Introduction to Convexity

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

Convex Polytopes

- Polytopes
- Polyhedral Sets
- Pyramids, Bipyramids and Prisms
- Ocyclic Polytopes
- Euler's Relation
- Gale Transforms

Subsection 1

Polytopes

Polytopes and Simplexes

- A convex polytope, or simply a polytope, is the convex hull of a *finite* set of points in \mathbb{R}^n .
- Points, line segments, polygons, tetrahedra, cubes, octahedra, dodecahedra and icosahedra are all polytopes.
- Since the convex hull of a finite set in \mathbb{R}^n is compact, polytopes are compact convex sets.
- A polytope of dimension *r* is called an *r*-**polytope**.
- The simplest example of an *r*-polytope is an *r*-simplex (r = -1,...,n), which is defined to be the convex hull of an affinely independent set in \mathbb{R}^n consisting of r+1 points.
- There is precisely one (-1)-simplex, namely the empty set.
- We refer to a 0-simplex as a **point**, a 1-simplex as a **line segment**, a 2-simplex as a **triangle**, and a 3-simplex as a **tetrahedron**.

Crosspolytopes

- An important example of an *r*-polytope is an *r*-crosspolytope (*r* = 1,...,*n*), which is defined to be the convex hull of *r* linearly independent line segments in ℝⁿ whose midpoints coincide, i.e., a translate of a set of the form conv{±*a*₁,...,±*a*_r}, where {*a*₁,...,*a*_r} is a linearly independent set of vectors in ℝⁿ.
- Such a crosspolytope is called **regular** when the **a**₁,...,**a**_r have equal lengths and are mutually orthogonal.
- Thus, conv{±e₁,...,±e_r}, where e₁,...,e_r are elementary vectors in Rⁿ, is a regular r-crosspolytope.
- In R³ a regular 2-crosspolytope is a square, and a regular 3-crosspolytope is a regular octahedron, which is a regular solid bounded by eight congruent equilateral triangles.

Theorem

Let A, B be polytopes in \mathbb{R}^n and let $\alpha \in \mathbb{R}$. Then A + B and αA are polytopes.

 We consider the non-trivial case when neither A nor B is empty. Let $A = \text{conv}\{a_1, ..., a_k\}, B = \text{conv}\{b_1, ..., b_m\}, \text{ where } a_1, ..., a_k,$ $\boldsymbol{b}_1, \ldots, \boldsymbol{b}_m \in \mathbb{R}^n$. Denote by C the finite set consisting of all those points of the form $\boldsymbol{a}_i + \boldsymbol{b}_i$, where i = 1, ..., k and j = 1, ..., m, and by D the finite set whose points are $\alpha a_1, \ldots, \alpha a_k$. We prove the theorem by showing that $A + B = \operatorname{conv} C$ and $\alpha A = \operatorname{conv} D$.

Addition and Scalar Multiplication (Cont'd)

• Now A+B is a convex set containing C. Hence, $\operatorname{conv} C \subseteq A+B$. If $\mathbf{x} \in A+B$, then there exist scalars $\lambda_1, \ldots, \lambda_k, \ \mu_1, \ldots, \mu_m \ge 0$ with $\lambda_1 + \cdots + \lambda_k = 1$ and $\mu_1 + \cdots + \mu_m = 1$ such that

$$\mathbf{x} = \lambda_1 \mathbf{a}_1 + \dots + \lambda_k \mathbf{a}_k + \mu_1 \mathbf{b}_1 + \dots + \mu_m \mathbf{b}_m$$

= $\sum_{i=1}^k \sum_{j=1}^m \lambda_i \mu_j (\mathbf{a}_i + \mathbf{b}_j).$

This shows that \mathbf{x} is a convex combination of points of C. Hence, $\mathbf{x} \in \operatorname{conv} C$ and $A + B \subseteq \operatorname{conv} C$.

Now αA is a convex set containing D. Hence, $\operatorname{conv} D \subseteq \alpha A$. If $\mathbf{x} \in \alpha A$, then there exist $\lambda_1, \ldots, \lambda_k \ge 0$ with $\lambda_1 + \cdots + \lambda_k = 1$ such that

$$\boldsymbol{x} = \alpha(\lambda_1 \boldsymbol{a}_1 + \dots + \lambda_k \boldsymbol{a}_k) = \lambda_1(\alpha \boldsymbol{a}_1) + \dots + \lambda_k(\alpha \boldsymbol{a}_k).$$

This shows that \mathbf{x} is a convex combination of points of D. Hence, $\mathbf{x} \in \operatorname{conv} D$ and $\alpha A \subseteq \operatorname{conv} D$.

Zonotopes and *r*-Cubes

Corollary

Let A_1, \ldots, A_m be polytopes in \mathbb{R}^n and let $\alpha_1, \ldots, \alpha_m \in \mathbb{R}$. Then $\alpha_1 A_1 + \cdots + \alpha_m A_m$ is a polytope.

- Thus, the vector sum of a finite number of line segments in \mathbb{R}^n is a polytope. Such a polytope is called a **zonotope**.
- An r-cube (r = 1,...,n) in ℝⁿ is the vector sum of r mutually orthogonal line segments in ℝⁿ, all of equal length, i.e., a set of the form

$$\operatorname{conv}\{\boldsymbol{a}_1, \boldsymbol{b}_1\} + \cdots + \operatorname{conv}\{\boldsymbol{a}_r, \boldsymbol{b}_r\},\$$

where $\boldsymbol{a}_1, \dots, \boldsymbol{a}_r, \boldsymbol{b}_1, \dots, \boldsymbol{b}_r \in \mathbb{R}^n$, $(\boldsymbol{a}_i - \boldsymbol{b}_i) \cdot (\boldsymbol{a}_j - \boldsymbol{b}_j) = 0$ if and only if $i \neq j$, and $\|\boldsymbol{a}_1 - \boldsymbol{b}_i\| = \|\boldsymbol{a}_j - \boldsymbol{b}_j\|$ for all i, j.

• An example of an *n*-cube with **edge-length** 1 in \mathbb{R}^n is the polytope

$$\operatorname{conv}\{\mathbf{0}, \mathbf{e}_1\} + \dots + \operatorname{conv}\{\mathbf{0}, \mathbf{e}_n\} = \{(x_1, \dots, x_n) : 0 \le x_1, \dots, x_n \le 1\}.$$

Vertices and Edges of a Polytope

- We now look at the facial structure of a polytope P in \mathbb{R}^n .
- It is customary to call the extreme points of *P* its **vertices** and its 1-faces its **edges**.
- The set of all *P*'s vertices is called its vertex set.
- If P = conv{a₁,..., a_m}, for some a₁,..., a_m ∈ ℝⁿ, then a previous corollary shows that the vertex set of P is contained in {a₁,..., a_m}.

Property of Faces of a Polytope

Theorem

Every polytope in \mathbb{R}^n has only a finite number of faces, and each of these is a polytope.

• Consider a non-empty polytope $A = \operatorname{conv}\{a_1, \dots, a_m\}$, where $a_1, \dots, a_m \in \mathbb{R}^n$. By a previous theorem each face F of A is the convex hull of its extreme points. Another theorem shows that each extreme point of F is also an extreme point of A. Hence F is the convex hull of some subset of the vertex set of A. Since $\{a_1, \dots, a_m\}$ contains the vertex set of A, it follows that F is the convex hull of some subset of $\{a_1, \dots, a_m\}$. The desired result is now immediate.

Subsets of Vertex Set Determining a Face

- Suppose that V is the vertex set of a polytope P in \mathbb{R}^n .
- Then the proof of the last theorem shows that each face of *P* has the form conv*W*, for some subset *W* of *V*.
- The question naturally arises as to which subsets *W* of *V* determine a face of *P*, i.e. are such that conv*W* is a face of *P*.

Vertex Subsets That Determine Faces

Theorem

Let W be a subset of the vertex set V of a polytope P in \mathbb{R}^n . Then convW is a face of P if and only if

 $(\operatorname{aff} W) \cap \operatorname{conv}(V \setminus W) = \emptyset.$

Suppose first that convW is a face of P. If v ∈ V\W, then P\{v} is convex, by a previous theorem, and contains W. Hence, convW ⊆ P\{v}. So v ∉ convW. Therefore, V\W ⊆ P\convW. By the same theorem, P\convW is convex. So conv(V\W) ⊆ P\convW. Also by the same theorem, (aff W) ∩ P = convW. Hence,

$$(\operatorname{aff} W) \cap \operatorname{conv}(V \setminus W) \subseteq (\operatorname{aff} W) \cap (P \setminus \operatorname{conv} W) \\ \subseteq \operatorname{conv} W \cap (P \setminus \operatorname{conv} W) = \emptyset.$$

Characterization of Face Determinators (Converse)

• Suppose $(aff W) \cap conv(V \setminus W) = \emptyset$ is satisfied. Clearly conv W is a face of P if either W is empty or V. So we assume that this is not the case. Let $V = \{v_1, ..., v_s\}_{\neq}$ and $W = \{v_1, ..., v_r\}$, where $1 \le r < s$. Let $w = \lambda x + \mu y$, where $w \in conv W$, $x, y \in P$, and $\lambda, \mu > 0$ with $\lambda + \mu = 1$. Then $x = \lambda_1 v_1 + \dots + \lambda_s v_s$, $y = \mu_1 v_1 + \dots + \mu_s v_s$, for some $\lambda_1, \dots, \lambda_s, \mu_1, \dots, \mu_s \ge$ with $\lambda_1 + \dots + \lambda_s$ = 1 and $\mu_1 + \dots + \mu_s = 1$. For $i = 1, \dots, s$, write $v_i = \lambda \lambda_i + \mu \mu_i$. Then $v_1, \dots, v_s \ge 0, v_1 + \dots + v_s = 1$ and $w = v_1 v_1 + \dots + v_s v_s$. Write $\alpha = v_{r+1} + \dots + v_s$. If $\alpha > 0$, then the point

$$\frac{1}{\alpha}(\boldsymbol{w}-\boldsymbol{v}_1\boldsymbol{v}_1-\cdots-\boldsymbol{v}_r\boldsymbol{v}_r)=\frac{1}{\alpha}(\boldsymbol{v}_{r+1}\boldsymbol{v}_{r+1}+\cdots+\boldsymbol{v}_s\boldsymbol{v}_s)$$

lies both in aff W and $\operatorname{conv}(V \setminus W)$, which contradicts the hypothesis. Thus, $\alpha = 0$. This entails $v_{r+1}, \ldots, v_s = 0$ and $\lambda_{r+1}, \ldots, \lambda_s, \mu_{r+1}, \ldots, \mu_s = 0$. Hence $\mathbf{x}, \mathbf{y} \in \operatorname{conv} W$. So $\operatorname{conv} W$ is a face of P.

Arbitrary Subsets and Faces

- In proving the "if" part of the last theorem, we used the fact that conv V = P, but not the fact that each element of V was a vertex of P.
- We thus have the following:

Corollary

Let W be a subset of a finite set V in \mathbb{R}^n such that

 $(\operatorname{aff} W) \cap \operatorname{conv}(V \setminus W) = \emptyset.$

Then $\operatorname{conv} W$ is a face of the polytope $\operatorname{conv} V$.

Facial Structure of Simplexes

- Suppose that $S = \operatorname{conv} K$, where V is an affinely independent set in \mathbb{R}^n .
- We have already seen that each face of S is the convex hull of some subset of V.
- Now we establish the converse:

Let $W \subseteq V$. Since V is affinely independent,

 $(\operatorname{aff} W) \cap \operatorname{conv}(V \setminus W) \subseteq (\operatorname{aff} W) \cap \operatorname{aff}(V \setminus W) = \emptyset.$

Therefore, convW is a face of S by the corollary.

• In particular, each point of V is a vertex of S.

Combinatorial Equivalence

- Let *P*, *P'* be polytopes, not necessarily lying in the same Euclidean space, with vertex sets *V*, *V'*, respectively.
- Then P and P' are said to be **combinatorially equivalent** if there exists a bijection $\varphi: V \to V'$ such that a subset W of V determines a face of P if and only if $\varphi(W)$ determines a face of P'.
- Since 1-polytopes are simply line segments, they are all combinatorially equivalent to one another.
- Two 2-polytopes (polygons) are combinatorially equivalent if and only if they have the same number of vertices.

Combinatorial Equivalence and Number of Vertices

- Clearly, if two polytopes are combinatorially equivalent, then they must have the same number of vertices.
- The converse of this result is not true.
 - In \mathbb{R}^3 consider:
 - A square pyramid *P*;
 - The polytope *P'* obtained by taking the union of a regular tetrahedron and its reflection in one of its triangular faces.

Both P and P' have five vertices, but they are not combinatorially equivalent. P has a face with four vertices, but P' does not.

• We will show later that every 3-polytope with five vertices is combinatorially equivalent to either *P* or *P'*.

So, there are just two **combinatorial types** for 3-polytopes having five vertices.

Approximation by Polytopes

Theorem

Let A be a non-empty compact convex set in \mathbb{R}^n and let $\varepsilon > 0$. Then there exist polytopes P, Q in \mathbb{R}^n such that $P \subseteq A \subseteq Q$, $\rho(A, P) \le \varepsilon$, $\rho(A, Q) \le \varepsilon$.

By a previous theorem, there exists a finite set E in ℝⁿ such that E ⊆ A ⊆ (E)_ε. Let P = convE. Then P is a polytope satisfying P ⊆ A ⊆ (P)_ε. Hence ρ(A, P) ≤ ε. Replacing A by (A)_ε in the last argument, we deduce the existence of a polytope Q satisfying Q ⊆ (A)_ε ⊆ (Q)_ε. The inclusion (A)_ε ⊆ (Q)_ε, i.e., A + εU ⊆ Q + εU, implies A ⊆ Q by a previous theorem. The inequality ρ(A, Q) ≤ ε now follows.

Corollary

Let A be a non-empty compact convex set in \mathbb{R}^n . Then there exist sequences P_1, \ldots, P_i, \ldots and Q_1, \ldots, Q_i, \ldots of nonempty polytopes in \mathbb{R}^n such that $P_i \subseteq A \subseteq Q_i$ for $i = 1, 2, \ldots$, and $P_i \rightarrow A$ and $Q_i \rightarrow A$ as $i \rightarrow \infty$.

Subsection 2

Polyhedral Sets

Polyhedral Sets

- A **polyhedral set** is the intersection of a finite family of closed halfspaces in \mathbb{R}^n .
- Equivalently, a polyhedral set is the set of all points $(x_1, ..., x_n)$ in \mathbb{R}^n which satisfy a finite system of linear inequalities of the form

 $a_{11}x_1 + \dots + a_{1n}x_n \leq a_{10}$

 $a_{m1}x_1 + \dots + a_{mn}x_n \leq a_{m0}.$

- Clearly, polyhedral sets are closed and convex.
- Moreover, the intersection of any finite family of polyhedral sets is a polyhedral set.
- Each hyperplane in \mathbb{R}^n is an intersection of two closed halfspaces, and so is a polyhedral set.
- Since each flat in \mathbb{R}^n is a finite intersection of hyperplanes, all flats are polyhedral sets.
- In particular, the empty set and \mathbb{R}^n itself are polyhedral sets.

Facets of Polyhedral Sets

• A facet of an *r*-dimensional polyhedral set in \mathbb{R}^n is a proper (r-1)-dimensional face of the set.

• In \mathbb{R}^3 :

- The non-negative orthant has three facets;
- A tetrahedron has four facets;
- A square pyramid has five facets;
- A cube has six facets.
- Since flats have no proper faces, they have no facets.
- It will be shown in the following result that flats are the only polyhedral sets with this property.

Properties of Facets

Theorem

Suppose that the polyhedral set A in \mathbb{R}^n is not a flat and that

$$A = (\mathsf{aff} A) \cap \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{a}_1 \cdot \mathbf{x} \le \alpha_1 \} \cap \dots \cap \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{a}_m \cdot \mathbf{x} \le \alpha_m \},\$$

where $\alpha_1, \ldots, \alpha_m \in \mathbb{R}$, $a_1, \ldots, a_m \in \mathbb{R}^n \setminus \{0\}$ and no one of the closed half spaces in the intersection can be omitted. For each $i = 1, \ldots, m$, let

$$F_i = A \cap \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{a}_i \cdot \boldsymbol{x} = \alpha_i \}.$$

Then:

(i)
$$riA = \{a \in A : a_1 \cdot a < \alpha_1, ..., a_m \cdot a < \alpha_m\};$$

(ii) $rebdA = F_1 \cup \cdots \cup F_m;$
(iii) The facets of A are precisely the sets $F_1, ..., F_m$

Properties of Facets (Cont'd)

Theorem (Cont'd)

- Each proper face of A is the intersection of those facets of A that contain it;
- (v) A has a finite number of faces, each of which is exposed;
- vi) Each face of A is a polyhedral set;
- (vii) Let B_j, B_k be *j* and *k*-faces, respectively, of $A \ (0 \le j \le k-2)$ such that $B_j \subseteq B_k$. Then there are faces B_{j+1}, \ldots, B_{k-1} of A such that, for each $i = j, \ldots, k-1$, the face B_i is a facet of B_{i+1} .

Proof of the Theorem (Parts (i) & (ii))

- Every polyhedral set A in \mathbb{R}^n can be expressed in the form required by the theorem. The assumption that A is not a flat implies that $m \ge 1$.
- (i) Suppose first that a ∈ A and that a₁ ⋅ a < α₁, ..., a_m ⋅ a < α_m. Then a belongs to the set C = {x ∈ ℝⁿ : a₁ ⋅ x < α₁,..., a_m ⋅ x < α_m}, which is open, being a finite intersection of open halfspaces. Thus, there exists r > 0 such that B(a; r) ⊆ C. Hence, B(a; r) ∩ affA ⊆ C ∩ affA ⊆ A. Therefore, a ∈ riA.

Suppose next that $\mathbf{a} \in \text{ri}A$. Since no one of the closed halfspaces in the representation of A given in the statement of the theorem can be omitted, for each i = 1, ..., m, there exists $\mathbf{z}_i \in \text{aff}A$ such that $\mathbf{a}_j \cdot \mathbf{z}_i \leq \alpha_j$, when $j \neq i$, and $\mathbf{a}_i \cdot \mathbf{z}_i > \alpha_i$. Hence, for each i = 1, ..., m, there exists $\lambda_i \in (0, 1)$ such that $\lambda_i \mathbf{z}_i + (1 - \lambda_i)\mathbf{a} \in A$. Therefore,

$$\begin{array}{rcl} \alpha_i & \geq & \boldsymbol{a}_i \cdot (\lambda \boldsymbol{z}_i + (1 - \lambda_i) \boldsymbol{a}) = \lambda_i \boldsymbol{a}_i \cdot \boldsymbol{z}_i + (1 - \lambda_i) \boldsymbol{a}_i \cdot \boldsymbol{a} \\ & > & \lambda_i \alpha_i + (1 - \lambda_i) \boldsymbol{a}_i \cdot \boldsymbol{a}. & \text{So } \boldsymbol{a}_i \cdot \boldsymbol{a} < \alpha_i. \end{array}$$

i) This follows immediately from (i).

Proof of the Theorem (Part (iii))

(iii) We now show that, for each i = 1, ..., m, F_i is a facet of A. Let $\mathbf{a} \in \operatorname{ri} A$. Let \mathbf{z}_i be as in (i). Then $\mathbf{a}_i \cdot \mathbf{a} < \alpha_i < \mathbf{a}_i \cdot \mathbf{z}_i$. Write $\mu_i = \frac{\alpha_i - \mathbf{a}_i \cdot \mathbf{a}}{\mathbf{a}_i \cdot \mathbf{z}_i - \mathbf{a}_i \cdot \mathbf{a}}$. Then $0 < \mu_i < 1$. Write $\mathbf{b}_i = \mu_i \mathbf{z}_i + (1 - \mu_i) \mathbf{a}$.

Then (see next slide) $\mathbf{b}_i \in \operatorname{aff} A$, $\mathbf{a}_i \cdot \mathbf{b}_i = \alpha_i$ and $\mathbf{a}_j \cdot \mathbf{b}_i < \alpha_j$, for $j \neq i$. Hence, $\mathbf{b}_i \in A$. Thus, $\mathbf{b}_i \in F_i$ and $\mathbf{a}_i \cdot \mathbf{x} = \alpha_i$ is a support hyperplane to A at \mathbf{b}_i . It follows that F_i is a proper exposed face of A.

Proof of the Theorem (Part (iii) Cont'd)

• We set
$$\mu_i = \frac{\alpha_i - \boldsymbol{a}_i \cdot \boldsymbol{a}}{\boldsymbol{a}_i \cdot \boldsymbol{z}_i - \boldsymbol{a}_i \cdot \boldsymbol{a}}$$
 and $\boldsymbol{b}_i = \mu_i \boldsymbol{z}_i + (1 - \mu_i) \boldsymbol{a}$.
Based on these and the inequalities $\boldsymbol{a}_i \cdot \boldsymbol{a} < \alpha_i < \boldsymbol{a}_i \cdot \boldsymbol{z}_i$, we get

$$\begin{aligned} \mathbf{a}_{i} \cdot \mathbf{b}_{i} &= \mu_{i} \mathbf{a}_{i} \cdot \mathbf{z}_{i} + (1 - \mu_{i}) \mathbf{a}_{i} \cdot \mathbf{a} \\ &= \frac{\alpha_{i} - \mathbf{a}_{i} \cdot \mathbf{a}}{\mathbf{a}_{i} \cdot \mathbf{z}_{i} - \mathbf{a}_{i} \cdot \mathbf{a}} \mathbf{a}_{i} \cdot \mathbf{z}_{i} + \frac{\mathbf{a}_{i} \cdot \mathbf{z}_{i} - \alpha_{i}}{\mathbf{a}_{i} \cdot \mathbf{z}_{i} - \mathbf{a}_{i} \cdot \mathbf{a}} \mathbf{a}_{i} \cdot \mathbf{a} \\ &= \frac{\alpha_{i}}{\mathbf{a}_{i} \cdot \mathbf{z}_{i} - \mathbf{a}_{i} \cdot \mathbf{a}} (\mathbf{a}_{i} \cdot \mathbf{z}_{i} - \mathbf{a}_{i} \cdot \mathbf{a}) + \frac{(\mathbf{a}_{i} \cdot \mathbf{z}_{i})(\mathbf{a}_{i} \cdot \mathbf{a}) - (\mathbf{a}_{i} \cdot \mathbf{a})(\mathbf{a}_{i} \cdot \mathbf{z}_{i})}{\mathbf{a}_{i} \cdot \mathbf{z}_{i} - \mathbf{a}_{i} \cdot \mathbf{a}} \\ &= \alpha_{i} + 0 = \alpha_{i}; \\ \mathbf{a}_{j} \cdot \mathbf{b}_{i} &= \mu_{i} \mathbf{a}_{j} \cdot \mathbf{z}_{i} + (1 - \mu_{i}) \mathbf{a}_{j} \cdot \mathbf{a} \\ &< \mu_{i} \alpha_{j} + (1 - \mu_{i}) \alpha_{j} = \alpha_{j}. \end{aligned}$$

Proof of the Theorem (Part (iii) Cont'd)

We now show that aff F_i = (aff A) ∩ {x ∈ ℝⁿ : a_i · x = α_i}. Let y_i be a point belonging to the set on the right. Choose θ_i > 0 such that θ_i(a_j · y_i - a_j · b_i) ≤ α_j - a_j · b_i when j ≠ i. Write c_i = θ_iy_i + (1 - θ_i)b_i. Then c_i ∈ aff A and we have, for i ≠ j:

$$\begin{aligned} \mathbf{a}_i \cdot \mathbf{c}_i &= \theta_i \mathbf{a}_i \cdot \mathbf{y}_i + (1 - \theta_i) \mathbf{a}_i \cdot \mathbf{b}_i \\ &= \theta_i \alpha_i + (1 - \theta_i) \alpha_i = \alpha_i; \\ \mathbf{a}_j \cdot \mathbf{c}_i &= \theta_i \mathbf{a}_j \cdot \mathbf{y}_i + (1 - \theta_i) \mathbf{a}_j \cdot \mathbf{b}_i \\ &= \theta_i (\mathbf{a}_j \cdot \mathbf{y}_i - \mathbf{a}_j \cdot \mathbf{b}_i) + \mathbf{a}_j \cdot \mathbf{b}_i \le \alpha_j \end{aligned}$$

Hence, $c_i \in F_i$. But $y_i = \frac{1}{\theta_i}c_i + (1 - \frac{1}{\theta_i})b_i \in \operatorname{aff} F_i$. So $(\operatorname{aff} A) \cap \{x \in \mathbb{R}^n : a_i \cdot x = \alpha_i\} \subseteq \operatorname{aff} F_i$. The opposite inclusion is trivial. This equality, together with a previous theorem, give

 $\dim F_i = \dim(\operatorname{aff} F_i) = \dim(\operatorname{aff} A) - 1 = \dim A - 1.$

So F_i is a facet of A.

Proof of the Theorem (Part (iii) Conclusion)

We finally show that each facet of A is one of the F_is. Let F be a facet of A. Let f ∈ riF. Since F is a proper face of A, f ∉ riA. Hence, by (ii), f ∈ F_{i₀} for some i₀ ∈ {1,...,m}. Now the faces F and F_{i₀} of A have the same dimension and f ∈ riF. Hence F = F_{i₀}.

Proof of the Theorem (Part (iv))

(iv) Suppose that B is a proper face of A. Let b∈ riB. Denote by I the non-empty set of those i's in {1,...,m} for which a_i ⋅ b = α_i, i.e., b∈ F_i. Denote by J the set of those j's in {1,...,m} for which a_j ⋅ b < α_j. Let E be the intersection of all those facets of A which contain b. Since b∈ F_i if and only if B⊆ F_i, the set E is the intersection of all those facets of A which contain S. Hence E is a face of A which contains B. Choose r > 0 such that, for each j ∈ J,

$$B(\boldsymbol{b}; r) \subseteq \{\boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{a}_j \cdot \boldsymbol{x} < \alpha_j\}.$$

This inclusion, together with the trivial inclusions $\operatorname{aff} E \subseteq \operatorname{aff} A$ and $\operatorname{aff} E \subseteq \{x \in \mathbb{R}^n : a_i \cdot x = \alpha_i\}$, for $i \in I$, show that $B(\mathbf{b}; r) \cap \operatorname{aff} E \subseteq E$. Hence, $\mathbf{b} \in \operatorname{ri} E$. Thus, $\mathbf{b} \in \operatorname{ri} B \cap \operatorname{ri} E$. So B = E.

Proof of the Theorem (Parts (v)-(vii))

- (v) This follows easily from (iv), since A has only m facets and each of these is an exposed face of A.
- (vi) This follows from the facts that each proper face of A is the intersection of A with one of its support hyperplanes, and the intersection of two polyhedral sets is itself a polyhedral set.
- (vii) B_j is a proper face of the polyhedral set B_k . By (iv), there is some facet B_{k-1} of B_k which contains B_j . If j = k - 2, then the proof is complete.

Otherwise, repeat this last argument k-j-2 more times to obtain the desired faces B_{k-2}, \ldots, B_{j+1} .

The General Case

- The preceding theorem concerns polyhedral sets which are not flats.
- It is convenient, however, to have a statement of the main properties of general polyhedral sets.

Theorem

Let A be a polyhedral set in \mathbb{R}^n . Then A has a finite number of faces, each of which is exposed and is a polyhedral set. Every proper face of A is the intersection of those facets of A that contain it, and rebdA is the union of all the facets of A. If A has a non-empty face of dimension s, then A has faces of all dimensions from s to dimA.

• The theorem is trivially true when A is a flat.

When A is not a flat, it follows easily from the preceding theorem.

Characterization of Polyhedral Sets

Theorem

Let A be a closed convex set in \mathbb{R}^n which has only a finite number of exposed faces. Then A is a polyhedral set.

• If A has no proper exposed faces, then it must be a flat, which is polyhedral.

Suppose, then, that A has proper exposed faces B_1, \ldots, B_m . Let H_1, \ldots, H_m be support hyperplanes to A such that $B_1 = A \cap H_1, \ldots, B_m = A \cap H_m$. For each $i = 1, \ldots, m$, let J_i be the closed halfspace of \mathbb{R}^n bounded by H_i , which contains A.

Define a polyhedral set P by the equation

$$P = J_1 \cap \cdots \cap J_m \cap \operatorname{aff} A.$$

We show that A = P.

Characterization of Polyhedral Sets (Cont'd)

Clearly, A⊆P. Suppose that P⊈A. Then there is a point p lying in P\A. Let a∈riA. Since A is closed and p∈affA, there exists λ∈ (0,1) such that the point b = λp + (1-λ)a belongs to rebdA. By a previous theorem, there is some i∈ {1,...,m} such that b∈ B_i. Now H_i is a face of J_i, b∈ H_i, and p, a∈ J_i. Hence, a∈ H_i. Thus, a∈ B_i. This is impossible, since a cannot be both a relative interior point of A and a member of one of its proper faces! Hence P⊆A, and A is the polyhedral set P.

Corollary

A closed convex set in \mathbb{R}^n which has only a finite number of faces is a polyhedral set.

Characterization of Polytopes

Theorem

A set in \mathbb{R}^n is a polytope if and only if it is a bounded polyhedral set.

Each polytope in Rⁿ is compact and has a finite number of faces. So, by the preceding corollary, it must be a bounded polyhedral set.
 Conversely, every bounded polyhedral set in Rⁿ is compact and has a finite number of faces. In particular, it has a finite number of extreme points. So, by a previous theorem, it must be a polytope.

Corollary

The intersection of two polytopes in \mathbb{R}^n is a polytope.

 In view of the theorem, the corollary simply states the obvious fact that the intersection of two bounded polyhedral sets is a bounded polyhedral set.

Subsection 3

Pyramids, Bipyramids and Prisms

Number of *k*-Faces of a Polytope

• We denote by $f_k(P)$ the number of k-faces (faces of dimension k) of an r-polytope P.

Then

$$f_{-1}(P) = f_r(P) = 1$$
, $f_k(P) = 0$ when $k < -1$ or $k > r$.

• Our results will lead us to anticipate **Euler's relation**, which asserts that,

$$f_{-1}(P) - f_0(P) + \dots + (-1)^{r+1} f_r(P) = 0,$$

for any non-empty r-polytope P.

• This will be proved in a later section.
The Case of Simplexes

- Let S be a non-empty r-simplex in \mathbb{R}^n .
- Then $S = \operatorname{conv} V$ for some affinely independent set V of r+1 points of \mathbb{R}^n .
- For each k = -1,0,...,r, the k-faces of S are precisely those sets of the form conv W, where W is a subset of V having k+1 points.
- Thus, $f_k(S)$ equals the number of ways of choosing k+1 points from a set of r+1 points.
- Hence, using the standard notation for the binomial coefficients, we see that $f_k(S) = \binom{r+1}{k+1} = \frac{(r+1)!}{(k+1)!(r-k)!}$.
- By the Binomial Theorem, for all real x,

$$(1+x)^{r+1} = f_{-1}(S) + f_0(S)x + \dots + f_r(S)x^{r+1}$$

• Setting x = -1 in this equation, we deduce that

$$f_{-1}(S) - f_0(S) + \dots + (-1)^{r+1} f_r(S) = 0.$$

Pyramids in \mathbb{R}^n

- Let Q be a nonempty (r-1)-polytope in \mathbb{R}^n .
- Let \boldsymbol{x} be a point of \mathbb{R}^n not lying in aff Q.
- Then the *r*-pyramid *P* with apex *x* and base *Q* is defined to be the *r*-polytope $conv({x} \cup Q)$.
- We say that *P* is obtained from *Q* by applying the cone construction with apex *x*.

Numbers of Faces of a Pyramid

Theorem

Let P be an r-pyramid in \mathbb{R}^n with apex x and base a non-empty (r-1)-polytope Q. Then

$$f_k(P) = f_k(Q) + f_{k-1}(Q)$$
, for $k = -1, ..., r$.

We show first that, for A, B ⊆ aff Q, (aff({x} ∪ A)) ∩ B = (aff A) ∩ B.
Consider the non-trivial case when A is non-empty. If b lies in the set on the left-hand side, then there exist a₁,..., a_m ∈ A and λ, λ₁,..., λ_m ∈ ℝ with λ + λ₁ + ··· + λ_m = 1 such that b = λx + λ₁a₁ + ··· + λ_ma_m. If λ ≠ 0, then the last equation can be rearranged to express x as an affine combination of points of aff Q. This contradicts the (implied) hypothesis that x ∉ aff Q. Thus, λ = 0. So b ∈ (aff A) ∩ B. It follows that (aff({x} ∩ A)) ∩ B ⊆ (aff A) ∩ B. The opposite inclusion is clear.

Numbers of Faces of a Pyramid (Cont'd)

Denote by V the vertex set of Q. Then P = conv({x} ∪ V). By a previous corollary, {x} and Q are faces of P. Hence, each of the f_k(Q) k-faces of Q is also a k-face of P. Thus, the set of extreme points of P is {x} ∪ V. Suppose that W ⊆ V is such that convW is one of the f_{k-1}(Q) (k-1)-faces of Q. Then by the equation just proved,

 $(\operatorname{aff}({\mathbf{x}} \cup W)) \cap \operatorname{conv}(V \setminus W) = (\operatorname{aff} W) \cap \operatorname{conv}(V \setminus W) = \emptyset.$

This shows that $conv({x} \cup W)$ is a k-face of P. It now follows that

$$f_k(P) \ge f_k(Q) + f_{k-1}(Q).$$

Numbers of Faces of a Pyramid (Cont'd)

Suppose next that W ⊆ V is such that either convW or conv({x} ∪ W) is a face of P (every face of P must be of one of these two forms).
 Then either

$$(\operatorname{aff} W) \cap \operatorname{conv}(\{x\} \cup (V \setminus W)) = \emptyset,$$

or

 $(\operatorname{aff} W) \cap \operatorname{conv}(V \setminus W) = \emptyset.$

In both cases $(aff W) \cap conv(V \setminus W) = \emptyset$. This shows that convW is a face of Q. Thus, each face of P is either a face of Q or the convex hull of x and a face of Q. Hence,

$$f_k(P) \leq f_k(Q) + f_{k-1}(Q).$$

The conclusion follows.

Example

• The formula of the preceding theorem is easily verified for a 3-pyramid P in \mathbb{R}^3 which has for base an *m*-sided convex polygon.

• Here
$$f_0(Q) = m$$
, $f_1(Q) = m$;

•
$$f_0(P) = m+1$$
, $f_1(P) = 2m$, $f_2(P) = m+1$.

• We note that *P* satisfies Euler's relation:

$$f_{-1}(P) - f_0(P) + f_1(P) - f_2(P) + f_3(P)$$

= 1 - (m+1) + (2m) - (m+1) + 1 = 0

Two-Fold Pyramids

- Suppose now that P is an r-pyramid with base an (r-1)-polytope Q, and that Q is an (r-1)-pyramid with base an (r-2)-polytope S.
- So P is obtained from S by applying the cone construction twice.
- We say that P is:
 - a 2-fold r-pyramid with 2-base S, or
 - a 1-fold *r*-pyramid with 1-base *Q*.
- The preceding theorem shows that, for k = -1, ..., r,

$$f_k(P) = f_k(Q) + f_{k-1}(Q)$$

= $f_k(S) + f_{k-1}(S) + f_{k-1}(S) + f_{k-2}(S)$
= $f_k(S) + 2f_{k-1}(Q) + f_{k-2}(S).$

Multi-Fold Pyramids

- Let P be an r-polytope in \mathbb{R}^n (r = 1, ..., n).
- Let Q be an (r-s)-polytope in \mathbb{R}^n (s = 1, ..., r).
- Then *P* is said to be an *s*-fold *r*-pyramid with *s*-base *Q* if it can be obtained from *Q* by applying the cone construction *s* times.
- A simple induction argument, using the preceding theorem, shows that, for an *s*-fold *r*-pyramid *P* with *s*-base *Q*, we have

$$f_k(P) = \sum_{i=1}^{s} {s \choose i} f_{k-i}(Q), \quad k = -1, ..., r.$$

- Clearly, an *r*-fold *r*-pyramid is an *r*-simplex.
- An (r-1)-fold r-pyramid has a line segment for an (r-1)-base.
 A line segment is itself a 1-fold 1-pyramid.
 So each (r-1)-fold r-pyramid is an r-fold r-pyramid, i.e. an r-simplex.

Bipyramids in \mathbb{R}^n

- Let I be a line segment in ℝⁿ and let Q be an (r-1)-polytope in ℝⁿ such that I ∩ Q is a single point which is a relative interior point of both I and Q.
- Then the *r*-bipyramid *P* with axis *I* and base *Q* is defined to be the *r*-polytope conv($I \cup Q$).
- We say that *P* is obtained from *Q* by applying the **double-cone construction with axis** *I*.

Numbers of Faces of a Bipyramid

- Suppose that $I = \text{conv}\{a, b\}$, where a and b are distinct points of \mathbb{R}^n .
- Then an argument similar to that used in the proof of the preceding theorem shows that:
 - The k-faces (k = −1,...,r−2) of P are precisely the k-faces of Q and the k-polytopes of the form conv({a} ∪ F) or conv({b} ∪ F), where F is a (k-1)-face of Q.
 - The (r-1)-faces of P are simply the (r-1)-polytopes conv({a} ∪ F) and conv({b} ∪ F), where F is an (r-2)-face of Q.
- We thus arrive at the following result.

Theorem

Let P be an r-bipyramid in \mathbb{R}^n with axis I and base a non-empty (r-1)-polytope Q. Then

$$f_k(P) = f_k(Q) + 2f_{k-1}(Q), \text{ for } k = -1, \dots, r-2,$$

$$f_{r-1}(P) = 2f_{r-2}(Q).$$

Example

The formula of the preceding theorem is easily verified for a
 3-bipyramid P in R³ which has for base an m-sided convex polygon Q.

• Here
$$f_0(Q) = m$$
, $f_1(Q) = m$;

•
$$f_0(P) = m + 2$$
, $f_1(P) = 3m$, $f_2(P) = 2m$.

• We note that P satisfies Euler's relation:

$$f_{-1}(P) - f_0(P) + f_1(P) - f_2(P) + f_3(P)$$

= 1 - (m+2) + (3m) - (2m) + 1 = 0.

Multi-Fold Bipyramids

- Let P be an r-polytope in \mathbb{R}^n (r = 1, ..., n).
- Let Q be an (r-s)-polytope in \mathbb{R}^n (s = 1, ..., r).
- Then *P* is said to be an *s*-fold *r*-bipyramid with *s*-base *Q* if it can be obtained from *Q* by applying the double-cone construction *s* times.
- An (r-1)-fold r-bipyramid has a line segment for an (r-1)-base.
 A line segment is itself a 1-fold 1-bipyramid.
 So each (r-1)-fold r-bipyramid is also an r-fold r-bipyramid.

The *r*-Crosspolytope

- The simplest example of an *r*-fold *r*-bipyramid is the *r*-crosspolytope.
- Consider the *r*-crosspolytope *P* in Rⁿ (*r* = 1,...,*n*), which is the convex hull of *r* linearly independent line segments conv{*a*₁, *b*₁}, ..., conv{*a*_r, *b*_r} (i.e., the vectors *a*₁ *b*₁, ..., *a*_r *b*_r are linearly independent) whose midpoints coincide.
- The facial structure of P is easily described:
 - For each k = 0, ..., r 1, let $I = \{i_1, ..., i_{k+1}\}$ be a subset of $\{1, ..., r\}$ which has k+1 points and let $T = \{x_{i_1}, ..., x_{i_{k+1}}\}$ be such that each x_{i_j} is either a_{i_j} or b_{i_j} for j = 1, ..., k+1.
 - Then $\operatorname{conv} T$ is a k-face of P and all k-faces of P arise in this way.
- Since there are $\binom{r}{k+1}$ possibilities for the set *I* and each *I* gives rise to 2^{k+1} possibilities for the set *T*, it follows that

$$f_k(P) = 2^{k+1} \binom{r}{k+1}, \quad k = 1, \dots, r-1.$$

Prisms in \mathbb{R}^n

- Let Q be a non-empty (r-1)-polytope in \mathbb{R}^n .
- Let **x** be a point of \mathbb{R}^n which does not lie in the subspace of \mathbb{R}^n which is parallel to aff Q.
- Let *I* be the line segment conv{0, *x*}.
- Then the *r*-prism *P* with axis *I* and base *Q* is defined to be the *r*-polytope Q + I or, equivalently, $conv(Q \cup (Q + x))$.
- We say that *P* is obtained from *Q* by applying the **prism** construction with axis *I*.

Numbers of Faces of Prisms

- An argument similar to that used in the proof of the preceding theorems shows that the k-faces (k = 1, ..., r) of P are precisely the k-faces of Q and its translate Q + x, together with k-polytopes of the form F + I, where F is a (k 1)-face of Q.
- We thus arrive at the following result.

Theorem

Let P be an r-prism in \mathbb{R}^n with axis I and base a nonempty (r-1)-polytope Q. Then

$$f_k(P) = 2f_k(Q) + f_{k-1}(Q), \quad k = 1, \dots, r, f_0(P) = 2f_0(Q).$$

Example

• The formulas of the preceding theorem are easily verified for a 3-prism P in \mathbb{R}^3 which has for base an *m*-sided convex polygon Q.

• Here
$$f_0(Q) = m$$
, $f_1(Q) = m$;

•
$$f_0(P) = 2m, f_1(P) = 3m, f_2(P) = m + 2.$$

• We note that *P* satisfies Euler's relation:

$$f_{-1}(P) - f_0(P) + f_1(P) - f_2(P) + f_3(P)$$

= 1 - 2m + 3m - (m + 2) + 1 = 0.

Multi-Fold Prisms

- Let P be an r-polytope in ℝⁿ (r = 1,...,n) and let Q be an (r-s)-polytope in ℝⁿ (s = 1,...,r).
- Then *P* is said to be an *s*-fold *r*-prism with *s*-base *Q* if it can be obtained from *Q* by applying the prism construction *s* times.
- An (r-1)-fold r-prism has a line segment for an (r-1)-base.
 A line segment is itself a 1-fold 1-prism.
 So each (r-1)-fold r-prism is also an r-fold r-prism.

Parallelotopes

• An *r*-fold *r*-prism *P* in \mathbb{R}^n (*r* = 1,...,*n*) is called an *r*-parallelotope and has the form

 $P = \mathbf{x} + \{\lambda_1 \mathbf{x}_1 + \dots + \lambda_r \mathbf{x}_r : 0 \le \lambda_1, \dots, \lambda_r \le 1\},\$

where $x \in \mathbb{R}^n$ and x_1, \dots, x_r are linearly independent vectors in \mathbb{R}^n . • Thus:

- A 2-parallelotope in \mathbb{R}^2 is a parallelogram;
- A 3-parallelotope in \mathbb{R}^3 is a parallelepiped.
- If x_1, \ldots, x_r are pairwise orthogonal, *P* is known as an *r*-orthotope.
- If, in addition, x_1, \ldots, x_r have the same length, P is called an r-cube.
- A simple induction argument, using the preceding theorem, shows that, for any *r*-parallelotope P in \mathbb{R}^n , we have

$$f_k(P) = 2^{r-k} \binom{r}{k}, \quad k = 0, ..., r.$$

Subsection 4

Cyclic Polytopes

k-Neighborly Polytopes

- Any polytope having more than k vertices which is such that every k-membered subset of its vertex set determines one of its faces, is said to be k-neighborly.
- Thus *n*-simplexes $(n \ge 1)$ are *n*-neighborly.

The Moment Curve

• The moment curve M_n in \mathbb{R}^n is determined parametrically by the equation

$$\mathbf{x}(t) = (t, t^2, \dots, t^n)$$
, for all real t .

- Clearly, this sets up a bijection between the set \mathbb{R} of real numbers and the set M_n of points on the moment curve.
- This bijection induces an ordering on M_n which is isomorphic to the standard ordering on \mathbb{R} .
- Having now made this remark, we shall in future refer to the ordering of points on M_n exactly as if they were real numbers.
- For example, if points $\mathbf{x}(t_1)$, $\mathbf{x}(t_2)$, $\mathbf{x}(t_3)$ on M_n are such that $t_1 < t_2 < t_3$, then we shall say that $\mathbf{x}(t_2)$ lies between $\mathbf{x}(t_1)$ and $\mathbf{x}(t_3)$.

Affine Independence of Points on Moment Curve

Theorem

Each set of n+1 or fewer points on the moment curve M_n in \mathbb{R}^n is affinely independent.

• For i = 0, 1, ..., n, let $\mathbf{x}(t_i) = (t_i, t_i^2, ..., t_i^n)$, where $t_0 < t_1 < \cdots < t_n$. We must show that $\{\mathbf{x}(t_0), \mathbf{x}(t_1), ..., \mathbf{x}(t_n)\}$ is affinely independent. This is equivalent to the non-vanishing of the $(n+1) \times (n+1)$ determinant

It is a well-known result of elementary algebra that this determinant, called **Vandermonde's determinant**, equals $\prod_{0 \le i < j \le n} (t_j - t_i)$. Hence, it is non-zero.

Cyclic Polytopes

- A cyclic polytope C(v, n) is the convex hull of $v (v \ge n+1)$ distinct points on the moment curve M_n in \mathbb{R}^n .
- Strictly speaking, C(v, n) is a whole family of polytopes, all of the same combinatorial type.
- Our first result is that cyclic polytopes are **simplicial**. This means that all of their proper faces are simplexes.
- Examples of simplicial polytopes are:
 - simplexes;
 - bipyramids with simplicial bases;
 - crosspolytopes.

Cyclic Polytopes are Simplicial

Theorem

Cyclic polytopes are simplicial.

Let F be a proper face of a cyclic polytope C(v, n) in ℝⁿ. Then F = conv{x₁,...,x_m} for some distinct points x₁,...,x_m (1 ≤ m < v) on the moment curve M_n. Since the face F is proper, the set {x₁,...,x_m} cannot contain an affinely independent subset of more than n points. Hence, by the preceding theorem, m ≤ n and {x₁,...,x_m} is affinely independent.

Thus F is a simplex, showing that C(v, n) is simplicial.

Points, Vertices and Faces

Theorem

Let C(v, n) be the convex hull of the distinct points $x_1, ..., x_v$ ($v \ge n+1 \ge 3$) on the moment curve M_n in \mathbb{R}^n . Let k be an integer satisfying $1 \le k \le \frac{1}{2}n$. Then each set of k points of $\{x_1, ..., x_v\}$, determines a (k-1)-face of C(v, n) and $x_1, ..., x_v$ are the vertices of C(v, n).

It suffices to show that x₁,...,x_k determine a (k-1)-face of C(v, n).
 For each i = 1,...,k, let x_i = (t_i, t_i²,...,t_iⁿ). Define a polynomial p for real t by the equation

$$p(t) = (t - t_1)^2 (t - t_2)^2 \cdots (t - t_k)^2;$$

say $p(t) = t^{2k} + a_{2k-1}t^{2k-1} + \dots + a_1t + a_0$, where $a_0, a_1, \dots, a_{2k-1} \in \mathbb{R}$. Clearly, $p(t) \ge 0$, for all real t, and p(t) = 0 if and only if t has one of the values t_1, \dots, t_k .

Points, Vertices and Faces (Cont'd)

• It follows that the hyperplane with equation

$$a_0 + a_1 x_1 + \dots + a_{2k-1} x_{2k-1} + x_{2k} = 0$$

is a support hyperplane to C(v, n) which meets C(v, n) in the set $conv\{x_1, ..., x_k\}$. Thus $conv\{x_1, ..., x_k\}$ is a face of C(v, n). By a previous theorem, $\{x_1, ..., x_k\}$ is affinely independent. So $conv\{x_1, ..., x_k\}$ is a (k-1)-simplex.

That x_1, \ldots, x_v are vertices of C(v, n) follows from the result just proved with k = 1.

Number of Faces

Corollary

The cyclic polytope C(v, n) in \mathbb{R}^n $(v \ge n+1 \ge 3)$ has $\binom{v}{k}$ (k-1)-faces, when k is an integer satisfying $1 \le k \le \frac{1}{2}n$.

 By the preceding theorem, each set of k vertices of C(v, n) determines one of its (k − 1)-faces.

Conversely, by the pre-preceding theorem, each (k-1)-face of C(v, n) is the convex hull of some k of its vertices.

Thus C(v, n) has as many (k-1)-faces as there are ways of choosing a subset of k points from a set of v points, namely $\binom{v}{k}$.

Gale's Evenness Condition

- We saw that each proper face of a polytope is the intersection of those facets of the polytope which contain that face.
- Thus the facial structure of a polytope is completely determined by the vertex sets of its facets.
- We now give a simple criterion for determining which sets of vertices of a cyclic polytope determine one of its facets.

Theorem (Gale's Evenness Condition)

Let W be a set of n points of the vertex set V of a cyclic polytope C(v, n)in \mathbb{R}^n ($v \ge n+1$). Then convW is a facet of C(v, n) if and only if each two points of V\W are separated on the moment curve M_n by an even number of points of W.

• Let W consist of the n points $(t_i, t_i^2, ..., t_i^n)$ for i = 1, ..., n.

Gale's Evenness Condition (Cont'd)

• Consider the real polynomial p defined (for real t) by the equation

$$p(t) = (t - t_1) \cdots (t - t_n) = t^n + a_{n-1}t^{n-1} + \cdots + a_1t + a_0,$$

where $a_0, a_1, \ldots, a_{n-1} \in \mathbb{R}$. Then the hyperplane H in \mathbb{R}^n that contains W has equation $a_0 + a_1x_1 + \cdots + a_{n-1}x_{n-1} + x_n = 0$.

Now conv W will be a facet of C(v, n) if and only if H is a support hyperplane to C(v, n). This will be the case if and only if all the numbers p(t), where t is such that $(t, t^2, ..., t^n) \in V \setminus W$, have the same sign. As t increases through all real values, the polynomial pchanges sign precisely when t passes through one of the values $t_1, ..., t_n$. Thus p(r) and p(s), where r and s are unequal real numbers that are not equal to any of the values $t_1, ..., t_n$, will have the same sign if and only if an even number of $t_1, ..., t_n$ lie between r and s.

Example: Number of Facets of C(7,4)

- We use Gale's evenness condition to calculate the number of facets of the cyclic polytope *C*(7,4).
- This is equivalent to finding how many subsets W of a totally ordered set V of seven elements there are having four elements, and which are such that between any two elements of V\W there is an even number of elements of W.
- The totality of such subsets *W* of *V* is illustrated in the figure, where *V* is represented by the numbers 1,2,3,4,5,6,7 on the real line with their usual ordering, and where the points of *W* are marked by asterisks.

1 *	2 *	3 *	4 *	5	6	7	1 *	2	3	4	5 *	6 *	7 *
*	*	*				*		*	*	*	*		
*	*		*	*				*	*		*	*	
*	*			*	*			*	*			*	*
*	*				*	*			*	*	*	*	
*		*	*			*			*	*		*	*
*			*	*		*				*	*	*	*

• There are 14 such sets W, and so C(7,4) has 14 facets.

Example (Cont'd)

• Since each proper face of C(7,4) is an intersection of facets of C(7,4), we find that C(7,4) has 28 2-faces corresponding to the following subsets of V:

{1,2,3},	{1,2,4},	$\{1, 2, 5\},\$	{1,2,6},
{1,2,7},	$\{1, 3, 4\},\$	$\{1, 3, 7\},\$	$\{1, 4, 5\},\$
{1,4,7},	$\{1, 5, 6\},\$	$\{1, 5, 7\},\$	$\{1, 6, 7\},\$
{2,,3,4},	{2,3,5},	{2,3,6},	{2,3,7},
{2,4,5},	{2,5,6},	{2,6,7},	{3,4,5},
{3,4,6},	{3, 4, 7},	{3,5,6},	{3,6,7},
{4,,5,6},	{4,5,7},	{4,6,7},	{5,6,7}.

 By the upper bound theorem, no 4-polytope with 7 vertices has more than C(7,4) = 28 2-faces.

Example (Cont'd)

- By a previous corollary, C(7,4) has $\binom{7}{2} = 21$ 1-faces.
- Thus, denoting the polytope C(7,4) by P, we find that

$$f_{-1}(P) - f_0(P) + f_1(P) - f_2(P) + f_3(P) - f_4(P)$$

= 1 - 7 + 21 - 28 + 14 - 1 = 0.

This verifies Euler's relation for C(7,4).

Number of Facets of C(v, n)

Theorem

The cyclic polytope C(v, n) in \mathbb{R}^n $(v \ge n+1)$ has $\frac{v}{v-d} {v-d \choose d}$ or $2{v-d-1 \choose d}$ facets, according as n = 2d is even or n = 2d + 1 is odd.

 We first establish a simple combinatorial lemma. Let A = {1,...,r}, B = {1,...,r-s}, where r,s are integers satisfying r≥1 and 0≤2s≤r. Then a subset of A is said to be s-paired if it has the form

$$\{i_1, i_1+1, i_2, i_2+1, \dots, i_s, i_s+1\}$$

where $i_1 < i_1 + 1 < i_2 < i_2 + 1 < \cdots < i_s < i_s + 1$. The empty set (corresponding to s = 0) is considered to be 0-paired. By associating with each such *s*-paired set the subset $\{i_1, i_2 - 1, \dots, i_s - (s - 1)\}$ of *B*, we set up a bijection between the *s*-paired subsets of *A* and the subsets of *B* having *s* elements. Thus *A* has $\binom{r-s}{s}$ *s*-paired subsets.

Number of Facets of C(v, n) (Cont'd)

- By Gale's condition the number of facets of C(v, n) is the number of subsets W of V = {1,...,v} with n elements, such that between any two integers of V\W there is an even number of integers of W. For this proof only, we refer to such a subset W of V as a facet of V. We need to determine the number of facets W of V.
 - Suppose n = 2d is even. Then the facets W of V are of two types:
 - W is a d-paired subset of V, or
 - $W \setminus \{1, v\}$ is a (d-1)-paired subset of $\{2, \ldots, v-1\}$.

Conversely, each *d*-paired subset of *V* is a facet of *V*, and each (d-1)-paired subset of $\{2, \ldots, v-1\}$, when augmented with 1 and *v*, is a facet of *V*. By the combinatorial lemma, *V* has $\binom{v-d}{d}$ facets of the first type and $\binom{v-2-(d-1)}{d-1} = \binom{v-d-1}{d-1}$ facets of the second type. Thus the total number of the facets of *V* is

$$\binom{v-d}{d} + \binom{v-d-1}{d-1} = \frac{(v-d)!}{(v-2d)!d!} + \frac{(v-d-1)!}{(v-2d)!(d-1)!} = \frac{v}{v-d}\binom{v-d}{d}.$$

Number of Facets of C(v, n) (Cont'd)

• Suppose n = 2d + 1 is odd.

Again the facets W of V are of two types:

- $W \setminus \{1\}$ is a *d*-paired subset of $\{2, \ldots, v\}$, or
- $W \setminus \{v\}$ is a *d*-paired subset of $\{1, \ldots, v-1\}$.

Conversely, each *d*-paired subset of $\{2, ..., v\}$, when augmented with 1, is a facet of *V*, and each *d*-paired subset of $\{1, ..., v-1\}$, when augmented with *v*, is a facet of *V*.

The number of facets of V of either type is $\binom{v-1-d}{d}$.

Hence, the total number of facets of V is $2\binom{v-1-d}{d}$.

k-Neighborly Polytopes

- Let k be a positive integer.
- Then a polytope in \mathbb{R}^n (having more than k vertices) is said to be k-neighborly if every set of k of its vertices determines a face of the polytope.
- Thus:
 - Each r-polytope $(r \ge 1)$ is 1-neighborly;
 - Each r-simplex $(r \ge 1)$ is r-neighborly.
- A previous theorem shows that the cyclic polytope C(v, n), where $v \ge n+1 \ge 3$, is $\left[\frac{1}{2}n\right]$ -neighborly here $\left[\frac{1}{2}n\right]$ denotes the greatest integer not exceeding $\frac{1}{2}n$.
Vertices of Neighborly Polytopes

Theorem

Let P be a k-neighborly polytope in \mathbb{R}^n . Then every set of k vertices of P is affinely independent and each (k-1)-face of P is a (k-1)-simplex.

• Suppose that v_1, \ldots, v_k are k vertices of P which are affinely dependent, say $\mathbf{v}_k \in \operatorname{aff}\{\mathbf{v}_1, \dots, \mathbf{v}_{k-1}\}$. Since P has more than k vertices, there is a vertex \mathbf{v}_0 of P different from $\mathbf{v}_1, \dots, \mathbf{v}_k$. Since P is k-neighborly, conv{ v_0, \ldots, v_{k-1} } is a face of P. By a previous theorem, $\mathbf{v}_k \notin \operatorname{aff} \{ \mathbf{v}_0, \dots, \mathbf{v}_{k-1} \}$, a contradiction. Thus every set of k vertices of P is affinely independent. Suppose now that F is a (k-1)-face of P. Then F must contain an affinely independent subset W consisting of precisely k vertices of P. Since P is k-neighborly, convW is a (k-1)-face of P. Hence it is a face of F. But F has only one (k-1)-dimensional face, namely itself. Thus, $F = \operatorname{conv} W$. So F is a (k-1)-simplex.

k- and *j*-Neighborliness for $j \le k$

Corollary

Let *P* be a *k*-neighborly polytope in \mathbb{R}^n with *v* vertices. Let $j \in \{1, ..., k\}$. Then *P* is *j*-neighborly and has $\binom{v}{j}$ (j-1)-faces.

Let X be a set of j vertices of P. Then X ⊆ W for some set W of k vertices of P. Now convW is a simplex and a face of P. Hence convX is a face of convW, and hence of P. So P is k-neighborly.

The *k*-neighborliness of *P*, together with the theorem, shows that *P* has as many (j-1)-faces as there are ways of choosing a set of *j* points from a set of *v* points. So *P* has $\binom{v}{j}$ (j-1)-faces.

Characterization of k-Neighborly Polytopes

• We now show that the only *n*-polytopes which are more neighbourly than the general cyclic polytope C(v, n) are the *n*-simplexes.

Theorem

Let *P* be an *n*-polytope in \mathbb{R}^n which is *k*-neighborly for some *k* with $k > \lfloor \frac{1}{2}n \rfloor$. Then *P* is an *n*-simplex.

Suppose that P is not an n-simplex. Then the vertex set V of P must contain some subset W of n+2 points. By Radon's Theorem, W can be partitioned into two subsets X and Y with (convX) ∩ (convY) ≠ Ø. One of X and Y, X say, has no more than [¹/₂n] +1 points. The corollary shows that convX is a face of P. Hence, by a previous theorem,

 $(\operatorname{conv} X) \cap (\operatorname{conv} Y) \subseteq (\operatorname{aff} X) \cap (\operatorname{conv} (V \setminus X)) = \emptyset.$

This is a contradiction. Thus P is an n-simplex.

A Consequence

Corollary

Let *P* be an *n*-neighborly 2*n*-polytope in \mathbb{R}^{2n} . Then *P* is simplicial.

Let F be a facet of P. Then F is an n-neighborly (2n-1)-polytope. So, exactly as in the proof of the theorem, F is a simplex.
But each proper face of P is a face of some facet of P.
Thus, each proper face of P must be a simplex.
So P is simplicial.

Subsection 5

Euler's Relation

Choice of Non-Perpendicular Vector

Lemma

Let a_1, \ldots, a_m be a finite set of nonzero vectors in \mathbb{R}^n . There exists a vector a in \mathbb{R}^n , which is not perpendicular to any of a_1, \ldots, a_m .

• We recursively construct reals α_k and vectors \mathbf{x}_k , such that, for all $k = 1, ..., m, x_k = \sum_{i=1}^k \alpha_i a_i$ is not perpendicular to any of $a_1, ..., a_k$. Set $\alpha_1 = 1$ and $\mathbf{x}_1 = \alpha_1 \mathbf{a}_1$. Clearly $\mathbf{x}_1 \cdot \mathbf{a}_1 \neq 0$. Assume $\mathbf{x}_k = \sum_{i=1}^k \alpha_i \mathbf{a}_i$ is not perpendicular to any of $\mathbf{a}_1, \dots, \mathbf{a}_k$. For $i = 1, \dots, k + 1$, set $c_i = \mathbf{x}_k \cdot \mathbf{a}_i$. By hypothesis, $c_i \neq 0, i = 1, \dots, k$. • If $c_{k+1} \neq 0$, let $\alpha_{k+1} = 0$. So $\mathbf{x}_{k+1} = \mathbf{x}_k$. Moreover, \mathbf{x}_{k+1} is not perpendicular to any of a_1, \ldots, a_{k+1} . • If $c_{k+1} = 0$, choose $\alpha_{k+1} \neq 0$, with $\alpha_{k+1} \mathbf{a}_{k+1} \cdot \mathbf{a}_i \neq -c_i$, $i = 1, \dots, k$. • For i = 1, ..., k, $x_{k+1} \cdot a_i = x_k \cdot a_i + \alpha_{k+1} a_{k+1} \cdot a_i = c_i + \alpha_{k+1} a_{k+1} \cdot a_i \neq 0$. • For i = k+1, $x_{k+1} \cdot a_{k+1} = x_k \cdot a_{k+1} + \alpha_{k+1} a_{k+1} \cdot a_{k+1} =$ $c_{k+1} + \alpha_{k+1} a_{k+1} \cdot a_{k+1} = \alpha_{k+1} a_{k+1} \cdot a_{k+1} \neq 0.$

So \mathbf{x}_{k+1} is not perpendicular to any of $\mathbf{a}_1, \ldots, \mathbf{a}_{k+1}$.

Choice of Vector With Distinct Inner Products

Corollary

Let $a_1, ..., a_m$ be a finite set of distinct vectors in \mathbb{R}^n . There exists a vector a in \mathbb{R}^n , such that, for all $1 \le i < j \le m$, $a \cdot a_i \ne a \cdot a_j$.

Consider the collection

$$A = \{ \boldsymbol{a}_i - \boldsymbol{a}_i : 1 \le i < j \le m \}$$

of $\frac{m(m-1)}{2}$ nonzero vectors. By the lemma, there exists **a** in \mathbb{R}^n , such that

$$\boldsymbol{a} \cdot (\boldsymbol{a}_j - \boldsymbol{a}_i) \neq 0$$
, for all $1 \leq i < j \leq m$.

Therefore, this a satisfies

$$\boldsymbol{a} \cdot \boldsymbol{a}_i \neq \boldsymbol{a} \cdot \boldsymbol{a}_j$$
, for all $1 \leq i < j \leq m$.

Euler's Relation

Theorem (Euler's Relation)

Let *P* be a non-empty *r*-polytope in \mathbb{R}^n . Then

$$f_{-1}(P) - f_0(P) + \dots + (-1)^{r+1} f_r(P) = 0,$$

where $f_k(P)$ denotes the number of k-faces of P.

• We argue by induction on r.

The theorem is trivial when r = 0, since $f_{-1}(P) = 1$, $f_0(P) = 1$, and when r = 1, since $f_{-1}(P) = 1$, $f_0(P) = 2$, $f_1(P) = 1$. Suppose that the theorem has been established for polytopes of dimension r-1, where $r \ge 2$.

Let *P* be an *r*-polytope $(r \ge 2)$ in \mathbb{R}^n with vertices a_1, \ldots, a_v .

By the preceding corollary, we may choose a vector \boldsymbol{a} in \mathbb{R}^n such that the scalars $\boldsymbol{a} \cdot \boldsymbol{a}_1, \dots, \boldsymbol{a} \cdot \boldsymbol{a}_v$ are distinct.

• Suppose that the vertices of *P* are labeled so that $\mathbf{a} \cdot \mathbf{a}_1 < \cdots < \mathbf{a} \cdot \mathbf{a}_v$. Define hyperplanes $H_1, H_3, \dots, H_{2\nu-1}$ in \mathbb{R}^n by the equations

$$H_{2k-1} = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{a} \cdot \boldsymbol{x} = \boldsymbol{a} \cdot \boldsymbol{a}_k \}, \quad k = 1, \dots, v.$$

Choose scalars $c_1, c_2, \ldots, c_{\nu-1}$ such that

$$\boldsymbol{a} \cdot \boldsymbol{a}_1 < c_1 < \boldsymbol{a} \cdot \boldsymbol{a}_2 < c_2 < \cdots < c_{\nu-1} < \boldsymbol{a} \cdot \boldsymbol{a}_{\nu}.$$

Define hyperplanes $H_2, H_4, \ldots, H_{2\nu-2}$ in \mathbb{R}^n by the equations

$$H_{2k} = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{a} \cdot \mathbf{x} = c_k \}, \quad k = 1, ..., v - 1.$$

• This situation for a two-dimensional polytope with six vertices is illustrated on the right.

The following observations about the hyperplanes $H_1, H_2, \ldots, H_{2\nu-1}$ are immediate:

- i) They are distinct and parallel to one another;
- (ii) Each of the hyperplanes H₁, H₃,..., H_{2v-1}, contains just one vertex of P;
- (iii) H_1 and $H_{2\nu-1}$ are support hyperplanes to P which meet P in a single point;
- (iv) The set $P \cap H_k$, for k = 2, 3, ..., 2v 2, is an (r-1)-polytope, P_k say;
 - (v) None of the polytopes $P_2, P_4, \dots, P_{2\nu-2}$ contains a vertex of P.

• For each *j*-face F_j of *P*, where j = 1, ..., r, and for each polytope P_i , where i = 2, 3, ..., 2v - 2, define an integer $\psi(F_j, P_i)$ to be 1 if riF_j meets P_i , and 0 otherwise. For each *j*-face F_j of *P*, where j = 1, ..., r, denote by *s* and *t*, respectively, the smallest and largest integers *i* amongst 1, 2, ..., 2v - 1for which H_i meets F_j . Clearly *s* and *t* are odd with s < t, and $\psi(F_j, P_i) = 1$ precisely when s < i < t. Thus, $\sum_{i=2}^{2v-2} (-1)^i \psi(F_j, P_i) = \sum_{i=s+1}^{t-1} (-1)^i = 1$. So, for each fixed j = 1, ..., r,

$$\sum_{i-\text{faces}} \left(\sum_{i=2}^{2\nu-2} (-1)^i \psi(F_j, P_i) \right) = f_j(P),$$

where the summation is over all the *j*-faces F_i of P_i . Hence

$$\sum_{j=1}^{r} (-1)^{j} \left(\sum_{j \text{-faces}} \left(\sum_{i=2}^{2\nu-2} (-1)^{i} \psi(F_{j}, P_{i}) \right) \right) = \sum_{j=1}^{r} (-1)^{j} f_{j}(P).$$

• We now find an alternative expression for the left-hand side. If *i* is one of 2,4,...,2v-2 or $1 < j \le r$, then the number of (j-1)-faces of P_i is the same as the number of *j*-faces of *P* whose relative interiors meet P_i .

If *i* is one of 1, 3, ..., 2v - 1, then the number of vertices of *P*, is one more than the number of edges of *P* whose relative interiors meet *P_i*. These observations are summarized in the following equations, where it is assumed that *i* is one of 2, 3, ..., 2v - 2; *j* is one of 1, ..., r, and $f_k(P_j)$ denotes the number of *k*-faces of *P_i*:

$$\sum_{j-\text{faces}} \psi(F_j, P_i) = \begin{cases} f_{j-1}(P_i), & \text{if } i \text{ is even or } 1 < j \le r, \\ -1 + f_{j-1}(P_i), & \text{if } i \text{ is odd and } j = 1. \end{cases}$$

Hence,

$$\sum_{j=1}^{r} (-1)^{j} \left(\sum_{j-\text{faces}} \psi(F_{j}, P_{i}) \right) = \begin{cases} \sum_{j=1}^{r} (-1)^{j} f_{j-1}(P_{i}), & \text{if } i \text{ is even,} \\ 1 + \sum_{j=1}^{r} (-1)^{j} f_{j-1}(P_{i}), & \text{if } i \text{ is odd.} \end{cases}$$

• By the induction hypothesis, $\sum_{j=-1}^{r-1} (-1)^j f_j(P_i) = 0$. So $1 + \sum_{j=1}^r (-1)^j f_{j-1}(P_i) = 0$. Hence,

$$\sum_{j=1}^{r} (-1)^{j} \left(\sum_{j \text{-faces}} \psi(F_{j}, P_{i}) \right) = \begin{cases} -1, & \text{if } i \text{ is even} \\ 0, & \text{if } i \text{ is odd.} \end{cases}$$

So

$$\sum_{i=2}^{2\nu-2} (-1)^{i} \left(\sum_{j=1}^{r} (-1)^{j} \left(\sum_{j-\text{faces}} \psi(F_{j}, P_{i}) \right) \right) = 1 - \nu.$$

Comparing the two main equations, we deduce that

$$\sum_{j=1}^{r} (-1)^{j} f_{j}(P) = 1 - v = f_{-1}(P) - f_{0}(P).$$

So $\sum_{j=-1}^{r} (-1)^{j} f_{j}(P) = 0.$

Outline of a Generalization

- Suppose that F is a k-face of an r-polytope $P(-1 \le k < r)$ and that $h_i(F)$ denotes the number of *i*-faces of P containing F.
- For example, if F is a vertex of a cube P in ℝ³, then this vertex belongs to three edges and three facets of P.
 So in this case: h₀(F) = 1, h₁(F) = 3, h₂(F) = 3, h₃(F) = 1.

$$h_0(F) - h_1(F) + h_2(F) - h_3(F) = 1 - 3 + 3 - 1 = 0.$$

• This suggests that we consider the alternating sum

$$h_k(F) - h_{k+1}(F) + \dots + (-1)^{r-k} h_r(F)$$

in the general case.

- We will show that this alternating sum is always zero.
- This generalizes Euler's relation, which corresponds to the case when *F* is the empty face of *P*.

Polar Duality for Polytopes

- Let P be an r-polytope (r ≥ 1) in ℝ^r containing the origin as an interior point.
- Then the polar dual *P*^{*} of *P* is a compact convex set in \mathbb{R}^r containing the origin as an interior point.
- Suppose that *P* has extreme points **a**₁,...,**a**_m.
- Then P = conv{a₁,..., a_m} and P* is the intersection of the m closed half spaces a_i ⋅ x ≤ 1 for i = 1,..., m, whence P* is a polyhedral set.
- Thus *P** is a bounded polyhedral set, i.e., a polytope.

Polar Duality for Polytopes (Cont'd)

- Suppose further that F_i is an *i*-face of P(i = 1, ..., r).
- Then a previous theorem shows that there exists a sequence $F_{-1}, \ldots, F_i, \ldots, F_r$ of r+2 faces of P such that

$$F_{-1} \subset \cdots \subset F_i \subset \cdots \subset F_r.$$

- Denote by φ the polar face mapping of P.
- φ is an inclusion-reversing bijection from the family of faces of P to the family of faces of P*.
- So $\varphi(F_{-1})...,\varphi(F_i),...,\varphi(F_r)$ is a sequence of r+2 faces of P^* with

$$\varphi(F_r) \subset \cdots \subset \varphi(F_i) \subset \cdots \subset \varphi(F_{-1}).$$

- It follows from a previous corollary that $\dim \varphi(F_i) = r i 1$.
- Hence, the number of *i*-faces of *P* is the same as the number of (*r*-*i*-1)-faces of *P**.

Generalization of Euler's Theorem

Theorem

Let F be a k-face of an r-polytope P (k = 1, ..., r-1) in \mathbb{R}^n . Then

$$h_k(F) - h_{k+1}(F) + \dots + (-1)^{r-k} h_r(F) = 0,$$

where $h_i(F)$, i = k, ..., r, denotes the number of *i*-faces of *P* containing *F*.

We may assume, without loss of generality, that r = n and that P contains the origin as an interior point.
 Denote by φ the polar face mapping of P. Then the number h_i(F) of *i*-faces of P containing F is the same as the number f_{n-i-1}(φ(F)) of (n-i-1)-faces of φ(F). Euler's relation applied to the polytope φ(F) shows that

$$h_n(F) - h_{n-1}(F) + \dots + (-1)^{n-k} h_k(F)$$

= $f_{-1}(\varphi(F)) - f_0(\varphi(F)) + \dots + (-1)^{n-k} f_{n-1-k}(\varphi(F)) = 0.$

Linear Relation Between Numbers of Faces

• Euler's relation shows that, for every *r*-polytope P ($r \ge 1$), the numbers $f_0(P), \ldots, f_{r-1}(P)$ of faces of P of dimensions $0, \ldots, r-1$, respectively, satisfy the linear equation

$$f_0(P) - f_1(P) + \dots + (-1)^{r-1} f_{r-1}(P) = 1 - (-1)^r.$$

• We now prove that this is essentially the only linear equation which is satisfied by the numbers $f_0(P), \ldots, f_{r-1}(P)$ for all *r*-polytopes P ($r \ge 1$).

Theorem

Let r be a positive integer. Suppose that $\alpha_0, ..., \alpha_r$ are real numbers such that the numbers $f_i(P)$ of the *i*-faces (i = 0, ..., r - 1) of any r-polytope P satisfy the equation

$$\alpha_0 f_0(P) + \alpha_1 f_1(P) + \cdots + \alpha_{r-1} f_{r-1}(P) = \alpha_r.$$

Then $\alpha_1 = -\alpha_0, \alpha_2 = \alpha_0, \dots, \alpha_{r-1} = (-1)^{r-1} \alpha_0, \alpha_r = (1 - (-1)^r) \alpha_0.$

Proof

• We argue by induction on r.

The theorem is trivially true when r = 1, for in this case $f_0(P) = 2$ for all 1-polytopes.

Suppose, then, that the theorem has been proved for the case when r is some positive integer k, and that $\alpha_0, \ldots, \alpha_{k+1}$ are real numbers such that

$$\alpha_0 f_0(P) + \alpha_1 f_1(P) + \dots + \alpha_k f_k(P) = \alpha_{k+1}$$

for all (k+1)-polytopes P.

Let Q be any k-polytope. Let S be a (k+1)-pyramid with base combinatorially equivalent to Q. Let T be a (k+1)-bipyramid with base combinatorially equivalent to Q. Previous theorems show that

$$\begin{aligned} f_i(S) &= f_{i-1}(Q) + f_i(Q), & i = 0, \dots, k, \\ f_i(T) &= 2f_{i-1}(Q) + f_i(Q), & i = 0, \dots, k-1, \\ f_k(T) &= 2f_{k-1}(Q). \end{aligned}$$

Proof (Cont'd)

• Write the equation above for S and T:

$$\alpha_0 f_0(S) + \alpha_1 f_1(S) + \dots + \alpha_k f_k(S) = \alpha_{k+1} \text{ and} \\ \alpha_0 f_0(T) + \alpha_1 f_1(T) + \dots + \alpha_k f_k(T) = \alpha_{k+1}.$$

Substituting the preceding values for $f_i(S)$ and $f_i(T)$,

$$\begin{aligned} \alpha_0(f_{-1}(Q) + f_0(Q)) + \alpha_1(f_0(Q) + f_1(Q)) + \cdots \\ &+ \alpha_k(f_{k-1}(Q) + f_k(Q)) = \alpha_{k+1} \text{ and} \\ \alpha_0(2f_{-1}(Q) + f_0(Q)) + \alpha_1(2f_0(Q) + f_1(Q)) + \cdots \\ &+ \alpha_{k-1}(2f_{k-2}(Q) + f_{k-1}(Q)) + \alpha_k 2f_{k-1}(Q) = \alpha_{k+1}. \end{aligned}$$

Subtracting, we find $\alpha_0(f_{-1}(Q) + f_0(Q) - 2f_{-1}(Q) - f_0(Q)) + \alpha_1(f_0(Q) + f_1(Q) - 2f_0(Q) - f_1(Q)) + \dots + \alpha_{k-1}(f_{k-2}(Q) + f_{k-1}(Q) - 2f_{k-2}(Q) - f_{k-1}(Q)) + \alpha_k(f_{k-1}(Q) + f_k(Q) - 2f_{k-1}(Q)) = 0.$ Equivalently,

 $-\alpha_0 f_{-1}(Q) - \alpha_1 f_0(Q) - \cdots - \alpha_{k-1} f_{k-2}(Q) - \alpha_k f_{k-1}(Q) + \alpha_k f_k(Q) = 0.$

Proof (Conclusion)

We got the equation

$$-\alpha_0 f_{-1}(Q) - \alpha_1 f_0(Q) - \cdots - \alpha_{k-1} f_{k-2}(Q) - \alpha_k f_{k-1}(Q) + \alpha_k f_k(Q) = 0.$$

Taking into account $f_{-1}(Q) = 1$ and $f_k(Q) = 1$, we get

$$\alpha_1 f_0(Q) + \alpha_2 f_1(Q) + \cdots + \alpha_k f_{k-1}(Q) = \alpha_k - \alpha_0.$$

This equation holds for all k-polytopes Q. By induction,

$$\alpha_2 = -\alpha_1, \alpha_3 = \alpha_1, \dots, \alpha_k = (-1)^{k-1}\alpha_1, \alpha_k - \alpha_0 = (1 - (-1)^k)\alpha_1.$$

So $\alpha_1 = -\alpha_0$. Now the original equation can be written in the form

$$\alpha_0(f_0(P) - f_1(P) + \dots + (-1)^k f_k(P)) = \alpha_{k+1}.$$

But Euler's relation applied to any (k+1)-polytope P shows that

$$f_0(P) - f_1(P) + \dots + (-1)^k f_k(P) = 1 - (-1)^{k+1}$$

Hence $\alpha_{k+1} = (1 - (-1)^{k+1})\alpha_0$.

Dehn-Sommerville Equations

- The Euler relation is the only linear equation satisfied by the numbers of faces of various dimensions of every polytope with a given dimension.
- The Dehn-Sommerville equations are satisfied by the numbers of faces of various dimensions of every simplicial polytope with a given dimension.

Theorem (Dehn-Sommerville Equations)

Let P be a simplicial r-polytope $(r \ge 1)$ in \mathbb{R}^n . Then

$$\sum_{j=k}^{r-1} (-1)^{j} {j+1 \choose k+1} f_{j}(P) = (-1)^{r-1} f_{k}(P), \quad k = -1, \dots, r-2.$$

• For each k-face F of P (k = -1, ..., r-2), consider the equation $h_k(F) - h_{k+1}(F) + \cdots + (-1)^{r-k}h_r(F) = 0$, given in a previous theorem.

Dehn-Sommerville Equations

• We add together these equations corresponding to all the *k*-faces *F* of *P* to deduce that

$$h_k - h_{k+1} + \dots + (-1)^{r-k} h_r = 0,$$

where h_j (j = k, ..., r) denotes the total number of inclusions of the form $F_k \subseteq F_j$, where F_k and F_j are, respectively, k- and j-faces of P. • If j < r, then each of the $f_j(P)$ j-faces of P is a j-simplex. So it has $\binom{j+1}{k+1}$ k-faces. Hence $h_j = \binom{j+1}{k+1}f_j(P)$. • If j = r, then the only j-face of P is P itself. P has $f_k(P)$ k-faces. So $h_r = f_k(P)$.

We now get $\binom{k+1}{k+1}f_k(P) - \binom{k+2}{k+1}f_{k+1}(P) + \dots + (-1)^{r-k-1}\binom{r}{k+1}f_{r-1}(P) + (-1)^{r-k}f_k(P) = 0$, i.e., $\sum_{j=k}^{r-1}(-1)^{j-k}\binom{j+1}{k+1}f_j(P) = (-1)^{r-k-1}f_k(P)$. Multiplying both sides by $(-1)^k$,

$$\sum_{j=k}^{r-1} (-1)^{j} {j+1 \choose k+1} f_{j}(P) = (-1)^{r-1} f_{k}(P).$$

Special Cases

- The Dehn-Sommerville equation corresponding to k = -1 is simply the Euler relation.
- We derive the Dehn-Sommerville equations corresponding to k = 0,...,r-1 for simplicial r-polytopes P with r = 2,3,4.
- For r = 2 and k = 0, we get:

$$f_0(P) - 2f_1(P) = -f_0(P).$$

This is the same as the Euler relation.

• For r = 3 and k = 0, we get:

$$f_0(P) - 2f_1(P) + 3f_2(P) = f_0(P).$$

For r = 3 and k = 1, we get:

$$-f_1(P) + 3f_2(P) = f_1(P).$$

These are the same as one another, but essentially different from the Euler relation.

George Voutsadakis (LSSU)

Special Cases (Cont'd)

• For r = 4 and k = 0, we get:

$$f_0(P) - 2f_1(P) + 3f_2(P) - 4f_3(P) = -f_0(P).$$

For r = 4 and k = 1, we get:

$$-f_1(P) + 3f_2(P) - 6f_3(P) = -f_1(P).$$

For r = 4 and k = 2, we get:

$$f_2(P) - 4f_3(P) = -f_2(P).$$

The last two of these are the same.

The first one can be deduced from Euler's relation and the second (or third) equation.

Regular 3-Polytopes

- A 3-polytope *P* is said to be **regular of type** (p|q) if there exist positive integers p, q with $p, q \ge 3$ such that:
 - Each facet of P is a regular p-gon;
 - Each vertex of *P* belongs to *q* such facets.
- Suppose now that P is a regular 3-polytope of type (p|q) which has:
 - v vertices;
 - e edges;
 - f facets.
- It follows immediately from a previous theorem that:
 - Each edge of a 3-polytope is contained in precisely two of its facets;
 - Each vertex of *P* belongs to precisely *q* of its edges.

Regular 3-Polytopes (Cont'd)

- Counting the edges of *P* by (i) vertices, and (ii) facets, in an obvious way, we find that qv = 2e and pf = 2e.
- Now, using Euler's relation, we get

$$\begin{aligned} 1 - v + e - f + 1 &= 0 \quad \Rightarrow \quad 2 - \frac{2e}{q} + e - \frac{2e}{p} &= 0 \\ \Rightarrow \quad \frac{2pq}{e} - 2p + 2pq - 2q &= 0 \quad \Rightarrow \quad 2pq - 2p - 2q + 4 &= 4 - \frac{2pq}{e} \\ \Rightarrow \quad (p-2)(q-2) &= 4 - \frac{2pq}{e} < 4. \end{aligned}$$

- The only possible types of regular 3-polytopes are: (3|3), (3|4), (4|3), (3|5) and (5|3).
- These types do indeed exist:
 - The regular tetrahedron;
 - The regular octahedron;
 - The cube;
 - The regular icosahedron;
 - The regular dodecahedron.

Subsection 6

Gale Transforms

Affine Dependence and Cofaces

An affine dependence of a sequence of points a₁,..., a_m in Rⁿ is a point (λ₁,..., λ_m) of R^m such that

$$\lambda_1 \boldsymbol{a}_1 + \dots + \lambda_m \boldsymbol{a}_m = \boldsymbol{0}$$
 and $\lambda_1 + \dots + \lambda_m = \boldsymbol{0}$.

- Clearly the zero vector of R^m is an affine dependence of any sequence of points a₁,..., a_m in Rⁿ.
- A subset W of the vertex set V of a polytope P in ℝⁿ is called a coface of P if conv(V\W) is a face of P.
- For example, every set comprising three vertices of a square in \mathbb{R}^2 is a coface of that square.

Characterization of Cofaces

Theorem

Let a_1, \ldots, a_m be the vertices of a polytope P in \mathbb{R}^n . Then $\{a_1, \ldots, a_r\}$, where $1 \le r \le m$, is a coface of P if and only if there is no affine dependence $\{\lambda_1, \ldots, \lambda_m\}$ of a_1, \ldots, a_m such that $\lambda_1, \ldots, \lambda_r \ge 0$ with at least one of $\lambda_1, \ldots, \lambda_r$ positive.

• Suppose that $\{a_1, \ldots, a_r\}$ is not a coface of P. Then, by a previous theorem, $\operatorname{conv}\{a_1, \ldots, a_r\} \cap \operatorname{aff}\{a_{r+1}, \ldots, a_m\} \neq \emptyset$. Hence, there exist scalars μ_1, \ldots, μ_m , with $\mu_1, \cdots, \mu_r \ge 0$, $\mu_1 + \cdots + \mu_r = 1$ and $\mu_{r+1} + \cdots + \mu_m = 1$ such that

$$\mu_1 \boldsymbol{a}_1 + \cdots + \mu_r \boldsymbol{a}_r = \mu_{r+1} \boldsymbol{a}_{r+1} + \cdots + \mu_m \boldsymbol{a}_m.$$

Let $\lambda_1 = \mu_1, ..., \lambda_r = \mu_r$ and $\lambda_{r+1} = -\mu_{r+1}, ..., \lambda_m = -\mu_m$. Then $(\lambda_1, ..., \lambda_m)$ is an affine dependence of $a_1, ..., a_m$ with $\lambda_1, ..., \lambda_r \ge 0$ and at least one of $\lambda_1, ..., \lambda_r$ positive.

Characterization of Cofaces (Cont'd)

• Conversely, suppose that $(\lambda_1, ..., \lambda_m)$ is an affine dependence of $a_1, ..., a_m$ such that $\lambda_1, ..., \lambda_r \ge 0$ and at least one of $\lambda_1, ..., \lambda_r$ is positive.

Then

$$\frac{\lambda_1 \boldsymbol{a}_1 + \dots + \lambda_r \boldsymbol{a}_r}{\lambda_1 + \dots + \lambda_r} = \frac{(-\lambda_{r+1})\boldsymbol{a}_{r+1} + \dots + (-\lambda_m)\boldsymbol{a}_m}{(-\lambda_{r+1}) + \dots + (-\lambda_m)}.$$

Hence,

$$\operatorname{conv}\{a_1,\ldots,a_r\}\cap \operatorname{aff}\{a_{r+1},\ldots,a_m\}\neq \emptyset.$$

So, by a previous theorem, $\{a_1, \ldots, a_r\}$ is not a coface of P.

Set of Affine Dependencies

- We denote the set of all affine dependencies of a sequence a₁,..., a_m in Rⁿ by a(a₁,..., a_m).
- By the theorem, an exact description of a(a₁,..., a_m) might be helpful in studying the facial structure of the polytope conv{a₁,..., a_m}.
- Such a description is given in the following result, in which the statement that

the sequence a_1, \ldots, a_m in \mathbb{R}^n is *n*-dimensional

means that the affine hull of its points is \mathbb{R}^n .

Dimensions of Sequences and Subspaces

Theorem

Let a_1, \ldots, a_m be an *n*-dimensional sequence in \mathbb{R}^n . Then $\mathfrak{a}(a_1, \ldots, a_m)$ is an (m-n-1)-dimensional subspace of \mathbb{R}^m .

• Denote the rows of the $(n+1) \times m$ matrix $\begin{bmatrix} a_1 & \cdots & a_m \\ 1 & \cdots & 1 \end{bmatrix}$ in which a_1, \ldots, a_m are considered column vectors, by b_1, \ldots, b_{n+1} , considered as points of \mathbb{R}^m . Denote by S the row space of the matrix, i.e., the set of all linear combinations of its rows. Then

$$\mathfrak{a}(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_m) = \{\boldsymbol{\lambda} \in \mathbb{R}^m : \boldsymbol{\lambda} \cdot \boldsymbol{b}_i = 0 \text{ for } i = 1,\ldots,n+1\} = S^{\perp}.$$

Since a_1, \ldots, a_m is *n*-dimensional, the column space of the matrix has dimension n+1. Hence, so too does *S*. Since dim $S + \dim S^{\perp} = m$, $a(a_1, \ldots, a_m) = S^{\perp}$ is an (m-n-1)-dimensional subspace of \mathbb{R}^m .

Finding All Affine Dependencies

- We now show how to find all the affine dependencies of an *n*-dimensional sequence a_1, \ldots, a_m in \mathbb{R}^n (m > n+1).
- It follows from the theorem that a(a₁,..., a_m) has a basis consisting of m-n-1 vectors of ℝ^m, say

$$\mathbf{x}_1 = (x_{11}, \dots, x_{1m}), \dots, \mathbf{x}_{m-n-1} = (x_{m-n-11}, \dots, x_{m-n-1m}).$$

(The condition m > n+1 avoids an exceptional, but trivial case.)

• $\lambda \in \mathfrak{a}(a_1,...,a_m)$ if and only if there exist scalars $c_1,...,c_{m-n-1}$, such that

$$\begin{split} \boldsymbol{\lambda} &= c_1(x_{11}, \dots, x_{1m}) + \dots + c_{m-n-1}(x_{m-n-11}, \dots, x_{m-n-1m}) \\ &= (c_1 x_{11} + \dots + c_{m-n-1} x_{m-n-11}, \dots, c_1 x_{1m} + \dots + c_{m-n-1} x_{m-n-1m}). \end{split}$$

• Write $\overline{a}_1 = (x_{11}, ..., x_{m-n-11}), ..., \overline{a}_m = (x_{1m}, ..., x_{m-n-1m}).$

Gale Transform

- Then we see that λ lies in $\mathfrak{a}(a_1,...,a_m)$ if and only if there exists a vector $\mathbf{c} = (c_1,...,c_{m-n-1})$ in \mathbb{R}^{m-n-1} such that $\lambda = (\mathbf{c} \cdot \overline{\mathbf{a}}_1,...,\mathbf{c} \cdot \overline{\mathbf{a}}_m)$.
- We have thus found a simple way of expressing all of the affine dependencies of a₁,..., a_m in terms of a₁,..., a_m.
- The sequence of vectors $\overline{a}_1, ..., \overline{a}_m$ in \mathbb{R}^{m-n-1} is called a **Gale** transform of the sequence $a_1, ..., a_m$ of vectors in \mathbb{R}^n .

Example

- We find a Gale transform of the sequence $a_1 = (1,0,0)$, $a_2 = (0,1,0)$, $a_3 = (0,0,1)$, $a_4 = (-1,0,0)$, $a_5 = (0,-1,0)$, $a_6 = (0,0,-1)$, which lists the vertices of a regular octahedron in \mathbb{R}^3 .
- The subspace $\mathfrak{a}(a_1,...,a_6)$ of \mathbb{R}^6 consists of those points $(\lambda_1,...,\lambda_6)$, which satisfy the simultaneous equations

$$\begin{aligned} \lambda_1 - \lambda_4 &= 0\\ \lambda_2 - \lambda_5 &= 0\\ \lambda_3 - \lambda_6 &= 0\\ \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5 + \lambda_6 &= 0. \end{aligned}$$

• The general solution to this system of linear equations can be expressed in the form

$$(\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6) = (\alpha, \beta, -(\alpha + \beta), \alpha, \beta, -(\alpha + \beta)),$$

where $\alpha, \beta \in \mathbb{R}$.
Example (Cont'd)

- Thus $\mathbf{x}_1 = (1, 0, -1, 1, 0, -1)$, $\mathbf{x}_2 = (0, 1, -1, 0, 1, -1)$ form a basis for $\mathfrak{a}(\mathbf{a}_1, \dots, \mathbf{a}_6)$, which has dimension m n 1 = 6 3 1 = 2.
- The Gale transform derived from the above basis is the sequence

$$\overline{a}_1 = (1,0), \ \overline{a}_2 = (0,1), \ \overline{a}_3 = (-1,-1), \ \overline{a}_4 = (1,0), \ \overline{a}_5 = (0,1), \ \overline{a}_6 = (-1,-1).$$

• We note that although the six points a_1, \ldots, a_6 are distinct, the points $\overline{a}_1, \ldots, \overline{a}_6$ are not.

Properties of Gale Transforms

Theorem

Let $\overline{a}_1, ..., \overline{a}_m$ be a Gale transform in \mathbb{R}^{m-n-1} of an *n*-dimensional sequence $a_1, ..., a_m$ in \mathbb{R}^n (m > n+1). Then:

- (i) A vector in \mathbb{R}^m is an affine dependence of a_1, \ldots, a_m if and only if it has the form $(c \cdot \overline{a}_1, \ldots, c \cdot \overline{a}_m)$ for some $c \in \mathbb{R}^{m-n-1}$;
- (ii) The sequence $\overline{a}_1, \ldots, \overline{a}_m$ is (m-n-1)-dimensional;

iii)
$$\overline{a}_1 + \cdots + \overline{a}_m = 0;$$

- (iv) The origin of \mathbb{R}^{m-n-1} is an interior point of conv{ $\overline{a}_1, \ldots, \overline{a}_m$ };
- (v) Every open halfspace of \mathbb{R}^{m-n-1} whose bounding hyperplane passes through the origin contains at least one of the points $\overline{a}_1, \ldots, \overline{a}_m$.
- (i) This result was established in the discussion following the preceding theorem, which motivated the definition of a Gale transform.

Properties of Gale Transforms ((ii) and (iii))

(ii(i)) Let

$$\mathbf{x}_1 = (x_{11}, \dots, x_{1m}), \dots, \mathbf{x}_{m-n-1} = (x_{m-n-11}, \dots, x_{m-n-1m})$$

be the basis for $\mathfrak{a}(a_1,\ldots,a_m)$ for which

$$\overline{\boldsymbol{a}}_1 = (x_{11}, \ldots, x_{m-n-11}), \ldots, \overline{\boldsymbol{a}}_m = (x_{1m}, \ldots, x_{m-n-1m}).$$

Since x_1, \ldots, x_{m-n-1} are affine dependencies of a_1, \ldots, a_m , we have

$$x_{11} + \dots + x_{1m} = \dots = x_{m-n-11} + \dots + x_{m-n-1m} = 0.$$

Hence $\overline{a}_1 + \cdots + \overline{a}_m = 0$. The $\overline{a}_1, \ldots, \overline{a}_m$ can be identified with the rows of the matrix whose columns are x_1, \ldots, x_{m-n-1} . The latter are linearly independent. Thus, $\overline{a}_1, \ldots, \overline{a}_m$ span \mathbb{R}^{m-n-1} . Now $\mathbf{0} = \frac{1}{m} (\overline{a}_1 + \cdots + \overline{a}_m)$. Hence, $\mathbf{0} \in \operatorname{aff} \{\overline{a}_1, \ldots, \overline{a}_m\}$. Thus, $\operatorname{aff} \{\overline{a}_1, \ldots, \overline{a}_m\}$ is a subspace of \mathbb{R}^{m-n-1} containing $\overline{a}_1, \ldots, \overline{a}_m$. Hence, it must be \mathbb{R}^{m-n-1} . So $\overline{a}_1, \ldots, \overline{a}_m$ is (m-n-1)-dimensional.

Properties of Gale Transforms ((iv) and (v))

- (iv) A previous theorem and the equation $\mathbf{0} = \frac{1}{m}(\overline{a}_1 + \dots + \overline{a}_m)$ show that $\mathbf{0} \in \operatorname{ri}(\operatorname{conv}\{\overline{a}_1, \dots, \overline{a}_m\})$. Hence from (ii), $\mathbf{0} \in \operatorname{int}(\operatorname{conv}\{\overline{a}_1, \dots, \overline{a}_m\})$.
- (v) Let H be a hyperplane in ℝ^{m-n-1} passing through the origin. Denote by H⁻ and H⁺ the open halfspaces determined by H. Suppose that H⁻ contains none of the points ā₁,...,ā_m. Then ā₁,...,ā_m lie in the closed half space H∪H⁺. Hence conv{ā₁,...,ā_m} ⊆ H∪H⁺. This, however, is incompatible with (iv).
 - Thus H^- must contain at least one of the points $\overline{a}_1, \ldots, \overline{a}_m$.

Relative Interior of the Convex Hull

Lemma

Let $a_1, \ldots, a_r \in \mathbb{R}^n$. Then $0 \in ri(conv\{a_1, \ldots, a_r\})$ if and only if there exists no $c \in \mathbb{R}^n$ such that $c \cdot a_1 \ge 0, \ldots, c \cdot a_r \ge 0$, with at least one of the inequalities being strict.

Suppose that 0 ∈ ri(conv{a₁,...,a_r}). Then, by a previous theorem, there exist λ₁,...,λ_r > 0 such that 0 = λ₁a₁ + ··· + λ_ra_r. Clearly, there exists no c ∈ ℝⁿ for which c ⋅ a₁ ≥ 0, ..., c ⋅ a_r ≥ 0, with at least one of these inequalities being strict.

Conversely, suppose that $0 \notin ri(conv\{a_1,...,a_r\})$. Then $\{0\}$ and $conv\{a_1,...,a_r\}$ can be properly separated. So there exist $c \in \mathbb{R}^n$, $c_0 \in \mathbb{R}$ such that $c \cdot 0 = 0 \le c_0$ and $c \cdot a_1 \ge c_0$, ..., $c \cdot a_r \ge c_0$, where at least one of these r + 1 inequalities is strict. If $c_0 = 0$, then at least one of the inequalities $c \cdot a_1 \ge 0$, ..., $c \cdot a_r \ge 0$ must be strict. If $c_0 > 0$, then all of the inequalities $c \cdot a_1 \ge 0$, ..., $c \cdot a_r \ge 0$ are strict. Thus, in every case, the required condition is met.

George Voutsadakis (LSSU)

Cofaces and Gale Transforms

- Let *a*₁,..., *a*_m be a Gale transform of a vertex sequence *a*₁,..., *a*_m of some *n*-polytope in ℝⁿ (*m* > *n* + 1).
- Then, for each subset W of $\{a_1, \ldots, a_m\}$, we define a set \overline{W} by the equation $\overline{W} = \{\overline{a}_1, \ldots, \overline{a}_m\}$.

Theorem

Let $\overline{a}_1, ..., \overline{a}_m$ be a Gale transform in \mathbb{R}^{m-n-1} of a vertex sequence $a_1, ..., a_m$ of an *n*-polytope *P* in \mathbb{R}^n (m > n+1). Then a subset *W* of $\{a_1, ..., a_m\}$ is a coface of *P* iff either \overline{W} is empty or $\mathbf{0} \in ri(conv\overline{W})$.

We assume throughout the proof that W = {a₁,..., a_r} for some r with 1 ≤ r ≤ m. Suppose first that W is not a coface of P. By a previous theorem, there exists an affine dependence (λ₁,...,λ_m) of a₁,...,a_m such that λ₁,...,λ_r ≥ 0, with at least one of λ₁,...,λ_r positive. By Part (i) of the preceding theorem, λ₁ = c · ā₁, ..., λ_m = c · ā_m for some c in ℝ^{m-n-1}. The lemma now shows that 0 ∉ ri(convW).

Cofaces and Gale Transforms (Cont'd)

- Suppose next that $\mathbf{0} \notin ri(conv\overline{W})$.
 - Then the lemma shows the existence of c in \mathbb{R}^{m-n-1} such that $c \cdot \overline{a}_1 \ge 0, \dots, c \cdot \overline{a}_r \ge 0$, with at least one of the inequalities being strict.

Let
$$\lambda_1 = \boldsymbol{c} \cdot \overline{\boldsymbol{a}}_1, \dots, \lambda_m = \boldsymbol{c} \cdot \overline{\boldsymbol{a}}_m$$
.

Again by Part (i) of the preceding theorem, $(\lambda_1, ..., \lambda_m)$ is an affine dependence of $a_1, ..., a_m$.

It now follows from a previous theorem that W is not a coface of P.

Gale Transforms and Open Halfspaces

Corollary

Let $\overline{a}_1, \ldots, \overline{a}_m$ be a Gale transform in \mathbb{R}^{m-n-1} of a vertex sequence a_1, \ldots, a_m of an *n*-polytope *P* in \mathbb{R}^n (m > n+1). Every open halfspace in \mathbb{R}^{m-n-1} whose bounding hyperplane passes through the origin contains at least two terms of the sequence $\overline{a}_1, \ldots, \overline{a}_m$.

Let H be a hyperplane in ℝ^{m-n-1} passing through the origin. Denote by H⁻ and H⁺ the open halfspaces determined by H. Suppose that H⁻ contains fewer than two terms of ā₁,...,ā_m. Part (v) of a previous theorem shows that H⁻ must contain precisely one term of ā₁,...,ā_m, say the first one. Since a₁ is a vertex of P, the theorem shows that 0 ∈ ri(conv{ā₂,...,ā_m}). This is impossible, because ā₂,...,ā_m lie in the closed halfspace H∪H⁺ with at least one of them being in H⁺, again by Part (v) of the same theorem. Thus, H⁻ must contain at least two terms of ā₁,...,ā_m.

Example

- Consider again the Gale transform of the octahedron with vertices a_1, \ldots, a_6 discussed in the preceding example.
- By the preceding theorem, a subset W of {a₁,..., a₆} is a coface of the octahedron if and only if 0 ∈ ri(convW).
- But this is the case if and only if W contains at least one of a₁, a₄, at least one of a₁, a₅, and at least one of a₃, a₆.
- Thus a non-empty subset of { $a_1, ..., a_6$ } determines a proper face of the octahedron if and only if contains at most one of a_1, a_4 , at most one of a_2, a_5 and at most one of a_3, a_6 .

Characterization of Gale Transforms

Theorem

A sequence $\overline{a}_1, ..., \overline{a}_m$ of points in \mathbb{R}^{m-n-1} (m > n+1) is a Gale transform of a vertex sequence of some *n*-polytope in \mathbb{R}^n if and only if:

i)
$$\overline{a}_1 + \cdots + \overline{a}_m = 0;$$

- (ii) Every open halfspace in \mathbb{R}^{m-n-1} whose bounding hyperplane passes through the origin contains at least two terms of the sequence $\overline{a}_1, \dots, \overline{a}_m$.
 - The only if part of the theorem follows from a previous theorem and the preceding corollary.
 Suppose, then, that a₁,..., a_m is a sequence of points in R^{m-n-1} (m > n+1) which satisfies conditions (i) and (ii) of the theorem. First, we find an *n*-dimensional sequence a₁,..., a_m in Rⁿ of which a₁,..., a_m is a Gale transform. This we do by reversing the procedure whereby the Gale transform of a sequence was constructed.

Characterization of Gale Transforms (Cont'd)

Let

$$\overline{\boldsymbol{a}}_1 = (x_{11}, \ldots, x_{m-n-11}), \ldots, \overline{\boldsymbol{a}}_m = (x_{1m}, \ldots, x_{m-n-1m}).$$

Define points x_1, \ldots, x_{m-n-1} in \mathbb{R}^m by the equations

$$\mathbf{x}_1 = (x_{11}, \dots, x_{1m}), \dots, \mathbf{x}_{m-n-1} = (x_{m-n-11}, \dots, x_{m-n-1m}).$$

Condition (ii) ensures that $\overline{a}_1, \ldots, \overline{a}_m$ span \mathbb{R}^{m-n-1} . Hence, x_1, \ldots, x_{m-n-1} form a basis for some (m-n-1)-dimensional subspace of \mathbb{R}^m , S say. Thus, S^{\perp} has dimension m - (m-n-1) = n+1. Condition (i) shows that $(1, \ldots, 1) \in S^{\perp}$. Hence $(1, \ldots, 1)$ can be extended by vectors $(a_{11}, \ldots, a_{m1}), \ldots, (a_{1n}, \ldots, a_{mn})$ in \mathbb{R}^m to form a basis for S^{\perp} . Write

$$\boldsymbol{a}_1 = (a_{11}, \ldots, a_{1n}), \ldots, \boldsymbol{a}_m = (a_{m1}, \ldots, a_{mn}).$$

Then a_1, \ldots, a_m is an *n*-dimensional sequence in \mathbb{R}^n that has $\overline{a}_1, \ldots, \overline{a}_m$ for a Gale transform.

Characterization of Gale Transforms (Cont'd)

We complete the proof by showing that a₁,..., a_m is a vertex sequence of the *n*-polytope conv{a₁,..., a_m}.
 To do this, we show that, for i = 1,..., m,

$$\boldsymbol{a}_i \not\in \operatorname{conv}\{\boldsymbol{a}_1,\ldots,\boldsymbol{a}_{i-1},\boldsymbol{a}_{i+1},\ldots,\boldsymbol{a}_m\}.$$

Suppose that this is not so. Then, for some *i* in $\{1,...,m\}$, there exists an affine dependence $(\lambda_1,...,\lambda_m)$ of $a_1,...,a_m$ with $\lambda_i = -1$ and $\lambda_j \ge 0$ for $j \in \{1,...,m\} \setminus \{i\}$. By a previous theorem, there is *c* in \mathbb{R}^{m-n-1} such that $c \cdot \overline{a}_i < 0$ and $c \cdot \overline{a}_j = \lambda_j$ for $j \in \{1,...,m\} \setminus \{i\}$. Thus, the open halfspace

$$\{\boldsymbol{z} \in \mathbb{R}^{m-n-1} : \boldsymbol{c} \cdot \boldsymbol{z} < 0\}$$

in \mathbb{R}^{m-n-1} has the origin on its boundary and contains only one term of the sequence $\overline{a}_1, \ldots, \overline{a}_m$, contradicting condition (ii). Therefore, a_1, \ldots, a_m is a vertex sequence of the *n*-polytope conv{ a_1, \ldots, a_m }.

Gale Transforms and Simplicial Polytopes

Theorem

Let $\overline{a}_1, \ldots, \overline{a}_m$ be a Gale transform in \mathbb{R}^{m-n-1} of a vertex sequence a_1, \ldots, a_m of an *n*-polytope *P* in \mathbb{R}^n (m > n+1). Then *P* is simplicial if and only if the origin of \mathbb{R}^{m-n-1} cannot be expressed as a positive convex combination of fewer than m-n terms of $\overline{a}_1, \ldots, \overline{a}_m$.

• *P* is simplicial if and only if it has no proper face with more than *n* vertices.

I.e., *P* is simplicial if and only if it has no non-empty coface with fewer than m - n vertices.

Thus, by a previous theorem, P is simplicial if and only if the origin of \mathbb{R}^{m-n-1} cannot be expressed as a positive convex combination of fewer than m-n terms of $\overline{a}_1, \ldots, \overline{a}_m$.

Gale Transforms and Combinatorial Types

- Since a Gale transform of a polytope contains full information about its combinatorial structure, the combinatorial type of a polytope can be determined from any one of its Gale transforms.
- Suppose that $a_1, ..., a_m$ and $b_1, ..., b_m$ are, respectively, vertex sequences of *n*-polytopes *P* and *Q* in \mathbb{R}^n (m > n+1).
- Suppose that $\overline{a}_1, ..., \overline{a}_m$ and $\overline{b}_1, ..., \overline{b}_m$ are, respectively, Gale transforms of $a_1, ..., a_m$ and $b_1, ..., b_m$.
- By the definition of combinatorial equivalence and a previous theorem,
 P and Q are combinatorially equivalent if and only if there is a permutation θ of {1,...,m} such that, for every subset J of {1,...,m},

 $\mathbf{0} \in \operatorname{ri}(\operatorname{conv}\{\overline{a}_j : j \in J\})$ if and only if $\mathbf{0} \in \operatorname{ri}(\operatorname{conv}\{\overline{b}_{\theta(j)} : j \in I\})$.

Number of Combinatorial Types of Polytopes

Theorem

There are $\left[\frac{1}{4}n^2\right]$ combinatorial types of *n*-polytopes with *n*+2 vertices and $\left[\frac{1}{2}n\right]$ of these are simplicial.

Let a
₁,..., a
_{n+2} be a Gale transform in R¹ of a vertex sequence
 a₁,..., a_{n+2} of an n-polytope P in Rⁿ. By a previous theorem, this
 transform is a sequence of n+2 real numbers whose sum is zero.
 Suppose that this sequence has r positive terms and s negative ones,
 so that r≥2, s≥2 and r+2≤n+2. We call such a sequence a
 G-sequence of type (r,s).

Number of Combinatorial Types of Polytopes (Cont'd)

- Suppose next that \$\overline{b}_1, \ldots, \overline{b}_{n+2}\$ is a Gale transform in \$\mathbb{R}^1\$ of a vertex sequence \$\overline{b}_1, \ldots, \overline{b}_{n+2}\$ of an \$n\$-polytope \$Q\$ in \$\mathbb{R}^n\$.
 Suppose \$\overline{b}_1, \ldots, \overline{b}_{n+2}\$ is a \$G\$-sequence of type \$(r', s')\$.
 In view of our preceding remarks on combinatorial equivalence, \$P\$ and \$Q\$.
 - *Q* are combinatorially equivalent if and only if either r = r' and s = s' or r = s' and s = r'.
 - A previous theorem shows that every *G*-sequence of n+2 terms of \mathbb{R}^1 is a Gale transform of some *n*-polytope in \mathbb{R}^n with n+2 vertices.

Number of Combinatorial Types of Polytopes (Even *n*)

Thus, the number of combinatorial types of n-polytopes with n+2 vertices equals the number of ordered pairs (r,s) of integers satisfying s ≥ r ≥ 2 and r+s ≤ n+2.
 We now calculate this number.

• When *n* is even, these ordered pairs are:

$$\begin{array}{l} (2,n), \ (2,n-1), \ \dots, \ (2,3), \ (2,2); \\ (3,n-1), \ (3,n-2), \ \dots, \ (3,3); \\ \vdots \\ (\frac{1}{2}(n+2), \frac{1}{2}(n+2)). \end{array}$$

The total number is

$$(n-1) + (n-3) + \dots + 1 = 1 + 2 + \dots + (n-1) - (2 + 4 + \dots + (n-2))$$

= 1 + 2 + \dots + (n-1) - 2(1 + 2 + \dots + \frac{n-2}{2})
= \frac{n(n-1)}{2} - 2\frac{\frac{n-2}{2}}{2} = \frac{n^2 - n}{2} - \frac{n^2 - 2n}{4} = \frac{1}{4}n^2.

Number of Combinatorial Types of Polytopes (Odd *n*)

- The number of combinatorial types of *n*-polytopes with n+2 vertices equals the number of ordered pairs (r,s) of integers satisfying $s \ge r \ge 2$ and $r+s \le n+2$.
 - When *n* is odd, these ordered pairs are:

$$\begin{array}{l}(2,n), (2,n-1), \dots, (2,3), (2,2);\\(3,n-1), (3,n-2), \dots, (3,3);\\\vdots\\(\frac{1}{2}(n+1), \frac{1}{2}(n+3)), (\frac{1}{2}(n+1), \frac{1}{2}(n+1)).\end{array}$$

The total number is

$$(n-1)+(n-3)+\dots+2 = 2\left(1+2+\dots\frac{n-1}{2}\right)$$

= $2\frac{\frac{n-1}{2}\frac{n+1}{2}}{2} = \frac{1}{4}(n^2-1).$

In both cases, the required number is $\left[\frac{1}{4}n^2\right]$.

Number of Combinatorial Types of Polytopes (Cont'd)

 The preceding theorem shows that a G-sequence of n+2 terms which is of type (r,s) corresponds to a simplicial n-polytope with n+2 vertices if and only if 0 is not one of its terms, i.e., if and only if r+s = n+2.

Thus the number of combinatorial types of simplicial *n*-polytopes with n+2 vertices equals the number of ordered pairs (r,s) of integers such that $s \ge r \ge 2$ and r+s = n+2.

This number is $\frac{1}{2}n$ when *n* is even, and $\frac{1}{2}(n-1)$ when *n* is odd. In both cases it equals $\left[\frac{1}{2}n\right]$.

Applications on Combinatorial Types

- The last theorem with *n* = 3 shows that there are precisely two combinatorial types of 3-polytopes with five vertices, only one type being simplicial.
- We have already seen examples of these two types:
 - A square pyramid (non-simplicial);
 - The polytope formed by taking the union of a regular tetrahedron and its reflection in one of its triangular faces (simplicial).
- Possible Gale transforms for these two examples: 1, -1, 1, -1, 0 and 2, 2, 2, -3, -3, themselves make it clear why the two examples are of different combinatorial types, and that the first one (the square pyramid) is non-simplicial, as 0 occurs in its Gale transform.
- This example serves to show the power and potential of Gale transform techniques in studying the combinatorial properties of polytopes.