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Polytopes
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Convex Polytopes Polytopes

Polytopes and Simplexes

A convex polytope, or simply a polytope, is the convex hull of a
finite set of points in Rn.

Points, line segments, polygons, tetrahedra, cubes, octahedra,
dodecahedra and icosahedra are all polytopes.

Since the convex hull of a finite set in Rn is compact, polytopes are
compact convex sets.

A polytope of dimension r is called an r -polytope.

The simplest example of an r -polytope is an r -simplex (r =−1, . . . ,n),
which is defined to be the convex hull of an affinely independent set in
R

n consisting of r +1 points.

There is precisely one (−1)-simplex, namely the empty set.

We refer to a 0-simplex as a point, a 1-simplex as a line segment, a
2-simplex as a triangle, and a 3-simplex as a tetrahedron.
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Convex Polytopes Polytopes

Crosspolytopes

An important example of an r -polytope is an r -crosspolytope

(r = 1, . . . ,n), which is defined to be the convex hull of r linearly
independent line segments in Rn whose midpoints coincide,

i.e., a translate of a set of the form conv{±a1, . . . ,±ar }, where
{a1, . . . ,ar }6= is a linearly independent set of vectors in Rn.

Such a crosspolytope is called regular when the a1, . . . ,ar have equal
lengths and are mutually orthogonal.

Thus, conv{±e1, . . . ,±e r }, where e1, . . . ,er are elementary vectors in
R

n, is a regular r -crosspolytope.

In R3 a regular 2-crosspolytope is a square, and
a regular 3-crosspolytope is a regular octahe-
dron, which is a regular solid bounded by eight
congruent equilateral triangles.
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Convex Polytopes Polytopes

Addition and Scalar Multiplication

Theorem

Let A,B be polytopes in Rn and let α ∈R. Then A+B and αA are
polytopes.

We consider the non-trivial case when neither A nor B is empty.

Let A= conv{a1, . . . ,ak }, B = conv{b1, . . . ,bm}, where a1, . . . ,ak ,
b1, . . . ,bm ∈Rn. Denote by C the finite set consisting of all those
points of the form ai +bj , where i = 1, . . . ,k and j = 1, . . . ,m, and by D

the finite set whose points are αa1, . . . ,αak . We prove the theorem by
showing that A+B = convC and αA= convD.

George Voutsadakis (LSSU) Convexity July 2023 6 / 128



Convex Polytopes Polytopes

Addition and Scalar Multiplication (Cont’d)

Now A+B is a convex set containing C . Hence, convC ⊆A+B . If
x ∈A+B , then there exist scalars λ1, . . . ,λk , µ1, . . . ,µm ≥ 0 with
λ1+·· ·+λk = 1 and µ1+·· ·+µm = 1 such that

x = λ1a1+·· ·+λkak +µ1b1+·· ·+µmbm

=
∑k

i=1

∑m
j=1

λiµj(ai +bj).

This shows that x is a convex combination of points of C . Hence,
x ∈ convC and A+B ⊆ convC .

Now αA is a convex set containing D. Hence, convD ⊆αA. If x ∈αA,
then there exist λ1, . . . ,λk ≥ 0 with λ1+·· ·+λk = 1 such that

x =α(λ1a1+·· ·+λkak)=λ1(αa1)+·· ·+λk(αak).

This shows that x is a convex combination of points of D. Hence,
x ∈ convD and αA⊆ convD.
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Convex Polytopes Polytopes

Zonotopes and r -Cubes

Corollary

Let A1, . . . ,Am be polytopes in Rn and let α1, . . . ,αm ∈R. Then
α1A1+·· ·+αmAm is a polytope.

Thus, the vector sum of a finite number of line segments in Rn is a
polytope. Such a polytope is called a zonotope.

An r -cube (r = 1, . . . ,n) in Rn is the vector sum of r mutually
orthogonal line segments in Rn, all of equal length,

i.e., a set of the form

conv{a1,b1}+·· ·+conv{ar ,br },

where a1, . . . ,ar , b1, . . . ,br ∈R
n, (ai −bi) · (aj −bj)= 0 if and only if

i 6= j , and ‖a1−bi‖= ‖aj −bj‖ for all i , j .

An example of an n-cube with edge-length 1 in Rn is the polytope

conv{0,e1}+·· ·+conv{0,en} = {(x1, . . . ,xn) : 0≤ x1, . . . ,xn ≤ 1}.
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Vertices and Edges of a Polytope

We now look at the facial structure of a polytope P in Rn.

It is customary to call the extreme points of P its vertices and its
1-faces its edges.

The set of all P ’s vertices is called its vertex set.

If P = conv{a1, . . . ,am}, for some a1, . . . ,am ∈Rn, then a previous
corollary shows that the vertex set of P is contained in {a1, . . . ,am}.
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Convex Polytopes Polytopes

Property of Faces of a Polytope

Theorem

Every polytope in Rn has only a finite number of faces, and each of these
is a polytope.

Consider a non-empty polytope A= conv{a1, . . . ,am}, where
a1, . . . ,am ∈Rn. By a previous theorem each face F of A is the convex
hull of its extreme points. Another theorem shows that each extreme
point of F is also an extreme point of A. Hence F is the convex hull
of some subset of the vertex set of A. Since {a1, . . . ,am} contains the
vertex set of A, it follows that F is the convex hull of some subset of
{a1, . . . ,am}. The desired result is now immediate.
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Convex Polytopes Polytopes

Subsets of Vertex Set Determining a Face

Suppose that V is the vertex set of a polytope P in Rn.

Then the proof of the last theorem shows that each face of P has the
form convW , for some subset W of V .

The question naturally arises as to which subsets W of V determine

a face of P , i.e. are such that convW is a face of P .
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Convex Polytopes Polytopes

Vertex Subsets That Determine Faces

Theorem

Let W be a subset of the vertex set V of a polytope P in Rn. Then
convW is a face of P if and only if

(affW )∩conv(V \W )=;.

Suppose first that convW is a face of P . If v ∈V \W , then P\{v } is
convex, by a previous theorem, and contains W . Hence,
convW ⊆P\{v }. So v 6∈ convW . Therefore, V \W ⊆P\convW .

By the same theorem, P\convW is convex. So conv(V \W )⊆
P\convW . Also by the same theorem, (affW )∩P = convW . Hence,

(affW )∩conv(V \W ) ⊆ (affW )∩ (P\convW )
⊆ convW ∩ (P\convW )=;.
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Characterization of Face Determinators (Converse)

Suppose (affW )∩conv(V \W )=; is satisfied.

Clearly convW is a face of P if either W is empty or V .

So we assume that this is not the case. Let V = {v1, . . . ,v s }6= and
W = {v1, . . . ,v r }, where 1≤ r < s. Let w =λx +µy , where w ∈ convW ,
x ,y ∈P , and λ,µ> 0 with λ+µ= 1. Then x =λ1v1+·· ·+λsv s ,
y =µ1v1+·· ·+µsv s , for some λ1, . . . ,λs , µ1, . . . ,µs ≥ with λ1+·· ·+λs

= 1 and µ1+·· ·+µs = 1. For i = 1, . . . ,s, write νi =λλi +µµi . Then
ν1, . . . ,νs ≥ 0, ν1+·· ·+νs = 1 and w = ν1v1+·· ·+νsv s . Write
α=νr+1+·· ·+νs . If α> 0, then the point

1

α
(w −ν1v1−·· ·−νrv r )=

1

α
(νr+1v r+1+·· ·+νsv s)

lies both in affW and conv(V \W ), which contradicts the hypothesis.
Thus, α= 0. This entails νr+1, . . .νs = 0 and λr+1, . . . ,λs ,µr+1, . . . ,µs

= 0. Hence x ,y ∈ convW . So convW is a face of P .
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Arbitrary Subsets and Faces

In proving the “if” part of the last theorem, we used the fact that
convV =P , but not the fact that each element of V was a vertex of P .

We thus have the following:

Corollary

Let W be a subset of a finite set V in Rn such that

(affW )∩conv(V \W )=;.

Then convW is a face of the polytope convV .
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Convex Polytopes Polytopes

Facial Structure of Simplexes

Suppose that S = convK , where V is an affinely independent set in Rn.

We have already seen that each face of S is the convex hull of some
subset of V .

Now we establish the converse:

Let W ⊆V . Since V is affinely independent,

(affW )∩conv(V \W )⊆ (affW )∩aff(V \W )=;.

Therefore, convW is a face of S by the corollary.

In particular, each point of V is a vertex of S .
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Combinatorial Equivalence

Let P ,P ′ be polytopes, not necessarily lying in the same Euclidean
space, with vertex sets V ,V ′, respectively.

Then P and P ′ are said to be combinatorially equivalent if there
exists a bijection ϕ :V →V ′ such that a subset W of V determines a
face of P if and only if ϕ(W ) determines a face of P ′.

Since 1-polytopes are simply line segments, they are all
combinatorially equivalent to one another.

Two 2-polytopes (polygons) are combinatorially equivalent if and only
if they have the same number of vertices.
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Convex Polytopes Polytopes

Combinatorial Equivalence and Number of Vertices

Clearly, if two polytopes are combinatorially equivalent, then they
must have the same number of vertices.

The converse of this result is not true.

In R3 consider:

A square pyramid P ;
The polytope P ′ obtained by taking the union of a regular tetrahedron
and its reflection in one of its triangular faces.

Both P and P ′ have five vertices, but they are not combinatorially
equivalent. P has a face with four vertices, but P ′ does not.

We will show later that every 3-polytope with five vertices is
combinatorially equivalent to either P or P ′.

So, there are just two combinatorial types for 3-polytopes having
five vertices.
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Approximation by Polytopes

Theorem

Let A be a non-empty compact convex set in Rn and let ε> 0. Then there
exist polytopes P ,Q in Rn such that P ⊆A⊆Q, ρ(A,P)≤ ε, ρ(A,Q)≤ ε.

By a previous theorem, there exists a finite set E in Rn such that
E ⊆A⊆ (E )ε. Let P = convE . Then P is a polytope satisfying
P ⊆A⊆ (P)ε. Hence ρ(A,P)≤ ε. Replacing A by (A)ε in the last
argument, we deduce the existence of a polytope Q satisfying
Q ⊆ (A)ε ⊆ (Q)ε. The inclusion (A)ε ⊆ (Q)ε, i.e., A+εU ⊆Q +εU ,
implies A⊆Q by a previous theorem. The inequality ρ(A,Q)≤ ε now
follows.

Corollary

Let A be a non-empty compact convex set in Rn. Then there exist
sequences P1, . . . ,Pi , . . . and Q1, . . . ,Qi , . . . of nonempty polytopes in Rn such
that Pi ⊆A⊆Qi for i = 1,2, . . ., and Pi →A and Qi →A as i →∞.

George Voutsadakis (LSSU) Convexity July 2023 18 / 128



Convex Polytopes Polyhedral Sets

Subsection 2

Polyhedral Sets
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Convex Polytopes Polyhedral Sets

Polyhedral Sets

A polyhedral set is the intersection of a finite family of closed
halfspaces in Rn.

Equivalently, a polyhedral set is the set of all points (x1, . . . ,xn) in Rn

which satisfy a finite system of linear inequalities of the form

a11x1+·· ·+a1nxn ≤ a10

...
am1x1+·· ·+amnxn ≤ am0.

Clearly, polyhedral sets are closed and convex.

Moreover, the intersection of any finite family of polyhedral sets is a
polyhedral set.

Each hyperplane in Rn is an intersection of two closed halfspaces, and
so is a polyhedral set.

Since each flat in Rn is a finite intersection of hyperplanes, all flats are
polyhedral sets.

In particular, the empty set and Rn itself are polyhedral sets.
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Convex Polytopes Polyhedral Sets

Facets of Polyhedral Sets

A facet of an r -dimensional polyhedral set in Rn is a proper
(r −1)-dimensional face of the set.

In R3:

The non-negative orthant has three facets;
A tetrahedron has four facets;
A square pyramid has five facets;
A cube has six facets.

Since flats have no proper faces, they have no facets.

It will be shown in the following result that flats are the only
polyhedral sets with this property.
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Convex Polytopes Polyhedral Sets

Properties of Facets

Theorem

Suppose that the polyhedral set A in Rn is not a flat and that

A= (affA)∩ {x ∈R
n : a1 ·x ≤α1}∩·· ·∩ {x ∈R

n : am ·x ≤αm},

where α1, . . . ,αm ∈R, a1, . . . ,am ∈Rn\{0} and no one of the closed half
spaces in the intersection can be omitted. For each i = 1, . . .m, let

Fi =A∩ {x ∈R
n : ai ·x =αi }.

Then:

(i) riA= {a ∈A : a1 ·a <α1, . . . ,am ·a <αm};

(ii) rebdA= F1∪·· ·∪Fm;

(iii) The facets of A are precisely the sets F1, . . . ,Fm;
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Convex Polytopes Polyhedral Sets

Properties of Facets (Cont’d)

Theorem (Cont’d)

(iv) Each proper face of A is the intersection of those facets of A that
contain it;

(v) A has a finite number of faces, each of which is exposed;

(vi) Each face of A is a polyhedral set;

(vii) Let Bj ,Bk be j- and k-faces, respectively, of A (0≤ j ≤ k−2) such that
Bj ⊆Bk . Then there are faces Bj+1, . . . ,Bk−1 of A such that, for each
i = j , . . . ,k −1, the face Bi is a facet of Bi+1.
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Convex Polytopes Polyhedral Sets

Proof of the Theorem (Parts (i) & (ii))

Every polyhedral set A in Rn can be expressed in the form required by
the theorem. The assumption that A is not a flat implies that m≥ 1.

(i) Suppose first that a ∈A and that a1 ·a <α1, . . ., am ·a <αm. Then a

belongs to the set C = {x ∈Rn : a1 ·x <α1, . . . ,am ·x <αm}, which is
open, being a finite intersection of open halfspaces. Thus, there exists
r > 0 such that B(a;r)⊆C . Hence, B(a;r)∩affA⊆C ∩affA⊆A.
Therefore, a ∈ riA.
Suppose next that a ∈ riA. Since no one of the closed halfspaces in the
representation of A given in the statement of the theorem can be
omitted, for each i = 1, . . . ,m, there exists z i ∈ affA such that
aj ·z i ≤αj , when j 6= i , and ai ·z i >αi . Hence, for each i = 1, . . . ,m,
there exists λi ∈ (0,1) such that λiz i + (1−λi )a ∈A. Therefore,

αi ≥ ai · (λz i + (1−λi )a)=λiai ·z i + (1−λi )ai ·a
> λiαi + (1−λi )ai ·a. So ai ·a <αi .

(ii) This follows immediately from (i).
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Convex Polytopes Polyhedral Sets

Proof of the Theorem (Part (iii))

(iii) We now show that, for each i = 1, . . . ,m, Fi is a facet of A.

Let a ∈ riA. Let z i be as in (i). Then ai ·a <αi < ai ·z i . Write
µi =

αi−ai ·a
ai ·z i−ai ·a . Then 0<µi < 1. Write bi =µiz i + (1−µi )a.

Then (see next slide) bi ∈ affA, ai ·bi =αi and aj ·bi <αj , for j 6= i .
Hence, bi ∈A. Thus, bi ∈Fi and ai ·x =αi is a support hyperplane to
A at bi . It follows that Fi is a proper exposed face of A.
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Convex Polytopes Polyhedral Sets

Proof of the Theorem (Part (iii) Cont’d)

We set µi =
αi−ai ·a

a i ·z i−ai ·a and bi =µiz i + (1−µi )a.

Based on these and the inequalities ai ·a <αi < ai ·z i , we get

ai ·bi = µiai ·z i + (1−µi )ai ·a

=
αi−ai ·a

a i ·z i−ai ·aai ·z i +
ai ·z i−αi

a i ·z i−ai ·aai ·a

=
αi

a i ·z i−ai ·a (ai ·z i −ai ·a)+
(a i ·z i )(a i ·a)−(a i ·a)(a i ·z i )

ai ·z i−ai ·a

= αi +0=αi ;

aj ·bi = µiaj ·z i + (1−µi )aj ·a

< µiαj + (1−µi )αj =αj .
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Convex Polytopes Polyhedral Sets

Proof of the Theorem (Part (iii) Cont’d)

We now show that affFi = (affA)∩ {x ∈Rn : ai ·x =αi }.

Let y i be a point belonging to the set on the right.

Choose θi > 0 such that θi (aj ·y i −aj ·bi)≤αj −aj ·bi when j 6= i .

Write c i = θiy i + (1−θi )bi . Then c i ∈ affA and we have, for i 6= j :

ai ·c i = θiai ·y i + (1−θi )ai ·bi

= θiαi + (1−θi )αi =αi ;
aj ·c i = θiaj ·y i + (1−θi )aj ·bi

= θi (aj ·y i −aj ·bi)+aj ·bi ≤αj .

Hence, c i ∈ Fi . But y i =
1
θi
c i + (1− 1

θi
)bi ∈ affFi . So (affA)∩

{x ∈Rn : ai ·x =αi } ⊆ affFi . The opposite inclusion is trivial.

This equality, together with a previous theorem, give

dimFi = dim(affFi )= dim(affA)−1= dimA−1.

So Fi is a facet of A.
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Proof of the Theorem (Part (iii) Conclusion)

We finally show that each facet of A is one of the Fi s.

Let F be a facet of A. Let f ∈ riF .

Since F is a proper face of A, f 6∈ riA.

Hence, by (ii), f ∈Fi0 for some i0 ∈ {1, . . . ,m}.

Now the faces F and Fi0 of A have the same dimension and f ∈ riF .

Hence F =Fi0 .
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Convex Polytopes Polyhedral Sets

Proof of the Theorem (Part (iv))

(iv) Suppose that B is a proper face of A. Let b ∈ riB . Denote by I the
non-empty set of those i ’s in {1, . . . ,m} for which ai ·b =αi , i.e., b ∈Fi .

Denote by J the set of those j ’s in {1, . . . ,m} for which aj ·b <αj .

Let E be the intersection of all those facets of A which contain b.

Since b ∈Fi if and only if B ⊆Fi , the set E is the intersection of all
those facets of A which contain B . Hence E is a face of A which
contains B . Choose r > 0 such that, for each j ∈ J,

B(b;r)⊆ {x ∈R
n : aj ·x <αj }.

This inclusion, together with the trivial inclusions affE ⊆ affA and
affE ⊆ {x ∈Rn : ai ·x =αi }, for i ∈ I , show that B(b;r)∩affE ⊆E .
Hence, b ∈ riE . Thus, b ∈ riB ∩ riE . So B =E .
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Convex Polytopes Polyhedral Sets

Proof of the Theorem (Parts (v)-(vii))

(v) This follows easily from (iv), since A has only m facets and each of
these is an exposed face of A.

(vi) This follows from the facts that each proper face of A is the
intersection of A with one of its support hyperplanes, and the
intersection of two polyhedral sets is itself a polyhedral set.

(vii) Bj is a proper face of the polyhedral set Bk .

By (iv), there is some facet Bk−1 of Bk which contains Bj .

If j = k −2, then the proof is complete.

Otherwise, repeat this last argument k− j −2 more times to obtain the
desired faces Bk−2, . . . ,Bj+1.
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The General Case

The preceding theorem concerns polyhedral sets which are not flats.

It is convenient, however, to have a statement of the main properties
of general polyhedral sets.

Theorem

Let A be a polyhedral set in Rn. Then A has a finite number of faces, each
of which is exposed and is a polyhedral set. Every proper face of A is the
intersection of those facets of A that contain it, and rebdA is the union of
all the facets of A. If A has a non-empty face of dimension s, then A has
faces of all dimensions from s to dimA.

The theorem is trivially true when A is a flat.

When A is not a flat, it follows easily from the preceding theorem.
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Convex Polytopes Polyhedral Sets

Characterization of Polyhedral Sets

Theorem

Let A be a closed convex set in Rn which has only a finite number of
exposed faces. Then A is a polyhedral set.

If A has no proper exposed faces, then it must be a flat, which is
polyhedral.

Suppose, then, that A has proper exposed faces B1, . . . ,Bm. Let
H1, . . . ,Hm be support hyperplanes to A such that B1 =A∩H1, . . .,
Bm =A∩Hm. For each i = 1, . . . ,m, let Ji be the closed halfspace of
R

n bounded by Hi , which contains A.

Define a polyhedral set P by the equation

P = J1∩·· ·∩Jm∩affA.

We show that A=P .
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Convex Polytopes Polyhedral Sets

Characterization of Polyhedral Sets (Cont’d)

Clearly, A⊆P . Suppose that P *A. Then there is a point p lying in
P\A. Let a ∈ riA. Since A is closed and p ∈ affA, there exists λ ∈ (0,1)
such that the point b =λp+ (1−λ)a belongs to rebdA. By a previous
theorem, there is some i ∈ {1, . . . ,m} such that b ∈Bi . Now Hi is a face
of Ji , b ∈Hi , and p,a ∈ Ji . Hence, a ∈Hi . Thus, a ∈Bi . This is
impossible, since a cannot be both a relative interior point of A and a
member of one of its proper faces! Hence P ⊆A, and A is the
polyhedral set P .

Corollary

A closed convex set in Rn which has only a finite number of faces is a
polyhedral set.
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Convex Polytopes Polyhedral Sets

Characterization of Polytopes

Theorem

A set in Rn is a polytope if and only if it is a bounded polyhedral set.

Each polytope in Rn is compact and has a finite number of faces. So,
by the preceding corollary, it must be a bounded polyhedral set.

Conversely, every bounded polyhedral set in Rn is compact and has a
finite number of faces. In particular, it has a finite number of extreme
points. So, by a previous theorem, it must be a polytope.

Corollary

The intersection of two polytopes in Rn is a polytope.

In view of the theorem, the corollary simply states the obvious fact
that the intersection of two bounded polyhedral sets is a bounded
polyhedral set.
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Subsection 3

Pyramids, Bipyramids and Prisms
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Convex Polytopes Pyramids, Bipyramids and Prisms

Number of k-Faces of a Polytope

We denote by fk(P) the number of k-faces (faces of dimension k) of
an r -polytope P .

Then

f−1(P)= fr (P)= 1, fk(P)= 0 when k <−1 or k > r .

Our results will lead us to anticipate Euler’s relation, which asserts
that,

f−1(P)− f0(P)+·· ·+ (−1)r+1fr (P)= 0,

for any non-empty r -polytope P .

This will be proved in a later section.
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Convex Polytopes Pyramids, Bipyramids and Prisms

The Case of Simplexes

Let S be a non-empty r -simplex in Rn.
Then S = convV for some affinely independent set V of r +1 points of
R

n.
For each k =−1,0, . . . ,r , the k-faces of S are precisely those sets of the
form convW , where W is a subset of V having k +1 points.

Thus, fk(S) equals the number of ways of choosing k +1 points from
a set of r +1 points.

Hence, using the standard notation for the binomial coefficients, we

see that fk(S)=
(

r+1
k+1

)

=
(r+1)!

(k+1)!(r−k)! .

By the Binomial Theorem, for all real x ,

(1+x)r+1
= f−1(S)+ f0(S)x +·· ·+ fr (S)x

r+1
.

Setting x =−1 in this equation, we deduce that

f−1(S)− f0(S)+·· ·+ (−1)r+1fr (S)= 0.
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Pyramids in Rn

Let Q be a nonempty (r −1)-polytope in Rn.

Let x be a point of Rn not lying in affQ.

Then the r -pyramid P with apex x and base Q is defined to be the
r -polytope conv({x }∪Q).

We say that P is obtained from Q by applying the cone construction

with apex x .
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Numbers of Faces of a Pyramid

Theorem

Let P be an r -pyramid in Rn with apex x and base a non-empty
(r −1)-polytope Q. Then

fk(P)= fk(Q)+ fk−1(Q), for k =−1, . . . ,r .

We show first that, for A,B ⊆ affQ, (aff({x }∪A))∩B = (affA)∩B .

Consider the non-trivial case when A is non-empty. If b lies in the set
on the left-hand side, then there exist a1, . . . ,am ∈A and λ,λ1, . . . ,

λm ∈R with λ+λ1+·· ·+λm = 1 such that b =λx +λ1a1+·· ·+λmam.
If λ 6= 0, then the last equation can be rearranged to express x as an
affine combination of points of affQ. This contradicts the (implied)
hypothesis that x 6∈ affQ. Thus, λ= 0. So b ∈ (affA)∩B . It follows
that (aff({x }∩A))∩B ⊆ (affA)∩B . The opposite inclusion is clear.
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Numbers of Faces of a Pyramid (Cont’d)

Denote by V the vertex set of Q. Then P = conv({x }∪V ).

By a previous corollary, {x } and Q are faces of P .

Hence, each of the fk(Q) k-faces of Q is also a k-face of P .

Thus, the set of extreme points of P is {x }∪V .

Suppose that W ⊆V is such that convW is one of the fk−1(Q)
(k −1)-faces of Q. Then by the equation just proved,

(aff({x }∪W ))∩conv(V \W )= (affW )∩conv(V \W )=;.

This shows that conv({x }∪W ) is a k-face of P .

It now follows that

fk(P)≥ fk(Q)+ fk−1(Q).
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Numbers of Faces of a Pyramid (Cont’d)

Suppose next that W ⊆V is such that either convW or conv({x }∪W )
is a face of P (every face of P must be of one of these two forms).

Then either
(affW )∩conv({x }∪ (V \W ))=;,

or
(affW )∩conv(V \W )=;.

In both cases (affW )∩conv(V \W )=;. This shows that convW is a
face of Q. Thus, each face of P is either a face of Q or the convex
hull of x and a face of Q. Hence,

fk(P)≤ fk(Q)+ fk−1(Q).

The conclusion follows.
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Example

The formula of the preceding theorem is easily verified for a 3-pyramid
P in R3 which has for base an m-sided convex polygon.

Here f0(Q)=m, f1(Q)=m;

f0(P)=m+1, f1(P)= 2m, f2(P)=m+1.

We note that P satisfies Euler’s relation:

f−1(P)− f0(P)+ f1(P)− f2(P)+ f3(P)

= 1− (m+1)+ (2m)− (m+1)+1 = 0.
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Two-Fold Pyramids

Suppose now that P is an r -pyramid with base an (r −1)-polytope Q,
and that Q is an (r −1)-pyramid with base an (r −2)-polytope S .

So P is obtained from S by applying the cone construction twice.

We say that P is:

a 2-fold r -pyramid with 2-base S , or
a 1-fold r -pyramid with 1-base Q.

The preceding theorem shows that, for k =−1, . . . ,r ,

fk(P) = fk(Q)+ fk−1(Q)

= fk(S)+ fk−1(S)+ fk−1(S)+ fk−2(S)

= fk(S)+2fk−1(Q)+ fk−2(S).
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Multi-Fold Pyramids

Let P be an r -polytope in Rn (r = 1, . . . ,n).

Let Q be an (r − s)-polytope in Rn (s = 1, . . . ,r).

Then P is said to be an s-fold r -pyramid with s-base Q if it can be
obtained from Q by applying the cone construction s times.

A simple induction argument, using the preceding theorem, shows
that, for an s-fold r -pyramid P with s-base Q, we have

fk(P)=
s

∑

i=1

(

s

i

)

fk−i(Q), k =−1, . . . ,r .

Clearly, an r -fold r -pyramid is an r -simplex.

An (r −1)-fold r -pyramid has a line segment for an (r −1)-base.

A line segment is itself a 1-fold 1-pyramid.

So each (r −1)-fold r -pyramid is an r -fold r -pyramid, i.e. an r -simplex.
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Bipyramids in Rn

Let I be a line segment in Rn and let Q be an (r −1)-polytope in Rn

such that I ∩Q is a single point which is a relative interior point of
both I and Q.

Then the r -bipyramid P with axis I and base Q is defined to be the
r -polytope conv(I ∪Q).

We say that P is obtained from Q by applying the double-cone

construction with axis I .
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Numbers of Faces of a Bipyramid

Suppose that I = conv{a,b}, where a and b are distinct points of Rn.

Then an argument similar to that used in the proof of the preceding
theorem shows that:

The k-faces (k =−1, . . . ,r −2) of P are precisely the k-faces of Q and
the k-polytopes of the form conv({a}∪F ) or conv({b}∪F ), where F is
a (k −1)-face of Q.
The (r −1)-faces of P are simply the (r −1)-polytopes conv({a}∪F )
and conv({b}∪F ), where F is an (r −2)-face of Q.

We thus arrive at the following result.

Theorem

Let P be an r -bipyramid in Rn with axis I and base a non-empty
(r −1)-polytope Q. Then

fk(P) = fk(Q)+2fk−1(Q), for k =−1, . . . ,r −2,

fr−1(P) = 2fr−2(Q).
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Example

The formula of the preceding theorem is easily verified for a
3-bipyramid P in R3 which has for base an m-sided convex polygon Q.

Here f0(Q)=m, f1(Q)=m;

f0(P)=m+2, f1(P)= 3m, f2(P)= 2m.

We note that P satisfies Euler’s relation:

f−1(P)− f0(P)+ f1(P)− f2(P)+ f3(P)

= 1− (m+2)+ (3m)− (2m)+1 = 0.
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Multi-Fold Bipyramids

Let P be an r -polytope in Rn (r = 1, . . . ,n).

Let Q be an (r − s)-polytope in Rn (s = 1, . . . ,r).

Then P is said to be an s-fold r -bipyramid with s-base Q if it can
be obtained from Q by applying the double-cone construction s times.

An (r −1)-fold r -bipyramid has a line segment for an (r −1)-base.

A line segment is itself a 1-fold 1-bipyramid.

So each (r −1)-fold r -bipyramid is also an r -fold r -bipyramid.
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The r -Crosspolytope

The simplest example of an r -fold r -bipyramid is the r -crosspolytope.

Consider the r -crosspolytope P in Rn (r = 1, . . . ,n), which is the
convex hull of r linearly independent line segments conv{a1,b1}, . . .,
conv{ar ,br } (i.e., the vectors a1−b1, . . ., ar −br are linearly
independent) whose midpoints coincide.
The facial structure of P is easily described:

For each k = 0, . . . ,r −1, let I = {i1, . . . , ik+1} be a subset of {1, . . . ,r }

which has k+1 points and let T = {x i1 , . . . ,x ik+1
} be such that each x ij

is either aij or bij for j = 1, . . . ,k +1.
Then convT is a k-face of P and all k-faces of P arise in this way.

Since there are
( r
k+1

)

possibilities for the set I and each I gives rise to
2k+1 possibilities for the set T , it follows that

fk(P)= 2k+1

(

r

k +1

)

, k = 1, . . . ,r −1.
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Prisms in Rn

Let Q be a non-empty (r −1)-polytope in Rn.

Let x be a point of Rn which does not lie in the subspace of Rn which
is parallel to affQ.

Let I be the line segment conv{0,x }.

Then the r -prism P with axis I and base Q is defined to be the
r -polytope Q+ I or, equivalently, conv(Q ∪ (Q +x)).

We say that P is obtained from Q by applying the prism

construction with axis I .
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Numbers of Faces of Prisms

An argument similar to that used in the proof of the preceding
theorems shows that the k-faces (k = 1, . . . ,r) of P are precisely the
k-faces of Q and its translate Q +x , together with k-polytopes of the
form F + I , where F is a (k −1)-face of Q.

We thus arrive at the following result.

Theorem

Let P be an r -prism in Rn with axis I and base a nonempty
(r −1)-polytope Q. Then

fk(P) = 2fk(Q)+ fk−1(Q), k = 1, . . . ,r ,

f0(P) = 2f0(Q).
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Example

The formulas of the preceding theorem are easily verified for a 3-prism
P in R3 which has for base an m-sided convex polygon Q.

Here f0(Q)=m, f1(Q)=m;

f0(P)= 2m, f1(P)= 3m, f2(P)=m+2.

We note that P satisfies Euler’s relation:

f−1(P)− f0(P)+ f1(P)− f2(P)+ f3(P)

= 1−2m+3m− (m+2)+1 = 0.
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Multi-Fold Prisms

Let P be an r -polytope in Rn (r = 1, . . . ,n) and let Q be an
(r − s)-polytope in Rn (s = 1, . . . ,r).

Then P is said to be an s-fold r -prism with s-base Q if it can be
obtained from Q by applying the prism construction s times.

An (r −1)-fold r -prism has a line segment for an (r −1)-base.

A line segment is itself a 1-fold 1-prism.

So each (r −1)-fold r -prism is also an r -fold r -prism.
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Parallelotopes

An r -fold r -prism P in Rn (r = 1, . . . ,n) is called an r -parallelotope

and has the form

P = x + {λ1x1+·· ·+λrx r : 0≤λ1, . . . ,λr ≤ 1},

where x ∈Rn and x1, . . . ,x r are linearly independent vectors in Rn.
Thus:

A 2-parallelotope in R2 is a parallelogram;
A 3-parallelotope in R3 is a parallelepiped.

If x1, . . . ,x r are pairwise orthogonal, P is known as an r -orthotope.

If, in addition, x1, . . . ,x r have the same length, P is called an r -cube.

A simple induction argument, using the preceding theorem, shows
that, for any r -parallelotope P in Rn, we have

fk(P)= 2r−k
(

r

k

)

, k = 0, . . . ,r .
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Subsection 4

Cyclic Polytopes
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k-Neighborly Polytopes

Any polytope having more than k vertices which is such that every
k-membered subset of its vertex set determines one of its faces, is said
to be k-neighborly.

Thus n-simplexes (n ≥ 1) are n-neighborly.
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The Moment Curve

The moment curve Mn in Rn is determined parametrically by the
equation

x(t)= (t ,t2, . . . ,tn), for all real t.

Clearly, this sets up a bijection between the set R of real numbers and
the set Mn of points on the moment curve.

This bijection induces an ordering on Mn which is isomorphic to the
standard ordering on R.

Having now made this remark, we shall in future refer to the ordering
of points on Mn exactly as if they were real numbers.

For example, if points x(t1), x(t2), x(t3) on Mn are such that
t1 < t2 < t3, then we shall say that x(t2) lies between x(t1) and x(t3).
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Affine Independence of Points on Moment Curve

Theorem

Each set of n+1 or fewer points on the moment curve Mn in Rn is affinely
independent.

For i = 0,1, . . . ,n, let x(ti)= (ti ,t
2
i

, . . . ,tn
i
), where t0 < t1 < ·· · < tn.

We must show that {x(t0),x(t1), . . . ,x(tn)} is affinely independent.

This is equivalent to the non-vanishing of the (n+1)× (n+1)
determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 t0 t20 · · · tn0
1 t1 t21 · · · tn1
...

...
...

...
1 tn t2n · · · tnn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

It is a well-known result of elementary algebra that this determinant,
called Vandermonde’s determinant, equals

∏

0≤i<j≤n(tj − ti ).

Hence, it is non-zero.
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Cyclic Polytopes

A cyclic polytope C (v ,n) is the convex hull of v (v ≥ n+1) distinct
points on the moment curve Mn in Rn.

Strictly speaking, C (v ,n) is a whole family of polytopes, all of the
same combinatorial type.

Our first result is that cyclic polytopes are simplicial.

This means that all of their proper faces are simplexes.

Examples of simplicial polytopes are:

simplexes;
bipyramids with simplicial bases;
crosspolytopes.
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Cyclic Polytopes are Simplicial

Theorem

Cyclic polytopes are simplicial.

Let F be a proper face of a cyclic polytope C (v ,n) in Rn.

Then F = conv{x1, . . . ,xm} for some distinct points x1, . . . ,xm

(1≤m< v) on the moment curve Mn.

Since the face F is proper, the set {x1, . . . ,xm} cannot contain an
affinely independent subset of more than n points.

Hence, by the preceding theorem, m≤ n and {x1, . . . ,xm} is affinely
independent.

Thus F is a simplex, showing that C (v ,n) is simplicial.
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Points, Vertices and Faces

Theorem

Let C (v ,n) be the convex hull of the distinct points x1, . . . ,xv (v ≥ n+1
≥ 3) on the moment curve Mn in Rn. Let k be an integer satisfying
1≤ k ≤

1
2
n. Then each set of k points of {x1, . . . ,xv }, determines a

(k −1)-face of C (v ,n) and x1, . . . ,xv are the vertices of C (v ,n).

It suffices to show that x1, . . . ,xk determine a (k −1)-face of C (v ,n).

For each i = 1, . . . ,k , let x i = (ti ,t
2
i

, . . . ,tn
i
). Define a polynomial p for

real t by the equation

p(t)= (t − t1)
2(t − t2)

2
· · ·(t − tk)

2;

say p(t)= t2k +a2k−1t
2k−1+·· ·+a1t+a0, where a0,a1, . . . ,a2k−1 ∈R.

Clearly, p(t)≥ 0, for all real t, and p(t)= 0 if and only if t has one of
the values t1, . . . ,tk .
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Points, Vertices and Faces (Cont’d)

It follows that the hyperplane with equation

a0+a1x1+·· ·+a2k−1x2k−1+x2k = 0

is a support hyperplane to C (v ,n) which meets C (v ,n) in the set
conv{x1, . . . ,xk }. Thus conv{x1, . . . ,xk } is a face of C (v ,n). By a
previous theorem, {x1, . . . ,xk } is affinely independent. So
conv{x1, . . . ,xk } is a (k −1)-simplex.

That x1, . . . ,xv are vertices of C (v ,n) follows from the result just
proved with k = 1.
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Number of Faces

Corollary

The cyclic polytope C (v ,n) in Rn (v ≥ n+1≥ 3) has
(v
k

)

(k −1)-faces,
when k is an integer satisfying 1≤ k ≤

1
2
n.

By the preceding theorem, each set of k vertices of C (v ,n) determines
one of its (k −1)-faces.

Conversely, by the pre-preceding theorem, each (k −1)-face of C (v ,n)
is the convex hull of some k of its vertices.

Thus C (v ,n) has as many (k −1)-faces as there are ways of choosing
a subset of k points from a set of v points, namely

(v
k

)

.
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Gale’s Evenness Condition

We saw that each proper face of a polytope is the intersection of
those facets of the polytope which contain that face.

Thus the facial structure of a polytope is completely determined by
the vertex sets of its facets.

We now give a simple criterion for determining which sets of vertices
of a cyclic polytope determine one of its facets.

Theorem (Gale’s Evenness Condition)

Let W be a set of n points of the vertex set V of a cyclic polytope C (v ,n)
in Rn (v ≥ n+1). Then convW is a facet of C (v ,n) if and only if each two
points of V \W are separated on the moment curve Mn by an even number
of points of W .

Let W consist of the n points (ti ,t
2
i

, . . . ,tn
i
) for i = 1, . . . ,n.
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Gale’s Evenness Condition (Cont’d)

Consider the real polynomial p defined (for real t) by the equation

p(t)= (t − t1) · · ·(t− tn)= tn+an−1t
n−1

+·· ·+a1t+a0,

where a0,a1, . . . ,an−1 ∈R. Then the hyperplane H in Rn that contains
W has equation a0+a1x1+·· ·+an−1xn−1+xn = 0.

Now convW will be a facet of C (v ,n) if and only if H is a support
hyperplane to C (v ,n). This will be the case if and only if all the
numbers p(t), where t is such that (t ,t2, . . . ,tn) ∈V \W , have the
same sign. As t increases through all real values, the polynomial p
changes sign precisely when t passes through one of the values
t1, . . . ,tn. Thus p(r) and p(s), where r and s are unequal real numbers
that are not equal to any of the values t1, . . . ,tn, will have the same
sign if and only if an even number of t1, . . . ,tn lie between r and s.
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Example: Number of Facets of C (7,4)

We use Gale’s evenness condition to calculate the number of facets of
the cyclic polytope C (7,4).

This is equivalent to finding how many subsets W of a totally ordered
set V of seven elements there are having four elements, and which are
such that between any two elements of V \W there is an even number
of elements of W .

The totality of such subsets W of
V is illustrated in the figure, where
V is represented by the numbers
1,2,3,4,5,6,7 on the real line with
their usual ordering, and where the
points of W are marked by aster-
isks.
There are 14 such sets W , and so C (7,4) has 14 facets.
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Example (Cont’d)

Since each proper face of C (7,4) is an intersection of facets of
C (7,4), we find that C (7,4) has 28 2-faces corresponding to the
following subsets of V :

{1,2,3}, {1,2,4}, {1,2,5}, {1,2,6},

{1,2,7}, {1,3,4}, {1,3,7}, {1,4,5},

{1,4,7}, {1,5,6}, {1,5,7}, {1,6,7},

{2, ,3,4}, {2,3,5}, {2,3,6}, {2,3,7},

{2,4,5}, {2,5,6}, {2,6,7}, {3,4,5},

{3,4,6}, {3,4,7}, {3,5,6}, {3,6,7},

{4, ,5,6}, {4,5,7}, {4,6,7}, {5,6,7}.

By the upper bound theorem, no 4-polytope with 7 vertices has more
than C (7,4)= 28 2-faces.
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Example (Cont’d)

By a previous corollary, C (7,4) has
(7
2

)

= 21 1-faces.

Thus, denoting the polytope C (7,4) by P , we find that

f−1(P)− f0(P)+ f1(P)− f2(P)+ f3(P)− f4(P)

= 1−7+21−28+14−1 = 0.

This verifies Euler’s relation for C (7,4).
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Number of Facets of C (v ,n)

Theorem

The cyclic polytope C (v ,n) in Rn (v ≥ n+1) has v
v−d

(v−d
d

)

or 2
(v−d−1

d

)

facets, according as n= 2d is even or n = 2d +1 is odd.

We first establish a simple combinatorial lemma. Let A= {1, . . . ,r },
B = {1, . . . ,r − s}, where r ,s are integers satisfying r ≥ 1 and 0≤ 2s ≤ r .
Then a subset of A is said to be s-paired if it has the form

{i1, i1+1, i2, i2+1, . . . , is , is +1}

where i1 < i1+1< i2 < i2+1< ·· · < is < is +1. The empty set
(corresponding to s = 0) is considered to be 0-paired. By associating
with each such s-paired set the subset {i1, i2−1, . . . , is − (s −1)} of B ,
we set up a bijection between the s-paired subsets of A and the
subsets of B having s elements. Thus A has

(r−s
s

)

s-paired subsets.
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Number of Facets of C (v ,n) (Cont’d)

By Gale’s condition the number of facets of C (v ,n) is the number of
subsets W of V = {1, . . . ,v } with n elements, such that between any
two integers of V \W there is an even number of integers of W .

For this proof only, we refer to such a subset W of V as a facet of V .
We need to determine the number of facets W of V .

Suppose n= 2d is even. Then the facets W of V are of two types:
W is a d-paired subset of V , or

W \{1,v } is a (d −1)-paired subset of {2, . . . ,v −1}.

Conversely, each d-paired subset of V is a facet of V , and each
(d −1)-paired subset of {2, . . . ,v −1}, when augmented with 1 and v , is

a facet of V . By the combinatorial lemma, V has
(v−d

d

)

facets of the

first type and
(v−2−(d−1)

d−1

)

=
(v−d−1

d−1

)

facets of the second type.
Thus the total number of the facets of V is
(

v −d

d

)

+

(

v −d −1

d −1

)

=
(v −d)!

(v −2d)!d !
+

(v −d −1)!

(v −2d)!(d −1)!
=

v

v −d

(

v −d

d

)

.
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Number of Facets of C (v ,n) (Cont’d)

Suppose n= 2d +1 is odd.

Again the facets W of V are of two types:

W \{1} is a d-paired subset of {2, . . . ,v }, or
W \{v } is a d-paired subset of {1, . . . ,v −1}.

Conversely, each d -paired subset of {2, . . . ,v }, when augmented with 1,
is a facet of V , and each d -paired subset of {1, . . . ,v −1}, when
augmented with v , is a facet of V .

The number of facets of V of either type is
(v−1−d

d

)

.

Hence, the total number of facets of V is 2
(v−1−d

d

)

.
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k-Neighborly Polytopes

Let k be a positive integer.

Then a polytope in Rn (having more than k vertices) is said to be
k-neighborly if every set of k of its vertices determines a face of the
polytope.

Thus:

Each r -polytope (r ≥ 1) is 1-neighborly;
Each r -simplex (r ≥ 1) is r -neighborly.

A previous theorem shows that the cyclic polytope C (v ,n), where
v ≥ n+1≥ 3, is

[

1
2
n
]

-neighborly - here
[

1
2
n
]

denotes the greatest
integer not exceeding 1

2
n.
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Vertices of Neighborly Polytopes

Theorem

Let P be a k-neighborly polytope in Rn. Then every set of k vertices of P
is affinely independent and each (k −1)-face of P is a (k −1)-simplex.

Suppose that v1, . . . ,vk are k vertices of P which are affinely
dependent, say vk ∈ aff{v1, . . . ,vk−1}. Since P has more than k

vertices, there is a vertex v0 of P different from v1, . . . ,vk .

Since P is k-neighborly, conv{v0, . . . ,vk−1} is a face of P .

By a previous theorem, vk 6∈ aff{v0, . . . ,vk−1}, a contradiction.

Thus every set of k vertices of P is affinely independent.

Suppose now that F is a (k −1)-face of P . Then F must contain an
affinely independent subset W consisting of precisely k vertices of P .
Since P is k-neighborly, convW is a (k −1)-face of P . Hence it is a
face of F . But F has only one (k −1)-dimensional face, namely itself.
Thus, F = convW . So F is a (k −1)-simplex.
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k- and j-Neighborliness for j ≤ k

Corollary

Let P be a k-neighborly polytope in Rn with v vertices. Let j ∈ {1, . . . ,k}.
Then P is j-neighborly and has

(v
j

)

(j −1)-faces.

Let X be a set of j vertices of P . Then X ⊆W for some set W of k
vertices of P . Now convW is a simplex and a face of P . Hence convX
is a face of convW , and hence of P . So P is k-neighborly.

The k-neighborliness of P , together with the theorem, shows that P
has as many (j −1)-faces as there are ways of choosing a set of j
points from a set of v points. So P has

(v
j

)

(j −1)-faces.
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Characterization of k-Neighborly Polytopes

We now show that the only n-polytopes which are more neighbourly
than the general cyclic polytope C (v ,n) are the n-simplexes.

Theorem

Let P be an n-polytope in Rn which is k-neighborly for some k with
k >

[

1
2
n
]

. Then P is an n-simplex.

Suppose that P is not an n-simplex. Then the vertex set V of P must
contain some subset W of n+2 points. By Radon’s Theorem, W can
be partitioned into two subsets X and Y with (convX )∩ (convY ) 6= ;.
One of X and Y , X say, has no more than

[

1
2
n
]

+1 points. The
corollary shows that convX is a face of P . Hence, by a previous
theorem,

(convX )∩ (convY )⊆ (affX )∩ (conv(V \X ))=;.

This is a contradiction. Thus P is an n-simplex.
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A Consequence

Corollary

Let P be an n-neighborly 2n-polytope in R2n. Then P is simplicial.

Let F be a facet of P . Then F is an n-neighborly (2n−1)-polytope.
So, exactly as in the proof of the theorem, F is a simplex.

But each proper face of P is a face of some facet of P .

Thus, each proper face of P must be a simplex.

So P is simplicial.

George Voutsadakis (LSSU) Convexity July 2023 76 / 128



Convex Polytopes Euler’s Relation

Subsection 5

Euler’s Relation
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Choice of Non-Perpendicular Vector

Lemma

Let a1, . . . ,am be a finite set of nonzero vectors in Rn. There exists a
vector a in Rn, which is not perpendicular to any of a1, . . . ,am.

We recursively construct reals αk and vectors xk , such that, for all
k = 1, . . . ,m, xk =

∑k
i=1

αiai is not perpendicular to any of a1, . . . ,ak .

Set α1 = 1 and x1 =α1a1. Clearly x1 ·a1 6= 0.

Assume xk =
∑k

i=1
αiai is not perpendicular to any of a1, . . . ,ak .

For i = 1, . . . ,k +1, set ci = xk ·ai . By hypothesis, ci 6= 0, i = 1, . . . ,k .
If ck+1 6= 0, let αk+1 = 0. So xk+1 = xk . Moreover, xk+1 is not
perpendicular to any of a1, . . . ,ak+1.
If ck+1 = 0, choose αk+1 6= 0, with αk+1ak+1 ·ai 6= −ci , i = 1, . . . ,k .

For i = 1, . . . ,k , xk+1 ·ai = xk ·ai +αk+1ak+1 ·ai = ci +αk+1ak+1 ·ai 6= 0.

For i = k +1, xk+1 ·ak+1 = xk ·ak+1+αk+1ak+1 ·ak+1 =

ck+1+αk+1ak+1 ·ak+1 =αk+1ak+1 ·ak+1 6= 0.

So xk+1 is not perpendicular to any of a1, . . . ,ak+1.
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Choice of Vector With Distinct Inner Products

Corollary

Let a1, . . . ,am be a finite set of distinct vectors in Rn. There exists a vector
a in Rn, such that, for all 1≤ i < j ≤m, a ·ai 6= a ·aj .

Consider the collection

A= {aj −ai : 1≤ i < j ≤m}

of
m(m−1)

2
nonzero vectors.

By the lemma, there exists a in Rn, such that

a · (aj −ai) 6= 0, for all 1≤ i < j ≤m.

Therefore, this a satisfies

a ·ai 6= a ·aj , for all 1≤ i < j ≤m.
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Euler’s Relation

Theorem (Euler’s Relation)

Let P be a non-empty r -polytope in Rn. Then

f−1(P)− f0(P)+·· ·+ (−1)r+1fr (P)= 0,

where fk(P) denotes the number of k-faces of P .

We argue by induction on r .

The theorem is trivial when r = 0, since f−1(P)= 1, f0(P)= 1, and
when r = 1, since f−1(P)= 1, f0(P)= 2, f1(P)= 1.

Suppose that the theorem has been established for polytopes of
dimension r −1, where r ≥ 2.

Let P be an r -polytope (r ≥ 2) in Rn with vertices a1, . . . ,av .

By the preceding corollary, we may choose a vector a in Rn such that
the scalars a ·a1, . . . ,a ·av are distinct.
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Euler’s Relation (Cont’d)

Suppose that the vertices of P are labeled so that a ·a1 < ·· · < a ·av .
Define hyperplanes H1,H3, . . . ,H2v−1 in Rn by the equations

H2k−1 = {x ∈R
n : a ·x = a ·ak }, k = 1, . . . ,v .

Choose scalars c1,c2, . . . ,cv−1 such that

a ·a1 < c1 < a ·a2 < c2 < ·· · < cv−1 < a ·av .

Define hyperplanes H2,H4, . . . ,H2v−2 in Rn by the equations

H2k = {x ∈R
n : a ·x = ck }, k = 1, . . . ,v −1.
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Euler’s Relation (Cont’d)

This situation for a two-dimensional
polytope with six vertices is illustrated
on the right.
The following observations about the
hyperplanes H1,H2, . . . ,H2v−1 are imme-
diate:

(i) They are distinct and parallel to one another;
(ii) Each of the hyperplanes H1,H3, . . . ,H2v−1, contains just one vertex of

P ;
(iii) H1 and H2v−1 are support hyperplanes to P which meet P in a single

point;
(iv) The set P ∩Hk , for k = 2,3, . . . ,2v −2, is an (r −1)-polytope, Pk say;
(v) None of the polytopes P2,P4, . . . ,P2v−2 contains a vertex of P .
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Euler’s Relation (Cont’d)

For each j-face Fj of P , where j = 1, . . . ,r , and for each polytope Pi ,
where i = 2,3, . . . ,2v −2, define an integer ψ(Fj ,Pi ) to be 1 if riFj
meets Pi , and 0 otherwise.
For each j-face Fj of P , where j = 1, . . . ,r , denote by s and t,
respectively, the smallest and largest integers i amongst 1,2, . . . ,2v −1
for which Hi meets Fj .
Clearly s and t are odd with s < t, and ψ(Fj ,Pi)= 1 precisely when
s < i < t. Thus,

∑2v−2
i=2

(−1)iψ(Fj ,Pi)=
∑t−1

i=s+1
(−1)i = 1. So, for each

fixed j = 1, . . . ,r ,
∑

j -faces

(

2v−2
∑

i=2

(−1)iψ(Fj ,Pi )

)

= fj(P),

where the summation is over all the j-faces Fj of Pi . Hence

r
∑

j=1

(−1)j
(

∑

j -faces

(

2v−2
∑

i=2

(−1)iψ(Fj ,Pi)

))

=

r
∑

j=1

(−1)j fj(P).
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Euler’s Relation (Cont’d)

We now find an alternative expression for the left-hand side.

If i is one of 2,4, . . . ,2v −2 or 1< j ≤ r , then the number of
(j −1)-faces of Pi is the same as the number of j-faces of P whose
relative interiors meet Pi .
If i is one of 1,3, . . . ,2v −1, then the number of vertices of P , is one
more than the number of edges of P whose relative interiors meet Pi .

These observations are summarized in the following equations, where
it is assumed that i is one of 2,3, . . . ,2v −2; j is one of 1, . . . ,r , and
fk(Pj ) denotes the number of k-faces of Pi :

∑

j -faces

ψ(Fj ,Pi )=

{

fj−1(Pi ), if i is even or 1< j ≤ r ,
−1+ fj−1(Pi ), if i is odd and j = 1.

Hence,
r

∑

j=1

(−1)j
(

∑

j -faces

ψ(Fj ,Pi)

)

=

{

∑r
j=1

(−1)j fj−1(Pi ), if i is even,

1+
∑r

j=1
(−1)j fj−1(Pi), if i is odd.
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Euler’s Relation (Cont’d)

By the induction hypothesis,
∑r−1

j=−1
(−1)j fj(Pi)= 0. So

1+
∑r

j=1
(−1)j fj−1(Pi )= 0. Hence,

r
∑

j=1

(−1)j
(

∑

j -faces

ψ(Fj ,Pi)

)

=

{

−1, if i is even,
0, if i is odd.

So
2v−2
∑

i=2

(−1)i
(

r
∑

j=1

(−1)j
(

∑

j -faces

ψ(Fj ,Pi )

))

= 1−v .

Comparing the two main equations, we deduce that

r
∑

j=1

(−1)j fj(P)= 1−v = f−1(P)− f0(P).

So
∑r

j=−1
(−1)j fj(P)= 0.
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Outline of a Generalization

Suppose that F is a k-face of an r -polytope P (−1≤ k < r) and that
hi(F ) denotes the number of i -faces of P containing F .

For example, if F is a vertex of a cube P in R3, then this vertex
belongs to three edges and three facets of P .

So in this case: h0(F )= 1, h1(F )= 3, h2(F )= 3, h3(F )= 1.

We note that

h0(F )−h1(F )+h2(F )−h3(F )= 1−3+3−1= 0.

This suggests that we consider the alternating sum

hk(F )−hk+1(F )+·· ·+ (−1)r−khr (F )

in the general case.

We will show that this alternating sum is always zero.

This generalizes Euler’s relation, which corresponds to the case when
F is the empty face of P .
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Polar Duality for Polytopes

Let P be an r -polytope (r ≥ 1) in Rr containing the origin as an
interior point.

Then the polar dual P∗ of P is a compact convex set in Rr containing
the origin as an interior point.

Suppose that P has extreme points a1, . . . ,am.

Then P = conv{a1, . . . ,am} and P∗ is the intersection of the m closed
half spaces ai ·x ≤ 1 for i = 1, . . . ,m, whence P∗ is a polyhedral set.

Thus P∗ is a bounded polyhedral set, i.e., a polytope.
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Polar Duality for Polytopes (Cont’d)

Suppose further that Fi is an i -face of P (i = 1, . . . ,r).

Then a previous theorem shows that there exists a sequence
F−1, . . . ,Fi , . . . ,Fr of r +2 faces of P such that

F−1 ⊂ ·· · ⊂ Fi ⊂ ·· · ⊂ Fr .

Denote by ϕ the polar face mapping of P .

ϕ is an inclusion-reversing bijection from the family of faces of P to
the family of faces of P∗.

So ϕ(F−1). . . . ,ϕ(Fi ), . . . ,ϕ(Fr ) is a sequence of r +2 faces of P∗ with

ϕ(Fr )⊂ ·· · ⊂ϕ(Fi )⊂ ·· · ⊂ϕ(F−1).

It follows from a previous corollary that dimϕ(Fi)= r − i −1.

Hence, the number of i -faces of P is the same as the number of
(r − i −1)-faces of P∗.
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Generalization of Euler’s Theorem

Theorem

Let F be a k-face of an r -polytope P (k = 1, . . . ,r −1) in Rn. Then

hk(F )−hk+1(F )+·· ·+ (−1)r−khr (F )= 0,

where hi(F ), i = k , . . . ,r , denotes the number of i -faces of P containing F .

We may assume, without loss of generality, that r = n and that P
contains the origin as an interior point.

Denote by ϕ the polar face mapping of P . Then the number hi (F ) of
i -faces of P containing F is the same as the number fn−i−1(ϕ(F )) of
(n− i −1)-faces of ϕ(F ). Euler’s relation applied to the polytope ϕ(F )
shows that

hn(F )−hn−1(F )+·· ·+ (−1)n−khk(F )

= f−1(ϕ(F ))− f0(ϕ(F ))+·· ·+ (−1)n−k fn−1−k(ϕ(F ))= 0.
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Linear Relation Between Numbers of Faces

Euler’s relation shows that, for every r -polytope P (r ≥ 1), the
numbers f0(P), . . . , fr−1(P) of faces of P of dimensions 0, . . . ,r −1,
respectively, satisfy the linear equation

f0(P)− f1(P)+·· ·+ (−1)r−1fr−1(P)= 1− (−1)r .

We now prove that this is essentially the only linear equation which is
satisfied by the numbers f0(P), . . . , fr−1(P) for all r -polytopes P (r ≥ 1).

Theorem

Let r be a positive integer. Suppose that α0, . . . ,αr are real numbers such
that the numbers fi(P) of the i -faces (i = 0, . . . ,r −1) of any r -polytope P

satisfy the equation

α0f0(P)+α1f1(P)+·· ·+αr−1fr−1(P)=αr .

Then α1 =−α0,α2 =α0, . . . ,αr−1 = (−1)r−1α0,αr = (1− (−1)r )α0.
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Proof

We argue by induction on r .

The theorem is trivially true when r = 1, for in this case f0(P)= 2 for
all 1-polytopes.

Suppose, then, that the theorem has been proved for the case when r

is some positive integer k , and that α0. . . . ,αk+1 are real numbers such
that

α0f0(P)+α1f1(P)+·· ·+αk fk(P)=αk+1

for all (k +1)-polytopes P .

Let Q be any k-polytope. Let S be a (k +1)-pyramid with base
combinatorially equivalent to Q. Let T be a (k +1)-bipyramid with
base combinatorially equivalent to Q. Previous theorems show that

fi(S) = fi−1(Q)+ fi (Q), i = 0, . . . ,k ,

fi(T ) = 2fi−1(Q)+ fi (Q), i = 0, . . . ,k −1,

fk(T ) = 2fk−1(Q).
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Proof (Cont’d)

Write the equation above for S and T :

α0f0(S)+α1f1(S)+·· ·+αk fk(S)=αk+1 and
α0f0(T )+α1f1(T )+·· ·+αk fk(T )=αk+1.

Substituting the preceding values for fi(S) and fi (T ),

α0(f−1(Q)+ f0(Q))+α1(f0(Q)+ f1(Q))+·· ·

+αk (fk−1(Q)+ fk (Q))=αk+1 and
α0(2f−1(Q)+ f0(Q))+α1(2f0(Q)+ f1(Q))+·· ·

+αk−1(2fk−2(Q)+ fk−1(Q))+αk2fk−1(Q)=αk+1.

Subtracting, we find α0(f−1(Q)+ f0(Q)−2f−1(Q)− f0(Q))+
α1(f0(Q)+ f1(Q)−2f0(Q)− f1(Q))+·· ·+αk−1(fk−2(Q)+ fk−1(Q)−
2fk−2(Q)− fk−1(Q))+αk (fk−1(Q)+ fk (Q)−2fk−1(Q))= 0.
Equivalently,

−α0f−1(Q)−α1f0(Q)−·· ·−αk−1fk−2(Q)−αk fk−1(Q)+αk fk(Q)= 0.
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Proof (Conclusion)

We got the equation

−α0f−1(Q)−α1f0(Q)−·· ·−αk−1fk−2(Q)−αk fk−1(Q)+αk fk(Q)= 0.

Taking into account f−1(Q)= 1 and fk(Q)= 1, we get

α1f0(Q)+α2f1(Q)+·· ·+αk fk−1(Q)=αk −α0.

This equation holds for all k-polytopes Q. By induction,

α2 =−α1,α3 =α1, . . . ,αk = (−1)k−1α1,αk −α0 = (1− (−1)k )α1.

So α1 =−α0. Now the original equation can be written in the form

α0(f0(P)− f1(P)+·· ·+ (−1)k fk(P))=αk+1.

But Euler’s relation applied to any (k +1)-polytope P shows that

f0(P)− f1(P)+·· ·+ (−1)k fk(P)= 1− (−1)k+1
.

Hence αk+1 = (1− (−1)k+1)α0.
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Dehn-Sommerville Equations

The Euler relation is the only linear equation satisfied by the numbers
of faces of various dimensions of every polytope with a given
dimension.

The Dehn-Sommerville equations are satisfied by the numbers of faces
of various dimensions of every simplicial polytope with a given
dimension.

Theorem (Dehn-Sommerville Equations)

Let P be a simplicial r -polytope (r ≥ 1) in Rn. Then

r−1
∑

j=k

(−1)j
(

j +1

k +1

)

fj(P)= (−1)r−1fk(P), k =−1, . . . ,r −2.

For each k-face F of P (k =−1, . . . ,r −2), consider the equation
hk(F )−hk+1(F )+·· ·+ (−1)r−khr (F )= 0, given in a previous theorem.
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Dehn-Sommerville Equations

We add together these equations corresponding to all the k-faces F of
P to deduce that

hk −hk+1+·· ·+ (−1)r−khr = 0,

where hj (j = k , . . . ,r) denotes the total number of inclusions of the
form Fk ⊆ Fj , where Fk and Fj are, respectively, k- and j-faces of P .

If j < r , then each of the fj (P) j-faces of P is a j-simplex. So it has
( j+1
k+1

)

k-faces. Hence hj =
( j+1
k+1

)

fj (P).
If j = r , then the only j-face of P is P itself. P has fk (P) k-faces. So
hr = fk(P).

We now get
(k+1
k+1

)

fk(P)−
(k+2
k+1

)

fk+1(P)+·· ·+ (−1)r−k−1
( r
k+1

)

fr−1(P)

+(−1)r−k fk(P)= 0, i.e.,
∑r−1

j=k
(−1)j−k

( j+1
k+1

)

fj(P)= (−1)r−k−1fk(P).

Multiplying both sides by (−1)k ,

r−1
∑

j=k

(−1)j
(

j +1

k +1

)

fj(P)= (−1)r−1fk(P).
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Special Cases

The Dehn-Sommerville equation corresponding to k =−1 is simply the
Euler relation.

We derive the Dehn-Sommerville equations corresponding to
k = 0, . . . ,r −1 for simplicial r -polytopes P with r = 2,3,4.

For r = 2 and k = 0, we get:

f0(P)−2f1(P)=−f0(P).

This is the same as the Euler relation.

For r = 3 and k = 0, we get:

f0(P)−2f1(P)+3f2(P)= f0(P).

For r = 3 and k = 1, we get:

− f1(P)+3f2(P)= f1(P).

These are the same as one another, but essentially different from the
Euler relation.
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Special Cases (Cont’d)

For r = 4 and k = 0, we get:

f0(P)−2f1(P)+3f2(P)−4f3(P)=−f0(P).

For r = 4 and k = 1, we get:

− f1(P)+3f2(P)−6f3(P)=−f1(P).

For r = 4 and k = 2, we get:

f2(P)−4f3(P)=−f2(P).

The last two of these are the same.

The first one can be deduced from Euler’s relation and the second (or
third) equation.
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Regular 3-Polytopes

A 3-polytope P is said to be regular of type (p|q) if there exist
positive integers p,q with p,q ≥ 3 such that:

Each facet of P is a regular p-gon;
Each vertex of P belongs to q such facets.

Suppose now that P is a regular 3-polytope of type (p|q) which has:

v vertices;
e edges;
f facets.

It follows immediately from a previous theorem that:

Each edge of a 3-polytope is contained in precisely two of its facets;
Each vertex of P belongs to precisely q of its edges.
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Regular 3-Polytopes (Cont’d)

Counting the edges of P by (i) vertices, and (ii) facets, in an obvious
way, we find that qv = 2e and pf = 2e.

Now, using Euler’s relation, we get

1−v +e− f +1= 0 ⇒ 2− 2e
q
+e− 2e

p
= 0

⇒
2pq
e

−2p+2pq−2q = 0 ⇒ 2pq−2p−2q+4= 4− 2pq
e

⇒ (p−2)(q−2)= 4− 2pq
e

< 4.

The only possible types of regular 3-polytopes are: (3|3), (3|4), (4|3),
(3|5) and (5|3).
These types do indeed exist:

The regular tetrahedron;
The regular octahedron;
The cube;
The regular icosahedron;
The regular dodecahedron.
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Subsection 6

Gale Transforms
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Affine Dependence and Cofaces

An affine dependence of a sequence of points a1, . . . ,am in Rn is a
point (λ1, . . . ,λm) of Rm such that

λ1a1+·· ·+λmam =0 and λ1+·· ·+λm = 0.

Clearly the zero vector of Rm is an affine dependence of any sequence
of points a1, . . . ,am in Rn.

A subset W of the vertex set V of a polytope P in Rn is called a
coface of P if conv(V \W ) is a face of P .

For example, every set comprising three vertices of a square in R2 is a
coface of that square.
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Characterization of Cofaces

Theorem

Let a1, . . . ,am be the vertices of a polytope P in Rn. Then {a1, . . . ,ar },
where 1≤ r ≤m, is a coface of P if and only if there is no affine
dependence {λ1, . . . ,λm} of a1, . . . ,am such that λ1, . . . ,λr ≥ 0 with at least
one of λ1, . . . ,λr positive.

Suppose that {a1, . . . ,ar } is not a coface of P . Then, by a previous
theorem, conv{a1, . . . ,ar }∩aff{ar+1, . . . ,am} 6= ;. Hence, there exist
scalars µ1, . . . ,µm, with µ1, · · · ,µr ≥ 0, µ1+·· ·+µr = 1 and
µr+1+·· ·+µm = 1 such that

µ1a1+·· ·+µrar =µr+1ar+1+·· ·+µmam.

Let λ1 =µ1, . . ., λr =µr and λr+1 =−µr+1, . . ., λm =−µm. Then
(λ1, . . . ,λm) is an affine dependence of a1, . . . ,am with λ1, . . . ,λr ≥ 0
and at least one of λ1, . . . ,λr positive.
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Characterization of Cofaces (Cont’d)

Conversely, suppose that (λ1, . . . ,λm) is an affine dependence of
a1, . . . ,am such that λ1, . . . ,λr ≥ 0 and at least one of λ1, . . . ,λr is
positive.

Then
λ1a1+·· ·+λrar

λ1+·· ·+λr
=
(−λr+1)ar+1+·· ·+ (−λm)am

(−λr+1)+·· ·+ (−λm)
.

Hence,
conv{a1, . . . ,ar }∩aff{ar+1, . . . ,am} 6= ;.

So, by a previous theorem, {a1, . . . ,ar } is not a coface of P .
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Set of Affine Dependencies

We denote the set of all affine dependencies of a sequence a1, . . . ,am
in Rn by a(a1, . . . ,am).

By the theorem, an exact description of a(a1, . . . ,am) might be helpful
in studying the facial structure of the polytope conv{a1, . . . ,am}.

Such a description is given in the following result, in which the
statement that

the sequence a1, . . . ,am in Rn is n-dimensional

means that the affine hull of its points is Rn.
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Dimensions of Sequences and Subspaces

Theorem

Let a1, . . . ,am be an n-dimensional sequence in Rn. Then a(a1, . . . ,am) is
an (m−n−1)-dimensional subspace of Rm.

Denote the rows of the (n+1)×m matrix

[

a1 · · · am
1 · · · 1

]

in which

a1, . . . ,am are considered column vectors, by b1, . . . ,bn+1, considered as
points of Rm. Denote by S the row space of the matrix, i.e., the set
of all linear combinations of its rows. Then

a(a1, . . . ,am)= {λ ∈R
m :λ ·bi = 0 for i = 1, . . . ,n+1} = S⊥

.

Since a1, . . . ,am is n-dimensional, the column space of the matrix has
dimension n+1. Hence, so too does S . Since dimS +dimS⊥ =m,
a(a1, . . . ,am)= S⊥ is an (m−n−1)-dimensional subspace of Rm.
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Finding All Affine Dependencies

We now show how to find all the affine dependencies of an
n-dimensional sequence a1, . . . ,am in Rn (m> n+1).

It follows from the theorem that a(a1, . . . ,am) has a basis consisting of
m−n−1 vectors of Rm, say

x1 = (x11, . . . ,x1m), . . . ,xm−n−1 = (xm−n−11, . . . ,xm−n−1m).

(The condition m> n+1 avoids an exceptional, but trivial case.)

λ ∈ a(a1, . . . ,am) if and only if there exist scalars c1, . . . ,cm−n−1, such
that

λ= c1(x11, . . . ,x1m)+·· ·+cm−n−1(xm−n−11, . . . ,xm−n−1m)
= (c1x11+·· ·+cm−n−1xm−n−11, . . . ,c1x1m+·· ·+cm−n−1xm−n−1m).

Write a1 = (x11, . . . ,xm−n−11), . . ., am = (x1m, . . . ,xm−n−1m).
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Gale Transform

Then we see that λ lies in a(a1, . . . ,am) if and only if there exists a
vector c = (c1, . . . ,cm−n−1) in Rm−n−1 such that λ= (c ·a1, . . . ,c ·am).

We have thus found a simple way of expressing all of the affine
dependencies of a1, . . . ,am in terms of a1, . . . ,am.

The sequence of vectors a1, . . . ,am in Rm−n−1 is called a Gale

transform of the sequence a1, . . . ,am of vectors in Rn.
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Example

We find a Gale transform of the sequence a1 = (1,0,0), a2 = (0,1,0),
a3 = (0,0,1), a4 = (−1,0,0), a5 = (0,−1,0), a6 = (0,0,−1), which lists
the vertices of a regular octahedron in R3.

The subspace a(a1, . . . ,a6) of R6 consists of those points (λ1, . . . ,λ6),
which satisfy the simultaneous equations

λ1−λ4 = 0
λ2−λ5 = 0
λ3−λ6 = 0

λ1+λ2+λ3+λ4+λ5+λ6 = 0.

The general solution to this system of linear equations can be
expressed in the form

(λ1,λ2,λ3,λ4,λ5,λ6)= (α,β,−(α+β),α,β,−(α+β)),

where α,β ∈R.
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Example (Cont’d)

Thus x1 = (1,0,−1,1,0,−1), x2 = (0,1,−1,0,1,−1) form a basis for
a(a1, . . . ,a6), which has dimension m−n−1= 6−3−1= 2.

The Gale transform derived from the above basis is the sequence

a1 = (1,0), a2 = (0,1), a3 = (−1,−1),

a4 = (1,0), a5 = (0,1), a6 = (−1,−1).

We note that although the six points a1, . . . ,a6 are distinct, the points
a1, . . . ,a6 are not.

George Voutsadakis (LSSU) Convexity July 2023 109 / 128



Convex Polytopes Gale Transforms

Properties of Gale Transforms

Theorem

Let a1, . . . ,am be a Gale transform in Rm−n−1 of an n-dimensional sequence
a1, . . . ,am in Rn (m> n+1). Then:

(i) A vector in Rm is an affine dependence of a1, . . . ,am if and only if it
has the form (c ·a1, . . . ,c ·am) for some c ∈Rm−n−1;

(ii) The sequence a1, . . . ,am is (m−n−1)-dimensional;

(iii) a1+·· ·+am = 0;

(iv) The origin of Rm−n−1 is an interior point of conv{a1, . . . ,am};

(v) Every open halfspace of Rm−n−1 whose bounding hyperplane passes
through the origin contains at least one of the points a1, . . . ,am.

(i) This result was established in the discussion following the preceding
theorem, which motivated the definition of a Gale transform.
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Properties of Gale Transforms ((ii) and (iii))

(ii(i)) Let

x1 = (x11, . . . ,x1m), . . . ,xm−n−1 = (xm−n−11, . . . ,xm−n−1m)

be the basis for a(a1, . . . ,am) for which

a1 = (x11, . . . ,xm−n−11), . . . ,am = (x1m, . . . ,xm−n−1m).

Since x1, . . . ,xm−n−1 are affine dependencies of a1, . . . ,am, we have

x11+·· ·+x1m = ·· · = xm−n−11+·· ·+xm−n−1m = 0.

Hence a1+·· ·+am =0. The a1, . . . ,am can be identified with the rows
of the matrix whose columns are x1, . . . ,xm−n−1. The latter are linearly
independent. Thus, a1, . . . ,am span Rm−n−1.

Now 0=
1
m
(a1+·· ·+am). Hence, 0 ∈ aff{a1, . . . ,am}. Thus,

aff{a1, . . . ,am} is a subspace of Rm−n−1 containing a1, . . . ,am.

Hence, it must be Rm−n−1. So a1, . . . ,am is (m−n−1)-dimensional.
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Properties of Gale Transforms ((iv) and (v))

(iv) A previous theorem and the equation 0=
1
m
(a1+·· ·+am) show that

0 ∈ ri(conv{a1, . . . ,am}). Hence from (ii), 0 ∈ int(conv{a1, . . . ,am}).

(v) Let H be a hyperplane in Rm−n−1 passing through the origin.

Denote by H− and H+ the open halfspaces determined by H.

Suppose that H− contains none of the points a1, . . . ,am.

Then a1, . . . ,am lie in the closed half space H ∪H+.

Hence conv{a1, . . . ,am} ⊆H ∪H+.

This, however, is incompatible with (iv).

Thus H− must contain at least one of the points a1, . . . ,am.
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Relative Interior of the Convex Hull

Lemma

Let a1, . . . ,ar ∈R
n. Then 0 ∈ ri(conv{a1, . . . ,ar }) if and only if there exists

no c ∈Rn such that c ·a1 ≥ 0, . . . ,c ·ar ≥ 0, with at least one of the
inequalities being strict.

Suppose that 0 ∈ ri(conv{a1, . . . ,ar }). Then, by a previous theorem,
there exist λ1, . . . ,λr > 0 such that 0=λ1a1+·· ·+λrar . Clearly, there
exists no c ∈Rn for which c ·a1 ≥ 0, . . ., c ·ar ≥ 0, with at least one of
these inequalities being strict.

Conversely, suppose that 0 6∈ ri(conv{a1, . . . ,ar }). Then {0} and
conv{a1, . . . ,ar } can be properly separated. So there exist c ∈Rn,
c0 ∈R such that c ·0= 0≤ c0 and c ·a1 ≥ c0, . . ., c ·ar ≥ c0, where at
least one of these r +1 inequalities is strict. If c0 = 0, then at least one
of the inequalities c ·a1 ≥ 0, . . ., c ·ar ≥ 0 must be strict. If c0 > 0, then
all of the inequalities c ·a1 ≥ 0, . . ., c ·ar ≥ 0 are strict. Thus, in every
case, the required condition is met.
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Cofaces and Gale Transforms

Let a1, . . . ,am be a Gale transform of a vertex sequence a1, . . . ,am of
some n-polytope in Rn (m> n+1).

Then, for each subset W of {a1, . . . ,am}, we define a set W by the
equation W = {a1, . . . ,am}.

Theorem

Let a1, . . . ,am be a Gale transform in Rm−n−1 of a vertex sequence
a1, . . . ,am of an n-polytope P in Rn (m> n+1). Then a subset W of
{a1, . . . ,am} is a coface of P iff either W is empty or 0 ∈ ri(convW ).

We assume throughout the proof that W = {a1, . . . ,ar } for some r with
1≤ r ≤m. Suppose first that W is not a coface of P . By a previous
theorem, there exists an affine dependence (λ1, . . . ,λm) of a1, . . . ,am
such that λ1, . . . ,λr ≥ 0, with at least one of λ1, . . . ,λr positive. By
Part (i) of the preceding theorem, λ1 = c ·a1, . . ., λm = c ·am for some
c in Rm−n−1. The lemma now shows that 0 6∈ ri(convW ).
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Cofaces and Gale Transforms (Cont’d)

Suppose next that 0 6∈ ri(convW ).

Then the lemma shows the existence of c in Rm−n−1 such that
c ·a1 ≥ 0, . . . ,c ·ar ≥ 0, with at least one of the inequalities being strict.

Let λ1 = c ·a1, . . . ,λm = c ·am.

Again by Part (i) of the preceding theorem, (λ1, . . . ,λm) is an affine
dependence of a1, . . . ,am.

It now follows from a previous theorem that W is not a coface of P .
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Gale Transforms and Open Halfspaces

Corollary

Let a1, . . . ,am be a Gale transform in Rm−n−1 of a vertex sequence
a1, . . . ,am of an n-polytope P in Rn (m> n+1). Every open halfspace in
R

m−n−1 whose bounding hyperplane passes through the origin contains at
least two terms of the sequence a1, . . . ,am.

Let H be a hyperplane in Rm−n−1 passing through the origin.

Denote by H− and H+ the open halfspaces determined by H.

Suppose that H− contains fewer than two terms of a1, . . . ,am.

Part (v) of a previous theorem shows that H− must contain precisely
one term of a1, . . . ,am, say the first one. Since a1 is a vertex of P , the
theorem shows that 0 ∈ ri(conv{a2, . . . ,am}). This is impossible,
because a2, . . . ,am lie in the closed halfspace H ∪H+ with at least one
of them being in H+, again by Part (v) of the same theorem. Thus,
H− must contain at least two terms of a1, . . . ,am.
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Example

Consider again the Gale transform of the octahedron with vertices
a1, . . . ,a6 discussed in the preceding example.

By the preceding theorem, a subset W of {a1, . . . ,a6} is a coface of the
octahedron if and only if 0 ∈ ri(convW ).

But this is the case if and only if W contains at least one of a1,a4, at
least one of a1,a5, and at least one of a3,a6.

Thus a non-empty subset of {a1, . . . ,a6} determines a proper face of
the octahedron if and only if contains at most one of a1,a4, at most
one of a2,a5 and at most one of a3,a6.
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Characterization of Gale Transforms

Theorem

A sequence a1, . . . ,am of points in Rm−n−1 (m> n+1) is a Gale transform
of a vertex sequence of some n-polytope in Rn if and only if:

(i) a1+·· ·+am = 0;

(ii) Every open halfspace in Rm−n−1 whose bounding hyperplane passes
through the origin contains at least two terms of the sequence
a1, . . . ,am.

The only if part of the theorem follows from a previous theorem and
the preceding corollary.

Suppose, then, that a1, . . . ,am is a sequence of points in Rm−n−1

(m> n+1) which satisfies conditions (i) and (ii) of the theorem. First,
we find an n-dimensional sequence a1, . . . ,am in Rn of which a1, . . . ,am
is a Gale transform. This we do by reversing the procedure whereby
the Gale transform of a sequence was constructed.
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Characterization of Gale Transforms (Cont’d)

Let
a1 = (x11, . . . ,xm−n−11), . . . ,am = (x1m, . . . ,xm−n−1m).

Define points x1, . . . ,xm−n−1 in Rm by the equations

x1 = (x11, . . . ,x1m), . . . ,xm−n−1 = (xm−n−11, . . . ,xm−n−1m).

Condition (ii) ensures that a1, . . . ,am span Rm−n−1. Hence,
x1, . . . ,xm−n−1 form a basis for some (m−n−1)-dimensional subspace
of Rm, S say. Thus, S⊥ has dimension m− (m−n−1)= n+1.
Condition (i) shows that (1, . . . ,1) ∈ S⊥. Hence (1, . . . ,1) can be
extended by vectors (a11, . . . ,am1), . . ., (a1n, . . . ,amn) in Rm to form a
basis for S⊥. Write

a1 = (a11, . . . ,a1n), . . . ,am = (am1, . . . ,amn).

Then a1, . . . ,am is an n-dimensional sequence in Rn that has a1, . . . ,am
for a Gale transform.
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Characterization of Gale Transforms (Cont’d)

We complete the proof by showing that a1, . . . ,am is a vertex sequence
of the n-polytope conv{a1, . . . ,am}.

To do this, we show that, for i = 1, . . . ,m,

ai 6∈ conv{a1, . . . ,ai−1,ai+1, . . . ,am}.

Suppose that this is not so. Then, for some i in {1, . . . ,m}, there exists
an affine dependence (λ1, . . . ,λm) of a1, . . . ,am with λi =−1 and λj ≥ 0
for j ∈ {1, . . . ,m}\{i }. By a previous theorem, there is c in Rm−n−1 such
that c ·ai < 0 and c ·aj =λj for j ∈ {1, . . . ,m}\{i }.

Thus, the open halfspace

{z ∈R
m−n−1 : c ·z < 0}

in Rm−n−1 has the origin on its boundary and contains only one term
of the sequence a1, . . . ,am, contradicting condition (ii). Therefore,
a1, . . . ,am is a vertex sequence of the n-polytope conv{a1, . . . ,am}.
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Gale Transforms and Simplicial Polytopes

Theorem

Let a1, . . . ,am be a Gale transform in Rm−n−1 of a vertex sequence
a1, . . . ,am of an n-polytope P in Rn (m> n+1). Then P is simplicial if and
only if the origin of Rm−n−1 cannot be expressed as a positive convex
combination of fewer than m−n terms of a1, . . . ,am.

P is simplicial if and only if it has no proper face with more than n

vertices.

I.e., P is simplicial if and only if it has no non-empty coface with fewer
than m−n vertices.

Thus, by a previous theorem, P is simplicial if and only if the origin of
R

m−n−1 cannot be expressed as a positive convex combination of
fewer than m−n terms of a1, . . . ,am.
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Gale Transforms and Combinatorial Types

Since a Gale transform of a polytope contains full information about
its combinatorial structure, the combinatorial type of a polytope can
be determined from any one of its Gale transforms.

Suppose that a1, . . . ,am and b1, . . . ,bm are, respectively, vertex
sequences of n-polytopes P and Q in Rn (m> n+1).

Suppose that a1, . . . ,am and b1, . . . ,bm are, respectively, Gale
transforms of a1, . . . ,am and b1, . . . ,bm.

By the definition of combinatorial equivalence and a previous theorem,
P and Q are combinatorially equivalent if and only if there is a
permutation θ of {1, . . . ,m} such that, for every subset J of {1, . . . ,m},

0 ∈ ri(conv{aj : j ∈ J}) if and only if 0 ∈ ri(conv{bθ(j) : j ∈ I }).
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Number of Combinatorial Types of Polytopes

Theorem

There are
[

1
4
n2

]

combinatorial types of n-polytopes with n+2 vertices and
[

1
2
n
]

of these are simplicial.

Let a1, . . . ,an+2 be a Gale transform in R1 of a vertex sequence
a1, . . . ,an+2 of an n-polytope P in Rn. By a previous theorem, this
transform is a sequence of n+2 real numbers whose sum is zero.
Suppose that this sequence has r positive terms and s negative ones,
so that r ≥ 2, s ≥ 2 and r +2≤ n+2. We call such a sequence a
G -sequence of type (r ,s).
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Number of Combinatorial Types of Polytopes (Cont’d)

Suppose next that b1, . . . ,bn+2 is a Gale transform in R1 of a vertex
sequence b1, . . . ,bn+2 of an n-polytope Q in Rn.

Suppose b1, . . . ,bn+2 is a G -sequence of type (r ′,s ′).

In view of our preceding remarks on combinatorial equivalence, P and
Q are combinatorially equivalent if and only if either r = r ′ and s = s ′

or r = s ′ and s = r ′.

A previous theorem shows that every G -sequence of n+2 terms of R1

is a Gale transform of some n-polytope in Rn with n+2 vertices.
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Number of Combinatorial Types of Polytopes (Even n)

Thus, the number of combinatorial types of n-polytopes with n+2
vertices equals the number of ordered pairs (r ,s) of integers satisfying
s ≥ r ≥ 2 and r + s ≤ n+2.
We now calculate this number.

When n is even, these ordered pairs are:

(2,n), (2,n−1), . . . , (2,3), (2,2);
(3,n−1), (3,n−2), . . . , (3,3);
...

(1
2 (n+2),

1
2 (n+2)).

The total number is

(n−1)+ (n−3)+·· ·+1 = 1+2+·· ·+ (n−1)− (2+4+·· ·+ (n−2))

= 1+2+·· ·+ (n−1)−2
(

1+2+·· · n−2
2

)

=
n(n−1)

2 −2
n−2
2

n
2

2 =
n2−n

2 −
n2−2n

4 =
1
4n

2.
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Number of Combinatorial Types of Polytopes (Odd n)

The number of combinatorial types of n-polytopes with n+2 vertices
equals the number of ordered pairs (r ,s) of integers satisfying s ≥ r ≥ 2
and r + s ≤ n+2.

When n is odd, these ordered pairs are:

(2,n), (2,n−1), . . . , (2,3), (2,2);
(3,n−1), (3,n−2), . . . , (3,3);
...

(1
2 (n+1),

1
2 (n+3)), (1

2 (n+1),
1
2 (n+1)).

The total number is

(n−1)+ (n−3)+·· ·+2 = 2
(

1+2+·· · n−1
2

)

= 2
n−1
2

n+1
2

2 =
1
4 (n

2 −1).

In both cases, the required number is
[

1
4
n2

]

.
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Number of Combinatorial Types of Polytopes (Cont’d)

The preceding theorem shows that a G -sequence of n+2 terms which
is of type (r ,s) corresponds to a simplicial n-polytope with n+2
vertices if and only if 0 is not one of its terms, i.e., if and only if
r + s = n+2.

Thus the number of combinatorial types of simplicial n-polytopes with
n+2 vertices equals the number of ordered pairs (r ,s) of integers such
that s ≥ r ≥ 2 and r + s = n+2.

This number is 1
2
n when n is even, and 1

2
(n−1) when n is odd.

In both cases it equals
[

1
2
n
]

.

George Voutsadakis (LSSU) Convexity July 2023 127 / 128



Convex Polytopes Gale Transforms

Applications on Combinatorial Types

The last theorem with n= 3 shows that there are precisely two
combinatorial types of 3-polytopes with five vertices, only one type
being simplicial.

We have already seen examples of these two types:

A square pyramid (non-simplicial);
The polytope formed by taking the union of a regular tetrahedron and
its reflection in one of its triangular faces (simplicial).

Possible Gale transforms for these two examples: 1,−1,1,−1,0 and
2,2,2,−3,−3, themselves make it clear why the two examples are of
different combinatorial types, and that the first one (the square
pyramid) is non-simplicial, as 0 occurs in its Gale transform.

This example serves to show the power and potential of Gale transform
techniques in studying the combinatorial properties of polytopes.
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