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Convex Polytopes [NPolytopes

Subsection 1

Polytopes
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Convex Polytopes

o A convex polytope, or simply a polytope, is the convex hull of a
finite set of points in R".

o Points, line segments, polygons, tetrahedra, cubes, octahedra,
dodecahedra and icosahedra are all polytopes.

o Since the convex hull of a finite set in R" is compact, polytopes are
compact convex sets.

o A polytope of dimension r is called an r-polytope.

o The simplest example of an r-polytope is an r-simplex (r=-1,...,n),
which is defined to be the convex hull of an affinely independent set in
IR" consisting of r+1 points.

o There is precisely one (—1)-simplex, namely the empty set.

o We refer to a O-simplex as a point, a 1-simplex as a line segment, a
2-simplex as a triangle, and a 3-simplex as a tetrahedron.
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Convex Polytopes

o An important example of an r-polytope is an r-crosspolytope
(r=1,...,n), which is defined to be the convex hull of r linearly
independent line segments in R"” whose midpoints coincide,

i.e., a translate of a set of the form conv{+a;,..., +a,}, where
{a1,...,a,}% is a linearly independent set of vectors in R”.

o Such a crosspolytope is called regular when the as,...,a, have equal
lengths and are mutually orthogonal.

o Thus, convi+ey,...,+e,}, where ey,..., e, are elementary vectors in
R", is a regular r-crosspolytope.

o In R3 a regular 2-crosspolytope is a square, and
a regular 3-crosspolytope is a regular octahe-
dron, which is a regular solid bounded by eight
congruent equilateral triangles.
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Convex Polytopes

Let A, B be polytopes in R" and let a e R. Then A+ B and aA are
polytopes.

o We consider the non-trivial case when neither A nor B is empty.
Let A=conv{ay,...,ax}, B=conviby,...,b;,}, where ay,...,ay,
by,...,b,, € R". Denote by C the finite set consisting of all those
points of the form a;+b;, where i=1,...,k and j=1,...,m, and by D
the finite set whose points are aaj,...,aa,. We prove the theorem by
showing that A+ B =convC and aA=convD.
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Convex Polytopes

o Now A+ B is a convex set containing C. Hence, convC< A+ B. If
x € A+ B, then there exist scalars A1,..., Ak, p1,...,4m =0 with
Ai+---+Ag=1and yg +---+pum =1 such that

A1ay+---+ Agay +p1b1+~~~+umbm
Zf(:lzjzl/li'uj(ai"‘bj)-

This shows that x is a convex combination of points of C. Hence,
x econvC and A+ B cconvC.

X

Now @A is a convex set containing D. Hence, convD c aA. If x € aA,
then there exist Aq,...,A1x =0 with A1 +---+ A, =1 such that

x=a(Ar1ar+---+Akak) =A1(aar) +--- + Ak (aay).

This shows that x is a convex combination of points of D. Hence,
x € convD and @A < convD.
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Convex Polytopes

Corollary

Let Aq,...,An, be polytopes in R" and let ay,...,am €R. Then
a1 A+ +amAm is a polytope.

o Thus, the vector sum of a finite number of line segments in R" is a
polytope. Such a polytope is called a zonotope.

o An r-cube (r=1,...,n) in R" is the vector sum of r mutually
orthogonal line segments in R", all of equal length,
i.e., a set of the form

convi{ai, b1} +---+convia,, b},

where ay,...,a,, by,...,b, €R", (a; - b;)-(a;—bj) =0 if and only if
i#j,and |la; - bj| = lla;— bjl| for all i,j.
o An example of an n-cube with edge-length 1 in R" is the polytope

conv{0,e1}+---+conv{0,ep} ={(x1,...,Xn) : 0< xq,...,x, < 1}.

George Voutsadakis (LSSU) Convexity



Convex Polytopes

o We now look at the facial structure of a polytope P in R".

o It is customary to call the extreme points of P its vertices and its
1-faces its edges.

o The set of all P’s vertices is called its vertex set.

o If P=conv{ay,...,ay}, for some ay,...,a, € R", then a previous
corollary shows that the vertex set of P is contained in {as,...,am}.
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Convex Polytopes

Every polytope in R" has only a finite number of faces, and each of these
is a polytope.

o Consider a non-empty polytope A =convi{ay,...,amn}, where
ai,...,an € R". By a previous theorem each face F of A is the convex
hull of its extreme points. Another theorem shows that each extreme
point of F is also an extreme point of A. Hence F is the convex hull
of some subset of the vertex set of A. Since {ay,...,am} contains the
vertex set of A, it follows that F is the convex hull of some subset of
{ai,...,am}. The desired result is now immediate.
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Convex Polytopes

o Suppose that V is the vertex set of a polytope P in R".

o Then the proof of the last theorem shows that each face of P has the
form convW, for some subset W of V.

o The question naturally arises as to which subsets W of V determine
a face of P, i.e. are such that convW is a face of P.
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Convex Polytopes

Let W be a subset of the vertex set V of a polytope P in R". Then
convlW is a face of P if and only if

(aff W) nconv(V\W) = @.

o Suppose first that convW is a face of P. If ve VAW, then P\{v} is
convex, by a previous theorem, and contains W. Hence,
convW < P\{v}. So v gconvW. Therefore, V\W < P\convW.
By the same theorem, P\convW is convex. So conv(V\W)<c
P\convWW. Also by the same theorem, (aff W)n P =convW. Hence,

(aff W) nconv(V\W) (aff W) n (P\conv W)

<
c convWn(P\convW)=g.
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Convex Polytopes

o Suppose (aff W) nconv(V\W) = @ is satisfied.
Clearly convW is a face of P if either W is empty or V.
So we assume that this is not the case. Let V ={vy,...,vs}x and
W ={vy,...,v,}, where 1<r<s. Let w=Ax+puy, where w e convW,
x,y€P,and A,u>0 with A+ u=1. Then x=A1vq+---+ Asvs,
y=Hivi+---+Usvs, for some Aq,...,As, f1,..., s = With A1 +---+ Ag
=land gy +---+pus=1. Fori=1,...,s, write vi = AA; + uy;. Then
Vi,.e,Vs =0, vi+--+vs=1and w=vivy+---+vsvs. Write
A=V, +--+vs. If @>0, then the point

1
W vivi— VeV = VeV 4o 4 VsVs)

lies both in aff W and conv(V\W), which contradicts the hypothesis.
Thus, @ =0. This entails v,11,...vs=0and A;41,...,ds, thrs1,--5 Us
=0. Hence x,y e convW. So convW is a face of P.
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Convex Polytopes

o In proving the “if" part of the last theorem, we used the fact that
convV = P, but not the fact that each element of V was a vertex of P.

o We thus have the following:

Corollary

Let W be a subset of a finite set V in R" such that

(aff W) nconv(V\W) = @.

Then convW is a face of the polytope convV.
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Convex Polytopes

o Suppose that S =convK, where V is an affinely independent set in R".

o We have already seen that each face of S is the convex hull of some
subset of V.

o Now we establish the converse:
Let W < V. Since V is affinely independent,

(aff W) nconv(V\W) < (aff W) naff(V\W) = @.

Therefore, convW is a face of S by the corollary.

o In particular, each point of V is a vertex of S.
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Convex Polytopes

o Let P, P’ be polytopes, not necessarily lying in the same Euclidean
space, with vertex sets V/, V', respectively.

o Then P and P’ are said to be combinatorially equivalent if there
exists a bijection ¢ : V — V'’ such that a subset W of V determines a
face of P if and only if (W) determines a face of P'.

o Since 1-polytopes are simply line segments, they are all
combinatorially equivalent to one another.

o Two 2-polytopes (polygons) are combinatorially equivalent if and only
if they have the same number of vertices.
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Convex Polytopes

o Clearly, if two polytopes are combinatorially equivalent, then they
must have the same number of vertices.
o The converse of this result is not true.

In R3 consider:

o A square pyramid P;
o The polytope P’ obtained by taking the union of a regular tetrahedron
and its reflection in one of its triangular faces.

Both P and P’ have five vertices, but they are not combinatorially
equivalent. P has a face with four vertices, but P’ does not.

o We will show later that every 3-polytope with five vertices is
combinatorially equivalent to either P or P'.

So, there are just two combinatorial types for 3-polytopes having
five vertices.
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Convex Polytopes

Let A be a non-empty compact convex set in R” and let € >0. Then there
exist polytopes P,Q in R" such that P Ac Q, p(A P)<e¢, p(AQ)<e.

o By a previous theorem, there exists a finite set E in R" such that
EcAc(E). Let P=convE. Then P is a polytope satisfying
P< A< (P).. Hence p(A,P)<e¢. Replacing A by (A), in the last
argument, we deduce the existence of a polytope @ satisfying
Q< (A):<=(Q)e. The inclusion (A)e =(Q)e, ie., A+eUcQ+eU,
implies A< Q by a previous theorem. The inequality p(A, Q) <& now
follows.

Corollary

Let A be a non-empty compact convex set in R"”. Then there exist
sequences Py,...,P;,... and Q1,...,Q;,... of nonempty polytopes in R" such
that P,c AcQ; fori=1,2,..., and P;— A and Q; — A as i — co.
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Convex Polytopes [SPolyhedraliSets

Subsection 2

Polyhedral Sets

George Voutsadakis (LSSU) Convexity July 2023 19 / 128



Convex Polytopes

©

9

A polyhedral set is the intersection of a finite family of closed
halfspaces in R".

Equivalently, a polyhedral set is the set of all points (xi,...,x,) in R”
which satisfy a finite system of linear inequalities of the form

diiXi+---+ainXnp = aio

amiX1t+---+tamnXn = amo.
Clearly, polyhedral sets are closed and convex.
Moreover, the intersection of any finite family of polyhedral sets is a
polyhedral set.
Each hyperplane in R" is an intersection of two closed halfspaces, and
so is a polyhedral set.
Since each flat in R" is a finite intersection of hyperplanes, all flats are
polyhedral sets.
In particular, the empty set and R” itself are polyhedral sets.
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Convex Polytopes

o A facet of an r-dimensional polyhedral set in R" is a proper
(r—1)-dimensional face of the set.

o In R3:

The non-negative orthant has three facets;

A tetrahedron has four facets;

A square pyramid has five facets;

A cube has six facets.

¢ ¢ ¢ ¢

o Since flats have no proper faces, they have no facets.

o It will be shown in the following result that flats are the only
polyhedral sets with this property.
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Convex Polytopes

Suppose that the polyhedral set A in R" is not a flat and that

A=(affA)n{xeR":a;-x<ai}n---n{xeR":ap -x<apn},

where a,...,am€R, a1,...,am € R"\{0} and no one of the closed half
spaces in the intersection can be omitted. For each i=1,...m, let

Fi=An{xeR":a;-x=a;}.

Then:
riIA={a€eA:a;-a<ai,...,am-a <am};
rebdA=FU---UFp,;
The facets of A are precisely the sets Fq,..., Fm;
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Convex Polytopes

Theorem (Cont'd)

Each proper face of A is the intersection of those facets of A that
contain it;

A has a finite number of faces, each of which is exposed;
Each face of A is a polyhedral set;

Let B;j, By be j- and k-faces, respectively, of A (0 <, < k—2) such that
B; < By. Then there are faces Bj,1,...,Bx_1 of A such that, for each
i=j,...,k—1, the face B; is a facet of Bj,;.

George Voutsadakis (LSSU) Convexity



Convex Polytopes

o Every polyhedral set A in R" can be expressed in the form required by
the theorem. The assumption that A is not a flat implies that m>1.
Suppose first that a€ A and that a;-a<aq, ..., an-a<ay,. Then a
belongs to the set C={xeR":a;-x<az,...,am x < am}, which is
open, being a finite intersection of open halfspaces. Thus, there exists
r>0 such that B(a;r) < C. Hence, B(a;r)naffAc CnaffAc A.
Therefore, a€riA.

Suppose next that a€ riA. Since no one of the closed halfspaces in the
representation of A given in the statement of the theorem can be
omitted, for each i=1,...,m, there exists z; € affA such that
aj-z;<aj, when j#i, and a;-z; > a;. Hence, for each i=1,...,m,
there exists A; € (0,1) such that A;z;+(1—A;)a€ A. Therefore,

a; = a,-~()tz,-+(1—/1,-)a)=)L,-a,-~z,-+(1—)t,-)a,--a

> Ajaij+(1-A;)aj-a.  So aj-a<a;.

This follows immediately from (i).
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Convex Polytopes

We now show that, for each i=1,...,m, F; is a facet of A.

Let aeriA. Let z; be asin (i). Then a;-a<a;<a;-z;. Write
s = Jiz_,-i%' Then 0< puj<1. Write bj =p;z; +(1—p;)a.

Then (see next slide) b; € affA, a;-b;=a; and a;-b; < a;, for j#1i.
Hence, b;e A. Thus, b;€ F; and a;-x = a; is a support hyperplane to
A at b;. It follows that F; is a proper exposed face of A.

George Voutsadakis (LSSU) Convexity



Convex Polytopes

— a._a-.a . —_— . . .
o We set pj =z 255 and b;=p;z;+(1-py;i)a.
Based on these and the inequalities a;-a< a; < a;-z;, we get

ai-b; = wa;-z;+(1-p;a;-a
_ a;—d;-d . a;-Z;—a; ..
= a.z-a-a%'?*az-aad'?
- aj . (@i-z))(ai-a)-(ar-a)(ai-z))
- a;-Z;—a;-a (a’ Zj—a; a)+ a;-Z;—a;-a
= a;+0=aqa;;

aj-b; = paj-zi+(l1-p;)a;-a

< u;aj+(1—u;)aj = aj.
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Convex Polytopes

o We now show that affFj = (affA)n{xeR":a;-x = a;}.
Let y; be a point belonging to the set on the right.
Choose 0; >0 such that 0;(a;-y;—a;-b;)<a;—a;-b; when j #i.
Write ¢j =60;y;+(1—0;)b;. Then c; € affA and we have, for i #J:

aj-c; = 9,‘8,‘~y,-+(1—9i)ai'bi
= Oiaj+(1-0))a;=a;;
aj-c; = 0;a;-y;+(1-06;)a;-b;

Hi(aj-y,-—aj~b,-)+aj-b,-s a;.

Hence, cj€ F;. But y; = elic,-+ (1- eli)b,- e affF;. So (affA)n
{xe R":a;-x=a;} caffF;. The opposite inclusion is trivial.
This equality, together with a previous theorem, give

dimF; = dim(affF;) = dim(affA) -1 =dimA—-1.
So F; is a facet of A.



Convex Polytopes

o We finally show that each facet of A is one of the Fjs.
Let F be a facet of A. Let feriF.
Since F is a proper face of A, f ¢riA.
Hence, by (ii), f € Fj, for some iy € {1,...,m}.
Now the faces F and F; of A have the same dimension and f eriF.
Hence F = Fj,.

George Voutsadakis (LSSU) Convexity



Convex Polytopes

Suppose that B is a proper face of A. Let beriB. Denote by / the
non-empty set of those i's in {1,...,m} for which a;-b=a;, i.e., be F;.

Denote by J the set of those j's in {1,...,m} for which a;-b<a;.
Let E be the intersection of all those facets of A which contain b.

Since be F; if and only if B< F;, the set E is the intersection of all
those facets of A which contain B. Hence E is a face of A which
contains B. Choose r >0 such that, for each j€ J,

B(b;r)cixeR":a;-x<aj}.
This inclusion, together with the trivial inclusions aff E < aff A and

aff Ec{xeR":a;-x=a;}, for i€/, show that B(b;r)naffE cE.
Hence, beriE. Thus, beriBnriE. So B=E.
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Convex Polytopes

This follows easily from (iv), since A has only m facets and each of
these is an exposed face of A.

This follows from the facts that each proper face of A is the
intersection of A with one of its support hyperplanes, and the
intersection of two polyhedral sets is itself a polyhedral set.

B; is a proper face of the polyhedral set By.
By (iv), there is some facet By_; of By which contains B;.
If j = k-2, then the proof is complete.

Otherwise, repeat this last argument k—j —2 more times to obtain the
desired faces By_o,..., Bj1.
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Convex Polytopes

o The preceding theorem concerns polyhedral sets which are not flats.

o It is convenient, however, to have a statement of the main properties
of general polyhedral sets.

Theorem

Let A be a polyhedral set in R". Then A has a finite number of faces, each
of which is exposed and is a polyhedral set. Every proper face of A is the
intersection of those facets of A that contain it, and rebdA is the union of
all the facets of A. If A has a non-empty face of dimension s, then A has
faces of all dimensions from s to dimA.

o The theorem is trivially true when A is a flat.

When A is not a flat, it follows easily from the preceding theorem.
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Convex Polytopes

Let A be a closed convex set in R” which has only a finite number of
exposed faces. Then A is a polyhedral set.

o If A has no proper exposed faces, then it must be a flat, which is
polyhedral.

Suppose, then, that A has proper exposed faces By, ..., Bn. Let
Hi,...,Hy be support hyperplanes to A such that By =AnHy, ...,
Bn=AnHy,. Foreach i=1,...,m, let J; be the closed halfspace of
R" bounded by H;, which contains A.

Define a polyhedral set P by the equation
P=Jin---nJy,naffA.

We show that A= P.



Convex Polytopes

o Clearly, Ac P. Suppose that P A. Then there is a point p lying in
P\A. Let a€riA. Since A is closed and p € aff A, there exists A €(0,1)
such that the point b=Ap+(1-A)a belongs to rebdA. By a previous
theorem, there is some i€ {1,...,m} such that be B;. Now H; is a face
of J;, be H;, and p,a€ J;. Hence, a€ H;. Thus, a€ B;. This is
impossible, since a cannot be both a relative interior point of A and a
member of one of its proper faces! Hence P< A, and A is the
polyhedral set P.

Corollary

A closed convex set in R" which has only a finite number of faces is a
polyhedral set.
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Convex Polytopes

A set in R" is a polytope if and only if it is a bounded polyhedral set.

o Each polytope in R" is compact and has a finite number of faces. So,
by the preceding corollary, it must be a bounded polyhedral set.
Conversely, every bounded polyhedral set in R" is compact and has a
finite number of faces. In particular, it has a finite number of extreme
points. So, by a previous theorem, it must be a polytope.

Corollary

The intersection of two polytopes in R" is a polytope.

o In view of the theorem, the corollary simply states the obvious fact
that the intersection of two bounded polyhedral sets is a bounded

polyhedral set.
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Convex Polytopes [SPyramids S Bipyramids and Prisms

Subsection 3

Pyramids, Bipyramids and Prisms
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Convex Polytopes

o We denote by fx(P) the number of k-faces (faces of dimension k) of
an r-polytope P.
o Then

f1(P)=f(P)=1, f(P)=0when k<-1or k>r.

o Our results will lead us to anticipate Euler’s relation, which asserts
that,
f1(P)~fo(P)+--+(=1)"£(P) =0,
for any non-empty r-polytope P.

o This will be proved in a later section.
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Convex Polytopes

o Let S be a non-empty r-simplex in R".

o Then S =convV for some affinely independent set V of r+1 points of
R".

o For each k=-1,0,...,r, the k-faces of S are precisely those sets of the
form convW, where W is a subset of V having k+1 points.

o Thus, fx(S) equals the number of ways of choosing k +1 points from
a set of r+1 points.

o Hence, using the standard notation for the binomial coefficients, we
1)!
see that fi(S) = (;77) = 4(k+(1r)J!r(r)—k)!-

o By the Binomial Theorem, for all real x,
(1+x) L =F1(S)+f(S)x+---+1£(S)x" L.
o Setting x = —1 in this equation, we deduce that
f1(S)—1f(S)+---+ (-1 (S)=0.
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Convex Polytopes

o Let Q be a nonempty (r—1)-polytope in R".

o Let x be a point of R" not lying in aff@.

o Then the r-pyramid P with apex x and base Q is defined to be the
r-polytope conv({x}u Q).

o We say that P is obtained from @ by applying the cone construction
with apex x.
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Convex Polytopes

Let P be an r-pyramid in R" with apex x and base a non-empty
(r—1)-polytope Q. Then

fi(P) = fi(Q) + fr_1(Q), for k=-1,...,r.

o We show first that, for A, B caffQ, (aff({x}uA))n B = (affA)n B.

Consider the non-trivial case when A is non-empty. If b lies in the set
on the left-hand side, then there exist ay,...,an €A and A, 14, ...,
Am€R with A+ A1+ +A,;, =1 such that b=Ax+A1a1+--- + A pam.
If A #0, then the last equation can be rearranged to express x as an
affine combination of points of aff@. This contradicts the (implied)
hypothesis that x ¢ aff Q. Thus, A=0. So be (affA)n B. It follows
that (aff({x}nA))n B < (affA) n B. The opposite inclusion is clear.
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Convex Polytopes

o Denote by V the vertex set of Q. Then P =conv({x}u V).
By a previous corollary, {x} and Q are faces of P.
Hence, each of the 7 (Q) k-faces of Q is also a k-face of P.
Thus, the set of extreme points of P is {x}u V.

Suppose that W < V' is such that convW is one of the f_1(Q)
(k—1)-faces of Q. Then by the equation just proved,

(aff({x3u W)) nconv(VA\W) = (aff W) nconv(V\W) = @.

This shows that conv({x}u W) is a k-face of P.

It now follows that

fk(P) = fk(Q) + fk_l(Q).
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Convex Polytopes

o Suppose next that W c V is such that either convW or conv({x}u W)
is a face of P (every face of P must be of one of these two forms).

Then either
(aff W) nconv({xtu(V\W)) =g,

or
(aff W) nconv(V\W) = @.

In both cases (aff W) nconv(V\W)=@. This shows that convlV is a
face of Q. Thus, each face of P is either a face of @ or the convex
hull of x and a face of Q. Hence,

fk(P) < fk(Q) + fk_l(Q).

The conclusion follows.
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Convex Polytopes

o The formula of the preceding theorem is easily verified for a 3-pyramid
P in R3 which has for base an m-sided convex polygon.

o Here fp(Q)=m, A(Q)=m;
o fp(P)=m+1, A(P)=2m, H(P)=m+1.
o We note that P satisfies Euler’s relation:
_1(P)—fo(P)+ fi(P) - f2(P) + f3(P)
=1-(m+1)+(2m)-(m+1)+1=0.
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Convex Polytopes

o Suppose now that P is an r-pyramid with base an (r—1)-polytope Q,
and that Q is an (r—1)-pyramid with base an (r—2)-polytope S.
o So P is obtained from S by applying the cone construction twice.

o We say that P is:

o a 2-fold r-pyramid with 2-base S, or
o a 1-fold r-pyramid with 1-base Q.

o The preceding theorem shows that, for k=-1,...,r,

fil(P) = f(Q)+fi-1(Q)
fk(S) ar fk_l(S) ar fk_l(S) ar fk_2(5)
fi(S) +2f_1(Q) + f—2(S).
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Convex Polytopes

o Let P be an r-polytope in R" (r=1,...,n).

o Let Q be an (r—s)-polytope in R" (s=1,...,r).

o Then P is said to be an s-fold r-pyramid with s-base @ if it can be
obtained from @ by applying the cone construction s times.

o A simple induction argument, using the preceding theorem, shows
that, for an s-fold r-pyramid P with s-base @, we have

fi(P) = Z( )fk (Q) k=-1,..r

o Clearly, an r-fold r-pyramid is an r-simplex.
o An (r—1)-fold r-pyramid has a line segment for an (r —1)-base.
A line segment is itself a 1-fold 1-pyramid.
So each (r—1)-fold r-pyramid is an r-fold r-pyramid, i.e. an r-simplex.
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Convex Polytopes

o Let / be a line segment in R” and let @ be an (r—1)-polytope in R”
such that /N @ is a single point which is a relative interior point of
both / and Q.

o Then the r-bipyramid P with axis / and base Q is defined to be the
r-polytope conv(/ U Q).

o We say that P is obtained from Q by applying the double-cone
construction with axis /.
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o Suppose that / =convi{a, b}, where a and b are distinct points of R".

o Then an argument similar to that used in the proof of the preceding
theorem shows that:

o The k-faces (k=-1,...,r—2) of P are precisely the k-faces of Q and
the k-polytopes of the form conv({a}u F) or conv({b}u F), where F is
a (k—1)-face of Q.

o The (r—1)-faces of P are simply the (r—1)-polytopes conv({a}uU F)
and conv({b}U F), where F is an (r—2)-face of Q.

o We thus arrive at the following result.

Let P be an r-bipyramid in R" with axis / and base a non-empty
(r—1)-polytope Q. Then

f(P)
fr-1(P)

f(Q)+2f_1(Q), for k=-1,...,r=2,
2, 2(Q).
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o The formula of the preceding theorem is easily verified for a
3-bipyramid P in R? which has for base an m-sided convex polygon Q.

o Here fp(Q)=m, A(Q)=m;
o fo(P)=m+2, A(P)=3m, KL(P)=2m.
o We note that P satisfies Euler’s relation:
—1(P)—fo(P)+f(P)—f(P)+(P)
=1-(m+2)+(3m)-(2m)+1=0.
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Convex Polytopes

o Let P be an r-polytope in R" (r=1,...,n).

o Let Q be an (r—s)-polytope in R" (s=1,...,r).

o Then P is said to be an s-fold r-bipyramid with s-base Q if it can
be obtained from @ by applying the double-cone construction s times.

o An (r—1)-fold r-bipyramid has a line segment for an (r—1)-base.
A line segment is itself a 1-fold 1-bipyramid.
So each (r—1)-fold r-bipyramid is also an r-fold r-bipyramid.
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Convex Polytopes

o The simplest example of an r-fold r-bipyramid is the r-crosspolytope.

o Consider the r-crosspolytope P in R" (r=1,...,n), which is the
convex hull of r linearly independent line segments conv{ay, b1}, ...,
conv{a,,b,} (i.e., the vectors a; — by, ..., a, — b, are linearly
independent) whose midpoints coincide.

o The facial structure of P is easily described:

o Foreach k=0,...,r—1, let I ={i,...,ik+1} be a subset of {1,...,r}
which has k+1 points and let T ={xj,,...,xj_,} be such that each Xj;
is either aj; or bj for j=1,...,k+1.

o Then convT is a k-face of P and all k-faces of P arise in this way.

o Since there are (,},) possibilities for the set / and each / gives rise to
2k+1 possibilities for the set T, it follows that

fk(P):zk“(k:l), k=1,...r-1.
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o Let Q be a non-empty (r—1)-polytope in R".

o Let x be a point of R" which does not lie in the subspace of R" which
is parallel to aff Q.

o Let / be the line segment conv{0, x}.

o Then the r-prism P with axis / and base Q is defined to be the
r-polytope Q+/ or, equivalently, conv(QuU(Q + x)).

o We say that P is obtained from Q by applying the prism
construction with axis /.
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Convex Polytopes

o An argument similar to that used in the proof of the preceding
theorems shows that the k-faces (k=1,...,r) of P are precisely the

k-faces of @ and its translate @ + x, together with k-polytopes of the
form F+1/, where F is a (k—1)-face of Q.

o We thus arrive at the following result.

Theorem

Let P be an r-prism in R" with axis / and base a nonempty
(r—1)-polytope Q. Then

fil(P) = 26(Q)+fi_1(Q), k=1,...,r,
2/o(Q).

Sh

—
U

~
Il

George Voutsadakis (LSSU) Convexity



Convex Polytopes

o The formulas of the preceding theorem are easily verified for a 3-prism
P in R3 which has for base an m-sided convex polygon Q.

o Here fp(Q)=m, A(Q)=m;
o fo(P)=2m, f1i(P)=3m, L(P)=m+2.
o We note that P satisfies Euler’s relation:
_1(P)—fo(P)+ fi(P) - f(P) + f3(P)
=1-2m+3m—-(m+2)+1=0.
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Convex Polytopes

o Let P be an r-polytope in R” (r=1,...,n) and let Q be an
(r—s)-polytope in R” (s=1,...,r).

o Then P is said to be an s-fold r-prism with s-base Q if it can be
obtained from @ by applying the prism construction s times.

o An (r—1)-fold r-prism has a line segment for an (r—1)-base.
A line segment is itself a 1-fold 1-prism.

So each (r—1)-fold r-prism is also an r-fold r-prism.
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o An r-fold r-prism P in R" (r=1,...,n) is called an r-parallelotope
and has the form

P:x+{)L1x1+~~~+/1rxr:05)[1,...,/1r51},

where x e R" and x3,...,x, are linearly independent vectors in R".
o Thus:

o A 2-parallelotope in R? is a parallelogram;
o A 3-parallelotope in R3 is a parallelepiped.

o If x1,...,x, are pairwise orthogonal, P is known as an r-orthotope.

o If, in addition, x1,...,x, have the same length, P is called an r-cube.

o A simple induction argument, using the preceding theorem, shows
that, for any r-parallelotope P in R", we have

f(P) =2f—k(/:), k=0,....r.
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Convex Polytopes Cyclic Polytopes

Subsection 4

Cyclic Polytopes
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Convex Polytopes

o Any polytope having more than k vertices which is such that every
k-membered subset of its vertex set determines one of its faces, is said
to be k-neighborly.

o Thus n-simplexes (n=1) are n-neighborly.
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Convex Polytopes

o The moment curve M, in R" is determined parametrically by the
equation
x(t)=(t,t2,...,t"), for all real t.

o Clearly, this sets up a bijection between the set R of real numbers and
the set M, of points on the moment curve.

o This bijection induces an ordering on M,, which is isomorphic to the
standard ordering on RR.

o Having now made this remark, we shall in future refer to the ordering
of points on M,, exactly as if they were real numbers.

o For example, if points x(t1), x(t2), x(t3) on M), are such that
t; < tp < t3, then we shall say that x(t,) lies between x(t;) and x(t3).
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Convex Polytopes

Each set of n+1 or fewer points on the moment curve M, in R" is affinely
independent.

o For i=0,1,...,n, let x(t;) = (t;, t3,...,t"), where to < t; <--- < tn.
We must show that {x(tp),x(t1),...,x(ts)} is affinely independent.
This is equivalent to the non-vanishing of the (n+1) x (n+1)
determinant

1ty 2 -t
1t & - t]
1 t, t2 - "

It is a well-known result of elementary algebra that this determinant,
called Vandermonde's determinant, equals [To<i<j<n(tj - ti).
Hence, it is non-zero.
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o A cyclic polytope C(v,n) is the convex hull of v (v=n+1) distinct
points on the moment curve M, in R".

o Strictly speaking, C(v,n) is a whole family of polytopes, all of the
same combinatorial type.

o Our first result is that cyclic polytopes are simplicial.

This means that all of their proper faces are simplexes.
o Examples of simplicial polytopes are:
o simplexes;
o bipyramids with simplicial bases;
o crosspolytopes.
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Convex Polytopes

Cyclic polytopes are simplicial.

o Let F be a proper face of a cyclic polytope C(v,n) in R".

Then F =conv{xy,...,xm} for some distinct points x1,...,xm
(1=m<v) on the moment curve M,.

Since the face F is proper, the set {x1,...,Xxm,} cannot contain an
affinely independent subset of more than n points.

Hence, by the preceding theorem, m<n and {x1,...,xn} is affinely
independent.

Thus F is a simplex, showing that C(v,n) is simplicial.
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Theorem

Let C(v,n) be the convex hull of the distinct points xi,...,x, (v=n+1
> 3) on the moment curve M, in R". Let k be an integer satisfying
l<ks %n. Then each set of k points of {x1,...,x,}, determines a
(k—1)-face of C(v,n) and x1,...,x, are the vertices of C(v,n).

o It suffices to show that x3,...,x, determine a (k —1)-face of C(v,n).

For each i=1,...,k, let x; = (t,-,tl.z,...,tl."). Define a polynomial p for
real t by the equation

p(t) = (t—t1)?(t—t2)?--- (t — tx)?;

— 12k p2k=1 ..

say p(t) +aok_1 -+ ait+ag, where ag,a1,...,axn_1 € R.
Clearly, p(t) =0, for all real t, and p(t) =0 if and only if t has one of
the values ty,..., tx.
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Convex Polytopes

o It follows that the hyperplane with equation
agt+aixy+---tagk_1Xok—1+Xok = 0

is a support hyperplane to C(v,n) which meets C(v,n) in the set
conv{xy,...,Xx}. Thus conv{xy,...,x,} is a face of C(v,n). By a
previous theorem, {x1,...,x,} is affinely independent. So
conv{xy,...,xx} is a (k—1)-simplex.

That x1,...,x, are vertices of C(v,n) follows from the result just
proved with k=1.
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Convex Polytopes

Corollary

The cyclic polytope C(v,n) in R" (v=n+1=3) has (]) (k-1)-faces,
when k is an integer satisfying 1<k < %n.

o By the preceding theorem, each set of k vertices of C(v,n) determines
one of its (k —1)-faces.
Conversely, by the pre-preceding theorem, each (k —1)-face of C(v,n)
is the convex hull of some k of its vertices.

Thus C(v,n) has as many (k —1)-faces as there are ways of choosing
a subset of k points from a set of v points, namely (}).
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Convex Polytopes

o We saw that each proper face of a polytope is the intersection of
those facets of the polytope which contain that face.

o Thus the facial structure of a polytope is completely determined by
the vertex sets of its facets.

o We now give a simple criterion for determining which sets of vertices
of a cyclic polytope determine one of its facets.

Theorem (Gale's Evenness Condition)

Let W be a set of n points of the vertex set V of a cyclic polytope C(v,n)
in R" (v=n+1). Then convW is a facet of C(v,n) if and only if each two
points of V\W are separated on the moment curve M, by an even number
of points of W.

o Let W consist of the n points (t,-,tl.z,...,tl.") fori=1,...,n.
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Convex Polytopes

o Consider the real polynomial p defined (for real t) by the equation

p(t)=(t—t1)-(t—ty)=t"+ap_1t" L+ +at+ap,
where ag, a1,...,an-1 € R. Then the hyperplane H in R"” that contains
W has equation ag+aixy +-+-+ap_1Xp_1 + X, = 0.

Now convW will be a facet of C(v,n) if and only if H is a support
hyperplane to C(v,n). This will be the case if and only if all the
numbers p(t), where t is such that (t,t2,...,t") € VAW, have the
same sign. As t increases through all real values, the polynomial p
changes sign precisely when t passes through one of the values
t,...,tn. Thus p(r) and p(s), where r and s are unequal real numbers
that are not equal to any of the values ti,...,t,, will have the same
sign if and only if an even number of t1,...,t, lie between r and s.
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Convex Polytopes

o We use Gale's evenness condition to calculate the number of facets of
the cyclic polytope C(7,4).

o This is equivalent to finding how many subsets W of a totally ordered
set V of seven elements there are having four elements, and which are
such that between any two elements of V\W there is an even number
of elements of W.

o The totality of such subsets W of Lz 2 ¢ s ¢ L3 e s s oa
. . o . * * * ok ok
V is illustrated in the figure, where * » * * X% ok x
V is represented by the numbers : : T - T
1,2,3,4,5,6,7 on the real line with = * * v ok k
their usual ordering, and where the = ** * *okow
* o * * kK

points of W are marked by aster-

isks.
o There are 14 such sets W, and so C(7,4) has 14 facets.
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Convex Polytopes

o Since each proper face of C(7,4) is an intersection of facets of
C(7,4), we find that C(7,4) has 28 2-faces corresponding to the
following subsets of V:

{1,2,3}, {1,2,4}, {1,2,5}, {1,2,6},
{1,2,73, {1,3,4, {1,3,7}, {1,4,5},
{1,4,7}, {1,5,6}, {1,577}, {1,6,7},
2,,3,4, {2,3,5, {2,3,6}, {2,3,7},
{2,4,5}, {2,5,6}, {2,6,7}, {3,4,5},
{3,4,6}, {3,4,7, {3,56}, {3,6,7}
{4,,5,6}, {4,5,7}, {4,6,7}, {5,6,7}.

o By the upper bound theorem, no 4-polytope with 7 vertices has more
than C(7,4) =28 2-faces.
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Convex Polytopes

o By a previous corollary, C(7,4) has (;) =21 1-faces.
o Thus, denoting the polytope C(7,4) by P, we find that

f21(P) = fo(P) + Ai(P) - f2(P) + 3(P) — fa(P)
=1-7+21-28+14-1=0.

This verifies Euler's relation for C(7,4).
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The cyclic polytope C(v,n) in R" (v=n+1) has 25 (") or 2(*"97Y)
facets, according as n=2d is even or n=2d +1 is odd.

o We first establish a simple combinatorial lemma. Let A={1,...,r},
B=1{1,...,r—s}, where r,s are integers satisfying r=1 and 0<2s<r.
Then a subset of A is said to be s-paired if it has the form

{il,il+1,i2,i2+1,...,i5,/5+1}

where h <ih+1<ih<ih+1<---<js<is+1. The empty set
(corresponding to s=0) is considered to be 0-paired. By associating
with each such s-paired set the subset {i1,ib—1,...,is—(s—1)} of B,
we set up a bijection between the s-paired subsets of A and the
subsets of B having s elements. Thus A has ("_°) s-paired subsets.
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o By Gale's condition the number of facets of C(v,n) is the number of
subsets W of V ={1,...,v} with n elements, such that between any
two integers of V\W there is an even number of integers of W.

For this proof only, we refer to such a subset W of V as a facet of V.
We need to determine the number of facets W of V.
o Suppose n=2d is even. Then the facets W of V are of two types:

o W is a d-paired subset of V, or

o W\{1,v} is a (d —1)-paired subset of {2,...,v—1}.
Conversely, each d-paired subset of V is a facet of V, and each
(d —1)-paired subset of {2,...,v —1}, when augmented with 1 and v, is
a facet of V. By the combinatorial lemma, V has (V;d) facets of the
first type and (V_Zt;f(li_l)) = (V;ﬁl) facets of the second type.
Thus the total number of the facets of V is

(v—d)+(v—d—1)_ (v—d)! (v—d-1)! v (v—d).

d d-1 |~ (v_2d)d! " (v—2d)(d-1)! v—d| d
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o Suppose n=2d+1 is odd.
Again the facets W of V are of two types:
o WA\{1} is a d-paired subset of {2,...,v}, or
o W\{v} is a d-paired subset of {1,...,v—1}.
Conversely, each d-paired subset of {2,...,v}, when augmented with 1,
is a facet of V, and each d-paired subset of {1,...,v—1}, when
augmented with v, is a facet of V.

The number of facets of V of either type is (V_(li‘d)_

Hence, the total number of facets of V is 2("‘;“1).
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Convex Polytopes

o Let k be a positive integer.

o Then a polytope in R" (having more than k vertices) is said to be
k-neighborly if every set of k of its vertices determines a face of the
polytope.

o Thus:

o Each r-polytope (r=1) is 1-neighborly;
o Each r-simplex (r=1) is r-neighborly.

o A previous theorem shows that the cyclic polytope C(v,n), where
v=n+123, is [2n]-neighborly - here [2n] denotes the greatest
integer not exceeding %n.
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Let P be a k-neighborly polytope in R"”. Then every set of k vertices of P
is affinely independent and each (k —1)-face of P is a (k—1)-simplex.

o Suppose that vi,...,v are k vertices of P which are affinely
dependent, say v € aff{vy,...,v,_1}. Since P has more than k
vertices, there is a vertex vq of P different from vq,...,vy.

Since P is k-neighborly, conv{vy,...,v,_1} is a face of P.

By a previous theorem, v ¢ aff{vg,...,v,_1}, a contradiction.

Thus every set of k vertices of P is affinely independent.

Suppose now that F is a (k—1)-face of P. Then F must contain an
affinely independent subset W consisting of precisely k vertices of P.
Since P is k-neighborly, convW is a (k—1)-face of P. Hence it is a
face of F. But F has only one (k—1)-dimensional face, namely itself.
Thus, F=convW. So F is a (k—1)-simplex.
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Corollary

Let P be a k-neighborly polytope in R” with v vertices. Let je{l,...,k}.
Then P is j-neighborly and has (j) (j—1)-faces.

o Let X be a set of j vertices of P. Then X < W for some set W of k
vertices of P. Now convW is a simplex and a face of P. Hence convX
is a face of convW, and hence of P. So P is k-neighborly.

The k-neighborliness of P, together with the theorem, shows that P
has as many (j —1)-faces as there are ways of choosing a set of j
points from a set of v points. So P has (‘J’) (j—1)-faces.
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o We now show that the only n-polytopes which are more neighbourly
than the general cyclic polytope C(v,n) are the n-simplexes.

Let P be an n-polytope in R" which is k-neighborly for some k with
k>[%n]. Then P is an n-simplex.

o Suppose that P is not an n-simplex. Then the vertex set V of P must
contain some subset W of n+2 points. By Radon’'s Theorem, W can
be partitioned into two subsets X and Y with (convX)n(convY) # @.
One of X and Y, X say, has no more than [4n]+1 points. The
corollary shows that convX is a face of P. Hence, by a previous
theorem,

(convX)n(convY) < (aff X) N (conv(V\X)) = @.
This is a contradiction. Thus P is an n-simplex.
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Corollary

Let P be an n-neighborly 2n-polytope in R?". Then P is simplicial.

o Let F be a facet of P. Then F is an n-neighborly (2n—1)-polytope.
So, exactly as in the proof of the theorem, F is a simplex.

But each proper face of P is a face of some facet of P.
Thus, each proper face of P must be a simplex.

So P is simplicial.
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Subsection 5

Euler's Relation
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Convex Polytopes

Lemma

Let ay,...,a, be a finite set of nonzero vectors in R". There exists a
vector a in R", which is not perpendicular to any of a,...,an.

o We recursively construct reals a and vectors x, such that, for all
k=1,...,m, x,= Zf.‘zl a;a; is not perpendicular to any of aq,...,ay.
Set a; =1 and x; = a1a;. Clearly x1-a; #0.

Assume x = Zf.‘zl a;a; is not perpendicular to any of ay,...,a.
For i=1,...,k+1, set ¢; = xx-a;. By hypothesis, ¢; #0, i=1,..., k.
o If i1 #0, let axr1=0. So xy.1 =x,. Moreover, x,,1 is not
perpendicular to any of ay,...,ax,1.
o If ckr1=0, choose ay,1 #0, with ayi1aks1-ai#—ci, i=1,...,k.
o Fori=1,... k xgi1-aj=Xxp-aj+ay 18k 1-a;=Cj+ap a1 a; #0.
o Fori=k+1, X1 k41 =Xk @+l +Xpr18k41 k41 =
Chtl+ Xk+1ak+1 k41 = Ak11dk+1 k41 #0.
So xy41 is not perpendicular to any of ay,...,a41.
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Corollary

Let a1,...,a, be a finite set of distinct vectors in R"”. There exists a vector
ain R", such that, forall 1si<j<m, a-a;#a-a,.

o Consider the collection
A={aj-a;:1<i<j=m}
of w nonzero vectors.
By the lemma, there exists a in R", such that
a-(aj—a;)#0, forall 1si<j<m.

Therefore, this a satisfies

a-aj#a-aj, forall 1si<j<m.
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Theorem (Euler's Relation)

Let P be a non-empty r-polytope in R". Then

£1(P)=(P)+++ (-1 (P) =0,
where f(P) denotes the number of k-faces of P.

o We argue by induction on r.
The theorem is trivial when r =0, since f_1(P) =1, fo(P)=1, and
when r=1, since £-1(P) =1, f(P)=2, A(P)=1.
Suppose that the theorem has been established for polytopes of
dimension r—1, where r =2,

Let P be an r-polytope (r=2) in R"” with vertices aj,...,a,.

By the preceding corollary, we may choose a vector a in R" such that
the scalars a-as,...,a-a, are distinct.
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o Suppose that the vertices of P are labeled so that a-a; <---<a-a,.
Define hyperplanes Hi, Hs,...,Ho,—1 in R" by the equations

Hox_1={xeR":a-x=a-ay}, k=1,...,v.
Choose scalars c1,¢,...,c,-1 such that
a-aj<c<a-a<g<--<c._i1<a-a,.
Define hyperplanes Hy, Ha,..., Hoy—> in R by the equations

Hyy={xeR":a-x=¢}, k=1,...,v-1
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o This situation for a two-dimensional
polytope with six vertices is illustrated
on the right.

The following observations about the
hyperplanes Hy, Hs, ..., H>,_1 are imme-
diate:

They are distinct and parallel to one another;
Each of the hyperplanes Hq, Hs,...,H>,_1, contains just one vertex of
P.

Hy and Hy,_1 are support hyperplanes to P which meet P in a single
point;

The set Pn Hy, for k=2,3,...,2v -2, is an (r—1)-polytope, Py say;
None of the polytopes P», P4,..., P>,_o contains a vertex of P.
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o For each j-face F; of P, where j=1,...,r, and for each polytope P;,
where i =2,3,...,2v -2, define an integer w(Fj, P;) to be 1 if rif;
meets P;, and 0 otherwise.

For each j-face F; of P, where j=1,...,r, denote by s and t,
respectively, the smallest and largest integers i amongst 1,2,...,2v -1
for which H; meets F;.

Clearly s and t are odd with s <t, and y(Fj, P;) =1 precisely when
s<i<t. Thus, X252(-1)'y(F};, P) =Xk (-1)' =1. So, for each

fixed j=1,...,r,
2v-2

> X CD'w(FLP)|=6(P),

j-faces \ i=2
where the summation is over all the j-faces F; of P;. Hence

2v-2 r

,z}—w‘(z S e P | = 2 e

j-faces \ (=2 j=1
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o We now find an alternative expression for the left-hand side.
If i is one of 2,4,...,2v—2 or 1 <j < r, then the number of
(j—1)-faces of P; is the same as the number of j-faces of P whose
relative interiors meet P;.
If i is one of 1,3,...,2v —1, then the number of vertices of P, is one
more than the number of edges of P whose relative interiors meet P;.
These observations are summarized in the following equations, where
it is assumed that 7 is one of 2,3,...,2v—2; jisone of 1,...,r, and
fx(P;j) denotes the number of k-faces of P;:

2 w(FP)=
J-faces

Hence,

fi_1(P;), if iisevenorl<j<r,
—-1+1f_1(P;), ifiisoddandj=1.

-faces

r . T (1Y E_1(P), if i is even,
J;(_l)/ (,Z 1II(FJ.’PI-)) :{ 1i§f:1(—11)jﬁ_1(P;), if i is odd.
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o By the induction hypothesis, Zj;il(—l)jG(P;) =0. So
1+ij:1(—1)1'7§-_1(P,-):O. Hence,

r : -1, if i is even,
J;(_l)](J.Z "’(FJ’P")):{ 0, ifiisodd.

-faces

So

P

= -faces

Comparing the two main equations, we deduce that

_Zrl(—l)jﬂ'(P) =1-v="F1(P)-f(P).
=

So X7, (~1)/f(P)=
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o Suppose that F is a k-face of an r-polytope P (-1 <k <r) and that
hi(F) denotes the number of i-faces of P containing F.

o For example, if F is a vertex of a cube P in R3, then this vertex
belongs to three edges and three facets of P.
So in this case: ho(F) =1, hi(F)=3, ho(F) =3, h3(F)=1.
We note that

ho(F)—hy(F)+ha(F)—h3(F)=1-3+3-1=0.
o This suggests that we consider the alternating sum
hi(F) = hs (F)+-+-+ (=1)" % (F)

in the general case.

o We will show that this alternating sum is always zero.

o This generalizes Euler’s relation, which corresponds to the case when
F is the empty face of P.
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o Let P be an r-polytope (r=1) in R" containing the origin as an
interior point.

o Then the polar dual P* of P is a compact convex set in R" containing
the origin as an interior point.

o Suppose that P has extreme points ay,...,an.

o Then P =convi{ay,...,am} and P* is the intersection of the m closed

half spaces a;-x <1 for i=1,...,m, whence P* is a polyhedral set.

o Thus P* is a bounded polyhedral set, i.e., a polytope.
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©

Suppose further that F; is an i-face of P (i=1,...,r).

©

Then a previous theorem shows that there exists a sequence
F_1,...,F;,...,F, of r+2 faces of P such that

F_lc...cFic...CFr_

©

Denote by ¢ the polar face mapping of P.

©

@ is an inclusion-reversing bijection from the family of faces of P to
the family of faces of P*.

©

So ¢(F-1)....,¢(F;),...,(F;) is a sequence of r+2 faces of P* with

o(Fr)c-co(Fi)c--cp(F).

o It follows from a previous corollary that dime(F;)=r—i-1.

o Hence, the number of /-faces of P is the same as the number of
(r—i—1)-faces of P*.
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Let F be a k-face of an r-polytope P (k=1,...,r—1) in R". Then

hie(F) = i1 (F)+-+-+ (-1)"%h.(F) =0,
where hi(F), i =k,...,r, denotes the number of i-faces of P containing F.

o We may assume, without loss of generality, that r = n and that P
contains the origin as an interior point.

Denote by ¢ the polar face mapping of P. Then the number h;(F) of
i-faces of P containing F is the same as the number f,_;_1(¢(F)) of
(n—i—1)-faces of ¢(F). Euler's relation applied to the polytope ¢(F)
shows that
hn(F) = hn-1(F)+-+-+(=1)"*hy(F)
= £1(p(F)) = fol@(F)) + - +(=1)"*fo_1-k(e(F)) =0.
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o Euler’s relation shows that, for every r-polytope P (r=1), the
numbers fy(P),..., f—1(P) of faces of P of dimensions O,...,r—1,
respectively, satisfy the linear equation

B(P) = fi(P)+ -+ (-1 fry(P) =1~ (-1

o We now prove that this is essentially the only linear equation which is
satisfied by the numbers f(P),...,f,_1(P) for all r-polytopes P (r=1).

Let r be a positive integer. Suppose that aq,...,a, are real numbers such
that the numbers f;(P) of the i-faces (i =0,...,r—1) of any r-polytope P
satisfy the equation

aofo(P)+a1f(P)+-+a,1fr-1(P) = a,.

Then a1 = —ag,az = ag,...,a,-1 = (-1)"tag,a, = (1-(-1)")ao.
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o We argue by induction on r.
The theorem is trivially true when r =1, for in this case fo(P) =2 for
all 1-polytopes.
Suppose, then, that the theorem has been proved for the case when r
is some positive integer k, and that ag....,ax1 are real numbers such
that
aofo(P)+a1fi(P)+-+arfi(P) = aks1
for all (k+1)-polytopes P.
Let Q be any k-polytope. Let S be a (k+1)-pyramid with base

combinatorially equivalent to Q. Let T be a (k+ 1)-bipyramid with
base combinatorially equivalent to @. Previous theorems show that

fi(S) = fi-1(Q)+fi(Q), i=0,...,k
i(T) = 2f1(Q)+f(Q), i=0,....,k—-1,
fi(T) 2f-1(Q).
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o Write the equation above for S and T:
aofo(S)+a1f(S)+--+akfi(S) = aks+1 and
aofo(T)+arfi(T)+-+arfi(T) = aks1.

Substituting the preceding values for f;(S) and £;(T),
ao(f-1(Q) +(Q)) + a1 (f(Q) + A(Q)) +---

+ak(fr-1(Q) + 4 (Q)) = ak+1 and
ao(2f-1(Q) + fo(Q)) + a1 (2H(Q) + A(Q)) +---

+a_1(2f2(Q) + r-1(Q)) + Ak 2f_1(Q) =

Subtracting, we find ao(f- 1(Q)+fo(Q) 2f1(Q)—1H(Q)) +

a1(fo(Q) +A(Q) -2/ (Q) - A(Q)) + -+ ak-1(fk—2(Q) + f-1(Q) -

2f2(Q) — fr-1(Q)) + ax (fr-1(Q) + fk(Q) -2f,-1(Q)) =0
Equivalently,

—aof1(Q)—a1fo(Q) — - —ap_1f2(Q) — akfir-1(Q) + Ak f(Q) =
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o We got the equation
—aof-1(Q) —a1fo(Q) — -+ —ak-1fk-2(Q) — axfk-1(Q) + ax ik (Q) =0.
Taking into account 7-1(Q) =1 and f,(Q) =1, we get
ai1fo(Q) + a2fi(Q)+- +akfi-1(Q) = ax —ao.
This equation holds for all k-polytopes @. By induction,

oy, ak—ag=(1-(-1)"as.

ax=—-a1,a3=ag,...,ax =(-1)
So a1 = —ag. Now the original equation can be written in the form
ao(fo(P) = (P)++++(-1) “fi(P)) = aks.
But Euler's relation applied to any (k +1)-polytope P shows that
B(P) = A(P)+ -+ (~1)*u(P) =1~ (-
Hence a1 = (1-(=1)k"1)ayo.
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o The Euler relation is the only linear equation satisfied by the numbers

of faces of various dimensions of polytope with a given
dimension.

o The Dehn-Sommerville equations are satisfied by the numbers of faces
of various dimensions of every polytope with a given
dimension.

Theorem (Dehn-Sommerville Equations)

Let P be a simplicial r-polytope (r=1) in R". Then
j+1

r-1 : )
J;((_I)J(k+l)6(P):(_1) H(P), k=-1..,r-2.

o For each k-face F of P (k=-1,...,r—2), consider the equation
hi(F) = hyi1(F)+---+(=1)kh,(F) =0, given in a previous theorem.
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o We add together these equations corresponding to all the k-faces F of
P to deduce that

B — hgqr + -+ (=1)"kh, =0,

where h; (j=k,...,r) denotes the total number of inclusions of the
form FkC where Fi and F; are, respectively, k- and j-faces of P.

o Ifj<r, then each of the fj(P) j-faces of P is a j-simplex. So it has
(4*1) k-faces. Hence h; = (i:ll)f(p)
o If j=r, then the onIyJ face of P is P itself. P has fx(P) k-faces. So

hr = fi(P).
We now get (§11)fi(P) = (k1) fis1(P) +++ +(=1) % 2(, [ ) fima(P)
+(-1)" £ (P) =0, ie., Te(-1Y K (IEDA(P) = (1)K (P).
Multiplying both sides by (1),

Z( w(f”)f(P) (-1) " (P).
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o The Dehn-Sommerville equation corresponding to k= —1 is simply the
Euler relation.
o We derive the Dehn-Sommerville equations corresponding to
k=0,...,r—1 for simplicial r-polytopes P with r=2,3,4.
o For r=2 and k=0, we get:
6(P)~26(P) =~ (P).
This is the same as the Euler relation.
o For r=3 and k=0, we get:
fo(P)—2f(P)+3f(P) = fo(P).
For r=3 and k=1, we get:
- fl(P) +3f2(P) = fl(P)

These are the same as one another, but essentially different from the
Euler relation.
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o For r=4 and k=0, we get:
fo(P) =2f1(P) +3f(P) - 4f(P) = —fo(P).
For r=4 and k=1, we get:
~ (P)+3(P)~66(P) = ~Fi(P).
For r=4 and k=2, we get:
5(P)-46(P) = ~(P).

The last two of these are the same.

The first one can be deduced from Euler's relation and the second (or
third) equation.
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o A 3-polytope P is said to be regular of type (plq) if there exist
positive integers p,q with p,q =3 such that:

o Each facet of P is a regular p-gon;
o Each vertex of P belongs to g such facets.

o Suppose now that P is a regular 3-polytope of type (plg) which has:
o Vv vertices;
o e edges;
o f facets.

o It follows immediately from a previous theorem that:

o Each edge of a 3-polytope is contained in precisely two of its facets;
o Each vertex of P belongs to precisely g of its edges.
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o Counting the edges of P by (i) vertices, and (ii) facets, in an obvious
way, we find that gv =2e and pf = 2e.
o Now, using Euler's relation, we get

_ _ 2e _2e _
l-v+e—-f+1=0 = 2 g€ p—O

= 2%_2P+2Pq—2q=0 => 2pq—2p—2q+4=4_2%
2
= (p-2)(g-2)=4-E <4

o The only possible types of regular 3-polytopes are: (3|3), (314), (413),
(315) and (513).

o These types do indeed exist:

The regular tetrahedron;

The regular octahedron;

The cube;

The regular icosahedron;

The regular dodecahedron.
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Convex Polytopes [GaleSTransforms

Subsection 6

Gale Transforms
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o An affine dependence of a sequence of points ay,...,a, in R" is a
point (A1,...,Am) of R™ such that

AMai+-+Anan=0 and A;+---+1,=0.
o Clearly the zero vector of R™ is an affine dependence of any sequence

of points ay,...,a, in R".

o A subset W of the vertex set V of a polytope P in R" is called a
coface of P if conv(V\W) is a face of P.

o For example, every set comprising three vertices of a square in R? is a
coface of that square.
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Theorem

Let a1,...,a, be the vertices of a polytope P in R". Then {aq,...,a,},
where 1 <r<m, is a coface of P if and only if there is no affine
dependence {A1,...,A,} of a1,...,am such that A4,...,A1, =0 with at least
one of A1,...,A, positive.

o Suppose that {a1,...,a,} is not a coface of P. Then, by a previous
theorem, convias,...,a,}naff{a,(1,...,am} # @. Hence, there exist
scalars p1,..., tm, with pg,--, 4, =0, g3 +---+u, =1 and
Urs1+ -+ Um =1 such that

Hiay+-- -+ U@y = Upyr@r41+ 0 Uma@m.

Let Ay =p1, ..., Ar=py and Api1=—lr41, ooy Am=—m. Then
(A1,...,Am) is an affine dependence of aj,...,a, with A4,...,1,=0
and at least one of A1,...,1, positive.
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o Conversely, suppose that (11,...,An) is an affine dependence of
ai,...,am such that Aq,...,A, =0 and at least one of Ay,...,A, is

positive.
Then
Aag+---+Ara, _ (—/1,+1)a,+1 T oooqp (—Am)am
A+t (A1) o+ (Am)
Hence,

convias,...,a,}Nnaffla,i1,...,am} # @.

So, by a previous theorem, {ay,...,a,} is not a coface of P.
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o We denote the set of all affine dependencies of a sequence aq,...,am
in R" by a(ay,...,am).

o By the theorem, an exact description of a(aj,...,a,) might be helpful
in studying the facial structure of the polytope conv{ay,...,am,}.

o Such a description is given in the following result, in which the
statement that

the sequence ay,...,a, in R" is n-dimensional

means that the affine hull of its points is R".
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Let a3,...,@m be an n-dimensional sequence in R". Then a(ay,...,an) is
an (m—n-1)-dimensional subspace of R".

a, - am
1 ... 1
ai,...,an, are considered column vectors, by by,...,b,,1, considered as
points of R™. Denote by S the row space of the matrix, i.e., the set
of all linear combinations of its rows. Then

in which

o Denote the rows of the (n+1) x m matrix

a(ay,...,am)={A€R™:A-b;=0 for i=1,...,n+1} = St.

Since ay,...,an is n-dimensional, the column space of the matrix has
dimension n+1. Hence, so too does S. Since dimS +dimS+ =m,
a(ai,...,am) =St is an (m—n—1)-dimensional subspace of R™.
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o We now show how to find all the affine dependencies of an
n-dimensional sequence ay,...,am in R” (m>n+1).

o It follows from the theorem that a(ay,...,am) has a basis consisting of
m—n—1 vectors of R™, say

X1 = (Xlln-wxlm)’-u»xm—n—l = (Xm—n—lly-~-’xm—n—1m)~

(The condition m> n+1 avoids an exceptional, but trivial case.)

o Aea(ai,...,am) if and only if there exist scalars cy,...,Ccm-n-1, such
that

A= Cl(Xll» e yxlm) +oeeet Cm—n—l(Xm—n—lly cee me—n—lm)
= (C1X11 +: +Cm-n-1Xm-n-115---H C1LX1m t -+ + Cm—n—lxm—n—lm)-

o Write a1 = (X11,...,Xm_n_11), vooy Clin = (le,...,Xm_n_lm).
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o Then we see that A lies in a(ay,...,am) if and only if there exists a
vector ¢ = (c1,...,Cm-n-1) in R™ "1 such that A=(c-ay,...,c-@pm).

o We have thus found a simple way of expressing all of the affine
dependencies of ay,...,an, in terms of @y,...,an,.

o The sequence of vectors @y, ...,am in R™ "L is called a Gale
transform of the sequence as,...,a,, of vectors in R".
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o We find a Gale transform of the sequence a; =(1,0,0), a» =(0,1,0),
a3=(0,0,1), as = (~1,0,0), a5 = (0,~1,0), ag = (0,0, 1), which lists
the vertices of a regular octahedron in R3.

o The subspace a(ay,...,as) of R® consists of those points (A1,...,A¢),
which satisfy the simultaneous equations

A=Ay

Aa=As =

A3—Ag =
M+A+ A3+ A+ A5+ =

o ooo

o The general solution to this system of linear equations can be
expressed in the form

(A1, 42,43, A4, 25, A6) = (@, B, —(a + B), @, B, = (@ + f)),
where a, B € R.
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o Thus x1 =(1,0,-1,1,0,-1), x=(0,1,-1,0,1,-1) form a basis for
a(ay,...,as), which has dimension m—n-1=6-3-1=2.
o The Gale transform derived from the above basis is the sequence
a;=(1,0), a,=(0,1), az=(-1,-1),
as;=(1,0), as=(0,1), as =(-1,-1).
o We note that although the six points ay,...,a¢ are distinct, the points
ai,...,ag are not.

a
3 [ a,, 85

)
ay

a a5, a,
ag v .

a6 a3' a6
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et @i,...,am, be a Gale transform in ~M=* of an n-dimensional sequence
Let @ am be a Gale t f R0 gt d I

ai,..

amin R" (m>n+1). Then:

A vector in R™ is an affine dependence of aj,...,an, if and only if it
has the form (c-aj,...,c-@m) for some ce R™"1;

The sequence ajy,...,an is (m—n—1)-dimensional;
a+---+an=0;
The origin of R™"~1 is an interior point of conv{as,...,am};

Every open halfspace of R™~"~1 whose bounding hyperplane passes
through the origin contains at least one of the points ay,...,am.

This result was established in the discussion following the preceding
theorem, which motivated the definition of a Gale transform.
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Let
X1 = (Xlly-“)le))'-'!Xm—n—l = (Xm—n—lln-wxm—n—lm)

be the basis for a(aj,...,am) for which
a1 =(X11,-+-» Xm=n=11)s+++»@m = (X1m» - + - » Xm=n—-1m)-
Since X1,...,Xm_n_1 are affine dependencies of ay,...,a,, we have
X1t o+ Xim = = Xm—p-11+ "+ Xm-p-1m = 0.

Hence @1 +---+a,=0. The ay,...,a, can be identified with the rows
of the matrix whose columns are x1,...,xm-p—1. The latter are linearly
independent. Thus, ay,...,a, span R™ "1,

Now 0 = %(51 +---+am,). Hence, 0€aff{a;,...,am}. Thus,
aff{@y,...,am} is a subspace of R™""! containing @,...,am.

Hence, it must be R™""1. So ay,...,@n is (m—n—1)-dimensional.
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A previous theorem and the equation 0= %(51 +---+apm) show that
O eri(conv{as,...,am}). Hence from (ii), 0 € int(conv{ay,...,am}).

Let H be a hyperplane in R™~""! passing through the origin.
Denote by H™ and H* the open halfspaces determined by H.
Suppose that H™ contains none of the points ay,...,am.
Then a1,...,am lie in the closed half space Hu H*.

Hence conv{ay,...,am} S HUH™.

This, however, is incompatible with (iv).

Thus H™ must contain at least one of the points a1,...,am.

George Voutsadakis (LSSU) Convexity



Convex Polytopes

Lemma

Let a3,...,a, € R". Then O€ri(conv{as,...,a,}) if and only if there exists
no c € R" such that c-a; =0,...,c-a, =0, with at least one of the
inequalities being strict.

o Suppose that 0 €ri(conviay,...,a,}). Then, by a previous theorem,
there exist Aq,...,A, >0 such that 0=A;a; +---+ A,a,. Clearly, there
exists no c € R" for which c-a; =0, ..., c-a, =0, with at least one of
these inequalities being strict.

Conversely, suppose that 0 ¢ ri(conv{ay,...,a,}). Then {0} and
conv{asy,...,a,} can be properly separated. So there exist c € R",

cp € R such that ¢-:0=0<¢y and c-a; =¢, ..., €c-a, = ¢y, where at
least one of these r+1 inequalities is strict. If ¢g =0, then at least one
of the inequalities c-a; =0, ..., c-a, =0 must be strict. If ¢g >0, then
all of the inequalities c-a; =0, ..., c-a, =0 are strict. Thus, in every
case, the required condition is met.
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o Let @y,...,a, be a Gale transform of a vertex sequence ay,...,a, of
some n-polytope in R” (m>n+1).

o Then, for each subset W of {ay,...,a}, we define a set W by the
equation W= {ai,...,am}.

Theorem

Let @1,...,am be a Gale transform in R™ "1 of a vertex sequence
ay,...,am of an n-polytope P in R"” (m>n+1). Then a subset W of
{@1,...,am} is a coface of P iff either W is empty or 0 € ri(convWV).

o We assume throughout the proof that W ={ay,...,a,} for some r with
1<r<m. Suppose first that W is not a coface of P. By a previous
theorem, there exists an affine dependence (11,...,Ap) of a1,...,am
such that A1,...,1, =0, with at least one of A4,...,A, positive. By
Part (i) of the preceding theorem, 1; =c-ay, ..., Ay, = €-a@p, for some
c in R™ "1, The lemma now shows that 0¢ ri(convW).
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o Suppose next that 0 ¢ ri(convW).

Then the lemma shows the existence of ¢ in R™~"~1 such that
c-a;=0,...,c-a, =0, with at least one of the inequalities being strict.
Let A\1=c-a1,...,Am=cC-an.

Again by Part (i) of the preceding theorem, (11,...,A1) is an affine
dependence of ay,...,an,.

It now follows from a previous theorem that W is not a coface of P.
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Corollary

Let @y,...,am be a Gale transform in R™ "1 of a vertex sequence
ai,...,am of an n-polytope P in R" (m>n+1). Every open halfspace in
R™-"-1 whose bounding hyperplane passes through the origin contains at
least two terms of the sequence ay,...,am.

o Let H be a hyperplane in R™~ "1 passing through the origin.
Denote by H™ and H* the open halfspaces determined by H.
Suppose that H~ contains fewer than two terms of @y,...,an,.
Part (v) of a previous theorem shows that H~ must contain precisely
one term of ay,...,an, say the first one. Since a; is a vertex of P, the
theorem shows that 0 e ri(conv{ay,...,an}). This is impossible,
because ay,...,an, lie in the closed halfspace Hu H* with at least one
of them being in H*, again by Part (v) of the same theorem. Thus,
H~ must contain at least two terms of @y,...,a,.
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Convex Polytopes

o Consider again the Gale transform of the octahedron with vertices
ai,...,ae discussed in the preceding example.

o By the preceding theorem, a subset W of {a,...,as} is a coface of the
octahedron if and only if 0 € ri(convW).

o But this is the case if and only if W contains at least one of a,ay, at
least one of a1, as, and at least one of as, ag.

o Thus a non-empty subset of {a1,...,as} determines a proper face of
the octahedron if and only if contains at most one of a;,a,, at most
one of ay,as and at most one of a3, ag.
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Convex Polytopes

A sequence @i, ..., an, of points in R™™™1 (m>n+1) is a Gale transform
of a vertex sequence of some n-polytope in R" if and only if:

ay+---+ap=0;
Every open halfspace in R™~"~! whose bounding hyperplane passes

through the origin contains at least two terms of the sequence
ai,...,am.

o The only if part of the theorem follows from a previous theorem and
the preceding corollary.
Suppose, then, that @j,...,an is a sequence of points in R™~ "1
(m> n+1) which satisfies conditions (i) and (ii) of the theorem. First,
we find an n-dimensional sequence as,...,a, in R" of which ay,...,a,,
is a Gale transform. This we do by reversing the procedure whereby
the Gale transform of a sequence was constructed.
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Convex Polytopes

o Let
a1=(X11,-+-»Xm=-n=11)s+++»@m = (X1m» - + - » Xm=n—1m)-

Define points x1,...,Xm_n_1 in R™ by the equations
X1 = (Xlln-wxlm)y-u)xm—n—l = (Xm—n—lly-~-yxm—n—1m)~

Condition (i) ensures that ay,...,a,, span R™"~1. Hence,
X1,...,Xm-n—1 form a basis for some (m— n—1)-dimensional subspace
of R™, S say. Thus, S* has dimension m—(m—-n—-1)=n+1.
Condition (i) shows that (1,...,1) € S*. Hence (1,...,1) can be
extended by vectors (a11,...,am1), ---, (31p,---»@mn) in R™ to form a
basis for S*+. Write

al =(311;---;31n);---»am=(amly---;amn)-

Then ay,...,an is an n-dimensional sequence in R" that has ay,...,an,
for a Gale transform.
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Convex Polytopes

o We complete the proof by showing that ay,...,a,, is a vertex sequence
of the n-polytope conviay,...,an}.
To do this, we show that, for i=1,...,m,

a;gZconv{as,...,a;-1,@j+1,---,m}-

Suppose that this is not so. Then, for some i in {1,...,m}, there exists
an affine dependence (Ay,...,Am) of ay,...,ay, with ;=-1 and ;=0
for je{l,...,m\{i}. By a previous theorem, there is c in R™"-1 such
that c-a@; <0 and c-a; = A; for j € {1,..., m}\{i}.

Thus, the open halfspace

zeR™ " l.c.z<0}

in R™="~1 has the origin on its boundary and contains only one term
of the sequence aj,...,am, contradicting condition (ii). Therefore,
aiy,...,an, is a vertex sequence of the n-polytope conv{ay,...,amn}.
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Convex Polytopes

Theorem

Let @y,...,a@m be a Gale transform in R™ "1 of a vertex sequence
ai,...,am of an n-polytope P in R"” (m>n+1). Then P is simplicial if and
only |f the origin of R™~"~! cannot be expressed as a positive convex
combination of fewer than m—n terms of ay,...,a,.

o P is simplicial if and only if it has no proper face with more than n
vertices.
l.e., P is simplicial if and only if it has no non-empty coface with fewer
than m— n vertices.
Thus, by a previous theorem, P is simplicial if and only if the origin of
R™ "1 cannot be expressed as a positive convex combination of
fewer than m—n terms of ay,...,a,.
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Convex Polytopes

o Since a Gale transform of a polytope contains full information about
its combinatorial structure, the combinatorial type of a polytope can
be determined from any one of its Gale transforms.

o Suppose that ay,...,a, and by,..., b, are, respectively, vertex
sequences of n-polytopes P and Q in R" (m>n+1).

o Suppose that ay,...,an and by,...,b,, are, respectively, Gale
transforms of ay,...,a, and by,...,b,.

o By the definition of combinatorial equivalence and a previous theorem,
P and Q are combinatorially equivalent if and only if there is a
permutation 6 of {1,...,m} such that, for every subset J of {1,...,m},

Ocri(convia;:jeJ}) ifandonlyif O€ ri(conv{Eg(j) jel}).
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Convex Polytopes

There are [%nz] combinatorial types of n-polytopes with n+2 vertices and
[$n] of these are simplicial.

o Let @1,...,@,42 be a Gale transform in R! of a vertex sequence
ai,...,an2 of an n-polytope P in R". By a previous theorem, this
transform is a sequence of n+2 real numbers whose sum is zero.
Suppose that this sequence has r positive terms and s negative ones,
sothat r=2, s=2 and r+2<n+2. We call such a sequence a

G-sequence of type (r,s).
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Convex Polytopes

o Suppose next that b1,...,bnso is a Gale transform in R! of a vertex
sequence by,...,b,> of an n-polytope @ in R".

Suppose by,..., b2 is a G-sequence of type (r/,s').

In view of our preceding remarks on combinatorial equivalence, P and
@ are combinatorially equivalent if and only if either r=r" and s=¢’
orr=s"and s=r'.

A previous theorem shows that every G-sequence of n+2 terms of R!
is a Gale transform of some n-polytope in R" with n+2 vertices.
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Convex Polytopes

o Thus, the number of combinatorial types of n-polytopes with n+2

vertices equals the number of ordered pairs (r,s) of integers satisfying
s=r=2and r+s<n+2.
We now calculate this number.

o When n is even, these ordered pairs are:

(2,n), (2,n-1), ..., (2,3), (2,2);
(3,n-1), (3,n-2), ..., (3,3);
(3(n+2), 1(n+2)).

The total number is

(n=1)+(n=3)+---41 = 1+42+---+(n=-1)—(2+4+---+(n-2))
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Convex Polytopes

o The number of combinatorial types of n-polytopes with n+ 2 vertices
equals the number of ordered pairs (r,s) of integers satisfying s = r =2
and r+s<n+2.

o When n is odd, these ordered pairs are:

The total number is

(n=)+(n=3)+---+2

Il
N
5 /o
=
+
N
+
‘3
N|T
-
N—

— 2727 =%( 2_1).

In both cases, the required number is [%n?].
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Convex Polytopes

o The preceding theorem shows that a G-sequence of n+2 terms which
is of type (r,s) corresponds to a simplicial n-polytope with n+2
vertices if and only if 0 is not one of its terms, i.e., if and only if
r+s=n+2.

Thus the number of combinatorial types of simplicial n-polytopes with
n+2 vertices equals the number of ordered pairs (r,s) of integers such
that s=r=2and r+s=n+2.

This number is n when n is even, and 3(n—1) when n is odd.

In both cases it equals [$n].
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Convex Polytopes

o The last theorem with n=3 shows that there are precisely two
combinatorial types of 3-polytopes with five vertices, only one type
being simplicial.

o We have already seen examples of these two types:

o A square pyramid (non-simplicial);
o The polytope formed by taking the union of a regular tetrahedron and
its reflection in one of its triangular faces (simplicial).

o Possible Gale transforms for these two examples: 1,-1,1,-1,0 and
2,2,2,-3,-3, themselves make it clear why the two examples are of
different combinatorial types, and that the first one (the square
pyramid) is non-simplicial, as 0 occurs in its Gale transform.

o This example serves to show the power and potential of Gale transform
techniques in studying the combinatorial properties of polytopes.
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