
Introduction to Convexity

George Voutsadakis1

1Mathematics and Computer Science

Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU) Convexity July 2023 1 / 132



Outline

1 Linear Programming
The Finite Basis Theorem
Linear Inequalities
Linear Programming
Basic Solutions of Linear Equations
The Simplex Algorithm
Game Theory

George Voutsadakis (LSSU) Convexity July 2023 2 / 132



Linear Programming The Finite Basis Theorem

Subsection 1

The Finite Basis Theorem
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Linear Programming The Finite Basis Theorem

Finitely Generated Convex Cones and Polyhedral Cones

A finitely generated convex cone is one that is generated by a finite
set, i.e., a convex cone of the form

cone{a1, . . . ,am} = {λ1a1+·· ·+λmam :λ1, . . . ,λm ≥ 0},

where a1, . . . ,am ∈Rn.

A convex cone in Rn which is also a polyhedral set is called a
polyhedral cone.

Clearly, a set in Rn is a polyhedral cone if and only if it is a finite
intersection of closed halfspaces whose bounding hyperplanes pass
through the origin.
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Linear Programming The Finite Basis Theorem

Characterization of Finitely Generated Convex Cones

Theorem

A convex cone in Rn is finitely generated if and only if it is polyhedral.

Suppose first that C is a polyhedral cone in Rn. Let P be a polytope
in Rn such that 0 ∈ intP . Then C ∩P is a bounded polyhedral set,
and hence a polytope. Thus C ∩P is conv{a1, . . . ,am} for some points
a1, . . . ,am of C ∩P . We show that C is the finitely generated convex
cone cone{a1, . . . ,am}.

Since C is a convex cone containing a1, . . . ,am, cone{a1, . . . ,am} ⊆C .

If c ∈C , then, since 0 ∈ intP , there is some λ> 0 such that λc ∈P .
Thus, λc ∈C ∩P = conv{a1, . . . ,am} ⊆ cone{a1, . . . ,am}. So
c ∈

1
λ
cone{a1, . . . ,am} = cone{a1, . . . ,am}. Hence, we have

C ⊆ cone{a1, . . . ,am}. Therefore, C = cone{a1, . . . ,am}.
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Linear Programming The Finite Basis Theorem

Characterization (Cont’d)

Suppose next that C is the finitely generated convex cone
cone{a1, . . . ,am}, where a1, . . . ,am ∈Rn. Since polytopes are polyhedral
sets, conv{a1, . . . ,am} can be written as the intersection of some closed
halfspaces J1, . . . ,Jr in Rn. We show that C is the polyhedral cone A
formed by the intersection of those Ji ’s which have the origin on their
boundaries. Since a1, . . . ,am ∈A, C ⊆A. If a ∈A, then:

λa ∈ Ji , for all λ> 0 when 0 lies on the boundary of Ji ;
λa ∈ Ji for all sufficiently small λ> 0 when 0 does not lie on the
boundary of Ji .

It follows that there is a λ> 0 such that

λa ∈ J1∩·· ·∩Jr = conv{0,a1, . . . ,am} ⊆C .

Hence a ∈
1
λC =C . Thus, A⊆C , and C =A as desired.

Corollary

Finitely generated convex cones in Rn are closed.
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Linear Programming The Finite Basis Theorem

Finite Basis Theorem

Theorem (Finite Basis Theorem)

A set in Rn is a polyhedral set if and only if it can be expressed as a vector
sum of a polytope and a finitely generated convex cone.

Suppose first that P = convS +coneT , where S and T are finite sets
in Rn. Then P is the vector sum of the compact polytope convS and
the closed finitely generated convex cone coneT . So it is closed by a
previous theorem. Since convS and coneT are polyhedral sets, they
only have a finite number of faces. It follows from a previous theorem
that P has only a finite number of exposed faces. Thus, P is a closed
convex set which has only a finite number of exposed faces. So it
must be a polyhedral set by a previous theorem.
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Linear Programming The Finite Basis Theorem

Finite Basis Theorem (Cont’d)

Suppose now that P is a polyhedral set in Rn which contains no lines.

If P is bounded, then it is a polytope. So it is trivially the vector sum
of a polytope and the zero cone.

Assume, then, that P is unbounded. By a previous corollary,
P = conv(S ∪L1∪·· ·∪Lr ), where S is the set of extreme points of P
and L1, . . . ,Lr are its extreme halflines. Let T = {a1, . . . ,ar }, where
a1, . . . ,ar are non-zero vectors belonging to the directions of L1, . . . ,Lr ,
respectively. A previous theorem shows that T lies in the recession
cone of P . Hence, so too does coneT . By a previous theorem,
convS +coneT ⊆P+coneT ⊆P .

On the other hand, convS +coneT is a convex set containing
S ∪L1∪·· ·∪Lr . This shows that P ⊆ convS +coneT .

Thus, P is the vector sum of the polytope convS and the finitely
generated convex cone coneT .
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Linear Programming The Finite Basis Theorem

Finite Basis Theorem (Cont’d)

Suppose, finally, that P is a polyhedral set in Rn which contains a
line. A previous theorem shows that P = (P ∩L⊥)+L, where L is the
(non-zero) lineality space of P , and P ∩L⊥ is a polyhedral set
containing no lines. By what we have just proved, P∩L⊥ can be
expressed as convS +coneT for some finite sets S and T in Rn. Let
T ′ be a basis for the subspace L. Then L= cone(T ′∪ (−T ′)) and

P = convS +coneT +cone(T ′∪ (−T ′))
= convS +cone(T ∪T ′∪ (−T ′)).

Thus we have expressed P as a vector sum of a polytope and a finitely
generated convex cone.
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Linear Programming The Finite Basis Theorem

Finite Bases

The finite basis theorem shows that, given any polyhedral set P in Rn,
there exist a1, . . . ,am ∈Rn and k ∈ {0,1, . . . ,m} such that

P = {λ1a1+·· ·+λmam :λ1, . . . ,λm ≥ 0 and λ1+·· ·+λk = 1};

it being understood that P is empty when m= 0, and cone{a1, . . . ,am}

when k = 0 and m> 0.

The ordered pair ({a1, . . . ,ak }, {ak+1, . . . ,am}) is sometimes referred to
as a finite basis for P , and P is said to be finitely generated by
a1, . . . ,ak ;ak+1, . . . ,am.
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Linear Programming The Finite Basis Theorem

Polyhedral Sets Under Addition and Scalar Multiplication

Theorem

Let A,B be polyhedral sets in Rn and let α be a scalar. Then A+B and
αA are polyhedral sets.

By the finite basis theorem, there are finite sets C ,D ,E ,F in Rn such
that A= convC +coneD and B = convE +coneF .

Now convC +convE = conv(C +E ) and coneD +coneF = cone(D ∪F ).
The first of these equations can be established by the argument used
in the proof for the sum of polytopes, and the second is trivial. Thus,
A+B = conv(C +E )+cone(D ∪F ). This shows that A+B is a
polyhedral set.

We also have αA= conv(αC )+cone(αD).

Hence, αA is a polyhedral set.
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Strict Separability of Polyhedral Sets

Theorem

Each pair A and B of disjoint non-empty polyhedral sets in Rn can be
strictly separated.

The preceding theorem shows that A−B is a polyhedral set. Since
A−B is closed and does not contain the origin, it can be strictly
separated from the origin. Thus there exist c ∈Rn and c0 ∈R such
that

c · (a−b)> c0 > 0, for a ∈A,b ∈B .

It follows easily that there is a scalar d satisfying

inf {c ·a : a ∈A} > d > sup {c ·b : b ∈B}.

So the hyperplane with equation c ·z = d strictly separates A and B .
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Linear Programming The Finite Basis Theorem

Bounds of Functions Defined on Polyhedral Sets

Theorem

Suppose that f :P →R is a linear function which is bounded above on a
non-empty line-free polyhedral set P in Rn. Then f attains its upper
bound at an extreme point of P .

We can write

P = conv{a1, . . . ,am}+cone{b1, . . . ,bp},

where a1, . . . ,am,b1, . . . ,bp ∈Rn and a1, . . . ,am are the extreme points
of P .

A typical point x of P can be written in the form

x =λ1a1+·· ·+λmam+µ1b1+·· ·+µpbp ,

where λ1, . . . ,λm,µ1, . . . ,µp ≥ 0 and λ1+·· ·+λm = 1.
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Linear Programming The Finite Basis Theorem

Bounds of Functions Defined on Polyhedral Sets (Cont’d)

Since f is linear,

f (x)=λ1f (a1)+·· ·+λmf (am)+µ1f (b1)+·· ·+µpf (bp).

Since f is bounded above and µ1, . . . ,µp may assume any positive
values, f (b1), . . . , f (bp)≤ 0.

It is now easy to see that f assumes its upper bound (maximal value)
at any extreme point ai of P for which

f (ai)=max {f (a1), . . . , f (am)}.
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Subsection 2

Linear Inequalities
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Linear Programming Linear Inequalities

Matrix Notation

We denote matrices by square brackets and we identify the points of
R

n with column matrices:

x = (x1, . . . ,xn)=




x1

...
xn


 .

We denote the transpose of a matrix A by AT and we identify a
square matrix of order one with the number which determines it.

Thus, we write

xT = (x1, . . . ,xn)
T =

[
x1 · · · xn

]
,

x ·y = (x1, . . . ,xn) · (y1, . . . ,yn)= xT y .
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Linear Programming Linear Inequalities

Matrix Notation (Cont’d)

When real m×n matrices A= [aij ], B = [bij ] are such that aij < bij , for
i = 1, . . . ,m and j = 1, . . . ,n, we write A<B;

Similar definitions apply to the inequalities A≤B, A>B, A≥B.

In the following discussion:

A denotes a real m×n matrix [aij ];
b denotes a point (b1, . . . ,bm) of Rm;
x denotes a point (x1, . . . ,xn) of Rn;
y denotes a point (y1, . . . ,ym) of Rm;
0 denotes a zero vector, whose size can be determined from the
context.
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Linear Programming Linear Inequalities

Closed Convex Cones and Points

Theorem

In Rn let a be a point not lying in a closed convex cone C . Then there
exists a point u in Rn such that u ·a < 0, and u ·c ≥ 0 for all points c in C .

Since a does not belong to the closed convex set C , a can be strictly
separated from C . Thus, there exist u ∈Rn and u0 ∈R such that

u ·a < u0 < u ·c , for c ∈C .

Since 0 ∈C , we have u ·a < u0 < 0. Let c ∈C and λ> 0. Then
λc ∈C . So u · (λc)> u0. Hence, u ·c >

u0

λ
. Letting λ→∞ in the last

inequality, we deduce that u ·c ≥ 0.
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Linear Programming Linear Inequalities

Systems of Linear Inequalities

Consider the following system of m linear inequalities in n variables:

a11x1+·· ·+a1nxn ≤ b1,

...
am1x1+·· ·+amnxn ≤ bm.

In matrix notation, this system of inequalities assumes the form

Ax ≤ b.

If there exist real numbers x1, . . . ,xm which simultaneously satisfy the
m linear inequalities of the system, then the system is said to be
consistent.

Otherwise it is said to be inconsistent.

To show that a system is consistent, we only have to find x1, . . . ,xn
which satisfy it.
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Linear Programming Linear Inequalities

Example: Showing Inconsistency

Consider the following system of three inequalities in three variables:

x −y +2z ≤ −1
−2x +y −3z ≤ 4
5x −y +6z ≤ −14.

After making several unsuccessful attempts at finding x ,y ,z which
simultaneously satisfy these three inequalities, we might correctly
conclude that the system is inconsistent.

Such a lack of success does not, of course, prove the inconsistency.

Suppose, arguing for a contradiction, that the real numbers x ,y ,z

satisfy the given inequalities.

After multiplying the inequalities by 3,4,1, respectively, and adding the
resulting inequalities together, we find 0x +0y +0z = 0≤−1.

This contradiction shows that the given system is inconsistent.
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Linear Programming Linear Inequalities

The General Method

Suppose that x1, . . . ,xn satisfy the system of linear inequalities and
that y1, . . . ,ym ≥ 0.

Then

(a11y1+·· ·+am1ym)x1+·· ·+ (a1ny1+·· ·+amnym)xn
≤ b1y1+·· ·+bmym.

In matrix form this is yTAx ≤ yTb.

This last inequality cannot be satisfied if

a11y1+·· ·+am1ym = 0, . . . ,a1ny1+·· ·+amnym = 0,

b1y1+·· ·+bmym < 0.

In matrix form, if yTA= 0T , yTb < 0.

We have thus shown that, if there exists y ≥ 0 such that yTA= 0T ,
yTb< 0, then the system Ax ≤b is inconsistent.

We will see that the converse is true, i.e., if the system Ax ≤ b is
inconsistent, then there exists y ≥ 0 such that yTA=0T , yTb < 0.
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Linear Programming Linear Inequalities

An Auxiliary Lemma

Lemma

Suppose that there exists no x ≥ 0 in Rn such that Ax = b. Then there
exists y in Rm such that yTA≥ 0T , yTb < 0.

Denote the columns of A by c1, . . . ,cn. By the hypothesis of the
lemma, there is no x = (x1, . . . ,xn)≥ 0 such that

Ax = x1c1+·· ·+xncn = b,

i.e., b 6∈ cone{c1, . . . ,cn}. The preceding theorem shows that there
exists y in Rm such that yTb< 0 and yTc1 ≥ 0, . . . ,yTcn ≥ 0.

The latter can be rewritten as yT [c1, . . . ,cn]= yTA≥0T .
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Linear Programming Linear Inequalities

Characterization of Inconsistency

Theorem

The system of inequalities Ax ≤ b is inconsistent if and only if there exists
y ≥ 0 such that yTA= 0T , yTb < 0.

We have already seen that, if there exists y ≥ 0 such that yTA= 0T ,
yTb< 0, then the system Ax ≤b is inconsistent.

Suppose, then, that the system Ax ≤ b is inconsistent. Consider the
system of m linear equations in 2n+m variables represented by the
matrix equation

[A,−A,Im]z = b, where z = (z1, . . . ,z2n+m).

This system cannot have a solution z for which z ≥ 0.

The existence of such a solution would imply that

A(z1−zn+1, . . . ,zn−z2n)≤ b.

This would contradict the assumed inconsistency of Ax ≤b.
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Characterization of Inconsistency (Cont’d)

By the preceding lemma, there exists y such that yTb< 0 and

yT [A,−A,I ]≥ 0T .

The latter can be rewritten as

yTA≥0T , −yTA≥0T , yT Im ≥0T .

Hence
y ≥ 0, yTA= 0T , yTb< 0.
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Dual Pairs of Inequalities

An immediate consequence of the last theorem is that precisely one of
the following systems of inequalities in x and y has a solution:

(i) Ax ≤ b;
(ii) yTA= 0T , yTb< 0, y ≥ 0.

Two finite systems of linear inequalities such as (i) and (ii), precisely
one of which has a solution, are said to form a dual pair or to be
dual to each other.

It follows easily from the preceding lemma that the following systems
are dual to each other:

(i) Ax = b, x ≥ 0;
(ii) yTA≥ 0T , yTb< 0.
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Linear Programming Linear Inequalities

Dual Pairs and Linear Equations

One interesting application of dual pairs is to the theory of linear
equations.

It is an easy exercise to show that the following systems form a dual
pair:

(i) Ax = b;
(ii) yTA= 0T , yTb 6= 0.

Thus, if the system of linear equations Ax = b is inconsistent, then
some linear combination of its equations yields the contradiction 0 6= 0.

This result is often tacitly assumed, but rarely proved.
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Linear Programming Linear Inequalities

A Mixed System of Weak and Strict Inequalities

Let A be an m×n matrix, C a p×n matrix, x an n×1 matrix, b an
m×1 matrix, and d a p×1 matrix.

Consider the system comprising the m weak inequalities Ax ≤ b and
the p strict inequalities Cx < d .

When is this mixed system of linear inequalities inconsistent?

Two possibilities immediately suggest themselves:

(i) Suppose there are u = (u1, . . . ,um)≥ 0, v = (v1, . . . ,vp)≥ 0 with v 6= 0

such that uTA+vTC = 0T and uTb+vTd ≤ 0. Then, if Ax ≤ b,
Cx < d , we may conclude that (uTA+vTC)x = 0< uTb+vTd ≤ 0.

This shows that the mixed system is inconsistent.
(ii) Suppose there is u = (u1, . . . ,um)≥ 0 such that uTA= 0T and uTb < 0.

Then, if Ax < b, we conclude that uTAx = 0≤ uTb < 0. This shows
that the mixed system is inconsistent.

We show that these are the only ways in which the mixed system can
be inconsistent.
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Characterization of Inconsistency

Theorem

Suppose that the mixed system of inequalities Ax ≤b, Cx < d is
inconsistent. Then either:

(i) there exist u ≥ 0, v ≥ 0 with v 6= 0 such that uTA+vTC =0T and
uTb+vTd ≤ 0 or

(ii) there exixts u ≥ 0 such that uTA=0T and uTb< 0.

Consider the following system of m+p+1 weak inequalities in the
n+1 variables z1, . . . ,zn,z :




A −b

C −d

0T −1







z1
...
zn
z



≤




0m
−1p
−1


 ,

where 0m is the column vector consisting of m 0’s, and −1p is the
column vector consisting of p −1’s.
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Linear Programming Linear Inequalities

Characterization of Inconsistency (Cont’d)

This system is inconsistent, for if it were satisfied by z1, . . . ,zn,z , then

x1 =
z1

z
, . . . ,xn =

zn

z

would satisfy the inconsistent system of the theorem.

By the preceding theorem, there exist u = (u1, . . . ,um)≥ 0,
v = (v1, . . . ,vp)≥ 0, w ≥ 0 such that

uTA+vTC = 0T , −uTb−vTd −w = 0, −v1−·· ·−vp −w < 0.

The alternatives (i) and (ii) of the theorem correspond to the cases
v 6= 0 and v = 0, respectively.

Corollary

Suppose that the system of strict inequalities Cx < d is inconsistent. Then
there exists v ≥ 0 with v 6= 0 such that vTC = 0T and vTd ≤ 0.

Take A and b to be zero matrices in the theorem.
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Solutions and Consequences

Consider the following system S of m linear inequalities in n variables
x1, . . . ,xn:

a11x1+·· ·+a1nxn r1 b1

...
am1x1+·· ·+amnxn rm bm

where each ri is either ≤ or <.

By a solution to S is meant an n-tuple (x1, . . . ,xn) whose coordinates
simultaneously satisfy all the inequalities of S .

The system S is said to be consistent it it has a solution.

Otherwise it is said to be inconsistent.

An inequality e1x1+·· ·+enxn r f where r is either ≤ or < is called a
consequence of S if it is satisfied by all solutions of S .

If S is inconsistent, then every linear inequality in x1, . . . ,xn is
(vacuously) a consequence of S .
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Legal Linear Combinations

Let y1, . . . ,ym ≥ 0 and let b be a scalar such that b1y1+·· ·+bmym ≤ b.

Consider an inequality of the form

(a11y1+·· ·+am1ym)x1+·· ·+ (a1ny1+·· ·+amnym)xn r b,

where one of the following holds:

r is ≤;
r is < and for some i ∈ {1, . . . ,m}, yi > 0 and ri is <;
r is < and b1y1+·· ·+bmym < b.

Such an inequality is a consequence of S called a legal linear

combination of the inequalities of S .

The reason for this choice of name should be clear.

We shall prove later in the section that every consequence of a
consistent system S must be a legal linear combination of its
inequalities.
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Consistency and Legal Linear Combinations

Theorem

The finite system S of linear inequalities is consistent if and only if the
inequality 0x1+·· ·+0xn < 0 is not a legal linear combination of the
inequalities of S .

If S is consistent, then clearly 0x1+·· ·+0xn < 0 is not a consequence
of S . So it is not a legal linear combination of the inequalities of S .

If S is inconsistent, then the inequality 0x1+·· ·+0xn < 0 can be
expressed as a legal linear combination of the inequalities of S by
means of one of the preceding theorems according as the inequalities
of S are weak, mixed or strict.

We give the details for the case when S is an inconsistent system of
weak inequalities, Ax ≤ b, say. By the first theorem in the series, there
exists y ≥ 0 such that yTA= 0T , yTb < 0. So 0x1+·· ·+0xn < 0 is a
legal linear combination of the inequalities of S .
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Consequences of a Consistent System

Theorem

Let S be a finite consistent system of linear inequalities. Then every
consequence of S is a legal linear combination of the inequalities of S .

Suppose first that eT x ≤ f is a consequence of S . We consider three
cases.

(i) Suppose that (in the notation used earlier) S is the system of
inequalities Ax ≤ b. Since eT x ≤ f is a consequence of S , the mixed

system of inequalities

{
Ax ≤ b

−eT x < −f
must be inconsistent. By a

previous theorem, there exist u ≥ 0, v > 0, such that uTA−veT = 0T

and uTb−vf ≤ 0. The possibility (ii) of the theorem cannot occur here
for it would imply that S was inconsistent. Thus eT = (u

v
)TA and

(u
v
)Tb≤ f . This shows that eT x ≤ f is a legal linear combination of

the inequalities of S .
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Consequences of a Consistent System (Case (ii))

(ii) Suppose that S is the mixed system of inequalities Ax ≤ b, Cx < d .
Since eTx ≤ f is a consequence of S , the mixed system of inequalities



Ax ≤ b

Cx < d

−eTx < −f

must be inconsistent. By a previous theorem,

there exist u ≥ 0, v ≥ 0, w > 0, such that uTA+vTC −weT = 0T and
uTb+vTd −wf ≤ 0. Neither possibility (ii) of the theorem nor w = 0
can occur for each would imply that S was inconsistent. Thus

eT
=

( u

w

)T
A+

( u

w

)T
C and

( u

w

)T
b+

( v

w

)T
d ≤ f .

This exhibits eTx ≤ f as a legal linear combination of the inequalities
of S .
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Consequences of a Consistent System (Case (iii))

(iii) Suppose that S is the system of inequalities Cx <d . That eTx ≤ f is
a legal linear combination of the inequalities of S follows from case
(ii) by taking A and b to be zero matrices.

In the same manner, we can prove that every consequence of S of the
form eTx < f is a legal linear combination of the inequalities of S .

Corollary (Farkas’ Lemma)

Let a,a1, . . . ,am ∈Rn be such that a ·x ≥ 0 whenever x ∈Rn and a1 ·x ≥ 0,
. . ., am ·x ≥ 0. Then there exist λ1, . . . ,λm ≥ 0 such that

a =λ1a1+·· ·+λmam.
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Linear Programming Linear Inequalities

Connections with Convexity

Many of the results on inequalities have simple geometric
interpretations in terms of the separation of polyhedral sets.

To illustrate this point, consider the dual pair:
(i) Ax = b;
(ii) yTA= 0T , yTb 6= 0.

Suppose that the equations Ax = b are inconsistent.

Geometrically, this means that in Rm the point b does not belong to
the subspace S spanned by the columns of A.

The existence of a y with yTA= 0T and yTb 6= 0 means that the
hyperplane yT z = 0, which has y as a normal vector and passes
through the origin, contains S but not b.

Thus the existence of this dual pair is equivalent to the following
result:

A point belongs to a subspace of Rm if and only if there exists no
hyperplane containing the subspace but not the point.
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Subsection 3

Linear Programming
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The Standard Maximum Problem

Suppose that a manufacturer produces n products and that he
produces, and sells, xj units of the jth product, xj ≥ 0.

If cj denotes his income from the sale of one unit of the jth product,
then his total income is c1x1+·· ·+cnxn.

Suppose further that each of the n products is made from m raw
materials, there being available bi units of the ith raw material.

If the amount of the ith raw material used in producing a unit of the
jth product is aij , then ai1x1+·· ·+ainxn ≤ bi , i = 1, . . . ,m.

We are led to define the standard maximum problem P :

maximize c1x1+·· ·+cnxn
subject to a11x1+·· ·+a1nxn ≤ b1

· · ·

am1x1+·· ·+amnxn ≤ bm
x1 ≥ 0, . . . ,xn ≥ 0.
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Feasible Vectors and Feasible Sets

This standard maximum problem P can be expressed in matrix
notation as follows:

maximize cTx subject to Ax ≤ b,x ≥ 0,

where A is the real m×n matrix [aij ], b = (b1, . . . ,bm), c = (c1, . . . ,cn),
and x = (x1, . . . ,xn).

A vector x satisfying the constraints of the standard maximum
problem P , i.e., Ax ≤ b and x ≥0, is called a feasible vector for P .

The set of all such feasible vectors is called the feasible set for P .

The problem P is called feasible or infeasible according as its feasible
set is non-empty or empty.

The feasible set for P is the intersection of the m closed halfspaces
represented by the inequalities Ax ≤ b and the n closed halfspaces
represented by the inequalities x ≥0, and so is a polyhedral set.
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Optimal Vectors and Solubility

A feasible vector x0 for P which satisfies cTx ≤ cT x0 for all feasible
vectors x for P is called an optimal vector for P .

The scalar cT x0 is called the value of P.

The problem P is said to be soluble or insoluble according to
whether it has an optimal vector or not.
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Finding an Optimal Vector

Theorem

Suppose that the feasible set for the standard maximum problem P is a
non-empty polytope with extreme points a1, . . . ,ak . Let i ∈ {1, . . . ,k} be
such that cTai =max {cTa1, . . . ,cTak }. Then P is soluble having ai as an
optimal vector and value cTai .

Let x lie in the feasible set conv{a1, . . . ,ak } of P . Then

x =λ1a1+·· ·+λkak ,

for some λ1, . . . ,λk ≥ 0 with λ1+·· ·+λk = 1. Then

cT x =λ1c
Ta1+·· ·+λkc

Tak ≤λ1c
Tai +·· ·+λkc

Tai = cTai .
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Example

A tailor has 16 units of material A, 11 units of material B and 15
units of material C from which he cuts suits and dresses.

Each suit requires 2 units of A, 1 unit of B, 1 unit of C .
Each dress requires 1 unit of A, 2 units of B, 3 units of C .

Suits sell at 30 units, dresses at 50 units.

How can the tailor maximize his income?

Suppose that the tailor makes x1 suits and x2 dresses.

Then the tailor’s problem is to

maximize 30x1+50x2

subject to 2x1+x2 ≤ 16
x1+2x2 ≤ 11
x1+3x2 ≤ 15
x1 ≥ 0,x2 ≥ 0.
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Example (Cont’d)

Perhaps we should add the constraints that x1 and x2 are integers!

We will, however, suppose that our tailor can produce, and sell, any
non-negative number of suits and dresses, subject only to the amount
of materials he has at his disposal.

We refer to this example as the tailor’s problem.
The feasible set F for the problem is the
intersection of the closed halfplanes

2x1+x2 ≤ 16,

x1+2x2 ≤ 11,

x1+3x2 ≤ 15

with the nonnegative quadrant.

It is readily verified that F is the pentagon whose extreme points are

O = (0,0), Q = (8,0), R = (7,2), S = (3,4), T = (0,5).
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Example (Cont’d)

The feasible set is the pentagon with
extreme points O = (0,0), Q = (8,0),
R = (7,2), S = (3,4), T = (0,5).

The values of 30x1+50x2 at the points O ,Q ,R ,S ,T are, respectively:
0,240,310,290,250.

By the theorem, the problem has optimal vector (7,2) and value 310:

The tailor should make 7 suits and 2 dresses so as to give him a
maximal possible income of 310 units.
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Sufficient Condition for Solubility

Theorem

Suppose that the function cTx is bounded above as x ranges over a
non-empty feasible set F for the standard maximum problem P . Then P is
soluble and at least one of its optimal vectors is an extreme point of F .

F is a subset of the non-negative orthant of Rn.

So it is a nonempty line-free polyhedral set in Rn.

The result now follows from the last theorem of the first section.
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Obtaining the Upper Bound

Suppose now that the standard maximum problem P has a non-empty
feasible set F .

The preceding theorem shows that P is soluble when the set
{cT x : x ∈F } of real numbers has an upper bound.

Suppose that, for some y = (y1, . . . ,ym)≥ 0, yTA≥ cT .

Then cTx ≤ yTAx ≤ yTb for x ∈F , and P is soluble with value not
exceeding yTb.

The smaller the number yTb, the more information we can deduce
about the value of P .

We are thus led to consider the following problem:

minimize yTb subject to yTA≥ cT ,y ≥ 0.

This problem turns out to be closely related to the standard maximum
problem P .
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The Standard Minimum Problem

The standard minimum problem is:

minimize cTx subject to Ax ≥b,x ≥ 0;

That is,
mimmize c1x1+·· ·+cnxn
subject to a11x1+·· ·+a1nxn ≥ b1

· · ·

am1x1+·· ·+amnxn ≥ bm
x1 ≥ 0, . . . ,xn ≥ 0.

The definitions of feasible vector, feasible set, feasible, infeasible,
optimal vector, value, soluble and insoluble are modified in the
obvious way so as to apply to the standard minimum problem.
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Duality

With each standard maximum problem P , we associate a standard
minimum problem P∗ called the dual of P as follows:

maximize cTx

subject to Ax ≤ b

x ≥ 0

that is
maximize c1x1+·· ·+cnxn
subject to a11x1+·· ·+a1nxn ≤ b1

· · ·

am1x1+·· ·+amnxn ≤ bm
x1 ≥ 0, . . . ,xn ≥ 0

minimize bTy

subject to AT y ≥ c

y ≥ 0

that is
minimize b1y1+·· ·+bmym
subject to a11y1+·· ·+am1ym ≥ c1

· · ·

a1ny1+·· ·+amnym ≥ cn
y1 ≥ 0, . . . ,ym ≥ 0

In the context that we are considering, the problem P is referred to as
the primal problem.

We note that, ignoring the non-negativity constraints on x and y , the
primal problem has m constraints in n variables, whereas the dual
problem has n constraints in m variables.
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Example (Tailor’s Problem Cont’d)

Recall the tailor’s problem

maximize 30x1+50x2

subject to 2x1+x2 ≤ 16
x1+2x2 ≤ 11
x1+3x2 ≤ 15
x1 ≥ 0,x2 ≥ 0.

The dual of the tailor’s problem is:

minimize 16y1+11y2+15y3

subject to 2y1+y2+y3 ≥ 30
y1+2y2+3y3 ≥ 50
y1 ≥ 0,y2 ≥ 0,y3 ≥ 0.
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Equilibrium or Complementary Slackness Theorem

Theorem (Complementary Slackness Theorem)

Let x ,y be feasible vectors for the problems P ,P∗, respectively. Then
cTx ≤ bTy , with equality if and only if:

(i) xj > 0 implies a1jy1+·· ·+amjym = cj ;

(ii) yi > 0 implies ai1x1+·· ·+ainxn = bi .

Moreover, if cTx =bT y , then x ,y are optimal vectors for their respective
problems.

Since Ax ≤ b and y ≥ 0, we have yTAx ≤ yTb, with equality holding
if and only if (ii) is true.

Similarly, cT x ≤ yTAx , with equality holding if and only if (i) is true.

Thus cTx ≤ yTAx ≤ yTb and cT x = bTy if and only if both (i) and
(ii) hold.
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Complementary Slackness Theorem (Cont’d)

Suppose now that cTx = bT y .

Let x ′,y ′ be feasible vectors for the problems P ,P∗, respectively.

Then, by what we have just proved,

cT x ′
≤ bTy = cTx and bT y ′

≥ cTx = bTy .

This shows that x ,y are optimal for their respective problems.
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Duality Theorem of Linear Programming

Theorem (Duality Theorem of Linear Programming)

Denote by P the standard maximum problem, and by P∗ its dual.

(i) If either one of P and P∗ is soluble, then so too is the other, and both
problems have the same value.

(ii) If both P and P∗ are feasible, then they are both soluble.

(i) Suppose first that P is soluble with optimal vector x0 and value v .
Then the inequality cT x ≤ v is a consequence of the consistent
combined system of inequalities Ax ≤ b, −I nx ≤ 0. By a previous
theorem, there exist y0 ≥ 0, u ≥ 0, such that yT

0 A−uT = cT and
yT

0 b≤ v . This shows that y0 is a feasible vector for P∗. By the
preceding theorem, cTx0 = v ≥ yT

0 b ≥ cT x0. This proves that
cTx0 = yT

0 b. So y0 is an optimal vector for P∗. Thus, P∗ is soluble
and has the same value as P , namely v .
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Duality Theorem of Linear Programming (Cont’d)

A similar argument shows that, if P∗ is soluble with value v , then so
too is P .

(ii) Suppose that both P and P∗ are feasible.

Let y0 be a feasible vector for P∗.

By the preceding theorem, for any feasible vector x of P ,

cTx ≤ bTy0.

A previous theorem shows that P is soluble.

Now the desired result follows from part (i) of this theorem.
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Tailor’s Problem Revisited

We use the complementary slackness theorem to confirm that the
vector (x1,x2)= (7,2), obtained earlier by graphical means, is optimal
for the tailor’s problem, and to obtain an optimal vector for its dual.

Certainly (x1,x2) is a feasible vector for the problem.

Suppose that there is a feasible vector (y1,y2,y3) for the dual which,
together with (x1,x2), satisfies conditions (i) and (ii) of the
complementary slackness theorem.

Since x1,x2 > 0, we have from (i) that:

2y1+y2+y3 = 30 and y1+2y2+3y3 = 50.

Since the third constraint of the primal, i.e., x1+3x2 ≤ 15, is strictly
satisfied, we have from (ii) that y3 = 0.

Thus 2y1+y2 = 30, y1+2y2 = 50.

So y1 =
10
3

, y2 =
70
3

.
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Tailor’s Problem Revisited (Cont’d)

A routine verification now shows (10
3

,
70
3

,0) is feasible for the dual with

30 ·7+50 ·2= 16 ·
10

3
+11 ·

70

3
+15 ·0= 310.

The last statement of the complementary slackness theorem now
enables us to conclude that:

(7,2) is optimal for the tailor’s problem;
(10

3 ,
70
3 ,0) is optimal for its dual;

Both problems have value 310.
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Subsection 4

Basic Solutions of Linear Equations
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System of Linear Equations

Consider the following system of m linear equations in n variables:

a11x1+·· ·+a1nxn = b1

...
am1x1+·· ·+amnxn = bm

In matrix notation it is Ax = b, where A is a real m×n matrix [aij ],
x = (x1, . . . ,xn) and b= (b1, . . . ,bm).

To avoid a vacuous discussion, we shall assume throughout, unless
stated otherwise, that some m of the columns of A form a linear basis
for Rm, i.e., that A has rank m.

In particular, we have m≤ n.
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Basic Solutions of the System

Denote the columns of A by a1, . . . ,an.

Then the system of equations can be written in the form

x1a1+x2a2+·· ·+xnan =b.

Suppose that the columns ai1 , . . . ,aim form a linear basis for Rm.

Then there exist unique scalars xi1 , . . . ,xim such that

xi1ai1 +·· ·+ximaim =b.

If we put the remaining n−m xi ’s equal to zero, we obtain a solution
x = (x1, . . . ,xn) of Ax =b.

A solution obtained in this way is called a basic solution of Ax = b.
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Example

Find the basic solutions of the system of equations:

x1+x2+x3 = 3
3x1+2x2+4x3 = 10.

Every two of the columns of the matrix of coefficients on the left-hand
side of this system of equations form a basis for R2, and so the system
has three basic solutions.

First we put x1 = 0 to obtain the basic solution (0,1,2).

Next we put x2 = 0 to obtain the basic solution (2,0,1).

Lastly we put x3 = 0 to obtain the basic solution (4,−1,0).
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Geometry of Basic Solutions

Theorem

The extreme points of the polyhedral set C = {x ∈Rn :Ax = b,x ≥0} are
precisely the non-negative basic solutions of Ax =b.

Suppose that x0 is a non-negative basic solution of Ax =b, say
x0 = (x1, . . . ,xm,0, . . . ,0), where the first m columns a1, . . . ,am of A are
linearly independent.

Let x0 =λy +µz , where λ,µ> 0 with λ+µ= 1, and y ,z ∈C .

Since y ,z ≥ 0 and λ,µ> 0, we deduce, on equating the last n−m

coordinates on each side of the last expression for x0, that y and z

must have the forms y = (y1, . . . ,ym,0, . . . ,0), z = (z1, . . . ,zm,0, . . . ,0).

Since y ,z ∈C , we have y1a1+·· ·+ymam = b and z1a1+·· ·+zmam = b.

But a1, . . . ,am are linearly independent, whence y1 = z1, . . . ,ym = zm.

Thus x0 = y = x , which shows that x0 is an extreme point of C .
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Geometry of Basic Solutions (Converse)

Suppose next that x0 is an extreme point of C .

If x0 = 0, certainly x0 is a non-negative basic solution of Ax =b.

Assume, then, that x0 6= 0; say x0 = (x1, . . . ,xr ,0, . . . ,0) for some
r ∈ {1, . . . ,n}, where x1, . . . ,xr > 0. Then the first r columns of A, say
a1, . . . ,ar must be linearly independent. To see why this is so, let the
scalars λ1, . . . ,λr be such that λ1a1+·· ·+λrar = 0. Choose θ > 0 so
small that the points

y = (x1+θλ1, . . . ,xr +θλr ,0, . . . ,0),

z = (x1−θλ1, . . . ,xr −θλr ,0, . . . ,0),

belong to C . Then x0 =
1
2
(y +z). But x0 is an extreme point of C .

So y = z . Hence, λ1 = 0, . . . ,λr = 0. Thus, a1, . . . ,ar are linearly
independent.

By extending {a1, . . . ,ar } to a linear basis for Rm using the columns of
A, we deduce that x0 is a non-negative basic solution of Ax = b.
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The Canonical Maximum problem

The canonical maximum problem is to

maximize cTx subject to Ax = b,x ≥ 0.

Note that now we also assume that some m columns of A are linearly
independent.

A vector x ≥ 0 satisfying Ax =b is said to be a feasible vector for
the problem.

The set of all such feasible vectors is called the feasible set for the
problem.

A feasible vector x0 such that cTx ≤ cTx0, for all feasible vectors x ,
is called an optimal vector for the problem.

An optimal vector which is also a basic solution of Ax =b is called a
basic optimal vector for the problem.
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Existence of Basic Optimal Vectors

Theorem

Suppose that the canonical maximum problem has an optimal vector. Then
it has a basic optimal vector.

We consider the non-trivial case when c 6=0.

Suppose that the canonical maximum problem has feasible set C and
optimal vector x0.

The hyperplane H with equation c ·x = c ·x0, supports C at x0.

The non-empty polyhedral set C ∩H contains no lines.

So it possesses an extreme point, x∗ say.

By a previous theorem, x∗ is an extreme point of C .

By the preceding theorem, x∗ is a basic solution of Ax =b.

Since x∗ ∈C and c ·x∗ = c ·x0, x∗ is a basic optimal vector for the
canonical maximum problem.
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Relation Between Standard and Canonical Problems

Let A be any real m×n matrix, not necessarily with columns forming
a basis for Rm.

Recall that the standard maximum problem P

maximize c1x1+·· ·+cnxn
subject to a11x1+·· ·+a1nxn ≤ b1, . . . ,am1x1+·· ·+amnxn ≤ bm

x1 ≥ 0, . . . ,xn ≥ 0.

We pass from this problem involving m inequalities (excluding the
non-negativity constraints on x1, . . . ,xn) to an equivalent problem
involving m equations by introducing m new variables xn+1, . . . ,xn+m:

xn+1 = b1−a11x1−·· ·−a1nxn
. . .

xn+m = bm−am1x1−·· ·−amnxn

Since each xn+i (i = 1, . . . ,m) measures the amount of slack in
ai1x1+·· ·+ainxn ≤ bi , xn+1, . . . ,xn+m are called slack variables.
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The Standard and Canonical Problems (Cont’d)

It is now easy to see that the above standard maximum problem P is
equivalent to the following related canonical problem PR :

maximize c1x1+·· ·+cnxn+0xn+1+·· ·+0xn+m
subject to a11x1+·· ·+a1nxn+xn+1 = b1

· · ·

am1x1+·· ·+amnxn+xn+m = bm
x1 ≥ 0, . . . ,xn+m ≥ 0.

Denote by F the feasible set for the standard maximum problem P ,
and by FR the feasible set for the related canonical maximum problem
PR .

Then there is a natural bijection f : F →FR defined by the equation
f (x)= f (x1, . . . ,xn)= (x1, . . . ,xn+m)= (x ,b−Ax).

Clearly f preserves convex combinations of points.

So the extreme points of F and FR correspond under f .
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Example

We solve the tailor’s problem using the preceding ideas.

The canonical maximum problem related to the tailor’s problem is:

maximize 30x1+50x2+0x3+0x4+0x5

subject to 2x1+x2+x3 = 16
x1+2x2+x4 = 11
x1+3x2+x5 = 15
x1 ≥ 0, . . . ,x5 ≥ 0.

Clearly this canonical problem has an optimal vector, and hence a
basic optimal vector.

Thus to solve the problem, we find at which nonnegative basic
solutions of the above system of equations the function 30x1+50x2

has its maximum.
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Example (Cont’d)

We construct the following table:

Columns Basic Solution Extreme FR Extreme F 30x1+50x2
1,2,3 (3,4,6,0,0) (3,4,6,0,0) (3,4) 290

1,2,4 (33
5 ,

14
5 ,0,−

6
5 ,0)

1,2,5 (7,2,0,0,2) (7,2,0,0,2) (7,2) 310
1,3,4 (15,0,−14,−4,0)
1,3,5 (11,0,−6,0,4)
1,4,5 (8,0,0,3,7) (8,0,0,3,7) (8,0) 240
2,3,4 (0,5,11,1,0) (0,5,11,1,0) (0,5) 250

2,3,5 (0,
11
2 ,

21
2 ,0,−

3
2 )

2,4,5 (0,16,0,−21,−33)
3,4,5 (0,0,16,11,15) (0,0,16,11,15) (0,0) 0

The optimal vector for the canonical is (7,2,0,0,2) and for the tailor’s
problem (7,2).
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Drawbacks of the Method

The method just outlined for solving a linear programming problem is
rarely used in practice.

The method gives no indication as to whether or not the problem has a
solution.
The amount of work in finding a solution is often prohibitive.
A system of m equations in m+n unknowns can have as many as
(m+n)!
m!n! basic solutions, each one obtained as the solution of a system of

m linear equations in m unknowns.

A more practical method of solving linear programming problems is
required.

The most well-known of such methods, the simplex algorithm, is
discussed in the next section.
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Subsection 5

The Simplex Algorithm
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Pivoting

Consider the following system of equations:

a11x1+·· ·+a1nxn = b1

...
am1x1+·· ·+amnxn = bm.

Suppose that aij 6= 0. Then we obtain a new system equivalent to the
given one as follows:

(i) Divide the ith equation by aij ;
(ii) Subtract multiples of the ith equation from the remaining ones in such

a way as to remove their xj term.
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Pivoting (Cont’d)

The new system that we obtain is:

(a11−
a1j

aij
ai1)x1+·· ·+0xj +·· ·+ (a1n−

a1j

aij
ain)xn = b1−

a1j

aij
bi

...
ai1
aij
x1+·· ·+xj +·· ·+

ain
aij
xn =

bi
aij

...

(am1−
amj

aij
ai1)x1+·· ·+0xj +·· ·+ (amn−

amj

aij
ain)xn = bm−

amj

aij
bi .

We say that this new system has been obtained from the original one
by pivoting about aij .

This aij is called the pivot.
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Tailor’s Problem Revisited

The canonical form of the problem is to maximize x̂ , subject to the
constraints:

30x1 +50x2 +0x3 +0x4+ 0x5 = x̂

2x1 +x2 +x3 = 16
x1 +2x2 +x4 = 11
x1 +3x2 +x5 = 15

and the non-negativity constraints x1 ≥ 0, . . . ,x5 ≥ 0.

Here we have added the defining equation of the objective function x̂

to the constraint equations of the problem.

George Voutsadakis (LSSU) Convexity July 2023 72 / 132



Linear Programming The Simplex Algorithm

Tailor’s Problem Revisited (Cont’d)

We seek a basic optimal vector, beginning at the extreme point
(non-negative basic solution) (0,0,16,11,15), where x̂ is 0.

Can we find an extreme point where x̂ > 0?

Yes, we can increase x̂ by increasing x1 from 0, while keeping x2 at 0
and adjusting x3,x4,x5 as required by the equations.

As x1 increases in this way to 8,11,15, x3,x4,x5 decrease, respectively,
to 0.

Since x3,x4,x5 must be non-negative, we can only increase x1 to 8,
while keeping x2 at 0, when x3,x4,x5 are 0,3,7 respectively.

We have thus arrived at the extreme point (8,0,0,3,7), where x = 240.
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Tailor’s Problem Revisited (Cont’d)

We now express x̂ in terms of the new zero variables x2,x3.

This we do by pivoting the whole system of equations about the 2 in
the second row and the first column to obtain the following system of
equations:

35x2 −15x3 = x̂ −240

x1 +
1
2
x2 +

1
2
x3 = 8

3
2
x2 −

1
2
x3 +x4 = 3

5
2
x2 −

1
2
x3 +x5 = 7

It is clear from this system of equations that x̂ = 240 at the extreme
point (8,0,0,3,7).
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Tailor’s Problem Revisited (Cont’d)

Can we find an extreme point where x̂ > 240?

Yes, we can increase x̂ by increasing x2 from 0, while keeping x3 at 0
and adjusting x1,x4,x5.

In fact x2 can be increased to 2, when x1 = 7,x4 = 0,x5 = 2.

We have thus arrived at the extreme point (7,2,0,0,2), where x̂ = 310.

We now express x̂ in terms of the new zero variables x3,x4.

This we do by pivoting the whole system of equations about the 3
2

in
the third row and the second column to obtain the following system:

−
10
3
x3 −

70
3
x4 = x̂ −310

x1 +
2
3
x3 −

1
3
x4 = 7

x2 −
1
3
x3 +

2
3
x4 = 2

1
3
x3 −

5
3
x4 +x5 = 2.

It is clear from this system of equations that x̂ = 310 at the extreme
point (7,2,0,0,2).
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Tailor’s Problem Revisited (Cont’d)

Can we find an extreme point where x̂ > 310?

No, we cannot, for the first equation shows that

x̂ = 310−
10

3
x3−

70

3
x4 ≤ 310,

since x3,x4 ≥ 0 for all feasible vectors (x1,x2,x3,x4,x5) for the
canonical problem.

This ends the search:

(7,2,0,0,2) is a basic optimal vector for the canonical problem.
Hence, the tailor’s problem has optimal vector (7,2) and value 310.
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Tailor’s Problem Revisited (Cont’d)

We interpret the above solution to the tailor’s problem geometrically:

The search for an optimal vector began at the origin, where x̂ was 0.
It then moved to the adjacent extreme point A= (8,0), where x̂ was
240.
Finally, it moved to the adjacent extreme point (7,2), where x̂ assumed
its maximum of 310.

To summarize:

The search started at an extreme point of the feasible set and then
moved along the edges of the feasible set, passing from one extreme
point to an adjacent one, in such a way that x̂ increased at each
successive extreme point until it reached its maximum on the feasible
set.

This is the basic principle that underlies the simplex algorithm.
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Canonical Form of the Standard Maximum Problem

Consider the standard maximum problem, which, in canonical form, is
to maximize x̂ subject to the constraints:

c1x1 +·· · +cnxn +0xn+1 +·· · +0xn+m = x̂

a11x1 +·· · +a1nxn +xn+1 = b1

· · ·

am1x1 +·· · +amnxn +xn+m = bm

and x1 ≥ 0, . . ., xn+m ≥ 0.

We denote by F the feasible set for the problem.
To simplify our initial discussion, we make two assumptions about the
system of equations [A,Im](x1, . . . ,xn+m)= b.
(i) b= (b1, . . . ,bm)≥ 0;
(ii) Every non-negative solution (x1, . . . ,xn+m) of the system has at least m

positive coordinates. (non-degeneracy)

Since (0, . . . ,0,b1, . . . ,bm) is a solution, assumptions (i) and (ii)
together imply that b1, . . . ,bm > 0.
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Tableau Form

The canonical problem can be usefully summarized in tableau form:

x1 x2 · · · xn xn+1 xn+2 · · · xn+m
c1 c2 · · · cn 0 0 · · · 0 x̂

a11 a12 · · · a1n 1 0 · · · 0 b1

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

am1 am2 · · · amn 0 0 · · · 1 bm

It is clear from this initial tableau that (0, . . . ,0,b1, . . . ,bm) is an
extreme point of the feasible set F at which x̂ = 0.

The variables x1, . . . ,xn which are zero at this point are called the
non-basic variables and the non-zero variables xn+1, . . . ,xn+m are
called the basic variables.
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Exploring the Solubility of the Problem

Can we increase x̂ and continue to satisfy the constraints of the
problem?

Certainly not if c1 ≤ 0, . . ., cn ≤ 0, for then

x̂ = c1x1+·· ·+cnxn ≤ 0,

as x1, . . . ,xn ≥ 0 for all vectors (x1, . . . ,xn+m) in the feasible set F .

Thus in this case (0, . . . ,0,b1, . . . ,bm) is an optimal vector for the
problem and the problem has value 0.

Suppose, then, that at least one of c1, . . . ,cn is positive, say c1 > 0.

If all the numbers in the column below c1 in the initial tableau are
non-positive, then, for any x1 ≥ 0,

(x1,0, . . . ,0,b1−a11x1, . . . ,bm−am1x1) ∈F

and x̂ = c1x1 at this point.

Thus x̂ is not bounded above on F and the problem is insoluble.
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Pivoting

Suppose, then, that at least one of a11, . . . ,am1 is positive.

For each i such that ai1 > 0, find bi
ai1

and choose an i which minimizes

these quotients; say a11 > 0 and that b1
a11

is the minimum of the
quotients.

We now increase x1 from 0 to b1
a11

, while keeping x2, . . . ,xn at 0 and
adjusting xn+1, . . . ,xn+m as required by the constraints of the problem.

We thus arrive at the extreme point

(
b1

a11

,0, . . . ,0,b2−
b1

a11

a21, . . . ,bm−
b1

a11

am1

)

of F , where x̂ =
b1
a11

c1 > 0.

We now express x̂ in terms of the new non-basic (zero) variables
x2, . . . ,xn+1 by pivoting about the number a11 in the first tableau.
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Second Tableau

We obtain a second tableau with the following form:

0 c ′2 · · · c ′n c ′n+1 0 · · · 0 x̂ − b1
a11

c1

1 a′12 · · · a′1n a′1n+1 0 · · · 0 b1
a11

0 a′22 · · · a′2n a′2n+1 1 · · · 0 b2−
b1

a11
a21

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 a′m2 · · · a′mn a′mn+1 0 · · · 1 bm−
b1
a11

am1

This new tableau shows immediately that x̂ =
b1

a11
c1 at the new

extreme point of F , for here the variables x2, . . . ,xn+1 are zero.
Because of non-degeneracy, the elements in the last column of the
tableau under x̂ − b1

a11
c1 cannot be zero - they must be positive.

The non-zero coordinates x1,xn+2, . . . ,xn+m of the new extreme point
can be read off immediately from the above tableau.
Since b1

a11
c1 > 0, the value of x̂ at the new extreme point is strictly

larger than its value at the initial extreme point.

George Voutsadakis (LSSU) Convexity July 2023 82 / 132



Linear Programming The Simplex Algorithm

Second Pivoting

If c ′2 ≤ 0, . . ., c ′n+1 ≤ 0, the extreme point just found will be an optimal
vector for the problem.

Suppose, then, that at least one of c ′2, . . . ,c ′n+1 is positive, say c ′
j0
> 0.

If all the numbers in the column below c ′
j0

in this second tableau are

non-positive, then x̂ is not bounded above on F and the problem is
insoluble.

Suppose, then, that at least one of a′
1j0

, . . . ,a′
mj0

is positive.

For each i such that a′
ij0

> 0, consider
b′

i

a′
ij0

, where b′
i
is the number in

the same row as a′
ij0

and in the last column of the tableau;

say a′
i0j0

> 0 and that
b′

i0

a′
i0j0

is the minimum of these quotients.

Now pivot about the number a′
i0j0

in the second tableau to obtain a

third tableau, which will indicate a third extreme point, where the
value of x̂ exceeds its value at the second extreme point.
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Final Tableau

We now repeat the procedure.

Since F , being a polyhedral set, has only a finite number of extreme
points and x̂ strictly increases in value at each stage in the algorithm,
one of two possibilities must occur:

(i) A tableau is reached in which the first m+n numbers on the top row
are non-positive;

(ii) A tableau is reached which has one of its first m+n numbers on the
top row positive with all the numbers below it non-positive.

In Case (i), the tableau, which is called a final tableau, will yield an
optimal vector when the non-basic variables are put equal to zero and
the values of the basic variables are read off from the tableau;

The value v of the problem is to be found from the last entry on the
first row of the tableau which is x̂ −v .

In Case (ii), the problem is insoluble.
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Example

We use the simplex algorithm to solve the problem:

maximize 2x1−3x2+x3

subject to 3x1+6x2+x3 ≤ 6
4x1+2x2+x3 ≤ 4
x1−x2+x3 ≤ 3
x1 ≥ 0,x2 ≥ 0,x3 ≥ 0.

We convert this standard problem to a canonical problem in the usual
way to obtain the following initial tableau in the simplex algorithm.

2 −3 1 0 0 0 0

3 6 1 1 0 0 6
4 2 1 0 1 0 4
1 −1 1 0 0 1 3

We have omitted the x̂ in the top right-hand corner of the tableau;
the number in this position is the negative of the value of x̂ .
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Example (Cont’d)

The first tableau is

2 −3 1 0 0 0 0

3 6 1 1 0 0 6
4 2 1 0 1 0 4
1 −1 1 0 0 1 3

0 −4 1
2

0 −
1
2

0 −2

0 9
2

1
4

1 −
3
4

0 3
1 1

2
1
4

0 1
4

0 1
0 −

3
2

3
4

0 −
1
4

1 2

We examine the top row of the tableau for positive entries, selecting
the 2 in the first column (although the 1 in the third column would
serve equally well).

According to the simplex algorithm, we next choose the least of the
ratios 6

3
, 4

4
, 3

1
, i.e., 4

4
.

So we pivot about the 4 in the first column, indicating this by marking
the 4 in the initial tableau.

We thus obtain the second tableau (shown on the right).
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Example (Cont’d)

We have the tableau

0 −4 1
2

0 −
1
2

0 −2

0 9
2

1
4

1 −
3
4

0 3
1 1

2
1
4

0 1
4

0 1

0 −
3
2

3
4

0 −
1
4

1 2

0 −3 0 0 −
1
3

−
2
3

−
10
3

0 5 0 1 −
2
3

−
1
3

7
3

1 1 0 0 1
3

−
1
3

1
3

0 −2 1 0 −
1
3

4
3

8
3

We examine the top row of the tableau for positive entries, selecting
the 1

2
in the third column.

The least of the ratios to be considered, viz. 3
1/4

, 1
1/4

, 2
3/4

, is the last
one.

Thus we pivot about the 3
4

in the third column to obtain the third
tableau (shown on the right).
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Example (Cont’d)

We obtained the tableau

0 −3 0 0 −
1
3

−
2
3

−
10
3

0 5 0 1 −
2
3

−
1
3

7
3

1 1 0 0 1
3

−
1
3

1
3

0 −2 1 0 −
1
3

4
3

8
3

There are no positive entries on the top row here, so we have a final
tableau.

The non-basic variables indicated by this tableau are x2,x5,x6, which
are zero.

The basic variables x1,x3,x4 have values 1
3
, 8

3
,7
3
, respectively, which

can be easily read off from the above tableau.

Hence (1
3

,0,
8
3

,
7
3

,0,0) is an optimal vector for the canonical problem.

Thus the standard problem has optimal vector (1
3

,0,
8
3
) and value 10

3
.
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Relation to the Dual Problem

Suppose that, in the usual notation, the initial and final tableaux
corresponding to the solution of the standard maximum problem by
the simplex algorithm are as follows:

[
cT 0T 0
A Im b

]
,

[
−z1, . . . ,−zn −y1, . . . ,−ym −v

∗ ∗ ∗

]
,

where z1, . . . ,zn,y1, . . . ,ym ≥ 0 and v is the value of the problem.

The method of operation of the simplex algorithm shows that the first
row of the final tableau is obtained from the initial tableau by adding
multiples of its last m rows to its first row.

In particular, [−y1, . . . ,−ym] is a linear combination of the rows of Im.

So the multiples referred to above are −y1, . . . ,−ym, in that order.
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Relation to the Dual Problem (Cont’d)

Thus, writing y = (y1, . . . ,ym), we deduce that

[−z1, . . . ,−zn] = cT + [−y1, . . . ,−ym]A,

−v = [−y1, . . . ,−ym]b.

Thus
ATy = c + (z1, . . . ,zn)≥ c

and
v = bTy .

This shows that:

y is a feasible vector for the dual problem;
bTy = v , where v is the value of the primal problem.

By the Complementary Slackness Theorem, y is an optimal vector for
the dual.
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Significance of Hypothesis

In our discussion of the simplex algorithm we made two assumptions:

(i) The vector b was non-negative;
(ii) The system of equations [A,Im](x1, . . . ,xn+m)= b was non-degenerate.

The first assumption was needed at the outset of the algorithm to
show that (0, . . . ,0,b1, . . . ,bm) was an initial extreme point.

Without this assumption, it would not have been clear how to find an
extreme point with which to begin the simplex algorithm - indeed such
an extreme point might not exist.

We now describe a method which will tell us:

If the feasible set of the canonical problem has an extreme point;
If it does, how to find it.
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The Augmented Problem

Consider the canonical maximum problem:

maximize c1x1+·· ·+cnxn = x̂

subject to [A,Im](x1, . . . ,xn+m)=b; x1, . . . ,xn+m ≥ 0,

under the single assumption of non-degeneracy.

Since we have discussed the case when b≥ 0, we suppose that at least
one of b1, . . . ,bm is negative.

Consider now the following augmented problem:

maximize −x0 = x̃

subject to −x0+a11x1+·· ·+a1nxn+xn+1 = b1

· · ·

−x0+am1x1+·· ·+amnxn+xn+m = bm
x0 ≥ 0, x1 ≥ 0, . . . , xn+m ≥ 0.
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Properties of the Augmented Problem

We have the following properties

(i) The problem is feasible, for if x0 is chosen so that b1+x0 ≥ 0, . . .,
bm+x0 ≥ 0, then (x0,0, . . . ,0,b1+x0, . . . ,bm+x0) is a feasible vector.

(ii) The objective function x̃ =−x0 is bounded above by 0, so, in view of
(i), the problem is soluble.

(iii) Suppose that the unaugmented problem has a feasible vector
(x1, . . . ,xn+m). Then (0,x1, . . . ,xn+m) is an optimal vector for the
augmented problem, which has value 0.
Conversely, if (x0,x1, . . . ,xn+m) is a basic optimal vector for the
augmented problem giving it value 0, then x0 = 0 and (x1, . . . ,xn+m) is
an extreme point of the feasible set for the canonical problem.

Thus what we need first is to solve the augmented problem.

If its value is negative, then the canonical problem is insoluble.
If its value is zero and (0,x1, . . . ,xn+m) is one of its optimal vectors,
then (x1, . . . ,xn+m) is the sought-for extreme point of the feasible set
for the canonical problem.
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Solving the Augmented Problem

We cannot initially solve the augmented problem by the simplex
algorithm, for at least one of b1, . . . ,bm is negative.

Suppose, without loss of generality, that b1 is less than or equal to
each of b2, . . . ,bm, and hence negative.

We pivot about the −1 in the first row and the first column of the
system of equations to obtain the following problem, which is
equivalent to the augmented problem:

maximize −a11x1−·· ·−a1nxn−xn+1 = x̃ −b1

subject to x0−a11x1−·· ·−a1nxn−xn+1 =−b1

a′21x1+·· ·+a′2nxn−xn+1+xn+2 = b2−b1

. . .

a′m1x1+·· ·+a′mnxn−xn+1+xn+m = bm−b1

x0 ≥ 0,x1 ≥ 0, . . . ,xn+m ≥ 0,

where a′21, . . . ,a′mn are real numbers whose specific values do not
interest us here.
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Solving the Augmented Problem (Cont’d)

Since b1 < 0,b1 ≤ b2, . . . ,b1 ≤ bm,

−b1 > 0,b2−b1 ≥ 0, . . . ,bm−b1 ≥ 0.

We have a problem to which we can apply the simplex algorithm.

Hence we can find an extreme point of the feasible set of the
unaugmented problem (should such an extreme point exist).

This procedure for finding an extreme point by solving the augmented
problem is known as the method of the artificial variable.

The name comes from the artificial introduction of variable x0, which
disappears before the final solution of the original problem is obtained.

George Voutsadakis (LSSU) Convexity July 2023 95 / 132



Linear Programming The Simplex Algorithm

Example

We use the method of the artificial variable to solve the following
problem P , which can also be solved graphically:

maximize x1+x2

subject to 2x1+3x2 ≤ 18
4x1+x2 ≤ 13
−x1−2x2 ≤−5
x1 ≥ 0,x2 ≥ 0.

Denote by PR the canonical maximum problem related to P , and by
FR the feasible set for PR .

maximize x1+x2+0x3+0x4+0x5

subject to 2x1+3x2+x3 = 18
4x1+x2+x4 = 13
−x1−2x2+x5 =−5
x1 ≥ 0, . . . ,x5 ≥ 0.
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Example (Cont’d)

The augmented problem associated with PR is:

maximize −x0

subject to −x0+2x1+3x2+x3 = 18
−x0+4x1+x2+x4 = 13
−x0−x1−2x2+x5 =−5
x0 ≥ 0,x1 ≥ 0, . . . ,x5 ≥ 0.

The initial tableau for this problem is:

−1 0 0 0 0 0 0

−1 2 3 1 0 0 18
−1 4 1 0 1 0 13
−1 −1 −2 0 0 1 −5
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Example (Cont’d)

Since −5 is the smallest element in the right-hand column, we pivot
about the element in the same row as this and in the column of the
artificial variable, to obtain the following tableau:

0 1 2 0 0 −1 5

0 3 5 1 0 −1 23
0 5 3 0 1 −1 18
1 1 2 0 0 −1 5

This tableau is not final, because of the 1 and 2 in its top row.

We choose a pivot in the column headed by the 2, which is easily seen
to be 2:

−1 0 0 0 0 0 0

0 1
2

0 1 0 3
2

21
2

−
3
2

7
2

0 0 1 1
2

21
2

1
2

1
2

1 0 0 −
1
2

5
2
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Example (Cont’d)

We see that the augmented problem has value 0 and optimal vector
(0,0,

5
2

,
21
2

,
21
2

,0).

So (0,
5
2

,
21
2

,
21
2

,0) is an extreme point of FR .

The non-basic variables at this last extreme point are x1 and x5.

We now express the objective function x1+x2 of PR in terms of x1

and x5.

Since −x1−2x2+x5 =−5, it follows that x1+x2 =
1
2
x1+

1
2
x5+

5
2
.

This enables us to write down an initial tableau for PR with starting
point (0,

5
2

,
21
2

,
21
2

,0):

1
2

0 0 0 1
2

−
5
2

1
2

0 1 0 3
2

21
2

7
2

0 0 1 1
2

21
2

1
2

1 0 0 −
1
2

5
2
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Example (Cont’d)

Starting from that tableau we proceed to a final one as follows:

1
2

0 0 0 1
2

−
5
2

1
2

0 1 0 3
2

21
2

7
2

0 0 1 1
2

21
2

1
2

1 0 0 −
1
2

5
2

0 0 0 −
1
7

3
7

−4

0 0 1 −
1
7

10
7

9

1 0 0 2
7

1
7

3
0 1 0 −

1
7

−
4
7

1

0 0 −
3
10

−
1
10

0 −
67
10

0 0 7
10

−
1
10

1 63
10

1 0 −
1
10

3
10

0 21
10

0 1 2
3

−
1
5

0 23
5

Thus, P has an optimal vector (21
10

,
23
5
) and value 67

10
.
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Non-Degeneracy and Cycling

Throughout our discussion we have only considered non-degenerate
problems.

We even made a tacit assumption of non-degeneracy in our account of
the method of the artificial variable just described.

We need this non-degeneracy assumption in showing that the
algorithm terminated after a finite number of steps.

Without the assumption, it would be possible to enter into an infinite
sequence of pivoting operations without ever reaching a solution (even
when one exists!).

Such a phenomenon is called cycling.

This difficulty is more apparent than real, for it can be shown that for
any problem, there is a sequence of pivots which will ensure that the
simplex algorithm is completed in a finite number of steps.

In practice, cycling rarely occurs, although problems have been
specially constructed to demonstrate its existence.
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Subsection 6

Game Theory
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Matrix Games

A matrix game consists of the following:

Two players compete against each other:

A row player R ;
A column player C .

A game is determined by a real m×n matrix A= [aij ], called the
pay-off matrix of the game.

The row player chooses a row of A (i.e., one of the numbers 1, . . . ,m);
The column player chooses a column of A (i.e., one of the numbers
1, . . . ,n).

Each players acts in ignorance of his opponent.

If R chooses i and C chooses j , then R receives an amount aij from C .

This procedure constitutes one play of the game, and the game
consists of a large number of plays.

The object of each player is to maximize/minimize his gains/losses.
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Example

Player R selects two of the numbers 1,2,4, while C independently
selects one of them.

For each number chosen by R , but not by C , C pays R that number.
For each number chosen by both R and C , R pays C that number.

This is essentially a matrix game, since we can construct its pay-off
matrix.

R has three choices: (i) 1,2; (ii) 1,4; (iii) 2,4;
C has three choices: (i) 1; (ii) 2; (iii) 4.

Suppose that both players play their first choices. Then R pays 1 to C

and C pays 2 to R . The net result of this play is a gain of 1 to R .

So the element in row 1 and column 1 of the pay-off matrix is 1.

The completed matrix is




1 −1 3
3 5 −3
6 2 −2


.
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Game Determined by a Matrix: Informal Discussion

Consider a large number N of plays of the game.

Suppose that R chooses 1, . . . ,m, respectively, N1, . . . ,Nm times.

Then N1+·· ·+Nm =N, and R has made the choice i (i = 1, . . . ,m)
with relative frequency xi =

Ni

N
.

Clearly, x1, . . . ,xm ≥ 0 and x1+·· ·+xm = 1.

Suppose, similarly, that C has made the choice j (j = 1, . . . ,n) with
relative frequency yj .

Then y1, . . . ,yn ≥ 0 and y1+·· ·+yn = 1.

We say that:
R employs strategy x = (x1, . . . ,xm);
C employs strategy y = (y1, . . . ,yn).

How much can R expect to receive from C during the game?

We assume that the players, within their preferred strategies, make
their choices in a random way.
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Game Determined by a Matrix (Cont’d)

R chooses i with relative frequency xi .

C chooses j with relative frequency yj .

The relative frequency with which both R chooses i and C chooses j

is xiyj , the number of times this occurring being about xiyjN.

The amount which R receives from C as a result is aijxiyjN.

Thus the total amount R receives from C after N plays is

m∑

i=1

n∑

j=1

aijxiyjN.

The average amount R can expect to receive from C for a single play
is

m∑

i=1

n∑

j=1

aijxiyj .

This last expression, denoted by E (x ,y), is called R ’s expected gain

and C ’s expected loss.
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Linear Programming Game Theory

Strategy

Consider again the game determined by a real m×n matrix A= [aij ].

A strategy for R is a vector x = (x1, . . . ,xm) for which x1, . . . ,xm ≥ 0
and x1+·· ·+xm = 1.

A strategy for C is a vector y = (y1, . . . ,yn) for which y1, . . . ,yn ≥ 0
and y1+·· ·+yn = 1.

The set of all strategies for R is denoted by Sm.

The set of all strategies for C is denoted by Sn.
The simplest strategies are the pure strategies in which a player
consistently chooses a given row or column.

The ith pure strategy for R is the m-vector (0, . . . ,1, . . . ,0), which has
a 1 in the ith place and zeros elsewhere;
The jth pure strategy for C is the n-vector (0, . . . ,1, . . . ,0), which has a
1 in the jth place and zeros elsewhere.

Clearly, the set Sm of all strategies for R is a polytope in Rm whose
extreme points are R ’s pure strategies.

Similar remarks apply to Sn.
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Linear Programming Game Theory

Expected Gain and Expected Loss

Suppose that R and C employ strategies x and y , respectively.

Then R ’s expected gain (which is C ’s expected loss), denoted by
E (x ,y), is defined by

E (x ,y)=
m∑

i=1

n∑

j=1

aijxiyj = xTAy .

We observe that E (x ,y) is simply a particular value of the bilinear
form associated with the matrix A.
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Linear Programming Game Theory

Maximization of Gain; Minimization of Loss

Let a and a denote, respectively, the minimal and maximal elements of
the matrix A.

Then it is easily seen that, whatever the strategies adopted by the two
players:

R ’s expected gain is at least a;
C s expected loss is at most a.

Consider the use of pure strategies by both players.

If R plays his ith pure strategy against a pure strategy of C , his
expected gain will be one of the numbers ai1, . . . ,ain.

So he can be certain of receiving at least minj aij .

Clearly, R should choose i in such a way as to make this minimum as
large as possible.
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Linear Programming Game Theory

Maximization of Gain; Minimization of Loss (Cont’d)

Suppose that the minimum minj aij is maximized when i = i0, say.

Then we have shown that, by suitable choice of a pure strategy, R can
guarantee an expected gain of at least

max
i

min
j

aij

against any pure strategy of C .

Similarly, for some j = j0, the j0th pure strategy of C will keep his
expected loss to at most minj maxi aij against any pure strategy of R .

By considering R ’s expected gain (C ’s expected loss) when R chooses
his i0th pure strategy and C chooses his j0th pure strategy, we can
deduce that

a≤max
i

min
j

aij ≤min
j

max
i

aij ≤ a.
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Linear Programming Game Theory

Example

Consider the matrix 


3 7 2
8 1 6
4 9 5




Here
1= a≤ max

i
min
j

aij = 4< 6=min
j

max
i

aij ≤ a= 9.

R ’s best pure strategy is to play his third row.

C ’s best pure strategy is to play his third column.

When both players choose their best pure strategies, the expected gain
(loss) is 5, which lies strictly between the max-min and min-max.
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Linear Programming Game Theory

Security Levels

Consider the general matrix game, determined by a real m×n matrix
A= [aij ], from the point of view of the row player R .
Suppose that he decides on some strategy x ∈ Sm.

Denote by e1, . . . ,en the pure strategies of C .

Let y = (y1, . . . ,yn) ∈ Sn.

Then
E (x ,y) = E (x ,y1e1+·· ·+ynen)

= y1E (x ,e1)+·· ·+ynE (x ,en)
≥ min{E (x ,e1), . . . ,E (x ,en)}.

So R can be sure that his expectation is at least equal to uR(x), where

uR(x)= min
y∈Sn

E (x ,y)=min{E (x ,e1), . . . ,E (x ,en)}.

The number uR(x) is called R ’s security level for his strategy x .

E (x ,e1), . . . ,E (x ,en) are linear in x , so they are continuous.
Hence uR : Sm →R, being the minimum of a finite number of
continuous functions, is itself continuous.
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Linear Programming Game Theory

Value and Optimal Strategy for R

Player R will naturally choose a strategy x in such a way as to make
his security level uR(x) as large as possible.

Since uR is a continuous real-valued function defined on the compact
set Sm, its maximal value, vR say, will be attained at some point xR

of Sm.

Thus
vR = uR(xR)= max

x∈Sm

uR(x)= max
x∈Sm

min
y∈Sn

E (x ,y).

The number vR is called the value of R ’s game.

Any strategy such as xR which gives R a security level of vR is called
an optimal strategy for R .
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Linear Programming Game Theory

Value and Optimal Strategy for C

Player C can see his objective as minimizing R ’s expectation.

Suppose C decides on a strategy y ∈ Sn.

Then he can be sure that R ’s expectation is at most

uC (y)= max
x∈Sm

E (x ,y).

In perfect analogy to R maximizing uR(x), C tries to minimize uC (y).

There exist yC ∈ Sn and vC ∈R such that

vC = uC (yC )= min
y∈Sn

uC (y)= min
y∈Sn

max
x∈Sm

E (x ,y).

The number vC is called the value of C ’s game.

Any strategy such as yC which gives uC (y) the value vC is called an
optimal strategy for C .
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Linear Programming Game Theory

Introducing the Minimax Theorem

Suppose now that R and C have optimal strategies xR ,yC and that
the values of their games are vR ,vC .

If R uses xR , he can guarantee himself an expectation of at least vR ;

If C uses yC , he guarantees that R ’s expectation will not exceed vC .

Thus,
vR ≤E (xR ,yC )≤ vC .

The minimax theorem, proved below, asserts the equality of the values
vR and vC .

The theorem, therefore, shows that every matrix game is soluble in the
sense that there exists a number v for which:

R can play so that his expectation is at least v ;
C can play so that R ’s expectation is at most v .
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Linear Programming Game Theory

Von Neumann’s Minimax Theorem

Theorem (Von Neumann’s Minimax Theorem)

In the matrix game determined by a real m×n matrix A, the value of R ’s
game is equal to the value of C ’s game, i.e.,

vR = max
x∈Sm

min
y∈Sn

xTAy = min
y∈Sn

max
x∈Sm

xTAy = vC .

Suppose first that the elements aij of A are all positive. Consider the
following linear programming problem P and its dual P∗:

maximize y1+·· ·+yn
subject to a11y1+·· ·+a1nyn ≤ 1

· · ·

am1y1+·· ·+amnyn ≤ 1
y1 ≥ 0, . . . ,yn ≥ 0

minimize x1+·· ·+xm
subject to a11x1+·· ·+am1xm ≥ 1

· · ·

a1nx1+·· ·+amnxm ≥ 1
x1 ≥ 0, . . . ,xm ≥ 0

Since A has all positive elements, both P and P∗ are feasible. Hence,
by the Duality Theorem of linear programming, both P and P∗ are
soluble and have the same value, v say.
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Linear Programming Game Theory

Von Neumann’s Minimax Theorem (Cont’d)

Let X = (X1, . . . ,Xm), Y = (Y1, , . . . ,Yn) be optimal vectors for P∗, P ,
respectively. Then X ≥ 0, Y ≥ 0, XTA≥ [1, . . . ,1], AY ≤ (1, . . . ,1), and

X1+·· ·+Xm = v =Y1+·· ·+Yn.

Write xR =
1
v
X and yC =

1
v
Y . Then xR ∈ Sm, yC ∈ Sn, and, for all

x ∈ Sm, y ∈ Sn,

E (xR ,y) = xT
R
Ay ≥

1
v
[1, . . . ,1]y =

1
v
;

E (x ,yC ) = xTAyC ≤
1
v
xT (1, . . . ,1)= 1

v
.

Thus vC ≤
1
v ≤ vR . But vR ≤ vC . So vR =

1
v = vC . Hence xR ,yC are

optimal strategies for R ,C , respectively.
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Linear Programming Game Theory

Von Neumann’s Minimax Theorem (Cont’d)

Consider now the general case when A is not assumed to be positive.
Let k be any real number such that the matrix B obtained by adding
k to each element of A is positive. By what we have just proved,

max
x∈Sm

min
y∈Sn

xTBy = min
y∈Sn

max
x∈Sm

xTBy .

Equivalently,

k + max
x∈Sm

min
y∈Sn

xTAy = k + min
y∈Sn

max
x∈Sm

xTAy .

This proves the result.
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Linear Programming Game Theory

Value and Solution of a Game

Since, in a matrix game, the values vR and vC are the same, either of
them is referred to simply as the value of the game.

By a solution to a matrix game is meant:

An optimal strategy for R ;
An optimal strategy for C ;
The value of the game.

In the course of proving the minimax theorem, we showed how the
solution of a matrix game could be found by solving a certain linear
programming problem and its dual.
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Linear Programming Game Theory

Example

Consider the matrix game that has pay-off matrix



1 −1 3
3 5 −3
6 2 −2







5 3 7
7 9 1

10 6 2




There are some non-positive elements in this matrix.

So we add 4 to each of its elements, and discuss the game with
pay-off matrix the one on the right.

To find a solution to this game, we solve the following linear
programming problem and its dual:

maximize y1+y2+y3

subject to 5y1+3y2+7y3 ≤ 1
7y1+9y2+y3 ≤ 1
10y1+6y2+2y3 ≤ 1
y1,y2,y3 ≥ 0.
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Linear Programming Game Theory

Example (Cont’d)

This we do using the simplex algorithm as follows.

1 1 1 0 0 0 0

5 3 7 1 0 0 1
7 9 1 0 1 0 1

10 6 2 0 0 1 1

2
7

4
7

0 −
1
7

0 0 −
1
7

5
7

3
7

1 1
7

0 0 1
7

44
7

60
7

0 −
1
7

1 0 6
7

60
7

36
7

0 −
2
7

0 1 5
7

−
2
15

0 0 −
2
15

−
1
15

0 −
1
5

2
5

0 1 3
20

−
1
20

0 1
10

11
15

1 0 −
1
60

7
60

0 1
10

24
5

0 0 −
1
5

−
3
5

1 1
5
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Linear Programming Game Theory

Example (Cont’d)

We obtained
−

2
15

0 0 −
2
15

−
1
15

0 −
1
5

2
5

0 1 3
20

−
1
20

0 1
10

11
15

1 0 −
1
60

7
60

0 1
10

24
5

0 0 −
1
5

−
3
5

1 1
5

Thus (0,
1
10

,
1
10
) and ( 2

15
,

1
15

,0) are optimal vectors for the problem and
its dual respectively, the value of both problems is 1

5
.

Referring back to the proof of the minimax theorem, we deduce that,
for the modified game: an optimal row strategy is (2

3
,
1
3

,0), an optimal
column strategy is (0,

1
2

,
1
2
), and the value of the game is 5.

For the original game: an optimal row strategy is (2
3

,
1
3

,0), an optimal
column strategy is (0,

1
2

,
1
2
) and its value is 5−4= 1.
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Linear Programming Game Theory

Essential Strategies

In a matrix game, the ith pure strategy for the row player is said to be
essential if there is an optimal strategy (x1, . . . ,xm) for R in which
xi > 0.

A similar definition applies to the pure strategies for the column player.

In the example, (2
3

,
1
3

,0) and (0,
1
2

,
1
2
) were shown to be optimal

strategies for the row and column players, respectively.

Thus the first two pure strategies for the row player and the last two
pure strategies for the column player are essential.
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Linear Programming Game Theory

Property of Essential Strategies

Theorem

Suppose that some pure strategy for a player in a matrix game is essential.
Then this strategy achieves the value of the game against each optimal
strategy of the opponent.

Suppose that, in a game with m×n pay-off matrix A= [aij ] and value
v , R ’s ith pure strategy is essential and x = (x1, . . . ,xm) is an optimal
strategy for R in which xi > 0. Let y = (y1, . . . ,yn) be an optimal
strategy for C . Then E (x ,y)= v , i.e.

x1(a11y1+·· ·+a1nyn)+·· ·+xm(am1y1+·· ·+amnyn)= v .

Since (y1, . . . ,yn) is optimal for C , it will give C an expected loss of at
most v against each pure strategy of R . Hence,

a11y1+·· ·+a1nyn ≤ v , . . . ,am1y1+·· ·+amnyn ≤ v .
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Linear Programming Game Theory

Property of Essential Strategies (Cont’d)

It now follows from the preceding together with the relations
x1, . . . ,xm ≥ 0, x1+·· ·+xm = 1, xi > 0, that

ai1y1+·· ·+ainyn = v .

Thus, R ’s ith pure strategy achieves the value v of the game against
any optimal strategy (y1, . . . ,yn) of C .
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Linear Programming Game Theory

Games With a Saddle Point

Suppose that the (i0, j0)th position in a real m×n matrix A= [aij ] is
such that ai0j0 is the least element in its row and the greatest element
in its column.

Then A is said to have a saddle point at (i0, j0) with value ai0j0 .

Suppose that, in the game with pay-off matrix A, R plays his i0th pure
strategy and C plays an arbitrary strategy (y1, . . . ,yn).

Then R ’s expected gain is ai01y1+·· ·+ai0nyn ≥ ai0j0 and v ≥ ai0j0 ,
where v denotes the value of the game.

Suppose next that R plays an arbitrary strategy (x1, . . . ,xm) and C

plays his j0th pure strategy.

Then C ’s expected loss is a1j0x1+·· ·+amj0xm ≤ ai0j0 , and v ≤ ai0j0 .

It follows that v = ai0j0 , and that R ’s i0th pure strategy and C ’s j0th
pure strategy are both optimal for their respective players.
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Linear Programming Game Theory

Examples

Not all matrices have saddle points:




1 −1 3
3 5 −3
6 2 −2







3 7 2
8 1 6
4 9 5


 .

The matrix 


7 6 8
2 4 3
1 −1 8




has a saddle point at (1,2) with value 6.

The game defined by this matrix has value 6.

Optimal strategies for the row and column players are (1,0,0) and
(0,1,0), respectively.
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Linear Programming Game Theory

Graphical Solution of Small Games

We show how games whose pay-off matrices have either just two rows
or just two columns can be solved graphically.

We illustrate the general method by solving the game determined by
the 2×3 matrix [

2 4 3
4 1 2

]
.

Suppose that R employs the strategy x = (x ,1−x), where 0≤ x ≤ 1.

Denoting the pure strategies of C by e1,e2,e3, we find that:

E (x ,e1) = 2x +4(1−x)= 4−2x ;
E (x ,e2) = 4x +1(1−x)= 1+3x ;
E (x ,e3) = 3x +2(1−x)= 2+x .

Thus, we see that R ’s security level for his strategy x is given by the
equation

uR(x)=min{4−2x ,1+3x ,2+x}.
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Linear Programming Game Theory

Graphical Solution of Small Games (Cont’d)

The graphs of E (x ,e1), E (x ,e2) and E (x ,e3)
are shown on the right, where the graph of uR
is drawn with a thick line. It is clear from this
figure that the value v of the game is given
by the equations

v =max {uR (x) : 0≤ x ≤ 1} = 2
2

3

and that this maximum occurs when x =
2
3
.

Thus (2
3

,
1
3
) is an optimal strategy for R .

Suppose now that (y1,y2,y3) is an optimal strategy for C . The figure
shows that C ’s second pure strategy does not achieve the value of the
game against R ’s optimal strategy (2

3
,
1
3
). Thus, this strategy is not

essential for C , and so y2 = 0.
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Linear Programming Game Theory

Graphical Solution of Small Games (Cont’d)

Since both of R ’s pure strategies are essential, they must achieve the
value of the game against C ’s optimal strategy (y1,0,y3). Hence

2y1+3y3 = 2
2

3
and 4y1+2y3 = 2

2

3
.

It follows that (1
3

,0,
2
3
) is an optimal strategy for C .
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Linear Programming Game Theory

Dominance

Consider a game whose pay-off matrix has rows r1, . . . ,rm and columns
c1, . . . ,cn.

Suppose that r i ≤ r j (i 6= j).

Then choosing the ith row offers no advantage to R over choosing the
jth row.

So R can exclude the ith row in his search for an optimal strategy.

We say that the ith row is dominated by the jth row.

In this case the ith row can be omitted from the game.

Similarly, if c i ≤ c j (i 6= j), then choosing the jth column offers no
advantage to C over choosing the ith column.

We say that the jth column is dominated by the ith column.

In this case the jth column can be omitted from the game.
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Linear Programming Game Theory

Example

Consider the game with pay-off matrix is on the left:




2 4
3 1
2 3




[
2 4
3 1

]

Here the third row is dominated by the first row.

Hence we exclude the third row from the game, and consider the
reduced game determined by the matrix on the right.

This game is easily solved graphically.

Its value is 21
2 ;

Optimal strategies for row and column are (1
2 ,

1
2 ) and (3

4 ,
1
4 ).

Reverting to the original game, we see that:

Its value is 21
2 ;

Optimal strategies for row and column are (1
2 ,

1
2 ,0) and (3

4 ,
1
4 ).
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