# Introduction to Convexity 

## George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

## (1) The Euclidean Space $\mathbb{R}^{n}$

- The Euclidean Space $\mathbb{R}^{n}$
- Flats
- Dimension
- Hyperplanes
- Affine Transformations
- Length, Distance and Angle
- Open Sets and Closed Sets
- Convergence and Compactness
- Continuity


## Subsection 1

## The Euclidean Space $\mathbb{R}^{n}$

## Vector Space Operations in $\mathbb{R}^{3}$

- In three-dimensional coordinate geometry a point or vector is determined by its coordinates $x, y, z$ relative to some rectangular coordinate system.
- We identify the point or vector with the ordered triple $(x, y, z)$.
- Vectors are added together according to a parallelogram law, which is equivalent to the addition of corresponding coordinates.
- The word scalar is used as a synonym for real number.
- The product of a scalar and a vector is equivalent to the multiplication of each coordinate of the vector by the scalar.
- Thus, if $(x, y, z)$ and $(u, v, w)$ are vectors, and $\lambda$ is a scalar, then

$$
\begin{aligned}
(x, y, z)+(u, v, w) & =(x+u, y+v, z+w) ; \\
\lambda(x, y, z) & =(\lambda x, \lambda y, \lambda z) .
\end{aligned}
$$

- These equations can be extended in the natural way to define vector addition and scalar multiplication of real $n$-tuples.


## Euclidean Space $\mathbb{R}^{n}$

- For each positive integer $n$, denote by $\mathbb{R}^{n}$ the set of all $n$-tuples $\left(x_{1}, \ldots, x_{n}\right)$ of real numbers.
- Then $\mathbb{R}^{n}$ is called the $n$-dimensional Euclidean space.
- Each element $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ of $\mathbb{R}^{n}$ is called a point or vector of $\mathbb{R}^{n}$ and the real numbers $x_{1}, \ldots, x_{n}$ are called the coordinates of $\boldsymbol{x}$.
- For $n=1$, we identify the 1 -tuple $\boldsymbol{x}=\left(x_{1}\right)$ with the real number $x_{1}$ itself, so that $\mathbb{R}^{1}$ becomes simply $\mathbb{R}$, the set of real numbers.
- For $n=1,2,3$, we often write $x,(x, y),(x, y, z)$ instead of $\left(x_{1}\right)$, $\left(x_{1}, x_{2}\right),\left(x_{1}, x_{2}, x_{3}\right)$.
- Geometrically, $\mathbb{R}^{1}$ can be thought of as a line, $\mathbb{R}^{2}$ as a plane, and $\mathbb{R}^{3}$ as the set of points in space.
- Lower case Roman letters such as $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ will denote points of $\mathbb{R}^{n}$, lower case Roman and Greek letters such as $x, y, z, \lambda, \mu, v$ will denote scalars, and capital Roman letters such as $A, B, C$ will denote subsets of $\mathbb{R}^{n}$.


## Addition and Scalar Multiplication

- Addition and scalar multiplication in $\mathbb{R}^{n}$ are defined coordinatewise.
- Thus, if $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)$, and $\lambda$ is a scalar, then

$$
\boldsymbol{x}+\boldsymbol{y}=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) \quad \text { and } \quad \lambda \boldsymbol{x}=\left(\lambda x_{1}, \ldots, \lambda x_{n}\right) .
$$

- The vector $(0, \ldots, 0)$ of $\mathbb{R}^{n}$, all of whose coordinates are 0 , is denoted by 0 and is called the zero vector or origin of $\mathbb{R}^{n}$.
- The vector in $\mathbb{R}^{n}$ whose only non-zero coordinate is a 1 in the $i$ th position is denoted by $\boldsymbol{e}_{i}$ and is called the $i$ th elementary vector.
- A point of $\mathbb{R}^{n}$ all of whose coordinates are integers is called a lattice point.
- The vector $(-1) \boldsymbol{x}$ is written simply as $-\boldsymbol{x}$.
- Vector subtraction is defined by the rule $\boldsymbol{x}-\boldsymbol{y}=\boldsymbol{x}+(-1) \boldsymbol{y}$.
- It is sometimes convenient to write $\frac{\boldsymbol{x}}{\lambda}$ for $\frac{1}{\lambda} \boldsymbol{x}$.


## $\mathbb{R}^{n}$ as a Real Vector Space

- The set $\mathbb{R}^{n}$, equipped with the above operations of vector addition and scalar multiplication, is a real vector space.
- This means that, if $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^{n}$ and $\lambda, \mu \in \mathbb{R}$, then the following relations hold:
(i) $\boldsymbol{x}+\boldsymbol{y}=\boldsymbol{y}+\boldsymbol{x}$;
(ii) $\boldsymbol{x}+(\boldsymbol{y}+\boldsymbol{z})=(\boldsymbol{x}+\boldsymbol{y})+\boldsymbol{z}$;
(iii) $\boldsymbol{x}+\mathbf{0}=\boldsymbol{x}$;
(iv) $\boldsymbol{x}+(-\boldsymbol{x})=\mathbf{0}$;
(v) $\boldsymbol{1 x}=\boldsymbol{x}$;
(vi) $\boldsymbol{\lambda}(\mu \boldsymbol{x})=(\lambda \mu) \boldsymbol{x}$;
(vii) $\lambda(\boldsymbol{x}+\boldsymbol{y})=\lambda \boldsymbol{x}+\lambda \boldsymbol{y}$;
(viii) $(\lambda+\mu) \boldsymbol{x}=\lambda \boldsymbol{x}+\mu \boldsymbol{x}$.


## Extending Operations on Sets

- We extend the operations of vector addition and scalar multiplication to subsets of $\mathbb{R}^{n}$ by defining:

$$
A+B=\{\boldsymbol{a}+\boldsymbol{b}: \boldsymbol{a} \in A, \boldsymbol{b} \in B\} \quad \text { and } \quad \lambda A=\{\lambda \boldsymbol{a}: \boldsymbol{a} \in A\},
$$

where $A, B \subseteq \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$.

- The set $A+B$ is called the vector sum of $A$ and $B$.
- It follows from the above definitions that both sets $A+B$ and $\lambda A$ are empty when $A$ is empty.
- We write $-A$ for the set $(-1) A$, and $A-B$ for the set $A+(-B)$.
- It is sometimes convenient to write $\frac{A}{\lambda}$ for $\frac{1}{\lambda} A$.


## Symmetric Sets

- The set $A$ in $\mathbb{R}^{n}$ is said to be 0 -symmetric, or simply symmetric, if $-A=A$.
- Geometrically, $A$ is symmetric if it is its own reflection in the origin.
- Examples of symmetric sets in $\mathbb{R}^{2}$ are:
- ellipses centered at the origin;
- parallelograms with centers at the origin;
- lines through the origin;
- $\mathbb{R}^{2}$ itself.


## Translates

- The set $\{\boldsymbol{a}\}+B$, where $\boldsymbol{a} \in \mathbb{R}^{n}$, is often written as $\boldsymbol{a}+B$ and is called a translate of $B$ or, more precisely, the translate of $B$ by $a$.
- It is an easy exercise in set theory to show that

$$
A+B=\bigcup(\boldsymbol{a}+B: \mathbf{a} \in A)
$$

i.e., $A+B$ is the union of all translates of $B$ by vectors $\boldsymbol{a}$ in $A$.

- This result can help us to visualize $A+B$ in simple cases.


## Example

- Suppose that $A$ and $B$ are the square and the circular disc in $\mathbb{R}^{2}$ defined by the equations

$$
A=\{(x, y):|x|,|y| \leq 1\}, \quad B=\left\{(x, y): x^{2}+y^{2} \leq 1\right\} .
$$

- Then $\boldsymbol{a}+B$ is the circular disc with center $\boldsymbol{a}$ and radius 1 ;
- $A+B$ is the union of all such discs for $\boldsymbol{a} \in A$.





## Caution with Set Operations

- Vector addition and scalar multiplication, when applied to sets in $\mathbb{R}^{n}$, do not have all the properties one might expect, and the reader is warned to be cautious.
- For example, it is not always true that $A+A=2 A$.

To see this, let $A$ consist of distinct points $\boldsymbol{a}$ and $\boldsymbol{b}$ in $\mathbb{R}^{n}$.
Then $A+A=\{2 \boldsymbol{a}, 2 \boldsymbol{b}, \boldsymbol{a}+\boldsymbol{b}\}$, whereas $2 A=\{2 \boldsymbol{a}, 2 \boldsymbol{b}\}$.

## Properties of Set Operations

- Properties (i)-(viii) above do, however, partially generalize to give the following easily verified results:

$$
\begin{aligned}
& \text { (i)* } A+B=B+A ; \\
& \text { (ii)* } A+(B+C)=(A+B)+C ; \\
& \text { (iii)* } A+\mathbf{0}=A ; \\
& \text { (iv)* } \mathbf{0} \in A+(-A) \text { when } A \neq \varnothing ; \\
& (\text { (v)* } 1 A=A ; \\
& (\text { vi)* } \lambda(\mu A)=(\lambda \mu) A ; \\
& (\text { vii } \\
& \text { (viii } \\
& \text { (vi }^{*} \\
& (\lambda(A+B)=\lambda A+\lambda B ; \\
& (\lambda+\mu A+\mu A .
\end{aligned}
$$

## Subsection 2

## Flats

## Equation of a Line in $\mathbb{R}^{3}$

- For each point $\boldsymbol{x}$ on the line through distinct points $\boldsymbol{a}$ and $\boldsymbol{b}$ of $\mathbb{R}^{3}$, there exists a unique scalar $\lambda$ such that

$$
\begin{aligned}
\boldsymbol{x} & =\boldsymbol{b}+\lambda(\boldsymbol{a}-\boldsymbol{b}) \\
& =\lambda \boldsymbol{a}+(1-\lambda) \boldsymbol{b} .
\end{aligned}
$$



- Conversely, each point $\boldsymbol{x}$ of this form lies on the line through $\boldsymbol{a}$ and $\boldsymbol{b}$.
- Thus the line through $\boldsymbol{a}$ and $\boldsymbol{b}$ is the set $\{\lambda \boldsymbol{a}+(1-\lambda) \boldsymbol{b}: \lambda \in \mathbb{R}\}$, which can also be written in the symmetrical form $\{\boldsymbol{\lambda} \boldsymbol{a}+\mu \boldsymbol{b}: \lambda+\mu=1\}$.
- We note that the subset

$$
\{\lambda \boldsymbol{a}+(1-\lambda) \boldsymbol{b}: 0 \leq \lambda \leq 1\}=\{\lambda \boldsymbol{a}+\mu \boldsymbol{b}: \lambda, \mu \geq 0, \lambda+\mu=1\}
$$

of the line through $\boldsymbol{a}$ and $\boldsymbol{b}$ is the line segment joining $\boldsymbol{a}$ and $\boldsymbol{b}$.

- The line through distinct points $\boldsymbol{a}$ and $\boldsymbol{b}$ of $\mathbb{R}^{n}$ is the set $\{\lambda \boldsymbol{a}+\mu \boldsymbol{b}: \lambda+\mu=1\}$.
- Clearly this set contains both $\boldsymbol{a}$ and $\boldsymbol{b}$, and its points can be placed into a bijective correspondence with the points of the real line $\mathbb{R}$ itself.
- The set $A$ in $\mathbb{R}^{n}$ is called a flat if whenever it contains two points, it also contains the entire line through them.
- Expressed algebraically, $A$ is a flat if $\lambda \boldsymbol{a}+\mu \boldsymbol{b} \in A$ whenever $\boldsymbol{a}, \boldsymbol{b} \in A$ and $\lambda+\mu=1$.
- Equivalently, $A$ is a flat if $\lambda A+\mu A \subseteq A$ whenever $\lambda+\mu=1$.
- Synonyms for flat used by other authors are: affine set, affine variety, affine manifold, linear variety, and linear manifold.
- The empty set, singletons, lines, and $\mathbb{R}^{n}$ itself are examples of flats in $\mathbb{R}^{n}$. Planes are flats in $\mathbb{R}^{3}$.


## Flats Containing the Origin

- Let $A$ be a flat in $\mathbb{R}^{n}$ which contains the origin.
- Suppose that $\boldsymbol{a}, \boldsymbol{b} \in A$ and $\lambda \in \mathbb{R}$.
- Since $A$ is a flat and $\boldsymbol{a}, \mathbf{0} \in A, \lambda \boldsymbol{a}+(1-\lambda) 0 \in A$, i.e., $\lambda \boldsymbol{a} \in A$. Thus $A$ is closed under scalar multiplication.
- Since $A$ is a flat and $\boldsymbol{a}, \boldsymbol{b} \in A, \frac{1}{2} \boldsymbol{a}+\frac{1}{2} \boldsymbol{b} \in A$. But $A$ is closed under scalar multiplication. So $2\left(\frac{1}{2} \boldsymbol{a}+\frac{1}{2} \boldsymbol{b}\right) \in A$, i.e., $\boldsymbol{a}+\boldsymbol{b} \in A$. Thus $A$ is closed under addition.
- Hence $A$ is a non-empty subset of $\mathbb{R}^{n}$ which is closed under addition and scalar multiplication, i.e., $A$ is a subspace of the real vector space $\mathbb{R}^{n}$.
- Trivially, a subspace of $\mathbb{R}^{n}$ is a flat containing the origin.
- We have shown that flats through the origin in $\mathbb{R}^{n}$ are precisely the subspaces of $\mathbb{R}^{n}$.


## Relation Between Flats and Subspaces

## Theorem

The non-empty flats in $\mathbb{R}^{n}$ are precisely the translates of subspaces of $\mathbb{R}^{n}$.

- Suppose first that $A$ is a non-empty flat in $\mathbb{R}^{n}$. Let $\boldsymbol{a} \in A$. We show that $A-\boldsymbol{a}$ is a flat. Let $\boldsymbol{x}, \boldsymbol{y} \in A-\boldsymbol{a}$ and $\lambda+\mu=1$. Then $\boldsymbol{x}+\boldsymbol{a}, \boldsymbol{y}+\boldsymbol{a} \in A$. So

$$
\lambda(x+a)+\mu(y+a)=\lambda x+\mu y+a \in A
$$

Thus, $\lambda \boldsymbol{x}+\mu \boldsymbol{y} \in A-\boldsymbol{a}$, and $A-\boldsymbol{a}$ is a flat.
Since $A$ - a contains the origin, it must be a subspace of $\mathbb{R}^{n}$. Hence the non-empty flat $A$ is the translate of the subspace $A$ - a of $\mathbb{R}^{n}$ by the vector $\boldsymbol{a}$.

## Relation Between Flats and Subspaces (Cont'd)

- Suppose next that $A$ is a subspace of $\mathbb{R}^{n}$ and that $\boldsymbol{u} \in \mathbb{R}^{n}$. We show that $A+\boldsymbol{u}$ is a flat. Let $\boldsymbol{x}, \boldsymbol{y} \in A+\boldsymbol{u}$ and $\lambda+\mu=1$. Then there exist $\boldsymbol{a}, \boldsymbol{b} \in A$ such that $\boldsymbol{x}=\boldsymbol{a}+\boldsymbol{u}, \boldsymbol{y}=\boldsymbol{b}+\boldsymbol{u}$. So

$$
\lambda \boldsymbol{x}+\mu \boldsymbol{y}=\lambda \boldsymbol{a}+\mu \boldsymbol{b}+\boldsymbol{u} \in A+\boldsymbol{u}
$$

since $\lambda \boldsymbol{a}+\mu \boldsymbol{b} \in A$, as $A$ is a subspace of $\mathbb{R}^{n}$.
This shows that $A+\boldsymbol{u}$ is a flat.

## Uniqueness of Subspace

## Corollary

Each non-empty flat in $\mathbb{R}^{n}$ is the translate of precisely one subspace of $\mathbb{R}^{n}$.

- Let $A$ be a non-empty flat in $\mathbb{R}^{n}$. Suppose that $A$ is a translate of both the subspaces $B$ and $C$ of $\mathbb{R}^{n}$. Then $C$ must be a translate of $B$. So there exists $\boldsymbol{b} \in \mathbb{R}^{n}$ such that $C=B+\boldsymbol{b}$. Since 0 lies in $C$, it follows that $-\boldsymbol{b}$, and hence $\boldsymbol{b}$, lies in $B$. Thus $C=B+\boldsymbol{b} \subseteq B$. By symmetry, $B \subseteq C$. Hence $B=C$, and $A$ is the translate of precisely one subspace of $\mathbb{R}^{n}$.


## Parallel Flats

- The observation that two (distinct) lines in $\mathbb{R}^{2}$ are parallel if and only if one is a translate of the other prompts the following definition.
- In $\mathbb{R}^{n}$ a flat $A$ is said to be parallel to a flat $B$ if each is a translate of the other.
- The relation of parallelism is an equivalence relation on the family of all flats in $\mathbb{R}^{n}$.
- This notion of parallelism does not quite accord with that used in elementary geometry on two counts:
- Firstly, a flat is considered to be parallel to itself.
- Secondly, it only allows parallelism between flats of the same dimension. For example, we cannot speak of a line being parallel to a plane.
- The preceding corollary shows that each non-empty flat in $\mathbb{R}^{n}$ is parallel to precisely one subspace of $\mathbb{R}^{n}$.


## Closure Under Intersections

## Theorem

The intersection of an arbitrary family of flats in $\mathbb{R}^{n}$ is a flat.

- Let $\left(A_{i}: i \in I\right)$ be a family of flats in $\mathbb{R}^{n}$.

Let $\boldsymbol{a}, \boldsymbol{b} \in \cap\left(A_{i}: i \in I\right)$ and $\lambda+\mu=1$.
Then $\boldsymbol{a}, \boldsymbol{b} \in A_{i}$. As $A_{i}$ is a flat, $\lambda \boldsymbol{a}+\mu \boldsymbol{b} \in A_{i}$, for each $i \in I$.
Thus, $\lambda \boldsymbol{a}+\mu \boldsymbol{b} \in \cap\left(A_{i}: i \in I\right)$.
This shows that the intersection is a flat.

## Affine Hull

- The affine hull aff $A$ of a set $A$ in $\mathbb{R}^{n}$ is the intersection of all flats in $\mathbb{R}^{n}$ containing $A$.
- Such flats exist, since $\mathbb{R}^{n}$ is a flat containing $A$.
- In view of the preceding theorem, $\operatorname{aff} A$ is a flat which contains $A$.
- Moreover, if $B$ is any flat in $\mathbb{R}^{n}$ containing $A$, then aff $A \subseteq B$.
- Thus, we may refer to aff $A$ as the smallest flat in $\mathbb{R}^{n}$ containing $A$.
- Clearly, $A$ is a flat if and only if $A=\operatorname{aff} A$.
- Moreover, $\operatorname{aff}(\operatorname{aff} A)=\operatorname{aff} A$.
- Another easy result is that, if $A \subseteq B$, then aff $A \subseteq \operatorname{aff} B$.


## Affine Hull in $\mathbb{R}^{3}$

- In the space $\mathbb{R}^{3}$ :
- The affine hull of two distinct points is the line through them;
- The affine hull of three non-collinear points is the plane which they determine;
- The affine hull of four non-coplanar points is the whole space $\mathbb{R}^{3}$ itself.


## Generalized Flat Relation

- By definition, a set $A$ in $\mathbb{R}^{n}$ is a flat if $\lambda \boldsymbol{a}+\mu \boldsymbol{b} \in A$ whenever $\boldsymbol{a}, \boldsymbol{b} \in A$ and $\lambda+\mu=1$.
- This defining relation of a flat implies a more general one, as we now establish in the following fundamental theorem.


## Theorem

Let $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ be points of a flat $A$ in $\mathbb{R}^{n}$. Let $\lambda_{1}+\cdots+\lambda_{m}=1$. Then $\lambda_{1} a_{1}+\cdots+\lambda_{m} a_{m} \in A$.

- Let $\boldsymbol{a} \in A$. Then the points $\boldsymbol{a}_{1}-\boldsymbol{a}, \ldots, \boldsymbol{a}_{m}-\boldsymbol{a}$ lie in the subspace $A-\boldsymbol{a}$ of $\mathbb{R}^{n}$, whence so too does the point

$$
\lambda_{1}\left(\boldsymbol{a}_{1}-\boldsymbol{a}\right)+\cdots+\lambda_{m}\left(\boldsymbol{a}_{m}-\boldsymbol{a}\right)=\lambda_{1} \boldsymbol{a}_{1}+\cdots+\lambda_{m} \boldsymbol{a}_{m}-\boldsymbol{a}
$$

Hence $\lambda_{1} \boldsymbol{a}_{1}+\cdots+\lambda_{m} \boldsymbol{a}_{m} \in A$.

## Affine Combinations and the Affine Hull

- A point $\boldsymbol{x}$ is said to be an affine combination of points $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ in $\mathbb{R}^{n}$ if there exist scalars $\lambda_{1}, \ldots, \lambda_{m}$ with $\lambda_{1}+\cdots+\lambda_{m}=1$ such that

$$
\boldsymbol{x}=\lambda_{1} \mathbf{a}_{1}+\cdots+\lambda_{m} \boldsymbol{a}_{m}
$$

- The preceding theorem can now be expressed as: Every affine combination of points of a flat in $\mathbb{R}^{n}$ belongs to that flat.
- The affine hull of a set was defined by means of flats containing that set.
- The following theorem expresses the affine hull of a set in terms of points of the set itself.


## Theorem

Let $A$ be a set in $\mathbb{R}^{n}$. Then aff $A$ is the set of all affine combinations of points of $A$.

## Proof

- Denote by $B$ the set of all affine combinations of points of $A$.

That $B \subseteq \operatorname{aff} A$ follows from the preceding theorem and the inclusion $A \subseteq \operatorname{aff} A$.
We next show that $B$ is a flat. If $\boldsymbol{x}, \boldsymbol{y} \in B$, then $\boldsymbol{x}=\lambda_{1} \boldsymbol{a}_{1}+\cdots+\lambda_{m} \boldsymbol{a}_{m}$,
$\boldsymbol{y}=\mu_{1} \boldsymbol{b}_{1}+\cdots+\mu_{p} \boldsymbol{b}_{p}$, for some $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}, \boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{p} \in A$, and scalars $\lambda_{1}, \ldots, \lambda_{m}, \mu_{1}, \ldots, \mu_{p}$ with $\lambda_{1}+\cdots+\lambda_{m}=1, \mu_{1}+\cdots+\mu_{p}=1$. Let $\lambda+\mu=1$. Then

$$
\lambda \boldsymbol{x}+\mu \boldsymbol{y}=\lambda \lambda_{1} \boldsymbol{a}_{1}+\cdots+\lambda \lambda_{m} \boldsymbol{a}_{m}+\mu \mu_{1} \boldsymbol{b}_{1}+\cdots+\mu \mu_{p} \boldsymbol{b}_{p}
$$

and

$$
\begin{aligned}
& \lambda \lambda_{1}+\cdots+\lambda \lambda_{m}+\mu \mu_{1}+\cdots+\mu \mu_{p} \\
& =\lambda\left(\lambda_{1}+\cdots+\lambda_{m}\right)+\mu\left(\mu_{1}+\cdots+\mu_{p}\right) \\
& =\lambda+\mu=1 .
\end{aligned}
$$

Thus $\lambda \boldsymbol{x}+\mu \boldsymbol{y} \in B$. So $B$ is a flat. Since $B$ is a flat and $B \supseteq A$, it follows that $B \supseteq \operatorname{aff} A$. Hence $B=\operatorname{aff} A$.

## Example

## Corollary

Let $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m} \in \mathbb{R}^{n}$. Then

$$
\operatorname{aff}\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}=\left\{\lambda_{1} \boldsymbol{a}_{1}+\cdots+\lambda_{m} \boldsymbol{a}_{m}: \lambda_{1}+\cdots+\lambda_{m}=1\right\} .
$$

Example: Each point $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ of $\mathbb{R}^{n}$ can be expressed as an affine combination of the zero vector $\mathbf{0}$ and the elementary vectors $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}$ as follows:

$$
\boldsymbol{x}=\left(1-x_{1}-\cdots-x_{n}\right) \mathbf{0}+x_{1} \boldsymbol{e}_{1}+\cdots+x_{n} \boldsymbol{e}_{n}
$$

The corollary now shows that $\operatorname{aff}\left\{0, \boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right\}=\mathbb{R}^{n}$.

## Linear Hull

- Let $A$ be a non-empty set in $\mathbb{R}^{n}$.
- We recall that a point of the form $\lambda_{1} a_{1}+\cdots+\lambda_{m} a_{m}$, where $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m} \in A$ and $\lambda_{1}, \ldots, \lambda_{m}$ are scalars, is said to be a linear combination of points of $A$.
- The set of all such linear combinations is the smallest subspace of $\mathbb{R}^{n}$ which contains $A$, and is called here the linear hull of $A$ and we denote it by $\operatorname{lin} A$.
- Since $\operatorname{lin} A$ is a flat containing $A \cup\{0\}$, it follows that $\operatorname{aff}(A \cup\{0\}) \subseteq \operatorname{lin} A$.
- On the other hand, $\operatorname{aff}(A \cup\{\mathbf{0}\})$ is a subspace of $\mathbb{R}^{n}$ containing $A$, so $\operatorname{lin} A \subseteq \operatorname{aff}(A \cup\{0\})$.
- We conclude that $\operatorname{lin} A=\operatorname{aff}(A \cup\{\mathbf{0}\})$.
- We define lin $\varnothing=\{\mathbf{0}\}$.
- This ensures that lin $\varnothing$ is the smallest subspace of $\mathbb{R}^{n}$ which contains $\varnothing$, and that $\operatorname{lin} \varnothing=\operatorname{aff}(\varnothing \cup\{\mathbf{0}\})$.


## Addition and Scalar Multiplication

- We conclude the section by examining how flats behave with respect to the operations of addition and scalar multiplication.


## Theorem

Let $A, B$ be flats in $\mathbb{R}^{n}$ and let $\alpha$ be a scalar. Then $A+B$ and $\alpha A$ are flats.

- Let $\lambda+\mu=1$. Since $A$ and $B$ are flats, $\lambda A+\mu A \subseteq A$ and $\lambda B+\mu B \subseteq B$. Thus,

$$
\begin{aligned}
& \lambda(A+B)+\mu(A+B)=(\lambda A+\mu A)+(\lambda B+\mu B) \subseteq A+B ; \\
& \lambda(\alpha A)+\mu(\alpha A)=\alpha(\lambda A+\mu A) \subseteq \alpha A
\end{aligned}
$$

This shows that $A+B$ and $\alpha A$ are flats.

## Corollary

Let $A_{1}, \ldots, A_{m}$ be flats in $\mathbb{R}^{n}$ and let $\lambda_{1}, \ldots, \lambda_{m}$ be scalars. Then $\lambda_{1} A_{1}+\cdots+\lambda_{m} A_{m}$ is a flat.

## Scalar Distributivity

- We saw in the last section that it is not in general true that $A+A=2 A$.
- It is true, however, when $A$ is a flat.


## Theorem

Let $A$ be a flat in $\mathbb{R}^{n}$ and let $\lambda_{1}, \ldots, \lambda_{m}$ be scalars with $\lambda_{1}+\cdots+\lambda_{m} \neq 0$. Then

$$
\left(\lambda_{1}+\cdots+\lambda_{m}\right) A=\lambda_{1} A+\cdots+\lambda_{m} A
$$

- Write $\lambda=\lambda_{1}+\cdots+\lambda_{m}$. Then, using a previous theorem, we deduce that

$$
\begin{aligned}
\left(\lambda_{1}+\cdots+\lambda_{m}\right) A & \subseteq \lambda_{1} A+\cdots+\lambda_{m} A \\
& =\lambda\left(\frac{\lambda_{1}}{\lambda} A+\cdots+\frac{\lambda_{m}}{\lambda} A\right) \\
& \subseteq \lambda A \\
& =\left(\lambda_{1}+\cdots+\lambda_{m}\right) A .
\end{aligned}
$$

Thus $\left(\lambda_{1}+\cdots+\lambda_{m}\right) A=\lambda_{1} A+\cdots+\lambda_{m} A$.

## Subsection 3

## Dimension

## Affine Dependence

- The set $A$ in $\mathbb{R}^{n}$ is said to be affinely dependent if there exists $\boldsymbol{a} \in A$ such that $\boldsymbol{a} \in \operatorname{aff}(A \backslash\{\boldsymbol{a}\})$.
- Thus in $\mathbb{R}^{3}$ :
- A set of three points is affinely dependent if and only if it is collinear;
- A set of four points is affinely dependent if and only if it is coplanar;
- Any set having more than four points is affinely dependent.


## Affine Independence

- A set in $\mathbb{R}^{n}$ which is not affinely dependent is said to be affinely independent.
- $\ln \mathbb{R}^{3}$ :
- A set of three points is affinely independent precisely when it is the vertex set of a non-degenerate triangle;
- A set of four points is affinely independent precisely when it is the vertex set of a non-degenerate tetrahedron.
- In $\mathbb{R}^{n}$, the empty set, every singleton, and every set consisting of two points are affinely independent.
- Since any set in $\mathbb{R}^{n}$ which contains an affinely dependent set is itself affinely dependent, it follows that every subset of an affinely independent set is affinely independent.


## Criterion for Affine Dependence

## Theorem

Let $A$ be a set in $\mathbb{R}^{n}$. Then $A$ is affinely dependent if and only if there exist distinct points $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ of $A$ and scalars $\lambda_{1}, \ldots, \lambda_{m}$, not all zero, such that

$$
\lambda_{1} \boldsymbol{a}_{1}+\cdots+\lambda_{m} \boldsymbol{a}_{m}=\mathbf{0} \quad \text { and } \quad \lambda_{1}+\cdots+\lambda_{m}=0
$$

- Suppose that $A$ is affinely dependent. Then there exists $\boldsymbol{a}_{1} \in A$ such that $\boldsymbol{a}_{1} \in \operatorname{aff}\left(A \backslash\left\{\boldsymbol{a}_{1}\right\}\right)$. By a previous theorem, there exist (distinct) points $\boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{m}$ of $A \backslash\left\{\boldsymbol{a}_{1}\right\}$ and scalars $\mu_{2}, \ldots, \mu_{m}$, such that $\boldsymbol{a}_{1}=\mu_{2} \boldsymbol{a}_{2}+\cdots+\mu_{m} \boldsymbol{a}_{m}$ and $\mu_{2}+\cdots+\mu_{m}=1$. Write $\lambda_{1}=-1, \lambda_{2}=\mu_{2}$, $\ldots, \lambda_{m}=\mu_{m}$. Then $\lambda_{1}, \ldots, \lambda_{m}$ are not all zero and satisfy the conclusion.


## Criterion for Affine Dependence (Cont'd)

- Suppose next that there exist distinct points $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ of $A$, and scalars $\lambda_{1}, \ldots, \lambda_{m}$, not all zero, which satisfy the hypothesis.
Suppose that $\lambda_{1} \neq 0$. Then

$$
\boldsymbol{a}_{1}=-\frac{1}{\lambda_{1}}\left(\lambda_{2} \boldsymbol{a}_{2}+\cdots+\lambda_{m} \boldsymbol{a}_{m}\right) \quad \text { and } \quad-\frac{1}{\lambda_{1}}\left(\lambda_{2}+\cdots+\lambda_{m}\right)=1,
$$

which shows that $\boldsymbol{a}_{1}$ is an affine combination of $\boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{m}$. Hence $\boldsymbol{a}_{1} \in \operatorname{aff}\left\{\boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{m}\right\} \subseteq \operatorname{aff}\left(A \backslash\left\{\boldsymbol{a}_{1}\right\}\right)$. So $A$ is affinely dependent.

## Corollary

A subset $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}$ of $\mathbb{R}^{n}$ is affinely dependent if and only if there exist scalars $\lambda_{1}, \ldots, \lambda_{m}$, not all zero, such that

$$
\lambda_{1} \boldsymbol{a}_{1}+\cdots+\lambda_{m} \boldsymbol{a}_{m}=\mathbf{0} \quad \text { and } \quad \lambda_{1}+\cdots+\lambda_{m}=0
$$

## Uniqueness

## Corollary

Let $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}$ be an affinely independent set in $\mathbb{R}^{n}$. Then each point of aff $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}$ can be expressed uniquely in the form

$$
\lambda_{1} \boldsymbol{a}_{1}+\cdots+\lambda_{m} \boldsymbol{a}_{m}, \quad \text { where } \quad \lambda_{1}+\cdots+\lambda_{m}=1
$$

- A previous corollary shows that each point of aff $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}$ can be expressed in the desired form.

To establish the uniqueness, suppose that

$$
\begin{gathered}
\lambda_{1} \boldsymbol{a}_{1}+\cdots+\lambda_{m} \boldsymbol{a}_{m}=\mu_{1} \boldsymbol{a}_{1}+\cdots+\mu_{m} \boldsymbol{a}_{m} \\
\lambda_{1}+\cdots+\lambda_{m}=\mu_{1}+\cdots+\mu_{m}=1
\end{gathered}
$$

## Uniqueness (Cont'd)

- Then

$$
\left(\lambda_{1}-\mu_{1}\right) \boldsymbol{a}_{1}+\cdots+\left(\lambda_{m}-\mu_{m}\right) \boldsymbol{a}_{m}=\mathbf{0}
$$

with $\left(\lambda_{1}-\mu_{1}\right)+\cdots+\left(\lambda_{m}-\mu_{m}\right)=0$.
Since $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}_{\neq}$is affinely independent, the preceding corollary shows that the scalars $\lambda_{1}-\mu_{1}, \ldots, \lambda_{m}-\mu_{m}$ must be zero.
Thus $\lambda_{1}=\mu_{1}, \ldots, \lambda_{m}=\mu_{m}$, and the uniqueness is established.

## Cardinality of Affinely Independent Sets

- We mentioned that any set of more than four points in $\mathbb{R}^{3}$ is affinely dependent.


## Corollary

An affinely independent set in $\mathbb{R}^{n}$ cannot contain more than $n+1$ points.

- It suffices to show that every set of the form $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}_{\neq}$in $\mathbb{R}^{n}$, where $m>n+1$, is affinely dependent. Let $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}_{\neq}$be a set in $\mathbb{R}^{n}$, where $m>n+1$. Then the system of the $n+1$ linear simultaneous equations

$$
\lambda_{1} \boldsymbol{a}_{1}+\cdots+\lambda_{m} \boldsymbol{a}_{m}=\mathbf{0}, \quad \lambda_{1}+\cdots+\lambda_{m}=0
$$

in the $m$ unknowns $\lambda_{1}, \ldots, \lambda_{m}$ is homogeneous. Since $m>n+1$, it has a non-trivial solution. Hence, $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\} \neq$, is affinely dependent by a previous corollary.

## Affine Hull and Affine Independence

## Corollary

Let $A$ be an affinely independent subset of $\mathbb{R}^{n}$. Suppose that $\boldsymbol{a}$ is a point of $\mathbb{R}^{n}$ not lying in aff $A$. Then the set $A \cup\{\boldsymbol{a}\}$ is affinely independent.

- We argue by contradiction. Suppose that $A \cup\{\boldsymbol{a}\}$ is affinely dependent. Then there exist distinct points $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ of $A$ and scalars $\lambda, \lambda_{1}, \ldots, \lambda_{m}$, not all zero, such that $\lambda \boldsymbol{a}+\lambda_{1} \boldsymbol{a}_{1}+\cdots+\lambda_{m} \boldsymbol{a}_{m}=\mathbf{0}$ and $\lambda+\lambda_{1}+\cdots+\lambda_{m}=0$. The scalar $\lambda$ cannot be zero, for then $A$ is affinely dependent. Thus the equation can be used to express $\boldsymbol{a}$ as an affine combination of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$. So $\boldsymbol{a} \in \operatorname{aff}\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}$. This, however, contradicts the hypothesis that $\boldsymbol{a} \notin \operatorname{aff} A$. Hence $A \cup\{\boldsymbol{a}\}$ is affinely independent.


## Example

- $\ln \mathbb{R}^{n}$ the set $\left\{\mathbf{0}, \boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right\}$ is affinely independent.
- To see this, suppose that the scalars $\lambda, \lambda_{1}, \ldots, \lambda_{n}$ satisfy

$$
\lambda 0+\lambda_{1} \boldsymbol{e}_{1}+\cdots+\lambda_{n} \boldsymbol{e}_{n}=\mathbf{0} \quad \text { and } \quad \lambda+\lambda_{1}+\cdots+\lambda_{n}=0 .
$$

The first of these equations shows that $\lambda_{1}, \ldots, \lambda_{n}$ are all zero. Hence $\lambda$ must also be zero from the second equation.
The corollary now shows that the set $\left\{\mathbf{0}, \boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right\}$ is affinely independent.

- $\ln \mathbb{R}^{3}$ as a simple case-by-case consideration shows, each $r$-dimensional flat ( $r=0,1,2,3$ ) is the affine hull of some affinely independent set of $r+1$ points.
- For example, a plane is the affine hull of any three of its points which are not collinear.
- Previous examples show that $\mathbb{R}^{3}$ is the affine hull of the affinely independent set $\left\{\mathbf{0}, \boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$.
- This suggests that we might assign a dimension $r$ to a flat in $\mathbb{R}^{n}$ if it is the affine hull of some affinely independent set of $r+1$ points.
- Before we can formalize this idea, however, two results need to be established:
(i) Every flat in $\mathbb{R}^{n}$ is the affine hull of some finite affinely independent set;
(ii) If two affinely independent sets in $\mathbb{R}^{n}$ have the same affine hull, then they have the same number of elements.


## Dimension Theorem

## Theorem

Every flat in $\mathbb{R}^{n}$ is the affine hull of some finite affinely independent subset of $\mathbb{R}^{n}$. Moreover, the number of elements in such a subset is determined uniquely by the flat itself.

- Consider the non-trivial case of a flat $A$ in $\mathbb{R}^{n}$ which is neither empty nor a singleton. Let $m$ be the largest positive integer such that $A$ contains an affinely independent subset of $m+1$ elements. Such an $m$ exists by a previous corollary, and $m \geq 1$, since $A$ contains at least two points. Let $\left\{\boldsymbol{a}_{0}, \boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}$ be an affinely independent subset of $A$. Since $A$ is a flat, aff $\left\{\boldsymbol{a}_{0}, \boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\} \subseteq A$. Now $A \subseteq \operatorname{aff}\left\{\boldsymbol{a}_{0}, \boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}$, for otherwise there would exist some point $\boldsymbol{a}$ of $A$ not lying in aff $\left\{\boldsymbol{a}_{0}, \boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}$ and, by a previous corollary, $\left\{\boldsymbol{a}, \boldsymbol{a}_{0}, \boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}$ would be an affinely independent subset of $A$ having $m+2$ elements, so contradicting the definition of $m$. Hence $A=\operatorname{aff}\left\{\boldsymbol{a}_{0}, \boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}$.


## Dimension Theorem (Cont'd)

- We now complete the proof by showing that $m$ is the dimension of the unique subspace $B$ of $\mathbb{R}^{n}$ that is parallel to $A$.
This we do by proving that the subset $\left\{\boldsymbol{a}_{1}-\boldsymbol{a}_{0}, \ldots, \boldsymbol{a}_{m}-\boldsymbol{a}_{0}\right\}$ of $B$ is a basis for $B$. Let $\boldsymbol{b} \in B$. Then $\boldsymbol{b}=\boldsymbol{x}-\boldsymbol{a}_{0}$ for some $\boldsymbol{x} \in A$. Thus, there exist scalars $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{m}$ such that

$$
\boldsymbol{x}=\lambda_{0} \boldsymbol{a}_{0}+\lambda_{1} \boldsymbol{a}_{1}+\cdots+\lambda_{m} \boldsymbol{a}_{m}
$$

and $\lambda_{0}+\lambda_{1}+\cdots+\lambda_{m}=1$. Hence,

$$
\boldsymbol{b}=\boldsymbol{x}-\boldsymbol{a}_{0}=\lambda_{1}\left(\boldsymbol{a}_{1}-\boldsymbol{a}_{0}\right)+\cdots+\lambda_{m}\left(\boldsymbol{a}_{m}-\boldsymbol{a}_{0}\right) .
$$

This shows that $\left\{\boldsymbol{a}_{1}-\boldsymbol{a}_{0}, \ldots, \boldsymbol{a}_{m}-\boldsymbol{a}_{0}\right\}$ spans $B$.

## Dimension Theorem (Cont'd)

- Finally, suppose that $\mu_{1}, \ldots, \mu_{m}$ satisfy

$$
\mu_{1}\left(\boldsymbol{a}_{1}-\boldsymbol{a}_{0}\right)+\cdots+\mu_{m}\left(\boldsymbol{a}_{m}-\boldsymbol{a}_{0}\right)=\mathbf{0}
$$

Then

$$
\begin{gathered}
-\left(\mu_{1}+\cdots+\mu_{m}\right) \boldsymbol{a}_{0}+\mu_{1} \boldsymbol{a}_{1}+\cdots+\mu_{m} \boldsymbol{a}_{m}=\mathbf{0} \\
-\left(\mu_{1}+\cdots+\mu_{m}\right)+\mu_{1}+\cdots+\mu_{m}=0
\end{gathered}
$$

But $\left\{\boldsymbol{a}_{0}, \boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}_{\neq}$is affinely independent. So all of $\mu_{1}, \ldots, \mu_{m}$ are zero. Thus $\left\{\boldsymbol{a}_{1}-\boldsymbol{a}_{0}, \ldots, \boldsymbol{a}_{m}-\boldsymbol{a}_{0}\right\}$ is linearly independent. We conclude that $\left\{\boldsymbol{a}_{1}-\boldsymbol{a}_{0}, \ldots, \boldsymbol{a}_{m}-\boldsymbol{a}_{0}\right\}$ is a basis for $B$.
Hence, $m$ is the dimension of $B$, and so is uniquely determined by $A$.

## Dimension of Flats

- A flat in $\mathbb{R}^{n}$ which is the affine hull of some affinely independent set of $r+1$ points is said to have dimension $r$ and is called an $r$-flat.
- It follows from the theorem that each flat in $\mathbb{R}^{n}$ has a unique dimension $r$ attached to it, and from a previous corollary that $r \leq n$.
- The empty flat is the affine hull of the (affinely independent) empty set, and so has dimension -1.
- Clearly every singleton (point) has dimension 0 and every line has dimension 1.
- We have already seen that $\mathbb{R}^{n}$ is the affine hull of the affinely independent set $\left\{0, \boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right\}$, whence $\mathbb{R}^{n}$ has dimension $n$.


## Dimension of Subsets

- The concept of dimension is extended to arbitrary subsets of $\mathbb{R}^{n}$ by defining the dimension $\operatorname{dim} A$ of a set $A$ in $\mathbb{R}^{n}$ to be the dimension of the flat aff $A$.
- We note that when a flat in $\mathbb{R}^{n}$ is also a subspace of $\mathbb{R}^{n}$ its dimension as defined above coincides with its dimension as a subspace of the real vector space $\mathbb{R}^{n}$.
- Hence we may apply the term dimension unambiguously both to flats and subspaces of $\mathbb{R}^{n}$.


## Dimension Equation

## Theorem

Let $A$ and $B$ be flats in $\mathbb{R}^{n}$ which have a non-empty intersection. Then

$$
\operatorname{dim}(A+B)+\operatorname{dim}(A \cap B)=\operatorname{dim} A+\operatorname{dim} B .
$$

- Let $\boldsymbol{c} \in A \cap B$. Then $A-\boldsymbol{c}$ and $B-\boldsymbol{c}$ are subspaces of $\mathbb{R}^{n}$. So, by the dimension theorem of elementary linear algebra, $\operatorname{dim}((A-\boldsymbol{c})+(B-\boldsymbol{c}))+\operatorname{dim}((A-\boldsymbol{c}) \cap(B-\boldsymbol{c}))=\operatorname{dim}(A-\boldsymbol{c})+\operatorname{dim}(B-\boldsymbol{c})$, that is, $\operatorname{dim}(A+B-2 \boldsymbol{c})+\operatorname{dim}((A \cap B)-\boldsymbol{c})=\operatorname{dim}(A-\boldsymbol{c})+\operatorname{dim}(B-\boldsymbol{c})$. The proof of the preceding theorem shows that the dimension of a non-empty flat in $\mathbb{R}^{n}$ coincides with the dimension of the unique subspace of $\mathbb{R}^{n}$ which is parallel to it. It follows from this last result that the dimension of any translate of a flat is the same as the dimension of the flat itself. Thus, the last equation above simplifies to $\operatorname{dim}(A+B)+\operatorname{dim}(A \cap B)=\operatorname{dim} A+\operatorname{dim} B$.


## Affine Bases

- An affine basis for a flat in $\mathbb{R}^{n}$ is any affinely independent set in $\mathbb{R}^{n}$ whose affine hull is that flat.
- A previous theorem shows that every flat has an affine basis.
- By definition, every affine basis for an $r$-flat has precisely $r+1$ elements.
Example: $\left\{\mathbf{0}, \boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right\}$ is an affine basis for $\mathbb{R}^{n}$.
- The next result shows that every affinely independent subset of a set in $\mathbb{R}^{n}$ can be extended to an affine basis for the affine hull of the set.


## Extension to an Affine Basis

## Theorem

Let $B$ be an affinely independent subset of a set $A$ in $\mathbb{R}^{n}$. Then there exists an affine basis for aff $A$ that lies in $A$ and contains $B$.

- Consider the non-empty family $\mathscr{F}$ of all affinely independent subsets of $A$ which contain $B$. Since no affinely independent set in $\mathbb{R}^{n}$ contains more than $n+1$ points, there must exist some member $C$ of $\mathscr{F}$ that is not properly contained in any other member of $\mathscr{F}$. Since $C$ is a subset of $A$, we have $\operatorname{aff} C \subseteq \operatorname{aff} A$. We claim that aff $C=\operatorname{aff} A$.
Suppose that aff $C \subset \operatorname{aff} A$. Since aff $A$ is the smallest flat containing $A$, we cannot have $A \subseteq \operatorname{aff} C$, whence there exists some point $\boldsymbol{a}$ of $A$ not lying in aff $C$. We can now use a previous corollary to deduce that $C \cup\{\boldsymbol{a}\}$ is a member of $\mathscr{F}$ which properly contains $C$. This contradicts the choice of $C$. Thus aff $C=\operatorname{aff} A$ and $C$ is an affine basis of aff $A$.


## Barycentric Coordinates

## Corollary

Let $A$ be a subset of $\mathbb{R}^{n}$. Then $A$ contains an affine basis for aff $A$.

- Let $\left\{\boldsymbol{a}_{0}, \ldots, \boldsymbol{a}_{r}\right\}$ be an affine basis for a non-empty $r$-flat $A$ in $\mathbb{R}^{n}$.
- Then, by a previous corollary, each point $\boldsymbol{x}$ of $A$ can be expressed uniquely in the form

$$
\boldsymbol{x}=\lambda_{0} \boldsymbol{a}_{0}+\cdots+\lambda_{r} \boldsymbol{a}_{r}, \quad \text { where } \quad \lambda_{0}+\cdots+\lambda_{r}=1
$$

- The scalars $\lambda_{0}, \ldots, \lambda_{r}$ are called the barycentric coordinates of $\boldsymbol{x}$ relative to (the ordered affine basis) $\boldsymbol{a}_{0}, \ldots, \boldsymbol{a}_{r}$.
- A previous example shows that the barycentric coordinates of a point $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ of $\mathbb{R}^{n}$ relative to $0, \boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}$ are $1-x_{1}-\cdots-x_{n}$, $x_{1}, \ldots, x_{n}$.


## Scalars of Point Relative to Affine Basis

## Theorem

Let $\left\{\mathbf{a}_{0}, \ldots, \boldsymbol{a}_{r}\right\}$ be an affine basis for a non-empty $r$-flat $A$ in $\mathbb{R}^{n}$. Let $\lambda_{0}, \ldots, \lambda_{r}$ be the barycentric coordinates of a point $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ of $A$ relative to $\boldsymbol{a}_{0}, \ldots, \boldsymbol{a}_{r}$. Then there exist scalars $a_{i j}(i=0, \ldots, r, j=0, \ldots, n)$ such that, for $i=0, \ldots, r$,

$$
\lambda_{i}=a_{i 0}+a_{i 1} x_{1}+\cdots+a_{i n} x_{n} .
$$

- Extend, if necessary, $\left\{\mathbf{a}_{0}, \ldots, \boldsymbol{a}_{r}\right\}$ to an affine basis $\left\{\mathbf{a}_{0}, \ldots, \boldsymbol{a}_{n}\right\}$ for $\mathbb{R}^{n}$. Each point $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ of $\mathbb{R}^{n}$ can be written uniquely in the form

$$
\boldsymbol{x}=\lambda_{0} a_{0}+\cdots+\lambda_{n} a_{n}, \quad \text { where } \quad \lambda_{0}+\cdots+\lambda_{n}=1 .
$$

In particular, each of the points $\mathbf{0}, \boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}$ can be so expressed.
Write $\boldsymbol{e}_{0}=\mathbf{0}$.

## Scalars of Point (Cont'd)

- Then there are scalars $b_{i j}(i=0, \ldots, n ; j=0, \ldots, n)$ such that, for $i=0, \ldots, n$,

$$
\boldsymbol{e}_{i}=b_{0 i} \boldsymbol{a}_{0}+\cdots+b_{n i} \boldsymbol{a}_{n} \quad \text { and } \quad b_{0 i}+\cdots+b_{n i}=1
$$

Write $\boldsymbol{x}=\left(1-x_{1}-\cdots-x_{n}\right) \boldsymbol{e}_{0}+x_{1} \boldsymbol{e}_{1}+\cdots+x_{n} \boldsymbol{e}_{n}$.
Then $\boldsymbol{x}=\mu_{0} \boldsymbol{a}_{0}+\cdots+\mu_{n} \boldsymbol{a}_{n}$, where, for $i=0, \ldots, n$,

$$
\mu_{i}=b_{i 0}\left(1-x_{1}-\cdots-x_{n}\right)+b_{i 1} x_{1}+\cdots+b_{i n} x_{n} .
$$

A routine verification shows that $\mu_{0}+\cdots+\mu_{n}=1$.
Since the representation of $\boldsymbol{x}$ in this form is unique, we can deduce that $\lambda_{i}=\mu_{i}$, for $i=0, \ldots, n$.
We complete the proof by putting $a_{i 0}=b_{i 0}$ for $i=0, \ldots, n$, and $a_{i j}=b_{i j}-b_{i 0}(i=0, \ldots, n, j=1, \ldots, n)$, and noting that $\boldsymbol{x} \in A$ if and only if $\lambda_{r+1}=0, \ldots, \lambda_{n}=0$.

## Non-Meetings 1-Flats

## Theorem

Let $L$ and $M$ be two lines that lie in a 2 -flat $A$ of $\mathbb{R}^{n}$ and which do not meet. Then $L$ and $M$ are parallel.

- Let $\boldsymbol{a}, \boldsymbol{b}$ be distinct points of $L$, and let $\boldsymbol{c}, \boldsymbol{d}$ be distinct points of $M$. Since $\{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\}$ is affinely independent, it will form an affine basis for $A$. Thus $\boldsymbol{d}=\alpha \boldsymbol{a}+\beta \boldsymbol{b}+\gamma \boldsymbol{c}$ for some $\alpha, \beta, \gamma \in \mathbb{R}$ with $\alpha+\beta+\gamma=1$. A typical point on $M$, the line joining $\boldsymbol{c}$ and $\boldsymbol{d}$, has the form

$$
(1-\theta) \boldsymbol{c}+\theta \boldsymbol{d}=\theta \alpha \boldsymbol{a}+\theta \beta \boldsymbol{b}+(\theta(\gamma-1)+1) \boldsymbol{c}
$$

for some $\theta \in \mathbb{R}$. Since the latter point does not lie on $L$ for any $\theta$, we must have $\gamma=1$ and $\boldsymbol{d}=\alpha(\boldsymbol{a}-\boldsymbol{b})+\boldsymbol{c}$. Hence $\boldsymbol{d}-(\boldsymbol{c}-\boldsymbol{a})=\alpha(\boldsymbol{a}-\boldsymbol{b})+\boldsymbol{c}$ $-\boldsymbol{c}+\boldsymbol{a}=(\alpha+1) \boldsymbol{a}-\alpha \boldsymbol{b} \in L$. Thus, $M-(\boldsymbol{c}-\boldsymbol{a}) \subseteq L$. Since $M-(\boldsymbol{c}-\boldsymbol{a})$ is a line, we must have $M-(\boldsymbol{c}-\boldsymbol{a})=L$. Thus $L$ and $M$ are parallel.

## Subsection 4

## Hyperplanes

## Linear Equations

- Consider the following system of $m$ linear equations in $n$ real variables $x_{1}, \ldots, x_{n}$ :

$$
\left\{\begin{array}{cc}
a_{11} x_{1}+\cdots+a_{1 n} x_{n} & =a_{10} \\
& \vdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n} & =a_{m 0}
\end{array}\right.
$$

where $a_{i j}$ are given scalars.

- By the solution set of this system is meant the set of all $n$-tuples $\left(x_{1}, \ldots, x_{n}\right)$ of $\mathbb{R}^{n}$ that satisfy it.
- The solution set of the system is clearly the intersection of the solution sets of the $m$ linear equations which comprise it.


## Solution Sets and Hyperplanes

- An easy verification shows that the solution set of any one of the individual linear equations is a flat.
- So the solution set of the whole system is a flat.
- Later in the section, we shall show that every flat is the solution set of some system of linear equations.
- In general, the solution set of a single linear equation $a_{1} x_{1}+\cdots+a_{n} x_{n}=a_{0}$ is an ( $n-1$ )-dimensional flat in $\mathbb{R}^{n}$.
- In the study of convexity in $\mathbb{R}^{n}$, flats of dimension $n-1$ play a key role, and are given their own name, hyperplanes.


## Hyperplanes

- To be precise, we should refer not to a hyperplane, but to a hyperplane in $\mathbb{R}^{n}$.
- When no ambiguity is likely to arise, however, we do speak simply of a hyperplane.
- A hyperplane:
- in $\mathbb{R}^{1}$ is a point;
- in $\mathbb{R}^{2}$ is a line;
- in $\mathbb{R}^{3}$ is a plane.
- Thus:
- A hyperplane in $\mathbb{R}^{2}$ has an equation of the form $a x+b y+c=0$, where not both of $a$ and $b$ are zero;
- A hyperplane in $\mathbb{R}^{3}$ has an equation of the form $a x+b y+c z+d=0$, where not all of $a, b$ and $c$ are zero.


## Characterization of Hyperplanes

## Theorem

A set $H$ in $\mathbb{R}^{n}$ is a hyperplane if and only if there exist scalars $c_{0}, c_{1}, \ldots, c_{n}$, where not all $c_{1}, \ldots, c_{n}$ are zero, such that

$$
H=\left\{\left(x_{1}, \ldots, x_{n}\right): c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}=0\right\} .
$$

- Let $H=\left\{\left(x_{1}, \ldots, x_{n}\right): c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}=0\right\}$, where $c_{0}, c_{1}, \ldots, c_{n}$ are scalars and not all $c_{1}, \ldots, c_{n}$ are zero, say $c_{1} \neq 0$. Let $\boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right)$, $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$ lie in $H$ and let $\lambda+\mu=1$. Then

$$
\begin{aligned}
& c_{0}+c_{1}\left(\lambda u_{1}+\mu v_{1}\right)+\cdots+c_{n}\left(\lambda u_{n}+\mu v_{n}\right) \\
& =\lambda\left(c_{0}+c_{1} u_{1}+\cdots+c_{n} u_{n}\right)+\mu\left(c_{0}+c_{1} v_{1}+\cdots+c_{n} v_{n}\right) \\
& =\lambda 0+\mu 0=0 .
\end{aligned}
$$

Thus $\lambda \boldsymbol{u}+\mu \boldsymbol{v} \in H$ and $H$ is a flat.

## Characterization of Hyperplanes (Cont'd)

- Define points $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}$ of $H$ by the equations $\boldsymbol{a}_{1}=\left(-\frac{c_{0}}{c_{1}}, 0,0, \ldots, 0\right)$ and $\boldsymbol{a}_{2}=\left(-\frac{c_{0}+c_{2}}{c_{1}}, 1,0, \ldots, 0\right), \ldots, \boldsymbol{a}_{n}=\left(-\frac{c_{0}+c_{n}}{c_{1}}, 0,0, \ldots, 1\right)$. Since $H$ is a flat, $\operatorname{aff}\left\{\mathbf{a}_{1}, \ldots, \boldsymbol{a}_{n}\right\} \subseteq H$.
We now establish the opposite inclusion. Let $\boldsymbol{x} \in H$. Then the equations

$$
\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)=\left(1-x_{2}-\cdots-x_{n}\right) \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+\cdots+x_{n} \boldsymbol{a}_{n}
$$

express $\boldsymbol{x}$ as an affine combination of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}$. So $\boldsymbol{x} \in \operatorname{aff}\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right\}$ Hence, $H \subseteq \operatorname{aff}\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right\}$ and, therefore, $H=\operatorname{aff}\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right\}$.

## Characterization of Hyperplanes (Cont'd)

- To show that the set $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right\}$ is affinely independent, suppose that $\lambda_{1}, \ldots, \lambda_{n}$ satisfy

$$
\lambda_{1} \boldsymbol{a}_{1}+\cdots+\lambda_{n} \boldsymbol{a}_{n}=0 \quad \text { and } \quad \lambda_{1}+\cdots+\lambda_{n}=0
$$

Comparing the $i$ th coordinates $(i=2, \ldots, n)$ on both sides of the first of these equations, we find that $\lambda_{2}, \ldots, \lambda_{n}$ are all zero. Thus, so too is $\lambda_{1}$, from the second equation.
So, $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right\}$ is affinely independent.
But $H=\operatorname{aff}\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right\}$, and so $H$ is an ( $n-1$ )-dimensional flat, i.e., $H$ is a hyperplane.

## Characterization of Hyperplanes (Converse)

- Conversely, suppose that $H$ is a hyperplane in $\mathbb{R}^{n}$. Let $\left\{\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right\}$ be an affine basis for $H$. Extend this to an affine basis $\left\{\boldsymbol{b}_{0}, \boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right\}$ for $\mathbb{R}^{n}$. Then each $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ in $\mathbb{R}^{n}$ can be written uniquely in the form

$$
\boldsymbol{x}=\lambda_{0} \boldsymbol{b}_{0}+\lambda_{1} \boldsymbol{b}_{1}+\cdots+\lambda_{n} \boldsymbol{b}_{n}, \quad \text { where } \quad \lambda_{0}+\lambda_{1}+\cdots+\lambda_{n}=1
$$

Thus $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}$ are the barycentric coordinates of $\boldsymbol{x}$ relative to the (ordered) affine basis $\boldsymbol{b}_{0}, \boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}$. By a previous theorem, there exist scalars $c_{0}, c_{1}, \ldots, c_{n}$ such that

$$
\lambda_{0}=c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n} .
$$

Since $\boldsymbol{x} \in H$ iff $\lambda_{0}=0, H=\left\{\left(x_{1}, \ldots, x_{n}\right): c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}=0\right\}$. Not all of $c_{1}, \ldots, c_{n}$ are zero, for this would imply that either $H$ is empty (if $c_{0} \neq 0$ ) or $\mathbb{R}^{n}$ (if $c_{0}=0$ ), both of which contradict the assumption that $H$ is an ( $n-1$ )-dimensional flat.

## Characterization of $r$-Flats

## Corollary

In $\mathbb{R}^{n}$ each $r$-flat $(r=-1, \ldots, n)$ can be expressed as the intersection of $n-r$ hyperplanes, and so is the solution set of some system of $n-r$ linear equations.

- The only $(-1)$-flat in $\mathbb{R}^{n}$ is the empty set, which is the intersection of the $n+1$ hyperplanes $x_{1}=0, \ldots, x_{n}=0, x_{1}+\cdots+x_{n}=1$.
The only $n$-flat in $\mathbb{R}^{n}$ is $\mathbb{R}^{n}$ itself, which is the intersection of no hyperplanes.
Consider now the case of an $r$-flat $A$ in $\mathbb{R}^{n}$, where $r=0, \ldots, n-1$. Let $\left\{\boldsymbol{a}_{0}, \ldots, \boldsymbol{a}_{r}\right\}$ be an affine basis for $A$. Extend this to an affine basis $\left\{\boldsymbol{a}_{0}, \ldots, \boldsymbol{a}_{n}\right\}$ for $\mathbb{R}^{n}$. Then each $\boldsymbol{x}$ in $\mathbb{R}^{n}$ can be expressed uniquely in the form

$$
\boldsymbol{x}=\lambda_{0} a_{0}+\cdots+\lambda_{n} a_{n}, \quad \text { where } \quad \lambda_{0}+\cdots+\lambda_{n}=1
$$

## Characterization of r-Flats (Cont'd)

- Now $A$ is the set in $\mathbb{R}^{n}$ consisting precisely of those $\boldsymbol{x}$ 's whose barycentric coordinates $\lambda_{r+1}, \ldots, \lambda_{n}$ are all zero.
But each of the sets $\left\{\boldsymbol{x}: \lambda_{i}=0\right\}$ is the hyperplane

$$
\operatorname{aff}\left\{\boldsymbol{a}_{0}, \ldots, \boldsymbol{a}_{i-1}, \boldsymbol{a}_{i+1}, \ldots, \boldsymbol{a}_{n}\right\}
$$

It now follows that $A$ is the intersection of the $n-r$ hyperplanes with equations $\lambda_{r+1}=0, \ldots, \lambda_{n}=0$.

## Uniqueness of Constants

- Given a hyperplane $H$ in $\mathbb{R}^{n}$, there exist scalars $c_{0}, c_{1}, \ldots, c_{n}$, with not all $c_{1}, \ldots, c_{n}$ zero, such that

$$
H=\left\{\left(x_{1}, \ldots, x_{n}\right): c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}=0\right\} .
$$

- We now consider to what extent $H$ determines the scalars $c_{0}, c_{1}, \ldots, c_{n}$.
- It certainly does not determine them uniquely, for the scalars $\theta c_{0}, \theta c_{1}, \ldots, \theta c_{n}$, where $\theta \neq 0$, serve equally well in the equation for $H$.
- Suppose that $d_{0}, d_{1}, \ldots, d_{n}$ are also scalars such that

$$
H=\left\{\left(x_{1}, \ldots, x_{n}\right): d_{0}+d_{1} x_{1}+\cdots+d_{n} x_{n}=0\right\} .
$$

- Assume that $c_{1} \neq 0$, and let $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}$ be the points of $H$ specified as in the first part of the proof of the preceding theorem.


## Uniqueness of Constants (Cont'd)

- Substituting the coordinates of the $\boldsymbol{a}_{\boldsymbol{i}}$ into the above equation for $H$ in terms of the $d$ 's, we deduce that $d_{i}=\frac{d_{1}}{c_{1}} c_{i}$ for $i=0, \ldots, n$.
- Since not all of $d_{0}, d_{1}, \ldots, d_{n}$ can be zero, we deduce that $d_{1}$, and hence $\frac{d_{1}}{c_{1}}$, is not zero.
- Writing $\theta=\frac{d_{1}}{c_{1}}$, we find that $d_{0}=\theta c_{0}, d_{1}=\theta c_{1}, \ldots, d_{n}=\theta c_{n}$.
- Thus the hyperplane $H$ determines the scalars $c_{0}, c_{1}, \ldots, c_{n}$ to within a common non-zero scalar multiple.


## Halfspaces

- The importance of hyperplanes in $\mathbb{R}^{n}$ is that they divide the whole space into two halfspaces in a natural way.
Example: $A$ line in $\mathbb{R}^{2}$ with equation $a x+b y+c=0$ divides $\mathbb{R}^{2}$ into the two halfplanes determined by the inequalities $a x+b y+c \leq 0$ and $a x+b y+c \geq 0$.
- A hyperplane in $\mathbb{R}^{n}$ with equation $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}=0$ divides $\mathbb{R}^{n}$ into the two halfspaces determined by the inequalities

$$
c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n} \leq 0 \quad \text { and } \quad c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n} \geq 0
$$

- Let $c_{0}, c_{1}, \ldots, c_{n}$ be scalars, where not all $c_{1}, \ldots, c_{n}$ are zero.

Then a set of either of the forms

$$
\begin{aligned}
& \left\{\left(x_{1}, \ldots, x_{n}\right): c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n} \leq 0\right\} \quad \text { or } \\
& \left\{\left(x_{1}, \ldots, x_{n}\right): c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n} \geq 0\right\}
\end{aligned}
$$

is called a closed halfspace in $\mathbb{R}^{n}$.

## Halfspaces Determined by a Hyperplane

- A set of either of the forms

$$
\begin{aligned}
& \left\{\left(x_{1}, \ldots, x_{n}\right): c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}<0\right\} \\
& \left\{\left(x_{1}, \ldots, x_{n}\right): c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}>0\right\}
\end{aligned}
$$

is called a open halfspace in $\mathbb{R}^{n}$.

- If the scalars $c_{0}, c_{1}, \ldots, c_{n}$ are replaced, respectively, by $\theta c_{0}, \theta c_{1}, \ldots, \theta c_{n}$, for some $\theta \neq 0$, then we obtain the same pair of closed halfspaces and the same pair of open halfspaces, although the order of the halfspaces is reversed when $\theta<0$.
- Thus, if $H$ is a hyperplane in $\mathbb{R}^{n}$ with equation $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}=$ 0 , then the above pair of closed halfspaces and the above pair of open halfspaces are determined by $H$ (independent of equation).
- Hence we may refer unambiguously to the closed halfspaces and the open halfspaces determined by $H$.
- We say that the closed (open) halfspaces determined by $H$ are opposite to one another.


## Example

- Any line through two points lying in opposite halfspaces determined by a hyperplane in $\mathbb{R}^{n}$ meets the hyperplane.
- Suppose that the hyperplane $H$ has equation $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}=0$, and that the points $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $\boldsymbol{b}=\left(b_{1}, \ldots, b_{n}\right)$ lie in opposite halfspaces determined by $H$.
- Omitting the trivial case when either of $\boldsymbol{a}$ or $\boldsymbol{b}$ lies on $H$,

$$
c_{0}+c_{1} a_{1}+\cdots+c_{n} a_{n}=\alpha<0 \quad \text { and } \quad c_{0}+c_{1} b_{1}+\cdots+c_{n} b_{n}=\beta>0 .
$$

- The points on the line $L$ through $\boldsymbol{a}$ and $\boldsymbol{b}$ are precisely those points of the form $\left(\lambda a_{1}+(1-\lambda) b_{1}, \ldots, \lambda a_{n}+(1-\lambda) b_{n}\right)$, where the scalar $\lambda$ assumes all real values.
- We find, by substituting these coordinates into the equation of $H$, that $\lambda=\frac{\beta}{\beta-\alpha}$ corresponds to the unique point of intersection of $L$ and $H$.
- This value of $\lambda$ satisfies $0 \leq \lambda \leq 1$. So the portion of $L$ lying, between $\boldsymbol{a}$ and $\boldsymbol{b}$, the so-called line segment joining $\boldsymbol{a}$ and $\boldsymbol{b}$, meets $H$.


## Characterization of Parallel Hyperplanes

## Theorem

Let $H$ and $H^{\prime}$ be hyperplanes in $\mathbb{R}^{n}$ with respective equations $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}=0$ and $c_{0}^{\prime}+c_{1}^{\prime} x_{1}+\cdots+c_{n}^{\prime} x_{n}=0$. Then $H$ and $H^{\prime}$ are parallel if and only if there exists a scalar $\theta$ such that $c_{1}^{\prime}=\theta c_{1}, \ldots, c_{n}^{\prime}=\theta c_{n}$.

- Suppose first that $H$ and $H^{\prime}$ are parallel, say $H^{\prime}=H+a$, where $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right)$. Then $\left(x_{1}, \ldots, x_{n}\right) \in H$ if and only if

$$
\begin{aligned}
& c_{0}^{\prime}+c_{1}^{\prime}\left(x_{1}+a_{1}\right)+\cdots+c_{n}^{\prime}\left(x_{n}+a_{n}\right) \\
& =c_{0}^{\prime}+c_{1}^{\prime} a_{1}+\cdots+c_{n}^{\prime} a_{n}+c_{1}^{\prime} x_{1}+\cdots+c_{n}^{\prime} x_{n}=0 .
\end{aligned}
$$

Thus, by the above remarks on the representation of hyperplanes by linear equations, there exists a $\theta$, such that $c_{1}^{\prime}=\theta c_{1}, \ldots, c_{n}^{\prime}=\theta c_{n}$.

## Characterization of Parallel Hyperplanes

- Suppose next that $c_{1}^{\prime}=\theta c_{1}, \ldots, c_{n}^{\prime}=\theta c_{n}$, where $\theta$ is a (non-zero) scalar. Then, for $d_{0}=\frac{c_{0}^{\prime}}{\theta}, H^{\prime}$ is represented by the equation

$$
d_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}=0 .
$$

Let $\boldsymbol{b}=\left(b_{1}, \ldots, b_{n}\right)$ satisfy

$$
c_{1} b_{1}+\cdots+c_{n} b_{n}=c_{0}-d_{0}
$$

Then $H^{\prime}$ also has the equation

$$
c_{0}+c_{1}\left(x_{1}-b_{1}\right)+\cdots+c_{n}\left(x_{n}-b_{n}\right)=0
$$

Thus $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in H^{\prime}$ if and only if $\boldsymbol{x}-\boldsymbol{b} \in H$. Hence $H^{\prime}=H+\boldsymbol{b}$. This shows that $H$ and $H^{\prime}$ are parallel.

## Relative Position of Hyperplanes

## Corollary

Two parallel hyperplanes in $\mathbb{R}^{n}$ are either identical or disjoint. Two non-parallel hyperplanes in $\mathbb{R}^{n}$ must meet.

- Let $H$ and $H^{\prime}$ be parallel hyperplanes in $\mathbb{R}^{n}$. Then they have respective equations

$$
c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}=0 \quad \text { and } \quad c_{0}^{\prime}+\theta c_{1} x_{1}+\cdots+\theta c_{n} x_{n}=0,
$$

say, where $\theta$ is a non-zero scalar. If $c_{0}^{\prime}=\theta c_{0}$, then $H$ and $H^{\prime}$ are identical. Otherwise they are disjoint.

## Relative Position of Hyperplanes (Cont'd)

- Let $H$ and $H^{\prime}$ be non-parallel hyperplanes in $\mathbb{R}^{n}$ having respective equations

$$
c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}=0 \quad \text { and } \quad c_{0}^{\prime}+c_{1}^{\prime} x_{1}+\cdots+c_{n}^{\prime} x_{n}=0 .
$$

Then there is no scalar $\theta$ such that $c_{1}^{\prime}=\theta c_{1}, \ldots, c_{n}^{\prime}=\theta c_{n}$. It follows that $n \geq 2$. Suppose that $c_{1} \neq 0$. Then, for some $j \in\{2, \ldots, n\}, c_{j}^{\prime} \neq \frac{c_{1}^{\prime}}{c_{1}} c_{j}$, say $c_{2}^{\prime} \neq \frac{c_{1}^{\prime}}{c_{1}} c_{2}$. It is easily verified that the point

$$
\left(\frac{c_{0}^{\prime} c_{2}-c_{0} c_{2}^{\prime}}{c_{1} c_{2}^{\prime}-c_{1}^{\prime} c_{2}}, \frac{c_{0} c_{1}^{\prime}-c_{0}^{\prime} c_{1}}{c_{1} c_{2}^{\prime}-c_{1}^{\prime} c_{2}}, 0, \ldots, 0\right)
$$

lies in $H \cap H^{\prime}$. So $H$ and $H^{\prime}$ meet.

## Subsection 5

## Affine Transformations

## Affine Transformations

- A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called an affine transformation if $T(\lambda \boldsymbol{x}+\mu \boldsymbol{y})=\lambda T(\boldsymbol{x})+\mu T(\boldsymbol{y})$ whenever $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ and $\lambda+\mu=1$.
- A simple example of an affine transformation is the mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by the equation $T(x, y, z)=(x, y, 1)$.
Geometrically, $T$ is the orthogonal projection of $\mathbb{R}^{3}$ onto the plane with equation $z=1$.
- For each vector $\boldsymbol{q} \in \mathbb{R}^{n}$, the mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by the equation $T(x)=\boldsymbol{x}+\boldsymbol{q}$ is an affine transformation called the translation of $\mathbb{R}^{n}$ through $\boldsymbol{q}$.


## Affine versus Linear Transformations

- Clearly every linear transformation from $\mathbb{R}^{n}$ to $\mathbb{R}^{m}$ is also an affine one.
- That not every affine transformation from $\mathbb{R}^{n}$ to $\mathbb{R}^{m}$ is linear, follows from the observation that it need not map the zero vector of $\mathbb{R}^{n}$ to the zero vector of $\mathbb{R}^{m}$.
- See the two examples of affine transformations given above.
- The exact relationship between linear and affine transformations is given in the following result.


## Relation Between Affine and Linear Transformations

## Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be an affine transformation. Then $T$ is linear if and only if $T(0)=0$.

- In view of the remarks above, it will suffice to show that $T$ is linear when $T(0)=\mathbf{0}$.
Suppose, then, that $T(\mathbf{0})=\mathbf{0}$. Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$. Then

$$
T(\lambda \boldsymbol{x})=T(\lambda x+(1-\lambda) 0)=\lambda T(x)+(1-\lambda) T(0)=\lambda T(x) .
$$

Using this last result, we deduce that

$$
\begin{aligned}
T(\boldsymbol{x}+\boldsymbol{y}) & =T\left(2\left(\frac{1}{2} \boldsymbol{x}+\frac{1}{2} \boldsymbol{y}\right)\right)=2 T\left(\frac{1}{2} \boldsymbol{x}+\frac{1}{2} \boldsymbol{y}\right) \\
& =2\left(\frac{1}{2} T(\boldsymbol{x})+\frac{1}{2} T(\boldsymbol{y})\right)=T(\boldsymbol{x})+T(\boldsymbol{y})
\end{aligned}
$$

Thus $T$ is linear.

## Matrix Form of an Affine Transformation

- In the following discussion, all vectors considered will be identified with column vectors in the natural way.


## Theorem

The affine transformations $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are precisely those mappings $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ which can be expressed in the form $T(\boldsymbol{x})=\boldsymbol{Q} \boldsymbol{x}+\boldsymbol{q}$, for some real $m \times n$ matrix $\boldsymbol{Q}$ and some real $m \times 1$ matrix $\boldsymbol{q}$.

- It is easily verified that a mapping of the type under consideration is an affine transformation.
Assume, then, that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is an affine transformation. Let $T(\mathbf{0})=\boldsymbol{q}$. Then the mapping $T^{\prime}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by the equation $T^{\prime}(\boldsymbol{x})=T(\boldsymbol{x})-\boldsymbol{q}$ is readily shown to be an affine transformation with $T^{\prime}(\mathbf{0})=\mathbf{0}$. The theorem shows that $T^{\prime}$ is linear, whence there is a real $m \times n$ matrix $\boldsymbol{Q}$ such that $T^{\prime}(\boldsymbol{x})=\boldsymbol{Q} \boldsymbol{x}$. Thus $T(\boldsymbol{x})=\boldsymbol{Q} \boldsymbol{x}+\boldsymbol{q}$.


## Remarks

- The affine transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ determines the matrices $\boldsymbol{Q}$ and $\boldsymbol{q}$ uniquely:
- The $j$ th column of $\boldsymbol{Q}$ must be $T\left(\boldsymbol{e}_{j}\right)-T(\mathbf{0})$;
- $\boldsymbol{q}$ must be $T(\mathbf{0})$.
- The above representation of an affine transformation in terms of matrices shows easily that, if $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is an affine transformation, $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{r} \in \mathbb{R}^{n}$ and $\lambda_{1}+\cdots+\lambda_{r}=1$, then

$$
T\left(\lambda_{1} \mathbf{a}_{1}+\cdots+\lambda_{r} \boldsymbol{a}_{r}\right)=\lambda_{1} T\left(\boldsymbol{a}_{1}\right)+\cdots+\lambda_{r} T\left(\boldsymbol{a}_{r}\right)
$$

## Affine Transformations and Flats

## Corollary

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be an affine transformation and let $A$ be a set in $\mathbb{R}^{n}$. Then $T(\operatorname{aff} A)=\operatorname{aff} T(A)$. If $A$ is a flat, then so too is $T(A)$.

- A point $\boldsymbol{x}$ lies in $T(\operatorname{aff} A)$ if and only if there exist $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{r} \in A$ and $\lambda_{1}, \ldots, \lambda_{r}$ with $\lambda_{1}+\cdots+\lambda_{r}=1$ such that

$$
x=T\left(\lambda_{1} a_{1}+\cdots+\lambda_{r} a_{r}\right)=\lambda_{1} T\left(a_{1}\right)+\cdots+\lambda_{r} T\left(a_{r}\right)
$$

that is, if and only if $\boldsymbol{x} \in \operatorname{aff} T(A)$. Thus $T(\operatorname{aff} A)=\operatorname{aff} T(A)$.
If $A$ is a flat, then aff $T(A)=T(\operatorname{aff} A)=T(A)$. This shows that $T(A)$ is a flat.

## Non-Singular Affine Transformations

- Consider an affine transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ of $\mathbb{R}^{n}$ into itself.
- By the theorem, there exist a real $n \times n$ matrix $\boldsymbol{Q}$ and a real $n \times 1$ matrix $\boldsymbol{q}$ such that $T(\boldsymbol{x})=\boldsymbol{Q x}+\boldsymbol{q}$.
- The affine transformation $T$ is said to be non-singular if the determinant $\operatorname{det} \boldsymbol{Q}$ of the matrix $\boldsymbol{Q}$ is non-zero, that is if $\boldsymbol{Q}$ has an inverse, i.e., is non-singular.


## Invertible Affine Transformations

## Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an affine transformation. Then $T$ has an inverse if and only if $T$ is non-singular. When $T$ is non-singular, its inverse $T^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an affine transformation.

- Let $\boldsymbol{Q}$ be a real $n \times n$ matrix and $\boldsymbol{q}$ a real $n \times 1$ matrix such that $T(\boldsymbol{x})=\boldsymbol{Q} \boldsymbol{x}+\boldsymbol{q}$ for all $\boldsymbol{x}$ in $\mathbb{R}^{n}$. Suppose first that $\boldsymbol{Q}$ is non-singular. Then $\operatorname{det} \boldsymbol{Q}$ is non-zero and $\boldsymbol{Q}$ has an inverse $\boldsymbol{Q}^{-1}$. For each $\boldsymbol{y}$ in $\mathbb{R}^{n}$, the equation $T(\boldsymbol{x})=\boldsymbol{y}$ has the unique solution $\boldsymbol{x}=\boldsymbol{Q}^{-1} \boldsymbol{y}-\boldsymbol{Q}^{-1} \boldsymbol{q}$.
It follows that $T$ has an inverse, which is the affine transformation $T^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by the equation $T^{-1}(\boldsymbol{y})=\boldsymbol{Q}^{-1} \boldsymbol{y}-\boldsymbol{Q}^{-1} \boldsymbol{q}$ for $\boldsymbol{y}$ in $\mathbb{R}^{n}$.

Suppose next that $\operatorname{det} \boldsymbol{Q}$ is zero. Then there exists a non-zero vector $\boldsymbol{z}$ in $\mathbb{R}^{n}$ such that $\boldsymbol{Q}(\boldsymbol{z})=\mathbf{0}$. Hence $T(\boldsymbol{z})=T(\mathbf{0})$ and $T$ is not injective. Hence $T$ has no inverse.

## Affine Transformations and Affinely Independent Sets

## Theorem

Let $\left\{\boldsymbol{a}_{0}, \ldots, \boldsymbol{a}_{r}\right\}_{\neq}$and $\left\{\boldsymbol{b}_{0}, \ldots, \boldsymbol{b}_{r}\right\}_{\neq}$be affinely independent sets in $\mathbb{R}^{n}$. Then there exists a non-singular affine transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $T\left(\boldsymbol{a}_{i}\right)=\boldsymbol{b}_{i}$, for $i=0, \ldots, r$.

- Extend the sets $\left\{\boldsymbol{a}_{0}, \ldots, \boldsymbol{a}_{r}\right\}_{\neq}$and $\left\{\boldsymbol{b}_{0}, \ldots, \boldsymbol{b}_{r}\right\}_{\neq}$, respectively, to affine bases $\left\{\boldsymbol{a}_{0}, \ldots, \boldsymbol{a}_{n}\right\}$ and $\left\{\boldsymbol{b}_{0}, \ldots, \boldsymbol{b}_{n}\right\}$ for $\mathbb{R}^{n}$. Then each $\boldsymbol{x}$ in $\mathbb{R}^{n}$ can be written uniquely in the form $\boldsymbol{x}=\lambda_{0} \boldsymbol{a}_{0}+\cdots+\lambda_{n} \boldsymbol{a}_{n}, \lambda_{0}+\cdots+\lambda_{n}=1$. Define a mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by the equation

$$
T(\boldsymbol{x})=\lambda_{0} \boldsymbol{b}_{0}+\cdots+\lambda_{n} \boldsymbol{b}_{n} .
$$

It is routine to verify that $T$ is a bijective affine transformation. Hence $T$ is a non-singular affine transformation such that $T\left(\boldsymbol{a}_{i}\right)=\boldsymbol{b}_{i}$, for $i=0, \ldots, r$.

## Affine Transformations and Flats

## Corollary

Let $A$ and $B$ be flats in $\mathbb{R}^{n}$ of the same dimension. Then there is a non-singular affine transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $T(A)=B$.

- If $A$ and $B$ are both empty, then $T$ can be taken as the identity mapping of $\mathbb{R}^{n}$ onto itself.

Suppose, then, that $A$ and $B$ are non-empty and have affine bases $\left\{\boldsymbol{a}_{0}, \ldots, \boldsymbol{a}_{r}\right\}_{\neq}$and $\left\{\boldsymbol{b}_{0}, \ldots, \boldsymbol{b}_{r}\right\}_{\neq}$, respectively.
Let $T$ be as in the theorem. Then, by a previous corollary,

$$
T(A)=T\left(\operatorname{aff}\left\{\boldsymbol{a}_{0}, \ldots, \boldsymbol{a}_{r}\right\}\right)=\operatorname{aff}\left\{\boldsymbol{b}_{0}, \ldots, \boldsymbol{b}_{r}\right\}=B
$$

- Suppose that $B$ is an $r$-dimensional flat $(r \geq 1)$ in $\mathbb{R}^{n}$ and that $A=\operatorname{aff}\left\{0, e_{1}, \ldots, \boldsymbol{e}_{r}\right\}$.
- Then $A$ and $B$ are flats of the same dimension.
- By the corollary, there exists a non-singular affine transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $T(A)=B$.
- The flat $A$ consists precisely of those points $\left(x_{1}, \ldots, x_{n}\right)$ for which $x_{r+1}=0, \ldots, x_{n}=0$.
- Hence $A$ can be identified with $\mathbb{R}^{r}$ by associating the point $\left(x_{1}, \ldots, x_{n}\right)$ of $A$ with the point $\left(x_{1}, \ldots, x_{r}\right)$ of $\mathbb{R}^{r}$.
- Under this identification $T\left(\mathbb{R}^{r}\right)=B$.
- Thus every $r$-dimensional flat $(r \geq 1)$ can be considered to be an affine copy of $\mathbb{R}^{r}$.
- This identification is often helpful when working with $r$-dimensional sets in $\mathbb{R}^{n}$, for we may consider them as subsets of $\mathbb{R}^{r}$ and make use of the resulting algebraic simplification.


## Subsection 6

## Length, Distance and Angle

## The Inner Product

- The inner product $\boldsymbol{x} \cdot \boldsymbol{y}$ of vectors $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ in $\mathbb{R}^{n}$ is the real number defined by the equation

$$
\boldsymbol{x} \cdot \boldsymbol{y}=x_{1} y_{1}+\cdots+x_{n} y_{n} .
$$

- The following properties of the inner product are immediate consequences of its definition.
- For $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^{n}$ and $\lambda, \mu \in \mathbb{R}$ :
(i) $\boldsymbol{x} \cdot \boldsymbol{x} \geq 0$, and $\boldsymbol{x} \cdot \boldsymbol{x}=0$ if and only if $\boldsymbol{x}=\mathbf{0}$;
(ii) $\boldsymbol{x} \cdot \boldsymbol{y}=\boldsymbol{y} \cdot \boldsymbol{x}$;
(iii) $(\lambda \boldsymbol{x}+\mu \boldsymbol{y}) \cdot \boldsymbol{z}=\lambda(\boldsymbol{x} \cdot \boldsymbol{z})+\mu(\boldsymbol{y} \cdot \boldsymbol{z})$.


## The Norm and the Distance

- The norm or length $\|\boldsymbol{x}\|$ of a vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ in $\mathbb{R}^{n}$ is the non-negative real number defined by the equation

$$
\|\boldsymbol{x}\|=\sqrt{\boldsymbol{x} \cdot \boldsymbol{x}}, \quad \text { whence } \quad\|\boldsymbol{x}\|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}
$$

- The distance between points $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ of $\mathbb{R}^{n}$ is the non-negative real number

$$
\|\boldsymbol{x}-\boldsymbol{y}\|=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}}
$$

i.e., the length of the vector $\boldsymbol{x}-\boldsymbol{y}$, or $\boldsymbol{y}-\boldsymbol{x}$.

## Properties of the Norm

- The norm of the zero vector is 0 .
- The norm of each elementary vector $\boldsymbol{e}_{\boldsymbol{i}}$ is 1 .
- In general, any vector in $\mathbb{R}^{n}$ which has norm 1 is called a unit vector.
- The following properties of the norm are simple consequences of its definition.
- For $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ and $\lambda, \mu \in \mathbb{R}$ :
(i) $\|\boldsymbol{x}\| \geq 0$, and $\|\boldsymbol{x}\|=0$ if and only if $\boldsymbol{x}=\mathbf{0}$;
(ii) $\|\boldsymbol{\lambda} \boldsymbol{x}\|=|\lambda|\|\boldsymbol{x}\|$;
(iii) $\|\lambda \boldsymbol{x}+\mu \boldsymbol{y}\|^{2}=\lambda^{2}\|\boldsymbol{x}\|^{2}+2 \lambda \mu \boldsymbol{x} \cdot \boldsymbol{y}+\mu^{2}\|\boldsymbol{y}\|^{2}$.


## Inequalities Involving the Norm

## Theorem

Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$. Then:
(i) $|\boldsymbol{x} \cdot \boldsymbol{y}| \leq\|\boldsymbol{x}\|\|\boldsymbol{y}\| \quad$ (Cauchy-Schwarz Inequality);
(ii) $\|\boldsymbol{x}+\boldsymbol{y}\| \leq\|\boldsymbol{x}\|+\|\boldsymbol{y}\| \quad$ (Triangle Inequality);
(iii) $|\|\boldsymbol{x}\|-\|\boldsymbol{y}\|| \leq\|\boldsymbol{x}-\boldsymbol{y}\|$;
(iv) if, for some $\alpha>0,\|\boldsymbol{x}+\lambda \boldsymbol{y}\| \geq\|\boldsymbol{x}\|$ whenever $0<\lambda<\alpha$, then $\boldsymbol{x} \cdot \boldsymbol{y} \geq 0$.

- We only prove (iv), since (i), (ii), and (iii) are standard results. Let $\alpha>0$ be such that $\|\boldsymbol{x}+\lambda \boldsymbol{y}\| \geq\|\boldsymbol{x}\|$ whenever $0<\lambda<\alpha$. Then, whenever $0<\lambda<\alpha$,

$$
\|x\|^{2} \leq\|x+\lambda y\|^{2}=\|x\|^{2}+2 \lambda \boldsymbol{x} \cdot \boldsymbol{y}+\lambda^{2}\|\boldsymbol{y}\|^{2} .
$$

Hence $\boldsymbol{x} \cdot \boldsymbol{y}+\frac{1}{2} \lambda\|\boldsymbol{y}\|^{2} \geq 0$. Letting $\lambda \rightarrow 0_{+}$in the last inequality, we deduce that $\boldsymbol{x} \cdot \boldsymbol{y} \geq 0$.

## Angle Between Vectors

- The Cauchy-Schwarz inequality allows us to introduce the concept of angle into $\mathbb{R}^{n}$.
- The angle between non-zero vectors $\boldsymbol{x}$ and $\boldsymbol{y}$ of $\mathbb{R}^{n}$ is the unique real number $\theta$ satisfying the conditions

$$
\cos \theta=\frac{\boldsymbol{x} \cdot \boldsymbol{y}}{\|\boldsymbol{x}\|\|\boldsymbol{y}\|} \quad \text { and } \quad 0 \leq \theta \leq \pi
$$

- This definition accords with the usual one of elementary geometry.
- The angle between $\boldsymbol{x}$ and $\boldsymbol{y}$ is called acute or obtuse according as $\boldsymbol{x} \cdot \boldsymbol{y}$ is positive or negative.
- Vectors $\boldsymbol{x}$ and $\boldsymbol{y}$, whether zero or not, are said to be orthogonal if $x \cdot y=0$.


## Normal Vectors to a Hyperplane

- Consider a hyperplane $H$ in $\mathbb{R}^{n}$ with equation $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}=0$.
- This equation can be written in the form $c_{0}+\boldsymbol{c} \cdot \boldsymbol{x}=0$, where $\boldsymbol{c}$ is the non-zero vector $\left(c_{1}, \ldots, c_{n}\right)$ and $\boldsymbol{x}$ is $\left(x_{1}, \ldots, x_{n}\right)$.
- Such a vector $\boldsymbol{c}$ is said to be a normal vector to $H$.
- By the discussion on the representation of hyperplanes by means of linear equations, it follows that the normal vectors of $H$ are precisely those vectors of the form $\lambda \boldsymbol{c}$ for some non-zero scalar $\lambda$.
- Thus $H$ has exactly two unit normal vectors, namely $\pm \frac{\boldsymbol{C}}{\|\boldsymbol{C}\|}$.
- Hence, given any hyperplane $H$ in $\mathbb{R}^{n}$, it may be assumed that it has an equation of the form $c_{0}+\boldsymbol{c} \cdot \boldsymbol{x}=0$, where $\boldsymbol{c}$ is a unit vector.


## Normal Vectors to a Hyperplane (Cont'd)

- This concept of a normal vector generalizes the one familiar in elementary geometry.
- Suppose that $\boldsymbol{v}$ and $\boldsymbol{w}$ lie in a hyperplane $H$ in $\mathbb{R}^{n}$ with equation $c_{0}+\boldsymbol{c} \cdot \boldsymbol{x}=0$. Then $c_{0}+\boldsymbol{c} \cdot \boldsymbol{v}=0$ and $c_{0}+\boldsymbol{c} \cdot \boldsymbol{w}=0$. So $\boldsymbol{c} \cdot(\boldsymbol{w}-\boldsymbol{v})=0$.
- This shows that $\boldsymbol{c}$ is orthogonal to every vector which is the difference of two vectors in $H$.



## Orthogonal Complement

- Let $A$ be a subspace of $\mathbb{R}^{n}$.
- Then the orthogonal complement $A^{\perp}$ of $A$ is the set of all those vectors in $\mathbb{R}^{n}$ which are orthogonal to all the vectors in $A$, i.e.,

$$
A^{\perp}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{x} \cdot \mathbf{a}=0, \text { for all } \boldsymbol{a} \in A\right\} .
$$

- It follows easily from this definition that $A^{\perp}$ is a subspace of $\mathbb{R}^{n}$ which intersects $A$ in the set $\{\mathbf{0}\}$.
- A standard result of linear algebra asserts that each vector of $\mathbb{R}^{n}$ can be expressed uniquely in the form $\boldsymbol{a}+\boldsymbol{b}$, where $\boldsymbol{a} \in A$ and $\boldsymbol{b} \in A^{\perp}$.
- Thus $A+A^{\perp}=\mathbb{R}^{n}$.


## Orthonormal Sequences

- A sequence $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}$ of vectors in $\mathbb{R}^{n}$ is said to be an orthonormal sequence if $\boldsymbol{u}_{i} \cdot \boldsymbol{u}_{j}$ is 1 or 0 according as $i=j$ or $i \neq j$.
- The simplest example of such a sequence is the sequence $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}$ of elementary vectors in $\mathbb{R}^{n}$.
- In an orthonormal sequence, each term is a unit vector, each two terms are orthogonal, and no two terms are the same.
- The terms of an orthonormal sequence $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}$ in $\mathbb{R}^{n}$ form a linearly independent set $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}\right\}$.
To see this, suppose that scalars $\lambda_{1}, \ldots, \lambda_{m}$ are such that $\lambda_{1} \boldsymbol{u}_{1}+\cdots+\lambda_{m} \boldsymbol{u}_{m}=\mathbf{0}$. Then, for $i=1, \ldots, m$,

$$
\lambda_{i}=\left(\lambda_{1} \boldsymbol{u}_{1}+\cdots+\lambda_{m} \boldsymbol{u}_{m}\right) \cdot \boldsymbol{u}_{i}=\mathbf{0} \cdot \boldsymbol{u}_{i}=0
$$

This shows that $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}\right\}$ is linearly independent.

- Hence $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}\right\}$ is an orthonormal basis for the subspace $\operatorname{lin}\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}\right\}$ of $\mathbb{R}^{n}$.


## Orthonormal Sequences (Cont'd)

- Thus each point $\boldsymbol{x}$ of $\operatorname{lin}\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}\right\}$ can be written uniquely as a linear combination of $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}$, say

$$
\boldsymbol{x}=\mu_{1} \boldsymbol{u}_{1}+\cdots+\mu_{m} \boldsymbol{u}_{m}
$$

Then, for $i=1, \ldots, m$,

$$
\boldsymbol{x} \cdot \boldsymbol{u}_{i}=\left(\mu_{1} \boldsymbol{u}_{1}+\cdots+\mu_{m} \boldsymbol{u}_{m}\right) \cdot \boldsymbol{u}_{i}=\mu_{i} .
$$

We conclude that

$$
\boldsymbol{x}=\left(\boldsymbol{x} \cdot \boldsymbol{u}_{1}\right) \boldsymbol{u}_{1}+\cdots+\left(\boldsymbol{x} \cdot \boldsymbol{u}_{m}\right) \boldsymbol{u}_{m} .
$$

## Congruences in $\mathbb{R}^{2}$

- A congruence transformation in elementary plane geometry is a transformation of the plane which preserves distance.
- Examples of such transformations are reflections, rotations, translations, and combinations of these.
- Algebraically, the congruence transformations of $\mathbb{R}^{2}$ are precisely those affine transformations $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that can be expressed in the form

$$
T(x)=\boldsymbol{Q} \boldsymbol{x}+\boldsymbol{q},
$$

where $\boldsymbol{Q}$ is a $2 \times 2$ orthogonal matrix and $\boldsymbol{q}$ is a $2 \times 1$ matrix.

## Congruence Transformations

- A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is said to be a congruence transformation of $\mathbb{R}^{n}$ if

$$
\|T(\boldsymbol{x})-T(\boldsymbol{y})\|=\|\boldsymbol{x}-\boldsymbol{y}\|, \quad \text { for all } \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}
$$

i.e., $T$ preserves distance.

- We use a superscript $T$ to denote the transpose of a matrix or a vector.
- Thus, recalling that we identify a point $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ of $\mathbb{R}^{n}$ with a column vector in the natural way, we see that $\boldsymbol{x}^{\top} \boldsymbol{x}$ is the $1 \times 1$ matrix whose single element is the scalar $x_{1}^{2}+\cdots+x_{n}^{2}$.
- We identify this scalar with the matrix $\boldsymbol{x}^{\top} \boldsymbol{x}$ itself, so that we may write

$$
\|\boldsymbol{x}\|^{2}=x_{1}^{2}+\cdots+x_{n}^{2}=\boldsymbol{x}^{\top} \boldsymbol{x} .
$$

## Affine Transformations and Congruences

- We now show that an affine transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, which is defined by an equation of the form $T(\boldsymbol{x})=\boldsymbol{Q} \boldsymbol{x}+\boldsymbol{q}$, where $\boldsymbol{Q}$ is an $n \times n$ orthogonal matrix and $\boldsymbol{q}$ is an $n \times 1$ matrix, is a congruence transformation of $\mathbb{R}^{n}$.
- Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$. Then

$$
\begin{aligned}
\|T(\boldsymbol{x})-T(\boldsymbol{y})\|^{2} & =\|\boldsymbol{Q}(\boldsymbol{x}-\boldsymbol{y})\|^{2} \\
& =(\boldsymbol{Q}(\boldsymbol{x}-\boldsymbol{y}))^{\top}(\boldsymbol{Q}(\boldsymbol{x}-\boldsymbol{y})) \\
& =(\boldsymbol{x}-\boldsymbol{y})^{\top} \boldsymbol{Q}^{\top} \boldsymbol{Q}(\boldsymbol{x}-\boldsymbol{y}) \\
& =(\boldsymbol{x}-\boldsymbol{y})^{\top}(\boldsymbol{x}-\boldsymbol{y}) \\
& =\|\boldsymbol{x}-\boldsymbol{y}\|^{2} .
\end{aligned}
$$

Hence $\|T(\boldsymbol{x})-T(\boldsymbol{y})\|=\|\boldsymbol{x}-\boldsymbol{y}\|$. This shows that $T$ is a congruence transformation of $\mathbb{R}^{n}$.

## Congruences and Affine Transformations

## Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a congruence transformation of $\mathbb{R}^{n}$. Then there exist an $n \times n$ orthogonal matrix $\boldsymbol{Q}$ and an $n \times 1$ matrix $\boldsymbol{q}$ such that $T(\boldsymbol{x})=\boldsymbol{Q} \boldsymbol{x}+\boldsymbol{q}$, for all $\boldsymbol{x}$ in $\mathbb{R}^{n}$.

- Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$. Define a mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by the equation $f(\boldsymbol{x})=T(\boldsymbol{x})-T(\mathbf{0})$. Since $T$ preserves distance,

$$
\|f(x)\|=\|T(x)-T(0)\|=\|x-0\|=\|x\| .
$$

So $f$ preserves norms.
Also

$$
\|f(\boldsymbol{x})-f(\boldsymbol{y})\|^{2}=\|T(\boldsymbol{x})-T(\boldsymbol{y})\|^{2}=\|\boldsymbol{x}-\boldsymbol{y}\|^{2} .
$$

So

$$
\|f(x)\|^{2}-2 f(\boldsymbol{x}) \cdot f(\boldsymbol{y})+\|f(\boldsymbol{y})\|^{2}=\|\boldsymbol{x}\|^{2}-2 \boldsymbol{x} \cdot \boldsymbol{y}+\|\boldsymbol{y}\|^{2} .
$$

## Congruences and Affine Transformations (Cont'd)

- Since $\|f(\boldsymbol{x})\|=\|\boldsymbol{x}\|$ and $\|f(\boldsymbol{y})\|=\|\boldsymbol{y}\|$, we can deduce from the last equation that $f(\boldsymbol{x}) \cdot f(\boldsymbol{y})=\boldsymbol{x} \cdot \boldsymbol{y}$.
Thus, $f$ preserves inner products.
It follows that $f\left(\boldsymbol{e}_{1}\right), \ldots, f\left(\boldsymbol{e}_{n}\right)$ is an orthonormal sequence in $\mathbb{R}^{n}$. Hence

$$
f(\boldsymbol{x})=\left(f(\boldsymbol{x}) \cdot f\left(\boldsymbol{e}_{1}\right)\right) f\left(\boldsymbol{e}_{1}\right)+\cdots+\left(f(\boldsymbol{x}) \cdot f\left(\boldsymbol{e}_{n}\right)\right) f\left(\boldsymbol{e}_{n}\right) .
$$

Writing $\boldsymbol{x}$ for $\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{Q}$ for the $n \times n$ orthogonal matrix whose columns are $f\left(\boldsymbol{e}_{1}\right), \ldots, f\left(\boldsymbol{e}_{n}\right)$, we deduce that

$$
\begin{aligned}
f(\boldsymbol{x}) & =\left(\boldsymbol{x} \cdot \boldsymbol{e}_{1}\right) f\left(\boldsymbol{e}_{1}\right)+\cdots+\left(\boldsymbol{x} \cdot \boldsymbol{e}_{n}\right) f\left(\boldsymbol{e}_{n}\right) \\
& =x_{1} f\left(\boldsymbol{e}_{1}\right)+\cdots+x_{n} f\left(\boldsymbol{e}_{n}\right) \\
& =\boldsymbol{Q} \boldsymbol{x} .
\end{aligned}
$$

The proof is completed by putting $\boldsymbol{q}=T(0)$.

- We have thus identified the congruence transformations $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ of $\mathbb{R}^{n}$ as being precisely those affine transformations $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ which can be expressed in the form $T(\boldsymbol{x})=\boldsymbol{Q} \boldsymbol{x}+\boldsymbol{q}$, where $\boldsymbol{Q}$ is an $n \times n$ orthogonal matrix and $\boldsymbol{q}$ is an $n \times 1$ matrix.
- Sets $A$ and $B$ in $\mathbb{R}^{n}$ are said to be congruent if there is a congruence transformation $T$ of $\mathbb{R}^{n}$ such that $T(A)=B$.
- It is easy to verify that congruence is an equivalence relation on the family of all subsets of $\mathbb{R}^{n}$.
- In elementary geometry, any two points are congruent, any two lines are congruent, and any two planes are congruent.


## Congruent Flats

## Theorem

Let $A$ and $B$ be $r$-flats in $\mathbb{R}^{n}$. Then $A$ and $B$ are congruent.

- We consider the non-trivial cases when $r \geq 1$.

First we show that the $r$-flat $A$ is congruent to the $r$-flat $R_{r}$ defined by the equation

$$
R_{r}=\left\{\left(x_{1}, \ldots, x_{r}, 0, \ldots, 0\right): x_{1}, \ldots, x_{r} \in \mathbb{R}\right\} .
$$

Let $\boldsymbol{a} \in A$. Then $A-\boldsymbol{a}$ is an $r$-dimensional subspace of $\mathbb{R}^{n}$.
Let $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}\right\}$ be an orthonormal basis for $\mathbb{R}^{n}$ such that $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{r}\right\}$ is an orthonormal basis for $A-\boldsymbol{a}$. Define a congruence transformation $T$ of $\mathbb{R}^{n}$ by the equation

$$
T(\boldsymbol{x})=\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}\right] \boldsymbol{x}+\boldsymbol{a}
$$

Then $T\left(R_{r}\right)=A$. So $A$ and $R_{r}$ are congruent. Similarly, $B$ and $R_{r}$ are congruent. Thus $A$ and $B$ are congruent.

## Congruent Copies of a Set

- We now show how, given any $r$-dimensional set $A$ in $\mathbb{R}^{n}$ with $1 \leq r \leq n$, it is possible to find a congruent copy of $A$ in the space $\mathbb{R}^{r}$.
- Moreover, we show that any two such congruent copies of $A$ in $\mathbb{R}^{r}$ are themselves congruent to one another in $\mathbb{R}^{r}$.
- Let $A$ be an $r$-dimensional $(1 \leq r \leq n)$ set in $\mathbb{R}^{n}$. Then aff $A$ is an $r$-flat. So by the theorem, there is a congruence transformation of $\mathbb{R}^{n}$ which maps aff $A$ onto the $r$-flat

$$
R_{r}=\left\{\left(x_{1}, \ldots, x_{r}, 0, \ldots, 0\right): x_{1}, \ldots, x_{r} \in \mathbb{R}\right\} .
$$

It follows that there is a set $B$ in $R_{r}$, which is congruent to $A$. Let $i: R_{r} \rightarrow \mathbb{R}^{r}$ be the mapping that identifies each point $\left(x_{1}, \ldots, x_{r}\right.$, $0, \ldots, 0)$ of $R_{r}$ with the point $\left(x_{1}, \ldots, x_{r}\right)$ of $\mathbb{R}^{r}$. Then $i(B)$ is a set lying in $\mathbb{R}^{r}$ which is a congruent copy of the set $A$ in $\mathbb{R}^{n}$.

- In general, there will be an infinite number of such copies. We now see how any two of these copies of $A$ are related.


## Congruent Copies of a Set (Cont'd)

- Let $i(B)$ and $i(C)$ be congruent copies of $A$ in $\mathbb{R}^{r}$, where $B$ and $C$ are congruent to $A$ in $\mathbb{R}^{n}$ and lie in $R_{r}$.
Then there is a congruence transformation $T$ of $\mathbb{R}^{n}$ such that $T(B)=C$, and which maps $R_{r}$ onto itself.
By considering the images of $\mathbf{0}$ and the elementary vectors $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{r}$ under $T$, it follows that $T$ can be expressed in the form

$$
T(x)=\left[\begin{array}{cc}
\boldsymbol{Q} & 0 \\
0 & *
\end{array}\right] x+\left[\begin{array}{c}
\boldsymbol{q} \\
0
\end{array}\right]
$$

where $\boldsymbol{Q}$ is an $r \times r$ orthogonal matrix, $\boldsymbol{q}$ is an $r \times 1$ matrix, and $\mathbf{0}$ represents zero matrices of suitable shapes and sizes.
Denote by $T_{r}$ the congruence transformation of $\mathbb{R}^{r}$ defined by the equation $T_{r}(\boldsymbol{x})=\boldsymbol{Q} \boldsymbol{x}+\boldsymbol{q}$, where $\boldsymbol{x}=\left(x_{1}, \ldots, x_{r}\right)$.
Then $T_{r}(i(B))=i(C)$. This shows that the congruent copies $i(B)$ and $i(C)$ of $A$ in $\mathbb{R}^{r}$ are congruent to one another in $\mathbb{R}^{r}$.

## Subsection 7

## Open Sets and Closed Sets

## Open and Closed Balls

- Let $\boldsymbol{a} \in \mathbb{R}^{n}$ and $r>0$.
- Then the open ball $B(\boldsymbol{a} ; r)$ (closed ball $B[a ; r]$ ) with center a and radius $r$ is the set of all points of $\mathbb{R}^{n}$ whose distance from $\boldsymbol{a}$ is less than (less than or equal to) $r$, i.e.,

$$
\begin{aligned}
B(\boldsymbol{a} ; r) & =\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\|\boldsymbol{x}-\boldsymbol{a}\|<r\right\} ; \\
B[\boldsymbol{a} ; r] & =\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\|\boldsymbol{x}-\boldsymbol{a}\| \leq r\right\} .
\end{aligned}
$$

- $\ln \mathbb{R}^{1}$ the open (closed) ball with center $a$ and radius $r$ is the open (closed) interval ( $a-r, a+r$ ) ([a-r, $a+r]$ ).
- In $\mathbb{R}^{2}$ open (closed) balls are referred to as open (closed) discs.


## Open and Closed Unit Balls

- The balls $B(0 ; 1)$ and $B[0 ; 1]$ in $\mathbb{R}^{n}$ are called, respectively, the open unit ball and the closed unit ball.
- If we denote them, respectively, by $V$ and $U$, then

$$
V=\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\|\boldsymbol{x}\|<1\right\} \quad \text { and } \quad U=\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\|\boldsymbol{x}\| \leq 1\right\} .
$$

- It follows that $B(\boldsymbol{a} ; r)=\boldsymbol{a}+r V$ and $B[\mathbf{a} ; r]=\boldsymbol{a}+r U$.
- We adopt $U$ as the standard notation for the closed unit ball.


## Open Sets

- A point $\boldsymbol{a}$ of a set $A$ in $\mathbb{R}^{n}$ is said to be an interior point of $A$ if it is the center of some open ball which lies in $A$, i.e. if there exists some $r>0$ such that $B(\mathbf{a} ; r) \subseteq A$.
- The set of interior points of $A$ is called the interior of $A$ and is denoted by int $A$.
- Clearly int $B \subseteq \operatorname{int} A$ when $B \subseteq A$.
- A set in $\mathbb{R}^{n}$, each of whose points is an interior point of the set, is said to be open.
- Since $\operatorname{int} A \subseteq A$ is always true, $A$ is open if and only if $\operatorname{int} A=A$.
- Clearly the sets $\varnothing$ and $\mathbb{R}^{n}$ are open.


## Balls, Halfspaces, Hyperplanes

## Theorem

In $\mathbb{R}^{n}$ open balls and open halfspaces are open, and hyperplanes have empty interiors.

- Consider the open ball $B(\boldsymbol{a} ; r)$, where $\boldsymbol{a} \in \mathbb{R}^{n}$ and $r>0$. Let $x \in B(\boldsymbol{a} ; r)$. We prove that $B(\boldsymbol{a} ; r)$ is open by showing that $B(\boldsymbol{x} ; \boldsymbol{s}) \subseteq B(\boldsymbol{a} ; r)$, where $s$ is the positive number $r-\|\boldsymbol{x}-\boldsymbol{a}\|$.

Let $\boldsymbol{y} \in B(\boldsymbol{x} ; \boldsymbol{s})$. Then $\|\boldsymbol{y}-\boldsymbol{x}\|<s$.
So by the triangle inequality

$$
\begin{aligned}
\|\boldsymbol{y}-\boldsymbol{a}\| & \leq\|\boldsymbol{y}-\boldsymbol{x}+\boldsymbol{x}-\boldsymbol{a}\| \\
& \leq\|\boldsymbol{y}-\boldsymbol{x}\|+\|\boldsymbol{x}-\boldsymbol{a}\| \\
& <s+\|\boldsymbol{x}-\boldsymbol{a}\|=r
\end{aligned}
$$

Thus $\boldsymbol{y} \in B(\boldsymbol{a} ; r)$. So $B(\boldsymbol{x} ; \boldsymbol{s}) \subseteq B(\boldsymbol{a} ; r)$.


## Balls, Halfspaces, Hyperplanes (Cont'd)

- Consider the open halfspace $A$ in $\mathbb{R}^{n}$ which is defined by the inequality $c_{0}+\boldsymbol{c} \cdot \boldsymbol{x}>0$, where $\boldsymbol{c}$ is a unit vector. Let $\boldsymbol{a} \in A$. We prove that $A$ is open by showing that $B(a ; r) \subseteq A$, where $r$ is the positive number $c_{0}+\boldsymbol{c} \cdot \boldsymbol{a}$. Let $\boldsymbol{y} \in B(\boldsymbol{a} ; r)$. Then $\|\boldsymbol{y}-\boldsymbol{a}\|<r$. Moreover,

$$
c_{0}+\boldsymbol{c} \cdot \boldsymbol{y}=c_{0}+\boldsymbol{c} \cdot \boldsymbol{a}+\boldsymbol{c} \cdot(\boldsymbol{y}-\boldsymbol{a})=r+\boldsymbol{c} \cdot(\boldsymbol{y}-\boldsymbol{a})>0,
$$

since, by the Cauchy-Schwarz Inequality, $|\boldsymbol{c} \cdot(\boldsymbol{y}-\boldsymbol{a})| \leq\|\boldsymbol{y}-\boldsymbol{a}\|<r$.
Thus $\boldsymbol{y} \in A$. So $B(\boldsymbol{a} ; r) \subseteq A$.

- Consider the hyperplane $H$ in $\mathbb{R}^{n}$ with equation $c_{0}+\boldsymbol{c} \cdot \boldsymbol{x}=0$, where $\boldsymbol{c}$ is a unit vector. We show that no point $\boldsymbol{a}$ of $H$ is an interior point of $H$. Let $r>0$. Then $\boldsymbol{a}+\frac{1}{2} r \boldsymbol{c} \notin H$ and $\left\|\boldsymbol{a}+\frac{1}{2} r \boldsymbol{c}-\boldsymbol{a}\right\|=\frac{1}{2} r$. Therefore, $\boldsymbol{a}+\frac{1}{2} r \boldsymbol{c} \in B(\boldsymbol{a} ; r)$ and $B(\boldsymbol{a} ; r) \nsubseteq H$. Hence, $\boldsymbol{a}$ is not an interior point of $H$. So $H$ has an empty interior.


## Properties of the Interior

## Corollary

Let $A$ be a set in $\mathbb{R}^{n}$. Then $\operatorname{int} A$ is open and $\operatorname{int}(\operatorname{int} A)=\operatorname{int} A$.

- If $\boldsymbol{a} \in \operatorname{int} A$, then there exists $r>0$ such that $B(\boldsymbol{a} ; r) \subseteq A$. Since $B(\mathbf{a} ; r)$ is open,

$$
B(\boldsymbol{a} ; r)=\operatorname{int}(B(\boldsymbol{a} ; r)) \subseteq \operatorname{int} A .
$$

Hence, $\boldsymbol{a} \in \operatorname{int}(\operatorname{int} A)$. So $\operatorname{int} A \subseteq \operatorname{int}(\operatorname{int} A)$. Thus, $\operatorname{int} A$ is open and $\operatorname{int}(\operatorname{int} A)=\operatorname{int} A$.

## Properties of Open Sets

## Theorem

In $\mathbb{R}^{n}$ every union and every finite intersection of open sets is open.

- Let $A$ be the union of a family $\left(A_{i}: i \in I\right)$ of open sets in $\mathbb{R}^{n}$. If $\boldsymbol{a} \in A$, then $\boldsymbol{a} \in A_{i}$, for some $i \in l$. Since $A_{i}$ is open, there is an $r>0$ such that $B(\boldsymbol{a} ; r) \subseteq A_{i}$. Hence, $B(\boldsymbol{a} ; r) \subseteq A$. Thus, $A$ is open.
- Let $A$ be the intersection of the open sets $A_{1}, \ldots, A_{m}$ in $\mathbb{R}^{n}$. If $\boldsymbol{a} \in A$, then $\boldsymbol{a} \in A_{1}, \ldots, \boldsymbol{a} \in A_{m}$. Since $A_{1}, \ldots, A_{m}$ are open, there exist $r_{1}, \ldots, r_{m}>0$ such that $B\left(\boldsymbol{a} ; r_{1}\right) \subseteq A_{1}, \ldots, B\left(\mathbf{a} ; r_{m}\right) \subseteq A_{m}$. Let $r=\min \left\{r_{1}, \ldots, r_{m}\right\}$. Then $r>0$ and

$$
B(\mathbf{a} ; r) \subseteq B\left(\mathbf{a} ; r_{1}\right) \cap \cdots \cap B\left(\mathbf{a} ; r_{m}\right) \subseteq A_{1} \cap \cdots \cap A_{m}=A .
$$

Thus $A$ is open.

## Intersections of Open Sets

- An arbitrary intersection of open sets in $\mathbb{R}^{n}$ need not be open.
- To see this, we note that the intersection of the sequence

$$
V, \frac{1}{2} V, \frac{1}{3} V, \ldots, \frac{1}{k} V, \ldots
$$

of open balls centered at the origin of $\mathbb{R}^{n}$ is the singleton set $\{0\}$, which is not open.

## Closure of a Set

- A point $\boldsymbol{a}$ of $\mathbb{R}^{n}$ is said to be a closure point of a set $A$ in $\mathbb{R}^{n}$ if every open ball with center $\boldsymbol{a}$ meets $A$, i.e., if for every $r>0$ the ball $B(a ; r)$ meets $A$.
- The set of closure points of $A$ is called the closure of $A$ and is denoted by cl $A$.
- Clearly $A \subseteq c \mid A$.
- Also cl $B \subseteq \mathrm{cl} A$ whenever $B \subseteq A$.
- Roughly speaking, the closure of $A$ is the set of all points in $\mathbb{R}^{n}$ which either lie in $A$ or are arbitrarily close to $A$.
- Thus, in $\mathbb{R}^{1}$ the closures of the intervals $(0,1],(0,1),[0,1)$ are all equal to the interval $[0,1]$.
- In $\mathbb{R}^{2}$ the closures of the discs $B(a ; r)$ and $B[a ; r]$ are both equal to the disc $B[a ; r]$.


## Closed Sets

- A set in $\mathbb{R}^{n}$ each of whose closure points lies in the set is said to be closed.
- Thus a set $A$ in $\mathbb{R}^{n}$ is closed if and only if $\mathrm{cl} A \subseteq A$.
- Since $A \subseteq \mathrm{cl} A$ is always true, $A$ is closed if and only if $\mathrm{cl} A=A$.
- Clearly the sets $\varnothing$ and $\mathbb{R}^{n}$ are closed.
- Thus the sets $\varnothing$ and $\mathbb{R}^{n}$ are both open and closed.
- It can be shown that they are the only sets in $\mathbb{R}^{n}$ with this property.
- A set in $\mathbb{R}^{n}$ may be neither open nor closed.
- For example, in $\mathbb{R}^{1}$ the interval $[0,1)$ is such a set.


## Closure and Interior

- For each set $A$ in $\mathbb{R}^{n}$, we denote by $A^{c}$ the complement of $A$ in $\mathbb{R}^{n}$, i.e., the set $\mathbb{R}^{n} \backslash A$.


## Theorem

Let $A$ be a set in $\mathbb{R}^{n}$. Then $\mathrm{cl} A=\left(\operatorname{int} A^{c}\right)^{c}$.

- If $\boldsymbol{x} \in \mathrm{cl} A$, then each open ball with center $\boldsymbol{x}$ contains a point of $A$. So $\boldsymbol{x}$ cannot belong to $\operatorname{int} A^{c}$, i.e., $\boldsymbol{x} \in\left(\operatorname{int} A^{c}\right)^{c}$.
If $\boldsymbol{x} \in\left(\operatorname{int} A^{c}\right)^{c}$, then each open ball with center $\boldsymbol{x}$ must contain a point of $A$, i.e., $\boldsymbol{x} \in \mathrm{cl} A$.
Thus cl $A=\left(\operatorname{int} A^{c}\right)^{c}$.


## Closed and Open Sets

## Theorem

A set in $\mathbb{R}^{n}$ is closed if and only if its complement in $\mathbb{R}^{n}$ is open.

- Let $A$ be a set in $\mathbb{R}^{n}$. Suppose first that $A$ is closed. Then $\mathrm{cl} A=A$. It follows from a previous corollary and the preceding theorem that $A^{c}$ is the open set int $A^{c}$. Suppose next that $A^{c}$ is open. Then $\operatorname{int} A^{c}=A^{c}$. It follows from the theorem that $\mathrm{cl} A=A$, i.e., $A$ is closed.


## Corollary

Let $A$ be a set in $\mathbb{R}^{n}$. Then $\mathrm{cl} A$ is closed and $\mathrm{cl}(\mathrm{cl} A)=c \mid A$.

- Now $\operatorname{int} A^{c}$ is open by a previous corollary. Hence by the theorem its complement cl $A$ is closed.


## Properties of Closed Sets

## Theorem

In $\mathbb{R}^{n}$ every intersection and every finite union of closed sets is closed.

- Let $\left(A_{i}: i \in I\right)$ be a family of closed sets in $\mathbb{R}^{n}$. Then, for each $i \in I$, $A_{i}^{c}$ is open. By a previous theorem, $\bigcup\left(A_{i}^{c}: i \in I\right)$ is open. Hence

$$
\bigcap\left(A_{i}: i \in I\right)=\left(\bigcup\left(A_{i}^{c}: i \in I\right)\right)^{c}
$$

is closed.
Now let $A_{1}, \ldots, A_{m}$ be closed sets in $\mathbb{R}^{n}$. Then $A_{1}^{c}, \ldots, A_{m}^{c}$ are open. By a previous theorem, $A_{1}^{c} \cap \cdots \cap A_{m}^{c}$ is open. Hence

$$
A_{1} \cup \cdots \cup A_{m}=\left(A_{1}^{c} \cap \cdots \cap A_{m}^{c}\right)^{c}
$$

is closed.

## Closures and Unions

## Corollary

Let $A_{1}, \ldots, A_{m}$ be sets in $\mathbb{R}^{n}$. Then

$$
\mathrm{cl}\left(A_{1} \cup \cdots \cup A_{m}\right)=\operatorname{cl} A_{1} \cup \cdots \cup \mathrm{cl} A_{m} .
$$

- Since $A_{1} \cup \cdots \cup A_{m}$ is contained in the closed set $c\left|A_{1} \cup \cdots \cup c\right| A_{m}$,

$$
\mathrm{cl}\left(A_{1} \cup \cdots \cup A_{m}\right) \subseteq \operatorname{cl} A_{1} \cup \cdots \cup \mathrm{cl} A_{m} .
$$

Trivially,

$$
\mathrm{cl}\left(A_{1} \cup \cdots \cup A_{m}\right) \supseteq \operatorname{cl} A_{1} \cup \cdots \cup \mathrm{cl} A_{m} .
$$

Thus,

$$
\mathrm{cl}\left(A_{1} \cup \cdots \cup A_{m}\right)=\operatorname{cl} A_{1} \cup \cdots \cup \mathrm{cl} A_{m} .
$$

## Closed Balls, Closed Halfspaces, Flats

## Theorem

In $\mathbb{R}^{n}$ closed balls, closed halfspaces and flats are closed.

- Let $A$ be the closed ball $B[\mathbf{a} ; r]$, where $\boldsymbol{a} \in \mathbb{R}^{n}$ and $r>0$. We prove that $A^{c}$ is open. Let $\boldsymbol{x} \in A^{c}$. Then we show that $B(\boldsymbol{x} ; s) \subseteq A^{c}$, where $s$ is the positive number $\|\boldsymbol{x}-\boldsymbol{a}\|-r$. Suppose that this is not the case. Then there is some point of $A, \boldsymbol{y}$ say, which lies in $B(\boldsymbol{x} ; \boldsymbol{s})$. Now

$$
\|\boldsymbol{x}-\boldsymbol{a}\|=\|\boldsymbol{x}-\boldsymbol{y}+\boldsymbol{y}-\boldsymbol{a}\|<s+r=\|\boldsymbol{x}-\boldsymbol{a}\|,
$$

which is impossible. Hence $B(\boldsymbol{x} ; s) \subseteq A^{C}$. A previous theorem shows that open halfspaces in $\mathbb{R}^{n}$ are open. Hence their complements in $\mathbb{R}^{n}$, i.e., the closed halfspaces, are closed. In $\mathbb{R}^{n}$ each hyperplane is the intersection of two closed halfspaces. So it is closed. By a previous corollary, each flat in $\mathbb{R}^{n}$ is an intersection of hyperplanes. So it is closed.

## Boundaries

- A point $\boldsymbol{a}$ of $\mathbb{R}^{n}$ is said to be a boundary point of a set $A$ in $\mathbb{R}^{n}$ if every open ball with center $\boldsymbol{a}$ meets both $A$ and its complement $A^{c}$.
- The set of boundary points of $A$ is called the boundary of $A$ and is denoted by bd $A$.
- Thus a boundary point of a set in $\mathbb{R}^{n}$ is a point of $\mathbb{R}^{n}$ which is arbitrarily close both to the set and its complement.
- It follows from the preceding definitions that $\mathrm{bd} A=(\mathrm{cl} A) \cap\left(\mathrm{cl} A^{c}\right)$.
- Hence the boundary of a set in $\mathbb{R}^{n}$ is always closed, being the intersection of two closed sets.


## More Properties of Boundaries

- A boundary point of a set in $\mathbb{R}^{n}$ may or may not belong to the set itself.
- For example, in $\mathbb{R}^{1}$ the interval $[0,1)$ contains its boundary point 0 , but not its boundary point 1 .
- For any set $A$ in $\mathbb{R}^{n}$, the sets $A$ and $A^{c}$ have the same boundary.
- Moreover, the sets $\operatorname{int} A, \operatorname{bd} A, \operatorname{int} A^{c}$ form a partition of $\mathbb{R}^{n}$.
- Open (closed) sets in $\mathbb{R}^{n}$ are characterized by the property that they contain none (all) of their boundary points.


## Dependence on Ambient Space

- The above definitions of the interior and the boundary of a set depend upon the space in which the set is embedded.
- For example, a closed line segment in $\mathbb{R}^{2}$ has an empty interior and is its own boundary.
- The same line segment considered as a subset of $\mathbb{R}^{1}$ has for its interior the set of all of its points with the exception of its two boundary points, these forming its boundary in $\mathbb{R}^{1}$.
- The latter interior and boundary, obtained by regarding the one-dimensional line segment as a set in the one-dimensional space $\mathbb{R}^{1}$, correspond to what may be thought of as the "intrinsic" interior and boundary of the segment.


## Relative Interior

- A point $\boldsymbol{a}$ of a set $A$ in $\mathbb{R}^{n}$ is said to be a relative interior point of $A$ if it is the center of some open ball whose intersection with aff $A$ is contained in $A$, i.e., if there exists $r>0$ such that

$$
B(\mathbf{a} ; r) \cap \operatorname{aff} A \subseteq A
$$

- The set of all relative interior points of $A$ is called the relative interior of $A$ and is denoted by ri $A$.
- The relative interior of an $n$-dimensional set in $\mathbb{R}^{n}$ coincides with its interior.
- The relative interior of any flat in $\mathbb{R}^{n}$ is itself.


## Relative Boundary

- A point $\boldsymbol{a}$ of $\mathbb{R}^{n}$ is said to be a relative boundary point of a set $A$ in $\mathbb{R}^{n}$ if it lies in the closure of $A$ but not in its relative interior.
- The set of all relative boundary points of $A$ is called the relative boundary of $A$ and is denoted by rebd $A$.
- The relative boundary of an $n$-dimensional set in $\mathbb{R}^{n}$ coincides with its boundary.


## Properties of Relative Interior

- It is to be noted that while the inclusion $B \subseteq A$ implies both $\operatorname{int} B \subseteq \operatorname{int} A$ and $\mathrm{cl} B \subseteq \mathrm{cl} A$, it does not in general imply ri $B \subseteq$ ri $A$.
- For example, if $B$ is one side of a square $A$ in $\mathbb{R}^{2}$, then ri $B$ and ri $A$ are non-empty but disjoint.
- If, however, $B \subseteq A$ and $\operatorname{dim} B=\operatorname{dim} A$ or, equivalently, aff $B=\operatorname{aff} A$, then ri $B \subseteq \mathrm{ri} A$.


## Flats and Relative Boundaries

- Suppose that $\boldsymbol{a}$ is a point of a set $A$ in $\mathbb{R}^{n}$ and that $\boldsymbol{x}$ is a point of aff $A$ not lying in $A$.
- Define a scalar $\lambda_{0}$ by the equation

$$
\lambda_{0}=\sup \{\lambda \in[0,1]:(1-\lambda) a+\lambda x \in A\} .
$$

- Then $\left(1-\lambda_{0}\right) \boldsymbol{a}+\lambda_{0} \boldsymbol{x}$ is a relative boundary point of $A$ lying between $\boldsymbol{a}$ and $\boldsymbol{x}$.
- It follows that flats are the only sets in $\mathbb{R}^{n}$ which have an empty relative boundary.


## Subsection 8

## Convergence and Compactness

## Convergence of Sequences

- In $\mathbb{R}^{n}$ a sequence $\boldsymbol{x}_{1}, \ldots, x_{k}, \ldots$ of points is said to converge to a point $\boldsymbol{x}$ if $\left\|\boldsymbol{x}_{k}-\boldsymbol{x}\right\| \rightarrow 0$ as $k \rightarrow \infty$, i.e., if the distance $\left\|\boldsymbol{x}_{k}-\boldsymbol{x}\right\|$ between $\boldsymbol{x}_{k}$ and $\boldsymbol{x}$ tends to zero as $k$ tends to infinity.
- We indicate such convergence by writing $\boldsymbol{x}_{k} \rightarrow \boldsymbol{x}$ as $k \rightarrow \infty$, or simply $\boldsymbol{x}_{k} \rightarrow \boldsymbol{x}$.
- This convergence for sequences of points in $\mathbb{R}^{n}$ coincides with that of classical convergence for real sequences.


## Properties of Convergence

- The inequality $|\|\boldsymbol{x}\|-\|\boldsymbol{y}\|| \leq\|\boldsymbol{x}-\boldsymbol{y}\|$ proven previously, shows that

$$
\left|\left\|\boldsymbol{x}_{k}\right\|-\|\boldsymbol{x}\|\right| \leq\left\|\boldsymbol{x}_{k}-\boldsymbol{x}\right\| .
$$

Hence $\left\|\boldsymbol{x}_{k}\right\| \rightarrow\|\boldsymbol{x}\|$ as $k \rightarrow \infty$ whenever $\boldsymbol{x}_{k} \rightarrow \boldsymbol{x}$ as $k \rightarrow \infty$.

- The triangle inequality shows that

$$
\left\|x_{i}-x_{j}\right\| \leq\left\|x_{i}-x\right\|+\left\|x-x_{j}\right\| .
$$

Hence $\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\| \rightarrow 0$ as $i, j \rightarrow \infty$ whenever $\boldsymbol{x}_{k} \rightarrow \boldsymbol{x}$ as $k \rightarrow \infty$.

## Convergence and Coordinate-wise Convergence

- Suppose that $\boldsymbol{x}_{k}=\left(x_{k 1}, \ldots, x_{k n}\right)$ for $k=1,2, \ldots$ and that $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$.
- Then, for $i=1, \ldots, n$, we have

$$
\left|x_{k i}-x_{i}\right|^{2} \leq\left(x_{k 1}-x_{1}\right)^{2}+\cdots+\left(x_{k n}-x_{n}\right)^{2}=\left\|\boldsymbol{x}_{k}-\boldsymbol{x}\right\|^{2} .
$$

- We also have

$$
\begin{aligned}
\left\|\boldsymbol{x}_{k}-\boldsymbol{x}\right\|^{2} & =\left(x_{k 1}-x_{1}\right)^{2}+\cdots+\left(x_{k n}-x_{n}\right)^{2} \\
& \leq\left(\left|x_{k 1}-x_{1}\right|+\cdots+\left|x_{k n}-x_{n}\right|\right)^{2} .
\end{aligned}
$$

- Hence

$$
\left|x_{k i}-x_{i}\right| \leq\left\|\boldsymbol{x}_{k}-\boldsymbol{x}\right\| \leq\left|x_{k 1}-x_{1}\right|+\cdots+\left|x_{k n}-x_{n}\right| .
$$

- Thus, $\boldsymbol{x}_{k} \rightarrow \boldsymbol{x}$ if and only if $x_{k i} \rightarrow x_{i}$, for $i=1, \ldots, n$.
- So the convergence of $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}, \ldots$ to $\left(x_{1}, \ldots, x_{n}\right)$ is equivalent to the convergence of each of the coordinate sequences $x_{1 i}, \ldots, x_{k i}, \ldots$ for $i=1, \ldots, n$.


## Uniqueness and Linearity Properties

- A consequence of coordinate-wise convergence is that a sequence of points in $\mathbb{R}^{n}$ can converge to at most one point.
- Moreover, if $\boldsymbol{x}_{k} \rightarrow \boldsymbol{x}, \boldsymbol{y}_{k} \rightarrow \boldsymbol{y}$ in $\mathbb{R}^{n}$ and $\lambda_{k} \rightarrow \lambda, \mu_{k} \rightarrow \mu$ in $\mathbb{R}$, then

$$
\begin{gathered}
\boldsymbol{x}_{k} \cdot \boldsymbol{y}_{k} \rightarrow \boldsymbol{x} \cdot \boldsymbol{y} \quad \text { in } \mathbb{R} \\
\lambda_{k} \boldsymbol{x}_{k}+\mu_{k} \boldsymbol{y}_{k} \rightarrow \lambda \boldsymbol{x}+\mu \boldsymbol{y} \quad \text { in } \mathbb{R}^{n} .
\end{gathered}
$$

## Boundedness

- We recall that a sequence $x_{1}, \ldots, x_{k}, \ldots$ of real numbers is said to be bounded if there exists a real number $r$ such that $\left|x_{k}\right| \leq r$ for $k=1,2, \ldots$.
- Similarly, a sequence $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}, \ldots$ of points in $\mathbb{R}^{n}$ is defined to be bounded if there exists a real number $r$ such that $\left\|x_{k}\right\| \leq r$ for $k=1,2, \ldots$.
- Every convergent sequence of real numbers is bounded, and the same is also true for convergent sequences of points in $\mathbb{R}^{n}$.
To see this, suppose that $\boldsymbol{x}_{k} \rightarrow \boldsymbol{x}$ in $\mathbb{R}^{n}$. By what we proved above, $\left\|\boldsymbol{x}_{k}\right\| \rightarrow\|\boldsymbol{x}\|$. So there exists a real number $r$ such that $\left\|\boldsymbol{x}_{k}\right\| \leq r$ for $k=1,2, \ldots$.


## Boundedness and Convergence

- The next theorem generalizes to $\mathbb{R}^{n}$ the classical result that every bounded sequence of real numbers contains a convergent subsequence.


## Theorem

Every bounded sequence of points of $\mathbb{R}^{n}$ contains a convergent subsequence.

- Let $x_{1}, \ldots, x_{k}, \ldots$ be a bounded sequence of points in $\mathbb{R}^{n}$. Then each of the $n$ coordinate sequences associated with $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}, \ldots$ is bounded in $\mathbb{R}$. In particular, the sequence of the first coordinates of $\boldsymbol{x}_{1}, \ldots, \boldsymbol{k}_{k}, \ldots$ is a bounded sequence of real numbers. Thus there exists a subsequence of $x_{1}, \ldots, x_{k}, \ldots$ such that the sequence of its first coordinates converges. Similarly, there exists a subsequence of this subsequence of $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}, \ldots$ such that the sequence of its second coordinates converges.


## Boundedness and Convergence (Cont'd)

- After performing this subsequence operation $n$ times in all, we arrive at a subsequence of $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}, \ldots$ each of whose $n$ coordinate sequences converges.
l.e., we have found a convergent subsequence of $x_{1}, \ldots, x_{k}, \ldots$.


## Closure in Terms of Sequences

## Theorem

Let $A$ be a set in $\mathbb{R}^{n}$. Then $\boldsymbol{x} \in \mathrm{cl} A$ if and only if there exists a sequence of points of $A$ which converges to $\boldsymbol{x}$.

- Suppose first that $x_{1}, \ldots, x_{k}, \ldots$ is a sequence of points of $A$ which converges to a point $x$ of $\mathbb{R}^{n}$. Then, for each $r>0$, there is some point $\boldsymbol{x}_{k}$ of the sequence such that $\left\|\boldsymbol{x}_{k}-\boldsymbol{x}\right\|<r$. Hence the open ball $B(\boldsymbol{x} ; r)$ meets $A$. This shows that $\boldsymbol{x} \in \mathrm{cl} A$.
Suppose next that $\boldsymbol{x} \in \mathrm{cl} A$. Then, for each positive integer $k$, the ball $B\left(\boldsymbol{x} ; \frac{1}{k}\right)$ meets $A$. Hence there exists $\boldsymbol{x}_{k} \in A$ such that $\left\|\boldsymbol{x}_{k}-\boldsymbol{x}\right\|<\frac{1}{k}$. It follows that $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}, \ldots$ converges to $\boldsymbol{x}$.


## Closed Sets in Terms of Sequences

## Corollary

Let $A$ be a set in $\mathbb{R}^{n}$. Then $A$ is closed if and only if each convergent sequence of points of $A$ converges to a point of $A$.

- The corollary follows from the theorem and the fact that $A$ is closed if and only if $A=\mathrm{cl} A$.


## Bounded and Compact Subsets

- The set $A$ in $\mathbb{R}^{n}$ is said to be bounded if there exists a real number $r$ such that $\|\boldsymbol{a}\| \leq r$ for all $\boldsymbol{a} \in A$.
- Clearly, a set in $\mathbb{R}^{n}$ is bounded if and only if each sequence of its points is bounded.
- In $\mathbb{R}^{n}$ balls and finite sets are bounded, whereas $r$-flats $(r \geq 1)$ are not.
- A previous theorem and a corollary, taken together, show that each sequence of points of a closed bounded set in $\mathbb{R}^{n}$ contains some subsequence which converges to a point of the set.
- A subset of $\mathbb{R}^{n}$ is said to be compact, if each sequence of its points contains some subsequence that converges to a point of the subset.


## Characterization of Compact Subsets

## Theorem

Let $A$ be a set in $\mathbb{R}^{n}$. Then $A$ is compact if and only it it is both closed and bounded.

- We know that closed bounded subsets of $\mathbb{R}^{n}$ are compact. Suppose, then, that $A$ is compact. We show first that $A$ is closed. If $x \in \mathrm{cl} A$, then, by a previous theorem, there is a sequence of points of $A$ which converges to $\boldsymbol{x}$. Every subsequence of such a sequence also converges to $\boldsymbol{x}$. The compactness of $A$ and the uniqueness of limits show that $x \in A$. Hence $A$ is closed.

Suppose next that $A$ is not bounded. Then, for each positive integer $k$, there must exist a point $x_{k}$ of $A$ such that $\left\|x_{k}\right\|>k$. The sequence $x_{1}, \ldots, x_{k}, \ldots$ of points of $A$ contains no bounded subsequence, and hence no convergent subsequence, contrary to the hypothesis that $A$ is compact. Hence $A$ is both closed and bounded.

## Compactness and Coverings

## Theorem

Let $A$ be a non-empty compact set in $\mathbb{R}^{n}$ and let $r>0$. Then there exists a finite number of points $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ of $A$ such that

$$
A \subseteq B\left(\boldsymbol{a}_{1} ; r\right) \cup \cdots \cup B\left(\boldsymbol{a}_{m} ; r\right)
$$

- We argue by contradiction. Suppose that no such finite number of points of $A$ exists. Let $x_{1} \in A$. Then $A \nsubseteq B\left(x_{1} ; r\right)$. Hence there exists a point $\boldsymbol{x}_{2}$ of $A$ such that $\left\|\boldsymbol{x}_{2}-\boldsymbol{x}_{1}\right\| \geq r$. Now $A \nsubseteq B\left(\boldsymbol{x}_{1} ; r\right) \cup B\left(\boldsymbol{x}_{2} ; r\right)$. Hence there exists a point $x_{3}$ of $A$ such that $\left\|x_{3}-x_{1}\right\| \geq r$ and $\left\|x_{3}-x_{2}\right\| \geq r$. Continuing in this way, we produce a sequence $x_{1}, \ldots, x_{k}, \ldots$ of points of $A$ with the property that $\left\|x_{i}-x_{j}\right\| \geq r$ whenever $i \neq j$. Clearly such a sequence cannot contain a convergent subsequence. This contradicts the compactness of $A$.


## Balls of Fixed Radius in a Covering

## Lemma

Let $A$ be a compact set in $\mathbb{R}^{n}$ and let $\left(U_{i}: i \in I\right)$ be a family of open sets in $\mathbb{R}^{n}$ whose union contains $A$. Then there exists $r>0$ such that, for each $\boldsymbol{x}$ in $A$, the open ball $B(\boldsymbol{x} ; r)$ is contained in some $U_{j}$.

- We argue by contradiction. Suppose that no such $r>0$ exists. Then, for each positive integer $k$, there is some point $\boldsymbol{a}_{k}$ of $A$ such that $B\left(\boldsymbol{a}_{k} ; \frac{1}{k}\right)$ is not contained in any $U_{i}$. Since $A$ is compact, the sequence $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}, \ldots$ has a subsequence which converges to a point $\boldsymbol{a}$ of $A$. This point a must belong to one of the $U_{i}$ 's, $U^{*}$ say.


## Balls of Fixed Radius in a Covering (Cont'd)

- Since $U^{*}$ is open, there is an $s>0$ such that $B(a ; 2 s) \subseteq U^{*}$.

Since some subsequence of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}, \ldots$ converges to $\boldsymbol{a}$, there are infinitely many positive integers $k$ for which $\left\|\boldsymbol{a}_{k}-\boldsymbol{a}\right\|<s$.
Choose one of these positive integers, $m$ say, so large that $\frac{1}{m}<s$. Let $\boldsymbol{x} \in B\left(\boldsymbol{a}_{m} ; \frac{1}{m}\right)$. Then

$$
\|\boldsymbol{x}-\boldsymbol{a}\| \leq\left\|\boldsymbol{x}-\boldsymbol{a}_{m}\right\|+\left\|\boldsymbol{a}_{m}-\boldsymbol{a}\right\|<s+s=2 s .
$$

So $\boldsymbol{x} \in B(\mathbf{a} ; 2 s)$. Thus $B\left(\boldsymbol{a}_{m} ; \frac{1}{m}\right) \subseteq B(\mathbf{a} ; 2 s) \subseteq U^{*}$. This contradicts the assumption that $B\left(\boldsymbol{a}_{m} ; \frac{1}{m}\right)$ is not contained in any $U_{i}$.

## Coverings and Finite Subcoverings

## Theorem

Let $A$ be a compact set in $\mathbb{R}^{n}$ and let $\left(U_{i}: i \in I\right)$ be a family of open sets in $\mathbb{R}^{n}$ whose union contains $A$. Then there exists a finite subset $I^{*}$ of $I$ such that the union of the family $\left(U_{i}: i \in I^{*}\right)$ contains $A$.

- We may suppose that $A$ is non-empty. By the lemma, there is an $r>0$ such that, for each $\boldsymbol{x}$ in $A$, the open ball $B(\boldsymbol{x} ; r)$ is contained in some $U_{i}$. By the preceding theorem, there exist points $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ in $A$ such that

$$
A \subseteq B\left(\boldsymbol{a}_{1} ; r\right) \cup \cdots \cup B\left(\boldsymbol{a}_{m} ; r\right)
$$

For each $k=1, \ldots, m$, there exists $i_{k} \in I$ such that $B\left(\boldsymbol{a}_{k} ; r\right) \subseteq U_{i_{k}}$. We complete the proof by taking $I^{*}$ to be the set $\left\{i_{1}, \ldots, i_{m}\right\}$.

## Intersection of Families of Compact Sets

## Corollary

Let $\left(A_{i}: i \in I\right)$ be a family of compact sets in $\mathbb{R}^{n}$ whose intersection is empty. Then there exists a finite subset $I^{*}$ of $I$ such that the intersection of the family $\left(A_{i}: i \in I^{*}\right)$ is empty.

- Let $i_{0} \in I$ and let $I_{0}=I \backslash\left\{i_{0}\right\}$. Then, since $\cap\left(A_{i}: i \in I\right)$ is empty, $A_{i_{0}} \subseteq \cup\left(A_{i}^{c}: i \in I_{0}\right)$. By the theorem, which is applicable since the sets $A_{i}^{c}$ are open, being the complements of closed sets in $\mathbb{R}^{n}$, there is a finite subset $I^{\prime}$ of $I_{0}$ such that $A_{i_{0}} \subseteq \cup\left(A_{i}^{c}: i \in I^{\prime}\right)$. It follows that, if $I^{*}$ denotes the finite subset $I^{\prime} \cup\left\{i_{0}\right\}$ of $I$, then $\cap\left(A_{i}: i \in I^{*}\right)$ is empty.


## Decreasing Sequence of Compact Sets

## Corollary

Let $A_{1}, \ldots, A_{k}, \ldots$ be a sequence of non-empty compact sets in $\mathbb{R}^{n}$ such that $A_{1} \supseteq \cdots \supseteq A_{k} \supseteq \cdots$. Then the intersection $\cap\left(A_{k}: k=1,2, \ldots\right)$ is non-empty.

- The intersection of any finite number of members of the family is itself a member of the family. So it is non-empty.
Thus, the result follows from the preceding corollary.


## Properties of Linear Combinations of Sets

## Theorem

Let $A$ and $B$ be sets in $\mathbb{R}^{n}$ and let $\lambda, \mu \in \mathbb{R}$. Then $\lambda A+\mu B$ is:
(i) open when $A$ is open and $\lambda \neq 0$;
(ii) closed when $A$ is compact and $B$ is closed;
(iii) bounded when $A$ and $B$ are bounded;
(iv) compact when $A$ and $B$ are compact.
(i) Let $A$ be open and let $\lambda \neq 0$. If $\boldsymbol{x} \in \lambda A+\mu B$, then $\boldsymbol{x}=\lambda \boldsymbol{a}+\mu \boldsymbol{b}$ for some $\boldsymbol{a} \in A$ and $\boldsymbol{b} \in B$. Since $A$ is open, there is an $r>0$ such that $\boldsymbol{a}+r V \subseteq A$, where $V$ is the open unit ball $\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\|\boldsymbol{x}\|<1\right\}$. Thus

$$
\boldsymbol{x}+\lambda r V=\lambda \boldsymbol{a}+\mu \boldsymbol{b}+\lambda r V=\lambda(\boldsymbol{a}+r V)+\mu \boldsymbol{b} \subseteq \lambda A+\mu B .
$$

This shows that $B(\boldsymbol{x} ;|\lambda| r) \subseteq \lambda A+\mu B$. Hence $\lambda A+\mu B$ is open.

## Properties of Linear Combinations of Sets (Cont'd)

(ii) Let $A$ be compact and let $B$ be closed. We consider only the non-trivial case $\mu \neq 0$. If $\boldsymbol{x} \in \mathrm{cl}(\lambda A+\mu B)$, then there exist sequences $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}, \ldots$ of points of $A$, and $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{k}, \ldots$ of points of $B$ such that $\lambda \boldsymbol{a}_{k}+\mu \boldsymbol{b}_{k} \rightarrow \boldsymbol{x}$ as $k \rightarrow \infty$. Since $A$ is compact, there is a subsequence $\boldsymbol{a}_{i_{1}}, \ldots, \boldsymbol{a}_{i_{k}}, \ldots$ of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}, \ldots$ which converges to some point $\boldsymbol{a}$ of $A$. Thus $\lambda \boldsymbol{a}_{i_{k}}+\mu \boldsymbol{b} \boldsymbol{b}_{i_{k}} \rightarrow \boldsymbol{x}$ and $\boldsymbol{b}_{i_{k}} \rightarrow \frac{\boldsymbol{x}-\lambda \boldsymbol{a}}{\mu}$ as $k \rightarrow \infty$. But $B$ is closed, and so $\frac{\boldsymbol{x}-\lambda \boldsymbol{a}}{\mu} \in B$. Hence $\boldsymbol{x} \in \lambda A+\mu B$. Thus $\boldsymbol{x} \in \mathrm{cl}(\lambda A+\mu B)$ implies that $x \in \lambda A+\mu B$. This shows that $\lambda A+\mu B$ is closed.
(iii) Let $A$ and $B$ be bounded. Then there exist real numbers $r_{1}$ and $r_{2}$ such that $\|\boldsymbol{a}\| \leq r_{1}$ and $\|\boldsymbol{b}\| \leq r_{2}$ whenever $\boldsymbol{a} \in A$ and $\boldsymbol{b} \in B$. If $\boldsymbol{x} \in \lambda A+\mu B$, then $\boldsymbol{x}=\lambda \boldsymbol{a}+\mu \boldsymbol{b}$ for some $\boldsymbol{a} \in A$ and $\boldsymbol{b} \in B$. Hence

$$
\|\boldsymbol{x}\|=\|\lambda \boldsymbol{a}+\mu \boldsymbol{b}\| \leq|\lambda|\|\boldsymbol{a}\|+|\mu|\|\boldsymbol{b}\| \leq|\lambda| r_{1}+|\mu| r_{2} .
$$

This shows that $\lambda A+\mu B$ is bounded.
(iv) This follows immediately from (ii) and (iii).

## Subsection 9

## Continuity

- Let $f: A \rightarrow \mathbb{R}^{m}$ be a mapping, where $A$ is a non-empty set in $\mathbb{R}^{n}$.
- Then $f$ is said to be continuous at a point $\boldsymbol{a}$ of $A$ if, for each sequence $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}, \ldots$ of points of $A$ that converges to $\boldsymbol{a}$, the sequence $f\left(\boldsymbol{a}_{1}\right), \ldots, f\left(\boldsymbol{a}_{k}\right), \ldots$ of points of $\mathbb{R}^{m}$ converges to $f(\boldsymbol{a})$.
- If $f$ is continuous at all points of $A$, then $f$ is said to be continuous on $A$.
- An important example of a continuous mapping is the norm mapping $\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by the equation $\|\cdot\|(\boldsymbol{x})=\|\boldsymbol{x}\|$ for each point $\boldsymbol{x}$ of $\mathbb{R}^{n}$.
That $\|\cdot\|$ is continuous follows immediately from the fact that $\left\|\boldsymbol{a}_{k}\right\| \rightarrow\|\boldsymbol{a}\|$ as $k \rightarrow \infty$ whenever $\boldsymbol{a}_{k} \rightarrow \boldsymbol{a}$ as $k \rightarrow \infty$.


## Lipschitz Condition

- A mapping $f: A \rightarrow \mathbb{R}^{m}$ defined on a non-empty set $A$ in $\mathbb{R}^{n}$ is said to satisfy a Lipschitz condition on $A$ if there exists a real number $s$ such that, for all $\boldsymbol{x}, \boldsymbol{y} \in A$,

$$
\|f(\boldsymbol{x})-f(\boldsymbol{y})\| \leq s\|\boldsymbol{x}-\boldsymbol{y}\| .
$$

- If $f: A \rightarrow \mathbb{R}^{m}$ satisfies the Lipschitz condition, then it is continuous on A.

To see this, suppose that $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}, \ldots$ is a sequence of points of $A$ that converges to a point $\boldsymbol{a}$ of $A$, so that $\left\|\boldsymbol{a}_{k}-\boldsymbol{a}\right\| \rightarrow 0$ as $k \rightarrow \infty$.
The Lipschitz condition shows that

$$
\left\|f\left(\boldsymbol{a}_{k}\right)-f(\boldsymbol{a})\right\| \leq s\left\|\boldsymbol{a}_{k}-\boldsymbol{a}\right\|
$$

Hence, $\left\|f\left(\boldsymbol{a}_{k}\right)-f(\boldsymbol{a})\right\| \rightarrow 0$ as $k \rightarrow \infty$, i.e., the sequence $f\left(\boldsymbol{a}_{1}\right), \ldots, f\left(\boldsymbol{a}_{k}\right), \ldots$ converges to $f(\boldsymbol{a})$.
Since $f$ is continuous at an arbitrary $\boldsymbol{a}$ of $A, f$ is continuous on $A$.

## Affine Transformations are Lipschitz Mappings

- The norm mapping $\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}$ considered above satisfies the Lipschitz condition.
- Every affine transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ satisfies a Lipschitz condition on $\mathbb{R}^{n}$.
Suppose that $\boldsymbol{Q}=\left[q_{i j}\right]$ is the real $m \times n$ matrix and $\boldsymbol{q}$ the real $m \times 1$ matrix such that, for each vector $\boldsymbol{x}$ in $\mathbb{R}^{n}$, considered as a column vector, $T(\boldsymbol{x})=\boldsymbol{Q x}+\boldsymbol{q}$. Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$. Write $\boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right)=\boldsymbol{x}-\boldsymbol{y}$. By the Cauchy-Schwarz inequality, for $i=1, \ldots, m$,

$$
\left(q_{i 1} u_{1}+\cdots+q_{i n} u_{n}\right)^{2} \leq\left(q_{i 1}^{2}+\cdots+q_{i n}^{2}\right)\left(u_{1}^{2}+\cdots+u_{n}^{2}\right) .
$$

Setting $s=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} q_{i j}^{2}}$, we get

$$
\begin{aligned}
\|T(\boldsymbol{x})-T(\boldsymbol{y})\|^{2} & =\|\boldsymbol{Q} \boldsymbol{u}\|^{2}=\sum_{i=1}^{m}\left(q_{i 1} u_{1}+\cdots+q_{i n} u_{n}\right)^{2} \\
& \leq \sum_{i=1}^{m}\left(q_{i 1}^{2}+\cdots+q_{i n}^{2}\right)\left(u_{1}^{2}+\cdots+u_{n}^{2}\right) \\
& =s^{2}\|\boldsymbol{u}\|^{2} .
\end{aligned}
$$

## The Distance Function

- The distance function $d_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of a non-empty set $A$ in $\mathbb{R}^{n}$ satisfies a Lipschitz condition.
- This function $d_{A}$ associates with each point $\boldsymbol{x}$ of $\mathbb{R}^{n}$ its distance $d_{A}(x)$ from $A$.
- Formally, $d_{A}$ is defined by the equation

$$
d_{A}(\boldsymbol{x})=\inf \{\|\boldsymbol{x}-\boldsymbol{a}\|: \boldsymbol{a} \in A\}, \quad \text { for } \boldsymbol{x} \in \mathbb{R}^{n} .
$$

- If $A$ is the singleton set $\{\boldsymbol{a}\}$, then $d_{A}(\boldsymbol{x})=\|\boldsymbol{x}-\boldsymbol{a}\|$.
- In particular, if $\boldsymbol{a}=\mathbf{0}$, then $d_{A}(\boldsymbol{x})=\|\boldsymbol{x}\|$.
- It follows from the definition of $d_{A}$ and a previous theorem that a point $x$ of $\mathbb{R}^{n}$ lies in the closure $\mathrm{cl} A$ of $A$ if and only if its distance $d_{A}(\boldsymbol{x})$ from $A$ is zero.


## The Distance Function is Lipschitz

- Suppose now that $\boldsymbol{x}, \boldsymbol{y}$ lie in $\mathbb{R}^{n}$.
- Then, for each $\varepsilon>0$, there exists $\boldsymbol{a}$ in $A$ such that $\|\boldsymbol{x}-\boldsymbol{a}\|<d_{A}(\boldsymbol{x})+\varepsilon$.
- By the triangle inequality,

$$
d_{A}(\boldsymbol{y}) \leq\|\boldsymbol{y}-\boldsymbol{a}\| \leq\|\boldsymbol{y}-\boldsymbol{x}\|+\|\boldsymbol{x}-\boldsymbol{a}\|<\|\boldsymbol{y}-\boldsymbol{x}\|+d_{A}(\boldsymbol{x})+\varepsilon .
$$

- Since $\varepsilon>0$ is arbitrary, $d_{A}(\boldsymbol{y}) \leq\|\boldsymbol{y}-\boldsymbol{x}\|+d_{A}(\boldsymbol{x})$.
- Interchanging $\boldsymbol{x}$ and $\boldsymbol{y}$ in this inequality, $d_{A}(\boldsymbol{x}) \leq\|\boldsymbol{x}-\boldsymbol{y}\|+d_{A}(\boldsymbol{y})$.
- Hence $d_{A}$ satisfies the Lipschitz condition

$$
\left|d_{A}(\boldsymbol{x})-d_{A}(\boldsymbol{y})\right| \leq\|\boldsymbol{x}-\boldsymbol{y}\| .
$$

- It follows that $d_{A}$ is continuous on $\mathbb{R}^{n}$.


## Remark

- In general, the inf in the definition of $d_{A}$ cannot be replaced by min.
- To see this, suppose that $A$ is the set $\mathbb{R}^{n} \backslash\{\mathbf{0}\}$. Then $d_{A}(0)=0$, but there is no $\boldsymbol{a} \in A$ such that $\|\mathbf{0}-\boldsymbol{a}\|=0$.


## Distance from Nonempty Closed Sets

## Theorem

Let $A$ be a non-empty closed set in $\mathbb{R}^{n}$ and let $\boldsymbol{x} \in \mathbb{R}^{n}$. Then there exists $\boldsymbol{a}_{0} \in A$ such that $d_{A}(\boldsymbol{x})=\left\|\boldsymbol{x}-\boldsymbol{a}_{0}\right\|$.

- It follows easily from the definition of $d_{A}(\boldsymbol{x})$ that there exists a sequence $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}, \ldots$ of points of $A$ such that $\left\|\boldsymbol{x}-\boldsymbol{a}_{k}\right\| \rightarrow d_{A}(\boldsymbol{x})$ as $k \rightarrow \infty$. Since convergent sequences in $\mathbb{R}$ are bounded, there exists a real number $r$ such that $\left\|\boldsymbol{x}-\boldsymbol{a}_{k}\right\| \leq r$ for $k=1,2, \ldots$. We have

$$
\left\|\boldsymbol{a}_{k}\right\| \leq\left\|\boldsymbol{a}_{k}-\boldsymbol{x}\right\|+\|\boldsymbol{x}\| \leq r+\|\boldsymbol{x}\|, \text { for } k=1,2, \ldots .
$$

So the sequence $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}, \ldots$ is bounded. Hence it contains some subsequence $\boldsymbol{a}_{i_{1}}, \ldots, \boldsymbol{a}_{i_{k}}, \ldots$ which converges to a point $\boldsymbol{a}_{0}$ of $\mathbb{R}^{n}$. Since $A$ is closed, $\boldsymbol{a}_{0} \in A$. Now $\left\|\boldsymbol{x}-\boldsymbol{a}_{i_{k}}\right\| \rightarrow\left\|\boldsymbol{x}-\boldsymbol{a}_{0}\right\|$ as $k \rightarrow \infty$. But we already know that $\left\|\boldsymbol{x}-\boldsymbol{a}_{i_{k}}\right\| \rightarrow d_{A}(\boldsymbol{x})$ as $k \rightarrow \infty$. The uniqueness of limits in $\mathbb{R}$ shows that $d_{A}(\boldsymbol{x})=\left\|\boldsymbol{x}-\boldsymbol{a}_{0}\right\|$.

- The point $a_{0}$ is called a nearest point of $A$ to $\boldsymbol{x}$.


## Continuity and Compactness

## Theorem

Let $f: A \rightarrow \mathbb{R}^{n}$ be a continuous mapping, where $A$ is a non-empty compact set in $\mathbb{R}^{n}$. Then $f(A)$ is a compact set in $\mathbb{R}^{n}$.

- Let $f\left(\boldsymbol{a}_{1}\right), \ldots, f\left(\boldsymbol{a}_{k}\right), \ldots$ be a sequence of points of $f(A)$, where $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}, \ldots$ is a sequence of points of $A$.
Since $A$ is compact, there is a subsequence $\boldsymbol{a}_{i_{1}}, \ldots, \boldsymbol{a}_{i_{k}}, \ldots$ of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}, \ldots$ which converges to some point $\boldsymbol{a}$ of $A$. By the continuity of $f$, the subsequence $f\left(\boldsymbol{a}_{i_{1}}\right), \ldots, f\left(\boldsymbol{a}_{i_{k}}\right), \ldots$ of $f\left(\boldsymbol{a}_{1}\right), \ldots, f\left(\boldsymbol{a}_{k}\right), \ldots$ converges to the point $f(\boldsymbol{a})$ of $f(A)$.
Thus $f(A)$ is compact.


## Attainability of Sup and Inf

- Recall from elementary analysis that a continuous function $f:[a, b] \rightarrow \mathbb{R}$ is bounded and attains its bounds.


## Corollary

Let $f: A \rightarrow \mathbb{R}$ be a continuous mapping, where $A$ is a non-empty compact set in $\mathbb{R}^{n}$. Then there exist $\boldsymbol{a}, \boldsymbol{b} \in A$ such that

$$
f(\boldsymbol{a})=\inf \{f(\boldsymbol{x}): \boldsymbol{x} \in A\} \quad \text { and } \quad f(\boldsymbol{b})=\sup \{f(\boldsymbol{x}): \boldsymbol{x} \in B\} .
$$

- The theorem shows that the non-empty set $f(A)=\{f(\boldsymbol{x}): \boldsymbol{x} \in A\}$ of real numbers is compact, and therefore closed and bounded. Thus $f(A)$ possesses both an infimum and supremum. Moreover, the infimum and supremum of $f(A)$ belong to $\mathrm{cl} f(A)$. Hence, since $f(A)$ is closed, they belong to $f(A)$. So there exist $\boldsymbol{a}, \boldsymbol{b} \in A$ such that $f(\boldsymbol{a})=\inf f(A)$ and $f(\boldsymbol{b})=\sup f(A)$.


## Attainability of Infimum of Distance

## Theorem

Let $A$ and $B$ be non-empty sets in $\mathbb{R}^{n}$ with $A$ closed and $B$ compact. Then there exist $\boldsymbol{a}_{0} \in A, \boldsymbol{b}_{0} \in B$ such that

$$
\left\|\boldsymbol{a}_{0}-\boldsymbol{b}_{0}\right\|=\inf \{\|\boldsymbol{a}-\boldsymbol{b}\|: \boldsymbol{a} \in A, \boldsymbol{b} \in B\} .
$$

- The distance function $d_{A}$ of $A$ is continuous on $\mathbb{R}^{n}$. So, by restriction, it is continuous on $B$. By the corollary, applicable since $B$ is compact, there exists $\boldsymbol{b}_{0} \in B$ such that $d_{A}\left(\boldsymbol{b}_{0}\right)=\inf \left\{d_{A}(\boldsymbol{b}): \boldsymbol{b} \in B\right\}$. By a previous theorem, applicable since $A$ is closed, there exists $a_{0} \in A$ such that $d_{A}\left(\boldsymbol{b}_{0}\right)=\left\|\boldsymbol{b}_{0}-\boldsymbol{a}_{0}\right\|$. For each $\boldsymbol{a} \in A, \boldsymbol{b} \in B$, we have

$$
\|\boldsymbol{a}-\boldsymbol{b}\| \geq d_{A}(\boldsymbol{b}) \geq d_{A}\left(\boldsymbol{b}_{0}\right)=\left\|\boldsymbol{a}_{0}-\boldsymbol{b}_{0}\right\| .
$$

Since $\boldsymbol{a}_{0} \in A, \boldsymbol{b}_{0} \in B,\left\|\boldsymbol{a}_{0}-\boldsymbol{b}_{0}\right\|=\inf \{\|\boldsymbol{a}-\boldsymbol{b}\|: \boldsymbol{a} \in A, \boldsymbol{b} \in B\}$.

- We refer to $\boldsymbol{a}_{0}$ and $\boldsymbol{b}_{0}$ as nearest points of $A$ and $B$.


## Continuity and Positivity

- Recall that if a real function is both continuous and positive at some point, then it is positive at all points of its domain sufficiently close to that point.


## Theorem

Let the mapping $f: A \rightarrow \mathbb{R}$ be both continuous and positive at some point $\boldsymbol{a}$ of a set $A$ in $\mathbb{R}^{n}$. Then there exists an $r>0$ such that $f(\boldsymbol{x})>0$ whenever $\boldsymbol{x} \in B(\mathbf{a} ; r) \cap A$.

- Suppose that the stated conclusion does not hold. Then, for each $k=1,2, \ldots$ there exists $\boldsymbol{a}_{k} \in B\left(\boldsymbol{a} ; \frac{1}{k}\right) \cap A$ such that $f\left(\boldsymbol{a}_{k}\right) \leq 0$. Since $f$ is continuous at $\boldsymbol{a}$ and $\boldsymbol{a}_{k} \rightarrow \boldsymbol{a}$ as $k \rightarrow \infty, f\left(\boldsymbol{a}_{k}\right) \rightarrow f(\boldsymbol{a})$ as $k \rightarrow \infty$. Because $f\left(\boldsymbol{a}_{k}\right) \leq 0$ for $k=1,2, \ldots$, it follows that $f(\boldsymbol{a}) \leq 0$. This contradiction establishes the theorem.


## Continuity of Composition

- Recall that a continuous function of a continuous function is itself continuous.


## Theorem

Let $f: A \rightarrow \mathbb{R}^{m}$ and $g: B \rightarrow \mathbb{R}^{p}$ be continuous mappings, where $A$ and $B$ are, respectively, non-empty sets in $\mathbb{R}^{n}$ and $\mathbb{R}^{m}$ such that $f(A) \subseteq B$. Then the composite mapping $g \circ f: A \rightarrow \mathbb{R}^{p}$ is continuous.

- Let $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}, \ldots$ be a sequence of points of $A$ that converges to a point $\boldsymbol{a}$ of $A$. Since $f$ is continuous, the sequence of points $f\left(\boldsymbol{a}_{1}\right), \ldots, f\left(\boldsymbol{a}_{k}\right), \ldots$ of $B$ converges to the point $f(\boldsymbol{a})$ of $B$. Since $g$ is continuous, the sequence $g\left(f\left(\boldsymbol{a}_{1}\right)\right), \ldots, g\left(f\left(\boldsymbol{a}_{k}\right)\right), \ldots$ converges to $g(f(\boldsymbol{a}))$, i.e., the sequence $(g \circ f)\left(\boldsymbol{a}_{1}\right), \ldots,(g \circ f)\left(\boldsymbol{a}_{k}\right), \ldots$ converges to $(g \circ f)(a)$. This shows that $g \circ f$ is continuous.


## Inverse Images of Open and of Closed Sets

## Theorem

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a continuous mapping and let $B$ be a closed (open) subset of $\mathbb{R}^{m}$. Then $f^{-1}(B)$ is closed (open).

- Suppose first that $B$ is closed. Let $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}, \ldots$ be a sequence of points of $f^{-1}(B)$ that converges to a point $\boldsymbol{a}$ of $\mathbb{R}^{n}$. The continuity of $f$ shows that the sequence of points $f\left(\boldsymbol{a}_{1}\right), \ldots, f\left(\boldsymbol{a}_{k}\right), \ldots$ of $B$ converges to the point $f(\boldsymbol{a})$ of $\mathbb{R}^{m}$. But $B$ is closed. So $f(\boldsymbol{a}) \in B$, i.e., $\boldsymbol{a} \in f^{-1}(B)$. This shows that $f^{-1}(B)$ is closed.
Suppose next that $B$ is open. Then the complement $B^{c}$ of $B$ in $\mathbb{R}^{m}$ is closed. Hence, by what has just been proved, $f^{-1}\left(B^{c}\right)$ is closed in $\mathbb{R}^{n}$. Thus, the complement $f^{-1}(B)=\left(f^{-1}\left(B^{c}\right)\right)^{c}$ in $\mathbb{R}^{n}$ is open.

