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Subsection 1

The Euclidean Space R”
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The Euclidean Space R"

©

In three-dimensional coordinate geometry a point or vector is
determined by its coordinates x, y, z relative to some rectangular
coordinate system.

We identify the point or vector with the ordered triple (x,y,z).

o Vectors are added together according to a parallelogram law, which

is equivalent to the addition of corresponding coordinates.

The word scalar is used as a synonym for real number.

The product of a scalar and a vector is equivalent to the
multiplication of each coordinate of the vector by the scalar.
Thus, if (x,y,z) and (u,v,w) are vectors, and A is a scalar, then

(xy,z2)+(u,v,w) = (x+uy+v,z+w),
Ax,y,z) = (Ax, Ay, Az).

These equations can be extended in the natural way to define vector
addition and scalar multiplication of real n-tuples.
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The Euclidean Space R"

o For each positive integer n, denote by R" the set of all n-tuples
(x1,...,xn) of real numbers.

o Then R" is called the n-dimensional Euclidean space.

o Each element x = (xq,...,x,) of R" is called a point or vector of R"
and the real numbers xi,...,x, are called the coordinates of x.

o For n=1, we identify the 1-tuple x = (x;) with the real number x;
itself, so that R! becomes simply R, the set of real numbers.

o For n=1,2,3, we often write x, (x,y), (x,y,z) instead of (x1),
(x1,%2), (x1,%2,x3).

o Geometrically, R' can be thought of as a line, R? as a plane, and R3
as the set of points in space.

o Lower case Roman letters such as a, b, ¢, x,y, z will denote points of
R", lower case Roman and Greek letters such as x,y,z,A, u, v will
denote scalars, and capital Roman letters such as A, B, C will denote
subsets of R".
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The Euclidean Space R"

o Addition and scalar multiplication in R" are defined coordinatewise.

o Thus, if x=(x1,...,%n), ¥ =(y1,---,¥n), and A is a scalar, then
xX+y=(x1+y1,...xn+yn) and Ax=(Axy,...,Axp).

o The vector (0,...,0) of R", all of whose coordinates are 0, is denoted
by 0 and is called the zero vector or origin of R".

o The vector in R” whose only non-zero coordinate is a 1 in the ith
position is denoted by e; and is called the ith elementary vector.

o A point of R” all of whose coordinates are integers is called a lattice
point.

o The vector (—1)x is written simply as —x.
o Vector subtraction is defined by the rule x—y =x+(-1)y.

o It is sometimes convenient to write ¥ for %x.
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The Euclidean Space R"

o The set R", equipped with the above operations of vector addition
and scalar multiplication, is a real vector space.
o This means that, if x,y,z€e R" and A,u€ R, then the following
relations hold:
X+y=y+x,
x+(y+z)=(x+y)+z;
x+0=x;
x+(-x)=0;
1x =x;
Apx) = (Ap)x;
Ax+y)=Ax+Ay;
(A+ u)x = Ax + px.
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The Euclidean Space R"

o We extend the operations of vector addition and scalar multiplication
to subsets of R" by defining:

A+B={a+b:acAbeB} and 1A={la:ac A},

where A, BSRR" and 1 e R.
o The set A+ B is called the vector sum of A and B.

o It follows from the above definitions that both sets A+ B and AA are
empty when A is empty.

o We write —A for the set (-1)A, and A— B for the set A+(-B).
o It is sometimes convenient to write % for %A.
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The Euclidean Space R"

o The set Ain R" is said to be 0-symmetric, or simply symmetric, if
-A=A.

o Geometrically, A is symmetric if it is its own reflection in the origin.

o Examples of symmetric sets in R? are:

o ellipses centered at the origin;
parallelograms with centers at the origin;
lines through the origin;

RR? itself.

¢ ¢ ©
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The Euclidean Space R"

o The set {a}+ B, where a€ R", is often written as a+ B and is called a
translate of B or, more precisely, the translate of B by a.

o It is an easy exercise in set theory to show that
A+B=J(a+B:acA),

i.e., A+ B is the union of all translates of B by vectors a in A.

o This result can help us to visualize A+ B in simple cases.
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The Euclidean Space R"

o Suppose that A and B are the square and the circular disc in R?
defined by the equations

A={(xy):IxLlyl=1}, B={(xy):x*+y*=<1}

o Then a+ B is the circular disc with center a and radius 1;

o A+ B is the union of all such discs for a€ A.

@ (B
W_E N L J
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The Euclidean Space R"

o Vector addition and scalar multiplication, when applied to sets in R”,
do not have all the properties one might expect, and the reader is
warned to be cautious.

o For example, it is not always true that A+ A =2A.
To see this, let A consist of distinct points @ and b in R".
Then A+ A=1{2a,2b,a+ b}, whereas 2A = {2a,2b}.
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The Euclidean Space R"

o Properties (i)-(viii) above do, however, partially generalize to give the
following easily verified results:
A+B=B+A;
A+(B+C)=(A+B)+C;
A+0=A;
0e A+ (-A) when A+# @;
1A=A;
MuA) = (Ap)A;
A(A+B)=AA+AB;
(A+p)AcS AA+ A,
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The Euclidean Space R" Flats

Subsection 2

Flats
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The Euclidean Space R"

o For each point x on the line through dis-
tinct points @ and b of R3, there exists
a unique scalar A such that

x = b+A(a-Db)
Aa+(1-A)b.

o Conversely, each point x of this form lies on the line through a and b.

o Thus the line through a and b is the set {la+(1—-1)b: A € R}, which
can also be written in the symmetrical form {Aa+ub: A+p=1}.

o We note that the subset

la+(1-A)b:0=A<1}={Aa+ub: A, u=0A+pu=1}

of the line through a and b is the line segment joining a and b.
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The Euclidean Space R"

o The line through distinct points @ and b of R" is the set
fAa+ub: A +p=1}.

o Clearly this set contains both a and b, and its points can be placed
into a bijective correspondence with the points of the real line R itself.

o The set Ain R" is called a flat if whenever it contains two points, it
also contains the entire line through them.

o Expressed algebraically, A is a flat if Aa+ ube A whenever a,be A and
A+pu=1
o Equivalently, A is a flat if AA+ uA< A whenever A +pu=1.

o Synonyms for flat used by other authors are: affine set, affine
variety, affine manifold, linear variety, and linear manifold.

o The empty set, singletons, lines, and IR" itself are examples of flats in
R". Planes are flats in R3.
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The Euclidean Space R"

o Let A be a flat in R" which contains the origin.
o Suppose that a,be A and 1€ R.

o Since Ais a flat and a,0€ A, Aa+(1-21)0€ A, i.e., lac A. Thus A'is
closed under scalar multiplication.

o Since Ais a flat and a,b€ A, %a+%b€A. But A is closed under
scalar multiplication. So 2(2a+1b)e A, ie, a+beA. Thus A'is
closed under addition.

o Hence A is a non-empty subset of R” which is closed under addition
and scalar multiplication, i.e., A is a subspace of the real vector space
R".

o Trivially, a subspace of R" is a flat containing the origin.

o We have shown that flats through the origin in R" are precisely the
subspaces of R".
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The Euclidean Space R"

The non-empty flats in R" are precisely the translates of subspaces of R".

o Suppose first that A is a non-empty flat in R". Let a€ A.
We show that A—ais a flat. Let x,ye A—aand 1 +u=1.
Then x+a,y +a€ A. So

AMx+a)+pu(y+a)=Ax+uy+acA.

Thus, Ax+uyeA—a, and A—a is a flat.
Since A— a contains the origin, it must be a subspace of R".

Hence the non-empty flat A is the translate of the subspace A—a of
R" by the vector a.
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The Euclidean Space R"

o Suppose next that A is a subspace of R" and that ue R".
We show that A+wu is a flat. Let x,ye A+u and A +u=1.
Then there exist a,be A such that x=a+u, y=b+u. So

Ax+uy=Aa+ub+uecA+u,

since Aa+ube A, as A is a subspace of R".
This shows that A+ u is a flat.
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The Euclidean Space R"

Corollary

Each non-empty flat in R" is the translate of precisely one subspace of R".

o Let A be a non-empty flat in R". Suppose that A is a translate of
both the subspaces B and C of R". Then C must be a translate of B.
So there exists be R" such that C=B+b. Since 0 lies in C, it follows
that —b, and hence b, lies in B. Thus C =B+ bc B. By symmetry,
B< C. Hence B=C, and A is the translate of precisely one subspace

of R".
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The Euclidean Space R"

o The observation that two (distinct) lines in R? are parallel if and only
if one is a translate of the other prompts the following definition.

o In R™ a flat A is said to be parallel to a flat B if each is a translate of
the other.

o The relation of parallelism is an equivalence relation on the family of
all flats in R".

o This notion of parallelism does not quite accord with that used in
elementary geometry on two counts:

o Firstly, a flat is considered to be parallel to itself.
o Secondly, it only allows parallelism between flats of the same dimension.
For example, we cannot speak of a line being parallel to a plane.

o The preceding corollary shows that each non-empty flat in R" is
parallel to precisely one subspace of R".
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The Euclidean Space R" Flats

Closure Under Intersections

The intersection of an arbitrary family of flats in R" is a flat.

o Let (A;:i€l) be a family of flats in R".
Let a,beN(A;:iel)and A +pu=1.
Then a,be A;. As A; is a flat, Aa+ube€ A;, for each i€ |.
Thus, Aa+ubeN(A;:iel).
This shows that the intersection is a flat.

George Voutsadakis (LSSU) Convexity July 2023 22 / 162



The Euclidean Space R"

o The affine hull affA of a set A in R" is the intersection of all flats in
R" containing A.

Such flats exist, since R" is a flat containing A.

In view of the preceding theorem, affA is a flat which contains A.
Moreover, if B is any flat in R"” containing A, then affAc B.

Thus, we may refer to aff A as the smallest flat in R"” containing A.
Clearly, A is a flat if and only if A=affA.

Moreover, aff(affA) = affA.

Another easy result is that, if A< B, then affAc affB.

¢ ¢ ¢ ¢ ¢ ¢ ¢
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The Euclidean Space R"

o In the space R3:
o The affine hull of two distinct points is the line through them;
o The affine hull of three non-collinear points is the plane which they
determine;
o The affine hull of four non-coplanar points is the whole space R3 itself.
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The Euclidean Space R"

o By definition, a set A in R" is a flat if Aa+ ube A whenever a,be A
and A +pu=1.

o This defining relation of a flat implies a more general one, as we now
establish in the following fundamental theorem.

Let a1,...,am be points of a flat Ain R". Let Ay +---+A,,=1. Then
Ala1+---+Amam€A.

o Let a€ A. Then the points a; —a,...,a, — a lie in the subspace A—a
of R", whence so too does the point

M(ar—a)+--+Am(am—a)=Mar+--+Apanm —a.

Hence Aia1+---+Amam € A.
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The Euclidean Space R"

o A point x is said to be an affine combination of points ay,...,a,, in
RR" if there exist scalars Aq,...,Ap, with A7 +---+ A, =1 such that

x=Mai+--+Amam.

o The preceding theorem can now be expressed as: Every affine
combination of points of a flat in R" belongs to that flat.

o The affine hull of a set was defined by means of flats containing that
set.

o The following theorem expresses the affine hull of a set in terms of
points of the set itself.

Let A be a set in R". Then affA is the set of all affine combinations of
points of A.
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The Euclidean Space R"

o Denote by B the set of all affine combinations of points of A.
That B < affA follows from the preceding theorem and the inclusion
AcaffA.
We next show that B is a flat. If x,y € B, then x=A1a1+--+ Amam,
y =piby+---+upbp, for some ay,...,am, by,...,bp, € A, and scalars
Ay Am ity flp With A+ + A =1, gy +---+pp=1. Let
A+u=1. Then

Ax+py =A@y +---+AAmam + puiby + -+ pupbp

and AL+ + A+ pi1 + -+ + (ilp
=AMA1+- -+ Am) + p(ps + - + pp)
=A+pu=1.

Thus Ax+py e B. So B is a flat. Since B is a flat and B2 A, it
follows that B2 affA. Hence B = affA.

George Voutsadakis (LSSU) Convexity



The Euclidean Space R"

Corollary

Let a1,...,am €R". Then

aff{ay,...,ap}=Mar1+-+Amam A1+ + A, =1}

: Each point x =(xi,...,xn) of R" can be expressed as an
affine combination of the zero vector 0 and the elementary vectors
ei,..., e, as follows:

x=(1-x3—-—xp)0+x1€1+ -+ Xp€p.

The corollary now shows that aff{0,es,...,e,} = R".
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The Euclidean Space R"

o Let A be a non-empty set in R".

o We recall that a point of the form Aia; +--- + Amam, where
ai,...,am€Aand Aq,...,1,, are scalars, is said to be a linear
combination of points of A.

o The set of all such linear combinations is the smallest subspace of R”
which contains A, and is called here the linear hull of A and we
denote it by linA.

o Since linA is a flat containing Au{0}, it follows that aff(Au{0}) < linA.

o On the other hand, aff(Au{0}) is a subspace of R" containing A, so
linA < aff(AU{O}).

We conclude that linA = aff(Au{0}).

We define ling = {0}.

o This ensures that ling is the smallest subspace of R" which contains
@, and that ling = aff(@ U {0}).
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The Euclidean Space R"

o We conclude the section by examining how flats behave with respect
to the operations of addition and scalar multiplication.

Let A, B be flats in R” and let @ be a scalar. Then A+ B and aA are flats.

o Let A+pu=1. Since A and B are flats, AA+ uA< A and AB+uBc B.
Thus,

AMA+B)+u(A+B)=(AA+pA)+(AB+uB) < A+ B;
AaA) + u(aA) = a(LA+ pA) < aA.

This shows that A+ B and aA are flats.

Corollary

Let Aq,...,An, be flats in R” and let Aq,...,A, be scalars. Then
AAL+ -+ AmAn, is a flat.
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The Euclidean Space R"

o We saw in the last section that it is not in general true that A+ A =2A.
o It is true, however, when A is a flat.

Let A be a flat in R” and let Aq,...,A, be scalars with A7 +---+ A, #0.
Then

A1+ +Am)A=11A+ -+ AnA.

o Write A=A1+---+A,,,. Then, using a previous theorem, we deduce

that
A+ +Am)A < MA+--+1,A
= A(A—/{A+---+ATF"A)
c 1A
= (A1+-+Am)A

Thus (A1 4+ Am)A=A1A+ -+ A A.



The Euclidean Space R"” Dimension

Subsection 3

Dimension
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The Euclidean Space R"

o The set Ain R" is said to be affinely dependent if there exists a€ A
such that a € aff(A\{a}).
o Thus in R3:

o A set of three points is affinely dependent if and only if it is collinear;
o A set of four points is affinely dependent if and only if it is coplanar;
o Any set having more than four points is affinely dependent.
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The Euclidean Space R"

o A set in R" which is not affinely dependent is said to be affinely
independent.
o In R3:
o A set of three points is affinely independent precisely when it is the
vertex set of a non-degenerate triangle;
o A set of four points is affinely independent precisely when it is the
vertex set of a non-degenerate tetrahedron.
o In R", the empty set, every singleton, and every set consisting of two
points are affinely independent.

o Since any set in R" which contains an affinely dependent set is itself
affinely dependent, it follows that every subset of an affinely
independent set is affinely independent.
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The Euclidean Space R"

Let A be a set in R". Then A is affinely dependent if and only if there exist
distinct points as,...,am of A and scalars A1,...,A,, not all zero, such that

Aai+--+Apam=0 and A;+---+A1,=0.

o Suppose that A is affinely dependent. Then there exists a1 € A such
that a; € aff(A\{a1}). By a previous theorem, there exist (distinct)
points ay,...,am of A\{a1} and scalars uo,..., 1m, such that
a;=ppar+-+Umam and up+---+u,m=1. Write 1; = -1, 1 = o,

voo Am=Hm. Then Ay,...,Ay are not all zero and satisfy the
conclusion.
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The Euclidean Space R"

o Suppose next that there exist distinct points ay,...,an of A, and
scalars A1,...,Am,, not all zero, which satisfy the hypothesis.

Suppose that 11 Z0. Then
1 1
a1:——(12a2+---+/1mam) and ——(12+"'+ﬂm)=1,
A,l Al

which shows that a;p is an affine combination of a»,...,a,. Hence
a; € aff{ay,...,am} < aff(A\{fa1}). So A is affinely dependent.

Corollary

A subset {a3,...,am} of R" is affinely dependent if and only if there exist
scalars A1,...,Am, not all zero, such that

Mai+-+Aman=0 and Ayj+---+A,=0.
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The Euclidean Space R"

Corollary

Let {a1,...,a@m} be an affinely independent set in R"”. Then each point of
aff{ay,...,am} can be expressed uniquely in the form

Aray+--+Amam, where Aj+---+A,=1.

o A previous corollary shows that each point of aff{as,...,a,} can be
expressed in the desired form.

To establish the uniqueness, suppose that

May+-+Anam=pia1+:+Umam,
M+ +Ap=p1+--+um=1
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The Euclidean Space R"

o Then
(/11 —,ul)al +~~~+()Lm—ym)am =0
with (/‘,1 —u1)+"'+(/‘,m—um) =0.
Since {ay,...,am}z is affinely independent, the preceding corollary
shows that the scalars A1 — u1,...,Am — m must be zero.

Thus A1 =1, ..., Am = m, and the uniqueness is established.
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The Euclidean Space R"

o We mentioned that any set of more than four points in R3 is affinely
dependent.

Corollary

An affinely independent set in R" cannot contain more than n+1 points.

o It suffices to show that every set of the form {as,...,am}» in R",
where m>n+1, is affinely dependent. Let {ay,...,am}x be a set in
R", where m> n+1. Then the system of the n+1 linear simultaneous
equations

Mai+-+Apam=0, A1+---+A1,=0,

in the m unknowns A1,...,A,, is homogeneous. Since m> n+1, it has
a non-trivial solution. Hence, {a1,...,am}#, is affinely dependent by a
previous corollary.
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The Euclidean Space R"

Corollary

Let A be an affinely independent subset of R"”. Suppose that a is a point
of R" not lying in affA. Then the set Au{a} is affinely independent.

o We argue by contradiction. Suppose that Au{a} is affinely dependent.
Then there exist distinct points as,...,am of A and scalars
A, A1, ..., Am, not all zero, such that Aa+Aia;+---+Ana, =0 and
A+A1+-++ A5 =0. The scalar A cannot be zero, for then A is affinely
dependent. Thus the equation can be used to express a as an affine
combination of ay,...,a,,. So a€aff{ay,...,a,}. This, however,
contradicts the hypothesis that a ¢ affA. Hence Au{a} is affinely
independent.
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The Euclidean Space R"

o In R" the set {0,ey,...,e,} is affinely independent.
o To see this, suppose that the scalars A,11,...,A, satisfy

A0+ Aje1+--+1,e,=0 and A+A;+---+A,=0.

The first of these equations shows that A,...,A, are all zero.
Hence A must also be zero from the second equation.

The corollary now shows that the set {0,ey,...,e,} is affinely
independent.
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The Euclidean Space R"

o In R3 as a simple case-by-case consideration shows, each
r-dimensional flat (r=0,1,2,3) is the affine hull of some affinely
independent set of r+1 points.

o For example, a plane is the affine hull of any three of its points which
are not collinear.

o Previous examples show that R3 is the affine hull of the affinely
independent set {0, eq, €5, e3}.

o This suggests that we might assign a dimension r to a flat in R" if it
is the affine hull of some affinely independent set of r+1 points.

o Before we can formalize this idea, however, two results need to be
established:
Every flat in R" is the affine hull of some finite affinely independent set;
If two affinely independent sets in R” have the same affine hull, then
they have the same number of elements.
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The Euclidean Space R"

Theorem

Every flat in R" is the affine hull of some finite affinely independent subset
of R". Moreover, the number of elements in such a subset is determined
uniquely by the flat itself.

o Consider the non-trivial case of a flat A in R" which is neither empty
nor a singleton. Let m be the largest positive integer such that A
contains an affinely independent subset of m+1 elements. Such an m
exists by a previous corollary, and m =1, since A contains at least two
points. Let {ag,as,...,am} be an affinely independent subset of A.
Since A is a flat, aff{ag,a1,...,an} € A. Now Acaff{ag,as,...,am},
for otherwise there would exist some point a of A not lying in
aff{ag, ai,...,am} and, by a previous corollary, {a,aq,a,...,am} would
be an affinely independent subset of A having m+2 elements, so
contradicting the definition of m. Hence A =aff{ag,a,...,amn}.
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The Euclidean Space R"

o We now complete the proof by showing that m is the dimension of the
unique subspace B of R" that is parallel to A.

This we do by proving that the subset {a; —aq,...,an—ag} of Bis a
basis for B. Let be B. Then b= x—ag for some x € A. Thus, there
exist scalars Ag,A1,...,Am such that

X=/1,080+/1161+"'+ﬂmam
and g+ A1 +---+ A, =1. Hence,
b:x—ao:)Ll(al—a0)+---+)tm(am—ao).

This shows that {a; —aq,...,am —ag} spans B.
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The Euclidean Space R"

o Finally, suppose that us,..., um satisfy
pi(ai—ao)+ -+ pim(am — ao) = 0.

Then
—(p1+- +pm)ao+p1ar+- -+ mam =0,

~(p o+ ) + i1+ i =0,

But {ag,a1,...,am}« is affinely independent. So all of uy,...,um are
zero. Thus {a; —ag,...,am —ag} is linearly independent. We conclude

that {a; —ao,...,a, —ao} is a basis for B.
Hence, m is the dimension of B, and so is uniquely determined by A.
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The Euclidean Space R"

o A flat in R"” which is the affine hull of some affinely independent set of
r+1 points is said to have dimension r and is called an r-flat.

o It follows from the theorem that each flat in R" has a unique
dimension r attached to it, and from a previous corollary that r < n.

o The empty flat is the affine hull of the (affinely independent) empty
set, and so has dimension —1.

o Clearly every singleton (point) has dimension 0 and every line has
dimension 1.

o We have already seen that IR" is the affine hull of the affinely
independent set {0,e,...,e,}, whence R"” has dimension n.

George Voutsadakis (LSSU) Convexity



The Euclidean Space R"

o The concept of dimension is extended to arbitrary subsets of R” by
defining the dimension dimA of a set A in R"” to be the dimension of
the flat affA.

o We note that when a flat in IR" is also a subspace of IR" its dimension
as defined above coincides with its dimension as a subspace of the real
vector space R".

o Hence we may apply the term dimension unambiguously both to flats
and subspaces of R".
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The Euclidean Space R"

Let A and B be flats in R" which have a non-empty intersection. Then
dim(A+ B)+dim(AnB)=dimA+dimB.

o Let ce AnB. Then A—c and B —c are subspaces of R". So, by the
dimension theorem of elementary linear algebra,
dim((A-c)+(B-c))+dim((A-c)n(B-c))=dim(A—c)+dim(B—-c),
that is, dim(A+ B—-2c)+dim((AnB)—-c)=dim(A-c)+dim(B-c).
The proof of the preceding theorem shows that the dimension of a
non-empty flat in R" coincides with the dimension of the unique
subspace of R" which is parallel to it. It follows from this last result
that the dimension of any translate of a flat is the same as the
dimension of the flat itself. Thus, the last equation above simplifies to
dim(A+B)+dim(AnB)=dimA+dimB.
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o An affine basis for a flat in R" is any affinely independent set in R”
whose affine hull is that flat.

o A previous theorem shows that every flat has an affine basis.

o By definition, every affine basis for an r-flat has precisely r+1
elements.

: {0,eq,...,e,} is an affine basis for R".

o The next result shows that every affinely independent subset of a set
in R" can be extended to an affine basis for the affine hull of the set.
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Let B be an affinely independent subset of a set A in R"”. Then there
exists an affine basis for aff A that lies in A and contains B.

o Consider the non-empty family & of all affinely independent subsets of
A which contain B. Since no affinely independent set in R" contains
more than n+1 points, there must exist some member C of & that is
not properly contained in any other member of &. Since C is a subset
of A, we have aff C caffA. We claim that aff C = affA.

Suppose that aff C c affA. Since affA is the smallest flat containing A,
we cannot have A caff C, whence there exists some point a of A not
lying in aff C. We can now use a previous corollary to deduce that
Cu{a} is a member of & which properly contains C. This contradicts
the choice of C. Thus affC =affA and C is an affine basis of affA.
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Corollary

Let A be a subset of R”. Then A contains an affine basis for affA.

o Let {ag,...,a,} be an affine basis for a non-empty r-flat A in R".

o Then, by a previous corollary, each point x of A can be expressed
uniquely in the form

Xx=Agag+---+Ara,, where Ag+---+A,=1.

o The scalars Ag,..., A, are called the barycentric coordinates of x
relative to (the ordered affine basis) aq,...,a,.

o A previous example shows that the barycentric coordinates of a point
x=(x1,...,xp) of R" relative to 0,ey,...,e, are 1 —xy —--- = xp,
X1y.eey Xn-
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Theorem

Let {ag,...,a,} be an affine basis for a non-empty r-flat A in R". Let
Ao, ..., A, be the barycentric coordinates of a point x = (xg,...,x,) of A
relative to ao,...,a,. Then there exist scalars a;; (i =0,...,r, j=0,...,n)
such that, for i =0,...,r,

Ai=ajo+aj1x1+ -+ ajnXn.

o Extend, if necessary, {ag,...,a,} to an affine basis {ay,...,a,} for R".
Each point x =(xi,...,x,) of R"” can be written uniquely in the form

X=Agag+---+Ana, where Ag+---+A,=1.

In particular, each of the points 0,e1,...,e, can be so expressed.
Write eg = 0.
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o Then there are scalars bjj (i=0,...,n; j=0,...,n) such that, for
i=0,...,n,

ej=bgpjag+---+bpja, and bgj+---+ by =1

Write x=(1—x1— - —xp)€0+Xx1€1 + -+ Xp€p.
Then x = poag +--- + upan, where, for i=0,...,n,

W= b,—o(]_—Xl—~~~—Xn)+b,'1X1+---+b,'an.

A routine verification shows that pg+-+-+ u, =1.

Since the representation of x in this form is unique, we can deduce
that A; =pu;, for i=0,...,n.

We complete the proof by putting a;o = bjg for i=0,...,n, and
ajj=bjj—bjo (i=0,...,n, j=1,...,n), and noting that x € A if and only
if y41=0,...,A,=0.
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Let L and M be two lines that lie in a 2-flat A of R" and which do not
meet. Then L and M are parallel.

o Let a,b be distinct points of L, and let ¢,d be distinct points of M.
Since {a, b, ¢} is affinely independent, it will form an affine basis for A.
Thus d =aa+ pb+yc for some a,B,y € R with a+f+y=1. A
typical point on M, the line joining ¢ and d, has the form

(1-0)c+0d=0aa+0pb+(6(y-1)+1)c,

for some 6 € R. Since the latter point does not lie on L for any 6, we
must have y=1and d =a(a—b)+c. Hence d—(c—-a)=a(a-b)+c
—c+a=(a+1l)a—abel. Thus, M—(c—a)<L. Since M—(c—-a) is
a line, we must have M—(c—a)=L. Thus L and M are parallel.
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Subsection 4

Hyperplanes
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o Consider the following system of m linear equations in n real variables
X1yeeerXn'

a11Xx1 + -+ 3d1pXn aio

AmiX1t- - tamnXn = amo

where aj; are given scalars.

o By the solution set of this system is meant the set of all n-tuples
(x1,...,xn) of R" that satisfy it.

o The solution set of the system is clearly the intersection of the
solution sets of the m linear equations which comprise it.

George Voutsadakis (LSSU) Convexity



The Euclidean Space R"

o An easy verification shows that the solution set of any one of the
individual linear equations is a flat.

o So the solution set of the whole system is a flat.

o Later in the section, we shall show that every flat is the solution set of
some system of linear equations.

o In general, the solution set of a single linear equation
aixy+--++apxp =ap is an (n—1)-dimensional flat in R".

o In the study of convexity in R”, flats of dimension n—1 play a key
role, and are given their own name, hyperplanes.
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o To be precise, we should refer not to a hyperplane, but to a
hyperplane in R".
o When no ambiguity is likely to arise, however, we do speak simply of a
hyperplane.
o A hyperplane:
oinRlisa point;
o in R2 is a line;
o in R3 is a plane.
o Thus:

o A hyperplane in R? has an equation of the form ax + by + ¢ =0, where
not both of a and b are zero;

o A hyperplane in R3 has an equation of the form ax+ by + cz+d =0,
where not all of a, b and ¢ are zero.
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A set H in R" is a hyperplane if and only if there exist scalars ¢y, cy,..., cp,
where not all ¢y,...,¢c, are zero, such that

H={(x1,...,Xn): Co+ C1X1 + -+ Cpxp = O}.

o Let H={(x1,...,xn) : co+C1X1 + -+ + Cnxpn =0}, where ¢, cy,...,cp are
scalars and not all ¢y,...,c, are zero, say ¢; #0. Let u=(uy,...,up),
v=(vi,...,vp) liein H and let A+p=1. Then

co+ci(Auy+pvy)+ -+ cp(Aup + pvp)
=Mco+crug+---+cpup) +p(co+crva+--+chvn)
= A0+ 0 =0.

Thus Au+puveH and H is a flat.
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o Define points ay,...,a, of H by the equations a; = (—Z—‘:,0,0,...,O) and
a=(-22,1,0,...,0),...,a, = (-22,0,0,...,1). Since H is a flat,
aff{ay,...,a,} S H.

We now establish the opposite inclusion. Let x € H. Then the

equations

x=(x1,..,xn)=(1=xp—+--—xp)a1+xpa2+ -+ + Xpan

express x as an affine combination of ay,...,a,. So x € aff{a,...,a,}
Hence, H caff{ay,...,a,} and, therefore, H = aff{ay,...,a,}.
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o To show that the set {ay,...,a,} is affinely independent, suppose that
A1,..., A, satisfy

Mai+---+Apap=0 and A;+---+1,=0.

Comparing the ith coordinates (i =2,...,n) on both sides of the first
of these equations, we find that A,,..., A, are all zero. Thus, so too is
A1, from the second equation.

So, {a1,...,an} is affinely independent.

But H =aff{ay,...,an}, and so H is an (n—1)-dimensional flat, i.e., H
is a hyperplane.
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o Conversely, suppose that H is a hyperplane in R". Let {by,...,b,} be
an affine basis for H. Extend this to an affine basis {bg, b1, ..., b,} for
R". Then each x =(xi,...,xp) in R"” can be written uniquely in the
form

X=/10b0+11b1+“'+/1nbn, where Ao+11+---+ln=1.

Thus Ag,A1,...,A, are the barycentric coordinates of x relative to the
(ordered) affine basis bg, by, ..., b,. By a previous theorem, there exist
scalars ¢g, ¢y, ..., ¢, such that

Ao=C0+C1X1+---+Can.

Since xe H iff Ag=0, H=1{(x1,...,Xn) : o+ C1X1 + -+ + Cnxp = O}.
Not all of ¢y,...,c, are zero, for this would imply that either H is
empty (if cg #0) or R” (if g =0), both of which contradict the
assumption that H is an (n—1)-dimensional flat.
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Corollary

In R" each r-flat (r=—1,...,n) can be expressed as the intersection of
n—r hyperplanes, and so is the solution set of some system of n—r linear
equations.

o The only (—1)-flat in R" is the empty set, which is the intersection of

the n+1 hyperplanes x; =0, ..., x, =0, xg +---+x,=1.
The only n-flat in R" is R" itself, which is the intersection of no
hyperplanes.

Consider now the case of an r-flat A in R", where r=0,...,n—1. Let
{ag,...,a,} be an affine basis for A. Extend this to an affine basis
{ag,...,an} for R". Then each x in R" can be expressed uniquely in
the form

X=Agag+---+Ana, where Ag+---+A,=1.
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o Now A is the set in R" consisting precisely of those x's whose
barycentric coordinates A,,1,...,A, are all zero.

But each of the sets {x: A; =0} is the hyperplane
aff{ag,...,aj_1,a+1,...,an}.

It now follows that A is the intersection of the n—r hyperplanes with
equations A,.1=0,...,1,=0.
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o Given a hyperplane H in R", there exist scalars ¢y, cy,..., c,, with not
all ¢1,...,¢c, zero, such that

Hz{(xl""’xn):C0+C1X1+"'+Can=0}_

o We now consider to what extent H determines the scalars g, c1,...,Ch.

o It certainly does not determine them uniquely, for the scalars
Ocop,0cy,...,0c,, where 0 #0, serve equally well in the equation for H.

o Suppose that dy,ds,...,d, are also scalars such that
HZ{(Xl,...,Xn) : d0+d1X1+"'+ann=0}.

o Assume that ¢; #0, and let ay,...,a, be the points of H specified as
in the first part of the proof of the preceding theorem.
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o Substituting the coordinates of the a; into the above equation for H in
terms of the d's, we deduce that d; = g—ic,- for i=0,...,n.

o Since not all of dp,ds,...,d, can be zero, we deduce that d;, and
hence ‘C!—i, is not zero.

o Writing 6 = ﬂ, we find that dy =0cy,d1 =0cq, ..., d, =0cp.

<1
o Thus the hyperplane H determines the scalars ¢y, cy,...,c, to within a
common non-zero scalar multiple.
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o The importance of hyperplanes in R” is that they divide the whole
space into two halfspaces in a natural way.
. A line in R? with equation ax + by + ¢ =0 divides R? into
the two halfplanes determined by the inequalities ax + by + ¢ <0 and
ax+by+c=0.

o A hyperplane in R" with equation ¢g+ ¢y xg + -+ + ¢chx, =0 divides R”
into the two halfspaces determined by the inequalities

ctexitort+epxp <0 and co+cyixg+er+cpxy =0.

o Let ¢y, c,...,c, be scalars, where not all ¢, ...,c, are zero.
Then a set of either of the forms

{(X1,.-.,Xn) 1 Co+C1X1 + -+ Cnxp <0} or
{(x1,...,Xn) 1 Co+ C1X1 + -+ Cpxpn = 0}

is called a closed halfspace in R".
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o A set of either of the forms
{(x1,...,Xn) 1 Co+ C1x1+ -+ Cpxp <0} or
{(X1,.--»Xn) 1 Co+ C1X1 + -+ Cnxp > 0}

is called a open halfspace in R".

o If the scalars ¢y, cy,..., ¢, are replaced, respectively, by 8¢p,0cy,...,0c,,
for some 6 #0, then we obtain the same pair of closed halfspaces and
the same pair of open halfspaces, although the order of the halfspaces
is reversed when 6 < 0.

o Thus, if H is a hyperplane in R" with equation co+ c1x1 + -+ Cpxp =
0, then the above pair of closed halfspaces and the above pair of open
halfspaces are determined by H (independent of equation).

o Hence we may refer unambiguously to the closed halfspaces and the
open halfspaces determined by H.

o We say that the closed (open) halfspaces determined by H are
opposite to one another.
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o Any line through two points lying in opposite halfspaces determined by
a hyperplane in R"” meets the hyperplane.

o Suppose that the hyperplane H has equation ¢g+ cixg + -+ Chx, =0,
and that the points a=(ay,...,a,) and b= (by,..., by) lie in opposite
halfspaces determined by H.

o Omitting the trivial case when either of a or b lies on H,

c+car+-+cpapn=a<0 and c+cbi+---+cpb,=p>0.

o The points on the line L through a and b are precisely those points of
the form (Aa; +(1—-A)by,...,Aap+ (1 —A)by), where the scalar A
assumes all real values.

o We find, by substituting these coordinates into the equation of H, that
A= ﬁ% corresponds to the unique point of intersection of L and H.

o This value of A satisfies 0< A <1. So the portion of L lying, between
a and b, the so-called line segment joining a and b, meets H.
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Theorem

Let H and H' be hyperplanes in R"” with respective equations
co+cixy+- -+ Cpxp=0and ¢|+cix1 +--+cpx, =0. Then H and H' are
parallel if and only if there exists a scalar 6 such that ¢; =fcy, ..., ¢/, =0c,.

o Suppose first that H and H' are parallel, say H' = H + a, where
a=(a1,...,an). Then (x1,...,x,) € H if and only if

! ! !
g+ ey(xi+ar)+---+ci(xn+an)

! ! !/ ! !
=Cptcat o tcpantexy+ o +cxp=0.

Thus, by the above remarks on the representation of hyperplanes by
linear equations, there exists a 6, such that ¢; =fcy,...,c, =0cy.
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o Suppose next that ¢; =fcy,...,c), =6c,, where 6 is a (non-zero) scalar.

Then, for dy = %}3, H' is represented by the equation
do+cixy+---+cpxp=0.
Let b= (by,...,bp) satisfy
c1by+---+cpby=co—dp.
Then H' also has the equation
co+ci(x1—b1)+--+cn(xn—bp)=0.

Thus x =(x1,...,x,) € H if and only if x—be H.
Hence H' = H+b. This shows that H and H' are parallel.
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Corollary

Two parallel hyperplanes in R"” are either identical or disjoint. Two
non-parallel hyperplanes in IR" must meet.

o Let H and H' be parallel hyperplanes in R". Then they have
respective equations

+axi+-+cxp=0 and cg+Ocixg+--+0cux, =0,

say, where 6 is a non-zero scalar. If ¢} =6cp, then H and H' are
identical. Otherwise they are disjoint.
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o Let H and H' be non-parallel hyperplanes in R" having respective
equations

c+cxi++cpxp=0 and ¢{+cixi+-+cpxp=0.

Then there is no scalar 6 such that ¢{ =6cy,...,c, =0c,. It follows
that n=2. Suppose that ¢; #0. Then, for some j€ {2,...,n}, cJ’ # oG

say cy # %cz. It is easily verified that the point

/ ! / /
C0C2 - C()C2 C()C1 - C0C1

’ 0.7 / 0 =7
C1C2—C1C2 C1C2—C1C2

liesin HNH'. So H and H' meet.
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o A mapping T :RR" — R™ is called an affine transformation if
T(Ax+py)=AT(x)+puT(y) whenever x,y e R" and A +pu=1.

o A simple example of an affine transformation is the mapping
T :R3 — RR3 defined by the equation T(x,y,z)=(x,y,1).
Geometrically, T is the orthogonal projection of R3 onto the plane
with equation z=1.

o For each vector g€ R", the mapping T :RR" — R" defined by the
equation T(x)=x+q is an affine transformation called the
translation of R” through gq.
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o Clearly every linear transformation from R” to R™ is also an affine
one.

o That not every affine transformation from R” to R™ is linear, follows
from the observation that it need not map the zero vector of R" to
the zero vector of R™.

o See the two examples of affine transformations given above.

o The exact relationship between linear and affine transformations is
given in the following result.
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Let T:RR" — R™ be an affine transformation. Then T is linear if and only
if T(0)=0.

o In view of the remarks above, it will suffice to show that T is linear
when T(0)=0.
Suppose, then, that T(0)=0. Let x,y e R"” and A€ R. Then

TAx)=T(Ax+(1-12)0)=AT(x)+(1-A)T(0)=AT(x).
Using this last result, we deduce that

T(2(3x+3y))=2T (3x+3y)
2(3T(x)+3T(y) = T(x)+T(y).

T(x+y)

Thus T is linear.
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o In the following discussion, all vectors considered will be identified
with column vectors in the natural way.

Theorem

The affine transformations T : R"” — IR™ are precisely those mappings
T:R"— R™ which can be expressed in the form T(x)= Qx+ q, for some
real m x n matrix @ and some real mx 1 matrix q.

o It is easily verified that a mapping of the type under consideration is
an affine transformation.
Assume, then, that T :RR"” — R™ is an affine transformation. Let
T(0)=gq. Then the mapping T':R" — R™ defined by the equation
T'(x) = T(x)— q is readily shown to be an affine transformation with

T'(0) =0. The theorem shows that T’ is linear, whence there is a real
mx n matrix Q such that T'(x)=Qx. Thus T(x)=Qx+gq.
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o The affine transformation T :RR” — IR™ determines the matrices @
and g uniquely:
o The jth column of @ must be T(e;)— T(0);
s g must be T(0).
o The above representation of an affine transformation in terms of
matrices shows easily that, if T:R"” — R™ is an affine transformation,
ai,...,areR"and A1 +---+ A, =1, then

T(]Llal P ooo +7L,a,) = ﬂl T(al) I oo0 +/‘,r T(a,).
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Corollary

Let 7T:RR"” — R™ be an affine transformation and let A be a set in R".
Then T(affA) =aff T(A). If Ais a flat, then so too is T(A).

o A point x lies in T(affA) if and only if there exist ay,...,a, € A and
A1y..o, A with A7 +---+ A, =1 such that

x=T(AMai1+---+Aa)=MT(a1)+---+A,T(a,),

that is, if and only if x € aff T(A). Thus T(affA) =aff T(A).

If Ais a flat, then aff T(A) = T(affA) = T(A). This shows that T(A)
is a flat.
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o Consider an affine transformation T :RR"” — R" of R" into itself.

o By the theorem, there exist a real nx n matrix Q and a real nx 1
matrix g such that T(x)=Qx+q.

o The affine transformation T is said to be non-singular if the
determinant det@ of the matrix Q is non-zero, that is if Q has an
inverse, i.e., is non-singular.
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Theorem

Let 7:RR"” — R" be an affine transformation. Then T has an inverse if and
only if T is non-singular. When T is non-singular, its inverse
T-1:R"—R" is an affine transformation.

o Let Q be a real nx n matrix and q a real nx 1 matrix such that
T(x)=Qx+q for all x in R". Suppose first that Q is non-singular.
Then detQ is non-zero and Q has an inverse Q1. For each y in R”,
the equation T(x) =y has the unique solution x= Q@ 'y - Q'q.

It follows that T has an inverse, which is the affine transformation
T~1:R" — R" defined by the equation T-}(y)=Q 'y - Qq for y
in R".

Suppose next that det@ is zero. Then there exists a non-zero vector z
in R" such that Q(z) =0. Hence T(z)=T(0) and T is not injective.
Hence T has no inverse.
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Let {ao,...,a,}x and {by,...,b,}+ be affinely independent sets in R". Then
there exists a non-singular affine transformation 7 :R” — R" such that
T(a,-) = b,', for i:O,...,r.

o Extend the sets {ao,...,a,}z and {by,...,b,}+, respectively, to affine
bases {ag,...,a,} and {bg,...,b,} for R". Then each x in R" can be
written uniquely in the form x = Agag+---+Aya,, Ag+--+A,=1.

Define a mapping T :R"” — R" by the equation
T(X) =Aobg+---+ Anbp.

It is routine to verify that T is a bijective affine transformation. Hence
T is a non-singular affine transformation such that T(a;) = b;, for
i=0,...,r.
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Corollary

Let A and B be flats in R" of the same dimension. Then there is a
non-singular affine transformation T :R" — R" such that T(A)=B.

o If A and B are both empty, then T can be taken as the identity
mapping of R" onto itself.

Suppose, then, that A and B are non-empty and have affine bases
{ao,...,as}x and {by,..., b}, respectively.

Let T be as in the theorem. Then, by a previous corollary,

T(A) = T(aff{ao,...,a,}) = aff{bo,...,b,} = B.
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o Suppose that B is an r-dimensional flat (r = 1) in R" and that
A= aff{0,eq,...,e,}.

o Then A and B are flats of the same dimension.

o By the corollary, there exists a non-singular affine transformation
T:R"— R" such that T(A) =B.

o The flat A consists precisely of those points (xi,...,x,) for which
Xr+1=0, ..., x, =0.

o Hence A can be identified with R" by associating the point (xi,...,Xp)
of A with the point (xi,...,x,) of R".

o Under this identification T(R") = B.

o Thus every r-dimensional flat (r = 1) can be considered to be an affine
copy of R".

o This identification is often helpful when working with r-dimensional
sets in IR", for we may consider them as subsets of R" and make use
of the resulting algebraic simplification.
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Length, Distance and Angle
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o The inner product x -y of vectors x = (x1,...,x,) and y = (y1,
in R is the real number defined by the equation

Xy =X1y1 -+ +XnYn.

o The following properties of the inner product are immediate
consequences of its definition.
o For x,y,ze R" and A, ue R:
x-x=0, and x-x =0 if and only if x=0;
X-y=y-Xx;
(Ax+py)-z=Mx-2)+p(y - 2).
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o The norm or length | x| of a vector x =(xi,...,xp) in R" is the
non-negative real number defined by the equation

Ixl=vx-x, whence |Ix]l=1/x3++xz.

o The distance between points x = (x1,...,x,) and y = (y1,...,¥n) of R”
is the non-negative real number

1=yl =/ (= y1)2 4+ (0 = yn)2,

i.e., the length of the vector x—y, or y — x.
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o The norm of the zero vector is 0.

o The norm of each elementary vector e; is 1.

o In general, any vector in R" which has norm 1 is called a unit vector.

o The following properties of the norm are simple consequences of its
definition.

o For x,yeR" and A, ueR:

x| =0, and | x|| =0 if and only if x=0;
IAx] = [AllxI;
IAx + pyl? = A2[Ix11% + 2Aux -y + (2 lly 1.
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Let x,y € R". Then:
Ix-yl<lxlllyl (Cauchy-Schwarz Inequality);
Ix+yl<lxll+lyl (Triangle Inequality);
Hx =Nyl = llx—yl;
if, for some @ >0, |x+Ay| = || x|l whenever 0 <A < a, then x-y =0.

o We only prove (iv), since (i), (ii), and (iii) are standard results.
Let @ >0 be such that || x+ Ayl = || x|| whenever 0 <A < a. Then,
whenever 0 < A < a,

X112 < lIx+ Ayl = IIxI12 +2Ax -y + A2 y|I%.

Hence x-y + %Mlyll2 >0. Letting A — 0, in the last inequality, we
deduce that x-y = 0.

George Voutsadakis (LSSU) Convexity



The Euclidean Space R"

o The Cauchy-Schwarz inequality allows us to introduce the concept of
angle into R".

o The angle between non-zero vectors x and y of R" is the unique real
number 6 satisfying the conditions
Xy

i and 0=<0<m.
Iyl

cosf =

o This definition accords with the usual one of elementary geometry.

o The angle between x and y is called acute or obtuse according as
X -y Is positive or negative.

o Vectors x and y, whether zero or not, are said to be orthogonal if
x-y=0.
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o Consider a hyperplane H in R" with equation ¢y +ci1xy + -+ cpxp = 0.

o This equation can be written in the form ¢y +c-x =0, where c is the
non-zero vector (ci,...,¢) and x is (xi,...,%p).

o Such a vector c is said to be a normal vector to H.

o By the discussion on the representation of hyperplanes by means of
linear equations, it follows that the normal vectors of H are precisely
those vectors of the form Ac for some non-zero scalar A.

o Thus H has exactly two unit normal vectors, namely iﬁ.

o Hence, given any hyperplane H in R", it may be assumed that it has
an equation of the form ¢y +c-x =0, where c is a unit vector.
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o This concept of a normal vector generalizes the one familiar in
elementary geometry.

o Suppose that v and w lie in a hyperplane H in R" with equation
co+c-x=0. Then cg+c-v=0and qg+c-w=0. So c-(w—v)=0.

o This shows that c is orthogonal to every vector which is the difference
of two vectors in H.

C(w-v)=0
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o Let A be a subspace of R".

o Then the orthogonal complement Al of A is the set of all those
vectors in R” which are orthogonal to all the vectors in A, i.e.,

Al =ixeR":x-a=0, for all ae A}

o It follows easily from this definition that A+ is a subspace of R” which
intersects A in the set {0}.

o A standard result of linear algebra asserts that each vector of R"” can
be expressed uniquely in the form a+ b, where a€ A and be A+,

o Thus A+ At =R".
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o A sequence uy,...,u,, of vectors in R" is said to be an orthonormal
sequence if u;-u; is 1 or 0 according as i = or i #j.

o The simplest example of such a sequence is the sequence eq,..., e, of
elementary vectors in R".

@ In an orthonormal sequence, each term is a unit vector, each two
terms are orthogonal, and no two terms are the same.

o The terms of an orthonormal sequence uy,...,u,, in R" form a linearly
independent set {uq,...,umn}.
To see this, suppose that scalars A1,...,A,, are such that
Aur+--+Aqnum,=0. Then, fori=1,...,m,

ﬂ,‘z (/11u1+---+/1mum)-u,-:0-u,-:0.
This shows that {uy,...,un} is linearly independent.

o Hence {u1,...,uy} is an orthonormal basis for the subspace
lin{uy,...,umn} of R".
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o Thus each point x of lin{uy,...,un} can be written uniquely as a linear
combination of u,...,upm,, say

X=piuy+-+ U,
Then, for i=1,...,m,
x-ui=(pur+-+pUmum)-u; = ;.
We conclude that

x=(x-u)ug+--+(x-um)up.
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o A congruence transformation in elementary plane geometry is a
transformation of the plane which preserves distance.

o Examples of such transformations are reflections, rotations,
translations, and combinations of these.

o Algebraically, the congruence transformations of R? are precisely those
affine transformations T :IR? — IR? that can be expressed in the form

T(x)=Qx+aq,

where @ is a 2 x 2 orthogonal matrix and q is a 2 x 1 matrix.
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o A mapping T:RR"— R" is said to be a congruence transformation
of R" if
IT(x)-T(y)l=lx-yl, forall x,yeR",
i.e., T preserves distance.
o We use a superscript T to denote the transpose of a matrix or a vector.

o Thus, recalling that we identify a point x = (xi,...,x,) of R” with a

column vector in the natural way, we see that x x is the 1 x 1 matrix

whose single element is the scalar x2 +---+ x2.

o We identify this scalar with the matrix x T x itself, so that we may write

2_ 2 2 _
Ix[|©=x{ +---+x; =x X.
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o We now show that an affine transformation T :R" — R", which is
defined by an equation of the form T(x)= Qx+q, where Q is an
nx n orthogonal matrix and q is an nx 1 matrix, is a congruence
transformation of R".

o Let x,y € R". Then

IT(x)-T)I? = 1Q(x-y)I?
= (Q(x-y)"(Q(x-y))
= (x-y)'QTQ(x-y)
= (x-y)(x-y)
= lx-yl?

Hence | T(x)— T(y)Il =llx—yl. This shows that T is a congruence
transformation of R”".
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Let T:R" — R" be a congruence transformation of R"”. Then there exist
an nx n orthogonal matrix @ and an nx 1 matrix g such that
T(x)=Qx+gq, for all x in R".

o Let x,y e R". Define a mapping f : R” — R" by the equation

f(x)=T(x)—T(0). Since T preserves distance,

IO =1T(x)=T(0)Il=lx-0l = IlxI.
So f preserves norms.
Also
IF () = F)I2 = 1T () = T(y)I? = lIx —ylI2.
So
IF()IZ = 2f (x) - F(y) + I (y)I7 = Ix1% = 2x -y + Iyl
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o Since If(x)ll = lIx|l and [If(y)ll=llyll, we can deduce from the last
equation that f(x)-f(y)=x-y.

Thus, f preserves inner products.

It follows that f(e1),...,f(en) is an orthonormal sequence in R".
Hence

f(x) = (f(x)-f(e1))f(er) +---+(f(x)-f(en))f(en).

Writing x for (x1,...,xn) and Q for the n x n orthogonal matrix whose
columns are f(ej),...,f(e,), we deduce that

f(x)

(x-e1)f(e1)+---+(x-en)f(en)
xlf(e1)+---+x,,f(e,,)

= Qx.
The proof is completed by putting g = T(0).
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o We have thus identified the congruence transformations T :R" — R”
of R" as being precisely those affine transformations 7 :R" — R"
which can be expressed in the form T(x) = Qx+q, where Q is an
nx n orthogonal matrix and q is an nx 1 matrix.

o Sets A and B in R" are said to be congruent if there is a congruence
transformation T of R" such that T(A)=B.

o It is easy to verify that congruence is an equivalence relation on the
family of all subsets of R".

o In elementary geometry, any two points are congruent, any two lines
are congruent, and any two planes are congruent.
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Let A and B be r-flats in R". Then A and B are congruent.

o We consider the non-trivial cases when r>1.
First we show that the r-flat A is congruent to the r-flat R, defined by

the equation

R ={(x1,---,xr,0,...,0) : x1,...,x, € R}.
Let ac A. Then A—a is an r-dimensional subspace of R".
Let {uq,...,u,} be an orthonormal basis for R"” such that {uy,...,u,} is
an orthonormal basis for A—a. Define a congruence transformation T
of R" by the equation

T(x)=[uy,...,up]x+a.

Then T(R,)=A. So A and R, are congruent. Similarly, B and R, are
congruent. Thus A and B are congruent.
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o We now show how, given any r-dimensional set A in R" with
1<r<n,itis possible to find a congruent copy of A in the space R".

o Moreover, we show that any two such congruent copies of A in R are
themselves congruent to one another in R".

o Let A be an r-dimensional (1<r<n) set in R". Then affA is an
r-flat. So by the theorem, there is a congruence transformation of R”
which maps affA onto the r-flat

R ={(x1,---,x,0,...,0) : x1,...,x, € R}.

It follows that there is a set B in R,, which is congruent to A.
Let /: R, — R" be the mapping that identifies each point (xi,...,xr,
0,...,0) of R, with the point (xi,...,x,) of R". Then i(B) is a set
lying in R" which is a congruent copy of the set A in R".
o In general, there will be an infinite number of such copies. We now
see how any two of these copies of A are related.
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o Let /(B) and i(C) be congruent copies of A in R", where B and C are
congruent to A in R" and lie in R,.
Then there is a congruence transformation T of R” such that
T(B) = C, and which maps R, onto itself.
By considering the images of 0 and the elementary vectors ey, ..., e,
under T, it follows that T can be expressed in the form

]

L

where @ is an r x r orthogonal matrix, q is an r x 1 matrix, and 0
represents zero matrices of suitable shapes and sizes.

Denote by T, the congruence transformation of R" defined by the
equation T,(x)=Qx+q, where x =(x1,...,x,).

Then T,(i(B))=i(C). This shows that the congruent copies i(B) and
i(C) of Aiin R" are congruent to one another in R".
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Subsection 7

Open Sets and Closed Sets
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o Let aeR" and r>0.
o Then the open ball B(a;r) (closed ball B[a;r]) with center a and
radius r is the set of all points of R"” whose distance from a is less

than (less than or equal to) r, i.e.,
B(a;r)

Bla;r] = {xeR":lx—all<r}.

IxeR":|Ix—al <r};

o In R! the open (closed) ball with center a and radius r is the open
(closed) interval (a—r,a+r) ([a—r,a+r]).
o In R? open (closed) balls are referred to as open (closed) discs.
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o The balls B(0;1) and B[0;1] in R" are called, respectively, the open
unit ball and the closed unit ball.

o If we denote them, respectively, by V and U, then
V={xeR":|x|l<1} and U={xeR":|x|| <1}

o It follows that B(a;r)=a+rV and Bla;r]=a+rU.
o We adopt U as the standard notation for the closed unit ball.
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©

A point a of a set A in R" is said to be an interior point of A if it is
the center of some open ball which lies in A, i.e. if there exists some
r>0 such that B(a;r) < A.

o The set of interior points of A is called the interior of A and is
denoted by intA.

o Clearly intB cintA when B< A.

o A set in R", each of whose points is an interior point of the set, is
said to be open.

o Since intA< A is always true, A is open if and only if intA=A.
o Clearly the sets @ and R" are open.
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In R" open balls and open halfspaces are open, and hyperplanes have
empty interiors.

o Consider the open ball B(a;r), where ac R" and r>0. Let
x € B(a;r). We prove that B(a;r) is open by showing that
B(x;s) < B(a;r), where s is the positive number r—||x —all.

Let y € B(x;s). Then |ly — x|l <s.
So by the triangle inequality

ly—x+x—all
ly —xI+Illx—all
< s+|x—al=r.

Thus y € B(a;r). So B(x;s)< B(a;r).

ly—all

=
=
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o Consider the open halfspace A in R" which is defined by the inequality
co+c-x>0, where ¢ is a unit vector. Let a€ A. We prove that A is
open by showing that B(a;r) < A, where r is the positive number
co+c-a. Let ye B(a;r). Then |y —all <r. Moreover,

c+c-y=cq+c-a+c-(y-a)=r+c-(y—a)>0,

since, by the Cauchy-Schwarz Inequality, |c-(y —a)l<lly—al <r.
Thus y € A. So B(a;r) € A.

o Consider the hyperplane H in R"” with equation ¢y +c-x =0, where ¢
is a unit vector. We show that no point a of H is an interior point of
H. Let r>0. Then a+%rc¢H and ||a+%rc—a|| = %r. Therefore,
a+3rceB(a;r) and B(a;r) ¢ H. Hence, a is not an interior point of
H. So H has an empty interior.
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Properties of the Interior

Corollary
Let A be a set in R". Then intA is open and int(intA) = intA.

o If acintA, then there exists r >0 such that B(a;r) < A. Since B(a;r)
is open,
B(a;r)=int(B(a;r)) cintA.

Hence, a€int(intA). So intAcint(intA). Thus, intA is open and
int(intA) = intA.
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In R" every union and every finite intersection of open sets is open.

o Let A be the union of a family (A;:i€/) of open sets in R". If ae A,
then a€ A;, for some i € /. Since A; is open, there is an r >0 such
that B(a;r) < A;. Hence, B(a;r) < A. Thus, A is open.

o Let A be the intersection of the open sets Ay,...,An,, in R". If a€ A,
then a€ Ay,...,a€ A,,. Since Aq,...,Ap, are open, there exist
r,...,rm >0 such that B(a;r1) € Ay,...,B(a;rm) S Am. Let
r=min{r,...,rm}. Then r>0 and

B(a;r)cB(a;n)n---nB(a;rm) < Ain---nAn=A.
Thus A is open.
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o An arbitrary intersection of open sets in R" need not be open.

o To see this, we note that the intersection of the sequence

v.iviv.. 2

5V03 ...,;V,...

of open balls centered at the origin of R" is the singleton set {0},
which is not open.
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o A point a of R" is said to be a closure point of a set A in R" if
every open ball with center @ meets A, i.e., if for every r >0 the ball
B(a;r) meets A.

o The set of closure points of A is called the closure of A and is
denoted by clA.

o Clearly AcclA.

o Also cIB cclA whenever B € A.

o Roughly speaking, the closure of A is the set of all points in R” which
either lie in A or are arbitrarily close to A.

o Thus, in R! the closures of the intervals (0,1], (0,1), [0,1) are all
equal to the interval [0,1].

o In R? the closures of the discs B(a;r) and B|a;r] are both equal to
the disc Bla;r].
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©

A set in R"” each of whose closure points lies in the set is said to be
closed.

Thus a set A in R" is closed if and only if clA< A.

Since AcclA is always true, A is closed if and only if clA=A.
Clearly the sets @ and R" are closed.

Thus the sets @ and R" are both open and closed.

It can be shown that they are the only sets in R” with this property.

A set in R"” may be neither open nor closed.

¢ ¢ ¢ ¢ ¢ ¢ ¢

For example, in R! the interval [0,1) is such a set.
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o For each set A in R", we denote by A€ the complement of A in R",
i.e., the set R™\A.

Let A be a set in R". Then clA= (intA°)c.

o If xeclA, then each open ball with center x contains a point of A. So
x cannot belong to intA€, i.e., x € (intA°)c.
If x € (intA°), then each open ball with center x must contain a
point of A, i.e., xeclA.

Thus clA = (intA°)c.
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A set in R" is closed if and only if its complement in R" is open.

o Let A be a set in R". Suppose first that A is closed. Then clA=A. It
follows from a previous corollary and the preceding theorem that A€ is
the open set intA°. Suppose next that A€ is open. Then intA® = A€,
It follows from the theorem that clA=A, i.e., A is closed.

Corollary

Let A be a set in R". Then clA is closed and cl(clA) = clA.

o Now intA€ is open by a previous corollary. Hence by the theorem its
complement clA is closed.
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In R™ every intersection and every finite union of closed sets is closed.

o Let (Aj:i€l) be a family of closed sets in R". Then, for each i€/,
AS is open. By a previous theorem, U(AS: i€ /) is open. Hence

M(Aiziel)=(J(AF i€ )

is closed.

Now let Ay,...,Am be closed sets in R". Then A{,..., A5, are open.
By a previous theorem, A{n---NAf is open. Hence

Aru---UAR =(ATNn---NAL)
is closed.
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Closures and Unions

Corollary

Let Aq,...,An be sets in R". Then

cl(Au---UA,)=clAju---UclAp,.

o Since AjU---UA,, is contained in the closed set clA;u---UclAp,,
c(Aju---UA,) cclAyu---uclAp,.

Trivially,
cl(Aju---UA,)2clAyu---UclAp,.

Thus,
c(Aju---UAy)=clAju---uclApn,.
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In R" closed balls, closed halfspaces and flats are closed.

o Let A be the closed ball B[a;r|, where ae R" and r>0.
We prove that A€ is open. Let x € AS. Then we show that
B(x;s) < A, where s is the positive number |[x —al| —r.
Suppose that this is not the case. Then there is some point of A, y
say, which lies in B(x;s). Now

Ix—all=lx—y+y—all<s+r=|x-al,

which is impossible. Hence B(x;s) < A€.

A previous theorem shows that open halfspaces in R"” are open. Hence
their complements in R”, i.e., the closed halfspaces, are closed.

In R" each hyperplane is the intersection of two closed halfspaces. So
it is closed. By a previous corollary, each flat in R"” is an intersection
of hyperplanes. So it is closed.
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o A point a of R" is said to be a boundary point of a set A in R" if
every open ball with center a meets both A and its complement A€.

o The set of boundary points of A is called the boundary of A and is
denoted by bdA.

o Thus a boundary point of a set in R” is a point of R” which is
arbitrarily close both to the set and its complement.

o It follows from the preceding definitions that bdA = (clA) N (clA€).

o Hence the boundary of a set in R" is always closed, being the
intersection of two closed sets.
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©

A boundary point of a set in R"” may or may not belong to the set
itself.

©

For example, in R! the interval [0,1) contains its boundary point 0,
but not its boundary point 1.

©

For any set A in R”, the sets A and A€ have the same boundary.
Moreover, the sets intA, bdA, intA€ form a partition of R".

©

©

Open (closed) sets in R" are characterized by the property that they
contain none (all) of their boundary points.
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o The above definitions of the interior and the boundary of a set depend
upon the space in which the set is embedded.

o For example, a closed line segment in R? has an empty interior and is
its own boundary.

o The same line segment considered as a subset of R! has for its interior
the set of all of its points with the exception of its two boundary
points, these forming its boundary in R!.

o The latter interior and boundary, obtained by regarding the
one-dimensional line segment as a set in the one-dimensional space
R!, correspond to what may be thought of as the “intrinsic” interior
and boundary of the segment.
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o A point a of a set A in R” is said to be a relative interior point of A
if it is the center of some open ball whose intersection with affA is
contained in A, i.e., if there exists r >0 such that

B(a;r)naffAc A.

o The set of all relative interior points of A is called the relative
interior of A and is denoted by riA.

o The relative interior of an n-dimensional set in R" coincides with its
interior.

o The relative interior of any flat in R" is itself.
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o A point a of R" is said to be a relative boundary point of a set A in
R" if it lies in the closure of A but not in its relative interior.

o The set of all relative boundary points of A is called the relative
boundary of A and is denoted by rebdA.

o The relative boundary of an n-dimensional set in R"” coincides with its
boundary.
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o It is to be noted that while the inclusion B < A implies both
intB cintA and clB cclA, it does not in general imply riB CriA.

o For example, if B is one side of a square A in R?, then riB and riA are
non-empty but disjoint.

o If, however, B< A and dimB =dimA or, equivalently, aff B = aff A,
then riB criA.
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o Suppose that a is a point of a set A in R" and that x is a point of
affA not lying in A.

o Define a scalar Ag by the equation
Ado=sup{de[0,1]:(1-1)a+Ax €A}

o Then (1-Ag)a+ Apx is a relative boundary point of A lying between a
and x.

o It follows that flats are the only sets in R"” which have an empty
relative boundary.
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Subsection 8

Convergence and Compactness
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o In R" a sequence x1,...,X,... of points is said to converge to a
point x if |x, — x| — 0 as kK — oo, i.e., if the distance [ x) — x|
between x, and x tends to zero as k tends to infinity.

o We indicate such convergence by writing x;x — x as k — oo, or simply
X)— X.

o This convergence for sequences of points in R” coincides with that of
classical convergence for real sequences.
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o The inequality [|x]l = llylll < llx — y|l proven previously, shows that
Nx il = I < 1 x, —x]I.

Hence || x|l — IIx|| as k — oo whenever xx — x as k — co.

o The triangle inequality shows that
Ixi —x;ll < Ixi —xIl + 1 x — x;lI.

Hence ||x;— x| — 0 as i,j — oo whenever x, — x as k — oo.
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o Suppose that xx = (xk1,...,Xkn) for k=1,2,... and that x = (x1,...,x,).
o Then, for i=1,...,n, we have

Ixki = xi12 < (X1 = x1)% + -+ + (Xkn = xn)? = lIxk = x112.

o We also have

(Xkl _Xl)2 toeet (an _Xn)2
(IXk1 = x1| + -+ + [ X — Xnl) 2.

llxx — x1I2

IA

o Hence
[Xki = Xxil < 1%k = x| < Ixk1 —xal+ -+ |Xkn — Xnl.
o Thus, x, — x if and only if x,; — x;, for i=1,...,n.

o So the convergence of xi,...,Xk,... to (x1,...,%,) is equivalent to the
convergence of each of the coordinate sequences xqj,..., Xk, ... for
i=1,...,n.
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o A consequence of coordinate-wise convergence is that a sequence of
points in R" can converge to at most one point.

o Moreover, if x, — x, yy—y in R" and Ay — A, ux — p in R, then

Xk Ye—xy inkR;
AXk+ iy — Ax+py in R
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o We recall that a sequence x,...,Xxk,... of real numbers is said to be
bounded if there exists a real number r such that |x.| < r for
k=1,2,....

o Similarly, a sequence x1,...,X,... of points in R" is defined to be
bounded if there exists a real number r such that || x| < r for
k=1,2,....

o Every convergent sequence of real numbers is bounded, and the same
is also true for convergent sequences of points in R".

To see this, suppose that x; — x in R". By what we proved above,
Ixkll = lIx|l. So there exists a real number r such that | x| < r for
k=1,2,....
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o The next theorem generalizes to R" the classical result that every
bounded sequence of real numbers contains a convergent subsequence.

Every bounded sequence of points of R" contains a convergent
subsequence.

o Let x1,...,X,... be a bounded sequence of points in R". Then each
of the n coordinate sequences associated with x1,...,X,... is bounded
in R. In particular, the sequence of the first coordinates of
X1,...,k,... is a bounded sequence of real numbers. Thus there exists
a subsequence of x1,...,Xg,... such that the sequence of its first
coordinates converges. Similarly, there exists a subsequence of this
subsequence of x1,...,xy,... such that the sequence of its second
coordinates converges.
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o After performing this subsequence operation n times in all, we arrive
at a subsequence of x1,...,x,... each of whose n coordinate
sequences converges.

l.e., we have found a convergent subsequence of x1,...,Xy,....
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Let A be a set in R". Then x e clA if and only if there exists a sequence of
points of A which converges to x.

o Suppose first that x1,...,xx,... is a sequence of points of A which
converges to a point x of R". Then, for each r >0, there is some
point x, of the sequence such that | x, — x|| < r. Hence the open ball
B(x;r) meets A. This shows that x € clA.

Suppose next that x € clA. Then, for each positive integer k, the ball
B(x; %) meets A. Hence there exists x4 € A such that || x, — x| < % It
follows that x1,...,xy,... converges to x.
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Closed Sets in Terms of Sequences

Corollary

Let A be a set in R". Then A is closed if and only if each convergent
sequence of points of A converges to a point of A.

o The corollary follows from the theorem and the fact that A is closed if
and only if A=clA.
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o The set Ain R” is said to be bounded if there exists a real number r
such that |la] < r for all a€ A.

o Clearly, a set in R" is bounded if and only if each sequence of its
points is bounded.

o In R" balls and finite sets are bounded, whereas r-flats (r = 1) are not.

o A previous theorem and a corollary, taken together, show that each
sequence of points of a closed bounded set in R" contains some
subsequence which converges to a point of the set.

o A subset of R" is said to be compact, if each sequence of its points
contains some subsequence that converges to a point of the subset.

George Voutsadakis (LSSU) Convexity



The Euclidean Space R"

Let A be a set in R". Then A is compact if and only it it is both closed
and bounded.

o We know that closed bounded subsets of R" are compact.

Suppose, then, that A is compact. We show first that A is closed. If
x € clA, then, by a previous theorem, there is a sequence of points of
A which converges to x. Every subsequence of such a sequence also
converges to x. The compactness of A and the uniqueness of limits

show that x € A. Hence A is closed.

Suppose next that A is not bounded. Then, for each positive integer
k, there must exist a point x, of A such that || x| > k. The sequence
X1,...,Xf,... of points of A contains no bounded subsequence, and
hence no convergent subsequence, contrary to the hypothesis that A is
compact. Hence A is both closed and bounded.
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Let A be a non-empty compact set in R" and let r >0. Then there exists a
finite number of points ay,...,am of A such that

Ac B(ay;r)u---uB(am;r).

o We argue by contradiction. Suppose that no such finite number of
points of A exists. Let x; € A. Then AZ B(x1;r). Hence there exists
a point x5 of A such that x> —x1]=r. Now A¢_ B(x1;r)uB(x2;r).
Hence there exists a point x3 of A such that || x3—x1|l =r and
X3 —x2] = r. Continuing in this way, we produce a sequence
X1,...;Xk,... of points of A with the property that ||x; — x| =r
whenever | # j. Clearly such a sequence cannot contain a convergent
subsequence. This contradicts the compactness of A.
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Lemma
Let A be a compact set in R"” and let (U;:i€ /) be a family of open sets in
IR"™ whose union contains A. Then there exists r >0 such that, for each x
in A, the open ball B(x;r) is contained in some U;.

o We argue by contradiction. Suppose that no such r >0 exists.

Then, for each positive integer k, there is some point aj of A such
that B(ag; %) is not contained in any U;. Since A is compact, the
sequence ay,...,ay,... has a subsequence which converges to a point a
of A. This point @ must belong to one of the U;'s, U* say.
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o Since U* is open, there is an s >0 such that B(a;2s) < U*.

Since some subsequence of ay,...,ay,... converges to a, there are
infinitely many positive integers k for which |lay—al| <s.

o . . 1
Choose one of these positive integers, m say, so large that - <s.
Let x € B(am;L). Then

Ix—al<l|x—aml+llan—al <s+s=2s.

So x € B(a;2s). Thus B(am; 1)< B(a;2s) < U*. This contradicts the
assumption that B(am;X) is not contained in any U;.

George Voutsadakis (LSSU) Convexity



The Euclidean Space R"

Theorem
Let A be a compact set in R"” and let (U;:i€ /) be a family of open sets in
IR"™ whose union contains A. Then there exists a finite subset /* of | such
that the union of the family (U;: i€ /*) contains A.

o We may suppose that A is non-empty. By the lemma, there is an r >0
such that, for each x in A, the open ball B(x;r) is contained in some
U;. By the preceding theorem, there exist points ay,...,a, in A such
that

Ac B(ay;r)u---uB(am;r).

For each k=1,...,m, there exists iy € | such that B(ax;r) < U,,. We
complete the proof by taking /* to be the set {i1,...,im}.
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Corollary

Let (Aj:i€l) be a family of compact sets in R" whose intersection is
empty. Then there exists a finite subset /* of I such that the intersection
of the family (A;:i€l*) is empty.

o Let o€l and let Iy =/\{ig}. Then, since N(A;:i€l) is empty,
Ai, €U(AS i€ lp). By the theorem, which is applicable since the sets
AS are open, being the complements of closed sets in R", there is a
finite subset /" of Iy such that Aj; cU(AS:iel’). It follows that, if /*
denotes the finite subset /" U{ip} of /, then N(A;:i€l*) is empty.
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Corollary

Let A,...,Ag,... be a sequence of non-empty compact sets in R" such that
A12---2Ak2---. Then the intersection N(Ax: k=1,2,...) is non-empty.

o The intersection of any finite number of members of the family is itself
a member of the family. So it is non-empty.

Thus, the result follows from the preceding corollary.
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Let A and B be sets in R"” and let A,peR. Then AA+uB is:
open when A is open and A #0;

closed when A is compact and B is closed,;
bounded when A and B are bounded:

compact when A and B are compact.

Let A be open and let A #0. If xe AA+uB, then x = 1a+ ub for
some a€ A and be B. Since A is open, there is an r >0 such that
a+rV c A, where V is the open unit ball {xeR": | x| <1}. Thus

x+ArV=Aa+ub+ArV =A(a+rV)+ubc AA+puB.

This shows that B(x;|Alr) € AA+uB. Hence AA+ uB is open.
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Let A be compact and let B be closed. We consider only the
non-trivial case u#0. If x e cl(AA+ puB), then there exist sequences
ai,...,ay,... of points of A, and bs,...,by,... of points of B such that
Aay + uby — x as k — oo. Since A is compact, there is a subsequence
aj,...,aj,... of ai,...,a,... which converges to some point a of A.
Thus Aaj, +pub; — x and b;, — X_T’w as k —oo. But B is closed, and
so X_T’w € B. Hence x€ AA+uB. Thus x € cl(AA+ uB) implies that
x € AA+uB. This shows that AA+ uB is closed.

Let A and B be bounded. Then there exist real numbers r; and r>
such that ||all =, and ||b]| < r» whenever a€ A and be B. If

x € AA+ uB, then x = 1a+ ub for some a€ A and be B. Hence

IxIl = llAa+publ < |Allall +|pllbll < Al +|ulr.

This shows that LA+ uB is bounded.
This follows immediately from (ii) and (iii).
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Subsection 9

Continuity
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o Let f: A—R™ be a mapping, where A is a non-empty set in R".

o Then f is said to be continuous at a point a of A if, for each
sequence ay,...,ay,... of points of A that converges to a, the
sequence f(ajy),...,f(ag),... of points of R™ converges to f(a).

o If f is continuous at all points of A, then f is said to be continuous
on A.

o An important example of a continuous mapping is the norm mapping
[-Il : R" — R defined by the equation ||-[|(x) = x|l for each point x of
R".

That ||-|| is continuous follows immediately from the fact that
lakll — llall as kK — oo whenever a, — a as k — co.
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o A mapping f: A— R™ defined on a non-empty set A in R" is said to
satisfy a Lipschitz condition on A if there exists a real number s
such that, for all x,y € A,

I£(x)=f(y)ll <sllx—yl.

o If f: A— R™ satisfies the Lipschitz condition, then it is continuous on
A.
To see this, suppose that ay,...,ay,... is a sequence of points of A
that converges to a point a of A, so that ||lax—all — 0 as k — oo.
The Lipschitz condition shows that

If(ak)—f(a)ll <slax—all

Hence, |If(ax)—f(a)l — 0 as k — oo, i.e., the sequence
f(a1),...,f(ak),... converges to f(a).
Since f is continuous at an arbitrary a of A, f is continuous on A.
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o The norm mapping -]l : R” — R considered above satisfies the
Lipschitz condition.

o Every affine transformation 7 :R" — R satisfies a Lipschitz
condition on R".
Suppose that Q = [qj;] is the real m x n matrix and q the real mx1
matrix such that, for each vector x in R", considered as a column
vector, T(x)=Qx+q. Let x,y e R". Write u=(uy,...,up)=x-y.
By the Cauchy-Schwarz inequality, for i=1,...,m,

(Gintn + -+ Qintin)® < (5 + -+ + G2 ) (UF +++-+ 13).

Setting s = , /27;121’7:1 qi we get

IT(x)-T(y)I? 1Qull> = X" (qiruy + -+ + qintn)?
(g% + e+ g5 ) (U + -+ u3)
s2|ul?.

NI
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o The distance function dy :R" — R of a non-empty set A in R”
satisfies a Lipschitz condition.

o This function dp associates with each point x of R" its distance
da(x) from A.

o Formally, dj is defined by the equation
da(x)=inf{lx—all:a€A}, for xeR".

o If Ais the singleton set {a}, then da(x) =[x —all.
o In particular, if @a=0, then da(x) = IIx|.

o It follows from the definition of d4 and a previous theorem that a
point x of IR" lies in the closure clA of A if and only if its distance
da(x) from A is zero.
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©

Suppose now that x,y lie in R".

©

Then, for each £ >0, there exists a in A such that ||x —all < da(x) +€.

©

By the triangle inequality,

da(y)<ly-al<ly-xl+lx—al<ly-xl|+da(x)+e.

©

Since £ >0 is arbitrary, da(y) < lly — x|l + da(x).

©

Interchanging x and y in this inequality, da(x) < lx—yl +da(y).

©

Hence d4 satisfies the Lipschitz condition

lda(x) —da(y)l < lIx -yl

©

It follows that d4 is continuous on R".
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REETE

o In general, the inf in the definition of ds cannot be replaced by min.
o To see this, suppose that A is the set R"\{0}.
Then da(0) =0, but there is no a€ A such that [|0—all =0.
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Let A be a non-empty closed set in R"” and let x € R"”. Then there exists
agp € A such that da(x) =Illx—aoll.

o It follows easily from the definition of da(x) that there exists a
sequence aj,...,ay,... of points of A such that [ x —axll — da(x) as
k — oco. Since convergent sequences in R are bounded, there exists a
real number r such that | x—axll <r for k=1,2,.... We have

lakll < llak — x|l + x|l < r+ x|, for k=1,2,....

So the sequence ay,...,ay,... is bounded. Hence it contains some
subsequence aj,,...,a;,... which converges to a point ag of R". Since
Ais closed, ape A. Now [x—a; |l — [ x —aoll as k — co. But we
already know that |x —a;, | — da(x) as k — oco. The uniqueness of
limits in R shows that da(x)=lx—aoll.

o The point ag is called a nearest point of A to x.

George Voutsadakis (LSSU) Convexity



The Euclidean Space R"

Let f: A— R" be a continuous mapping, where A is a non-empty compact
set in R". Then f(A) is a compact set in R".

o Let f(ai1),...,f(ak),... be a sequence of points of f(A), where
ai,...,ag,... is a sequence of points of A.

Since A is compact, there is a subsequence aj,...,a;,... of
ai,...,ay,... which converges to some point a of A.

By the continuity of f, the subsequence f(aj),...,f(aj),... of
f(a1),...,f(ak),... converges to the point f(a) of f(A).

Thus f(A) is compact.
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o Recall from elementary analysis that a continuous function
f:[a b]— R is bounded and attains its bounds.

Corollary

Let f: A— IR be a continuous mapping, where A is a non-empty compact
set in R". Then there exist a,b € A such that

f(a)=inf{f(x):x€ A} and f(b)=sup{f(x):xeB}.

o The theorem shows that the non-empty set f(A) = {f(x): x € A} of
real numbers is compact, and therefore closed and bounded. Thus
f(A) possesses both an infimum and supremum. Moreover, the
infimum and supremum of f(A) belong to clf(A). Hence, since f(A)
is closed, they belong to f(A). So there exist a,b € A such that
f(a)=inff(A) and f(b) =supf(A).
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Let A and B be non-empty sets in R"” with A closed and B compact. Then
there exist ag € A, bg € B such that

lag— bgll =inf{|la—b|:ac A be B}.

o The distance function d4 of A is continuous on R". So, by restriction,
it is continuous on B. By the corollary, applicable since B is compact,
there exists by € B such that da(bg) =inf{da(b): be B}. By a
previous theorem, applicable since A is closed, there exists ag € A such
that da(bg) = llbp — aoll. For each a€ A, be B, we have

lla—bll = da(b) = da(bo) = llao — boll.

Since ap € A, bo € B, ||ao—bo|| = inf{lla—bll :aEA,bE B}
o We refer to ag and bg as nearest points of A and B.
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o Recall that if a real function is both continuous and positive at some
point, then it is positive at all points of its domain sufficiently close to
that point.

Let the mapping f : A— IR be both continuous and positive at some point
a of a set Ain R". Then there exists an r> 0 such that f(x) >0 whenever
xe B(a;r)nA.

o Suppose that the stated conclusion does not hold. Then, for each
k=1,2,... there exists ay € B(a; %)OA such that f(a,) <0. Since f is
continuous at a and ax — a as k — oo, f(ay) — f(a) as k — oco.
Because f(ax) <0 for k=1,2,..., it follows that f(a) <0. This
contradiction establishes the theorem.
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o Recall that a continuous function of a continuous function is itself

continuous.

Theorem
Let f: A—R™ and g: B — RP be continuous mappings, where A and B
are, respectively, non-empty sets in R” and R such that f(A) < B. Then
the composite mapping gof : A— RRP is continuous.

o Let ay,...,ay,... be a sequence of points of A that converges to a
point a of A. Since f is continuous, the sequence of points
f(a1),...,f(a),... of B converges to the point f(a) of B. Since g is
continuous, the sequence g(f(a1)),...,g(f(ax)),... converges to
g(f(a)), i.e., the sequence (gof)(ai),...,(gof)(ak),... converges to
(gof)(a). This shows that gof is continuous.
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Let f:R" — R™ be a continuous mapping and let B be a closed (open)
subset of R™. Then f~1(B) is closed (open).

o Suppose first that B is closed. Let ay,...,a,... be a sequence of
points of f~1(B) that converges to a point a of R". The continuity of
f shows that the sequence of points f(ay),...,f(ax),... of B
converges to the point f(a) of R”. But B is closed. So f(a)€ B, i.e.,
ae f~1(B). This shows that f~1(B) is closed.

Suppose next that B is open. Then the complement B¢ of B in R™ is
closed. Hence, by what has just been proved, f=1(B¢) is closed in R".
Thus, the complement f~1(B) = (f~1(B¢))¢ in R" is open.
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