Introduction to Convexity

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

(1) Convex Polytopes

- Polytopes
- Polyhedral Sets
- Pyramids, Bipyramids and Prisms
- Cyclic Polytopes
- Euler's Relation
- Gale Transforms

Subsection 1

Polytopes

- A convex polytope, or simply a polytope, is the convex hull of a finite set of points in \mathbb{R}^{n}.
- Points, line segments, polygons, tetrahedra, cubes, octahedra, dodecahedra and icosahedra are all polytopes.
- Since the convex hull of a finite set in \mathbb{R}^{n} is compact, polytopes are compact convex sets.
- A polytope of dimension r is called an r-polytope.
- The simplest example of an r-polytope is an r-simplex $(r=-1, \ldots, n)$, which is defined to be the convex hull of an affinely independent set in \mathbb{R}^{n} consisting of $r+1$ points.
- There is precisely one (-1)-simplex, namely the empty set.
- We refer to a 0 -simplex as a point, a 1 -simplex as a line segment, a 2-simplex as a triangle, and a 3-simplex as a tetrahedron.

Crosspolytopes

- An important example of an r-polytope is an r-crosspolytope ($r=1, \ldots, n$), which is defined to be the convex hull of r linearly independent line segments in \mathbb{R}^{n} whose midpoints coincide, i.e., a translate of a set of the form conv $\left\{ \pm \boldsymbol{a}_{1}, \ldots, \pm \boldsymbol{a}_{r}\right\}$, where $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{r}\right\}_{\neq}$is a linearly independent set of vectors in \mathbb{R}^{n}.
- Such a crosspolytope is called regular when the $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{r}$ have equal lengths and are mutually orthogonal.
- Thus, conv $\left\{ \pm \boldsymbol{e}_{1}, \ldots, \pm \boldsymbol{e}_{r}\right\}$, where $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{r}$ are elementary vectors in \mathbb{R}^{n}, is a regular r-crosspolytope.
- $\ln \mathbb{R}^{3}$ a regular 2-crosspolytope is a square, and a regular 3-crosspolytope is a regular octahedron, which is a regular solid bounded by eight congruent equilateral triangles.

Addition and Scalar Multiplication

Theorem

Let A, B be polytopes in \mathbb{R}^{n} and let $\alpha \in \mathbb{R}$. Then $A+B$ and αA are polytopes.

- We consider the non-trivial case when neither A nor B is empty. Let $A=\operatorname{conv}\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}\right\}, B=\operatorname{conv}\left\{\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{m}\right\}$, where $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}$, $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{m} \in \mathbb{R}^{n}$. Denote by C the finite set consisting of all those points of the form $\boldsymbol{a}_{i}+\boldsymbol{b}_{j}$, where $i=1, \ldots, k$ and $j=1, \ldots, m$, and by D the finite set whose points are $\alpha \boldsymbol{a}_{1}, \ldots, \alpha \boldsymbol{a}_{k}$. We prove the theorem by showing that $A+B=\operatorname{conv} C$ and $\alpha A=\operatorname{conv} D$.

Addition and Scalar Multiplication (Cont'd)

- Now $A+B$ is a convex set containing C. Hence, $\operatorname{conv} C \subseteq A+B$. If $\boldsymbol{x} \in A+B$, then there exist scalars $\lambda_{1}, \ldots, \lambda_{k}, \mu_{1}, \ldots, \mu_{m} \geq 0$ with $\lambda_{1}+\cdots+\lambda_{k}=1$ and $\mu_{1}+\cdots+\mu_{m}=1$ such that

$$
\begin{aligned}
\boldsymbol{x} & =\lambda_{1} \boldsymbol{a}_{1}+\cdots+\lambda_{k} \boldsymbol{a}_{k}+\mu_{1} \boldsymbol{b}_{1}+\cdots+\mu_{m} \boldsymbol{b}_{m} \\
& =\sum_{i=1}^{k} \sum_{j=1}^{m} \lambda_{i} \mu_{j}\left(\boldsymbol{a}_{i}+\boldsymbol{b}_{j}\right) .
\end{aligned}
$$

This shows that \boldsymbol{x} is a convex combination of points of C. Hence, $\boldsymbol{x} \in \operatorname{conv} C$ and $A+B \subseteq \operatorname{conv} C$.
Now αA is a convex set containing D. Hence, $\operatorname{conv} D \subseteq \alpha A$. If $x \in \alpha A$, then there exist $\lambda_{1}, \ldots, \lambda_{k} \geq 0$ with $\lambda_{1}+\cdots+\lambda_{k}=1$ such that

$$
\boldsymbol{x}=\alpha\left(\lambda_{1} \boldsymbol{a}_{1}+\cdots+\lambda_{k} \boldsymbol{a}_{k}\right)=\lambda_{1}\left(\alpha \mathbf{a}_{1}\right)+\cdots+\lambda_{k}\left(\alpha \boldsymbol{a}_{k}\right)
$$

This shows that \boldsymbol{x} is a convex combination of points of D. Hence, $x \in \operatorname{conv} D$ and $\alpha A \subseteq \operatorname{conv} D$.

Zonotopes and r-Cubes

Corollary

Let A_{1}, \ldots, A_{m} be polytopes in \mathbb{R}^{n} and let $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$. Then $\alpha_{1} A_{1}+\cdots+\alpha_{m} A_{m}$ is a polytope.

- Thus, the vector sum of a finite number of line segments in \mathbb{R}^{n} is a polytope. Such a polytope is called a zonotope.
- An r-cube $(r=1, \ldots, n)$ in \mathbb{R}^{n} is the vector sum of r mutually orthogonal line segments in \mathbb{R}^{n}, all of equal length, i.e., a set of the form

$$
\operatorname{conv}\left\{\boldsymbol{a}_{1}, \boldsymbol{b}_{1}\right\}+\cdots+\operatorname{conv}\left\{\boldsymbol{a}_{r}, \boldsymbol{b}_{r}\right\}
$$

where $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{r}, \boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{r} \in \mathbb{R}^{n},\left(\boldsymbol{a}_{i}-\boldsymbol{b}_{i}\right) \cdot\left(\boldsymbol{a}_{j}-\boldsymbol{b}_{j}\right)=0$ if and only if $i \neq j$, and $\left\|\boldsymbol{a}_{1}-\boldsymbol{b}_{i}\right\|=\left\|\boldsymbol{a}_{j}-\boldsymbol{b}_{j}\right\|$ for all i, j.

- An example of an n-cube with edge-length 1 in \mathbb{R}^{n} is the polytope

$$
\operatorname{conv}\left\{0, \boldsymbol{e}_{1}\right\}+\cdots+\operatorname{conv}\left\{0, \boldsymbol{e}_{n}\right\}=\left\{\left(x_{1}, \ldots, x_{n}\right): 0 \leq x_{1}, \ldots, x_{n} \leq 1\right\}
$$

Vertices and Edges of a Polytope

- We now look at the facial structure of a polytope P in \mathbb{R}^{n}.
- It is customary to call the extreme points of P its vertices and its 1 -faces its edges.
- The set of all P 's vertices is called its vertex set.
- If $P=\operatorname{conv}\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}$, for some $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m} \in \mathbb{R}^{n}$, then a previous corollary shows that the vertex set of P is contained in $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}$.

Property of Faces of a Polytope

Theorem

Every polytope in \mathbb{R}^{n} has only a finite number of faces, and each of these is a polytope.

- Consider a non-empty polytope $A=\operatorname{conv}\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}$, where $a_{1}, \ldots, a_{m} \in \mathbb{R}^{n}$. By a previous theorem each face F of A is the convex hull of its extreme points. Another theorem shows that each extreme point of F is also an extreme point of A. Hence F is the convex hull of some subset of the vertex set of A. Since $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}$ contains the vertex set of A, it follows that F is the convex hull of some subset of $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}$. The desired result is now immediate.

Subsets of Vertex Set Determining a Face

- Suppose that V is the vertex set of a polytope P in \mathbb{R}^{n}.
- Then the proof of the last theorem shows that each face of P has the form conv W, for some subset W of V.
- The question naturally arises as to which subsets W of V determine a face of P, i.e. are such that $\operatorname{conv} W$ is a face of P.

Vertex Subsets That Determine Faces

Theorem

Let W be a subset of the vertex set V of a polytope P in \mathbb{R}^{n}. Then conv W is a face of P if and only if

$$
(\operatorname{aff} W) \cap \operatorname{conv}(V \backslash W)=\varnothing
$$

- Suppose first that conv W is a face of P. If $\boldsymbol{v} \in V \backslash W$, then $P \backslash\{\boldsymbol{v}\}$ is convex, by a previous theorem, and contains W. Hence, $\operatorname{conv} W \subseteq P \backslash\{\boldsymbol{v}\}$. So $\boldsymbol{v} \notin \operatorname{conv} W$. Therefore, $V \backslash W \subseteq P \backslash \operatorname{conv} W$.
By the same theorem, $P \backslash \operatorname{conv} W$ is convex. So $\operatorname{conv}(V \backslash W) \subseteq$ $P \backslash \operatorname{conv} W$. Also by the same theorem, $(\operatorname{aff} W) \cap P=\operatorname{conv} W$. Hence,

$$
\begin{aligned}
(\operatorname{aff} W) \cap \operatorname{conv}(V \backslash W) & \subseteq(\operatorname{aff} W) \cap(P \backslash \operatorname{conv} W) \\
& \subseteq \operatorname{conv} W \cap(P \backslash \operatorname{conv} W)=\varnothing
\end{aligned}
$$

Characterization of Face Determinators (Converse)

- Suppose $(\operatorname{aff} W) \cap \operatorname{conv}(V \backslash W)=\varnothing$ is satisfied.

Clearly conv W is a face of P if either W is empty or V.
So we assume that this is not the case. Let $V=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{s}\right\}_{\neq}$and $W=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{r}\right\}$, where $1 \leq r<s$. Let $\boldsymbol{w}=\lambda \boldsymbol{x}+\mu \boldsymbol{y}$, where $\boldsymbol{w} \in \operatorname{conv} W$, $\boldsymbol{x}, \boldsymbol{y} \in P$, and $\lambda, \mu>0$ with $\lambda+\mu=1$. Then $\boldsymbol{x}=\lambda_{1} \boldsymbol{v}_{1}+\cdots+\lambda_{s} \boldsymbol{v}_{s}$,
$\boldsymbol{y}=\mu_{1} \boldsymbol{v}_{1}+\cdots+\mu_{s} \boldsymbol{v}_{s}$, for some $\lambda_{1}, \ldots, \lambda_{s}, \mu_{1}, \ldots, \mu_{s} \geq$ with $\lambda_{1}+\cdots+\lambda_{s}$ $=1$ and $\mu_{1}+\cdots+\mu_{s}=1$. For $i=1, \ldots, s$, write $v_{i}=\lambda \lambda_{i}+\mu \mu_{i}$. Then
$v_{1}, \ldots, v_{s} \geq 0, v_{1}+\cdots+v_{s}=1$ and $\boldsymbol{w}=v_{1} \boldsymbol{v}_{1}+\cdots+v_{s} \boldsymbol{v}_{s}$. Write $\alpha=v_{r+1}+\cdots+v_{s}$. If $\alpha>0$, then the point

$$
\frac{1}{\alpha}\left(\boldsymbol{w}-v_{1} \boldsymbol{v}_{1}-\cdots-v_{r} \boldsymbol{v}_{r}\right)=\frac{1}{\alpha}\left(v_{r+1} \boldsymbol{v}_{r+1}+\cdots+v_{s} \boldsymbol{v}_{s}\right)
$$

lies both in aff W and $\operatorname{conv}(V \backslash W)$, which contradicts the hypothesis. Thus, $\alpha=0$. This entails $v_{r+1}, \ldots v_{s}=0$ and $\lambda_{r+1}, \ldots, \lambda_{s}, \mu_{r+1}, \ldots, \mu_{s}$ $=0$. Hence $\boldsymbol{x}, \boldsymbol{y} \in \operatorname{conv} W$. So conv W is a face of P.

Arbitrary Subsets and Faces

- In proving the "if" part of the last theorem, we used the fact that conv $V=P$, but not the fact that each element of V was a vertex of P.
- We thus have the following:

Corollary

Let W be a subset of a finite set V in \mathbb{R}^{n} such that

$$
(\operatorname{aff} W) \cap \operatorname{conv}(V \backslash W)=\varnothing
$$

Then conv W is a face of the polytope conv V.

Facial Structure of Simplexes

- Suppose that $S=\operatorname{conv} K$, where V is an affinely independent set in \mathbb{R}^{n}.
- We have already seen that each face of S is the convex hull of some subset of V.
- Now we establish the converse:

Let $W \subseteq V$. Since V is affinely independent,

$$
(\operatorname{aff} W) \cap \operatorname{conv}(V \backslash W) \subseteq(\operatorname{aff} W) \cap \operatorname{aff}(V \backslash W)=\varnothing
$$

Therefore, conv W is a face of S by the corollary.

- In particular, each point of V is a vertex of S.

Combinatorial Equivalence

- Let P, P^{\prime} be polytopes, not necessarily lying in the same Euclidean space, with vertex sets V, V^{\prime}, respectively.
- Then P and P^{\prime} are said to be combinatorially equivalent if there exists a bijection $\varphi: V \rightarrow V^{\prime}$ such that a subset W of V determines a face of P if and only if $\varphi(W)$ determines a face of P^{\prime}.
- Since 1-polytopes are simply line segments, they are all combinatorially equivalent to one another.
- Two 2-polytopes (polygons) are combinatorially equivalent if and only if they have the same number of vertices.

Combinatorial Equivalence and Number of Vertices

- Clearly, if two polytopes are combinatorially equivalent, then they must have the same number of vertices.
- The converse of this result is not true.

In \mathbb{R}^{3} consider:

- A square pyramid P;
- The polytope P^{\prime} obtained by taking the union of a regular tetrahedron and its reflection in one of its triangular faces.
Both P and P^{\prime} have five vertices, but they are not combinatorially equivalent. P has a face with four vertices, but P^{\prime} does not.
- We will show later that every 3-polytope with five vertices is combinatorially equivalent to either P or P^{\prime}.
So, there are just two combinatorial types for 3-polytopes having five vertices.

Approximation by Polytopes

Theorem

Let A be a non-empty compact convex set in \mathbb{R}^{n} and let $\varepsilon>0$. Then there exist polytopes P, Q in \mathbb{R}^{n} such that $P \subseteq A \subseteq Q, \rho(A, P) \leq \varepsilon, \rho(A, Q) \leq \varepsilon$.

- By a previous theorem, there exists a finite set E in \mathbb{R}^{n} such that $E \subseteq A \subseteq(E)_{\varepsilon}$. Let $P=\operatorname{conv} E$. Then P is a polytope satisfying $P \subseteq A \subseteq(P)_{\varepsilon}$. Hence $\rho(A, P) \leq \varepsilon$. Replacing A by $(A)_{\varepsilon}$ in the last argument, we deduce the existence of a polytope Q satisfying $Q \subseteq(A)_{\varepsilon} \subseteq(Q)_{\varepsilon}$. The inclusion $(A)_{\varepsilon} \subseteq(Q)_{\varepsilon}$, i.e., $A+\varepsilon U \subseteq Q+\varepsilon U$, implies $A \subseteq Q$ by a previous theorem. The inequality $\rho(A, Q) \leq \varepsilon$ now follows.

Corollary

Let A be a non-empty compact convex set in \mathbb{R}^{n}. Then there exist sequences $P_{1}, \ldots, P_{i}, \ldots$ and $Q_{1}, \ldots, Q_{i}, \ldots$ of nonempty polytopes in \mathbb{R}^{n} such that $P_{i} \subseteq A \subseteq Q_{i}$ for $i=1,2, \ldots$, and $P_{i} \rightarrow A$ and $Q_{i} \rightarrow A$ as $i \rightarrow \infty$.

Subsection 2

Polyhedral Sets

Polyhedral Sets

- A polyhedral set is the intersection of a finite family of closed halfspaces in \mathbb{R}^{n}.
- Equivalently, a polyhedral set is the set of all points $\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{R}^{n} which satisfy a finite system of linear inequalities of the form

$$
\begin{aligned}
a_{11} x_{1}+\cdots+a_{1 n} x_{n} & \leq a_{10} \\
& \vdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n} & \leq a_{m 0}
\end{aligned}
$$

- Clearly, polyhedral sets are closed and convex.
- Moreover, the intersection of any finite family of polyhedral sets is a polyhedral set.
- Each hyperplane in \mathbb{R}^{n} is an intersection of two closed halfspaces, and so is a polyhedral set.
- Since each flat in \mathbb{R}^{n} is a finite intersection of hyperplanes, all flats are polyhedral sets.
- In particular, the empty set and \mathbb{R}^{n} itself are polyhedral sets.

Facets of Polyhedral Sets

- A facet of an r-dimensional polyhedral set in \mathbb{R}^{n} is a proper ($r-1$)-dimensional face of the set.
- $\ln \mathbb{R}^{3}$:
- The non-negative orthant has three facets;
- A tetrahedron has four facets;
- A square pyramid has five facets;
- A cube has six facets.
- Since flats have no proper faces, they have no facets.
- It will be shown in the following result that flats are the only polyhedral sets with this property.

Properties of Facets

Theorem

Suppose that the polyhedral set A in \mathbb{R}^{n} is not a flat and that

$$
A=(\operatorname{aff} A) \cap\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{a}_{1} \cdot \boldsymbol{x} \leq \alpha_{1}\right\} \cap \cdots \cap\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{a}_{m} \cdot \boldsymbol{x} \leq \alpha_{m}\right\}
$$

where $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}, \boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$ and no one of the closed half spaces in the intersection can be omitted. For each $i=1, \ldots m$, let

$$
F_{i}=A \cap\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{a}_{i} \cdot \boldsymbol{x}=\alpha_{i}\right\}
$$

Then:
(i) $\operatorname{ri} A=\left\{\boldsymbol{a} \in A: \boldsymbol{a}_{1} \cdot \boldsymbol{a}<\alpha_{1}, \ldots, \boldsymbol{a}_{m} \cdot \boldsymbol{a}<\alpha_{m}\right\}$;
(ii) $\operatorname{rebd} A=F_{1} \cup \cdots \cup F_{m}$;
(iii) The facets of A are precisely the sets F_{1}, \ldots, F_{m};

Properties of Facets (Cont'd)

Theorem (Cont'd)

(iv) Each proper face of A is the intersection of those facets of A that contain it;
(v) A has a finite number of faces, each of which is exposed;
(vi) Each face of A is a polyhedral set;
(vii) Let B_{j}, B_{k} be j - and k-faces, respectively, of $A(0 \leq j \leq k-2)$ such that $B_{j} \subseteq B_{k}$. Then there are faces B_{j+1}, \ldots, B_{k-1} of A such that, for each $i=j, \ldots, k-1$, the face B_{i} is a facet of B_{i+1}.

Proof of the Theorem (Parts (i) \& (ii))

- Every polyhedral set A in \mathbb{R}^{n} can be expressed in the form required by the theorem. The assumption that A is not a flat implies that $m \geq 1$.
(i) Suppose first that $\boldsymbol{a} \in A$ and that $\boldsymbol{a}_{1} \cdot \boldsymbol{a}<\alpha_{1}, \ldots, \boldsymbol{a}_{m} \cdot \boldsymbol{a}<\alpha_{m}$. Then \boldsymbol{a} belongs to the set $C=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{a}_{1} \cdot \boldsymbol{x}<\alpha_{1}, \ldots, \boldsymbol{a}_{m} \cdot \boldsymbol{x}<\alpha_{m}\right\}$, which is open, being a finite intersection of open halfspaces. Thus, there exists $r>0$ such that $B(a ; r) \subseteq C$. Hence, $B(a ; r) \cap \operatorname{aff} A \subseteq C \cap \operatorname{aff} A \subseteq A$.
Therefore, $\boldsymbol{a} \in \operatorname{ri} A$.
Suppose next that $\boldsymbol{a} \in$ ri A. Since no one of the closed halfspaces in the representation of A given in the statement of the theorem can be omitted, for each $i=1, \ldots, m$, there exists $z_{i} \in \operatorname{aff} A$ such that $\boldsymbol{a}_{j} \cdot \boldsymbol{z}_{i} \leq \alpha_{j}$, when $j \neq i$, and $\boldsymbol{a}_{i} \cdot \boldsymbol{z}_{i}>\alpha_{i}$. Hence, for each $i=1, \ldots, m$, there exists $\lambda_{i} \in(0,1)$ such that $\lambda_{i} \boldsymbol{z}_{i}+\left(1-\lambda_{i}\right) \boldsymbol{a} \in A$. Therefore,

$$
\begin{aligned}
\alpha_{i} & \geq \boldsymbol{a}_{i} \cdot\left(\lambda \boldsymbol{z}_{i}+\left(1-\lambda_{i}\right) \boldsymbol{a}\right)=\lambda_{i} \boldsymbol{a}_{i} \cdot \boldsymbol{z}_{i}+\left(1-\lambda_{i}\right) \boldsymbol{a}_{i} \cdot \boldsymbol{a} \\
& >\lambda_{i} \alpha_{i}+\left(1-\lambda_{i}\right) \boldsymbol{a}_{i} \cdot \boldsymbol{a} . \quad \text { So } \boldsymbol{a}_{i} \cdot \boldsymbol{a}<\alpha_{i} .
\end{aligned}
$$

(ii) This follows immediately from (i).

Proof of the Theorem (Part (iii))

(iii) We now show that, for each $i=1, \ldots, m, F_{i}$ is a facet of A. Let $\boldsymbol{a} \in$ riA. Let \boldsymbol{z}_{i} be as in (i). Then $\boldsymbol{a}_{i} \cdot \boldsymbol{a}<\alpha_{i}<\boldsymbol{a}_{i} \cdot \boldsymbol{z}_{i}$. Write $\mu_{i}=\frac{\alpha_{i}-\boldsymbol{a}_{i} \cdot \boldsymbol{a}}{\boldsymbol{a}_{i} \cdot \boldsymbol{z}_{i}-\boldsymbol{a}_{i} \cdot \boldsymbol{a}}$. Then $0<\mu_{i}<1$. Write $\boldsymbol{b}_{i}=\mu_{i} \boldsymbol{z}_{i}+\left(1-\mu_{i}\right) \boldsymbol{a}$.

Then (see next slide) $\boldsymbol{b}_{i} \in \operatorname{aff} A, \boldsymbol{a}_{i} \cdot \boldsymbol{b}_{i}=\alpha_{i}$ and $\boldsymbol{a}_{j} \cdot \boldsymbol{b}_{i}<\alpha_{j}$, for $j \neq i$. Hence, $\boldsymbol{b}_{i} \in A$. Thus, $\boldsymbol{b}_{i} \in F_{i}$ and $\boldsymbol{a}_{i} \cdot \boldsymbol{x}=\alpha_{i}$ is a support hyperplane to A at \boldsymbol{b}_{i}. It follows that F_{i} is a proper exposed face of A.

Proof of the Theorem (Part (iii) Cont'd)

- We set $\mu_{i}=\frac{\alpha_{i}-\mathbf{a}_{i} \cdot \boldsymbol{a}}{\boldsymbol{a}_{i} \cdot \boldsymbol{Z}_{i}-\mathbf{a}_{i} \cdot \boldsymbol{a}}$ and $\boldsymbol{b}_{i}=\mu_{i} \boldsymbol{z}_{i}+\left(1-\mu_{i}\right) \boldsymbol{a}$. Based on these and the inequalities $\boldsymbol{a}_{i} \cdot \boldsymbol{a}<\alpha_{i}<\boldsymbol{a}_{i} \cdot \boldsymbol{z}_{i}$, we get

$$
\begin{aligned}
& \boldsymbol{a}_{i} \cdot \boldsymbol{b}_{i}=\mu_{i} \boldsymbol{a}_{i} \cdot \boldsymbol{z}_{i}+\left(1-\mu_{i}\right) \boldsymbol{a}_{i} \cdot \boldsymbol{a} \\
& =\frac{\alpha_{i}-\boldsymbol{a}_{i} \cdot \boldsymbol{a}}{\boldsymbol{a}_{i} \cdot \boldsymbol{z}_{i}-\boldsymbol{a}_{i} \cdot \boldsymbol{a}} \boldsymbol{a}_{i} \cdot \boldsymbol{z}_{i}+\frac{\boldsymbol{a}_{i} \cdot \boldsymbol{z}_{i}-\alpha_{i}}{\boldsymbol{a}_{i} \cdot \boldsymbol{z}_{i}-\boldsymbol{a}_{i} \cdot \boldsymbol{a}} \boldsymbol{a}_{i} \cdot \boldsymbol{a} \\
& =\frac{\alpha_{i}}{\boldsymbol{a}_{i} \cdot \boldsymbol{z}_{i}-\boldsymbol{a}_{i} \cdot \boldsymbol{a}}\left(\boldsymbol{a}_{i} \cdot \boldsymbol{z}_{i}-\boldsymbol{a}_{i} \cdot \boldsymbol{a}\right)+\frac{\left(\boldsymbol{a}_{i} \cdot \boldsymbol{z}_{i}\right)\left(\boldsymbol{a}_{i} \cdot \boldsymbol{a}\right)-\left(\boldsymbol{a}_{i} \cdot \boldsymbol{a}\right)\left(\boldsymbol{a}_{i} \cdot \boldsymbol{z}_{i}\right)}{\boldsymbol{a}_{i} \cdot \boldsymbol{z}_{i}-\boldsymbol{a}_{i} \cdot \boldsymbol{a}} \\
& =\alpha_{i}+0=\alpha_{i} ; \\
& \boldsymbol{a}_{j} \cdot \boldsymbol{b}_{i}=\mu_{i} \boldsymbol{a}_{j} \cdot \boldsymbol{z}_{i}+\left(1-\mu_{i}\right) \boldsymbol{a}_{j} \cdot \boldsymbol{a} \\
& <\mu_{i} \alpha_{j}+\left(1-\mu_{i}\right) \alpha_{j}=\alpha_{j} .
\end{aligned}
$$

Proof of the Theorem (Part (iii) Cont'd)

- We now show that aff $F_{i}=(\operatorname{aff} A) \cap\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{a}_{i} \cdot \boldsymbol{x}=\alpha_{i}\right\}$.

Let \boldsymbol{y}_{i} be a point belonging to the set on the right.
Choose $\theta_{i}>0$ such that $\theta_{i}\left(\mathbf{a}_{j} \cdot \boldsymbol{y}_{i}-\boldsymbol{a}_{j} \cdot \boldsymbol{b}_{i}\right) \leq \alpha_{j}-\boldsymbol{a}_{j} \cdot \boldsymbol{b}_{i}$ when $j \neq i$. Write $\boldsymbol{c}_{i}=\theta_{i} \boldsymbol{y}_{i}+\left(1-\theta_{i}\right) \boldsymbol{b}_{i}$. Then $\boldsymbol{c}_{i} \in \operatorname{aff} A$ and we have, for $i \neq j$:

$$
\begin{aligned}
\boldsymbol{a}_{i} \cdot \boldsymbol{c}_{i} & =\theta_{i} \boldsymbol{a}_{i} \cdot \boldsymbol{y}_{i}+\left(1-\theta_{i}\right) \mathbf{a}_{i} \cdot \boldsymbol{b}_{i} \\
& =\theta_{i} \alpha_{i}+\left(1-\theta_{i}\right) \alpha_{i}=\alpha_{i} ; \\
\boldsymbol{a}_{j} \cdot \boldsymbol{c}_{i} & =\theta_{i} \boldsymbol{a}_{j} \cdot \boldsymbol{y}_{i}+\left(1-\theta_{i}\right) \mathbf{a}_{j} \cdot \boldsymbol{b}_{i} \\
& =\theta_{i}\left(\mathbf{a}_{j} \cdot \boldsymbol{y}_{i}-\mathbf{a}_{j} \cdot \boldsymbol{b}_{i}\right)+\mathbf{a}_{j} \cdot \boldsymbol{b}_{i} \leq \alpha_{j} .
\end{aligned}
$$

Hence, $\boldsymbol{c}_{i} \in F_{i}$. But $\boldsymbol{y}_{i}=\frac{1}{\theta_{i}} \boldsymbol{c}_{i}+\left(1-\frac{1}{\theta_{i}}\right) \boldsymbol{b}_{i} \in \operatorname{aff} F_{i}$. So (aff $\left.A\right) \cap$ $\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{a}_{i} \cdot \boldsymbol{x}=\alpha_{i}\right\} \subseteq$ aff F_{i}. The opposite inclusion is trivial.
This equality, together with a previous theorem, give

$$
\operatorname{dim} F_{i}=\operatorname{dim}\left(\operatorname{aff} F_{i}\right)=\operatorname{dim}(\operatorname{aff} A)-1=\operatorname{dim} A-1 .
$$

So F_{i} is a facet of A.

Proof of the Theorem (Part (iii) Conclusion)

- We finally show that each facet of A is one of the F_{i} s.

Let F be a facet of A. Let $\boldsymbol{f} \in \mathrm{ri} F$.
Since F is a proper face of $A, \boldsymbol{f} \notin \mathrm{ri} A$.
Hence, by (ii), $\boldsymbol{f} \in F_{i_{0}}$ for some $i_{0} \in\{1, \ldots, m\}$.
Now the faces F and $F_{i_{0}}$ of A have the same dimension and $\boldsymbol{f} \in \mathrm{ri} F$.
Hence $F=F_{i_{0}}$.

Proof of the Theorem (Part (iv))

(iv) Suppose that B is a proper face of A. Let $\boldsymbol{b} \in \mathrm{ri} B$. Denote by I the non-empty set of those i 's in $\{1, \ldots, m\}$ for which $\boldsymbol{a}_{i} \cdot \boldsymbol{b}=\alpha_{i}$, i.e., $\boldsymbol{b} \in F_{i}$.
Denote by J the set of those j 's in $\{1, \ldots, m\}$ for which $\boldsymbol{a}_{j} \cdot \boldsymbol{b}<\alpha_{j}$. Let E be the intersection of all those facets of A which contain \boldsymbol{b}. Since $\boldsymbol{b} \in F_{i}$ if and only if $B \subseteq F_{i}$, the set E is the intersection of all those facets of A which contain B. Hence E is a face of A which contains B. Choose $r>0$ such that, for each $j \in J$,

$$
B(\boldsymbol{b} ; r) \subseteq\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{a}_{j} \cdot \boldsymbol{x}<\alpha_{j}\right\} .
$$

This inclusion, together with the trivial inclusions aff $E \subseteq$ aff A and $\operatorname{aff} E \subseteq\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{a}_{i} \cdot \boldsymbol{x}=\alpha_{i}\right\}$, for $i \in I$, show that $B(\boldsymbol{b} ; r) \cap$ aff $E \subseteq E$. Hence, $\boldsymbol{b} \in \mathrm{ri} E$. Thus, $\boldsymbol{b} \in \mathrm{ri} B \cap \mathrm{ri} E$. So $B=E$.

Proof of the Theorem (Parts (v)-(vii))

(v) This follows easily from (iv), since A has only m facets and each of these is an exposed face of A.
(vi) This follows from the facts that each proper face of A is the intersection of A with one of its support hyperplanes, and the intersection of two polyhedral sets is itself a polyhedral set.
(vii) B_{j} is a proper face of the polyhedral set B_{k}.

By (iv), there is some facet B_{k-1} of B_{k} which contains B_{j}.
If $j=k-2$, then the proof is complete.
Otherwise, repeat this last argument $k-j-2$ more times to obtain the desired faces B_{k-2}, \ldots, B_{j+1}.

The General Case

- The preceding theorem concerns polyhedral sets which are not flats.
- It is convenient, however, to have a statement of the main properties of general polyhedral sets.

Theorem

Let A be a polyhedral set in \mathbb{R}^{n}. Then A has a finite number of faces, each of which is exposed and is a polyhedral set. Every proper face of A is the intersection of those facets of A that contain it, and rebd A is the union of all the facets of A. If A has a non-empty face of dimension s, then A has faces of all dimensions from s to $\operatorname{dim} A$.

- The theorem is trivially true when A is a flat.

When A is not a flat, it follows easily from the preceding theorem.

Characterization of Polyhedral Sets

Theorem

Let A be a closed convex set in \mathbb{R}^{n} which has only a finite number of exposed faces. Then A is a polyhedral set.

- If A has no proper exposed faces, then it must be a flat, which is polyhedral.
Suppose, then, that A has proper exposed faces B_{1}, \ldots, B_{m}. Let H_{1}, \ldots, H_{m} be support hyperplanes to A such that $B_{1}=A \cap H_{1}, \ldots$, $B_{m}=A \cap H_{m}$. For each $i=1, \ldots, m$, let J_{i} be the closed halfspace of \mathbb{R}^{n} bounded by H_{i}, which contains A.
Define a polyhedral set P by the equation

$$
P=J_{1} \cap \cdots \cap J_{m} \cap \operatorname{aff} A
$$

We show that $A=P$.

Characterization of Polyhedral Sets (Cont'd)

- Clearly, $A \subseteq P$. Suppose that $P \nsubseteq A$. Then there is a point \boldsymbol{p} lying in $P \backslash A$. Let $\boldsymbol{a} \in \operatorname{ri} A$. Since A is closed and $\boldsymbol{p} \in \operatorname{aff} A$, there exists $\lambda \in(0,1)$ such that the point $\boldsymbol{b}=\lambda \boldsymbol{p}+(1-\lambda) \boldsymbol{a}$ belongs to rebd A. By a previous theorem, there is some $i \in\{1, \ldots, m\}$ such that $\boldsymbol{b} \in B_{i}$. Now H_{i} is a face of $J_{i}, \boldsymbol{b} \in H_{i}$, and $\boldsymbol{p}, \boldsymbol{a} \in J_{i}$. Hence, $\boldsymbol{a} \in H_{i}$. Thus, $\boldsymbol{a} \in B_{i}$. This is impossible, since \boldsymbol{a} cannot be both a relative interior point of A and a member of one of its proper faces! Hence $P \subseteq A$, and A is the polyhedral set P.

Corollary

A closed convex set in \mathbb{R}^{n} which has only a finite number of faces is a polyhedral set.

Characterization of Polytopes

Theorem

A set in \mathbb{R}^{n} is a polytope if and only if it is a bounded polyhedral set.

- Each polytope in \mathbb{R}^{n} is compact and has a finite number of faces. So, by the preceding corollary, it must be a bounded polyhedral set.
Conversely, every bounded polyhedral set in \mathbb{R}^{n} is compact and has a finite number of faces. In particular, it has a finite number of extreme points. So, by a previous theorem, it must be a polytope.

Corollary

The intersection of two polytopes in \mathbb{R}^{n} is a polytope.

- In view of the theorem, the corollary simply states the obvious fact that the intersection of two bounded polyhedral sets is a bounded polyhedral set.

Subsection 3

Pyramids, Bipyramids and Prisms

Number of k-Faces of a Polytope

- We denote by $f_{k}(P)$ the number of k-faces (faces of dimension k) of an r-polytope P.
- Then

$$
f_{-1}(P)=f_{r}(P)=1, \quad f_{k}(P)=0 \text { when } k<-1 \text { or } k>r .
$$

- Our results will lead us to anticipate Euler's relation, which asserts that,

$$
f_{-1}(P)-f_{0}(P)+\cdots+(-1)^{r+1} f_{r}(P)=0
$$

for any non-empty r-polytope P.

- This will be proved in a later section.

The Case of Simplexes

- Let S be a non-empty r-simplex in \mathbb{R}^{n}.
- Then $S=$ conv V for some affinely independent set V of $r+1$ points of \mathbb{R}^{n}.
- For each $k=-1,0, \ldots, r$, the k-faces of S are precisely those sets of the form conv W, where W is a subset of V having $k+1$ points.
- Thus, $f_{k}(S)$ equals the number of ways of choosing $k+1$ points from a set of $r+1$ points.
- Hence, using the standard notation for the binomial coefficients, we see that $f_{k}(S)=\binom{r+1}{k+1}=\frac{(r+1)!}{(k+1)!(r-k)!}$.
- By the Binomial Theorem, for all real x,

$$
(1+x)^{r+1}=f_{-1}(S)+f_{0}(S) x+\cdots+f_{r}(S) x^{r+1} .
$$

- Setting $x=-1$ in this equation, we deduce that

$$
f_{-1}(S)-f_{0}(S)+\cdots+(-1)^{r+1} f_{r}(S)=0
$$

Pyramids in \mathbb{R}^{n}

- Let Q be a nonempty $(r-1)$-polytope in \mathbb{R}^{n}.
- Let \boldsymbol{x} be a point of \mathbb{R}^{n} not lying in aff Q.
- Then the r-pyramid P with apex x and base Q is defined to be the r-polytope $\operatorname{conv}(\{\boldsymbol{x}\} \cup Q)$.
- We say that P is obtained from Q by applying the cone construction with apex x.

Numbers of Faces of a Pyramid

Theorem

Let P be an r-pyramid in \mathbb{R}^{n} with apex \boldsymbol{x} and base a non-empty $(r-1)$-polytope Q. Then

$$
f_{k}(P)=f_{k}(Q)+f_{k-1}(Q), \text { for } k=-1, \ldots, r .
$$

- We show first that, for $A, B \subseteq \operatorname{aff} Q,(\operatorname{aff}(\{x\} \cup A)) \cap B=(\operatorname{aff} A) \cap B$.

Consider the non-trivial case when A is non-empty. If \boldsymbol{b} lies in the set on the left-hand side, then there exist $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m} \in A$ and $\lambda, \lambda_{1}, \ldots$, $\lambda_{m} \in \mathbb{R}$ with $\lambda+\lambda_{1}+\cdots+\lambda_{m}=1$ such that $\boldsymbol{b}=\lambda \boldsymbol{x}+\lambda_{1} \boldsymbol{a}_{1}+\cdots+\lambda_{m} \boldsymbol{a}_{m}$. If $\lambda \neq 0$, then the last equation can be rearranged to express \boldsymbol{x} as an affine combination of points of aff Q. This contradicts the (implied) hypothesis that $\boldsymbol{x} \notin \operatorname{aff} Q$. Thus, $\lambda=0$. So $\boldsymbol{b} \in(\operatorname{aff} A) \cap B$. It follows that $(\operatorname{aff}(\{\boldsymbol{x}\} \cap A)) \cap B \subseteq(\operatorname{aff} A) \cap B$. The opposite inclusion is clear.

Numbers of Faces of a Pyramid (Cont'd)

- Denote by V the vertex set of Q. Then $P=\operatorname{conv}(\{\boldsymbol{x}\} \cup V)$. By a previous corollary, $\{\boldsymbol{x}\}$ and Q are faces of P. Hence, each of the $f_{k}(Q) k$-faces of Q is also a k-face of P. Thus, the set of extreme points of P is $\{\boldsymbol{x}\} \cup V$.
Suppose that $W \subseteq V$ is such that conv W is one of the $f_{k-1}(Q)$ $(k-1)$-faces of Q. Then by the equation just proved,

$$
(\operatorname{aff}(\{\boldsymbol{x}\} \cup W)) \cap \operatorname{conv}(V \backslash W)=(\operatorname{aff} W) \cap \operatorname{conv}(V \backslash W)=\varnothing
$$

This shows that $\operatorname{conv}(\{\boldsymbol{x}\} \cup W)$ is a k-face of P.
It now follows that

$$
f_{k}(P) \geq f_{k}(Q)+f_{k-1}(Q)
$$

Numbers of Faces of a Pyramid (Cont'd)

- Suppose next that $W \subseteq V$ is such that either conv W or $\operatorname{conv}(\{\boldsymbol{x}\} \cup W)$ is a face of P (every face of P must be of one of these two forms). Then either

$$
(\operatorname{aff} W) \cap \operatorname{conv}(\{\boldsymbol{x}\} \cup(V \backslash W))=\varnothing,
$$

or

$$
(\operatorname{aff} W) \cap \operatorname{conv}(V \backslash W)=\varnothing
$$

In both cases $(\operatorname{aff} W) \cap \operatorname{conv}(V \backslash W)=\varnothing$. This shows that $\operatorname{conv} W$ is a face of Q. Thus, each face of P is either a face of Q or the convex hull of \boldsymbol{x} and a face of Q. Hence,

$$
f_{k}(P) \leq f_{k}(Q)+f_{k-1}(Q)
$$

The conclusion follows.

Example

- The formula of the preceding theorem is easily verified for a 3-pyramid P in \mathbb{R}^{3} which has for base an m-sided convex polygon.
- Here $f_{0}(Q)=m, f_{1}(Q)=m$;
- $f_{0}(P)=m+1, f_{1}(P)=2 m, f_{2}(P)=m+1$.
- We note that P satisfies Euler's relation:

$$
\begin{aligned}
& f_{-1}(P)-f_{0}(P)+f_{1}(P)-f_{2}(P)+f_{3}(P) \\
& \quad=1-(m+1)+(2 m)-(m+1)+1=0
\end{aligned}
$$

Two-Fold Pyramids

- Suppose now that P is an r-pyramid with base an $(r-1)$-polytope Q, and that Q is an $(r-1)$-pyramid with base an $(r-2)$-polytope S.
- So P is obtained from S by applying the cone construction twice.
- We say that P is:
- a 2-fold r-pyramid with 2-base S, or
- a 1-fold r-pyramid with 1-base Q.
- The preceding theorem shows that, for $k=-1, \ldots, r$,

$$
\begin{aligned}
f_{k}(P) & =f_{k}(Q)+f_{k-1}(Q) \\
& =f_{k}(S)+f_{k-1}(S)+f_{k-1}(S)+f_{k-2}(S) \\
& =f_{k}(S)+2 f_{k-1}(Q)+f_{k-2}(S)
\end{aligned}
$$

Multi-Fold Pyramids

- Let P be an r-polytope in $\mathbb{R}^{n}(r=1, \ldots, n)$.
- Let Q be an $(r-s)$-polytope in $\mathbb{R}^{n}(s=1, \ldots, r)$.
- Then P is said to be an s-fold r-pyramid with s-base Q if it can be obtained from Q by applying the cone construction s times.
- A simple induction argument, using the preceding theorem, shows that, for an s-fold r-pyramid P with s-base Q, we have

$$
f_{k}(P)=\sum_{i=1}^{s}\binom{s}{i} f_{k-i}(Q), \quad k=-1, \ldots, r
$$

- Clearly, an r-fold r-pyramid is an r-simplex.
- An $(r-1)$-fold r-pyramid has a line segment for an $(r-1)$-base.

A line segment is itself a 1-fold 1-pyramid.
So each $(r-1)$-fold r-pyramid is an r-fold r-pyramid, i.e. an r-simplex.

Bipyramids in \mathbb{R}^{n}

- Let I be a line segment in \mathbb{R}^{n} and let Q be an $(r-1)$-polytope in \mathbb{R}^{n} such that $I \cap Q$ is a single point which is a relative interior point of both I and Q.
- Then the r-bipyramid P with axis I and base Q is defined to be the r-polytope $\operatorname{conv}(I \cup Q)$.
- We say that P is obtained from Q by applying the double-cone construction with axis l.

Numbers of Faces of a Bipyramid

- Suppose that $I=\operatorname{conv}\{\boldsymbol{a}, \boldsymbol{b}\}$, where \boldsymbol{a} and \boldsymbol{b} are distinct points of \mathbb{R}^{n}.
- Then an argument similar to that used in the proof of the preceding theorem shows that:
- The k-faces $(k=-1, \ldots, r-2)$ of P are precisely the k-faces of Q and the k-polytopes of the form $\operatorname{conv}(\{\boldsymbol{a}\} \cup F)$ or $\operatorname{conv}(\{\boldsymbol{b}\} \cup F)$, where F is a $(k-1)$-face of Q.
- The $(r-1)$-faces of P are simply the $(r-1)$-polytopes $\operatorname{conv}(\{\boldsymbol{a}\} \cup F)$ and $\operatorname{conv}(\{\boldsymbol{b}\} \cup F)$, where F is an $(r-2)$-face of Q.
- We thus arrive at the following result.

Theorem

Let P be an r-bipyramid in \mathbb{R}^{n} with axis I and base a non-empty $(r-1)$-polytope Q. Then

$$
\begin{aligned}
f_{k}(P) & =f_{k}(Q)+2 f_{k-1}(Q), \text { for } k=-1, \ldots, r-2, \\
f_{r-1}(P) & =2 f_{r-2}(Q) .
\end{aligned}
$$

Example

- The formula of the preceding theorem is easily verified for a 3-bipyramid P in \mathbb{R}^{3} which has for base an m-sided convex polygon Q.
- Here $f_{0}(Q)=m, f_{1}(Q)=m$;
- $f_{0}(P)=m+2, f_{1}(P)=3 m, f_{2}(P)=2 m$.
- We note that P satisfies Euler's relation:

$$
\begin{aligned}
& f_{-1}(P)-f_{0}(P)+f_{1}(P)-f_{2}(P)+f_{3}(P) \\
& \quad=1-(m+2)+(3 m)-(2 m)+1=0 .
\end{aligned}
$$

Multi-Fold Bipyramids

- Let P be an r-polytope in $\mathbb{R}^{n}(r=1, \ldots, n)$.
- Let Q be an $(r-s)$-polytope in $\mathbb{R}^{n}(s=1, \ldots, r)$.
- Then P is said to be an s-fold r-bipyramid with s-base Q if it can be obtained from Q by applying the double-cone construction s times.
- An $(r-1)$-fold r-bipyramid has a line segment for an $(r-1)$-base.

A line segment is itself a 1-fold 1-bipyramid.
So each $(r-1)$-fold r-bipyramid is also an r-fold r-bipyramid.

The r-Crosspolytope

- The simplest example of an r-fold r-bipyramid is the r-crosspolytope.
- Consider the r-crosspolytope P in $\mathbb{R}^{n}(r=1, \ldots, n)$, which is the convex hull of r linearly independent line segments $\operatorname{conv}\left\{\boldsymbol{a}_{1}, \boldsymbol{b}_{1}\right\}, \ldots$, $\operatorname{conv}\left\{\boldsymbol{a}_{r}, \boldsymbol{b}_{r}\right\}$ (i.e., the vectors $\boldsymbol{a}_{1}-\boldsymbol{b}_{1}, \ldots, \boldsymbol{a}_{r}-\boldsymbol{b}_{r}$ are linearly independent) whose midpoints coincide.
- The facial structure of P is easily described:
- For each $k=0, \ldots, r-1$, let $I=\left\{i_{1}, \ldots, i_{k+1}\right\}$ be a subset of $\{1, \ldots, r\}$ which has $k+1$ points and let $T=\left\{\boldsymbol{x}_{i_{1}}, \ldots, \boldsymbol{x}_{i_{k+1}}\right\}$ be such that each $\boldsymbol{x}_{i_{j}}$ is either $\boldsymbol{a}_{i_{j}}$ or $\boldsymbol{b}_{i_{j}}$ for $j=1, \ldots, k+1$.
- Then conv T is a k-face of P and all k-faces of P arise in this way.
- Since there are $\binom{r}{k+1}$ possibilities for the set I and each I gives rise to 2^{k+1} possibilities for the set T, it follows that

$$
f_{k}(P)=2^{k+1}\binom{r}{k+1}, \quad k=1, \ldots, r-1
$$

Prisms in \mathbb{R}^{n}

- Let Q be a non-empty $(r-1)$-polytope in \mathbb{R}^{n}.
- Let \boldsymbol{x} be a point of \mathbb{R}^{n} which does not lie in the subspace of \mathbb{R}^{n} which is parallel to aff Q.
- Let $/$ be the line segment $\operatorname{conv}\{\mathbf{0}, \boldsymbol{x}\}$.
- Then the r-prism P with axis I and base Q is defined to be the r-polytope $Q+I$ or, equivalently, $\operatorname{conv}(Q \cup(Q+\boldsymbol{x}))$.
- We say that P is obtained from Q by applying the prism construction with axis l.

Numbers of Faces of Prisms

- An argument similar to that used in the proof of the preceding theorems shows that the k-faces $(k=1, \ldots, r)$ of P are precisely the k-faces of Q and its translate $Q+\boldsymbol{x}$, together with k-polytopes of the form $F+l$, where F is a $(k-1)$-face of Q.
- We thus arrive at the following result.

Theorem

Let P be an r-prism in \mathbb{R}^{n} with axis $/$ and base a nonempty $(r-1)$-polytope Q. Then

$$
\begin{aligned}
f_{k}(P) & =2 f_{k}(Q)+f_{k-1}(Q), \quad k=1, \ldots, r, \\
f_{0}(P) & =2 f_{0}(Q) .
\end{aligned}
$$

Example

- The formulas of the preceding theorem are easily verified for a 3-prism P in \mathbb{R}^{3} which has for base an m-sided convex polygon Q.
- Here $f_{0}(Q)=m, f_{1}(Q)=m$;
- $f_{0}(P)=2 m, f_{1}(P)=3 m, f_{2}(P)=m+2$.
- We note that P satisfies Euler's relation:

$$
\begin{aligned}
& f_{-1}(P)-f_{0}(P)+f_{1}(P)-f_{2}(P)+f_{3}(P) \\
& \quad=1-2 m+3 m-(m+2)+1=0 .
\end{aligned}
$$

Multi-Fold Prisms

- Let P be an r-polytope in $\mathbb{R}^{n}(r=1, \ldots, n)$ and let Q be an $(r-s)$-polytope in $\mathbb{R}^{n}(s=1, \ldots, r)$.
- Then P is said to be an s-fold r-prism with s-base Q if it can be obtained from Q by applying the prism construction s times.
- An $(r-1)$-fold r-prism has a line segment for an $(r-1)$-base.

A line segment is itself a 1-fold 1-prism.
So each $(r-1)$-fold r-prism is also an r-fold r-prism.

Parallelotopes

- An r-fold r-prism P in $\mathbb{R}^{n}(r=1, \ldots, n)$ is called an r-parallelotope and has the form

$$
P=x+\left\{\lambda_{1} x_{1}+\cdots+\lambda_{r} x_{r}: 0 \leq \lambda_{1}, \ldots, \lambda_{r} \leq 1\right\},
$$

where $\boldsymbol{x} \in \mathbb{R}^{n}$ and $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{r}$ are linearly independent vectors in \mathbb{R}^{n}.

- Thus:
- A 2-parallelotope in \mathbb{R}^{2} is a parallelogram;
- A 3-parallelotope in \mathbb{R}^{3} is a parallelepiped.
- If $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{r}$ are pairwise orthogonal, P is known as an r-orthotope.
- If, in addition, $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{r}$ have the same length, P is called an r-cube.
- A simple induction argument, using the preceding theorem, shows that, for any r-parallelotope P in \mathbb{R}^{n}, we have

$$
f_{k}(P)=2^{r-k}\binom{r}{k}, \quad k=0, \ldots, r .
$$

Subsection 4

Cyclic Polytopes

k-Neighborly Polytopes

- Any polytope having more than k vertices which is such that every k-membered subset of its vertex set determines one of its faces, is said to be k-neighborly.
- Thus n-simplexes ($n \geq 1$) are n-neighborly.

The Moment Curve

- The moment curve M_{n} in \mathbb{R}^{n} is determined parametrically by the equation

$$
\boldsymbol{x}(t)=\left(t, t^{2}, \ldots, t^{n}\right), \text { for all real } t
$$

- Clearly, this sets up a bijection between the set \mathbb{R} of real numbers and the set M_{n} of points on the moment curve.
- This bijection induces an ordering on M_{n} which is isomorphic to the standard ordering on \mathbb{R}.
- Having now made this remark, we shall in future refer to the ordering of points on M_{n} exactly as if they were real numbers.
- For example, if points $\boldsymbol{x}\left(t_{1}\right), \boldsymbol{x}\left(t_{2}\right), \boldsymbol{x}\left(t_{3}\right)$ on M_{n} are such that $t_{1}<t_{2}<t_{3}$, then we shall say that $\boldsymbol{x}\left(t_{2}\right)$ lies between $\boldsymbol{x}\left(t_{1}\right)$ and $\boldsymbol{x}\left(t_{3}\right)$.

Affine Independence of Points on Moment Curve

Theorem

Each set of $n+1$ or fewer points on the moment curve M_{n} in \mathbb{R}^{n} is affinely independent.

- For $i=0,1, \ldots, n$, let $\boldsymbol{x}\left(t_{i}\right)=\left(t_{i}, t_{i}^{2}, \ldots, t_{i}^{n}\right)$, where $t_{0}<t_{1}<\cdots<t_{n}$. We must show that $\left\{\boldsymbol{x}\left(t_{0}\right), \boldsymbol{x}\left(t_{1}\right), \ldots, \boldsymbol{x}\left(t_{n}\right)\right\}$ is affinely independent. This is equivalent to the non-vanishing of the $(n+1) \times(n+1)$ determinant

$$
\left|\begin{array}{rrrrr}
1 & t_{0} & t_{0}^{2} & \cdots & t_{0}^{n} \\
1 & t_{1} & t_{1}^{2} & \cdots & t_{1}^{n} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & t_{n} & t_{n}^{2} & \cdots & t_{n}^{n}
\end{array}\right| .
$$

It is a well-known result of elementary algebra that this determinant, called Vandermonde's determinant, equals $\prod_{0 \leq i<j \leq n}\left(t_{j}-t_{i}\right)$. Hence, it is non-zero.

Cyclic Polytopes

- A cyclic polytope $C(v, n)$ is the convex hull of $v(v \geq n+1)$ distinct points on the moment curve M_{n} in \mathbb{R}^{n}.
- Strictly speaking, $C(v, n)$ is a whole family of polytopes, all of the same combinatorial type.
- Our first result is that cyclic polytopes are simplicial. This means that all of their proper faces are simplexes.
- Examples of simplicial polytopes are:
- simplexes;
- bipyramids with simplicial bases;
- crosspolytopes.

Cyclic Polytopes are Simplicial

Theorem

Cyclic polytopes are simplicial.

- Let F be a proper face of a cyclic polytope $C(v, n)$ in \mathbb{R}^{n}. Then $F=\operatorname{conv}\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right\}$ for some distinct points $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}$ $(1 \leq m<v)$ on the moment curve M_{n}.
Since the face F is proper, the set $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right\}$ cannot contain an affinely independent subset of more than n points.
Hence, by the preceding theorem, $m \leq n$ and $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right\}$ is affinely independent.
Thus F is a simplex, showing that $C(v, n)$ is simplicial.

Points, Vertices and Faces

Theorem

Let $C(v, n)$ be the convex hull of the distinct points $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{v}(v \geq n+1$ ≥ 3) on the moment curve M_{n} in \mathbb{R}^{n}. Let k be an integer satisfying $1 \leq k \leq \frac{1}{2} n$. Then each set of k points of $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{v}\right\}$, determines a ($k-1$)-face of $C(v, n)$ and x_{1}, \ldots, x_{v} are the vertices of $C(v, n)$.

- It suffices to show that $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}$ determine a $(k-1)$-face of $C(v, n)$. For each $i=1, \ldots, k$, let $\boldsymbol{x}_{i}=\left(t_{i}, t_{i}^{2}, \ldots, t_{i}^{n}\right)$. Define a polynomial p for real t by the equation

$$
p(t)=\left(t-t_{1}\right)^{2}\left(t-t_{2}\right)^{2} \cdots\left(t-t_{k}\right)^{2}
$$

say $p(t)=t^{2 k}+a_{2 k-1} t^{2 k-1}+\cdots+a_{1} t+a_{0}$, where $a_{0}, a_{1}, \ldots, a_{2 k-1} \in \mathbb{R}$. Clearly, $p(t) \geq 0$, for all real t, and $p(t)=0$ if and only if t has one of the values t_{1}, \ldots, t_{k}.

Points, Vertices and Faces (Cont'd)

- It follows that the hyperplane with equation

$$
a_{0}+a_{1} x_{1}+\cdots+a_{2 k-1} x_{2 k-1}+x_{2 k}=0
$$

is a support hyperplane to $C(v, n)$ which meets $C(v, n)$ in the set $\operatorname{conv}\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}$. Thus $\operatorname{conv}\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}$ is a face of $C(v, n)$. By a previous theorem, $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}$ is affinely independent. So $\operatorname{conv}\left\{x_{1}, \ldots, x_{k}\right\}$ is a $(k-1)$-simplex.
That $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{v}$ are vertices of $C(v, n)$ follows from the result just proved with $k=1$.

Number of Faces

Corollary

The cyclic polytope $C(v, n)$ in $\mathbb{R}^{n}(v \geq n+1 \geq 3)$ has $\binom{v}{k}(k-1)$-faces, when k is an integer satisfying $1 \leq k \leq \frac{1}{2} n$.

- By the preceding theorem, each set of k vertices of $C(v, n)$ determines one of its $(k-1)$-faces.
Conversely, by the pre-preceding theorem, each $(k-1)$-face of $C(v, n)$ is the convex hull of some k of its vertices.
Thus $C(v, n)$ has as many $(k-1)$-faces as there are ways of choosing a subset of k points from a set of v points, namely $\binom{v}{k}$.

Gale's Evenness Condition

- We saw that each proper face of a polytope is the intersection of those facets of the polytope which contain that face.
- Thus the facial structure of a polytope is completely determined by the vertex sets of its facets.
- We now give a simple criterion for determining which sets of vertices of a cyclic polytope determine one of its facets.

Theorem (Gale's Evenness Condition)

Let W be a set of n points of the vertex set V of a cyclic polytope $C(v, n)$ in $\mathbb{R}^{n}(v \geq n+1)$. Then $\operatorname{conv} W$ is a facet of $C(v, n)$ if and only if each two points of $V \backslash W$ are separated on the moment curve M_{n} by an even number of points of W.

- Let W consist of the n points $\left(t_{i}, t_{i}^{2}, \ldots, t_{i}^{n}\right)$ for $i=1, \ldots, n$.

Gale's Evenness Condition (Cont'd)

- Consider the real polynomial p defined (for real t) by the equation

$$
p(t)=\left(t-t_{1}\right) \cdots\left(t-t_{n}\right)=t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0},
$$

where $a_{0}, a_{1}, \ldots, a_{n-1} \in \mathbb{R}$. Then the hyperplane H in \mathbb{R}^{n} that contains W has equation $a_{0}+a_{1} x_{1}+\cdots+a_{n-1} x_{n-1}+x_{n}=0$.
Now conv W will be a facet of $C(v, n)$ if and only if H is a support hyperplane to $C(v, n)$. This will be the case if and only if all the numbers $p(t)$, where t is such that $\left(t, t^{2}, \ldots, t^{n}\right) \in V \backslash W$, have the same sign. As t increases through all real values, the polynomial p changes sign precisely when t passes through one of the values t_{1}, \ldots, t_{n}. Thus $p(r)$ and $p(s)$, where r and s are unequal real numbers that are not equal to any of the values t_{1}, \ldots, t_{n}, will have the same sign if and only if an even number of t_{1}, \ldots, t_{n} lie between r and s.

Example: Number of Facets of $C(7,4)$

- We use Gale's evenness condition to calculate the number of facets of the cyclic polytope $C(7,4)$.
- This is equivalent to finding how many subsets W of a totally ordered set V of seven elements there are having four elements, and which are such that between any two elements of $V \backslash W$ there is an even number of elements of W.
- The totality of such subsets W of V is illustrated in the figure, where V is represented by the numbers $1,2,3,4,5,6,7$ on the real line with their usual ordering, and where the points of W are marked by asterisks.
- There are 14 such sets W, and so $C(7,4)$ has 14 facets.

Example (Cont'd)

- Since each proper face of $C(7,4)$ is an intersection of facets of $C(7,4)$, we find that $C(7,4)$ has 282 -faces corresponding to the following subsets of V :

$$
\begin{array}{llll}
\{1,2,3\}, & \{1,2,4\}, & \{1,2,5\}, & \{1,2,6\}, \\
\{1,2,7\}, & \{1,3,4\}, & \{1,3,7\}, & \{1,4,5\}, \\
\{1,4,7\}, & \{1,5,6\}, & \{1,5,7\}, & \{1,6,7\}, \\
\{2,3,4\}, & \{2,3,5\}, & \{2,3,6\}, & \{2,3,7\}, \\
\{2,4,5\}, & \{2,5,6\}, & \{2,6,7\}, & \{3,4,5\}, \\
\{3,4,6\}, & \{3,4,7\}, & \{3,5,6\}, & \{3,6,7\}, \\
\{4,, 5,6\}, & \{4,5,7\}, & \{4,6,7\}, & \{5,6,7\} .
\end{array}
$$

- By the upper bound theorem, no 4-polytope with 7 vertices has more than $C(7,4)=28$ 2-faces.

Example (Cont'd)

- By a previous corollary, $C(7,4)$ has $\binom{7}{2}=21$ 1-faces.
- Thus, denoting the polytope $C(7,4)$ by P, we find that

$$
\begin{gathered}
f_{-1}(P)-f_{0}(P)+f_{1}(P)-f_{2}(P)+f_{3}(P)-f_{4}(P) \\
=1-7+21-28+14-1=0
\end{gathered}
$$

This verifies Euler's relation for $C(7,4)$.

Number of Facets of $C(v, n)$

Theorem

The cyclic polytope $C(v, n)$ in $\mathbb{R}^{n}(v \geq n+1)$ has $\frac{v}{v-d}\binom{v-d}{d}$ or $2\binom{v-d-1}{d}$ facets, according as $n=2 d$ is even or $n=2 d+1$ is odd.

- We first establish a simple combinatorial lemma. Let $A=\{1, \ldots, r\}$, $B=\{1, \ldots, r-s\}$, where r, s are integers satisfying $r \geq 1$ and $0 \leq 2 s \leq r$. Then a subset of A is said to be s-paired if it has the form

$$
\left\{i_{1}, i_{1}+1, i_{2}, i_{2}+1, \ldots, i_{s}, i_{s}+1\right\}
$$

where $i_{1}<i_{1}+1<i_{2}<i_{2}+1<\cdots<i_{s}<i_{s}+1$. The empty set (corresponding to $s=0$) is considered to be 0-paired. By associating with each such s-paired set the subset $\left\{i_{1}, i_{2}-1, \ldots, i_{s}-(s-1)\right\}$ of B, we set up a bijection between the s-paired subsets of A and the subsets of B having s elements. Thus A has $\binom{r-s}{s} s$-paired subsets.

Number of Facets of $C(v, n)$ (Cont'd)

- By Gale's condition the number of facets of $C(v, n)$ is the number of subsets W of $V=\{1, \ldots, v\}$ with n elements, such that between any two integers of $V \backslash W$ there is an even number of integers of W.
For this proof only, we refer to such a subset W of V as a facet of V.
We need to determine the number of facets W of V.
- Suppose $n=2 d$ is even. Then the facets W of V are of two types:
- W is a d-paired subset of V, or
- $W \backslash\{1, v\}$ is a $(d-1)$-paired subset of $\{2, \ldots, v-1\}$.

Conversely, each d-paired subset of V is a facet of V, and each ($d-1$)-paired subset of $\{2, \ldots, v-1\}$, when augmented with 1 and v, is a facet of V. By the combinatorial lemma, V has $\binom{v-d}{d}$ facets of the first type and $\binom{v-2-(d-1)}{d-1}=\binom{v-d-1}{d-1}$ facets of the second type.
Thus the total number of the facets of V is

$$
\binom{v-d}{d}+\binom{v-d-1}{d-1}=\frac{(v-d)!}{(v-2 d)!d!}+\frac{(v-d-1)!}{(v-2 d)!(d-1)!}=\frac{v}{v-d}\binom{v-d}{d}
$$

Number of Facets of $C(v, n)$ (Cont'd)

- Suppose $n=2 d+1$ is odd.

Again the facets W of V are of two types:

- $W \backslash\{1\}$ is a d-paired subset of $\{2, \ldots, v\}$, or
- $W \backslash\{v\}$ is a d-paired subset of $\{1, \ldots, v-1\}$.

Conversely, each d-paired subset of $\{2, \ldots, v\}$, when augmented with 1 , is a facet of V, and each d-paired subset of $\{1, \ldots, v-1\}$, when augmented with v, is a facet of V.
The number of facets of V of either type is $\binom{v-1-d}{d}$. Hence, the total number of facets of V is $2\binom{v-1-d}{d}$.

k-Neighborly Polytopes

- Let k be a positive integer.
- Then a polytope in \mathbb{R}^{n} (having more than k vertices) is said to be k-neighborly if every set of k of its vertices determines a face of the polytope.
- Thus:
- Each r-polytope $(r \geq 1)$ is 1-neighborly;
- Each r-simplex $(r \geq 1)$ is r-neighborly.
- A previous theorem shows that the cyclic polytope $C(v, n)$, where $v \geq n+1 \geq 3$, is $\left[\frac{1}{2} n\right]$-neighborly - here $\left[\frac{1}{2} n\right]$ denotes the greatest integer not exceeding $\frac{1}{2} n$.

Vertices of Neighborly Polytopes

Theorem

Let P be a k-neighborly polytope in \mathbb{R}^{n}. Then every set of k vertices of P is affinely independent and each $(k-1)$-face of P is a $(k-1)$-simplex.

- Suppose that $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$ are k vertices of P which are affinely dependent, say $\boldsymbol{v}_{k} \in \operatorname{aff}\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k-1}\right\}$. Since P has more than k vertices, there is a vertex \boldsymbol{v}_{0} of P different from $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$. Since P is k-neighborly, $\operatorname{conv}\left\{\boldsymbol{v}_{0}, \ldots, \boldsymbol{v}_{k-1}\right\}$ is a face of P.
By a previous theorem, $\boldsymbol{v}_{k} \notin \operatorname{aff}\left\{\boldsymbol{v}_{0}, \ldots, \boldsymbol{v}_{k-1}\right\}$, a contradiction. Thus every set of k vertices of P is affinely independent.
Suppose now that F is a $(k-1)$-face of P. Then F must contain an affinely independent subset W consisting of precisely k vertices of P. Since P is k-neighborly, conv W is a $(k-1)$-face of P. Hence it is a face of F. But F has only one $(k-1)$-dimensional face, namely itself. Thus, $F=\operatorname{conv} W$. So F is a $(k-1)$-simplex.

k - and j-Neighborliness for $j \leq k$

Corollary

Let P be a k-neighborly polytope in \mathbb{R}^{n} with v vertices. Let $j \in\{1, \ldots, k\}$. Then P is j-neighborly and has $\binom{v}{j}(j-1)$-faces.

- Let X be a set of j vertices of P. Then $X \subseteq W$ for some set W of k vertices of P. Now conv W is a simplex and a face of P. Hence conv X is a face of conv W, and hence of P. So P is k-neighborly.
The k-neighborliness of P, together with the theorem, shows that P has as many $(j-1)$-faces as there are ways of choosing a set of j points from a set of v points. So P has $\binom{v}{j}(j-1)$-faces.

Characterization of k-Neighborly Polytopes

- We now show that the only n-polytopes which are more neighbourly than the general cyclic polytope $C(v, n)$ are the n-simplexes.

Theorem

Let P be an n-polytope in \mathbb{R}^{n} which is k-neighborly for some k with $k>\left[\frac{1}{2} n\right]$. Then P is an n-simplex.

- Suppose that P is not an n-simplex. Then the vertex set V of P must contain some subset W of $n+2$ points. By Radon's Theorem, W can be partitioned into two subsets X and Y with $(\operatorname{conv} X) \cap(\operatorname{conv} Y) \neq \varnothing$. One of X and Y, X say, has no more than $\left[\frac{1}{2} n\right]+1$ points. The corollary shows that conv X is a face of P. Hence, by a previous theorem,

$$
(\operatorname{conv} X) \cap(\operatorname{conv} Y) \subseteq(\operatorname{aff} X) \cap(\operatorname{conv}(V \backslash X))=\varnothing
$$

This is a contradiction. Thus P is an n-simplex.

A Consequence

Corollary

Let P be an n-neighborly $2 n$-polytope in $\mathbb{R}^{2 n}$. Then P is simplicial.

- Let F be a facet of P. Then F is an n-neighborly $(2 n-1)$-polytope. So, exactly as in the proof of the theorem, F is a simplex.
But each proper face of P is a face of some facet of P.
Thus, each proper face of P must be a simplex.
So P is simplicial.

Subsection 5

Euler's Relation

Choice of Non-Perpendicular Vector

Lemma

Let $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ be a finite set of nonzero vectors in \mathbb{R}^{n}. There exists a vector \boldsymbol{a} in \mathbb{R}^{n}, which is not perpendicular to any of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$.

- We recursively construct reals α_{k} and vectors \boldsymbol{x}_{k}, such that, for all $k=1, \ldots, m, \boldsymbol{x}_{k}=\sum_{i=1}^{k} \alpha_{i} \boldsymbol{a}_{i}$ is not perpendicular to any of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}$. Set $\alpha_{1}=1$ and $\boldsymbol{x}_{1}=\alpha_{1} \boldsymbol{a}_{1}$. Clearly $\boldsymbol{x}_{1} \cdot \boldsymbol{a}_{1} \neq 0$.
Assume $\boldsymbol{x}_{k}=\sum_{i=1}^{k} \alpha_{i} \boldsymbol{a}_{i}$ is not perpendicular to any of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}$. For $i=1, \ldots, k+1$, set $c_{i}=\boldsymbol{x}_{k} \cdot \boldsymbol{a}_{i}$. By hypothesis, $c_{i} \neq 0, i=1, \ldots, k$.
- If $c_{k+1} \neq 0$, let $\alpha_{k+1}=0$. So $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}$. Moreover, \boldsymbol{x}_{k+1} is not perpendicular to any of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k+1}$.
- If $c_{k+1}=0$, choose $\alpha_{k+1} \neq 0$, with $\alpha_{k+1} \boldsymbol{a}_{k+1} \cdot \boldsymbol{a}_{i} \neq-c_{i}, i=1, \ldots, k$.
- For $i=1, \ldots, k, \boldsymbol{x}_{k+1} \cdot \boldsymbol{a}_{i}=\boldsymbol{x}_{k} \cdot \boldsymbol{a}_{i}+\alpha_{k+1} \boldsymbol{a}_{k+1} \cdot \boldsymbol{a}_{i}=c_{i}+\alpha_{k+1} \boldsymbol{a}_{k+1} \cdot \boldsymbol{a}_{i} \neq 0$.
- For $i=k+1, x_{k+1} \cdot a_{k+1}=x_{k} \cdot a_{k+1}+\alpha_{k+1} a_{k+1} \cdot a_{k+1}=$

$$
c_{k+1}+\alpha_{k+1} \boldsymbol{a}_{k+1} \cdot \boldsymbol{a}_{k+1}=\alpha_{k+1} \boldsymbol{a}_{k+1} \cdot \boldsymbol{a}_{k+1} \neq 0
$$

So \boldsymbol{x}_{k+1} is not perpendicular to any of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k+1}$.

Choice of Vector With Distinct Inner Products

Corollary

Let $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ be a finite set of distinct vectors in \mathbb{R}^{n}. There exists a vector \boldsymbol{a} in \mathbb{R}^{n}, such that, for all $1 \leq i<j \leq m, \boldsymbol{a} \cdot \boldsymbol{a}_{i} \neq \boldsymbol{a} \cdot \boldsymbol{a}_{j}$.

- Consider the collection

$$
A=\left\{\boldsymbol{a}_{j}-\boldsymbol{a}_{i}: 1 \leq i<j \leq m\right\}
$$

of $\frac{m(m-1)}{2}$ nonzero vectors.
By the lemma, there exists \boldsymbol{a} in \mathbb{R}^{n}, such that

$$
\boldsymbol{a} \cdot\left(\boldsymbol{a}_{j}-\boldsymbol{a}_{i}\right) \neq 0, \text { for all } 1 \leq i<j \leq m
$$

Therefore, this a satisfies

$$
\mathbf{a} \cdot \mathbf{a}_{i} \neq \mathbf{a} \cdot \mathbf{a}_{j}, \text { for all } 1 \leq i<j \leq m .
$$

Euler's Relation

Theorem (Euler's Relation)

Let P be a non-empty r-polytope in \mathbb{R}^{n}. Then

$$
f_{-1}(P)-f_{0}(P)+\cdots+(-1)^{r+1} f_{r}(P)=0
$$

where $f_{k}(P)$ denotes the number of k-faces of P.

- We argue by induction on r.

The theorem is trivial when $r=0$, since $f_{-1}(P)=1, f_{0}(P)=1$, and when $r=1$, since $f_{-1}(P)=1, f_{0}(P)=2, f_{1}(P)=1$.
Suppose that the theorem has been established for polytopes of dimension $r-1$, where $r \geq 2$.
Let P be an r-polytope $(r \geq 2)$ in \mathbb{R}^{n} with vertices $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{v}$.
By the preceding corollary, we may choose a vector \boldsymbol{a} in \mathbb{R}^{n} such that the scalars $\boldsymbol{a} \cdot \boldsymbol{a}_{1}, \ldots, \boldsymbol{a} \cdot \boldsymbol{a}_{v}$ are distinct.

Euler's Relation (Cont'd)

- Suppose that the vertices of P are labeled so that $\boldsymbol{a} \cdot \boldsymbol{a}_{1}<\cdots<\boldsymbol{a} \cdot \boldsymbol{a}_{V}$. Define hyperplanes $H_{1}, H_{3}, \ldots, H_{2 v-1}$ in \mathbb{R}^{n} by the equations

$$
H_{2 k-1}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{a} \cdot \boldsymbol{x}=\boldsymbol{a} \cdot \boldsymbol{a}_{k}\right\}, \quad k=1, \ldots, v .
$$

Choose scalars $c_{1}, c_{2}, \ldots, c_{v-1}$ such that

$$
\boldsymbol{a} \cdot \boldsymbol{a}_{1}<c_{1}<\boldsymbol{a} \cdot \boldsymbol{a}_{2}<c_{2}<\cdots<c_{v-1}<\boldsymbol{a} \cdot \boldsymbol{a}_{v} .
$$

Define hyperplanes $H_{2}, H_{4}, \ldots, H_{2 v-2}$ in \mathbb{R}^{n} by the equations

$$
H_{2 k}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{a} \cdot \boldsymbol{x}=c_{k}\right\}, \quad k=1, \ldots, v-1 .
$$

Euler's Relation (Cont'd)

- This situation for a two-dimensional polytope with six vertices is illustrated on the right.
The following observations about the hyperplanes $H_{1}, H_{2}, \ldots, H_{2 v-1}$ are immediate:

(i) They are distinct and parallel to one another;
(ii) Each of the hyperplanes $H_{1}, H_{3}, \ldots, H_{2 v-1}$, contains just one vertex of P;
(iii) H_{1} and $H_{2 v-1}$ are support hyperplanes to P which meet P in a single point;
(iv) The set $P \cap H_{k}$, for $k=2,3, \ldots, 2 v-2$, is an ($r-1$)-polytope, P_{k} say;
(v) None of the polytopes $P_{2}, P_{4}, \ldots, P_{2 v-2}$ contains a vertex of P.

Euler's Relation (Cont'd)

- For each j-face F_{j} of P, where $j=1, \ldots, r$, and for each polytope P_{i}, where $i=2,3, \ldots, 2 v-2$, define an integer $\psi\left(F_{j}, P_{i}\right)$ to be 1 if ri F_{j} meets P_{i}, and 0 otherwise.
For each j-face F_{j} of P, where $j=1, \ldots, r$, denote by s and t, respectively, the smallest and largest integers i amongst $1,2, \ldots, 2 v-1$ for which H_{i} meets F_{j}.
Clearly s and t are odd with $s<t$, and $\psi\left(F_{j}, P_{i}\right)=1$ precisely when $s<i<t$. Thus, $\sum_{i=2}^{2 v-2}(-1)^{i} \psi\left(F_{j}, P_{i}\right)=\sum_{i=s+1}^{t-1}(-1)^{i}=1$. So, for each fixed $j=1, \ldots, r$,

$$
\sum_{j \text {-faces }}\left(\sum_{i=2}^{2 v-2}(-1)^{i} \psi\left(F_{j}, P_{i}\right)\right)=f_{j}(P)
$$

where the summation is over all the j-faces F_{j} of P_{i}. Hence

$$
\sum_{j=1}^{r}(-1)^{j}\left(\sum_{j \text {-faces }}\left(\sum_{i=2}^{2 v-2}(-1)^{i} \psi\left(F_{j}, P_{i}\right)\right)\right)=\sum_{j=1}^{r}(-1)^{j} f_{j}(P)
$$

Euler's Relation (Cont'd)

- We now find an alternative expression for the left-hand side. If i is one of $2,4, \ldots, 2 v-2$ or $1<j \leq r$, then the number of ($j-1$)-faces of P_{i} is the same as the number of j-faces of P whose relative interiors meet P_{i}.
If i is one of $1,3, \ldots, 2 v-1$, then the number of vertices of P, is one more than the number of edges of P whose relative interiors meet P_{i}. These observations are summarized in the following equations, where it is assumed that i is one of $2,3, \ldots, 2 v-2 ; j$ is one of $1, \ldots, r$, and $f_{k}\left(P_{j}\right)$ denotes the number of k-faces of P_{i} :

$$
\sum_{j \text {-faces }} \psi\left(F_{j}, P_{i}\right)= \begin{cases}f_{j-1}\left(P_{i}\right), & \text { if } i \text { is even or } 1<j \leq r \\ -1+f_{j-1}\left(P_{i}\right), & \text { if } i \text { is odd and } j=1\end{cases}
$$

Hence,

$$
\sum_{j=1}^{r}(-1)^{j}\left(\sum_{j \text { faces }} \psi\left(F_{j}, P_{i}\right)\right)= \begin{cases}\sum_{j=1}^{r}(-1)^{j} f_{j-1}\left(P_{i}\right), & \text { if } i \text { is even } \\ 1+\sum_{j=1}^{r}(-1)^{j} f_{j-1}\left(P_{i}\right), & \text { if } i \text { is odd }\end{cases}
$$

Euler's Relation (Cont'd)

- By the induction hypothesis, $\sum_{j=-1}^{r-1}(-1)^{j} f_{j}\left(P_{i}\right)=0$. So $1+\sum_{j=1}^{r}(-1)^{j} f_{j-1}\left(P_{i}\right)=0$. Hence,

$$
\sum_{j=1}^{r}(-1)^{j}\left(\sum_{j \text {-faces }} \psi\left(F_{j}, P_{i}\right)\right)= \begin{cases}-1, & \text { if } i \text { is even } \\ 0, & \text { if } i \text { is odd. }\end{cases}
$$

So

$$
\sum_{i=2}^{2 v-2}(-1)^{i}\left(\sum_{j=1}^{r}(-1)^{j}\left(\sum_{j \text {-faces }} \psi\left(F_{j}, P_{i}\right)\right)\right)=1-v .
$$

Comparing the two main equations, we deduce that

$$
\sum_{j=1}^{r}(-1)^{j} f_{j}(P)=1-v=f_{-1}(P)-f_{0}(P)
$$

So $\sum_{j=-1}^{r}(-1)^{j} f_{j}(P)=0$.

Outline of a Generalization

- Suppose that F is a k-face of an r-polytope $P(-1 \leq k<r)$ and that $h_{i}(F)$ denotes the number of i-faces of P containing F.
- For example, if F is a vertex of a cube P in \mathbb{R}^{3}, then this vertex belongs to three edges and three facets of P.
So in this case: $h_{0}(F)=1, h_{1}(F)=3, h_{2}(F)=3, h_{3}(F)=1$.
We note that

$$
h_{0}(F)-h_{1}(F)+h_{2}(F)-h_{3}(F)=1-3+3-1=0 .
$$

- This suggests that we consider the alternating sum

$$
h_{k}(F)-h_{k+1}(F)+\cdots+(-1)^{r-k} h_{r}(F)
$$

in the general case.

- We will show that this alternating sum is always zero.
- This generalizes Euler's relation, which corresponds to the case when F is the empty face of P.

Polar Duality for Polytopes

- Let P be an r-polytope $(r \geq 1)$ in \mathbb{R}^{r} containing the origin as an interior point.
- Then the polar dual P^{*} of P is a compact convex set in \mathbb{R}^{r} containing the origin as an interior point.
- Suppose that P has extreme points $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$.
- Then $P=\operatorname{conv}\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}$ and P^{*} is the intersection of the m closed half spaces $\boldsymbol{a}_{i} \cdot \boldsymbol{x} \leq 1$ for $i=1, \ldots, m$, whence P^{*} is a polyhedral set.
- Thus P^{*} is a bounded polyhedral set, i.e., a polytope.

Polar Duality for Polytopes (Cont'd)

- Suppose further that F_{i} is an i-face of $P(i=1, \ldots, r)$.
- Then a previous theorem shows that there exists a sequence $F_{-1}, \ldots, F_{i}, \ldots, F_{r}$ of $r+2$ faces of P such that

$$
F_{-1} \subset \cdots \subset F_{i} \subset \cdots \subset F_{r} .
$$

- Denote by φ the polar face mapping of P.
- φ is an inclusion-reversing bijection from the family of faces of P to the family of faces of P^{*}.
- So $\varphi\left(F_{-1}\right) \ldots, \varphi\left(F_{i}\right), \ldots, \varphi\left(F_{r}\right)$ is a sequence of $r+2$ faces of P^{*} with

$$
\varphi\left(F_{r}\right) \subset \cdots \subset \varphi\left(F_{i}\right) \subset \cdots \subset \varphi\left(F_{-1}\right) .
$$

- It follows from a previous corollary that $\operatorname{dim} \varphi\left(F_{i}\right)=r-i-1$.
- Hence, the number of i-faces of P is the same as the number of $(r-i-1)$-faces of P^{*}.

Generalization of Euler's Theorem

Theorem

Let F be a k-face of an r-polytope $P(k=1, \ldots, r-1)$ in \mathbb{R}^{n}. Then

$$
h_{k}(F)-h_{k+1}(F)+\cdots+(-1)^{r-k} h_{r}(F)=0,
$$

where $h_{i}(F), i=k, \ldots, r$, denotes the number of i-faces of P containing F.

- We may assume, without loss of generality, that $r=n$ and that P contains the origin as an interior point.
Denote by φ the polar face mapping of P. Then the number $h_{i}(F)$ of i-faces of P containing F is the same as the number $f_{n-i-1}(\varphi(F))$ of ($n-i-1$)-faces of $\varphi(F)$. Euler's relation applied to the polytope $\varphi(F)$ shows that

$$
\begin{aligned}
& h_{n}(F)-h_{n-1}(F)+\cdots+(-1)^{n-k} h_{k}(F) \\
& \quad=f_{-1}(\varphi(F))-f_{0}(\varphi(F))+\cdots+(-1)^{n-k} f_{n-1-k}(\varphi(F))=0 .
\end{aligned}
$$

Linear Relation Between Numbers of Faces

- Euler's relation shows that, for every r-polytope $P(r \geq 1)$, the numbers $f_{0}(P), \ldots, f_{r-1}(P)$ of faces of P of dimensions $0, \ldots, r-1$, respectively, satisfy the linear equation

$$
f_{0}(P)-f_{1}(P)+\cdots+(-1)^{r-1} f_{r-1}(P)=1-(-1)^{r} .
$$

- We now prove that this is essentially the only linear equation which is satisfied by the numbers $f_{0}(P), \ldots, f_{r-1}(P)$ for all r-polytopes $P(r \geq 1)$.

Theorem

Let r be a positive integer. Suppose that $\alpha_{0}, \ldots, \alpha_{r}$ are real numbers such that the numbers $f_{i}(P)$ of the i-faces $(i=0, \ldots, r-1)$ of any r-polytope P satisfy the equation

$$
\alpha_{0} f_{0}(P)+\alpha_{1} f_{1}(P)+\cdots+\alpha_{r-1} f_{r-1}(P)=\alpha_{r} .
$$

Then $\alpha_{1}=-\alpha_{0}, \alpha_{2}=\alpha_{0}, \ldots, \alpha_{r-1}=(-1)^{r-1} \alpha_{0}, \alpha_{r}=\left(1-(-1)^{r}\right) \alpha_{0}$.

Proof

- We argue by induction on r.

The theorem is trivially true when $r=1$, for in this case $f_{0}(P)=2$ for all 1-polytopes.
Suppose, then, that the theorem has been proved for the case when r is some positive integer k, and that $\alpha_{0} \ldots, \alpha_{k+1}$ are real numbers such that

$$
\alpha_{0} f_{0}(P)+\alpha_{1} f_{1}(P)+\cdots+\alpha_{k} f_{k}(P)=\alpha_{k+1}
$$

for all $(k+1)$-polytopes P.
Let Q be any k-polytope. Let S be a $(k+1)$-pyramid with base combinatorially equivalent to Q. Let T be a $(k+1)$-bipyramid with base combinatorially equivalent to Q. Previous theorems show that

$$
\begin{aligned}
f_{i}(S) & =f_{i-1}(Q)+f_{i}(Q), \quad i=0, \ldots, k \\
f_{i}(T) & =2 f_{i-1}(Q)+f_{i}(Q), \quad i=0, \ldots, k-1, \\
f_{k}(T) & =2 f_{k-1}(Q) .
\end{aligned}
$$

Proof (Cont'd)

- Write the equation above for S and T :

$$
\begin{aligned}
& \alpha_{0} f_{0}(S)+\alpha_{1} f_{1}(S)+\cdots+\alpha_{k} f_{k}(S)=\alpha_{k+1} \text { and } \\
& \alpha_{0} f_{0}(T)+\alpha_{1} f_{1}(T)+\cdots+\alpha_{k} f_{k}(T)=\alpha_{k+1} .
\end{aligned}
$$

Substituting the preceding values for $f_{i}(S)$ and $f_{i}(T)$,

$$
\begin{aligned}
& \alpha_{0}\left(f_{-1}(Q)+f_{0}(Q)\right)+\alpha_{1}\left(f_{0}(Q)+f_{1}(Q)\right)+\cdots \\
& \quad+\alpha_{k}\left(f_{k-1}(Q)+f_{k}(Q)\right)=\alpha_{k+1} \text { and } \\
& \alpha_{0}\left(2 f_{-1}(Q)+f_{0}(Q)\right)+\alpha_{1}\left(2 f_{0}(Q)+f_{1}(Q)\right)+\cdots \\
& \quad+\alpha_{k-1}\left(2 f_{k-2}(Q)+f_{k-1}(Q)\right)+\alpha_{k} 2 f_{k-1}(Q)=\alpha_{k+1} .
\end{aligned}
$$

Subtracting, we find $\alpha_{0}\left(f_{-1}(Q)+f_{0}(Q)-2 f_{-1}(Q)-f_{0}(Q)\right)+$ $\alpha_{1}\left(f_{0}(Q)+f_{1}(Q)-2 f_{0}(Q)-f_{1}(Q)\right)+\cdots+\alpha_{k-1}\left(f_{k-2}(Q)+f_{k-1}(Q)-\right.$ $\left.2 f_{k-2}(Q)-f_{k-1}(Q)\right)+\alpha_{k}\left(f_{k-1}(Q)+f_{k}(Q)-2 f_{k-1}(Q)\right)=0$.
Equivalently,

$$
-\alpha_{0} f_{-1}(Q)-\alpha_{1} f_{0}(Q)-\cdots-\alpha_{k-1} f_{k-2}(Q)-\alpha_{k} f_{k-1}(Q)+\alpha_{k} f_{k}(Q)=0
$$

Proof (Conclusion)

- We got the equation

$$
-\alpha_{0} f_{-1}(Q)-\alpha_{1} f_{0}(Q)-\cdots-\alpha_{k-1} f_{k-2}(Q)-\alpha_{k} f_{k-1}(Q)+\alpha_{k} f_{k}(Q)=0
$$

Taking into account $f_{-1}(Q)=1$ and $f_{k}(Q)=1$, we get

$$
\alpha_{1} f_{0}(Q)+\alpha_{2} f_{1}(Q)+\cdots+\alpha_{k} f_{k-1}(Q)=\alpha_{k}-\alpha_{0}
$$

This equation holds for all k-polytopes Q. By induction,

$$
\alpha_{2}=-\alpha_{1}, \alpha_{3}=\alpha_{1}, \ldots, \alpha_{k}=(-1)^{k-1} \alpha_{1}, \alpha_{k}-\alpha_{0}=\left(1-(-1)^{k}\right) \alpha_{1} .
$$

So $\alpha_{1}=-\alpha_{0}$. Now the original equation can be written in the form

$$
\alpha_{0}\left(f_{0}(P)-f_{1}(P)+\cdots+(-1)^{k} f_{k}(P)\right)=\alpha_{k+1}
$$

But Euler's relation applied to any $(k+1)$-polytope P shows that

$$
f_{0}(P)-f_{1}(P)+\cdots+(-1)^{k} f_{k}(P)=1-(-1)^{k+1} .
$$

Hence $\alpha_{k+1}=\left(1-(-1)^{k+1}\right) \alpha_{0}$.

Dehn-Sommerville Equations

- The Euler relation is the only linear equation satisfied by the numbers of faces of various dimensions of every polytope with a given dimension.
- The Dehn-Sommerville equations are satisfied by the numbers of faces of various dimensions of every simplicial polytope with a given dimension.

Theorem (Dehn-Sommerville Equations)

Let P be a simplicial r-polytope $(r \geq 1)$ in \mathbb{R}^{n}. Then

$$
\sum_{j=k}^{r-1}(-1)^{j}\binom{j+1}{k+1} f_{j}(P)=(-1)^{r-1} f_{k}(P), \quad k=-1, \ldots, r-2
$$

- For each k-face F of $P(k=-1, \ldots, r-2)$, consider the equation $h_{k}(F)-h_{k+1}(F)+\cdots+(-1)^{r-k} h_{r}(F)=0$, given in a previous theorem.

Dehn-Sommerville Equations

- We add together these equations corresponding to all the k-faces F of P to deduce that

$$
h_{k}-h_{k+1}+\cdots+(-1)^{r-k} h_{r}=0
$$

where $h_{j}(j=k, \ldots, r)$ denotes the total number of inclusions of the form $F_{k} \subseteq F_{j}$, where F_{k} and F_{j} are, respectively, k - and j-faces of P.

- If $j<r$, then each of the $f_{j}(P) j$-faces of P is a j-simplex. So it has $\binom{j+1}{k+1} k$-faces. Hence $h_{j}=\binom{j+1}{k+1} f_{j}(P)$.
- If $j=r$, then the only j-face of P is P itself. P has $f_{k}(P) k$-faces. So $h_{r}=f_{k}(P)$.
We now get $\binom{k+1}{k+1} f_{k}(P)-\binom{k+2}{k+1} f_{k+1}(P)+\cdots+(-1)^{r-k-1}\binom{r}{k+1} f_{r-1}(P)$
$+(-1)^{r-k} f_{k}(P)=0$, i.e., $\sum_{j=k}^{r-1}(-1)^{j-k}\binom{j+1}{k+1} f_{j}(P)=(-1)^{r-k-1} f_{k}(P)$.
Multiplying both sides by $(-1)^{k}$,

$$
\sum_{j=k}^{r-1}(-1)^{j}\binom{j+1}{k+1} f_{j}(P)=(-1)^{r-1} f_{k}(P)
$$

Special Cases

- The Dehn-Sommerville equation corresponding to $k=-1$ is simply the Euler relation.
- We derive the Dehn-Sommerville equations corresponding to $k=0, \ldots, r-1$ for simplicial r-polytopes P with $r=2,3,4$.
- For $r=2$ and $k=0$, we get:

$$
f_{0}(P)-2 f_{1}(P)=-f_{0}(P)
$$

This is the same as the Euler relation.

- For $r=3$ and $k=0$, we get:

$$
f_{0}(P)-2 f_{1}(P)+3 f_{2}(P)=f_{0}(P) .
$$

For $r=3$ and $k=1$, we get:

$$
-f_{1}(P)+3 f_{2}(P)=f_{1}(P)
$$

These are the same as one another, but essentially different from the Euler relation.

Special Cases (Cont'd)

- For $r=4$ and $k=0$, we get:

$$
f_{0}(P)-2 f_{1}(P)+3 f_{2}(P)-4 f_{3}(P)=-f_{0}(P) .
$$

For $r=4$ and $k=1$, we get:

$$
-f_{1}(P)+3 f_{2}(P)-6 f_{3}(P)=-f_{1}(P)
$$

For $r=4$ and $k=2$, we get:

$$
f_{2}(P)-4 f_{3}(P)=-f_{2}(P)
$$

The last two of these are the same.
The first one can be deduced from Euler's relation and the second (or third) equation.

Regular 3-Polytopes

- A 3-polytope P is said to be regular of type $(p \mid q)$ if there exist positive integers p, q with $p, q \geq 3$ such that:
- Each facet of P is a regular p-gon;
- Each vertex of P belongs to q such facets.
- Suppose now that P is a regular 3-polytope of type $(p \mid q)$ which has:
- v vertices;
- e edges;
- f facets.
- It follows immediately from a previous theorem that:
- Each edge of a 3-polytope is contained in precisely two of its facets;
- Each vertex of P belongs to precisely q of its edges.

Regular 3-Polytopes (Cont'd)

- Counting the edges of P by (i) vertices, and (ii) facets, in an obvious way, we find that $q v=2 e$ and $p f=2 e$.
- Now, using Euler's relation, we get

$$
\begin{aligned}
& 1-v+e-f+1=0 \quad \Rightarrow \quad 2-\frac{2 e}{q}+e-\frac{2 e}{p}=0 \\
& \Rightarrow \quad \frac{2 p q}{e}-2 p+2 p q-2 q=0 \quad \Rightarrow \quad 2 p q-2 p-2 q+4=4-\frac{2 p q}{e} \\
& \Rightarrow \quad(p-2)(q-2)=4-\frac{2 p q}{e}<4 .
\end{aligned}
$$

- The only possible types of regular 3-polytopes are: (3|3), (3|4), (4|3), (3|5) and (5|3).
- These types do indeed exist:
- The regular tetrahedron;
- The regular octahedron;
- The cube;
- The regular icosahedron;
- The regular dodecahedron.

Subsection 6

Gale Transforms

Affine Dependence and Cofaces

- An affine dependence of a sequence of points $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ in \mathbb{R}^{n} is a point $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ of \mathbb{R}^{m} such that

$$
\lambda_{1} \boldsymbol{a}_{1}+\cdots+\lambda_{m} \boldsymbol{a}_{m}=\mathbf{0} \quad \text { and } \quad \lambda_{1}+\cdots+\lambda_{m}=0
$$

- Clearly the zero vector of \mathbb{R}^{m} is an affine dependence of any sequence of points a_{1}, \ldots, a_{m} in \mathbb{R}^{n}.
- A subset W of the vertex set V of a polytope P in \mathbb{R}^{n} is called a coface of P if $\operatorname{conv}(V \backslash W)$ is a face of P.
- For example, every set comprising three vertices of a square in \mathbb{R}^{2} is a coface of that square.

Characterization of Cofaces

Theorem

Let $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ be the vertices of a polytope P in \mathbb{R}^{n}. Then $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{r}\right\}$, where $1 \leq r \leq m$, is a coface of P if and only if there is no affine dependence $\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$ of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ such that $\lambda_{1}, \ldots, \lambda_{r} \geq 0$ with at least one of $\lambda_{1}, \ldots, \lambda_{r}$ positive.

- Suppose that $\left\{\mathbf{a}_{1}, \ldots, \boldsymbol{a}_{r}\right\}$ is not a coface of P. Then, by a previous theorem, $\operatorname{conv}\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{r}\right\} \cap \operatorname{aff}\left\{\boldsymbol{a}_{r+1}, \ldots, \boldsymbol{a}_{m}\right\} \neq \varnothing$. Hence, there exist scalars μ_{1}, \ldots, μ_{m}, with $\mu_{1}, \cdots, \mu_{r} \geq 0, \mu_{1}+\cdots+\mu_{r}=1$ and $\mu_{r+1}+\cdots+\mu_{m}=1$ such that

$$
\mu_{1} \mathbf{a}_{1}+\cdots+\mu_{r} \mathbf{a}_{r}=\mu_{r+1} \mathbf{a}_{r+1}+\cdots+\mu_{m} \mathbf{a}_{m} .
$$

Let $\lambda_{1}=\mu_{1}, \ldots, \lambda_{r}=\mu_{r}$ and $\lambda_{r+1}=-\mu_{r+1}, \ldots, \lambda_{m}=-\mu_{m}$. Then $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is an affine dependence of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ with $\lambda_{1}, \ldots, \lambda_{r} \geq 0$ and at least one of $\lambda_{1}, \ldots, \lambda_{r}$ positive.

Characterization of Cofaces (Cont'd)

- Conversely, suppose that $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is an affine dependence of a_{1}, \ldots, a_{m} such that $\lambda_{1}, \ldots, \lambda_{r} \geq 0$ and at least one of $\lambda_{1}, \ldots, \lambda_{r}$ is positive.
Then

$$
\frac{\lambda_{1} \boldsymbol{a}_{1}+\cdots+\lambda_{r} \boldsymbol{a}_{r}}{\lambda_{1}+\cdots+\lambda_{r}}=\frac{\left(-\lambda_{r+1}\right) \boldsymbol{a}_{r+1}+\cdots+\left(-\lambda_{m}\right) \boldsymbol{a}_{m}}{\left(-\lambda_{r+1}\right)+\cdots+\left(-\lambda_{m}\right)} .
$$

Hence,

$$
\operatorname{conv}\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{r}\right\} \cap \operatorname{aff}\left\{\boldsymbol{a}_{r+1}, \ldots, \boldsymbol{a}_{m}\right\} \neq \varnothing
$$

So, by a previous theorem, $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{r}\right\}$ is not a coface of P.

Set of Affine Dependencies

- We denote the set of all affine dependencies of a sequence $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ in \mathbb{R}^{n} by $\mathfrak{a}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right)$.
- By the theorem, an exact description of $\mathfrak{a}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right)$ might be helpful in studying the facial structure of the polytope $\operatorname{conv}\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}$.
- Such a description is given in the following result, in which the statement that

$$
\text { the sequence } \boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m} \text { in } \mathbb{R}^{n} \text { is } n \text {-dimensional }
$$

means that the affine hull of its points is \mathbb{R}^{n}.

Dimensions of Sequences and Subspaces

Theorem

Let $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ be an n-dimensional sequence in \mathbb{R}^{n}. Then $\mathfrak{a}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right)$ is an $(m-n-1)$-dimensional subspace of \mathbb{R}^{m}.

- Denote the rows of the $(n+1) \times m$ matrix $\left[\begin{array}{ccc}\boldsymbol{a}_{1} & \cdots & \boldsymbol{a}_{m} \\ 1 & \cdots & 1\end{array}\right]$ in which $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ are considered column vectors, by $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n+1}$, considered as points of \mathbb{R}^{m}. Denote by S the row space of the matrix, i.e., the set of all linear combinations of its rows. Then

$$
\mathfrak{a}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right)=\left\{\boldsymbol{\lambda} \in \mathbb{R}^{m}: \boldsymbol{\lambda} \cdot \boldsymbol{b}_{i}=0 \text { for } i=1, \ldots, n+1\right\}=S^{\perp}
$$

Since $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ is n-dimensional, the column space of the matrix has dimension $n+1$. Hence, so too does S. Since $\operatorname{dim} S+\operatorname{dim} S^{\perp}=m$, $\mathfrak{a}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right)=S^{\perp}$ is an $(m-n-1)$-dimensional subspace of \mathbb{R}^{m}.

Finding All Affine Dependencies

- We now show how to find all the affine dependencies of an n-dimensional sequence $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ in $\mathbb{R}^{n}(m>n+1)$.
- It follows from the theorem that $\mathfrak{a}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right)$ has a basis consisting of $m-n-1$ vectors of \mathbb{R}^{m}, say

$$
\boldsymbol{x}_{1}=\left(x_{11}, \ldots, x_{1 m}\right), \ldots, \boldsymbol{x}_{m-n-1}=\left(x_{m-n-11}, \ldots, x_{m-n-1 m}\right)
$$

(The condition $m>n+1$ avoids an exceptional, but trivial case.)

- $\boldsymbol{\lambda} \in \mathfrak{a}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right)$ if and only if there exist scalars c_{1}, \ldots, c_{m-n-1}, such that

$$
\begin{aligned}
& \boldsymbol{\lambda}=c_{1}\left(x_{11}, \ldots, x_{1 m}\right)+\cdots+c_{m-n-1}\left(x_{m-n-11}, \ldots, x_{m-n-1 m}\right) \\
& =\left(c_{1} x_{11}+\cdots+c_{m-n-1} x_{m-n-11}, \ldots, c_{1} x_{1 m}+\cdots+c_{m-n-1} x_{m-n-1 m}\right) .
\end{aligned}
$$

- Write $\overline{\mathbf{a}}_{1}=\left(x_{11}, \ldots, x_{m-n-11}\right), \ldots, \overline{\mathbf{a}}_{m}=\left(x_{1 m}, \ldots, x_{m-n-1 m}\right)$.

Gale Transform

- Then we see that $\boldsymbol{\lambda}$ lies in $\mathfrak{a}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right)$ if and only if there exists a vector $\boldsymbol{c}=\left(c_{1}, \ldots, c_{m-n-1}\right)$ in \mathbb{R}^{m-n-1} such that $\boldsymbol{\lambda}=\left(\boldsymbol{c} \cdot \overline{\mathbf{a}}_{1}, \ldots, \boldsymbol{c} \cdot \overline{\mathbf{a}}_{m}\right)$.
- We have thus found a simple way of expressing all of the affine dependencies of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ in terms of $\overline{\boldsymbol{a}}_{1}, \ldots, \overline{\boldsymbol{a}}_{m}$.
- The sequence of vectors $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}$ in \mathbb{R}^{m-n-1} is called a Gale transform of the sequence $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ of vectors in \mathbb{R}^{n}.

Example

- We find a Gale transform of the sequence $\boldsymbol{a}_{1}=(1,0,0), \boldsymbol{a}_{2}=(0,1,0)$, $\boldsymbol{a}_{3}=(0,0,1), \boldsymbol{a}_{4}=(-1,0,0), \boldsymbol{a}_{5}=(0,-1,0), \boldsymbol{a}_{6}=(0,0,-1)$, which lists the vertices of a regular octahedron in \mathbb{R}^{3}.
- The subspace $\mathfrak{a}\left(a_{1}, \ldots, a_{6}\right)$ of \mathbb{R}^{6} consists of those points $\left(\lambda_{1}, \ldots, \lambda_{6}\right)$, which satisfy the simultaneous equations

$$
\begin{aligned}
\lambda_{1}-\lambda_{4} & =0 \\
\lambda_{2}-\lambda_{5} & =0 \\
\lambda_{3}-\lambda_{6} & =0 \\
\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{5}+\lambda_{6} & =0
\end{aligned}
$$

- The general solution to this system of linear equations can be expressed in the form

$$
\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}\right)=(\alpha, \beta,-(\alpha+\beta), \alpha, \beta,-(\alpha+\beta))
$$

where $\alpha, \beta \in \mathbb{R}$.

Example (Cont'd)

- Thus $\boldsymbol{x}_{1}=(1,0,-1,1,0,-1), \boldsymbol{x}_{2}=(0,1,-1,0,1,-1)$ form a basis for $\mathfrak{a}\left(a_{1}, \ldots, a_{6}\right)$, which has dimension $m-n-1=6-3-1=2$.
- The Gale transform derived from the above basis is the sequence

$$
\begin{aligned}
& \overline{\boldsymbol{a}}_{1}=(1,0), \overline{\boldsymbol{a}}_{2}=(0,1), \overline{\boldsymbol{a}}_{3}=(-1,-1), \\
& \overline{\mathbf{a}}_{4}=(1,0), \overline{\boldsymbol{a}}_{5}=(0,1), \overline{\mathbf{a}}_{6}=(-1,-1) .
\end{aligned}
$$

- We note that although the six points $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{6}$ are distinct, the points $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{6}$ are not.

Properties of Gale Transforms

Theorem

Let $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}$ be a Gale transform in \mathbb{R}^{m-n-1} of an n-dimensional sequence $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ in $\mathbb{R}^{n}(m>n+1)$. Then:
(i) A vector in \mathbb{R}^{m} is an affine dependence of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ if and only if it has the form ($\left.\boldsymbol{c} \cdot \overline{\mathbf{a}}_{1}, \ldots, \boldsymbol{c} \cdot \overline{\boldsymbol{a}}_{m}\right)$ for some $\boldsymbol{c} \in \mathbb{R}^{m-n-1}$;
(ii) The sequence $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}$ is $(m-n-1)$-dimensional;
(iii) $\overline{\mathbf{a}}_{1}+\cdots+\overline{\boldsymbol{a}}_{m}=\mathbf{0}$;
(iv) The origin of \mathbb{R}^{m-n-1} is an interior point of $\operatorname{conv}\left\{\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}\right\}$;
(v) Every open halfspace of \mathbb{R}^{m-n-1} whose bounding hyperplane passes through the origin contains at least one of the points $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}$.
(i) This result was established in the discussion following the preceding theorem, which motivated the definition of a Gale transform.

Properties of Gale Transforms ((ii) and (iii))

Let

$$
\boldsymbol{x}_{1}=\left(x_{11}, \ldots, x_{1 m}\right), \ldots, \boldsymbol{x}_{m-n-1}=\left(x_{m-n-11}, \ldots, x_{m-n-1 m}\right)
$$

be the basis for $\mathfrak{a}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right)$ for which

$$
\overline{\mathbf{a}}_{1}=\left(x_{11}, \ldots, x_{m-n-11}\right), \ldots, \overline{\boldsymbol{a}}_{m}=\left(x_{1 m}, \ldots, x_{m-n-1 m}\right) .
$$

Since $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m-n-1}$ are affine dependencies of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$, we have

$$
x_{11}+\cdots+x_{1 m}=\cdots=x_{m-n-11}+\cdots+x_{m-n-1 m}=0
$$

Hence $\overline{\mathbf{a}}_{1}+\cdots+\overline{\mathbf{a}}_{m}=\mathbf{0}$. The $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}$ can be identified with the rows of the matrix whose columns are $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m-n-1}$. The latter are linearly independent. Thus, $\overline{\boldsymbol{a}}_{1}, \ldots, \overline{\boldsymbol{a}}_{m}$ span \mathbb{R}^{m-n-1}.
Now $\mathbf{0}=\frac{1}{m}\left(\overline{\boldsymbol{a}}_{1}+\cdots+\overline{\boldsymbol{a}}_{m}\right)$. Hence, $\mathbf{0} \in$ aff $\left\{\overline{\boldsymbol{a}}_{1}, \ldots, \overline{\boldsymbol{a}}_{m}\right\}$. Thus, aff $\left\{\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}\right\}$ is a subspace of \mathbb{R}^{m-n-1} containing $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}$. Hence, it must be \mathbb{R}^{m-n-1}. So $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}$ is $(m-n-1)$-dimensional.

Properties of Gale Transforms ((iv) and (v))

(iv) A previous theorem and the equation $\mathbf{0}=\frac{1}{m}\left(\overline{\mathbf{a}}_{1}+\cdots+\overline{\mathbf{a}}_{m}\right)$ show that $\mathbf{0} \in \operatorname{ri}\left(\operatorname{conv}\left\{\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}\right\}\right)$. Hence from (ii), $\mathbf{0} \in \operatorname{int}\left(\operatorname{conv}\left\{\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}\right\}\right)$.
(v) Let H be a hyperplane in \mathbb{R}^{m-n-1} passing through the origin.

Denote by H^{-}and H^{+}the open halfspaces determined by H.
Suppose that H^{-}contains none of the points $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}$.
Then $\overline{\mathbf{a}}_{1}, \ldots, \overline{\boldsymbol{a}}_{m}$ lie in the closed half space $H \cup H^{+}$.
Hence conv $\left\{\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}\right\} \subseteq H \cup H^{+}$.
This, however, is incompatible with (iv).
Thus H^{-}must contain at least one of the points $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}$.

Relative Interior of the Convex Hull

Lemma

Let $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{r} \in \mathbb{R}^{n}$. Then $0 \in \operatorname{ri}\left(\operatorname{conv}\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{r}\right\}\right)$ if and only if there exists no $\boldsymbol{c} \in \mathbb{R}^{n}$ such that $\boldsymbol{c} \cdot \boldsymbol{a}_{1} \geq 0, \ldots, \boldsymbol{c} \cdot \boldsymbol{a}_{r} \geq 0$, with at least one of the inequalities being strict.

- Suppose that $\mathbf{0} \in \operatorname{ri}\left(\operatorname{conv}\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{r}\right\}\right)$. Then, by a previous theorem, there exist $\lambda_{1}, \ldots, \lambda_{r}>0$ such that $0=\lambda_{1} a_{1}+\cdots+\lambda_{r} a_{r}$. Clearly, there exists no $\boldsymbol{c} \in \mathbb{R}^{n}$ for which $\boldsymbol{c} \cdot \boldsymbol{a}_{1} \geq 0, \ldots, \boldsymbol{c} \cdot \boldsymbol{a}_{r} \geq 0$, with at least one of these inequalities being strict.
Conversely, suppose that $\mathbf{0} \notin \mathrm{ri}\left(\operatorname{conv}\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{r}\right\}\right)$. Then $\{\mathbf{0}\}$ and $\operatorname{conv}\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{r}\right\}$ can be properly separated. So there exist $\boldsymbol{c} \in \mathbb{R}^{n}$, $c_{0} \in \mathbb{R}$ such that $\boldsymbol{c} \cdot \mathbf{0}=0 \leq c_{0}$ and $\boldsymbol{c} \cdot \boldsymbol{a}_{1} \geq c_{0}, \ldots, \boldsymbol{c} \cdot \boldsymbol{a}_{r} \geq c_{0}$, where at least one of these $r+1$ inequalities is strict. If $c_{0}=0$, then at least one of the inequalities $\boldsymbol{c} \cdot \boldsymbol{a}_{1} \geq 0, \ldots, \boldsymbol{c} \cdot \boldsymbol{a}_{r} \geq 0$ must be strict. If $c_{0}>0$, then all of the inequalities $\boldsymbol{c} \cdot \boldsymbol{a}_{1} \geq 0, \ldots, \boldsymbol{c} \cdot \boldsymbol{a}_{r} \geq 0$ are strict. Thus, in every case, the required condition is met.

Cofaces and Gale Transforms

- Let $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}$ be a Gale transform of a vertex sequence $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ of some n-polytope in $\mathbb{R}^{n}(m>n+1)$.
- Then, for each subset W of $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}$, we define a set \bar{W} by the equation $\bar{W}=\left\{\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}\right\}$.

Theorem

Let $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}$ be a Gale transform in \mathbb{R}^{m-n-1} of a vertex sequence $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ of an n-polytope P in $\mathbb{R}^{n}(m>n+1)$. Then a subset W of $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}$ is a coface of P iff either \bar{W} is empty or $\mathbf{0} \in \operatorname{ri}(\operatorname{conv} \bar{W})$.

- We assume throughout the proof that $W=\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{r}\right\}$ for some r with $1 \leq r \leq m$. Suppose first that W is not a coface of P. By a previous theorem, there exists an affine dependence $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ such that $\lambda_{1}, \ldots, \lambda_{r} \geq 0$, with at least one of $\lambda_{1}, \ldots, \lambda_{r}$ positive. By Part (i) of the preceding theorem, $\boldsymbol{\lambda}_{1}=\boldsymbol{c} \cdot \overline{\boldsymbol{a}}_{1}, \ldots, \boldsymbol{\lambda}_{m}=\boldsymbol{c} \cdot \overline{\mathbf{a}}_{m}$ for some \boldsymbol{c} in \mathbb{R}^{m-n-1}. The lemma now shows that $0 \notin \mathrm{ri}(\operatorname{conv} \bar{W})$.

Cofaces and Gale Transforms (Cont'd)

- Suppose next that $\mathbf{0} \notin \mathrm{ri}(\operatorname{conv} \bar{W})$.

Then the lemma shows the existence of \boldsymbol{c} in \mathbb{R}^{m-n-1} such that $\boldsymbol{c} \cdot \overline{\boldsymbol{a}}_{1} \geq 0, \ldots, \boldsymbol{c} \cdot \overline{\mathbf{a}}_{r} \geq 0$, with at least one of the inequalities being strict.
Let $\lambda_{1}=\boldsymbol{c} \cdot \overline{\mathbf{a}}_{1}, \ldots, \lambda_{m}=\boldsymbol{c} \cdot \overline{\mathbf{a}}_{m}$.
Again by Part (i) of the preceding theorem, $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is an affine dependence of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$.
It now follows from a previous theorem that W is not a coface of P.

Gale Transforms and Open Halfspaces

Corollary

Let $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}$ be a Gale transform in \mathbb{R}^{m-n-1} of a vertex sequence $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ of an n-polytope P in $\mathbb{R}^{n}(m>n+1)$. Every open halfspace in \mathbb{R}^{m-n-1} whose bounding hyperplane passes through the origin contains at least two terms of the sequence $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}$.

- Let H be a hyperplane in \mathbb{R}^{m-n-1} passing through the origin. Denote by H^{-}and H^{+}the open halfspaces determined by H. Suppose that H^{-}contains fewer than two terms of $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}$. Part (v) of a previous theorem shows that H^{-}must contain precisely one term of $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}$, say the first one. Since \boldsymbol{a}_{1} is a vertex of P, the theorem shows that $0 \in \operatorname{ri}\left(\operatorname{conv}\left\{\overline{\mathbf{a}}_{2}, \ldots, \overline{\mathbf{a}}_{m}\right\}\right)$. This is impossible, because $\overline{\mathbf{a}}_{2}, \ldots, \overline{\mathbf{a}}_{m}$ lie in the closed halfspace $\mathrm{H} \cup \mathrm{H}^{+}$with at least one of them being in H^{+}, again by Part (v) of the same theorem. Thus, H^{-}must contain at least two terms of $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}$.

Example

- Consider again the Gale transform of the octahedron with vertices $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{6}$ discussed in the preceding example.
- By the preceding theorem, a subset W of $\left\{\mathbf{a}_{1}, \ldots, \boldsymbol{a}_{6}\right\}$ is a coface of the octahedron if and only if $0 \in \operatorname{ri}(\operatorname{conv} \bar{W})$.
- But this is the case if and only if W contains at least one of $\boldsymbol{a}_{1}, \boldsymbol{a}_{4}$, at least one of $\boldsymbol{a}_{1}, \boldsymbol{a}_{5}$, and at least one of $\boldsymbol{a}_{3}, \boldsymbol{a}_{6}$.
- Thus a non-empty subset of $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{6}\right\}$ determines a proper face of the octahedron if and only if contains at most one of $\boldsymbol{a}_{1}, \boldsymbol{a}_{4}$, at most one of $\boldsymbol{a}_{2}, \boldsymbol{a}_{5}$ and at most one of $\boldsymbol{a}_{3}, \boldsymbol{a}_{6}$.

Characterization of Gale Transforms

Theorem

A sequence $\overline{\mathbf{a}}_{1}, \ldots, \overline{\boldsymbol{a}}_{m}$ of points in $\mathbb{R}^{m-n-1}(m>n+1)$ is a Gale transform of a vertex sequence of some n-polytope in \mathbb{R}^{n} if and only if:

$$
\text { (i) } \overline{\mathbf{a}}_{1}+\cdots+\overline{\mathbf{a}}_{m}=\mathbf{0} \text {; }
$$

(ii) Every open halfspace in \mathbb{R}^{m-n-1} whose bounding hyperplane passes through the origin contains at least two terms of the sequence $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}$.

- The only if part of the theorem follows from a previous theorem and the preceding corollary.
Suppose, then, that $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}$ is a sequence of points in \mathbb{R}^{m-n-1} $(m>n+1)$ which satisfies conditions (i) and (ii) of the theorem. First, we find an n-dimensional sequence $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ in \mathbb{R}^{n} of which $\overline{\mathbf{a}}_{1}, \ldots, \overline{\boldsymbol{a}}_{m}$ is a Gale transform. This we do by reversing the procedure whereby the Gale transform of a sequence was constructed.

Characterization of Gale Transforms (Cont'd)

- Let

$$
\overline{\mathbf{a}}_{1}=\left(x_{11}, \ldots, x_{m-n-11}\right), \ldots, \overline{\mathbf{a}}_{m}=\left(x_{1 m}, \ldots, x_{m-n-1 m}\right) .
$$

Define points x_{1}, \ldots, x_{m-n-1} in \mathbb{R}^{m} by the equations

$$
\boldsymbol{x}_{1}=\left(x_{11}, \ldots, x_{1 m}\right), \ldots, \boldsymbol{x}_{m-n-1}=\left(x_{m-n-11}, \ldots, x_{m-n-1 m}\right) .
$$

Condition (ii) ensures that $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}$ span \mathbb{R}^{m-n-1}. Hence, $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m-n-1}$ form a basis for some ($m-n-1$)-dimensional subspace of \mathbb{R}^{m}, S say. Thus, S^{\perp} has dimension $m-(m-n-1)=n+1$. Condition (i) shows that $(1, \ldots, 1) \in S^{\perp}$. Hence $(1, \ldots, 1)$ can be extended by vectors $\left(a_{11}, \ldots, a_{m 1}\right), \ldots,\left(a_{1 n}, \ldots, a_{m n}\right)$ in \mathbb{R}^{m} to form a basis for S^{\perp}. Write

$$
\boldsymbol{a}_{1}=\left(a_{11}, \ldots, a_{1 n}\right), \ldots, \boldsymbol{a}_{m}=\left(a_{m 1}, \ldots, a_{m n}\right)
$$

Then $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ is an n-dimensional sequence in \mathbb{R}^{n} that has $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}$ for a Gale transform.

Characterization of Gale Transforms (Cont'd)

- We complete the proof by showing that $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ is a vertex sequence of the n-polytope conv $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}$.
To do this, we show that, for $i=1, \ldots, m$,

$$
\boldsymbol{a}_{i} \notin \operatorname{conv}\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{i-1}, \boldsymbol{a}_{i+1}, \ldots, \boldsymbol{a}_{m}\right\}
$$

Suppose that this is not so. Then, for some i in $\{1, \ldots, m\}$, there exists an affine dependence $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ with $\lambda_{i}=-1$ and $\lambda_{j} \geq 0$ for $j \in\{1, \ldots, m\} \backslash\{i\}$. By a previous theorem, there is \boldsymbol{c} in \mathbb{R}^{m-n-1} such that $\boldsymbol{c} \cdot \overline{\mathbf{a}}_{i}<0$ and $\boldsymbol{c} \cdot \overline{\mathbf{a}}_{j}=\lambda_{j}$ for $j \in\{1, \ldots, m\} \backslash\{i\}$.
Thus, the open halfspace

$$
\left\{\boldsymbol{z} \in \mathbb{R}^{m-n-1}: \boldsymbol{c} \cdot \boldsymbol{z}<0\right\}
$$

in \mathbb{R}^{m-n-1} has the origin on its boundary and contains only one term of the sequence $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}$, contradicting condition (ii). Therefore, $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ is a vertex sequence of the n-polytope $\operatorname{conv}\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\}$.

Gale Transforms and Simplicial Polytopes

Theorem

Let $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}$ be a Gale transform in \mathbb{R}^{m-n-1} of a vertex sequence $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ of an n-polytope P in $\mathbb{R}^{n}(m>n+1)$. Then P is simplicial if and only if the origin of \mathbb{R}^{m-n-1} cannot be expressed as a positive convex combination of fewer than $m-n$ terms of $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}$.

- P is simplicial if and only if it has no proper face with more than n vertices.
I.e., P is simplicial if and only if it has no non-empty coface with fewer than $m-n$ vertices.
Thus, by a previous theorem, P is simplicial if and only if the origin of \mathbb{R}^{m-n-1} cannot be expressed as a positive convex combination of fewer than $m-n$ terms of $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{m}$.

Gale Transforms and Combinatorial Types

- Since a Gale transform of a polytope contains full information about its combinatorial structure, the combinatorial type of a polytope can be determined from any one of its Gale transforms.
- Suppose that $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ and $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{m}$ are, respectively, vertex sequences of n-polytopes P and Q in $\mathbb{R}^{n}(m>n+1)$.
- Suppose that $\overline{\mathbf{a}}_{1}, \ldots, \overline{\boldsymbol{a}}_{m}$ and $\overline{\boldsymbol{b}}_{1}, \ldots, \overline{\boldsymbol{b}}_{m}$ are, respectively, Gale transforms of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ and $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{m}$.
- By the definition of combinatorial equivalence and a previous theorem, P and Q are combinatorially equivalent if and only if there is a permutation θ of $\{1, \ldots, m\}$ such that, for every subset J of $\{1, \ldots, m\}$,

$$
\mathbf{0} \in \operatorname{ri}\left(\operatorname{conv}\left\{\overline{\mathbf{a}}_{j}: j \in J\right\}\right) \quad \text { if and only if } \quad \mathbf{0} \in \operatorname{ri}\left(\operatorname{conv}\left\{\overline{\boldsymbol{b}}_{\theta(j)}: j \in /\right\}\right) .
$$

Number of Combinatorial Types of Polytopes

Theorem

There are $\left[\frac{1}{4} n^{2}\right]$ combinatorial types of n-polytopes with $n+2$ vertices and $\left[\frac{1}{2} n\right]$ of these are simplicial.

- Let $\overline{\mathbf{a}}_{1}, \ldots, \overline{\mathbf{a}}_{n+2}$ be a Gale transform in \mathbb{R}^{1} of a vertex sequence $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n+2}$ of an n-polytope P in \mathbb{R}^{n}. By a previous theorem, this transform is a sequence of $n+2$ real numbers whose sum is zero. Suppose that this sequence has r positive terms and s negative ones, so that $r \geq 2, s \geq 2$ and $r+2 \leq n+2$. We call such a sequence a G-sequence of type (r, s).

Number of Combinatorial Types of Polytopes (Cont'd)

- Suppose next that $\overline{\boldsymbol{b}}_{1}, \ldots, \overline{\boldsymbol{b}}_{n+2}$ is a Gale transform in \mathbb{R}^{1} of a vertex sequence $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n+2}$ of an n-polytope Q in \mathbb{R}^{n}.
Suppose $\overline{\boldsymbol{b}}_{1}, \ldots, \overline{\boldsymbol{b}}_{n+2}$ is a G-sequence of type (r^{\prime}, s^{\prime}).
In view of our preceding remarks on combinatorial equivalence, P and Q are combinatorially equivalent if and only if either $r=r^{\prime}$ and $s=s^{\prime}$ or $r=s^{\prime}$ and $s=r^{\prime}$.
A previous theorem shows that every G-sequence of $n+2$ terms of \mathbb{R}^{1} is a Gale transform of some n-polytope in \mathbb{R}^{n} with $n+2$ vertices.

Number of Combinatorial Types of Polytopes (Even n)

- Thus, the number of combinatorial types of n-polytopes with $n+2$ vertices equals the number of ordered pairs (r, s) of integers satisfying $s \geq r \geq 2$ and $r+s \leq n+2$.
We now calculate this number.
- When n is even, these ordered pairs are:

$$
\begin{aligned}
& (2, n),(2, n-1), \ldots,(2,3),(2,2) ; \\
& (3, n-1),(3, n-2), \ldots,(3,3) ; \\
& \vdots \\
& \left(\frac{1}{2}(n+2), \frac{1}{2}(n+2)\right) .
\end{aligned}
$$

The total number is

$$
\begin{aligned}
(n-1)+(n-3)+\cdots+1 & =1+2+\cdots+(n-1)-(2+4+\cdots+(n-2)) \\
& =1+2+\cdots+(n-1)-2\left(1+2+\cdots \frac{n-2}{2}\right) \\
& =\frac{n(n-1)}{2}-2 \frac{\frac{n-2}{2} \frac{n}{2}}{2}=\frac{n^{2}-n}{2}-\frac{n^{2}-2 n}{4}=\frac{1}{4} n^{2} .
\end{aligned}
$$

Number of Combinatorial Types of Polytopes (Odd n)

- The number of combinatorial types of n-polytopes with $n+2$ vertices equals the number of ordered pairs (r, s) of integers satisfying $s \geq r \geq 2$ and $r+s \leq n+2$.
- When n is odd, these ordered pairs are:

$$
\begin{aligned}
& (2, n),(2, n-1), \ldots,(2,3),(2,2) \\
& (3, n-1),(3, n-2), \ldots,(3,3) \\
& \vdots \\
& \left(\frac{1}{2}(n+1), \frac{1}{2}(n+3)\right),\left(\frac{1}{2}(n+1), \frac{1}{2}(n+1)\right) .
\end{aligned}
$$

The total number is

$$
\begin{aligned}
(n-1)+(n-3)+\cdots+2 & =2\left(1+2+\cdots \frac{n-1}{2}\right) \\
& =2 \frac{\frac{n-1}{2} \frac{n+1}{2}}{2}=\frac{1}{4}\left(n^{2}-1\right)
\end{aligned}
$$

In both cases, the required number is $\left[\frac{1}{4} n^{2}\right]$.

Number of Combinatorial Types of Polytopes (Cont'd)

- The preceding theorem shows that a G-sequence of $n+2$ terms which is of type (r, s) corresponds to a simplicial n-polytope with $n+2$ vertices if and only if $\mathbf{0}$ is not one of its terms, i.e., if and only if $r+s=n+2$.
Thus the number of combinatorial types of simplicial n-polytopes with $n+2$ vertices equals the number of ordered pairs (r, s) of integers such that $s \geq r \geq 2$ and $r+s=n+2$.
This number is $\frac{1}{2} n$ when n is even, and $\frac{1}{2}(n-1)$ when n is odd. In both cases it equals [$\frac{1}{2} n$].

Applications on Combinatorial Types

- The last theorem with $n=3$ shows that there are precisely two combinatorial types of 3-polytopes with five vertices, only one type being simplicial.
- We have already seen examples of these two types:
- A square pyramid (non-simplicial);
- The polytope formed by taking the union of a regular tetrahedron and its reflection in one of its triangular faces (simplicial).
- Possible Gale transforms for these two examples: $1,-1,1,-1,0$ and $2,2,2,-3,-3$, themselves make it clear why the two examples are of different combinatorial types, and that the first one (the square pyramid) is non-simplicial, as 0 occurs in its Gale transform.
- This example serves to show the power and potential of Gale transform techniques in studying the combinatorial properties of polytopes.

