Introduction to Convexity

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

Convex Sets

- Basic Properties of Convex Sets
- The Convex Hull
- Interiors and Closures
- Separation and Support
- Unbounded Convex Sets
- Facial Structure
- The Blaschke Selection Principle
- Ouality

Subsection 1

Basic Properties of Convex Sets

Convex Sets in Space

- A set in space is **convex** if whenever it contains two points, it also contains the line segment joining them.
- Elementary geometry abounds in convex sets:
 - ellipses;
 - triangles;
 - parallelograms;
 - balls;
 - halfspaces;
 - cubes.
- Examples of non-convex sets are:
 - an annulus;
 - a crescent;
 - the vertex set of a cube.

Convex Sets in Space: Illustration

Convex Sets in \mathbb{R}^n

- Let x and y be distinct points of \mathbb{R}^n .
- Then the subset

$$\{\lambda \mathbf{x} + \mu \mathbf{y} : \lambda, \mu \ge 0, \lambda + \mu = 1\}$$

of the line through x and y is called the **line segment** joining x and y.

- The set A in \mathbb{R}^n is said to be **convex** if whenever it contains two points, it also contains the line segment joining them.
- Expressed algebraically, A is convex if λx + μy ∈ A whenever x, y ∈ A and λ, μ≥ 0 with λ + μ = 1.
- Equivalently, A is convex if $\lambda A + \mu A \subseteq A$ whenever $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$.

First Examples

- The condition for a set to be convex is less restrictive than for it to be a flat.
- So every flat is a convex set.
- In particular, the following are convex:
 - the empty set;
 - singletons;
 - lines;
 - hyperplanes;
 - \mathbb{R}^n itself.

Balls are Convex

- We show that the closed ball $B[\mathbf{a}; r]$ in \mathbb{R}^n is convex.
- Let $\mathbf{x}, \mathbf{y} \in B[\mathbf{a}; r]$.
- Let $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$.

• Then
$$||x - a|| < r$$
, $||y - a|| < r$.

So

$$\|\lambda \mathbf{x} + \mu \mathbf{y} - \mathbf{a}\| = \|\lambda(\mathbf{x} - \mathbf{a}) + \mu(\mathbf{y} - \mathbf{a})\|$$

$$\leq \lambda \|\mathbf{x} - \mathbf{a}\| + \mu \|\mathbf{y} - \mathbf{a}\|$$

$$\leq \lambda r + \mu r = r.$$

- Thus $\lambda \mathbf{x} + \mu \mathbf{y} \in B[\mathbf{a}; r]$.
- This proves that $B[\mathbf{a}; r]$ is convex.
- A similar argument shows that the open ball B(a; r) is convex.

Halfspaces are Convex

- We show that the closed halfspace A in \mathbb{R}^n defined by the inequality $\boldsymbol{u} \cdot \boldsymbol{x} \leq u_0$ is convex.
- Let $\mathbf{x}, \mathbf{y} \in A$ and let $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$.
- Then $\boldsymbol{u} \cdot \boldsymbol{x} \leq u_0$, $\boldsymbol{u} \cdot \boldsymbol{y} \leq u_0$.

So

$$\boldsymbol{u} \cdot (\lambda \boldsymbol{x} + \mu \boldsymbol{y}) = \lambda \boldsymbol{u} \cdot \boldsymbol{x} + \mu \boldsymbol{u} \cdot \boldsymbol{y} \leq \lambda u_0 + \mu u_0 = u_0.$$

- Thus $\lambda x + \mu y \in A$.
- This proves that A is convex.
- A similar argument shows that open halfspaces are convex.

Closure Under Intersections

Theorem

The intersection of an arbitrary family of convex sets in \mathbb{R}^n is convex.

Closure Under Restricted Linear Combinations

Theorem

Let $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_m$ be points of a convex set A in \mathbb{R}^n . Let $\lambda_1, \ldots, \lambda_m \ge 0$ with $\lambda_1 + \cdots + \lambda_m = 1$. Then $\lambda_1 \boldsymbol{a}_1 + \cdots + \lambda_m \boldsymbol{a}_m \in A$.

- We argue by induction on *m*.
- When m = 1 the assertion is trivial.
- Suppose that the assertion holds when *m* is some positive integer *k*.

Let

$$\boldsymbol{x} = \lambda_1 \boldsymbol{a}_1 + \dots + \lambda_{k+1} \boldsymbol{a}_{k+1},$$

where $a_1, \ldots, a_{k+1} \in A$ and $\lambda_1, \ldots, \lambda_{k+1} \ge 0$ with $\lambda_1 + \cdots + \lambda_{k+1} = 1$. At least one λ_i must be less than 1, say $\lambda_{k+1} < 1$. Write $\mathbf{y} = \frac{\lambda_1}{\lambda} \mathbf{a}_1 + \cdots + \frac{\lambda_k}{\lambda} \mathbf{a}_k$, where $\lambda = \lambda_1 + \cdots + \lambda_k = 1 - \lambda_{k+1} > 0$. By the induction hypothesis, $\mathbf{y} \in A$. Since A is convex and contains both \mathbf{y} and \mathbf{a}_{k+1} , the equation $\mathbf{x} = \lambda \mathbf{y} + \lambda_{k+1} \mathbf{a}_{k+1}$ shows that $\mathbf{x} \in A$. This completes the proof by induction.

George Voutsadakis (LSSU)

Convex Combinations

• A point **x** is said to be a **convex combination** of points $a_1, ..., a_m$ in \mathbb{R}^n if there exist scalars $\lambda_1, ..., \lambda_m \ge 0$ with $\lambda_1 + \cdots + \lambda_m = 1$ such that

$$\boldsymbol{x} = \lambda_1 \boldsymbol{a}_1 + \cdots + \lambda_m \boldsymbol{a}_m.$$

The preceding theorem can thus be expressed as:
 Every convex combination of points of a convex set in Rⁿ belongs to that set.

Convexity, Vector Addition and Scalar Multiplication

Theorem

Let A, B be convex sets in \mathbb{R}^n and let α be a scalar. Then A+B and αA are convex.

• Let $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$. Since A, B are convex,

$$\lambda(A+B) + \mu(A+B) = (\lambda A + \mu A) + (\lambda B + \mu B) \subseteq A + B;$$

$$\lambda(\alpha A) + \mu(\alpha A) = \alpha(\lambda A + \mu A) \subseteq \alpha A.$$

This shows that A + B and αA are convex.

Corollary

Let A_1, \ldots, A_m be convex sets in \mathbb{R}^n and let $\lambda_1, \ldots, \lambda_m$ be scalars. Then $\lambda_1 A_1 + \cdots + \lambda_m A_m$ is convex.

A Distributivity Property

Theorem

Let A be a convex set in \mathbb{R}^n and let $\lambda_1, \ldots, \lambda_m \ge 0$. Then

$$(\lambda_1 + \dots + \lambda_m)A = \lambda_1 A + \dots + \lambda_m A.$$

• The result is trivial when each λ_i is zero. Suppose that $\lambda = \lambda_1 + \dots + \lambda_m > 0$. With the help of a previous theorem, we can deduce that

$$(\lambda_1 + \dots + \lambda_m)A \subseteq \lambda_1 A + \dots + \lambda_m A$$

= $\lambda(\frac{\lambda_1}{\lambda} A + \dots + \frac{\lambda_m}{\lambda} A)$
 $\subseteq \lambda A$
= $(\lambda_1 + \dots + \lambda_m)A.$

Thus $(\lambda_1 + \dots + \lambda_m)A = \lambda_1 A + \dots + \lambda_m A$.

A Cancelation Property

Theorem

Let A, B, C be sets in \mathbb{R}^n . Suppose that A is non-empty and bounded, that C is closed and convex, and that $A+B \subseteq A+C$. Then $B \subseteq C$.

• Let $a_0 \in A$. If $b \in B$, then $a_0 + b \in A + B \subseteq A + C$. So there exist $a_1 \in A$, $c_1 \in C$, such that $a_0 + b = a_1 + c_1$. Similarly, there exist $a_2, \dots, a_i \in A$ and $c_2, \dots, c_i \in C$ with $a_1 + b = a_2 + c_2, \dots, a_{i-1} + b = a_i + c_i$. We add the *i* equations above together to deduce that

$$\boldsymbol{a}_0 + i \boldsymbol{b} = \boldsymbol{a}_i + \boldsymbol{c}_1 + \dots + \boldsymbol{c}_i.$$

Since *C* is convex, the point $\mathbf{x}_i = \frac{1}{i}(\mathbf{c}_1 + \dots + \mathbf{c}_i)$ lies in *C*. Since *A* is bounded,

$$\|\boldsymbol{b} - \boldsymbol{x}_i\| = \|\frac{1}{i}(\boldsymbol{a}_i + \boldsymbol{c}_1 + \dots + \boldsymbol{c}_i - \boldsymbol{a}_0) - \frac{1}{i}(\boldsymbol{c}_1 + \dots + \boldsymbol{c}_i)\|$$

= $\frac{1}{i}\|\boldsymbol{a}_i - \boldsymbol{a}_0\| \to 0 \text{ as } i \to \infty.$

Thus $\mathbf{x}_i \rightarrow \mathbf{b}$ as $i \rightarrow \infty$. But C is closed. So $\mathbf{b} \in C$. Hence, $B \subseteq C$.

A Cancelation Property (Cont'd)

Corollary

Let A, B, C be sets in \mathbb{R}^n . Suppose that A is non-empty and bounded, that B and C are closed and convex, and that A+B=A+C. Then B=C.

Affine Transformations and Convex Sets

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be an affine transformation. Then f(A) is convex for each convex set A in \mathbb{R}^n , and $f^{-1}(B)$ is convex for each convex set B in \mathbb{R}^m .

Let A be a convex set in ℝⁿ. Let λ, μ≥0 with λ + μ = 1. If
 x, y ∈ f(A), then x = f(a), y = f(b) for some a, b ∈ A. Since A is convex, λa + μb ∈ A. Since f is affine,

$$\lambda \mathbf{x} + \mu \mathbf{y} = \lambda f(\mathbf{a}) + \mu f(\mathbf{b}) = f(\lambda \mathbf{a} + \mu \mathbf{b}).$$

Thus $\lambda \mathbf{x} + \mu \mathbf{y} \in f(A)$. This shows that f(A) is convex. Let *B* be a convex set in \mathbb{R}^m . Let $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$. If $\mathbf{x}, \mathbf{y} \in f^{-1}(B)$, then $f(\mathbf{x}), f(\mathbf{y}) \in B$. Since *B* is convex, $\lambda f(\mathbf{x}) + \mu f(\mathbf{y}) \in B$. Since *f* is affine, $f(\lambda \mathbf{x} + \mu \mathbf{y}) = \lambda f(\mathbf{x}) + \mu f(\mathbf{y}) \in B$. Thus $\lambda \mathbf{x} + \mu \mathbf{y} \in f^{-1}(B)$. This shows that $f^{-1}(B)$ is convex.

Subsection 2

The Convex Hull

The Convex Hull

- The **convex hull** conv*A* of a set *A* in \mathbb{R}^n is the intersection of all convex sets in \mathbb{R}^n containing *A*.
- The definition of conv*A*, together with a previous theorem, shows that conv*A* is a convex set containing *A*.
- Moreover, if C is any convex set in \mathbb{R}^n containing A, then $\operatorname{conv} A \subseteq C$.
- Thus we may refer to convA as the smallest convex set in ℝⁿ containing A.
- Clearly, A is convex if and only if A = convA.
- Moreover conv(convA) = convA.
- Also $\operatorname{conv} A \subseteq \operatorname{conv} B$ whenever $A \subseteq B$.

Examples

- In space:
 - The convex hull of two distinct points is the line segment joining them;
 - The convex hull of three non-collinear points is the triangle which they determine;
 - The convex hull of four non-coplanar points is the tetrahedron which they determine.
- In \mathbb{R}^2 the convex hull of *m* points symmetrically placed on the circumference of a circle, where $m \ge 3$, is a regular *m*-sided polygon.

Example

- The convex hull of the set $A = \{x \in \mathbb{R}^n : ||x|| = 1\}$ is the closed unit ball $U = \{x \in \mathbb{R}^n : ||x|| \le 1\}.$
- The ball U is convex and contains A, so $convA \subseteq U$.
- We now show that $U \subseteq \operatorname{conv} A$.

Let $x \in U$. If x = 0 and $y \in A$, then $x = \frac{1}{2}y + \frac{1}{2}(-y)$. Since conv*A* is convex and contains y and -y, this shows that $x \in \text{conv}A$. If $x \neq 0$, then $0 < ||x|| \le 1$. The equation

$$\mathbf{x} = \left(\frac{1+\|\mathbf{x}\|}{2}\right)\frac{\mathbf{x}}{\|\mathbf{x}\|} + \left(\frac{1-\|\mathbf{x}\|}{2}\right)\frac{-\mathbf{x}}{\|\mathbf{x}\|}$$

shows that $\mathbf{x} \in \text{conv}A$, since convA is convex and contains $\frac{\mathbf{x}}{\|\mathbf{x}\|}$ and

$$-\frac{\mathbf{x}}{\|\mathbf{x}\|}$$
. Thus $U \subseteq \operatorname{conv} A$.

• We now have $U = \operatorname{conv} A$.

Description of Convex Hull in Terms of Points

Theorem

Let A be a set in \mathbb{R}^n . Then convA is the set of all convex combinations of points of A.

• Denote by B the set of all convex combinations of points of A. That $B \subseteq \operatorname{conv} A$ follows from a previous theorem and the inclusion $A \subseteq \operatorname{conv} A$.

We next show that B is convex. If $x, y \in B$, then

$$\boldsymbol{x} = \lambda_1 \boldsymbol{a}_1 + \dots + \lambda_m \boldsymbol{a}_m, \quad \boldsymbol{y} = \mu_1 \boldsymbol{b}_1 + \dots + \mu_p \boldsymbol{b}_p,$$

for some $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_m$, $\boldsymbol{b}_1, \ldots, \boldsymbol{b}_p \in A$ and $\lambda_1, \ldots, \lambda_m$, $\mu_1, \ldots, \mu_p \ge 0$ with $\lambda_1 + \cdots + \lambda_m = 1$ and $\mu_1 + \cdots + \mu_p = 1$.

Description of Convex Hull in Terms of Points (Cont'd)

• Let
$$\lambda, \mu \ge 0$$
 with $\lambda + \mu = 1$. Then
 $\lambda \mathbf{x} + \mu \mathbf{y} = \lambda \lambda_1 \mathbf{a}_1 + \dots + \lambda \lambda_m \mathbf{a}_m + \mu \mu_1 \mathbf{b}_1 + \dots + \mu \mu_p \mathbf{b}_p$
and
 $\lambda \lambda_1 + \dots + \lambda \lambda_m + \mu \mu_1 + \dots + \mu \mu_p$
 $= \lambda (\lambda_1 + \dots + \lambda_m) + \mu (\mu_1 + \dots + \mu_p)$
 $= \lambda + \mu = 1.$

Thus $\lambda \mathbf{x} + \mu \mathbf{y} \in B$, so *B* is convex. Since *B* is convex and $B \supseteq A$, it follows that $B \supseteq \operatorname{conv} A$. Hence $B = \operatorname{conv} A$.

Corollary

Let $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_m \in \mathbb{R}^n$. Then

$$\operatorname{conv}\{\boldsymbol{a}_1,\ldots\boldsymbol{a}_m\} = \{\lambda_1\boldsymbol{a}_1+\cdots+\lambda_m\boldsymbol{a}_m : \lambda_1,\ldots,\lambda_m \ge 0, \\ \lambda_1+\cdots+\lambda_m = 1\}.$$

On the Number of Points

- The preceding theorem shows that each point of the convex hull of a set in \mathbb{R}^n is a convex combination of points of that set.
- The theorem makes no reference to the number of points in the combination.
- Carathéodory's Theorem, which is proved next, states that each point of the convex hull of an *r*-dimensional set can be expressed as a convex combination of *r*+1 or fewer points of the set.
- Thus a point in the convex hull of a set in \mathbb{R}^3 is either a point of the set or belongs to a line segment, a triangle, or a tetrahedron with vertices in the set.

Carathéodory's Theorem

Theorem (Carathéodory's Theorem)

Let $\mathbf{a} \in \operatorname{conv} A$, where A is an r-dimensional set in \mathbb{R}^n . Then \mathbf{a} can be expressed as a convex combination of r+1 or fewer points of A.

The preceding theorem shows the existence of points a₁,..., a_m of A and scalars λ₁,...,λ_m ≥ 0 with λ₁+···+λ_m = 1 such that

$$\boldsymbol{a} = \lambda_1 \boldsymbol{a}_1 + \dots + \lambda_m \boldsymbol{a}_m.$$

We assume that this representation of a is so chosen that a cannot be expressed as a convex combination of fewer than m points of A. It follows that no two of the points a_1, \ldots, a_m are equal and that $\lambda_1, \ldots, \lambda_m > 0$. We prove the theorem by showing that $m \le r+1$. We use a contradiction argument.

Carathéodory's Theorem (Cont'd)

• Suppose that m > r + 1. Then, since A is r-dimensional, the set $\{a_1, \ldots, a_m\}$ must be affinely dependent. So there exist scalars μ_1, \ldots, μ_m , not all zero, such that

$$\mathbf{0} = \mu_1 \mathbf{a}_1 + \dots + \mu_m \mathbf{a}_m, \quad \mu_1 + \dots + \mu_m = 0.$$

Let t > 0 be such that the scalars $\lambda_1 + \mu_1 t, \dots, \lambda_m + \mu_m t$ are nonnegative with at least one of them zero. Such a t exists since the λ 's are all positive and at least one of the μ 's is negative. The equation

$$\boldsymbol{a} = (\lambda_1 + \mu_1 t) \boldsymbol{a}_1 + \dots + (\lambda_m + \mu_m t) \boldsymbol{a}_m,$$

when its terms with zero coefficients are omitted, exhibits \boldsymbol{a} as a convex combination of fewer than m points of A. This contradiction to the minimality of m shows that $m \le r+1$.

Radon's Theorem

Theorem (Radon's Theorem)

Let $a_1, \ldots, a_m \in \mathbb{R}^n \ (m \ge n+2)$. Then the set $\{1, \ldots, m\}$ can be partitioned into two subsets I and J such that $\operatorname{conv}\{a_i : i \in I\}$ meets $\operatorname{conv}\{a_j : j \in J\}$.

• We consider the non-trivial case when the a_1, \ldots, a_m are distinct. It follows from a previous corollary that there exist scalars $\lambda_1, \ldots, \lambda_m$, not all zero, such that $\lambda_1 a_1 + \cdots + \lambda_m a_m = 0$ and $\lambda_1 + \cdots + \lambda_m = 0$. Some of the λ 's will be positive, others negative. Let $I = \{i : \lambda_i \ge 0\}$ and $J = \{j : \lambda_j < 0\}$. Then

$$\frac{\sum_{i \in I} \lambda_i \boldsymbol{a}_i}{\sum_{i \in I} \lambda_i} = \frac{\sum_{j \in J} (-\lambda_j) \boldsymbol{a}_j}{\sum_{j \in J} (-\lambda_j)} = \boldsymbol{x} \text{ say.}$$

Thus **x** is a convex combination of points of both $\{a_i : i \in I\}$ and $\{a_j : j \in J\}$. Hence $x \in \text{conv}\{a_i : i \in I\} \cap \text{conv}\{a_j : j \in J\}$.

Four Points in \mathbb{R}^2

- Radon's theorem yields information about the possible configurations of four points in \mathbb{R}^2 .
- It shows that:
 - Either one of the four points belongs to the (possibly degenerate) triangle determined by the remaining three;
 - Or the four points are the vertices of a convex quadrilateral.

Convex Hull of Open or Compact Sets

Theorem

In \mathbb{R}^n the convex hull of an open set is open and the convex hull of a compact set is compact.

• Let A be an open set in \mathbb{R}^n . If $\mathbf{a} \in \operatorname{conv} A$, then $\mathbf{a} = \lambda_1 \mathbf{a}_1 + \dots + \lambda_m \mathbf{a}_m$ for some $\mathbf{a}_1, \dots, \mathbf{a}_m \in A$ and $\lambda_1, \dots, \lambda_m \ge 0$ with $\lambda_1 + \dots + \lambda_m = 1$. Since A is open, there exist $r_1, \dots, r_m > 0$ such that $B(\mathbf{a}_1; r_1) \subseteq A, \dots, B(\mathbf{a}_m; r_m) \subseteq A$. Let $r = \min\{r_1, \dots, r_m\}$, so r > 0. We show that $B(\mathbf{a}; r) \subseteq \operatorname{conv} A$. Let $\mathbf{x} \in B(\mathbf{a}; r)$. Then $\|\mathbf{x} - \mathbf{a}\| < r$. For $i = 1, \dots, m$, the point $\mathbf{x}_i = \mathbf{a}_i + \mathbf{x} - \mathbf{a}$ lies in $B(\mathbf{a}_i; r)$. Hence also in $B(\mathbf{a}_i; r_i)$ and A. Now we get

$$\mathbf{x} = \mathbf{a} + \mathbf{x} - \mathbf{a} = \lambda_1 \mathbf{a}_1 + \dots + \lambda_m \mathbf{a}_m + (\lambda_1 + \dots + \lambda_m)(\mathbf{x} - \mathbf{a})$$

= $\lambda_1 (\mathbf{a}_1 + \mathbf{x} - \mathbf{a}) + \dots + \lambda_m (\mathbf{a}_m + \mathbf{x} - \mathbf{a}) = \lambda_1 \mathbf{x}_1 + \dots + \lambda_m \mathbf{x}_m.$

So $x \in \text{conv}A$. Thus $B(a; r) \subseteq \text{conv}A$ and each point of convA is an interior point of convA. I.e., convA is open.

George Voutsadakis (LSSU)

Convex Hull of Open or Compact Sets (Cont'd)

• Now let A be a compact set in \mathbb{R}^n . If x_1, \ldots, x_k, \ldots is a sequence in convA, then, by Carathéodory's Theorem, x_k can be expressed in the form $\mathbf{x}_k = \lambda_{k0} \mathbf{a}_{k0} + \dots + \lambda_{kn} \mathbf{a}_{kn}$, for some $\mathbf{a}_{k0}, \dots, \mathbf{a}_{kn} \in A$ and $\lambda_{k0}, \ldots, \lambda_{kn} \ge 0$ with $\lambda_{k0} + \cdots + \lambda_{kn} = 1$. It may be necessary to include some extra \mathbf{a} 's with zero coefficients to bring the number of \mathbf{a} 's in the expression for \mathbf{x}_k up to n+1. Each sequence $\mathbf{a}_{1i}, \ldots, \mathbf{a}_{ki}, \ldots$ (i = 0, ..., n) belongs to the compact set A. Each real sequence $\lambda_{1i}, \ldots, \lambda_{ki}, \ldots$ $(j = 0, \ldots, n)$ belongs to the compact interval [0, 1]. Since there is only a finite number, namely 2n+2, of these sequences, we can, by repeatedly forming convergent subsequences of sequences whose members lie in a compact set, find a subsequence i_1, \ldots, i_k, \ldots of 1,..., k,..., points a_0, \ldots, a_n of A and scalars $\lambda_0, \ldots, \lambda_n \ge 0$ with $\lambda_0 + \cdots + \lambda_n = 1$, such that $\mathbf{a}_{ki} \to \mathbf{a}_i$ and $\lambda_{ki} \to \lambda_i$ $(k \to \infty, j = 0, \dots, n)$. Thus the subsequence $x_{i_1}, \ldots, x_{i_k}, \ldots$ converges to the point $\lambda_0 a_0 + \cdots + \lambda_n a_n$ of conv*A*. This shows that conv*A* is compact.

Finite Sets and Closed Sets

Corollary

The convex hull of a finite set in \mathbb{R}^n is compact.

- The theorem makes no reference to the convex hull of a closed set.
- Except in R¹, the convex hull of a closed set need not be closed.
 Example: In Rⁿ the union of a line and a point not on it is a closed set.

But its convex hull is not closed.

Diameter of Bounded Sets

- Since a set in \mathbb{R}^n is bounded if and only if it lies in some ball, and balls are convex, it follows that the convex hull of a bounded set in \mathbb{R}^n is bounded.
- The **diameter** of a nonempty bounded set A in \mathbb{R}^n is the nonnegative real number

$$\sup\{\|\boldsymbol{a}-\boldsymbol{b}\|:\boldsymbol{a},\boldsymbol{b}\in A\}.$$

- In R² the diameter of a triangle is the length of a longest side. The diameter of a rectangle is the length of a diagonal.
- In \mathbb{R}^n the balls B(a; r) and B[a; r] both have diameter 2r.
- The theorem below relates the diameters of a bounded set and its convex hull.

Diameter of a Bounded Set and its Convex Hull

Theorem

Let A be a nonempty bounded set in \mathbb{R}^n . Then A and convA have the same diameter.

• Suppose that A has diameter s. Let $x, y \in \text{conv}A$. Then

$$\boldsymbol{x} = \lambda_1 \boldsymbol{a}_1 + \cdots + \lambda_m \boldsymbol{a}_m, \quad \boldsymbol{y} = \mu_1 \boldsymbol{b}_1 + \cdots + \mu_p \boldsymbol{b}_p,$$

for some $\boldsymbol{a}_1, \dots, \boldsymbol{a}_m$, $\boldsymbol{b}_1, \dots, \boldsymbol{b}_p \in A$ and $\lambda_1, \dots, \lambda_m$, $\mu_1, \dots, \mu_p \ge 0$ with $\lambda_1 + \dots + \lambda_m = 1$, $\mu_1 + \dots + \mu_p = 1$. Thus $\boldsymbol{x} = \sum_{i=1}^m \sum_{j=1}^p \lambda_i \mu_j \boldsymbol{a}_i$ and $\boldsymbol{y} = \sum_{i=1}^m \sum_{j=1}^p \lambda_i \mu_j \boldsymbol{b}_j$. Hence, using the Triangle Inequality,

$$\begin{aligned} \|\boldsymbol{x} - \boldsymbol{y}\| &= \|\sum_{i=1}^{m} \sum_{j=1}^{p} \lambda_{i} \mu_{j} (\boldsymbol{a}_{i} - \boldsymbol{b}_{j})\| \\ &\leq \sum_{i=1}^{m} \sum_{j=1}^{p} \lambda_{i} \mu_{j} \|\boldsymbol{a}_{i} - \boldsymbol{b}_{j}\| \\ &\leq \sum_{i=1}^{m} \sum_{j=1}^{p} \lambda_{i} \mu_{j} s = s. \end{aligned}$$

Hence the diameter of convA does not exceed s. Since $A \subseteq \text{conv}A$, the diameter of convA is at least s. Thus convA has diameter s.

George Voutsadakis (LSSU)

Convex Hull of Set of Complex Numbers

- We now prove a result concerning the location of the roots of the derivative of a complex polynomial.
- In a natural way we can identify the Euclidean space ℝ² with the complex plane by identifying each point (x, y) of ℝ² with the complex number x + iy and vice versa.
- This identification allows us to refer to the convex hull of a set of complex numbers or to a convex combination of complex numbers. Example: Consider a complex polynomial P(z) = az² + bz + c. Then P has roots ^{-b±√b²-4ac}/_{2a}, and its derivative P' has root -^b/_{2a}. Hence the root of P' lies midway between the roots of P. So the root of P' is in the convex hull of the roots of P.

The Gauss-Lucas Theorem

Theorem (Gauss-Lucas Theorem)

The roots of the derivative of a non-constant complex polynomial belong to the convex hull of the set of roots of the polynomial itself.

• Let *P* be the complex polynomial defined for complex *z* by the equation

$$P(z) = a_n z^n + \dots + a_1 z + a_0,$$

where $n \ge 1$ and a_0, a_1, \ldots, a_n are complex numbers with $a_n \ne 0$. Then

$$P(z) = a_n(z-z_1)\cdots(z-z_n),$$

where $z_1,...,z_n$ are the roots of P, each being repeated according to its multiplicity. A routine verification shows that, for $z \neq z_1,...,z_n$,

$$\frac{P'(z)}{P(z)} = \frac{1}{z-z_1} + \dots + \frac{1}{z-z_n} = \frac{\overline{z}-\overline{z}_1}{|z-z_1|^2} + \dots + \frac{\overline{z}-\overline{z}_n}{|z-z_n|^2}.$$

The Gauss-Lucas Theorem (Cont'd)

Suppose now that z is a root of P'. We establish the theorem by exhibiting z as a convex combination of z₁,..., z_n. This can be done trivially if z is one of z₁,..., z_n. So assume that this is not the case. Putting P'(z) = 0 in the preceding equation, we find easily that

$$z = \frac{\frac{1}{|z - z_1|^2} Z_1 + \dots + \frac{1}{|z - z_n|^2} Z_n}{\frac{1}{|z - z_1|^2} + \dots + \frac{1}{|z - z_n|^2}}$$

This expresses z as a convex combination of z_1, \ldots, z_n .

Corollary

Suppose that the roots of a non-constant complex polynomial lie in some given convex set. Then the roots of its derivative lie in the same convex set.

• A simple application of the corollary:

If all the roots of a non-constant complex polynomial have positive imaginary parts, then the same is also true of the roots of its derivative.

George Voutsadakis (LSSU)
Subsection 3

Interiors and Closures

Relative Interior of a Nonempty Convex Set

Theorem

The relative interior of a non-empty convex set in \mathbb{R}^n is non-empty.

• Let A be a non-empty r-dimensional convex set in \mathbb{R}^n . Then A contains points a_0, \ldots, a_r which form an affine basis for the r-flat aff A, and the barycentric coordinates $\lambda_0, \ldots, \lambda_r$ of a point **x** of affA relative to a_0, \ldots, a_r are continuous functions of x, a fact which follows easily from a previous theorem. Let $\mathbf{a} = \frac{1}{r+1}(\mathbf{a}_0 + \cdots + \mathbf{a}_r)$. Then \mathbf{a} lies in A and its barycentric coordinates $\lambda_0, \ldots, \lambda_r$ are positive, each being $\frac{1}{r+1}$. By the continuity of the barycentric coordinates, for each i = 0, ..., r, there exists $s_i > 0$, such that $\lambda_i > 0$ whenever **x** lies in $B(\mathbf{a}; s_i) \cap \text{aff} A$. Let s be the minimum of s_0, \ldots, s_r . So s > 0. Then if x lies in $B(\mathbf{a}; s) \cap \text{aff} A$, all its barycentric coordinates $\lambda_0, \dots, \lambda_r$ are positive. So, since A is convex, \mathbf{x} lies in A. Thus, the relative interior of A contains the point **a**.

Convex Sets with Empty Interior

Corollary

A convex set in \mathbb{R}^n has an empty interior if and only if it lies in some hyper plane of \mathbb{R}^n .

• Since a hyperplane in \mathbb{R}^n has an empty interior, so does each of its subsets.

A convex set in \mathbb{R}^n which does not lie in any hyperplane of \mathbb{R}^n must be *n*-dimensional. Therefore its interior coincides with its relative interior. This relative interior is non-empty by the theorem.

Line Segment Between Relative Interior and Set

Lemma

Let A be a convex set in \mathbb{R}^n . Let $\mathbf{a} \in \mathrm{ri}A$ and $\mathbf{b} \in A$. Then, for $0 < \lambda \le 1$,

 $\lambda \boldsymbol{a} + (1 - \lambda) \boldsymbol{b} \in \mathrm{ri} A.$

Since a ∈ riA, there is an r > 0 such that B(a;r) ∩ affA⊆A.
 Let c = λa + (1 − λ)b, where 0 < λ ≤ 1.
 We show that B(c; λr) ∩ affA ⊆ A.

Line Segment Between Relative Interior and Set (Cont'd)

• Let $\mathbf{x} \in B(\mathbf{c}; \lambda r) \cap \operatorname{aff} A$. Let

$$\boldsymbol{y} = \boldsymbol{a} + \frac{1}{\lambda} (\boldsymbol{x} - \boldsymbol{c}) = \boldsymbol{a} + \frac{1}{\lambda} (\boldsymbol{x} - \lambda \boldsymbol{a} - (1 - \lambda) \boldsymbol{b}) = \frac{1}{\lambda} \boldsymbol{x} + (1 - \frac{1}{\lambda}) \boldsymbol{b}.$$

Then $\mathbf{y} \in \operatorname{aff} A$ and $\|\mathbf{y} - \mathbf{a}\| = \frac{1}{\lambda} \|\mathbf{x} - \mathbf{c}\| < r$. Thus, $\mathbf{y} \in B(\mathbf{a}; r) \cap \operatorname{aff} A \subseteq A$. The equation $\mathbf{x} = \lambda \mathbf{y} + (1 - \lambda) \mathbf{b}$, together with the convexity of A, shows that $\mathbf{x} \in A$. Hence, $B(\mathbf{c}; \lambda r) \cap \operatorname{aff} A \subseteq A$. So $\mathbf{c} \in \operatorname{ri} A$.

A Closure and a Relative Interior Point of a Convex Set

Theorem

Let A be a convex set in \mathbb{R}^n . Let $\boldsymbol{a} \in riA$ and $\boldsymbol{b} \in clA$. Then $\lambda \boldsymbol{a} + (1-\lambda)\boldsymbol{b} \in riA$ for $0 < \lambda \le 1$.

• Since $\boldsymbol{a} \in \operatorname{ri} A$, there is an r > 0 such that $B(\boldsymbol{a}; r) \cap \operatorname{aff} A \subseteq A$. Let $\boldsymbol{c} = \lambda \boldsymbol{a} + (1 - \lambda) \boldsymbol{b}$, where $0 < \lambda \leq 1$. Since $\boldsymbol{b} \in \operatorname{cl} A$, there exists $\boldsymbol{d} \in A$ satisfying $(1 - \lambda) \| \boldsymbol{d} - \boldsymbol{b} \| < \lambda r$. Let

$$e = a + \frac{1-\lambda}{\lambda}(b-d) = \frac{1}{\lambda}(\lambda a + (1-\lambda)b - (1-\lambda)d)$$
$$= \frac{1}{\lambda}(c + (\lambda - 1)d) = \frac{1}{\lambda}c + (1 - \frac{1}{\lambda})d.$$

Then $\boldsymbol{e} \in \operatorname{aff} A$ and $\|\boldsymbol{e} - \boldsymbol{a}\| = \frac{1-\lambda}{\lambda} \|\boldsymbol{b} - \boldsymbol{d}\| < r$. Thus \boldsymbol{e} lies in $B(\boldsymbol{a}; r) \cap \operatorname{aff} A$. Hence, it lies in riA. The equation $\boldsymbol{c} = \lambda \boldsymbol{e} + (1-\lambda)\boldsymbol{d}$, together with the lemma, shows that $\boldsymbol{c} \in \operatorname{ri} A$.

Relative Interior, Interior and Closure of Convex Sets

Theorem

Let A be a convex set in \mathbb{R}^n . Then riA, intA and clA are convex.

If a, b ∈ riA and 0 ≤ λ ≤ 1, then λa + (1 − λ)b ∈ riA, either trivially, if λ = 0, or by the preceding theorem, otherwise. Thus riA is convex. That intA is convex follows from the fact that either intA is empty or coincides with riA.

If $a, b \in clA$, then there are sequences a_1, \ldots, a_k, \ldots and b_1, \ldots, b_k, \ldots of points of A such that $a_k \rightarrow a$, $b_k \rightarrow b$ as $k \rightarrow \infty$. Let $0 \le \lambda \le 1$. Then $\lambda a_k + (1-\lambda)b_k \in A$ for each k, since A is convex. Now

$$\lambda \boldsymbol{a}_k + (1-\lambda)\boldsymbol{b}_k \rightarrow \lambda \boldsymbol{a} + (1-\lambda)\boldsymbol{b}$$
 as $k \rightarrow \infty$.

This shows that $\lambda \boldsymbol{a} + (1 - \lambda) \boldsymbol{b} \in clA$. Thus clA is convex.

The Closed Convex Hull of a Set

- The preceding theorem shows that, for any set A in \mathbb{R}^n , the set cl(convA) is a closed convex set containing A.
- If B is any closed convex set in \mathbb{R}^n containing A, then

$$B = cl(convB) \supseteq cl(convA).$$

- So cl(convA) is the smallest closed convex set containing A.
- It is called the **closed convex hull** of *A*.

Characterization of Relative Interior Points

• The next result asserts that a point a_0 of a convex set A is a relative interior point of A if and only if every line segment lying in A, and having a_0 as an endpoint, can be extended some distance beyond a_0 without leaving A.

Theorem

Let a_0 be a point of a convex set A in \mathbb{R}^n . Then $a_0 \in riA$ if and only if, for each $a \in A$, there exists $\mu > 1$ such that $(1 - \mu)a + \mu a_0 \in A$.

• Clearly, if $a_0 \in riA$, then the condition of the theorem is satisfied. Conversely, suppose that a_0 satisfies this condition. Let $a \in riA$. Then there is $\mu > 1$ such that the point $\mathbf{x} = (1-\mu)\mathbf{a} + \mu \mathbf{a}_0$ lies in A. Hence $a_0 = \lambda \mathbf{a} + (1-\lambda)\mathbf{x}$, where $0 < \lambda = 1 - \frac{1}{\mu} < 1$. But $\mathbf{a} \in riA$ and $\mathbf{x} \in A$, so $a_0 \in riA$ by a previous lemma.

Relative Interior of the Convex Hull of a Finite Set

Theorem

Let $A = \operatorname{conv}\{a_1, \ldots, a_m\}$, where $a_1, \ldots, a_m \in \mathbb{R}^n$. Then

$$\mathsf{ri} \mathcal{A} = \{\lambda_1 \mathbf{a}_1 + \dots + \lambda_m \mathbf{a}_m : \lambda_1, \dots, \lambda_m > 0, \lambda_1 + \dots + \lambda_m = 1\}.$$

• Suppose first that $\mathbf{a}_0 = \lambda_1 \mathbf{a}_1 + \dots + \lambda_m \mathbf{a}_m$, where $\lambda_1, \dots, \lambda_m > 0$ and $\lambda_1 + \dots + \lambda_m = 1$, and that $\mathbf{a} \in A$. Then $\mathbf{a}_0 \in A$, and $\mathbf{a} = \mu_1 \mathbf{a}_1 + \dots + \mu_m \mathbf{a}_m$ for some $\mu_1, \dots, \mu_m \ge 0$ with $\mu_1 + \dots + \mu_m = 1$. Choose $\mu > 1$ such that

$$\mu\lambda_1+(1-\mu)\mu_1\geq 0,\ldots,\mu\lambda_m+(1-\mu)\mu_m\geq 0.$$

Then $(1-\mu)\mathbf{a} + \mu\mathbf{a}_0 \in A$. So $\mathbf{a}_0 \in riA$ by the preceding theorem.

Relative Interior of the Convex Hull of a Finite Set (Cont'd)

• Suppose next that $\mathbf{a}_0 \in \text{ri}A$, and that $\mathbf{a}^* = \frac{1}{m}(\mathbf{a}_1 + \dots + \mathbf{a}_m)$. Then $\mathbf{a}^* \in A$. By the preceding theorem, there exist $\mu > 1$ and $\mathbf{a} \in A$ such that $\mathbf{a} = (1-\mu)\mathbf{a}^* + \mu \mathbf{a}_0$, say $\mathbf{a} = \mu_1 \mathbf{a}_1 + \dots + \mu_m \mathbf{a}_m$, where $\mu_1, \dots, \mu_m \ge 0$ with $\mu_1 + \dots + \mu_m = 1$. The equation

$$\boldsymbol{a}_0 = \frac{\mu_1 + \frac{\mu - 1}{m}}{\mu} \boldsymbol{a}_1 + \dots + \frac{\mu_m + \frac{\mu - 1}{m}}{\mu} \boldsymbol{a}_m$$

now expresses \boldsymbol{a}_0 in the form $\lambda_1 \boldsymbol{a}_1 + \dots + \lambda_m \boldsymbol{a}_m$, where $\lambda_1, \dots, \lambda_m > 0$ with $\lambda_1 + \dots + \lambda_m = 1$.

Closure and Relative Interior

Theorem

Let A be a convex set in \mathbb{R}^n . Then riA = ri(c|A) and c|A = c|(riA).

 We assume, throughout, that A is non-empty with a ∈ riA. The inclusion riA ⊆ ri(clA) follows from the inclusion A ⊆ clA and the fact that the affine hulls of A and clA coincide. To establish the inclusion ri(clA) ⊆ riA, suppose that b ∈ ri(clA). By a previous theorem, there exist μ > 1 and c ∈ clA such that c = (1 − μ)a + μb. Hence b = (1 − λ)a + λc, where 0 < λ = 1/μ < 1. That b ∈ riA follows from a previous theorem. Thus, ri(clA) ⊆ riA.

The inclusion $cl(riA) \subseteq clA$ is clear. To establish the inclusion $clA \subseteq cl(riA)$, suppose that $\boldsymbol{b} \in clA$. A previous theorem shows that $\lambda \boldsymbol{a} + (1 - \lambda)\boldsymbol{b} \in riA$ for $0 < \lambda \leq 1$. Hence, $\boldsymbol{b} \in cl(riA)$. Thus, $clA \subseteq cl(riA)$.

Interior, Closure and Boundaries

Corollary

Let A be a convex set in \mathbb{R}^n . Then intA = int(c|A) and, when intA is nonempty, c|A = c|(intA).

If intA is non-empty, then riA = intA and ri(clA) = int(clA), and the corollary follows from the theorem.
 If intA is empty, then A, and hence clA, lie in a hyperplane of Rⁿ.
 Hence, both intA and int(clA) are empty.

Corollary

Let A be a convex set in \mathbb{R}^n . Then rebdA = rebd(clA) and bdA = bd(clA).

• By the theorem and its first corollary,

$$rebd(clA) = cl(clA) \ ri(clA) = clA \ riA = rebdA;$$

bd(clA) = cl(clA) \\int(clA) = clA \\intA = bdA.

Subsection 4

Separation and Support

Uniqueness of Closest Point

Theorem

In \mathbb{R}^n let A be a nonempty closed convex set and let \mathbf{x} be a point. Then there exists a unique point \mathbf{a}_0 of A such that $\|\mathbf{x} - \mathbf{a}_0\| = \inf \{\|\mathbf{x} - \mathbf{z}\| : \mathbf{z} \in A\}$. Moreover, $(\mathbf{x} - \mathbf{a}_0) \cdot (\mathbf{a} - \mathbf{a}_0) \le 0$, for each \mathbf{a} in A.

By a previous theorem, there exists a₀ ∈ A such that ||x-a₀|| = inf {||x - z|| : z ∈ A}. Let a ∈ A and 0 < λ ≤ 1. The convexity of A shows (1-λ)a₀ + λa ∈ A.

The choice of \boldsymbol{a}_0 shows that

$$\|\boldsymbol{x} - ((1-\lambda)\boldsymbol{a}_0 + \lambda \boldsymbol{a})\| = \|(\boldsymbol{x} - \boldsymbol{a}_0) + \lambda(\boldsymbol{a}_0 - \boldsymbol{a})\| \ge \|\boldsymbol{x} - \boldsymbol{a}_0\|.$$

We deduce, using a previous theorem that $(\mathbf{x} - \mathbf{a}_0) \cdot (\mathbf{a} - \mathbf{a}_0) \le 0$.

Uniqueness of Closest Point (Cont'd)

• Suppose that $a_1 \in A$ also satisfies the equation

$$\|x - a_1\| = \inf \{\|x - z\| : z \in A\}.$$

Then, by what we have just proved, $(\mathbf{x} - \mathbf{a}_0) \cdot (\mathbf{a}_1 - \mathbf{a}_0) \le 0$. Because of the symmetry between \mathbf{a}_0 and \mathbf{a}_1 , we have $(\mathbf{x} - \mathbf{a}_1) \cdot (\mathbf{a}_0 - \mathbf{a}_1) \le 0$. Adding these last two inequalities together, we deduce that

$$\|\boldsymbol{a}_{1}-\boldsymbol{a}_{0}\|^{2} = (\boldsymbol{a}_{1}-\boldsymbol{a}_{0}) \cdot (\boldsymbol{a}_{1}-\boldsymbol{a}_{0}) \leq 0.$$

This proves that $\boldsymbol{a}_0 = \boldsymbol{a}_1$.

• The theorem shows how each non-empty closed convex set A in \mathbb{R}^n gives rise to a mapping $f : \mathbb{R}^n \to A$ defined by $f(\mathbf{x}) = \mathbf{a}_0$, where \mathbf{a}_0 is the nearest point of A to a point \mathbf{x} of \mathbb{R}^n .

This mapping is called the **projection operator** of *A*.

Lipschitz Property of Projection

Corollary

Let A be a non-empty closed convex set in \mathbb{R}^n . Then the projection operator $f : \mathbb{R}^n \to A$ of A satisfies the Lipschitz condition $\|f(\mathbf{x}) - f(\mathbf{y})\| \le \|\mathbf{x} - \mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. So it is continuous.

• Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Write $\mathbf{u} = \mathbf{x} - f(\mathbf{x}), \ \mathbf{v} = \mathbf{y} - f(\mathbf{y})$. Then, by the theorem, $\mathbf{u} \cdot (f(\mathbf{y}) - f(\mathbf{x})) \le 0$ and $\mathbf{v} \cdot (f(\mathbf{x}) - f(\mathbf{y})) \le 0$. So, we get $(\mathbf{u} - \mathbf{v}) \cdot (f(\mathbf{x}) - f(\mathbf{y})) \ge 0$. Thus,

$$\|\mathbf{x} - \mathbf{y}\|^{2} = \|(\mathbf{u} - \mathbf{v}) + (f(\mathbf{x}) - f(\mathbf{y}))\|^{2}$$

= $\|\mathbf{u} - \mathbf{v}\|^{2} + 2(\mathbf{u} - \mathbf{v}) \cdot (f(\mathbf{x}) - f(\mathbf{y})) + \|f(\mathbf{x}) - f(\mathbf{y})\|^{2}$
\ge \|f(\mathbf{x}) - f(\mathbf{y})\|^{2}.

So $||f(x) - f(y)|| \le ||x - y||$.

Geometry of Nearest Points

Geometrically, the following corollary states that, if f(x) is the nearest point of a non-empty closed convex set A in Rⁿ to a point x of Rⁿ not belonging to A,

then it is also the nearest point of A to any point on the halfline starting at f(x) and passing through x.

Nearest Points and Line Segments

Corollary

Let A be a non-empty closed convex set in \mathbb{R}^n with projection operator f. Then, for all $\mathbf{x} \in \mathbb{R}^n$ and $\lambda \ge 0$,

$$f(f(\boldsymbol{x}) + \lambda(\boldsymbol{x} - f(\boldsymbol{x}))) = f(\boldsymbol{x}).$$

• Write $\mathbf{y} = f(\mathbf{x}) + \lambda(\mathbf{x} - f(\mathbf{x}))$, where $\mathbf{x} \in \mathbb{R}^n$, $\lambda \ge 0$. By the theorem, $(\mathbf{x} - f(\mathbf{x})) \cdot (f(\mathbf{y}) - f(\mathbf{x})) \le 0$ and $(\mathbf{y} - f(\mathbf{y})) \cdot (f(\mathbf{x}) - f(\mathbf{y})) \le 0$. From these inequalities, we deduce that

$$0 \leq (f(\mathbf{y}) - f(\mathbf{x})) \cdot (f(\mathbf{y}) - f(\mathbf{x}))$$

= $(f(\mathbf{y}) + \lambda(\mathbf{x} - f(\mathbf{x})) - \mathbf{y}) \cdot (f(\mathbf{y}) - f(\mathbf{x}))$
= $(f(\mathbf{y}) - \mathbf{y}) \cdot (f(\mathbf{y}) - f(\mathbf{x})) + \lambda(\mathbf{x} - f(\mathbf{x})) \cdot (f(\mathbf{y}) - f(\mathbf{x}))$
 $\leq 0.$

Hence, $||f(y) - f(x)||^2 = 0$. Therefore, f(y) = f(x).

Relative Boundaries and Closest Points

Theorem

Let **a** be a relative boundary point of a non-empty closed convex set A in \mathbb{R}^n with projection operator f. Then there exists $\mathbf{x} \in (\operatorname{aff} A) \setminus A$ such that $f(\mathbf{x}) = \mathbf{a}$.

• Since $\mathbf{a} \in \text{rebd}A$, there exists, for each positive integer m, a point \mathbf{y}_m of $(\text{aff}A)\setminus A$ satisfying $\|\mathbf{y}_m - \mathbf{a}\| \leq \frac{1}{m}$. Write $\mathbf{a}_m = f(\mathbf{y}_m)$ and

$$\boldsymbol{x}_m = \boldsymbol{a}_m + \frac{\boldsymbol{y}_m - \boldsymbol{a}_m}{\|\boldsymbol{y}_m - \boldsymbol{a}_m\|}.$$

Relative Boundaries and Closest Points (Cont'd)

Then ||x_m - a_m|| = 1 and, by the preceding corollary, f(x_m) = a_m.
 A previous corollary shows that

$$\|\boldsymbol{a}_m - \boldsymbol{a}\| = \|f(\boldsymbol{y}_m) - f(\boldsymbol{a})\| \le \|\boldsymbol{y}_m - \boldsymbol{a}\| \le \frac{1}{m}.$$

So $a_m \rightarrow a$ as $m \rightarrow \infty$. We have

$$\|\boldsymbol{x}_{m}\| \leq \|\boldsymbol{x}_{m} - \boldsymbol{a}_{m}\| + \|\boldsymbol{a}_{m} - \boldsymbol{a}\| + \|\boldsymbol{a}\| \leq 1 + \frac{1}{m} + \|\boldsymbol{a}\|.$$

So the sequence $x_1, x_2, ...$ is bounded. Thus $x_1, x_2, ...$ contains a convergent subsequence. Assume, without loss of generality, that $x_1, x_2, ...$ itself converges to some point x of \mathbb{R}^n . Since $x_1, x_2, ...$ belong to aff A, we can deduce that $x \in aff A$. The continuity of f shows that $f(x_m) \rightarrow f(x)$ as $m \rightarrow \infty$, i.e., $a_m \rightarrow f(x)$ as $m \rightarrow \infty$. But $a_m \rightarrow a$ as $m \rightarrow \infty$. Hence, f(x) = a. Clearly ||x - a|| = 1. So $x \notin A$.

Bounded Sets and Boundaries

Corollary

Let A be a non-empty closed convex set in \mathbb{R}^n with projection operator f and let B be a bounded set in \mathbb{R}^n such that $A \subseteq B$. Then f(bdB) = bdA.

We show that bdA⊆f(bdB), the opposite inclusion being obvious. Let a∈ bdA. Then there exists x∈ ℝⁿ\A such that f(x) = a. This can be proved by substituting bdA for rebdA, and ℝⁿ for affA, in the proof of the theorem. As B is bounded, there is some μ > 0 such that, for λ≥μ, a+λ(x-a) ∉ B. But a∈B. So a+λ₀(x-a)∈ bdB for some λ₀≥0. The preceding corollary shows that f(a+λ₀(x-a)) = a. Hence, bdA⊆f(bdB).

Separation

- Let A and B be sets, and let H be a hyperplane in \mathbb{R}^n .
- Then *H* is said to **separate** *A* and *B* if *A* lies in one of the closed halfspaces determined by *H* and *B* lies in the other.
- *H* is said to **separate** *A* and *B* **properly** if it separates them, but not both *A* and *B* lie in *H*.
- If A and B lie in opposite open halfspaces determined by H, then H is said to separate A and B strictly.
- It follows from the convexity of halfspaces that, if a hyperplane separates two sets, then it also separates their convex hulls.

For this reason, we consider only the separation of convex sets.

Examples

- It is not always possible to separate two convex sets by a hyperplane.
 For example, there is no line separating the set {0} and the closed unit disc {(x, y) : x² + y² ≤ 1} in ℝ².
- Any two sets that can be strictly separated can be properly separated, unless they are both empty.
- The convex sets $\{(x, y) : x \le 0\}$ and $\{(x, y) : x > 0, y \ge \frac{1}{x}\}$ in \mathbb{R}^2 cannot be strictly separated, but they are properly separated by the *y*-axis.
- A hyperplane in \mathbb{R}^n separates any two of its subsets, but does not separate them properly.

Strict Separation of a Closed and a Compact Set

Theorem

Let A and B be disjoint non-empty convex sets in \mathbb{R}^n with A closed and B compact. Then A and B can be strictly separated by a hyperplane in \mathbb{R}^n .

 The geometry of the proof is as follows. Let *a* and *b* be nearest points of *A* and *B*. Then the hyperplane through the midpoint of the line segment joining *a* and *b* with normal vector *a* – *b* strictly separates *A* and *B*.

Strict Separation of a Closed and a Compact Set (Cont'd)

Let a ∈ A, b ∈ B be such that a is the nearest point of A to b, and b is the nearest point of B to a. This is possible by a previous theorem. Since A and B are disjoint, a ≠ b. Let x ∈ A, y ∈ B. Then, by a previous theorem, (b-a) · (x - a) ≤ 0 and (a - b) · (y - b) ≤ 0. Thus,

$$(a-b) \cdot x \ge (a-b) \cdot a$$

= $\frac{1}{2} (||a||^2 - ||b||^2 + ||a-b||^2)$
> $\frac{1}{2} (||a||^2 - ||b||^2)$
> $\frac{1}{2} (||a||^2 - ||b||^2 - ||a-b||^2)$
= $(a-b) \cdot b$
 $\ge (a-b) \cdot y.$

Write $\mathbf{c} = \mathbf{a} - \mathbf{b}$ and $c_0 = \frac{1}{2}(\|\mathbf{a}\|^2 - \|\mathbf{b}\|^2)$. Then we have shown that the hyperplane $\mathbf{c} \cdot \mathbf{z} = c_0$ strictly separates A and B.

Consequences

Corollary

In \mathbb{R}^n let A be a closed convex set and let **b** be a point not lying in A. Then A and $\{\mathbf{b}\}$ can be strictly separated by a hyperplane in \mathbb{R}^n .

Corollary

Each closed convex set A in \mathbb{R}^n is the intersection of all the closed halfspaces in \mathbb{R}^n containing A.

Denote by B the intersection of all the closed haifspaces in ℝⁿ containing A. Then B is a closed convex set containing A. If b ∉ A, then the corollary above shows that there exists some closed halfspace in ℝⁿ which contains A but not b. Hence b ∉ B. Thus B ⊆ A, and A = B.

Convex Sets Not Containing the Origin

Lemma

In \mathbb{R}^n let A be a non-empty convex set not containing the origin. Then there exists a hyperplane in \mathbb{R}^n which separates the origin and A, and does not contain A.

Suppose first that 0 ∉ clA. Then the lemma follows from a previous corollary applied to the closed convex set clA. Suppose next that 0 ∈ clA. Then 0 ∈ rebdA. By a previous corollary, rebdA = rebd(clA). So 0 ∈ rebd(clA). A previous theorem asserts the existence of a point x of (aff(clA))\clA whose nearest point in clA is 0. By a previous theorem, clA ⊆ {z ∈ ℝⁿ : x · z ≤ 0}. This shows that the hyperplane H = {z ∈ ℝⁿ : x · z = 0} separates 0 and A.

We cannot have $A \subseteq H$: This would imply that $x \in aff(c|A) \subseteq H$. But, this is impossible since $x \cdot x > 0$. Thus, H separates $\{0\}$ and A, and does not contain A.

Disjoint Nonempty Convex Sets

Theorem

Each pair of disjoint non-empty convex sets A and B in \mathbb{R}^n can be properly separated by a hyperplane in \mathbb{R}^n .

 The non-empty convex set A - B does not contain the origin. By the lemma, there exists a hyperplane in ℝⁿ which separates {0} and A - B, and that does not contain A - B. Thus, there exist c ∈ ℝⁿ with c ≠ 0 and c₀ ∈ ℝ such that

$$0 = \boldsymbol{c} \cdot \boldsymbol{0} \le c_0$$
 and $\boldsymbol{c} \cdot (\boldsymbol{a} - \boldsymbol{b}) \ge c_0$, for $\boldsymbol{a} \in A$, $\boldsymbol{b} \in B$.

Also, for some $\boldsymbol{a}_0 \in A$, $\boldsymbol{b}_0 \in B$, we have $\boldsymbol{c} \cdot (\boldsymbol{a}_0 - \boldsymbol{b}_0) > c_0 \ge 0$. For every $\boldsymbol{a} \in A$, $\boldsymbol{b} \in B$,

$$\boldsymbol{c} \cdot \boldsymbol{a} \geq \boldsymbol{c} \cdot \boldsymbol{b} + c_0 \geq \boldsymbol{c} \cdot \boldsymbol{b}.$$

Disjoint Nonempty Convex Sets (Cont'd)

• Thus there is a scalar *d* satisfying the inequalities

 $\inf \{ \boldsymbol{c} \cdot \boldsymbol{a} : \boldsymbol{a} \in A \} \ge d \ge \sup \{ \boldsymbol{c} \cdot \boldsymbol{b} : \boldsymbol{b} \in B \}.$

For any $\mathbf{a}' \in A$, $\mathbf{b}' \in B$, we have $\mathbf{c} \cdot \mathbf{a}' \ge d \ge \mathbf{c} \cdot \mathbf{b}'$. So the hyperplane H with equation $\mathbf{c} \cdot \mathbf{z} = d$ separates A and B.

H cannot contain both *A* and *B*, for this would imply that $c \cdot (a_0 - b_0) = 0$, which contradicts the inequality above. Thus *H* separates *A* and *B* properly.

Convex Sets With Disjoint Relative Interiors

Corollary

Each pair of non-empty convex sets A and B in \mathbb{R}^n whose relative interiors are disjoint can be properly separated by a hyperplane in \mathbb{R}^n .

The non-empty convex sets riA and riB are disjoint. So, by the theorem, there exists a hyperplane H in Rⁿ which properly separates them. Since closed halfspaces are closed, H also properly separates cl(riA) = clA and cl(riB) = clB. Hence, it also properly separates A and B.

Support Hyperplanes

- In Rⁿ a hyperplane H is called a support hyperplane to a set A if H meets clA and A lies in one of the closed halfspaces determined by H.
- Such a hyperplane *H* is said to **support** *A* at those points where *H* meets cl*A*.
- A hyperplane *H* cannot support a set *A* at an interior point of *A*, because every ball with center in *H* meets both the open halfspaces determined by *H*.
- A hyperplane in \mathbb{R}^n is a **trivial support hyperplane** to each of its non-empty subsets.
- A support hyperplane to a set in Rⁿ is said to be a non-trivial support hyperplane to the set if it does not contain the set itself.

Boundary Points and Support Hyperplanes

Theorem

Through each boundary point of a convex set A in \mathbb{R}^n there passes a support hyperplane to A, and through each relative boundary point of A there passes a non-trivial support hyperplane to A.

 Suppose first that *a* is a boundary point of *A*, but not a relative boundary point of *A*. Then *A* cannot be *n*-dimensional. So it lies in some hyperplane *H* of Rⁿ. Clearly *H* is a support hyperplane to *A* passing through *a*.

Boundary Points and Support Hyperplanes (Cont'd)

• Suppose next that **a** is a relative boundary point of A.

The preceding theorem shows the existence of a hyperplane H which properly separates $\{a\}$ and riA.

H cannot contain ri*A*, for this would imply that *H* also contains cl(riA) = clA, and hence **a**.

By the definition of separation, $\{a\}$ and riA, and thus $\{a\}$ and cl(riA) = clA, belong to opposite closed halfspaces determined by H. Since $a \in clA$, we must have $a \in H$. Thus H is a non-trivial support hyperplane to A passing through a.

Example

- Let H be a support hyperplane to a closed ball B[a; r] in ℝⁿ at some point c.
- Since *H* does not meet the interior of the ball, every point of *H* must be a distance of at least *r* from *a*.
- Hence *c* must be a nearest point of *H* to *a*.
- By the uniqueness of nearest points of convex sets, *H* can meet the ball only in the point *c*.
- A previous theorem shows that $(h-c) \cdot (a-c) \le 0$ for all h in H.
- We cannot have $(h-c) \cdot (a-c) < 0$ for some h in H. This would imply that the point h' = 2c - h of H satisfies

$$(\mathbf{h}'-\mathbf{c})\cdot(\mathbf{a}-\mathbf{c})=(2\mathbf{c}-\mathbf{h}-\mathbf{c})\cdot(\mathbf{a}-\mathbf{c})=(\mathbf{c}-\mathbf{h})\cdot(\mathbf{a}-\mathbf{c})>0.$$

But this is impossible.

Thus H must be the hyperplane with equation (x - c) · (a - c) = 0.
So H is the unique support hyperplane to B[a; r] at c.

Distance Between a Point and a Hyperplane

- We conclude this section by establishing a formula for the distance between a point *a* and a hyperplane *H* with equation *c* ⋅ *x* = *c*₀ in ℝⁿ.
- Denote by **a**₀ the point defined by the equation

$$\boldsymbol{a}_0 = \boldsymbol{a} + \frac{c_0 - \boldsymbol{c} \cdot \boldsymbol{a}}{\|\boldsymbol{c}\|^2} \boldsymbol{c}.$$

• Then **a**₀ lies in *H*, and for any **x** in *H*, we have

$$\|\boldsymbol{a} - \boldsymbol{x}\|^2 = \|(\boldsymbol{a} - \boldsymbol{a}_0) + (\boldsymbol{a}_0 - \boldsymbol{x})\|^2 = \|\boldsymbol{a} - \boldsymbol{a}_0\|^2 + \|\boldsymbol{a}_0 - \boldsymbol{x}\|^2$$

This shows that \mathbf{a}_0 is the unique nearest point of H to \mathbf{a} , and that the (shortest) distance between \mathbf{a} and H is $\|\mathbf{a} - \mathbf{a}_0\| = \frac{|\mathbf{C} \cdot \mathbf{a} - c_0|}{\|\mathbf{C}\|}$.

- When c is a unit vector and a is the origin, this distance becomes $|c_0|$.
- The (shortest) distance between parallel hyperplanes $c \cdot x = c_0$ and $c \cdot x = d_0$ is $\frac{|d_0 c_0|}{\|c\|}$ which becomes $|d_0 c_0|$ when c is a unit vector.
Subsection 5

Unbounded Convex Sets

Example: Recession Cone

• Let A be the closed unbounded convex set in \mathbb{R}^2 that is defined by the equation

$$A = \{ (x, y) : y \ge \frac{1}{x}, x > 0 \}$$

and let $\boldsymbol{a} \in A$.

- Then there are halflines starting at **a** which are contained in A.
- If we denote by A_a the union of all these halflines, then A_a is a closed convex set that is a union of halflines starting at a.
- Such a set A_a is called a closed convex cone with apex a.
- In fact, $A_a = a + P$, where P is the non-negative quadrant $\{(x, y) : x \ge 0, y \ge 0\}$ of \mathbb{R}^2 .

Recession Cone

- $A_a = a + P$, where $P = \{(x, y) : x \ge 0, y \ge 0\}$.
- The important observation here is that *P* is determined by the set *A* alone, being independent of the initial choice of the point *a* in *A*.
- We refer to *P* as the **recession cone** of *A*.
- Roughly speaking, the recession cone of a convex set indicates in which directions the set recedes to infinity.

Halflines

- A halfline L^+ in \mathbb{R}^n is a set of the form $\{x_0 + \lambda y : \lambda \ge 0\}$, where $x_0, y \in \mathbb{R}^n$ and $y \ne 0$.
- The reason for this is that the line joining the points x_0 and $x_0 + y$ is the set

$$\{(1-\lambda)\boldsymbol{x}_0 + \lambda(\boldsymbol{x}_0 + \boldsymbol{y}) : \lambda \in \mathbb{R}\} = \{\boldsymbol{x}_0 + \lambda \boldsymbol{y} : \lambda \in \mathbb{R}\}.$$

- A halfline L_0^+ of the form $\{\lambda y : \lambda \ge 0\}$, where $y \in \mathbb{R}^n$ and $y \ne 0$, is called a ray.
- The equation $L^+ = \mathbf{x}_0 + L_0^+$ expresses L^+ as a translate of the ray L_0^+ .
- Since \mathbf{x}_0 is the only point of L^+ whose removal from L^+ leaves a convex set, and $L_0^+ = L^+ \mathbf{x}_0$, it follows that \mathbf{x}_0 and L_0^+ are uniquely determined by L^+ .
- L^+ is the halfline with direction L_0^+ and initial point x_0 .
- The word direction will be used as a synonym for ray.

Closed Unbounded Convex Sets and Halflines

Theorem

Let A be a closed unbounded convex set in \mathbb{R}^n . Then A contains a halfline. Moreover, if A contains some halfline with direction L_0^+ , then it contains every halfline with direction L_0^+ whose initial point is in A.

Since A is unbounded, it contains a sequence a₁,...,a_k,... of non-zero vectors such that ||a_k|| → ∞ as k → ∞. Let λ_k = 1/||a_k||. Then the sequence λ₁a₁,...,λ_ka_k,... lies in the compact set {x : ||x|| = 1}. So it contains some subsequence converging to a point a with ||a|| = 1. We may suppose that the sequence itself converges to a. Let L⁺ be the direction {λa : λ ≥ 0}. Then we show that a₀ + L⁺ ⊆ A for every a₀ in A.

Closed Unbounded Convex Sets and Halflines (Cont'd)

Let a₀ ∈ A and let λ ≥ 0. Since λ_k → 0 as k → ∞, we must have, for all but a finite number of k's, 0 ≤ λλ_k ≤ 1 and (1 − λλ_k)a₀ + λλ_ka_k ∈ A. Clearly,

$$(1 - \lambda \lambda_k) \boldsymbol{a}_0 + \lambda \lambda_k \boldsymbol{a}_k \rightarrow \boldsymbol{a}_0 + \lambda \boldsymbol{a}, \text{ as } k \rightarrow \infty.$$

So $\mathbf{a}_0 + \lambda \mathbf{a} \in A$, since A is closed. Thus the halfline $\mathbf{a}_0 + L^+$ is contained in A.

Suppose next that *A* contains the halfline $\mathbf{b}_0 + L_0^+$, where L_0^+ is the direction $\{\lambda \mathbf{b} : \lambda \ge 0\}$ for some $\mathbf{b} \ne \mathbf{0}$. We show that every halfline $\mathbf{c}_0 + L_0^+$, where $\mathbf{c}_0 \in A$, is contained in *A*. Let $\mu \ge 0$. Then, for all $\lambda > \mu$,

$$\left(1-\frac{\mu}{\lambda}\right)\boldsymbol{c}_{0}+\frac{\mu}{\lambda}(\boldsymbol{b}_{0}+\lambda\boldsymbol{b})\in A.$$

Letting $\lambda \to \infty$ in this last relation and using the fact that A is closed, we deduce that $c_0 + \mu \mathbf{b} \in A$. Thus $c_0 + L_0^+ \subseteq A$.

Relative Interior, Closure and Halflines

Corollary

Let A be an unbounded convex set in \mathbb{R}^n . Then riA contains a halfline. Moreover, if clA contains some halfline with direction L_0^+ , then riA contains every halfline with direction L_0^+ whose initial point is in riA.

We apply the theorem to the closed unbounded convex set clA.
 Suppose that clA contains the halfline b₀ + L₀⁺, where L₀⁺ is the direction {λb : λ ≥ 0}. Let a₀ ∈ riA and let μ ≥ 0. Then a₀ + 2μb ∈ clA. So a₀ + μb = ½a₀ + ½(a₀ + 2μb) ∈ riA, by a previous theorem. Thus a₀ + L₀⁺ ⊆ riA.

Cones

- A nonempty set A in \mathbb{R}^n is called a **cone** if $\lambda a \in A$ whenever $a \in A$ and $\lambda \ge 0$.
- Examples of cones are:
 - subspaces;
 - rays;
 - the nonnegative orthant

$$\{(x_1,...,x_n): x_1 \ge 0,...,x_n \ge 0\}$$

of \mathbb{R}^n .

- All cones contain the origin and are, with the exception of the trivial cone {0}, unbounded.
- Cones need not be convex.

The set $\{(x, y) : xy \ge 0\}$ is a non-convex cone in \mathbb{R}^2 .

Characterization of Convex Cones

Theorem

Let *A* be a non-empty set in \mathbb{R}^n . Then *A* is a convex cone if and only if $\lambda \mathbf{a} + \mu \mathbf{b} \in A$ whenever $\mathbf{a}, \mathbf{b} \in A$ and $\lambda, \mu \ge 0$.

• Let A be a convex cone. Suppose that $\boldsymbol{a}, \boldsymbol{b} \in A$ and $\lambda, \mu \ge 0$. If $\lambda + \mu = 0$, then $\lambda = \mu = 0$ and trivially $\lambda \boldsymbol{a} + \mu \boldsymbol{b} \in A$. If $\lambda + \mu > 0$, then

$$rac{\lambda}{\lambda+\mu}oldsymbol{a}+rac{\mu}{\lambda+\mu}oldsymbol{b}\in A,$$

since A is convex. Hence

$$\lambda \boldsymbol{a} + \mu \boldsymbol{b} = (\lambda + \mu) \left(\frac{\lambda}{\lambda + \mu} \boldsymbol{a} + \frac{\mu}{\lambda + \mu} \boldsymbol{b} \right) \in A,$$

since A is a cone. Thus, in all cases, $\lambda \boldsymbol{a} + \mu \boldsymbol{b} \in A$.

Characterization of Convex Cones (Cont'd)

Suppose next that λa + μb ∈ A whenever a, b ∈ A and λ, μ ≥ 0.
 Clearly A is convex.

To show that A is a cone, let $\mathbf{a} \in A$ and $\lambda \ge 0$. Then, by our hypothesis, $\lambda \mathbf{a} = \lambda \mathbf{a} + \mathbf{0} \in A$.

Corollary

Let A be a non-empty set in \mathbb{R}^n . Then A is a convex cone if and only if $\mathbf{a} + \mathbf{b} \in A$ and $\lambda \mathbf{a} \in A$ whenever $\mathbf{a}, \mathbf{b} \in A$ and $\lambda \ge 0$.

Convex Cone Generated by a Set

- It is a routine matter to show that the intersection of any family of convex cones in \mathbb{R}^n is a convex cone.
- Hence cone*A*, defined as the intersection of all convex cones containing a set *A* in \mathbb{R}^n , is a convex cone.
- It is called the convex cone generated by A.
- Clearly cone A is the smallest convex cone containing A.
- We note that $cone \emptyset = \{0\}$.
- We now characterize coneA, in the case when A is non-empty, as the set of all nonnegative linear combinations of points of A, i.e., points of the form

$$\lambda_1 \boldsymbol{a}_1 + \cdots + \lambda_m \boldsymbol{a}_m,$$

where $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_m \in A$ and $\lambda_1, \ldots, \lambda_m \geq 0$.

Characterization of Generated Convex Cones

Theorem

Let A be a nonempty set in \mathbb{R}^n . Then coneA is the set of all non-negative linear combinations of points of A.

 Denote by B the set of all nonnegative linear combinations of points of A. Let x ∈ B. Then

 $\boldsymbol{x} = \lambda_1 \boldsymbol{a}_1 + \dots + \lambda_m \boldsymbol{a}_m$, for some $\boldsymbol{a}_1, \dots, \boldsymbol{a}_m \in A$ and $\lambda_1, \dots, \lambda_m \ge 0$.

Then $\mathbf{x} \in \operatorname{cone} A$ by repeated use of the corollary to coneA. Hence $B \subseteq \operatorname{cone} A$. The corollary shows that B is a convex cone. Clearly $A \subseteq B$. So $\operatorname{cone} A \subseteq B$. Thus, $B = \operatorname{cone} A$.

Recession Cone

- A nonempty convex set A in \mathbb{R}^n is said to recede in a direction L_0^+ , or to have a direction of recession L_0^+ , if every halfline with initial point in A and direction L_0^+ lies in A, i.e., if $A + L_0^+ \subseteq A$.
- The union of all directions of recession of *A*, together with the zero vector, is called the **recession cone** of *A*.
- A previous theorem shows that a nonempty closed convex set in \mathbb{R}^n is bounded if and only if its recession cone consists of the zero vector alone.
- The recession cone of a non-empty flat is the unique subspace which is parallel to it.
- The set {(x, y) : x > 0, y > 0} ∪ {(0,0)} is its own recession cone.
 It is an example of a set whose recession cone is not closed.

Characterization of Recession Cone

Theorem

Let A be a non-empty convex set in \mathbb{R}^n . Then the recession cone of A consists of all those points \mathbf{x} such that $A + \mathbf{x} \subseteq A$. Moreover, the recession cone of A is a convex cone, which is closed when A is closed.

If x belongs to the recession cone of A, then trivially A+x ⊆ A.
 Conversely, if A+x ⊆ A, then

$$A+2\mathbf{x}=(A+\mathbf{x})+\mathbf{x}\subseteq A+\mathbf{x}\subseteq A.$$

By repeated application of this argument, $A + m\mathbf{x} \subseteq A$ for each positive integer *m*. But *A* is convex. So $A + \lambda \mathbf{x} \subseteq A$, for all $\lambda \ge 0$. Hence \mathbf{x} lies in the recession cone of *A*.

Characterization of Recession Cone (Cont'd)

• Denote by C the recession cone of A. Let $\mathbf{x}, \mathbf{y} \in C$ and $\lambda, \mu \ge 0$. Then

$$A + \lambda \mathbf{x} + \mu \mathbf{y} = (A + \lambda \mathbf{x}) + \mu \mathbf{y} \subseteq A + \mu \mathbf{y} \subseteq A.$$

So $\lambda x + \mu y \in C$. Hence *C* is a convex cone by a previous theorem. Suppose now that *A* is closed. Let x_1, \ldots, x_k, \ldots be a sequence of points of the recession cone *C* that converges to some point x of \mathbb{R}^n . Then $a + x_k \in A$ for each k and for each point a of *A*. But *A* is closed, so $a + x \in A$ for each point a of *A*. I.e., $A + x \subseteq A$. Thus, $x \in C$. This shows that *C* is closed.

Direction of a Line

- Let *L* be a line in \mathbb{R}^n .
- Then by the **direction** of *L* is meant the *unique* line L_0 in \mathbb{R}^n , which is parallel to *L* and passes through the origin.
- A line is uniquely determined by specifying one of its points and giving its direction.

Indeed, if x lies on a line L in \mathbb{R}^n , then:

• The direction L_0 of L is simply the line L - x;

•
$$L = \mathbf{x} + L_0$$
.

Lineality Space

- Let L_0 be a line in \mathbb{R}^n that passes through the origin.
- Then a nonempty convex set A in ℝⁿ is said to be linear in the direction L₀, or to have a direction of linearity L₀, if every line meeting A which has direction L₀ lies in A, i.e., if A+L₀ ⊆ A.
- The union of all the directions of linearity of *A*, together with the zero vector, is called the **lineality space** of *A*.
- A previous theorem shows that, if a closed convex set A contains a line with direction L₀, then it contains every line with direction L₀ which meets A, i.e., L₀ is a direction of linearity of A.

Lineality Space: Examples

- A non-empty closed convex set contains a line if and only if its lineality space does not consist of the zero vector alone.
- The lineality space of a non-empty flat is the unique subspace which is parallel to it.
- The lineality space of the unbounded circular cylinder

$$\{\left(x,y,z\right):x^2+y^2\leq 1\}$$

is the subspace $\{(0,0,z) : z \in \mathbb{R}\}$, i.e., the z-axis.

Characterization of Lineality Space

Theorem

Let A be a non-empty convex set in \mathbb{R}^n . Then the lineality space of A consists of all those points **x** of \mathbb{R}^n such that $A + \mathbf{x} = A$, and is a subspace of \mathbb{R}^n .

- If x belongs to the lineality space of A, then trivially A + x ⊆ A and A x ⊆ A. Hence, A + x = A.
 Conversely, if A + x = A, then, as in the proof of the preceding theorem, A + mx = A, for each positive integer m. If m is a negative integer, then A + mx = (A + (-m)x) + mx = A. Hence A + mx = A, for all integers m. But A is convex, so A + λx = A for all real λ. Thus x
 - belongs to the lineality space of A.
 - Let S be the lineality space of A. Let $\mathbf{x}, \mathbf{y} \in S$ and $\lambda, \mu \in \mathbb{R}$. Then trivially $A + \lambda \mathbf{x} = A$ and $A + \mu \mathbf{y} = A$. Thus

$$A + \lambda \mathbf{x} + \mu \mathbf{y} = (A + \lambda \mathbf{x}) + \mu \mathbf{y} = A + \mu \mathbf{y} = A.$$

So $\lambda \mathbf{x} + \mu \mathbf{y} \in S$. This shows that S is a subspace of \mathbb{R}^n .

Decomposition of a Closed Convex Set

Theorem

Let A be a non-empty closed convex set in \mathbb{R}^n with lineality space S. Then

$$A = S + (A \cap S^{\perp}),$$

and the convex set $A \cap S^{\perp}$ contains no lines.

Let a ∈ A. Then a can be expressed uniquely in the form a = b + c, where b ∈ S and c ∈ S[⊥]. Since b ∈ S, -b ∈ S. Hence, by the preceding theorem, c = a - b ∈ A. Thus c ∈ A ∩ S[⊥]. So A ⊆ S + (A ∩ S[⊥]). The opposite inclusion follows immediately from the preceding theorem. Thus A = S + (A ∩ S[⊥]).

Suppose that $A \cap S^{\perp}$ does contain a line. Then there exist \mathbf{x}, \mathbf{y} in \mathbb{R}^n with $\mathbf{y} \neq \mathbf{0}$ such that $\mathbf{x} + \lambda \mathbf{y} \in A \cap S^{\perp}$ for all real λ . A previous theorem shows that $\mathbf{y} \in S$. Hence, for all real λ , $(\mathbf{x} + \lambda \mathbf{y}) \cdot \mathbf{y} = \mathbf{x} \cdot \mathbf{y} + \lambda \|\mathbf{y}\|^2 = 0$, which is clearly impossible. Thus $A \cap S^{\perp}$ contains no lines.

Subsection 6

Facial Structure

Faces of a Convex Set

- Each face F of a three-dimensional convex polyhedron P is a convex subset of P with the property that whenever the relative interior of a line segment L lying in P meets F, then the endpoints of L lie in F.
- This observation motivates the definition of a face of a general convex set.
- A face of a convex set A in \mathbb{R}^n is a convex subset B of A such that whenever $\lambda x + \mu y \in B$, where $x, y \in A$ and $\lambda, \mu > 0$ with $\lambda + \mu = 1$, then $x, y \in B$.
- Every convex set A in \mathbb{R}^n has the faces \emptyset and A, called **improper** faces of A.
- Faces of A other than \emptyset and A are called **proper faces** of A.

Example and *k*-Faces

- The above definition of a face is more comprehensive than the one usually understood in elementary geometry.
 - Example: A cube has:
 - six two-dimensional faces;
 - one three-dimensional face (itself);
 - twelve one-dimensional faces (its edges);
 - eight zero-dimensional faces (its vertices);
 - one face of dimension -1 (the empty set).
- In general, we refer to a k-dimensional face of a convex set as a k-face.

Special Names for Particular Faces

- Certain faces of a convex set are of particular importance and are given special names.
- The 0-faces of a convex set are called its extreme points.
- The faces that are halflines are called its extreme half lines.
- The directions of the extreme halflines of a convex set are called its extreme directions.
- Clearly, a point \boldsymbol{a} of a convex set A in \mathbb{R}^n is an extreme point of A if and only if whenever $\boldsymbol{a} = \lambda \boldsymbol{x} + \mu \boldsymbol{y}$, where $\boldsymbol{x}, \boldsymbol{y} \in A$ and $\lambda, \mu > 0$ with $\lambda + \mu = 1$, then $\boldsymbol{x} = \boldsymbol{y} = \boldsymbol{a}$.

Example

 Denote by A the set of those points (x, y) in R² which satisfy the four inequalities

$$x \ge 0,$$

$$-x+y+1 \ge 0,$$

$$x+3y-1 \ge 0,$$

$$3x+y-1 \ge 0.$$

- The extreme points of A are the points $\boldsymbol{a} = (0,1)$, $\boldsymbol{b} = (\frac{1}{4}, \frac{1}{4})$ and $\boldsymbol{c} = (1,0)$.
- The extreme directions of A are the directions $D = \{(0, \lambda) : \lambda \ge 0\}$ and $E = \{(\lambda, \lambda) : \lambda \ge 0\}.$
- The extreme halflines of A are the halflines a + D and c + E.

Characterization of the Faces

• Consider the case of a 2-face *B* of a cube *A* in \mathbb{R}^3 .

- The set $A \setminus B$, i.e., the cube A with its face B removed, is convex.
- Also *B* is the intersection of its affine hull aff*B*, i.e., the plane containing *B*, with the cube *A* itself.

Theorem

Let *B* be a convex subset of a convex set *A* in \mathbb{R}^n . Then *B* is a face of *A* if and only if *A**B* is convex and $B = (aff B) \cap A$. In particular, a point **a** of *A* is an extreme point of *A* if and only if *A*\{**a**} is convex.

Suppose that B is a face of A. If x, y ∈ A\B and λ, μ > 0 with λ + μ = 1, then λx + μy ∈ A, since x, y ∈ A and A is convex. We cannot have λx + μy ∈ B, for this would imply that x, y ∈ B. Thus λx + μy ∈ A\B and A\B is convex.

Characterization of the Faces (Cont'd)

• Trivially, $B \subseteq (aff B) \cap A$.

We now establish the opposite inclusion. Suppose that $\boldsymbol{u} \in (\operatorname{aff} B) \cap A$. Let $\boldsymbol{b} \in \operatorname{ri} B$. Then there exist $\boldsymbol{v} \in B$ and $\alpha, \beta > 0$ with $\alpha + \beta = 1$ such that $\boldsymbol{b} = \alpha \boldsymbol{u} + \beta \boldsymbol{v}$. Since $\boldsymbol{u}, \boldsymbol{v} \in A$ and B is a face of A, $\boldsymbol{u} \in B$. Hence, $(\operatorname{aff} B) \cap A \subseteq B$. So $B = (\operatorname{aff} B) \cap A$.

Suppose next that $A \setminus B$ is convex and $B = (aff B) \cap A$. If $\lambda x + \mu y \in B$, where $x, y \in A$ and $\lambda, \mu > 0$ with $\lambda + \mu = 1$, then not both x and y can lie in $A \setminus B$, for the convexity of $A \setminus B$ would imply that $\lambda x + \mu y \in A \setminus B$. Suppose that $x \notin A \setminus B$. Then $x \in B$. So

$$\mathbf{y} = \frac{1}{\mu} (\lambda \mathbf{x} + \mu \mathbf{y}) - \frac{\lambda}{\mu} \mathbf{x} = \left(1 + \frac{\lambda}{\mu}\right) (\lambda \mathbf{x} + \mu \mathbf{y}) - \frac{\lambda}{\mu} \mathbf{x} \in \operatorname{aff} B.$$

Thus, $\mathbf{y} \in (\operatorname{aff} B) \cap A$. Hence, $\mathbf{y} \in B$. So $\mathbf{x}, \mathbf{y} \in B$ and B is a face of A. The final assertion of the theorem follows from what we have just proved and the fact that a singleton set is its own affine hull.

Consequences

Corollary

Each face of a closed convex set in \mathbb{R}^n is closed.

• Let *B* be a face of a closed convex set *A* in \mathbb{R}^n . Then *B*, being the intersection of the closed sets aff*B* and *A*, is itself closed.

Corollary

Let $A = \operatorname{conv} C$, where C is a set in \mathbb{R}^n . Then each extreme point of A lies in C.

 Suppose that there is an extreme point *a* of *A* which does not lie in *C*. Then *A*\{*a*} is a proper convex subset of *A* containing *C*. Hence *A* properly contains conv*C*, i.e. *A*. This contradiction shows that each extreme point of *A* lies in *C*.

Properties of Faces

Theorem

Let A be a convex set in \mathbb{R}^n . Then:

- (i) The intersection of any non-empty family of faces of A is a face of A;
- (ii) If B is a face of A, and C is a face of B, then C is a face of A;
- (iii) The intersection of A with each of its support hyperplanes is a face of A.
- (i) Let (A_i: i ∈ I) be a non-empty family of faces of A. Then ∩(A_i: i ∈ I) is a convex subset of A. If λx + μy ∈ ∩(A_i: i ∈ I), where x, y ∈ A and λ, μ > 0 with λ + μ = 1, then λx + μy ∈ A_i for all i ∈ I. So, since each A_i is a face of A, we have x, y ∈ A_i, for all i ∈ I. Hence, x, y ∈ ∩(A_i: i ∈ I). Therefore, ∩(A_i: i ∈ I) is a face of A.

Properties of Faces (Cont'd)

- (ii) Let B be a face of A and let C be a face of B. If λx + μy ∈ C, where x, y ∈ A and λ, μ > 0 with λ + μ = 1, then λx + μy ∈ B, since C ⊆ B. Since B is a face of A, x, y ∈ B. But C is a face of B, so x, y ∈ C. This proves that C is a face of A.
- (iii) Let $H = \{z \in \mathbb{R}^n : c \cdot z = c_0\}$, where $c_0 \in \mathbb{R}$, $c \in \mathbb{R}^n$ and $c \neq 0$, be a support hyperplane to A. Suppose that $c \cdot a \leq c_0$ whenever $a \in A$. If $\lambda x + \mu y \in A \cap H$, where $x, y \in A$ and $\lambda, \mu > 0$ with $\lambda + \mu = 1$, then

$$c_0 = \boldsymbol{c} \cdot (\lambda \boldsymbol{x} + \mu \boldsymbol{y}) = \lambda \boldsymbol{c} \cdot \boldsymbol{x} + \mu \boldsymbol{c} \cdot \boldsymbol{y} \le \lambda c_0 + \mu c_0 = c_0.$$

Since $\lambda, \mu > 0$, we must have $c \cdot x = c \cdot y = c_0$. Hence, $x, y \in A \cap H$. Thus, $A \cap H$ is a face of A, for clearly it is a convex subset of A.

Strengthening the Defining Property

Theorem

Let B be a face of a convex set A in \mathbb{R}^n . Suppose that C is a subset of A such that riC meets B. Then $C \subseteq B$.

• Let $c \in C$ and $b \in B \cap riC$. Then there exist $d \in C$ and $\lambda, \mu > 0$ with $\lambda + \mu = 1$ such that $b = \lambda c + \mu d$. Since $c, d \in A$ and B is a face of A, we see that $c \in B$. Thus, $C \subseteq B$.

Corollary

Let *B* and *C* be faces of a convex set *A* in \mathbb{R}^n such that ri*B* and ri*C* meet. Then B = C.

• Since riC meets B, we have $C \subseteq B$. Similarly, $B \subseteq C$. Thus, B = C.

On Dimensional Properties of Faces

Corollary

Let B be a face of a convex set A in \mathbb{R}^n , other than A itself. Then dim $B < \dim A$.

We suppose that B is non-empty. Clearly, aff B ⊆ aff A and dim B ≤ dim A. If dim B = dim A, then aff B = aff A and Ø ⊂ ri B ⊆ ri A. Hence A = B by the preceding corollary.

Corollary

The intersection of any family of faces of a convex set in \mathbb{R}^n can be expressed as an intersection of n+1 or fewer members of the family.

Suppose that the result is false. Then there exist faces A₁,..., A_{n+2} of some convex set A in ℝⁿ such that A₁ ⊂ A₂ ⊂ ··· ⊂ A_{n+2} ⊂ A. Since A_i is a face of A_{i+1} for i = 1,...,n+1, the preceding corollary shows that

$$-1 < \dim A_1 < \dim A_2 < \dots < \dim A_{n+2} \le n-1,$$

which is impossible.

George Voutsadakis (LSSU)

Smallest Face Containing a Point

- Each point of a convex set belongs to at least one face of the set, namely the set itself, and in general belongs to several different faces.
 Example: A vertex of a three-dimensional cube belongs to one 0-face, three 1-faces, three 2-faces, and one 3-face of the cube.
- Suppose that **a** is a point of a convex set A in \mathbb{R}^n and that F_a , is the intersection of all faces of A containing **a**.
- Then it follows from the preceding theorem that *F_a* is the smallest face of *A* containing *a*.

Characterization of Smallest Face Containing a Point

Theorem

Let **a** be a point of a convex set A in \mathbb{R}^n and let F_a be the intersection of all faces of A containing **a**. Then $\mathbf{a} \in \mathrm{ri}F_a$ and the relative interiors of the faces of A form a partition of A.

• If $a \notin riF_a$, then $a \in rebdF_a$. So, by a previous theorem, there exists a support hyperplane H of F_a passing through a but not containing F_a . Hence, by the preceding theorem, Part (iii), $H \cap F_a$ is a face of A containing a which is strictly contained in F_a . Since this is impossible, $a \in riF_a$. Thus each point a of A belongs to the relative interior of the face F_a of A. The relative interiors of two different faces of A are disjoint by a previous corollary. Hence the relative interiors of the faces of A form a partition of A.

Smallest Face of a Relative Boundary Point

Corollary

Let **a** be a relative boundary point of a convex set A in \mathbb{R}^n . Then dim $F_a < \dim A$.

• The faces A and F_a of A cannot be equal because $a \in riF_a$. Thus $F_a \subset A$. Hence dim $F_a < \dim A$ by a previous corollary.

Primitive Convex Sets and Halfflats

- A closed convex set in \mathbb{R}^n which is not the convex hull of its relative boundary is said be **primitive**.
- $\bullet\,$ The reader should have little difficulty in discovering that the only primitive sets in \mathbb{R}^2 are:
 - points;
 - Iines;
 - halflines;
 - closed halfplanes;
 - \mathbb{R}^2 itself.
- Before we can extend this last result to \mathbb{R}^n , we need to generalize the concepts of halflines and halfplanes from \mathbb{R}^2 to \mathbb{R}^n .
- In \mathbb{R}^n a closed halfflat is the intersection of a flat with a closed halfspace which meets it, but does not contain it.
Characterization of Primitive Sets

Theorem

A closed convex set in \mathbb{R}^n is primitive if and only if it is either a nonempty flat or a closed halfflat.

 We establish only the non-trivial part of the theorem, i.e., that, for each closed convex set A in ℝⁿ other than a flat or a closed halfflat, A = conv(rebdA).

We know $\operatorname{conv}(\operatorname{rebd} A) \subseteq A$. Moreover, $A = (\operatorname{rebd} A) \cup (\operatorname{ri} A)$ and $\operatorname{rebd} A \subseteq \operatorname{conv}(\operatorname{rebd} A)$. So, we must show $\operatorname{ri} A \subseteq \operatorname{conv}(\operatorname{rebd} A)$.

Let $\boldsymbol{a} \in riA$. Since A is not a flat, its relative boundary is not empty, say $\boldsymbol{b} \in rebdA$. A previous theorem shows that there is a non-trivial support hyperplane H to A at \boldsymbol{b} .

Characterization of Primitive Sets (Cont'd)

• Since $A \cap H$ is a proper face of A, a previous theorem shows that $a \notin H$. Thus there exist $u_0 \in \mathbb{R}$, $u \in \mathbb{R}^n$ such that H has equation $n \cdot x = u_0$ and $u \cdot a < u_0$, $u \cdot b = u_0$ with A lying in the closed halfspace

$$H^{-} = \{ \boldsymbol{x} \in \mathbb{R}^{n} : \boldsymbol{u} \cdot \boldsymbol{x} \le u_{0} \}.$$

By the hypothesis, A is not a closed halfflat, and so cannot be $(aff A) \cap H^-$. Thus there exists a point c of $(aff A) \cap H^-$ that does not lie in A. Denote by d the point where the line segment joining a and c meets rebdA. Since $u \cdot a < u_0$ and $u \cdot c \le u_0$, we get $u \cdot d < u_0$.

The existence of a non-trivial support hyperplane to A at d, J say, shows that there exist $v_0 \in \mathbb{R}$, $\boldsymbol{v} \in \mathbb{R}^n$ such that J has equation $\boldsymbol{v} \cdot \boldsymbol{x} = v_0$ and $\boldsymbol{v} \cdot \boldsymbol{a} < v_0$, $\boldsymbol{v} \cdot \boldsymbol{d} = v_0$, with A lying in the closed halfspace $\{\boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{v} \cdot \boldsymbol{x} \le v_0\}$.

Characterization of Primitive Sets (Cont'd)

Since u ⋅ a < u₀, u ⋅ b = u₀ and u ⋅ d < u₀, there is a point e of riA lying on the line segment joining a and b such that u ⋅ e > u ⋅ d. Because e lies in riA, we must have v ⋅ e < v₀. For each scalar λ, denote by x_λ the point a + λ(d - e) on the line L joining the points a and a + d - e of aff A. Choose scalars λ₁, λ₂ such that

$$\lambda_1 < \frac{u_0 - \boldsymbol{u} \cdot \boldsymbol{a}}{\boldsymbol{u} \cdot \boldsymbol{d} - \boldsymbol{u} \cdot \boldsymbol{e}} < 0 < \frac{v_0 - \boldsymbol{v} \cdot \boldsymbol{a}}{\boldsymbol{v} \cdot \boldsymbol{d} - \boldsymbol{v} \cdot \boldsymbol{e}} < \lambda_2.$$

Then

$$\begin{aligned} \mathbf{u} \cdot \mathbf{x}_{\lambda_1} &= \mathbf{u} \cdot (\mathbf{a} + \lambda_1 (\mathbf{d} - \mathbf{e})) = \mathbf{u} \cdot \mathbf{a} + \lambda_1 \mathbf{u} \cdot (\mathbf{d} - \mathbf{e}) \\ &> \mathbf{u} \cdot \mathbf{a} + u_0 - \mathbf{u} \cdot \mathbf{a} = u_0; \\ \mathbf{v} \cdot \mathbf{x}_{\lambda_2} &= \mathbf{v} \cdot (\mathbf{a} + \lambda_2 (\mathbf{d} - \mathbf{e})) = \mathbf{v} \cdot \mathbf{a} + \lambda_2 \mathbf{v} \cdot (\mathbf{d} - \mathbf{e}) \\ &> \mathbf{v} \cdot \mathbf{a} + v_0 - \mathbf{v} \cdot \mathbf{a} = v_0. \end{aligned}$$

Hence neither \mathbf{x}_{λ_1} nor \mathbf{x}_{λ_2} lies in A. Thus, there are scalars μ_1, μ_2 with $\lambda_1 < \mu_1 < 0 < \mu_2 < \lambda_2$ such that $\mathbf{x}_{\mu_1}, \mathbf{x}_{\mu_2} \in \text{rebd}A$. Hence, $\mathbf{a} = \frac{\mu_2}{\mu_2 - \mu_1} \mathbf{x}_{\mu_1} - \frac{\mu_1}{\mu_2 - \mu_1} \mathbf{x}_{\mu_2} \in \text{conv}\{\mathbf{x}_{\mu_1}, \mathbf{x}_{\mu_2}\}$. So ri $A \subseteq \text{conv}(\text{rebd}A)$.

Facial Structure of Closed Convex Sets

• By the convex hull of a family of sets in \mathbb{R}^n is meant the convex hull of its union.

Theorem

Every closed convex set in \mathbb{R}^n is the convex hull of its primitive faces.

• Let A be a closed convex set in \mathbb{R}^n . We argue by induction on the dimension of A.

The case dimA = -1 is trivial.

Suppose that dimA = m, where m > -1, and that the assertion is true for all closed convex sets in \mathbb{R}^n with dimension less than m. The theorem is trivial when A is primitive. Suppose, then, that A is not primitive. Denote by B the convex hull of the primitive faces of A. Then $B \subseteq A$. So we need only show that $A \subseteq B$.

Facial Structure of Closed Convex Sets (Cont'd)

• Since A is not primitive, we have $A = \operatorname{conv}(\operatorname{reb} dA)$. Let $a \in \operatorname{reb} dA$. Then a lies in F_a , the smallest face of A containing a. By a previous corollary, dim $F_a < \dim A$. The induction hypothesis shows that F_a is the convex hull of its primitive faces. Since each primitive face of F_a is a primitive face of A, $F_a \subseteq B$. Hence, $a \in F_a \subseteq B$ and $\operatorname{reb} dA \subseteq B$. So $A = \operatorname{conv}(\operatorname{reb} dA) \subseteq B$. Thus, A = B, i.e., A is the convex hull of its primitive faces.

Consequences

Corollary

Every closed convex set in \mathbb{R}^n is the convex hull of those of its faces which are flats or closed halfflats.

• The result follows from the theorem and a previous theorem.

Corollary

Every closed convex set in \mathbb{R}^n that contains no lines is the convex hull of its extreme points and extreme halflines.

• The corollary follows from the theorem and the fact that points and halflines are the only primitive sets which contain no lines.

Theorem (Krein-Milman)

Every compact convex set in \mathbb{R}^n is the convex hull of its extreme points.

• The theorem follows from the preceding theorem and the fact that points are the only compact primitive sets.

Comment on Set of Extreme Points

- The Krein-Milman theorem shows that the convex hull of the extreme points of a compact convex set in \mathbb{R}^n is closed.
- It is not true, however, that the set of extreme points itself is necessarily closed.
- To see this, let A and B denote the circular disc and the line segment in \mathbb{R}^3 given by the equations

$$A = \{(x, y, 0) : x^2 + y^2 \le 1\}$$
 and $B = \{(1, 0, z) : -1 \le z \le 1\}.$

Let $C = \operatorname{conv}(A \cup B)$. Then C is a compact convex set. Its set of extreme points consists of (1,0,1) and (1,0,-1) together with the points on the relative boundary of A with the exception of (1,0,0). This set is not closed.

Exposed Faces

- By a previous theorem, the intersection of a convex set in \mathbb{R}^n with one of its support hyperplanes is a face of the set.
- A face which arises in this way is called an exposed face of the set.
- It is technically convenient to allow the empty set and the set itself as exposed faces of any convex set in \mathbb{R}^n .
- Thus, an **exposed face** of a convex set in \mathbb{R}^n is either the empty set, the set itself, or the intersection of the set with one of its support hyperplanes.

Example: Exposed Faces

• Faces of a convex set are not always exposed. Example: Let A be the convex hull of the union of the circular discs $U + e_1$, and $U - e_1$, in \mathbb{R}^2 , where

$$U = \{(x, y) : x^2 + y^2 \le 1\}$$
 and $e_1 = (1, 0)$

Then the points (1,1), (1,-1), (-1,1), (-1,-1), (-1,-1) are faces of A that are not exposed.

• This example also serves to show that an exposed face of an exposed face of a convex set need not be an exposed face of that convex set.

The line segment joining (-1,1) and (1,1) is an exposed face of A and (1,1) is an exposed face of this line segment, but (1,1) is not an exposed face of A.

Closure of Exposed Faces Under Intersections

Theorem

The intersection of any non-empty family of exposed faces of a convex set in \mathbb{R}^n is an exposed face of the set.

 In view of a previous corollary, we may assume that the family of exposed faces is finite.

Let A_1, \ldots, A_m be exposed faces of a convex set A in \mathbb{R}^n . We show that $A_1 \cap \cdots \cap A_m$ is an exposed face of A, considering only the non-trivial case when the A_1, \ldots, A_m are proper exposed faces of A, whose intersection is non-empty, containing some point \mathbf{a}_0 , say. For each $i = 1, \ldots, m$, there exists $\mathbf{u}_i \in \mathbb{R}^n$ such that

$$A_i = \{ \boldsymbol{a} \in A : \boldsymbol{u}_i \cdot \boldsymbol{a} = \boldsymbol{u}_i \cdot \boldsymbol{a}_0 \} \text{ and } A \subseteq \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{u}_i \cdot \boldsymbol{x} \le \boldsymbol{u}_i \cdot \boldsymbol{a}_0 \}.$$

Closure of Exposed Faces Under Intersections (Cont'd)

It follows easily that

$$A_1 \cap \cdots \cap A_m = \{ \boldsymbol{a} \in A : (\boldsymbol{u}_1 + \cdots + \boldsymbol{u}_m) \cdot \boldsymbol{a} = (\boldsymbol{u}_1 + \cdots + \boldsymbol{u}_m) \cdot \boldsymbol{a}_0 \},\$$

and that

$$A \subseteq \{ \boldsymbol{x} \in \mathbb{R}^n : (\boldsymbol{u}_1 + \cdots + \boldsymbol{u}_m) \cdot \boldsymbol{x} \le (\boldsymbol{u}_1 + \cdots + \boldsymbol{u}_m) \cdot \boldsymbol{a}_0 \}.$$

This shows that $A_1 \cap \cdots \cap A_m$ is an exposed face of A.

Exposed Faces of Sums

Theorem

Let A and B be convex sets in \mathbb{R}^n . Then each exposed face of A + B has the form C + D, where C is an exposed face of A and D is an exposed face of B.

• Suppose that F is a *proper* exposed face of A + B. Then there exist $a_0 \in A$, $b_0 \in B$, and a non-zero u in \mathbb{R}^n such that

$$A+B \subseteq \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{u} \cdot \mathbf{x} \le \mathbf{u} \cdot (\mathbf{a}_0 + \mathbf{b}_0) \}, F = \{ \mathbf{x} \in A + B : \mathbf{u} \cdot \mathbf{x} = \mathbf{u} \cdot (\mathbf{a}_0 + \mathbf{b}_0) \}.$$

If $\mathbf{a} \in A$, then $\mathbf{a} + \mathbf{b}_0 \in A + B$. Hence $\mathbf{u} \cdot (\mathbf{a} + \mathbf{b}_0) \leq \mathbf{u} \cdot (\mathbf{a}_0 + \mathbf{b}_0)$ and $\mathbf{u} \cdot \mathbf{a} \leq \mathbf{u} \cdot \mathbf{a}_0$. Similarly, if $\mathbf{b} \in B$, then $\mathbf{u} \cdot \mathbf{b} \leq \mathbf{u} \cdot \mathbf{b}_0$. Thus

 $C = \{ \boldsymbol{x} \in A : \boldsymbol{u} \cdot \boldsymbol{x} = \boldsymbol{u} \cdot \boldsymbol{a}_0 \} \text{ and } D = \{ \boldsymbol{x} \in B : \boldsymbol{u} \cdot \boldsymbol{x} = \boldsymbol{u} \cdot \boldsymbol{b}_0 \}$

are, respectively, exposed faces of A and B.

Exposed Faces of Sums (Cont'd)

We derived that

 $C = \{ \mathbf{x} \in A : \mathbf{u} \cdot \mathbf{x} = \mathbf{u} \cdot \mathbf{a}_0 \}$ and $D = \{ \mathbf{x} \in B : \mathbf{u} \cdot \mathbf{x} = \mathbf{u} \cdot \mathbf{b}_0 \}$

are, respectively, exposed faces of A and B. Clearly $C + D \subseteq F$. If $f \in F$, then f = a + b for some $a \in A$, $b \in B$. Now $u \cdot (a + b) = u \cdot (a_0 + b_0)$, $u \cdot a \leq u \cdot a_0$ and $u \cdot b \leq u \cdot b_0$. Hence, $u \cdot a = u \cdot a_0$ and $u \cdot b = u \cdot b_0$. Thus $a \in C$, $b \in D$, and F = C + D.

Exposed Points

- The zero-dimensional exposed faces of a convex set are called its exposed points.
- Thus a point **a** of a convex set A in \mathbb{R}^n is an exposed point of A if and only if there is some support hyperplane to A meeting it in the single point **a**.
- Every exposed point of a convex set in \mathbb{R}^n is one of its extreme points, but not necessarily conversely.
- The point (1,1) of the set A of the preceding example is an extreme, but not an exposed, point of A.

Farthest Points

- Let A be a non-empty compact set in \mathbb{R}^n and let **b** be a point of \mathbb{R}^n .
- For each point x of A, denote by f(x) the distance ||x b|| of x from b.
- Then *f* is a continuous real-valued function defined on a non-empty compact set *A*.
- So it is bounded and attains its bounds.
- In particular, f attains its upper bound.
- So there is a point **a** of A such that $||\mathbf{x} \mathbf{b}|| \le ||\mathbf{a} \mathbf{b}||$ for all **x** in A.
- Each such point **a** of A is called a **farthest point** of A from **b**.

Farthest Points and Exposed Points

Theorem

Let **a** be a farthest point of a compact convex set A in \mathbb{R}^n from some point **b** of \mathbb{R}^n . Then **a** is an exposed point of A.

• We consider the non-trivial case when $a \neq b$. Since a is a farthest point of A from b, we have, for each point x of A,

$$\| \boldsymbol{a} - \boldsymbol{b} \|^2 \geq \| \boldsymbol{x} - \boldsymbol{b} \|^2$$

= $\| (\boldsymbol{x} - \boldsymbol{a}) + (\boldsymbol{a} - \boldsymbol{b}) \|^2$
= $\| \boldsymbol{x} - \boldsymbol{a} \|^2 + 2(\boldsymbol{x} - \boldsymbol{a}) \cdot (\boldsymbol{a} - \boldsymbol{b}) + \| \boldsymbol{a} - \boldsymbol{b} \|^2.$

Hence $0 \ge (\mathbf{x} - \mathbf{a}) \cdot (\mathbf{a} - \mathbf{b})$. Equality occurs in the last inequality if and only if $\mathbf{x} = \mathbf{a}$. So the hyperplane $H = \{\mathbf{z} \in \mathbb{R}^n : (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{z} - \mathbf{a}) = 0\}$ supports A at \mathbf{a} and $H \cap A = \{\mathbf{a}\}$. Thus \mathbf{a} is an exposed point of A.

Compact Convex Sets and Exposed Points

Lemma

A compact convex set in \mathbb{R}^n has an exposed point in every open halfspace which meets it.

• Suppose that the compact convex set A in \mathbb{R}^n meets the open halfspace $J = \{z \in \mathbb{R}^n : u \cdot z + u_0 < 0\}$, where $u_0 \in \mathbb{R}$, $u \in \mathbb{R}^n$, and $u \neq 0$, say $a \in A \cap J$. Let $\lambda > 0$ satisfy $s^2 + 2\lambda(u \cdot a + u_0) < 0$, where s is the diameter of A. Let $c = a + \lambda u$. For each point x of $A \setminus J$, $u \cdot x + u_0 \ge 0$ and $u \cdot (a - x) \le u \cdot a + u_0$. Hence,

$$\|\boldsymbol{c} - \boldsymbol{x}\|^{2} = \|\boldsymbol{a} - \boldsymbol{x} + \lambda \boldsymbol{u}\|^{2}$$

= $\|\boldsymbol{a} - \boldsymbol{x}\|^{2} + 2\lambda \boldsymbol{u} \cdot (\boldsymbol{a} - \boldsymbol{x}) + \lambda^{2} \|\boldsymbol{u}\|^{2}$
$$\leq s^{2} + 2\lambda (\boldsymbol{u} \cdot \boldsymbol{a} + u_{0}) + \lambda^{2} \|\boldsymbol{u}\|^{2}$$

$$< \lambda^{2} \|\boldsymbol{u}\|^{2} = \|\boldsymbol{c} - \boldsymbol{a}\|^{2}.$$

Thus no point x of $A \setminus J$ is a farthest point of A from c. So every farthest point of A from c is an exposed point of A lying in J.

Compact Convex Sets as Hulls of Exposed Points

Theorem (Straszewicz)

Every compact convex set in \mathbb{R}^n is the closure of the convex hull of its exposed points.

• Let *B* be the set of the exposed points of a compact convex set *A* in \mathbb{R}^n . Trivially $cl(convB) \subseteq A$. So we must show that $A \subseteq cl(convB)$. Suppose that this is not so. Then there is a point **a** of *A* which does not belong to the closed convex set cl(convB). It follows immediately from a previous corollary that there is an open halfspace *J* in \mathbb{R}^n which contains **a** but is disjoint from cl(convB). By the preceding lemma, there is a point of *B* lying in *J*, which is impossible. Thus $A \subseteq cl(convB)$ as desired.

Necessity of the Closure Requirement

• The two-dimensional set illustrated in the figure

shows that the closure requirement in Straszewicz's theorem cannot be omitted.

Subsection 7

The Blaschke Selection Principle

Distance Between Two Sets

- Sets *A* and *B* in \mathbb{R}^n are said to be a **finite distance apart** if there exists $\lambda \ge 0$ such that, for each point *a* of *A*, there is a point *b* of *B* whose distance $||\boldsymbol{a} \boldsymbol{b}||$ from *a* does not exceed λ , and vice versa.
- In this situation, we say that the distance between A and B does not exceed λ.
- The distance between sets A and B in \mathbb{R}^n that are a finite distance apart is defined to be the infimum of the set of all those $\lambda \ge 0$ for which the distance between A and B does not exceed λ .
- This definition does not assign a distance between the empty set and a non-empty set or between a bounded set and an unbounded one.
- On the other hand, the definition always assigns a distance between two non-empty bounded sets.
- For our purposes here, it will be sufficient to restrict attention to non-empty compact sets.

λ -Neighborhood of a Set

- Let A be a set in \mathbb{R}^n and let $\lambda \ge 0$.
- Then the λ -neighborhood $(A)_{\lambda}$ of A is the set $A + \lambda U$, where U denotes the closed unit ball $\{x \in \mathbb{R}^n : ||x|| \le 1\}.$

The figure makes it clear why the set $(A)_{\lambda}$ is often referred to as the **outer parallel set of** A **at distance** λ .

- Clearly, if $\mathbf{a} \in \mathbb{R}^n$, r > 0, and $\lambda \ge 0$, then:
 - The *r*-neighborhood of {*a*} is the closed ball *B*[*a*; *r*];
 - The λ -neighborhood of $B[\mathbf{a}; r]$ is the closed ball $B[\mathbf{a}; r + \lambda]$.

Properties of Neighborhoods

Theorem

Let A, B be sets in \mathbb{R}^n and let $\lambda, \mu \ge 0$. Then:

- (i) $(A)_0 = A$ and $A \subseteq (A)_\lambda$;
- (ii) $(A)_{\lambda} \subseteq (B)_{\lambda}$ when $A \subseteq B$;
- (iii) $(A)_{\lambda}$ is convex when A is;
- (iv) $((A)_{\lambda})_{\mu} = (A)_{\lambda+\mu}$.
 - Parts (i) and (ii) are easy consequences of the definition of a λ-neighborhood.
 Part (iii) follows from a previous example and theorem.
 To prove Part (iv) we note, using a previous theorem, that

$$((A)_{\lambda})_{\mu} = (A)_{\lambda} + \mu U = (A + \lambda U) + \mu U = A + (\lambda + \mu)U = (A)_{\lambda + \mu}.$$

The Hausdorff Distance

- The assertions that, for each point \boldsymbol{a} of a set A in \mathbb{R}^n , there is a point \boldsymbol{b} of a set B in \mathbb{R}^n such that $\|\boldsymbol{a} \boldsymbol{b}\| \leq \lambda$, and that $A \subseteq (B)_{\lambda}$, where $\lambda \geq 0$, are equivalent.
- Thus the definition we now give of the distance between non-empty compact sets in \mathbb{R}^n coincides with the one given earlier.
- The distance ρ(A, B) between non-empty compact sets A, B in Rⁿ is defined by the equation

$$\rho(A,B) = \inf \{\lambda \ge 0 : A \subseteq (B)_{\lambda} \text{ and } B \subseteq (A)_{\lambda} \}.$$

- The assumptions that A and B are non-empty and compact ensure that ρ(A, B) is well-defined.
- The function *ρ* is known as the Hausdorff metric or Hausdorff distance.

Properties of the Distance

- It is easily seen that the Hausdorff distance ρ({a}, {b}) between the singleton sets {a} and {b} in ℝⁿ is ||a b||, i.e., the distance between the points a and b themselves.
- Another readily verified fact is that the Hausdorff distance is invariant under translation in the sense that, if A and B are non-empty compact sets in ℝⁿ and x is a point of ℝⁿ, then ρ(A, B) = ρ(A + x, B + x).

Example

- Let A and B be, respectively, the closed balls $B[\mathbf{a}; r]$ and $B[\mathbf{b}; s]$ in \mathbb{R}^n . Then $\rho(A, B) = \|\mathbf{b} - \mathbf{a}\| + |s - r|$.
- Suppose first that $r \leq s$. We have

$$A \subseteq B - (\boldsymbol{b} - \boldsymbol{a}) \subseteq (B)_{\parallel} \boldsymbol{b} - \boldsymbol{a}_{\parallel};$$

$$B = A + \boldsymbol{b} - \boldsymbol{a} + (s - r) U \subseteq (A)_{\parallel} \boldsymbol{b} - \boldsymbol{a}_{\parallel + s - r}.$$

Hence, $\rho(A, B) \le \| \boldsymbol{b} - \boldsymbol{a} \| + s - r$.

Now *B* contains a point whose distance from **a** is $\|\mathbf{b} - \mathbf{a}\| + s$. Thus, if $\lambda \ge 0$ and $B \subseteq (A)_{\lambda} = B[\mathbf{a}; \lambda + r]$, then $\|\mathbf{b} - \mathbf{a}\| + s \le \lambda + r$. Hence, $\rho(A, B) \ge \|\mathbf{b} - \mathbf{a}\| + s - r$. Thus, $\rho(A, B) = \|\mathbf{b} - \mathbf{a}\| + s - r$. I.e., $\rho(A, B) = \|\mathbf{b} - \mathbf{a}\| + |s - r|$. The case $s \le r$ is similar.

Necessary Condition

Theorem

Let A and B be nonempty compact sets in \mathbb{R}^n with $\rho(A, B) = \lambda$. Then $A \subseteq (B)_{\lambda}$ and $B \subseteq (A)_{\lambda}$.

Let a ∈ A. For each ε > 0, A ⊆ (B)_{λ+ε}. Hence there is a point b_ε of B for which ||a − b_ε|| ≤ λ + ε. So inf {||a − b|| : b ∈ B} ≤ λ.

A previous theorem shows that there exists some point \boldsymbol{b}_0 of B such that $\|\boldsymbol{a} - \boldsymbol{b}_0\| \leq \lambda$. Thus, $\boldsymbol{a} \in (B)_{\lambda}$ and $A \subseteq (B)_{\lambda}$. Similarly, $B \subseteq (A)_{\lambda}$.

Metric Properties of the Distance

Theorem

Let A, B, C be non-empty compact sets in \mathbb{R}^n and let $\theta \ge 0$. Then:

- (i) $\rho(A, B) \ge 0$ and $\rho(A, B) = 0$ if and only if A = B;
- (ii) $\rho(A, B) = \rho(B, A);$
- (iii) $\rho(A, C) \leq \rho(A, B) + \rho(B, C);$
- (iv) $\rho(\operatorname{conv} A, \operatorname{conv} B) \leq \rho(A, B);$
- (v) if A and B are convex, then $\rho(A, B) = \rho((A)_{\theta}, (B)_{\theta})$.
- (i) Trivially $\rho(A, B) \ge 0$. Also $\rho(A, A) = 0$. If $\rho(A, B) = 0$, then $A \subseteq (B)_0 = B$ and $B \subseteq (A)_0 = A$. Hence A = B.
- (ii) This follows immediately from the definition of ρ .
- (iii) Let $\rho(A, B) = \alpha$ and $\rho(B, C) = \beta$. Then $A \subseteq (B)_{\alpha} \subseteq ((C)_{\beta})_{\alpha} = (C)_{\alpha+\beta}$ and $C \subseteq (B)_{\beta} \subseteq ((A)_{\alpha})_{\beta} = (A)_{\alpha+\beta}$. Hence $\rho(A, C) \le \alpha + \beta = \rho(A, B) + \rho(B, C)$.

Metric Properties of the Distance (Cont'd)

- (iv) Let $\rho(A, B) = \alpha$. Then $(\operatorname{conv} A)_{\alpha}$ is convex and $B \subseteq (A)_{\alpha} \subseteq (\operatorname{conv} A)_{\alpha}$. Hence $\operatorname{conv} B \subseteq (\operatorname{conv} A)_{\alpha}$. Similarly, $\operatorname{conv} A \subseteq (\operatorname{conv} B)_{\alpha}$. Thus, $\rho(\operatorname{conv} A, \operatorname{conv} B) \le \alpha = \rho(A, B)$. We note that $\operatorname{conv} A$ and $\operatorname{conv} B$ are compact by a previous theorem.
- (v) Let A and B be convex. The sets $(A)_{\theta}$ and $(B)_{\theta}$ are compact by a previous theorem. Let $\rho(A, B) = \alpha$ and $\rho((A)_{\theta}, (B)_{\theta}) = \beta$. Then

$$(A)_{\theta} \subseteq ((B)_{\alpha})_{\theta} = ((B)_{\theta})_{\alpha} \text{ and } (B)_{\theta} \subseteq ((A)_{\alpha})_{\theta} = ((A)_{\theta})_{\alpha}.$$

This shows that $\beta \leq \alpha$. Also

$$A + \theta U \subseteq (B + \theta U) + \beta U$$
 and $B + \theta U \subseteq (A + \theta U) + \beta U$,

i.e.,

 $A + \theta U \subseteq (B + \beta U) + \theta U$ and $B + \theta U \subseteq (A + \beta U) + \theta U$.

Hence, $A \subseteq B + \beta U$ and $B \subseteq A + \beta U$ by a previous theorem. Thus, $\alpha \leq \beta$. So $\alpha = \beta$.

Convergence of Compact Sets

- The sequence A₁,..., A_j,... of non-empty compact sets in ℝⁿ is said to converge to the non-empty compact set A in ℝⁿ, written A_j → A as j→∞, if ρ(A_j, A) → 0 as j→∞.
- Such a sequence cannot converge to more than one nonempty compact set *A*.

If it also converges to a nonempty compact set B in \mathbb{R}^n , then

$$0 \le \rho(A, B) \le \rho(A, A_j) + \rho(A_j, B) \to 0,$$

as $j \to \infty$. Hence $\rho(A, B) = 0$ and A = B.

Convergence and Convexity

• If the sequence $A_1, ..., A_j, ...$ converges to A and each A_j is convex, then so too is A.

Suppose that a sequence A_1, \ldots, A_j, \ldots of nonempty compact convex sets in \mathbb{R}^n converges to a nonempty compact set A in \mathbb{R}^n . The preceding theorem shows that

$$\rho(A_j, \operatorname{conv} A) = \rho(\operatorname{conv} A_j, \operatorname{conv} A) \le \rho(A_j, A) \to 0$$

as $j \to \infty$. Thus A_1, \ldots, A_j, \ldots also converges to convA. Since a sequence cannot converge to two different limits, $A = \operatorname{conv} A$ and A is convex.

Convergence and Linear Combinations

Theorem

Let sequences A_1, \ldots, A_j, \ldots and B_1, \ldots, B_j, \ldots converge, respectively, to A_0 and B_0 , where all the *A*'s and *B*'s are nonempty compact sets in \mathbb{R}^n . Let real sequences $\alpha_1, \ldots, \alpha_j, \ldots$ and $\beta_1, \ldots, \beta_j, \ldots$ converge, respectively, to α and β . Then the sequence $\alpha_1 A_1 + \beta_1 B_1, \ldots, \alpha_j A_j + \beta_j B_j, \ldots$ converges to $\alpha A_0 + \beta B_0$.

• For $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{a}_j, \boldsymbol{b}_j \in \mathbb{R}^n$,

$$\begin{aligned} \|\alpha_{j}\boldsymbol{a}_{j} + \beta_{j}\boldsymbol{b}_{j} - \alpha \boldsymbol{a} - \beta \boldsymbol{b}\| \\ &= \|\alpha_{j}(\boldsymbol{a}_{j} - \boldsymbol{a}) + (\alpha_{j} - \alpha)\boldsymbol{a} + \beta_{j}(\boldsymbol{b}_{j} - \boldsymbol{b}) + (\beta_{j} - \beta)\boldsymbol{b}\| \\ &\leq |\alpha_{j}|\|\boldsymbol{a}_{j} - \boldsymbol{a}\| + |\alpha_{j} - \alpha|\|\boldsymbol{a}\| + |\beta_{j}|\|\boldsymbol{b}_{j} - \boldsymbol{b}\| + |\beta_{j} - \beta|\|\boldsymbol{b}\|. \end{aligned}$$

Write $\theta_j = \rho(A_j, A_0)$ and $\varphi_j = \rho(B_j, B_0)$. Let r > 0 be such that $\|\boldsymbol{a}\|, \|\boldsymbol{b}\| < r$ whenever $\boldsymbol{a} \in A_0$, $\boldsymbol{b} \in B_0$.

Convergence and Linear Combinations (Cont'd)

It follows easily from the above inequality that

$$\rho(\alpha_j A_j + \beta_j B_j, \alpha A_0 + \beta B_0) \\\leq |\alpha_j|\theta_j + |\alpha_j - \alpha|r + |\beta_j|\varphi_j + |\beta_j - \beta|r.$$

Hence,
$$\alpha_j A_j + \beta_j B_j \rightarrow \alpha A_0 + \beta B_0$$
.

Corollary

For i = 1, ..., m, let the sequence $A_1^i, ..., A_j^i, ...$ converge to A_0^i , where all the A's are nonempty compact sets in \mathbb{R}^n . Let the real sequence $\alpha_1^i, ..., \alpha_j^i, ...$ converge to α_i . Then $\alpha_j^1 A_j^1 + \cdots + \alpha_j^m A_j^m \to \alpha_1 A_0^1 + \cdots + \alpha_m A_0^m$ as $j \to \infty$.

Convex Bodies, Inradius and Circumradius

- A **convex body** *C* is a compact convex set in \mathbb{R}^n that has a nonempty interior.
- The **inradius** *r* of *C* is the supremum of the set of radii of closed balls lying in *C*.
- The **circumradius** *R* of *C* is the infimum of the set of radii of closed balls in \mathbb{R}^n containing *C*.
- Clearly both r and R are positive real numbers satisfying $r \le R$.

Convex Bodies and Balls

Theorem

Let C be a convex body in \mathbb{R}^n with inradius r and circumradius R. Then C contains a closed ball of radius r and is contained in a unique closed ball of radius R.

• The definition of R implies that, for each, j = 1, 2, ..., there exist $a_j \in \mathbb{R}^n$ and $R_j > 0$ such that $C \subseteq B[a_j; R_j]$ and $R_j < R + \frac{1}{j}$. The sequence $R_1, ..., R_j, ...$ converges to R. The sequence $a_1, ..., a_j, ...$ is bounded. Thus there is some subsequence $a_{i_1}, ..., a_{i_j}, ...$ of $a_1, ..., a_j, ...$ that converges to some point a of \mathbb{R}^n . It follows from a previous example that $B[a_{i_j}; R_{i_j}] \rightarrow B[a; R]$ as $j \rightarrow \infty$. We show that $C \subseteq B[a; R]$: Let $c \in C$. Since $C \subseteq B[a_{i_j}; R_{i_j}]$, $\|c - a_{i_j}\| \le R_{i_j}$. Letting $j \rightarrow \infty$ in the last inequality, we find that $\|c - a\| \le R$. Thus, $c \in B[a; R]$. So $C \subseteq B[a; R]$.

Convex Bodies and Balls (Cont'd)

• The proof that *C* contains a closed ball of radius *r* is similar to the one which we have just given.

Suppose that C lies in both of the closed balls $B[\mathbf{a}; R]$ and $B[\mathbf{b}; R]$ of radius R in \mathbb{R}^n . Then, for each \mathbf{x} in C,

$$\begin{aligned} \left\| \mathbf{x} - \frac{1}{2} (\mathbf{a} + \mathbf{b}) \right\|^2 &= \|\mathbf{x}\|^2 - \mathbf{x} \cdot \mathbf{a} - \mathbf{x} \cdot \mathbf{b} + \frac{1}{4} (\|\mathbf{a}\|^2 + 2\mathbf{a} \cdot \mathbf{b} + \|\mathbf{b}\|^2) \\ &= \frac{1}{2} (\|\mathbf{x}\|^2 - 2\mathbf{x} \cdot \mathbf{a} + \|\mathbf{a}\|^2) + \frac{1}{2} (\|\mathbf{x}\|^2 - 2\mathbf{x} \cdot \mathbf{b} + \|\mathbf{b}\|^2) \\ &- \frac{1}{4} (\|\mathbf{a}\|^2 - 2\mathbf{a} \cdot \mathbf{b} + \|\mathbf{b}\|^2) \end{aligned}$$
$$&= \frac{1}{2} \|\mathbf{x} - \mathbf{a}\|^2 + \frac{1}{2} \|\mathbf{x} - \mathbf{b}\|^2 - \frac{1}{4} \|\mathbf{a} - \mathbf{b}\|^2 \\ &\leq R^2 - \frac{1}{4} \|\mathbf{a} - \mathbf{b}\|^2. \end{aligned}$$

Hence, $C \subseteq B\left[\frac{1}{2}(\boldsymbol{a} + \boldsymbol{b}); \sqrt{R^2 - \frac{1}{4}\|\boldsymbol{a} - \boldsymbol{b}\|^2}\right]$. Since *C* cannot lie in a closed ball of radius less than *R*, we must have $\boldsymbol{a} = \boldsymbol{b}$. Thus there is precisely one closed ball of radius *R* in \mathbb{R}^n which contains *C*.
Inballs, Incenters, Circumball, Circumcenter

- Let C be a convex body in \mathbb{R}^n with inradius r and circumradius R.
- Then any closed ball of radius *r* lying in *C* is called an **inball** of *C* and its center an **incenter** of *C*.
- The unique closed ball of radius *R* which contains *C* is called the **circumball** of *C* and its center the **circumcenter** of *C*.
- A (non-square) rectangle in \mathbb{R}^2 is an example of a convex body that does not have a unique incentre.

Comparisons With Elementary Geometry

- Our definitions of the terms circumradius, circumcircle and circumcenter as applied to obtuse-angled triangles do not coincide with those used in elementary geometry.
- For example, consider an isosceles triangle with sides $2, 2, 2\sqrt{3}$.
 - In the parlance of elementary geometry, its circumradius is 2 and its circumcenter lies exterior to the triangle.
 - For us here its circumradius is $\sqrt{3}$ and its circumcenter is the midpoint of its longest side.

Extremal Problems and Uniform Boundedness

- The preceding theorem asserts the existence of solutions to two extremal problems in geometry.
 - The first to find a ball of minimal radius containing a given convex body;
 - The second to find a ball of maximal radius lying in the body.
- The key step in proving the theorem was the extraction of a convergent subsequence from a sequence of closed balls.
- It is a generalization of this idea that turns out to be useful in finding solutions to many extremal problems.
- What is needed is a criterion for a sequence of sets to contain a convergent subsequence.
- A sequence of sets in \mathbb{R}^n is said to be **uniformly bounded** if there exists some ball in \mathbb{R}^n that contains every member of the sequence.

Uniform Boundedness and Cauchy Sequences

Lemma

Let A_1, \ldots, A_j, \ldots be a uniformly bounded sequence of nonempty compact sets in \mathbb{R}^n . Let $\varepsilon > 0$. Then there exists a subsequence $A_{i_1}, \ldots, A_{i_j}, \ldots$ of A_1, \ldots, A_j, \ldots such that $\rho(A_{i_i}, A_{i_k}) \le \varepsilon$, for all $j, k = 1, 2, \ldots$

Since there is a ball in ℝⁿ which contains every member of the given sequence, there is a finite set E in ℝⁿ such that A_j ⊆ (E)_{1/2}ε, for j = 1,2,... For each j = 1,2,... denote by E_j the non-empty subset E ∩ (A_j)_{1/2}ε of E. It is easily verified that ρ(E_j,A_j) ≤ 1/2 ε. Because E is finite, there can only be a finite number of possible different sets E_j for j = 1,2,... Hence the sequence E₁,...,E_j,... must contain some constant subsequence, E_{i1},...,E_{ij},... say. For j, k = 1,2,..., we have

$$\begin{array}{lll} \rho(A_{i_j},A_{i_k}) & \leq & \rho(A_{i_j},E_{i_j}) + \rho(E_{i_j},A_{i_k}) \\ & = & \rho(A_{i_j},E_{i_j}) + \rho(E_{i_k},A_{i_k}) \leq \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon. \end{array}$$

Uniform Boundedness and Convergence

Theorem

Every uniformly bounded sequence A_1, \ldots, A_j, \ldots of nonempty compact sets in \mathbb{R}^n contains a subsequence which converges to some nonempty compact set A in \mathbb{R}^n .

 It follows, by repeated applications of the lemma with ε = 1, ¹/₂,..., ¹/_j,... that the sequence A₁,..., A_j,... contains a sequence of subsequences

> $A_{11}, A_{12}, \dots, A_{1j}, \dots$ $A_{21}, A_{22}, \dots, A_{2j}, \dots$ \dots $A_{r1}, A_{r2}, \dots, A_{ri}, \dots$

where each subsequence after the first in the list is a subsequence of the preceding one, and $\rho(A_{rj}, A_{rk}) \leq \frac{1}{r}$, for j, k = 1, 2, ...The diagonal sequence $A_{11}, A_{22}, ..., A_{jj}, ...$ is a subsequence of $A_1, A_2, ..., A_j, ...$ with the property that $\rho(A_{jj}, A_{kk}) \leq \frac{1}{r}$ whenever $j \leq k$.

Uniform Boundedness and Convergence (Cont'd)

• Write $B_i = A_{ij}$ for j = 1, 2, ... We complete the proof by showing that the subsequence B_1, \ldots, B_j, \ldots of A_1, \ldots, A_j, \ldots converges to the nonempty compact set B defined by $B = \bigcap((B_k)_{\frac{1}{k}} : k = 1, 2, ...).$ Let j be a positive integer and let $\boldsymbol{b}_i \in B_i$. For i = 1, 2, ..., choose $\boldsymbol{b}_{j+i} \in B_{j+i}$ such that $\|\boldsymbol{b}_{j+i} - \boldsymbol{b}_j\| \leq \frac{1}{i}$; This is possible because $\rho(B_j, B_{j+i}) \leq \frac{1}{i}$. The sequence $\boldsymbol{b}_{j+1}, \boldsymbol{b}_{j+2}, \dots$ lies in the compact set $(B_1)_1$. So it contains a subsequence converging to some point **b** of \mathbb{R}^n . Since $B_{j+i} \subseteq (B_k)_{\frac{1}{k}}$ whenever $j+i \ge k$, all but a finite number of terms of the sequence b_{j+1}, b_{j+2}, \dots lie in the compact set $(B_k)_{\frac{1}{k}}$ for $k = 1, 2, \dots$ Hence $\boldsymbol{b} \in (B_k)_{\frac{1}{k}}$ and $\boldsymbol{b} \in B$. But \boldsymbol{b}_j is an arbitrary point of B_j and clearly $\|\boldsymbol{b} - \boldsymbol{b}_j\| \leq \frac{1}{j}$. So $B_j \subseteq (B)_{\frac{1}{i}}$. Trivially $B \subseteq (B_j)_{\frac{1}{i}}$. Thus, $\rho(B_j, B) \leq \frac{1}{i}$ and $B_j \to B$ as $j \to \infty$.

Blaschke Selection Principle

Theorem (Blaschke Selection Principle)

Every uniformly bounded sequence of non-empty compact convex sets in \mathbb{R}^n contains a subsequence which converges to some non-empty compact convex set in \mathbb{R}^n .

• The principle is a consequence of the theorem and the fact that a convergent sequence of convex sets must converge to a convex limit.

Continuity of Functions on Families of Compact Sets

- A typical extremal problem of elementary geometry is to maximize or minimize a real-valued function *f* defined on some family *F* of nonempty compact sets in Rⁿ.
- It is important to have a concept of continuity for such functions $f: \mathscr{F} \to \mathbb{R}$.
- The function f is said to be continuous on ℱ if f(A_j) → f(A) as j→∞, whenever A_j → A as j→∞, where all the sets under consideration belong to ℱ.

Example

- We show that the diameter function D, which associates with each nonempty compact set A in ℝⁿ its diameter D(A), is continuous on the family 𝔅 of all nonempty compact sets in ℝⁿ.
- It is easily verified that $D((A)_{\lambda}) = D(A) + 2\lambda$, where $A \in \mathscr{F}$ and $\lambda \ge 0$.
- Suppose now that $A, B \in \mathscr{F}$ and that $\rho(A, B) = \lambda$.

Then

 $D(A) \le D((B)_{\lambda}) = D(B) + 2\lambda$ and $D(B) \le D((A)_{\lambda}) = D(A) + 2\lambda$.

• Hence $|D(A) - D(B)| \le 2\lambda = 2\rho(A, B)$.

• The continuity of *D* is now clear.

An Isodiametric Problem

- We now indicate how the Blaschke selection principle can be used to show that in the family \mathscr{F} of all compact convex sets in \mathbb{R}^2 with diameter 1, there exist sets having maximal area.
- For each set A in \mathscr{F} , denote by f(A) the area of A.
- This area function will be defined formally later and it will be shown to be continuous on the family of all non-empty compact convex sets in \mathbb{R}^2 .
- Let α be the supremum of the set of areas of members of \mathscr{F} .
- For each positive integer *j*, there is a member A_j of \mathscr{F} such that $f(A_j) > \alpha \frac{1}{j}$.
- We may suppose, by translating the A_j's if necessary, that they are uniformly bounded.

An Isodiametric Problem (Cont'd)

- The Blaschke selection principle guarantees the existence of a subsequence $A_{i_1}, ..., A_{i_j}, ...$ of $A_1, ..., A_j, ...$ which converges to some non-empty compact convex set A_0 in \mathbb{R}^2 .
- The continuity of the diameter function shows that A_0 has diameter 1.
- So A₀ lies in 𝔅.
- For each j,

$$\alpha \geq f(A_{i_j}) > \alpha - \frac{1}{i_j} \geq \alpha - \frac{1}{j}.$$

- Letting $j \to \infty$ in these inequalities, we deduce, using the continuity of f, that $f(A_0) = \alpha$.
- Thus A_0 is a member of \mathscr{F} having maximal possible area.

Subsection 8

Duality

The Dual Operator

- For each nonzero vector \boldsymbol{u} in \mathbb{R}^n , the set $H^- = \{\boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{u} \cdot \boldsymbol{x} \le 1\}$ is a closed halfspace in \mathbb{R}^n containing the origin as an interior point.
- Conversely, for each closed halfspace H⁻ in ℝⁿ containing the origin as an interior point, there is a unique non-zero vector u in ℝⁿ such that H⁻ = {x ∈ ℝⁿ : u · x ≤ 1}.
- Thus there is a bijection between the set of nonzero vectors in \mathbb{R}^n and the set of closed halfspaces in \mathbb{R}^n containing the origin as an interior point.
- We define, for each point u of \mathbb{R}^n , a set u^* in \mathbb{R}^n by the equation

$$\boldsymbol{u}^* = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{u} \cdot \boldsymbol{x} \le 1 \}.$$

• We note that $\mathbf{0}^* = \mathbb{R}^n$.

Polar Duals of Sets

Define the polar dual A^{*} of a set A in ℝⁿ to be the intersection of all the sets a^{*}, for a ∈ A, i.e.,

$$A^* = \bigcap (\boldsymbol{a}^* : \boldsymbol{a} \in A) = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{a} \cdot \boldsymbol{x} \le 1, \text{ for all } \boldsymbol{a} \in A \}.$$

- For each set A in \mathbb{R}^n , its polar dual A^* is defined as an intersection of closed convex sets containing the origin.
- So A* is itself a closed convex set containing the origin.
- The polar duals ϕ^* and $\{\mathbf{0}\}^*$ are both \mathbb{R}^n .
- The polar dual of \mathbb{R}^n is $\{\mathbf{0}\}$.

Positions of Vector and its Dual

- It is instructive to examine the sets u^* for nonzero vectors u in \mathbb{R}^n .
- By definition, \boldsymbol{u}^* is the closed halfspace which is bounded by the hyperplane $H = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{u} \cdot \boldsymbol{x} = 1 \}$ and contains the origin.
- This hyperplane *H* has *u* as one of its normal vectors and passes through the point $\frac{u}{\|u\|^2}$.
- The distance of $\frac{\boldsymbol{u}}{\|\boldsymbol{u}\|^2}$ from the origin is $\frac{1}{\|\boldsymbol{u}\|}$, which:
 - exceeds 1 if ||u|| is less than 1;
 - equals 1 if $\|\boldsymbol{u}\|$ equals 1;
 - is less than 1 if $\|\boldsymbol{u}\|$ exceeds 1.

Vector and Its Dual Illustrated

• The relative positions of \boldsymbol{u} and \boldsymbol{u}^* for the cases $\|\boldsymbol{u}\| < 1$, $\|\boldsymbol{u}\| = 1$ and $\|\boldsymbol{u}\| > 1$ are illustrated in the figure:

Theorem

Let A, B be sets in \mathbb{R}^n , U the closed unit ball centered on the origin of \mathbb{R}^n and λ a nonzero scalar. Then:

- (i) $A \subseteq B$ implies that $B^* \subseteq A^*$:
- (ii) $(A \cup B)^* = A^* \cap B^*$:
- (iii) $(\lambda A)^* = \frac{1}{2}A^*;$
- (iv) $U^* = U$.

(i) Suppose that $A \subseteq B$. Then

 $B^* = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{b} \cdot \mathbf{x} \le 1, \mathbf{b} \in B \} \subseteq \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{a} \cdot \mathbf{x} \le 1, \mathbf{a} \in A \} = A^*.$

(ii) We have $\mathbf{x} \in (A \cup B)^*$ if and only if both $\mathbf{a} \cdot \mathbf{x} \le 1$, for $\mathbf{a} \in A$, and $\boldsymbol{b} \cdot \boldsymbol{x} \leq 1$, for $\boldsymbol{b} \in B$, if and only if $\boldsymbol{x} \in A^* \cap B^*$. So $(A \cup B)^* = A^* \cap B^*$.

We have

$$\begin{aligned} \mathbf{x} \in (\lambda A)^* & \text{iff} \quad \lambda \mathbf{a} \cdot \mathbf{x} \leq 1, \text{ for } \mathbf{a} \in A, \\ & \text{iff} \quad \mathbf{a} \cdot (\lambda \mathbf{x}) \leq 1, \text{ for } \mathbf{a} \in A, \\ & \text{iff} \quad \lambda \mathbf{x} \in A^* \\ & \text{iff} \quad \mathbf{x} \in \frac{1}{\lambda} A^*. \end{aligned}$$

Thus $(\lambda A)^* = \frac{1}{2}A^*$.

(iv) Suppose, first, that $\mathbf{x} \in U$. Then, for all $\mathbf{u} \in U$, $\mathbf{u} \cdot \mathbf{x} \leq ||\mathbf{u}|| ||\mathbf{x}|| \leq 1$. Hence $\mathbf{x} \in U^*$ and $U \subseteq U^*$.

Conversely, let $\mathbf{x} \in U^*$ with $\mathbf{x} \neq \mathbf{0}$. Then $\frac{\mathbf{x}}{\|\mathbf{x}\|} \in U$. So $\frac{\mathbf{x}}{\|\mathbf{x}\|} \cdot \mathbf{x} = \|\mathbf{x}\| \le 1$. This shows that $\mathbf{x} \in U$. Thus $U^* \subseteq U$.

Example

• We find the polar dual A^* of the *n*-cube A defined by the equation

$$A = \{ (a_1, \dots, a_n) : |a_1| \le 1, \dots, |a_n| \le 1 \}.$$

Suppose (x₁,...,x_n) ∈ A*. Define (a₁,...,a_n) ∈ A by a_i = 1, if x_i ≥ 0, and a_i = -1, if x_i < 0. Then

$$|x_1| + \dots + |x_n| = a_1 x_1 + \dots + a_n x_n = (a_1, \dots, a_n) \cdot (x_1, \dots, x_n) \le 1.$$

Conversely, suppose (x₁,...,x_n) satisfies |x₁| + ··· + |x_n| ≤ 1. Then, for any point (a₁,...,a_n) ∈ A,

$$(a_1, \dots, a_n) \cdot (x_1, \dots, x_n) = a_1 x_1 + \dots + a_n x_n \\ \leq |a_1| |x_1| + \dots + |a_n| |x_n| \\ \leq |x_1| + \dots + |x_n| \leq 1.$$

Thus, $(x_1, ..., x_n) \in A^*$.

• So A^* is the set, known as a **regular** *n*-**crosspolytope**, defined by the equation $A^* = \{(x_1, ..., x_n) : |x_1| + \dots + |x_n| \le 1\}.$

Example (Cont'd)

- We now find A^{**} the polar dual of the polar dual A^* of the *n*-cube A.
- For each point (u₁,..., u_n) of A^{**}, define a point (x₁,0,...,0) of A^{*} by the conditions that x₁ = 1 if u₁ ≥ 0, and x₁ = -1 if u₁ < 0. Then

$$(x_1,0,\ldots,0)\cdot(u_1,u_2,\ldots,u_n)=|u_1|<1.$$

Similarly, $|u_2| \le 1, \dots, |u_n| \le 1$. Hence, $(u_1, \dots, u_n) \in A$ and $A^{**} \subseteq A$.

- The inclusion A⊆A^{**}, which holds for every set A in ℝⁿ, follows immediately from the definition of the polar dual.
- Hence $A^{**} = A$.

- This last example suggests that we examine the double-polar dual A^{**} of an arbitrary set A in \mathbb{R}^n and see how it is related to A.
- The polar dual of any set in \mathbb{R}^n is always a closed convex set containing the origin.
- So a necessary condition for the equality of the sets A and A^{**} is that A is a closed convex set containing the origin.
- We aim to show that this condition is also sufficient, and establish the exact relationship between A^{**} and A.

A Set and Its Double-Polar Dual

Theorem

Let A be a set in \mathbb{R}^n . Then $A^{**} = cl(conv(A \cup \{0\}))$. In particular, if A is closed, convex and contains the origin, then $A^{**} = A$.

• For all $a \in A$, $x \in A^*$, we have $a \cdot x \le 1$. Hence $a \in A^{**}$. So $A \subseteq A^{**}$. But A^{**} is a closed convex set containing **0** and *A*. Therefore, $cl(conv(A \cup \{0\})) \subseteq A^{**}$.

For the reverse inclusion, suppose z is a point of \mathbb{R}^n not lying in $cl(conv(A \cup \{0\}))$. By a previous corollary, there exists a hyperplane strictly separating $\{z\}$ and $cl(conv(A \cup \{0\}))$. Thus, since such a hyperplane cannot pass through the origin, there exists u in \mathbb{R}^n such that $u \cdot z > 1$ and $u \cdot a < 1$, for all a in A. This shows that $u \in A^*$ and $z \notin A^{**}$. Hence, $A^{**} \subseteq cl(conv(A \cup \{0\}))$.

Boundedness and the Origin

Theorem

Let A be a closed convex set in \mathbb{R}^n containing the origin. Then A is bounded if and only if the origin is an interior point of A^* , and A^* is bounded if and only if the origin is an interior point of A.

• We use two previous theorems.

Suppose first that A is bounded. Then, for some r > 0, $A \subseteq rU$. Hence, $\frac{1}{r}U \subseteq A^*$. So the origin is an interior point of A^* .

By applying the last result to the set A^* , we deduce that, if A^* is bounded, then the origin is an interior point of $A^{**} = A$.

Suppose next that the origin is an interior point of A. Then, for some s > 0, $sU \subseteq A$. Hence, $A^* \subseteq \frac{1}{c}U$. So A^* is bounded.

By applying the last result to A^* , we deduce that, if the origin is an interior point of A^* , then $A^{**} = A$ is bounded.

Corollary

Let \mathscr{F} be the family of all compact convex sets in \mathbb{R}^n which contain the origin as an interior point. Then the mapping $\theta: \mathscr{F} \to \mathscr{F}$ defined for $A \in \mathscr{F}$ by the equation $\theta(A) = A^*$ is a bijection.

• Let $A, B \in \mathcal{F}$. The theorem shows that $\theta(A) \in \mathcal{F}$. θ is injective, for $A^* = B^*$ implies $A^{**} = B^{**}$, i.e., A = B. It is surjective, since $\theta(A^*) = A$.

The Polar Face Mapping

- Suppose that A is a compact convex set in \mathbb{R}^n that contains the origin as an interior point.
- Let B be an exposed face of A.
- Then, for each point b in B, the set {x ∈ A* : b · x = 1} is an exposed face (possibly empty) of A*.
- Thus the set $\varphi(B)$, defined by the equation

$$\varphi(B) = \{ \boldsymbol{x} \in A^* : \boldsymbol{b} \cdot \boldsymbol{x} = 1, \text{ for } \boldsymbol{b} \in B \},\$$

being an intersection of exposed faces of A^* , is itself an exposed face of A^* .

- In this way we have constructed a mapping φ from the set of exposed faces of A to the set of exposed faces of A*.
- We call φ the **polar face mapping** of *A*.

Theorem

Let A be a compact convex set in \mathbb{R}^n which contains the origin as an interior point. Then the polar face mapping φ of A is an inclusion-reversing bijection.

• That φ is inclusion reversing follows immediately from its definition. Let ψ be the polar face mapping of A^* . We show that, for each exposed face B of A, $\psi(\varphi(B)) = B$. This is clear when B is either ϕ or A. We assume that B is a proper exposed face of A. Thus there is $\boldsymbol{\mu}$ in \mathbb{R}^n such that

$$B = \{ \boldsymbol{a} \in A : \boldsymbol{u} \cdot \boldsymbol{a} = 1 \} \text{ and } \boldsymbol{u} \cdot \boldsymbol{a} \leq 1, \text{ for } \boldsymbol{a} \in A.$$

This shows that $\boldsymbol{u} \in A^*$ and $\boldsymbol{u} \in \varphi(B)$.

• Let $\mathbf{v} \in \psi(\varphi(B))$. Then $\mathbf{v} \in A^{**} = A$ and $\mathbf{u} \cdot \mathbf{v} = 1$. Hence $\mathbf{v} \in B$ and $\psi(\varphi(B)) \subseteq B.$

Conversely, let $\mathbf{b} \in B$. Then $\mathbf{b} \in A = (A^*)^*$ and $\mathbf{b} \cdot \mathbf{w} = 1$, for all $\boldsymbol{w} \in \varphi(B)$. Hence, $\boldsymbol{b} \in \psi(\varphi(B))$ and $B \subseteq \psi(\varphi(B))$.

Thus, $\psi(\varphi(B)) = B$.

We have just shown that the composite mapping $\psi \circ \varphi$ is the identity mapping on the set of exposed faces of A.

By interchanging the roles of A and A^* in the discussion above, we can deduce that $\varphi \circ \psi$ is the identity mapping on the set of exposed faces of A^* .

It now follows easily that φ is a bijection.

Example

- Let A be the square conv{a, b, c, d} in \mathbb{R}^2 , where a = (1, 1), b = (-1, 1), c = (-1, -1), d = (1, -1).
- We saw that the polar dual A^* of A is the square conv{w, x, y, z}, where w = (1,0), x = (0,1), y = (-1,0), w = (0,-1).

Duality

Example (Cont'd)

 The polar face mapping φ of A is indicated below, where the faces of A and A*are represented by their extreme points.