ,a+ r) ([a− r ,a+ r ]).

In R2 open (closed) balls are referred to as open (closed) discs.
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The Euclidean Space Rn Open Sets and Closed Sets

Open and Closed Unit Balls

The balls B(0;1) and B [0;1] in Rn are called, respectively, the open

unit ball and the closed unit ball.

If we denote them, respectively, by V and U , then

V = {x ∈Rn : ‖x‖ < 1} and U = {x ∈Rn : ‖x‖ ≤ 1}.

It follows that B(a;r)= a+ rV and B [a;r ]= a+ rU .

We adopt U as the standard notation for the closed unit ball.
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Open Sets

A point a of a set A in Rn is said to be an interior point of A if it is
the center of some open ball which lies in A, i.e. if there exists some
r > 0 such that B(a;r)⊆A.

The set of interior points of A is called the interior of A and is
denoted by intA.

Clearly intB ⊆ intA when B ⊆A.

A set in Rn, each of whose points is an interior point of the set, is
said to be open.

Since intA⊆A is always true, A is open if and only if intA=A.

Clearly the sets ; and Rn are open.
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Balls, Halfspaces, Hyperplanes

Theorem

In Rn open balls and open halfspaces are open, and hyperplanes have
empty interiors.

Consider the open ball B(a;r), where a ∈Rn and r > 0. Let
x ∈B(a;r). We prove that B(a;r) is open by showing that
B(x;s)⊆B(a;r), where s is the positive number r −‖x −a‖.

Let y ∈B(x ;s). Then ‖y −x‖< s.
So by the triangle inequality

‖y −a‖ ≤ ‖y −x +x −a‖
≤ ‖y −x‖+‖x −a‖
< s +‖x −a‖= r .

Thus y ∈B(a;r). So B(x ;s)⊆B(a;r).
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The Euclidean Space Rn Open Sets and Closed Sets

Balls, Halfspaces, Hyperplanes (Cont’d)

Consider the open halfspace A in Rn which is defined by the inequality
c0+c ·x > 0, where c is a unit vector. Let a ∈A. We prove that A is
open by showing that B(a;r)⊆A, where r is the positive number
c0+c ·a. Let y ∈B(a;r). Then ‖y −a‖< r . Moreover,

c0+c ·y = c0+c ·a+c · (y −a)= r +c · (y −a)> 0,

since, by the Cauchy-Schwarz Inequality, |c · (y −a)| ≤ ‖y −a‖< r .
Thus y ∈A. So B(a;r)⊆A.

Consider the hyperplane H in Rn with equation c0+c ·x = 0, where c

is a unit vector. We show that no point a of H is an interior point of
H. Let r > 0. Then a+ 1

2
rc 6∈H and ‖a+ 1

2
rc −a‖ = 1

2
r . Therefore,

a+ 1
2
rc ∈B(a;r) and B(a;r)*H. Hence, a is not an interior point of

H. So H has an empty interior.
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The Euclidean Space Rn Open Sets and Closed Sets

Properties of the Interior

Corollary

Let A be a set in Rn. Then intA is open and int(intA)= intA.

If a ∈ intA, then there exists r > 0 such that B(a;r)⊆A. Since B(a;r)
is open,

B(a;r)= int(B(a;r))⊆ intA.

Hence, a ∈ int(intA). So intA⊆ int(intA). Thus, intA is open and
int(intA)= intA.
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The Euclidean Space Rn Open Sets and Closed Sets

Properties of Open Sets

Theorem

In Rn every union and every finite intersection of open sets is open.

Let A be the union of a family (Ai : i ∈ I ) of open sets in Rn. If a ∈A,
then a ∈Ai , for some i ∈ I . Since Ai is open, there is an r > 0 such
that B(a;r)⊆Ai . Hence, B(a;r)⊆A. Thus, A is open.

Let A be the intersection of the open sets A1, . . . ,Am in Rn. If a ∈A,
then a ∈A1, . . . ,a ∈Am. Since A1, . . . ,Am are open, there exist
r1, . . . ,rm > 0 such that B(a;r1)⊆A1, . . . ,B(a;rm)⊆Am. Let
r =min{r1, . . . ,rm}. Then r > 0 and

B(a;r)⊆B(a;r1)∩·· ·∩B(a;rm)⊆A1∩·· ·∩Am =A.

Thus A is open.
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The Euclidean Space Rn Open Sets and Closed Sets

Intersections of Open Sets

An arbitrary intersection of open sets in Rn need not be open.

To see this, we note that the intersection of the sequence

V ,
1

2
V ,

1

3
V , . . . ,

1

k
V , . . .

of open balls centered at the origin of Rn is the singleton set {0},
which is not open.
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The Euclidean Space Rn Open Sets and Closed Sets

Closure of a Set

A point a of Rn is said to be a closure point of a set A in Rn if
every open ball with center a meets A, i.e., if for every r > 0 the ball
B(a;r) meets A.

The set of closure points of A is called the closure of A and is
denoted by clA.

Clearly A⊆ clA.

Also clB ⊆ clA whenever B ⊆A.

Roughly speaking, the closure of A is the set of all points in Rn which
either lie in A or are arbitrarily close to A.

Thus, in R1 the closures of the intervals (0,1], (0,1), [0,1) are all
equal to the interval [0,1].

In R2 the closures of the discs B(a;r) and B [a;r ] are both equal to
the disc B [a;r ].
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The Euclidean Space Rn Open Sets and Closed Sets

Closed Sets

A set in Rn each of whose closure points lies in the set is said to be
closed.

Thus a set A in Rn is closed if and only if clA⊆A.

Since A⊆ clA is always true, A is closed if and only if clA=A.

Clearly the sets ; and Rn are closed.

Thus the sets ; and Rn are both open and closed.

It can be shown that they are the only sets in Rn with this property.

A set in Rn may be neither open nor closed.

For example, in R1 the interval [0,1) is such a set.
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The Euclidean Space Rn Open Sets and Closed Sets

Closure and Interior

For each set A in Rn, we denote by Ac the complement of A in Rn,
i.e., the set Rn\A.

Theorem

Let A be a set in Rn. Then clA= (intAc)c .

If x ∈ clA, then each open ball with center x contains a point of A. So
x cannot belong to intAc , i.e., x ∈ (intAc)c .

If x ∈ (intAc)c , then each open ball with center x must contain a
point of A, i.e., x ∈ clA.

Thus clA= (intAc)c .
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The Euclidean Space Rn Open Sets and Closed Sets

Closed and Open Sets

Theorem

A set in Rn is closed if and only if its complement in Rn is open.

Let A be a set in Rn. Suppose first that A is closed. Then clA=A. It
follows from a previous corollary and the preceding theorem that Ac is
the open set intAc . Suppose next that Ac is open. Then intAc =Ac .
It follows from the theorem that clA=A, i.e., A is closed.

Corollary

Let A be a set in Rn. Then clA is closed and cl(clA)= clA.

Now intAc is open by a previous corollary. Hence by the theorem its
complement clA is closed.
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The Euclidean Space Rn Open Sets and Closed Sets

Properties of Closed Sets

Theorem

In Rn every intersection and every finite union of closed sets is closed.

Let (Ai : i ∈ I ) be a family of closed sets in Rn. Then, for each i ∈ I ,
Ac
i

is open. By a previous theorem,
⋃

(Ac
i
: i ∈ I ) is open. Hence

⋂

(Ai : i ∈ I )= (
⋃

(Ac
i : i ∈ I ))

c

is closed.

Now let A1, . . . ,Am be closed sets in Rn. Then Ac
1 , . . . ,Ac

m are open.
By a previous theorem, Ac

1 ∩·· ·∩Ac
m is open. Hence

A1∪·· ·∪Am = (Ac
1 ∩·· ·∩Ac

m)
c

is closed.
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The Euclidean Space Rn Open Sets and Closed Sets

Closures and Unions

Corollary

Let A1, . . . ,Am be sets in Rn. Then

cl(A1∪·· ·∪Am)= clA1∪·· ·∪clAm.

Since A1∪·· ·∪Am is contained in the closed set clA1∪·· ·∪clAm,

cl(A1∪·· ·∪Am)⊆ clA1∪·· ·∪clAm.

Trivially,
cl(A1∪·· ·∪Am)⊇ clA1∪·· ·∪clAm.

Thus,
cl(A1∪·· ·∪Am)= clA1∪·· ·∪clAm.
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The Euclidean Space Rn Open Sets and Closed Sets

Closed Balls, Closed Halfspaces, Flats

Theorem

In Rn closed balls, closed halfspaces and flats are closed.

Let A be the closed ball B [a;r ], where a ∈Rn and r > 0.

We prove that Ac is open. Let x ∈Ac . Then we show that
B(x;s)⊆Ac , where s is the positive number ‖x −a‖− r .

Suppose that this is not the case. Then there is some point of A, y

say, which lies in B(x ;s). Now

‖x −a‖= ‖x −y +y −a‖< s + r = ‖x −a‖,

which is impossible. Hence B(x;s)⊆Ac .

A previous theorem shows that open halfspaces in Rn are open. Hence
their complements in Rn, i.e., the closed halfspaces, are closed.

In Rn each hyperplane is the intersection of two closed halfspaces. So
it is closed. By a previous corollary, each flat in Rn is an intersection
of hyperplanes. So it is closed.
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The Euclidean Space Rn Open Sets and Closed Sets

Boundaries

A point a of Rn is said to be a boundary point of a set A in Rn if
every open ball with center a meets both A and its complement Ac .

The set of boundary points of A is called the boundary of A and is
denoted by bdA.

Thus a boundary point of a set in Rn is a point of Rn which is
arbitrarily close both to the set and its complement.

It follows from the preceding definitions that bdA= (clA)∩ (clAc).

Hence the boundary of a set in Rn is always closed, being the
intersection of two closed sets.
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The Euclidean Space Rn Open Sets and Closed Sets

More Properties of Boundaries

A boundary point of a set in Rn may or may not belong to the set
itself.

For example, in R1 the interval [0,1) contains its boundary point 0,
but not its boundary point 1.

For any set A in Rn, the sets A and Ac have the same boundary.

Moreover, the sets intA, bdA, intAc form a partition of Rn.

Open (closed) sets in Rn are characterized by the property that they
contain none (all) of their boundary points.
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The Euclidean Space Rn Open Sets and Closed Sets

Dependence on Ambient Space

The above definitions of the interior and the boundary of a set depend
upon the space in which the set is embedded.

For example, a closed line segment in R2 has an empty interior and is
its own boundary.

The same line segment considered as a subset of R1 has for its interior
the set of all of its points with the exception of its two boundary
points, these forming its boundary in R1.

The latter interior and boundary, obtained by regarding the
one-dimensional line segment as a set in the one-dimensional space
R

1, correspond to what may be thought of as the “intrinsic” interior
and boundary of the segment.
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The Euclidean Space Rn Open Sets and Closed Sets

Relative Interior

A point a of a set A in Rn is said to be a relative interior point of A
if it is the center of some open ball whose intersection with affA is
contained in A, i.e., if there exists r > 0 such that

B(a;r)∩affA⊆A.

The set of all relative interior points of A is called the relative

interior of A and is denoted by riA.

The relative interior of an n-dimensional set in Rn coincides with its
interior.

The relative interior of any flat in Rn is itself.
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The Euclidean Space Rn Open Sets and Closed Sets

Relative Boundary

A point a of Rn is said to be a relative boundary point of a set A in
R

n if it lies in the closure of A but not in its relative interior.

The set of all relative boundary points of A is called the relative

boundary of A and is denoted by rebdA.

The relative boundary of an n-dimensional set in Rn coincides with its
boundary.
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The Euclidean Space Rn Open Sets and Closed Sets

Properties of Relative Interior

It is to be noted that while the inclusion B ⊆A implies both
intB ⊆ intA and clB ⊆ clA, it does not in general imply riB ⊆ riA.

For example, if B is one side of a square A in R2, then riB and riA are
non-empty but disjoint.

If, however, B ⊆A and dimB = dimA or, equivalently, affB = affA,
then riB ⊆ riA.
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The Euclidean Space Rn Open Sets and Closed Sets

Flats and Relative Boundaries

Suppose that a is a point of a set A in Rn and that x is a point of
affA not lying in A.

Define a scalar λ0 by the equation

λ0 = sup{λ ∈ [0,1] : (1−λ)a+λx ∈A}.

Then (1−λ0)a+λ0x is a relative boundary point of A lying between a

and x .

It follows that flats are the only sets in Rn which have an empty
relative boundary.
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The Euclidean Space Rn Convergence and Compactness

Subsection 8

Convergence and Compactness
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The Euclidean Space Rn Convergence and Compactness

Convergence of Sequences

In Rn a sequence x1, . . . ,xk , . . . of points is said to converge to a
point x if ‖xk −x‖→ 0 as k →∞, i.e., if the distance ‖xk −x‖
between xk and x tends to zero as k tends to infinity.

We indicate such convergence by writing xk → x as k →∞, or simply
xk → x .

This convergence for sequences of points in Rn coincides with that of
classical convergence for real sequences.
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The Euclidean Space Rn Convergence and Compactness

Properties of Convergence

The inequality |‖x‖−‖y‖| ≤ ‖x −y‖ proven previously, shows that

|‖xk‖−‖x‖| ≤ ‖xk −x‖.

Hence ‖xk‖→‖x‖ as k →∞ whenever xk → x as k →∞.

The triangle inequality shows that

‖x i −x j‖≤ ‖x i −x‖+‖x −x j‖.

Hence ‖x i −x j‖→ 0 as i , j →∞ whenever xk → x as k →∞.
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The Euclidean Space Rn Convergence and Compactness

Convergence and Coordinate-wise Convergence

Suppose that xk = (xk1, . . . ,xkn) for k = 1,2, . . . and that x = (x1, . . . ,xn).

Then, for i = 1, . . . ,n, we have

|xki −xi |2 ≤ (xk1−x1)
2+·· ·+ (xkn−xn)

2 = ‖xk −x‖2
.

We also have

‖xk −x‖2 = (xk1−x1)
2+·· ·+ (xkn−xn)

2

≤ (|xk1−x1|+ · · ·+ |xkn−xn|)2.

Hence
|xki −xi | ≤ ‖xk −x‖ ≤ |xk1−x1|+ · · ·+ |xkn−xn|.

Thus, xk → x if and only if xki → xi , for i = 1, . . . ,n.

So the convergence of x1, . . . ,xk , . . . to (x1, . . . ,xn) is equivalent to the
convergence of each of the coordinate sequences x1i , . . . ,xki , . . . for
i = 1, . . . ,n.
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The Euclidean Space Rn Convergence and Compactness

Uniqueness and Linearity Properties

A consequence of coordinate-wise convergence is that a sequence of
points in Rn can converge to at most one point.

Moreover, if xk → x , yk → y in Rn and λk → λ, µk →µ in R, then

xk ·yk → x ·y in R;
λkxk +µkyk →λx +µy in Rn.
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The Euclidean Space Rn Convergence and Compactness

Boundedness

We recall that a sequence x1, . . . ,xk , . . . of real numbers is said to be
bounded if there exists a real number r such that |xk | ≤ r for
k = 1,2, . . ..

Similarly, a sequence x1, . . . ,xk , . . . of points in Rn is defined to be
bounded if there exists a real number r such that ‖xk‖≤ r for
k = 1,2, . . ..

Every convergent sequence of real numbers is bounded, and the same
is also true for convergent sequences of points in Rn.

To see this, suppose that xk → x in Rn. By what we proved above,
‖xk‖→‖x‖. So there exists a real number r such that ‖xk‖≤ r for
k = 1,2, . . ..
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The Euclidean Space Rn Convergence and Compactness

Boundedness and Convergence

The next theorem generalizes to Rn the classical result that every
bounded sequence of real numbers contains a convergent subsequence.

Theorem

Every bounded sequence of points of Rn contains a convergent
subsequence.

Let x1, . . . ,xk , . . . be a bounded sequence of points in Rn. Then each
of the n coordinate sequences associated with x1, . . . ,xk , . . . is bounded
in R. In particular, the sequence of the first coordinates of
x1, . . . ,kk , . . . is a bounded sequence of real numbers. Thus there exists
a subsequence of x1, . . . ,xk , . . . such that the sequence of its first
coordinates converges. Similarly, there exists a subsequence of this
subsequence of x1, . . . ,xk , . . . such that the sequence of its second
coordinates converges.
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The Euclidean Space Rn Convergence and Compactness

Boundedness and Convergence (Cont’d)

After performing this subsequence operation n times in all, we arrive
at a subsequence of x1, . . . ,xk , . . . each of whose n coordinate
sequences converges.

I.e., we have found a convergent subsequence of x1, . . . ,xk , . . ..
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The Euclidean Space Rn Convergence and Compactness

Closure in Terms of Sequences

Theorem

Let A be a set in Rn. Then x ∈ clA if and only if there exists a sequence of
points of A which converges to x .

Suppose first that x1, . . . ,xk , . . . is a sequence of points of A which
converges to a point x of Rn. Then, for each r > 0, there is some
point xk of the sequence such that ‖xk −x‖ < r . Hence the open ball
B(x;r) meets A. This shows that x ∈ clA.

Suppose next that x ∈ clA. Then, for each positive integer k , the ball
B(x; 1

k
) meets A. Hence there exists xk ∈A such that ‖xk −x‖ < 1

k
. It

follows that x1, . . . ,xk , . . . converges to x .
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The Euclidean Space Rn Convergence and Compactness

Closed Sets in Terms of Sequences

Corollary

Let A be a set in Rn. Then A is closed if and only if each convergent
sequence of points of A converges to a point of A.

The corollary follows from the theorem and the fact that A is closed if
and only if A= clA.
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The Euclidean Space Rn Convergence and Compactness

Bounded and Compact Subsets

The set A in Rn is said to be bounded if there exists a real number r
such that ‖a‖≤ r for all a ∈A.

Clearly, a set in Rn is bounded if and only if each sequence of its
points is bounded.

In Rn balls and finite sets are bounded, whereas r -flats (r ≥ 1) are not.

A previous theorem and a corollary, taken together, show that each
sequence of points of a closed bounded set in Rn contains some
subsequence which converges to a point of the set.

A subset of Rn is said to be compact, if each sequence of its points
contains some subsequence that converges to a point of the subset.
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The Euclidean Space Rn Convergence and Compactness

Characterization of Compact Subsets

Theorem

Let A be a set in Rn. Then A is compact if and only it it is both closed
and bounded.

We know that closed bounded subsets of Rn are compact.

Suppose, then, that A is compact. We show first that A is closed. If
x ∈ clA, then, by a previous theorem, there is a sequence of points of
A which converges to x . Every subsequence of such a sequence also
converges to x . The compactness of A and the uniqueness of limits
show that x ∈A. Hence A is closed.

Suppose next that A is not bounded. Then, for each positive integer
k , there must exist a point xk of A such that ‖xk‖> k . The sequence
x1, . . . ,xk , . . . of points of A contains no bounded subsequence, and
hence no convergent subsequence, contrary to the hypothesis that A is
compact. Hence A is both closed and bounded.
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The Euclidean Space Rn Convergence and Compactness

Compactness and Coverings

Theorem

Let A be a non-empty compact set in Rn and let r > 0. Then there exists a
finite number of points a1, . . . ,am of A such that

A⊆B(a1;r)∪·· ·∪B(am;r).

We argue by contradiction. Suppose that no such finite number of
points of A exists. Let x1 ∈A. Then A*B(x1;r). Hence there exists
a point x2 of A such that ‖x2−x1‖≥ r . Now A*B(x1;r)∪B(x2;r).
Hence there exists a point x3 of A such that ‖x3−x1‖≥ r and
‖x3−x2‖≥ r . Continuing in this way, we produce a sequence
x1, . . . ,xk , . . . of points of A with the property that ‖x i −x j‖ ≥ r

whenever i 6= j . Clearly such a sequence cannot contain a convergent
subsequence. This contradicts the compactness of A.
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The Euclidean Space Rn Convergence and Compactness

Balls of Fixed Radius in a Covering

Lemma

Let A be a compact set in Rn and let (Ui : i ∈ I ) be a family of open sets in
R

n whose union contains A. Then there exists r > 0 such that, for each x

in A, the open ball B(x ;r) is contained in some Uj .

We argue by contradiction. Suppose that no such r > 0 exists.

Then, for each positive integer k , there is some point ak of A such
that B(ak ;

1
k
) is not contained in any Ui . Since A is compact, the

sequence a1, . . . ,ak , . . . has a subsequence which converges to a point a

of A. This point a must belong to one of the Ui ’s, U
∗ say.
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The Euclidean Space Rn Convergence and Compactness

Balls of Fixed Radius in a Covering (Cont’d)

Since U∗ is open, there is an s > 0 such that B(a;2s)⊆U∗.

Since some subsequence of a1, . . . ,ak , . . . converges to a, there are
infinitely many positive integers k for which ‖ak −a‖ < s.

Choose one of these positive integers, m say, so large that 1
m

< s.

Let x ∈B(am;
1
m
). Then

‖x −a‖ ≤ ‖x −am‖+‖am−a‖< s + s = 2s .

So x ∈B(a;2s). Thus B(am;
1
m
)⊆B(a;2s)⊆U∗. This contradicts the

assumption that B(am;
1
m
) is not contained in any Ui .
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The Euclidean Space Rn Convergence and Compactness

Coverings and Finite Subcoverings

Theorem

Let A be a compact set in Rn and let (Ui : i ∈ I ) be a family of open sets in
R

n whose union contains A. Then there exists a finite subset I∗ of I such
that the union of the family (Ui : i ∈ I∗) contains A.

We may suppose that A is non-empty. By the lemma, there is an r > 0
such that, for each x in A, the open ball B(x ;r) is contained in some
Ui . By the preceding theorem, there exist points a1, . . . ,am in A such
that

A⊆B(a1;r)∪·· ·∪B(am;r).

For each k = 1, . . . ,m, there exists ik ∈ I such that B(ak ;r)⊆Uik . We
complete the proof by taking I∗ to be the set {i1, . . . , im}.
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The Euclidean Space Rn Convergence and Compactness

Intersection of Families of Compact Sets

Corollary

Let (Ai : i ∈ I ) be a family of compact sets in Rn whose intersection is
empty. Then there exists a finite subset I∗ of I such that the intersection
of the family (Ai : i ∈ I∗) is empty.

Let i0 ∈ I and let I0 = I \{i0}. Then, since
⋂

(Ai : i ∈ I ) is empty,
Ai0 ⊆

⋃

(Ac
i
: i ∈ I0). By the theorem, which is applicable since the sets

Ac
i

are open, being the complements of closed sets in Rn, there is a
finite subset I ′ of I0 such that Ai0 ⊆

⋃

(Ac
i
: i ∈ I ′). It follows that, if I∗

denotes the finite subset I ′∪ {i0} of I , then
⋂

(Ai : i ∈ I∗) is empty.
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The Euclidean Space Rn Convergence and Compactness

Decreasing Sequence of Compact Sets

Corollary

Let A1, . . . ,Ak , . . . be a sequence of non-empty compact sets in Rn such that
A1 ⊇ ·· · ⊇Ak ⊇ ·· · . Then the intersection

⋂

(Ak : k = 1,2, . . .) is non-empty.

The intersection of any finite number of members of the family is itself
a member of the family. So it is non-empty.

Thus, the result follows from the preceding corollary.
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The Euclidean Space Rn Convergence and Compactness

Properties of Linear Combinations of Sets

Theorem

Let A and B be sets in Rn and let λ,µ ∈R. Then λA+µB is:

(i) open when A is open and λ 6= 0;

(ii) closed when A is compact and B is closed;

(iii) bounded when A and B are bounded;

(iv) compact when A and B are compact.

(i) Let A be open and let λ 6= 0. If x ∈ λA+µB , then x =λa+µb for
some a ∈A and b ∈B . Since A is open, there is an r > 0 such that
a+ rV ⊆A, where V is the open unit ball {x ∈Rn : ‖x‖ < 1}. Thus

x +λrV =λa+µb+λrV =λ(a+ rV )+µb⊆λA+µB .

This shows that B(x; |λ|r)⊆λA+µB . Hence λA+µB is open.
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The Euclidean Space Rn Convergence and Compactness

Properties of Linear Combinations of Sets (Cont’d)

(ii) Let A be compact and let B be closed. We consider only the
non-trivial case µ 6= 0. If x ∈ cl(λA+µB), then there exist sequences
a1, . . . ,ak , . . . of points of A, and b1, . . . ,bk , . . . of points of B such that
λak +µbk → x as k →∞. Since A is compact, there is a subsequence
ai1 , . . . ,aik , . . . of a1, . . . ,ak , . . . which converges to some point a of A.
Thus λaik +µbik → x and bik →

x−λa
µ as k →∞. But B is closed, and

so x−λa
µ ∈B . Hence x ∈λA+µB . Thus x ∈ cl(λA+µB) implies that

x ∈λA+µB . This shows that λA+µB is closed.

(iii) Let A and B be bounded. Then there exist real numbers r1 and r2
such that ‖a‖≤ r1 and ‖b‖ ≤ r2 whenever a ∈A and b ∈B . If
x ∈λA+µB , then x =λa+µb for some a ∈A and b ∈B . Hence

‖x‖= ‖λa+µb‖ ≤ |λ|‖a‖+|µ|‖b‖≤ |λ|r1+|µ|r2.

This shows that λA+µB is bounded.

(iv) This follows immediately from (ii) and (iii).
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The Euclidean Space Rn Continuity

Subsection 9

Continuity
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The Euclidean Space Rn Continuity

Continuity

Let f :A→Rm be a mapping, where A is a non-empty set in Rn.

Then f is said to be continuous at a point a of A if, for each
sequence a1, . . . ,ak , . . . of points of A that converges to a, the
sequence f (a1), . . . , f (ak), . . . of points of Rm converges to f (a).

If f is continuous at all points of A, then f is said to be continuous

on A.

An important example of a continuous mapping is the norm mapping
‖·‖ :Rn →R defined by the equation ‖·‖(x)=‖x‖ for each point x of
R

n.

That ‖·‖ is continuous follows immediately from the fact that
‖ak‖→‖a‖ as k →∞ whenever ak → a as k →∞.
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The Euclidean Space Rn Continuity

Lipschitz Condition

A mapping f :A→Rm defined on a non-empty set A in Rn is said to
satisfy a Lipschitz condition on A if there exists a real number s
such that, for all x ,y ∈A,

‖f (x)− f (y)‖ ≤ s‖x −y‖.

If f :A→Rm satisfies the Lipschitz condition, then it is continuous on
A.

To see this, suppose that a1, . . . ,ak , . . . is a sequence of points of A
that converges to a point a of A, so that ‖ak −a‖→ 0 as k →∞.

The Lipschitz condition shows that

‖f (ak)− f (a)‖ ≤ s‖ak −a‖.

Hence, ‖f (ak)− f (a)‖→ 0 as k →∞, i.e., the sequence
f (a1), . . . , f (ak), . . . converges to f (a).

Since f is continuous at an arbitrary a of A, f is continuous on A.
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The Euclidean Space Rn Continuity

Affine Transformations are Lipschitz Mappings

The norm mapping ‖·‖ :Rn →R considered above satisfies the
Lipschitz condition.

Every affine transformation T :Rn →Rm satisfies a Lipschitz
condition on Rn.

Suppose that Q = [qij ] is the real m×n matrix and q the real m×1
matrix such that, for each vector x in Rn, considered as a column
vector, T (x)=Qx +q. Let x ,y ∈Rn. Write u = (u1, . . . ,un)= x −y .

By the Cauchy-Schwarz inequality, for i = 1, . . . ,m,

(qi1u1+·· ·+qinun)
2 ≤ (q2

i1 +·· ·+q2
in)(u

2
1 +·· ·+u2

n).

Setting s =
√

∑m
i=1

∑n
j=1

q2
ij
, we get

‖T (x)−T (y )‖2 = ‖Qu‖2 =
∑m

i=1
(qi1u1+·· ·+qinun)

2

≤
∑m

i=1
(q2

i1
+·· ·+q2

in
)(u2

1 +·· ·+u2
n)

= s2‖u‖2.
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The Euclidean Space Rn Continuity

The Distance Function

The distance function dA :Rn →R of a non-empty set A in Rn

satisfies a Lipschitz condition.

This function dA associates with each point x of Rn its distance
dA(x) from A.

Formally, dA is defined by the equation

dA(x)= inf {‖x −a‖ : a ∈A}, for x ∈Rn
.

If A is the singleton set {a}, then dA(x)= ‖x −a‖.
In particular, if a = 0, then dA(x)= ‖x‖.
It follows from the definition of dA and a previous theorem that a
point x of Rn lies in the closure clA of A if and only if its distance
dA(x) from A is zero.
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The Euclidean Space Rn Continuity

The Distance Function is Lipschitz

Suppose now that x ,y lie in Rn.

Then, for each ε> 0, there exists a in A such that ‖x −a‖< dA(x)+ε.

By the triangle inequality,

dA(y)≤ ‖y −a‖≤ ‖y −x‖+‖x −a‖< ‖y −x‖+dA(x)+ε.

Since ε> 0 is arbitrary, dA(y)≤ ‖y −x‖+dA(x).

Interchanging x and y in this inequality, dA(x)≤ ‖x −y‖+dA(y).

Hence dA satisfies the Lipschitz condition

|dA(x)−dA(y)| ≤ ‖x −y‖.

It follows that dA is continuous on Rn.
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The Euclidean Space Rn Continuity

Remark

In general, the inf in the definition of dA cannot be replaced by min.

To see this, suppose that A is the set Rn\{0}.

Then dA(0)= 0, but there is no a ∈A such that ‖0−a‖ = 0.
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The Euclidean Space Rn Continuity

Distance from Nonempty Closed Sets

Theorem

Let A be a non-empty closed set in Rn and let x ∈Rn. Then there exists
a0 ∈A such that dA(x)= ‖x −a0‖.

It follows easily from the definition of dA(x) that there exists a
sequence a1, . . . ,ak , . . . of points of A such that ‖x −ak‖→ dA(x) as
k →∞. Since convergent sequences in R are bounded, there exists a
real number r such that ‖x −ak‖ ≤ r for k = 1,2, . . .. We have

‖ak‖ ≤ ‖ak −x‖+‖x‖ ≤ r +‖x‖, for k = 1,2, . . . .

So the sequence a1, . . . ,ak , . . . is bounded. Hence it contains some
subsequence ai1 , . . . ,aik , . . . which converges to a point a0 of Rn. Since
A is closed, a0 ∈A. Now ‖x −aik ‖→‖x −a0‖ as k →∞. But we
already know that ‖x −aik‖→ dA(x) as k →∞. The uniqueness of
limits in R shows that dA(x)=‖x −a0‖.
The point a0 is called a nearest point of A to x .
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The Euclidean Space Rn Continuity

Continuity and Compactness

Theorem

Let f :A→Rn be a continuous mapping, where A is a non-empty compact
set in Rn. Then f (A) is a compact set in Rn.

Let f (a1), . . . , f (ak), . . . be a sequence of points of f (A), where
a1, . . . ,ak , . . . is a sequence of points of A.

Since A is compact, there is a subsequence ai1 , . . . ,aik , . . . of
a1, . . . ,ak , . . . which converges to some point a of A.

By the continuity of f , the subsequence f (ai1), . . . , f (aik ), . . . of
f (a1), . . . , f (ak), . . . converges to the point f (a) of f (A).

Thus f (A) is compact.
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The Euclidean Space Rn Continuity

Attainability of Sup and Inf

Recall from elementary analysis that a continuous function
f : [a,b]→R is bounded and attains its bounds.

Corollary

Let f :A→R be a continuous mapping, where A is a non-empty compact
set in Rn. Then there exist a,b ∈A such that

f (a)= inf {f (x) : x ∈A} and f (b)= sup{f (x) : x ∈B}.

The theorem shows that the non-empty set f (A)= {f (x) : x ∈A} of
real numbers is compact, and therefore closed and bounded. Thus
f (A) possesses both an infimum and supremum. Moreover, the
infimum and supremum of f (A) belong to clf (A). Hence, since f (A)
is closed, they belong to f (A). So there exist a,b ∈A such that
f (a)= inf f (A) and f (b)= sup f (A).
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The Euclidean Space Rn Continuity

Attainability of Infimum of Distance

Theorem

Let A and B be non-empty sets in Rn with A closed and B compact. Then
there exist a0 ∈A, b0 ∈B such that

‖a0−b0‖= inf {‖a−b‖ : a ∈A,b ∈B}.

The distance function dA of A is continuous on Rn. So, by restriction,
it is continuous on B . By the corollary, applicable since B is compact,
there exists b0 ∈B such that dA(b0)= inf {dA(b) : b ∈B}. By a
previous theorem, applicable since A is closed, there exists a0 ∈A such
that dA(b0)= ‖b0−a0‖. For each a ∈A, b ∈B , we have

‖a−b‖≥ dA(b)≥ dA(b0)=‖a0−b0‖.

Since a0 ∈A, b0 ∈B , ‖a0−b0‖ = inf {‖a−b‖ : a ∈A,b ∈B}.

We refer to a0 and b0 as nearest points of A and B .
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The Euclidean Space Rn Continuity

Continuity and Positivity

Recall that if a real function is both continuous and positive at some
point, then it is positive at all points of its domain sufficiently close to
that point.

Theorem

Let the mapping f :A→R be both continuous and positive at some point
a of a set A in Rn. Then there exists an r > 0 such that f (x)> 0 whenever
x ∈B(a;r)∩A.

Suppose that the stated conclusion does not hold. Then, for each
k = 1,2, . . . there exists ak ∈B(a; 1

k
)∩A such that f (ak)≤ 0. Since f is

continuous at a and ak → a as k →∞, f (ak)→ f (a) as k →∞.
Because f (ak)≤ 0 for k = 1,2, . . ., it follows that f (a)≤ 0. This
contradiction establishes the theorem.
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The Euclidean Space Rn Continuity

Continuity of Composition

Recall that a continuous function of a continuous function is itself
continuous.

Theorem

Let f :A→Rm and g :B →Rp be continuous mappings, where A and B

are, respectively, non-empty sets in Rn and Rm such that f (A)⊆B . Then
the composite mapping g ◦ f :A→Rp is continuous.

Let a1, . . . ,ak , . . . be a sequence of points of A that converges to a
point a of A. Since f is continuous, the sequence of points
f (a1), . . . , f (ak), . . . of B converges to the point f (a) of B . Since g is
continuous, the sequence g(f (a1)), . . . ,g(f (ak)), . . . converges to
g(f (a)), i.e., the sequence (g ◦ f )(a1), . . . ,(g ◦ f )(ak), . . . converges to
(g ◦ f )(a). This shows that g ◦ f is continuous.
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The Euclidean Space Rn Continuity

Inverse Images of Open and of Closed Sets

Theorem

Let f :Rn →Rm be a continuous mapping and let B be a closed (open)
subset of Rm. Then f −1(B) is closed (open).

Suppose first that B is closed. Let a1, . . . ,ak , . . . be a sequence of
points of f −1(B) that converges to a point a of Rn. The continuity of
f shows that the sequence of points f (a1), . . . , f (ak), . . . of B
converges to the point f (a) of Rm. But B is closed. So f (a) ∈B , i.e.,
a ∈ f −1(B). This shows that f −1(B) is closed.

Suppose next that B is open. Then the complement Bc of B in Rm is
closed. Hence, by what has just been proved, f −1(Bc) is closed in Rn.
Thus, the complement f −1(B)= (f −1(Bc))c in Rn is open.
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