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Subsection 1

The Finite Basis Theorem
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Linear Programming

o A finitely generated convex cone is one that is generated by a finite
set, i.e., a convex cone of the form

conefai,...,aml={Ma1+--+Amam:A1,...,An =0},

where ajy,...,a, € R".

o A convex cone in R" which is also a polyhedral set is called a
polyhedral cone.

o Clearly, a set in R" is a polyhedral cone if and only if it is a finite
intersection of closed halfspaces whose bounding hyperplanes pass
through the origin.
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Linear Programming

A convex cone in R" is finitely generated if and only if it is polyhedral.

o Suppose first that C is a polyhedral cone in R". Let P be a polytope
in R" such that 0 e€intP. Then CnP is a bounded polyhedral set,
and hence a polytope. Thus Cn P is conv{ay,...,an} for some points
ai,...,am of CnP. We show that C is the finitely generated convex
cone cone{ai,...,am}.

Since C is a convex cone containing ai,...,am, conef{as,...,am} < C.

If ce C, then, since 0€intP, there is some A >0 such that Ace P.
Thus, Ace Cn P =conviay,...,an} Scone{ay,...,am}. So

ce %cone{al,...,am} =cone{ay,...,an}. Hence, we have

C cconelay,...,am}. Therefore, C = conefay,...,amn}.
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o Suppose next that C is the finitely generated convex cone
cone{asy,...,anm}, where ay,...,an, € R". Since polytopes are polyhedral
sets, conv{as,...,amn} can be written as the intersection of some closed
halfspaces Ji,...,J, in R". We show that C is the polyhedral cone A
formed by the intersection of those J;'s which have the origin on their
boundaries. Since ay,...,am€A, CSA. If ac A, then:

o Aac J;, for all A>0 when 0 lies on the boundary of J;;
o Aae J; for all sufficiently small A >0 when 0 does not lie on the
boundary of J;.

It follows that there is a A >0 such that
Alae hn---nJ, =conv{0,ay,...,ant < C.

Hence a€ %C: C. Thus, Ac C, and C = A as desired.

Corollary

Finitely generated convex cones in R" are closed.
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Theorem (Finite Basis Theorem)

A set in R" is a polyhedral set if and only if it can be expressed as a vector
sum of a polytope and a finitely generated convex cone.

o Suppose first that P =convS +coneT, where S and T are finite sets
in R". Then P is the vector sum of the compact polytope convS and
the closed finitely generated convex cone coneT. So it is closed by a
previous theorem. Since convS and coneT are polyhedral sets, they
only have a finite number of faces. It follows from a previous theorem
that P has only a finite number of exposed faces. Thus, P is a closed
convex set which has only a finite number of exposed faces. So it
must be a polyhedral set by a previous theorem.

George Voutsadakis (LSSU) Convexity
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o Suppose now that P is a polyhedral set in R" which contains no lines.

If P is bounded, then it is a polytope. So it is trivially the vector sum
of a polytope and the zero cone.

Assume, then, that P is unbounded. By a previous corollary,
P=conv(SulLju---Ul,), where S is the set of extreme points of P
and Ly,...,L, are its extreme halflines. Let T ={ay,...,a,}, where
ai,...,a, are non-zero vectors belonging to the directions of L4,...,L,,
respectively. A previous theorem shows that T lies in the recession
cone of P. Hence, so too does coneT. By a previous theorem,

convS +coneT € P+coneT € P.

On the other hand, convS +coneT is a convex set containing
Sulqu---ul,. This shows that P <convS +coneT.

Thus, P is the vector sum of the polytope convS and the finitely
generated convex cone coneT .
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o Suppose, finally, that P is a polyhedral set in R" which contains a
line. A previous theorem shows that P= (PN L)+ L, where L is the
(non-zero) lineality space of P, and Pn L' is a polyhedral set
containing no lines. By what we have just proved, PnL* can be
expressed as convS +cone T for some finite sets S and T in R". Let
T' be a basis for the subspace L. Then L=cone(T'u(-T")) and

P = convS+coneT +cone(T'u(-T"))
= convS+cone(TUT'U(=T")).

Thus we have expressed P as a vector sum of a polytope and a finitely
generated convex cone.
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o The finite basis theorem shows that, given any polyhedral set P in R",
there exist ay,...,am € R" and k€ {0,1,...,m} such that

P:{)Lla1+~~~+/1mam:)Ll,...,)LmZO and /11+---+Ak =1}

it being understood that P is empty when m=0, and cone{ay,...,amn}
when k=0 and m>0.

o The ordered pair ({a1,...,ak},{@k+1,...,@m}) is sometimes referred to
as a finite basis for P, and P is said to be finitely generated by
aiz,...,dg, k1., 4m.
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Let A, B be polyhedral sets in R"” and let a be a scalar. Then A+ B and
aA are polyhedral sets.

o By the finite basis theorem, there are finite sets C,D, E, F in R" such
that A=convC +coneD and B =convE +coneF.

Now convC + convE = conv(C + E) and coneD + conefF = cone(D U F).
The first of these equations can be established by the argument used
in the proof for the sum of polytopes, and the second is trivial. Thus,
A+ B =conv(C+E)+cone(DUF). This shows that A+ B is a

polyhedral set.
We also have aA = conv(aC)+cone(aD).

Hence, aA is a polyhedral set.
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Each pair A and B of disjoint non-empty polyhedral sets in R" can be
strictly separated.

o The preceding theorem shows that A— B is a polyhedral set. Since
A-B is closed and does not contain the origin, it can be strictly
separated from the origin. Thus there exist c€ R" and ¢y € R such

that
c-(a—b)>cy>0, forac A beB.

It follows easily that there is a scalar d satisfying
inf{c-a:ae€ A} >d>supi{c-b:be Bj}.

So the hyperplane with equation ¢-z = d strictly separates A and B.
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Theorem

Suppose that f: P— R is a linear function which is bounded above on a
non-empty line-free polyhedral set P in R". Then f attains its upper
bound at an extreme point of P.

o We can write
P =conv{ay,...,am} +coneiby,..., by},

where ay,...,am, b1,...,bp € R" and ay,...,an, are the extreme points
of P.

A typical point x of P can be written in the form
x=MAay+ - +Amam+pi1by+---+ppbp,

where A1,...,Am, p1,..,gp=0and Ay +---+ A, =1.
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o Since f is linear,
f(x)=A1f(ar)+--+Amf(am)+pif(br)+---+pupf(bp).

Since f is bounded above and g, ..., 1, may assume any positive
values, f(by),...,f(bp) <0.

It is now easy to see that f assumes its upper bound (maximal value)
at any extreme point a; of P for which

f(a;) =max{f(ai),...,f(am)}
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Linear Programming Linear Inequalities

Subsection 2

Linear Inequalities
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Linear Programming

o We denote matrices by square brackets and we identify the points of
R"™ with column matrices:

X1
X =(X1,...,Xp) =
Xn

o We denote the transpose of a matrix A by AT and we identify a
square matrix of order one with the number which determines it.

o Thus, we write

xT=(xg,e0xn) = x1 -+ X0 |,

x-y=t0,Xn) (V1,-o0r¥n) = x T y.
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o When real mx n matrices A = [aj;], B =[bj;] are such that a;; < bj;, for
i=1,....mand j=1,...,n, we write A< B;
o Similar definitions apply to the inequalities A<B, A>B, A= B.
o In the following discussion:
o A denotes a real mx n matrix [aj];
b denotes a point (by,...,bm) of R™;
x denotes a point (x,...,xn) of R";
y denotes a point (yi,...,ym) of R™;
0 denotes a zero vector, whose size can be determined from the
context.

€ ¢ ¢ ¢
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In R" let a be a point not lying in a closed convex cone C. Then there
exists a point u in R" such that u-a<0, and u-c =0 for all points ¢ in C.

o Since a does not belong to the closed convex set C, a can be strictly
separated from C. Thus, there exist u€ R" and up € R such that

u-a<ug<u-c, forceC.

Since 0€ C, we have u-a<ug<0. Let ce C and A >0. Then
Ace C. So u-(Ac)>up. Hence, u-c> L. Letting A — oo in the last
inequality, we deduce that u-c=0.
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Consider the following system of m linear inequalities in n variables:

©

a1 Xy +---+ainXn = b1,

AmiX1+ -+ amnXn = bm.

In matrix notation, this system of inequalities assumes the form

©

Ax < b.

If there exist real numbers xi,...,x, which simultaneously satisfy the
m linear inequalities of the system, then the system is said to be
consistent.

©

Otherwise it is said to be inconsistent.

©

To show that a system is consistent, we only have to find xg,...,x,
which satisfy it.
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o Consider the following system of three inequalities in three variables:

X—y+2z < -1
-2x+y-3z = 4
5x—-y+6z = -14.

o After making several unsuccessful attempts at finding x, y, z which
simultaneously satisfy these three inequalities, we might correctly
conclude that the system is inconsistent.

o Such a lack of success does not, of course, prove the inconsistency.

o Suppose, arguing for a contradiction, that the real numbers x,y,z
satisfy the given inequalities.

o After multiplying the inequalities by 3,4, 1, respectively, and adding the
resulting inequalities together, we find Ox+0y +0z=0<-1.

o This contradiction shows that the given system is inconsistent.
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o Suppose that xi,...,x, satisfy the system of linear inequalities and
that yi,...,ym =0.
o Then

(a1y1+-+amiym)x1+-+(aipy1 + -+ + amnym)Xn
<biyi+-+bmym-

o In matrix form thisis y " Ax <y b.
o This last inequality cannot be satisfied if

any1+-+amym=0,...,a1y1+ -+ amnym=0,
biyi+:++bmym<0.

o In matrix form, if yTA=0T, yTh<0.

o We have thus shown that, if there exists y =0 such that yTA=07,
yTb<0, then the system Ax < b is inconsistent.

o We will see that the converse is true, i.e., if the system Ax<b is
inconsistent, then there exists y =0 such that yTA=0", y"bh<0.
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Lemma

Suppose that there exists no x =0 in R" such that Ax =b. Then there
exists y in R™ such that yTA=07, y"b<0.

o Denote the columns of A by c3,...,c,. By the hypothesis of the
lemma, there is no x = (xi,...,x,) = 0 such that

Ax =x1€1+---+x,€,= b,

i.e., bgcone{cy,...,c,}. The preceding theorem shows that there
exists y in R™ such that yTb<O and chl 20,...,yTC,7 =>0.

The latter can be rewritten as y " [cy,...,c)] =y TA=0".
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The system of inequalities Ax < b is inconsistent if and only if there exists
y=0such that yTA=0", y"b<O0.

o We have already seen that, if there exists y =0 such that yTA=0",
yTb<0, then the system Ax < b is inconsistent.
Suppose, then, that the system Ax < b is inconsistent. Consider the
system of m linear equations in 2n+ m variables represented by the
matrix equation

[A,-Al,)z=b, where z=(z1,...,Z2n+m)-

This system cannot have a solution z for which z>0.
The existence of such a solution would imply that

A(z1—zp+1,--- Zn—22n) < b.

This would contradict the assumed inconsistency of Ax < b.
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Linear Programming Linear Inequalities

Characterization of Inconsistency (Cont'd)

o By the preceding lemma, there exists y such that y " b <0 and
yT[A-AI=z0".
The latter can be rewritten as
yTA =07, —yTA =07, yTIm >0".

Hence
y=0, yTA =o', yTb< 0.
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o An immediate consequence of the last theorem is that precisely one of
the following systems of inequalities in x and y has a solution:

Ax < b;
yTA=0", y"b<0, y=0.

o Two finite systems of linear inequalities such as (i) and (ii), precisely
one of which has a solution, are said to form a dual pair or to be
dual to each other.

o It follows easily from the preceding lemma that the following systems
are dual to each other:

Ax=b, x=0;
yTA=0" y"b<o0.
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o One interesting application of dual pairs is to the theory of linear
equations.
o It is an easy exercise to show that the following systems form a dual
pair:
Ax = b;
yTA=0", y"b#0.
o Thus, if the system of linear equations Ax = b is inconsistent, then
some linear combination of its equations yields the contradiction 0 # 0.

This result is often tacitly assumed, but rarely proved.
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o Let A be an mx n matrix, C a px n matrix, x an nx 1 matrix, b an
mx 1 matrix, and d a p x 1 matrix.

o Consider the system comprising the m weak inequalities Ax < b and
the p strict inequalities Cx < d.
o When is this mixed system of linear inequalities inconsistent?
o Two possibilities immediately suggest themselves:
Suppose there are u=(uy,...,um) =0, v=(vi,...,vp) =0 with v#0
such that uTA+v'C=07 and u"b+v'd <0. Then, if Ax<b,
Cx <d, we may conclude that (uT A+v " C)x=0<u"b+v'd<0.
This shows that the mixed system is inconsistent.
Suppose there is u = (u1,...,um) =0 such that uTA=07 and u"b<0.
Then, if Ax < b, we conclude that u” Ax=0<u”b<0. This shows
that the mixed system is inconsistent.
o We show that these are the only ways in which the mixed system can
be inconsistent.
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Suppose that the mixed system of inequalities Ax <b, Cx<d is
inconsistent. Then either:

there exist u=>0, v >0 with v#0 such that u’ A+v' C=07 and
u"b+vTd<0or

there exixts u =0 such that u” A=0" and u” b<0.

o Consider the following system of m+ p+1 weak inequalities in the
n+1 variables z,...,z,, z:

7
A -b _ O
C -d = -1, |,
o7 -1 Zn -1
V4

where 0, is the column vector consisting of m 0's, and —1,, is the
column vector consisting of p —1's.

George Voutsadakis (LSSU) Convexity



Linear Programming

o This system is inconsistent, for if it were satisfied by z,...,2,,z, then
Z1 Zn
X1 =—y.., Xp=—
z z
would satisfy the inconsistent system of the theorem.
By the preceding theorem, there exist u=(uy,...,um) =0,
v=(vi,...,vp) 20, w=0 such that

uTA+vTC=0", -u"b-v'd-w=0, —vi— = vp—w<0.

The alternatives (i) and (ii) of the theorem correspond to the cases
v #0 and v =0, respectively.

Corollary

Suppose that the system of strict inequalities Cx < d is inconsistent. Then
there exists v =0 with v #0 such that v C=0" and v'd <0.

o Take A and b to be zero matrices in the theorem.



Linear Programming

o Consider the following system .# of m linear inequalities in n variables
X1yeeeyXn:
diiXyt+---+aipnXn N b1

amixi+-+amnXn rm bm
where each r; is either < or <.

o By a solution to .# is meant an n-tuple (xi,...,x,) whose coordinates
simultaneously satisfy all the inequalities of .

o The system 7 is said to be consistent it it has a solution.

o Otherwise it is said to be inconsistent.

o An inequality e;xy +---+epx, r £ where r is either < or < is called a
consequence of & if it is satisfied by all solutions of ..

o If & is inconsistent, then every linear inequality in xq,...,x, is
(vacuously) a consequence of ..
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o Let y1,...,¥ym=0 and let b be a scalar such that byy; +---+ bynym < b.

o Consider an inequality of the form

(311}/1 +eeet aml}/m)xl +eeet (aln}/I +eeet amn)/m)Xn r b,

where one of the following holds:

o ris <;

o ris < and for some i€ {l,...,m}, y; >0 and r; is <;

o ris<and byy; +--+ bmym<b.
Such an inequality is a consequence of & called a legal linear
combination of the inequalities of .%.

o The reason for this choice of name should be clear.

o We shall prove later in the section that every consequence of a
consistent system . must be a legal linear combination of its
inequalities.
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Theorem

The finite system . of linear inequalities is consistent if and only if the
inequality Ox; +---+0x, <0 is not a legal linear combination of the
inequalities of &.

o If & is consistent, then clearly Ox; +---+0x, <0 is not a consequence
of &#. So it is not a legal linear combination of the inequalities of ..

If & is inconsistent, then the inequality Ox; +---+0x, <0 can be
expressed as a legal linear combination of the inequalities of . by
means of one of the preceding theorems according as the inequalities
of & are weak, mixed or strict.

We give the details for the case when . is an inconsistent system of
weak inequalities, Ax < b, say. By the first theorem in the series, there
exists y = 0 such that yTA=0", y"b<0. So Ox; +---+0x,<0is a
legal linear combination of the inequalities of .%.
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Let # be a finite consistent system of linear inequalities. Then every
consequence of % is a legal linear combination of the inequalities of #.

o Suppose first that e’ x < f is a consequence of .. We consider three
cases.
Suppose that (in the notation used earlier) % is the system of

inequalities Ax < b. Since e’ x < f is a consequence of ., the mixed

system of inequalities { ¢X = b must be inconsistent. By a
-e'x < -—f

previous theorem, there exist u=0, v >0, such that uTA-veT =07

and u”b—vf <0. The possibility (ii) of the theorem cannot occur here

for it would imply that . was inconsistent. Thus e’ =(%)7 A and

(%)Tbs f. This shows that e’ x < f is a legal linear combination of

the inequalities of .&.
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Suppose that .# is the mixed system of inequalities Ax < b, Cx<d.

Since e x < f is a consequence of ., the mixed system of inequalities
Ax < b
Cx < d must be inconsistent. By a previous theorem,
ped

-e'x < -—f
there exist =0, v=0, w>0, such that u" A+v'C-we” =07 and
u"b+vTd-wf<0. Neither possibility (ii) of the theorem nor w =0
can occur for each would imply that # was inconsistent. Thus

eT=(§)TA+(£)Tc and (2) b+(%) d=r.

w w w

This exhibits e " x < f as a legal linear combination of the inequalities
of &.
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Suppose that . is the system of inequalities Cx <d. That e’ x <f is
a legal linear combination of the inequalities of # follows from case
(i) by taking A and b to be zero matrices.

In the same manner, we can prove that every consequence of .# of the
form e"x < f is a legal linear combination of the inequalities of ..

Corollary (Farkas' Lemma)

Let a@,ay,...,am € R" be such that a-x =0 whenever x e R"” and a; -x =0,
..., @m-x=0. Then there exist A1,...,Am =0 such that

a=Mai+---+Anam.
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o Many of the results on inequalities have simple geometric
interpretations in terms of the separation of polyhedral sets.

o To illustrate this point, consider the dual pair:

Ax = b;
yTA=0", y"b#0.

o Suppose that the equations Ax = b are inconsistent.

o Geometrically, this means that in R the point b does not belong to
the subspace . spanned by the columns of A.

o The existence of a y with yTA=07 and y " b #0 means that the
hyperplane y Tz =0, which has y as a normal vector and passes
through the origin, contains .% but not b.

o Thus the existence of this dual pair is equivalent to the following
result:

A point belongs to a subspace of R™ if and only if there exists no
hyperplane containing the subspace but not the point.
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Subsection 3

Linear Programming
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Linear Programming

o Suppose that a manufacturer produces n products and that he
produces, and sells, x; units of the jth product, x; = 0.

o If ¢; denotes his income from the sale of one unit of the jth product,
then his total income is ¢y x1 +---+ ¢ Xxp.

o Suppose further that each of the n products is made from m raw
materials, there being available b; units of the ith raw material.

o If the amount of the ith raw material used in producing a unit of the
Jth product is ajj, then ajixy +---+ajnxp < bj, i=1,...,m.

o We are led to define the standard maximum problem P:

maximize ¢i1xy+-:++ CphXp
subject to  ayixy +---+ainx, < by

AmiX1+ - +amnXn = bm
x1=0,...,x,=0.
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o This standard maximum problem P can be expressed in matrix
notation as follows:

T

maximize ¢’ x subject to Ax < b,x =0,

where A is the real mx n matrix [aj], b= (by,...,bm), € =(c1,...,¢cpn),
and x = (xq,...,Xn).

o A vector x satisfying the constraints of the standard maximum
problem P, i.e., Ax<b and x =0, is called a feasible vector for P.

o The set of all such feasible vectors is called the feasible set for P.

o The problem P is called feasible or infeasible according as its feasible
set is non-empty or empty.

o The feasible set for P is the intersection of the m closed halfspaces
represented by the inequalities Ax < b and the n closed halfspaces
represented by the inequalities x =0, and so is a polyhedral set.
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o A feasible vector xq for P which satisfies ¢ x < ¢ xq for all feasible

vectors x for P is called an optimal vector for P.

T

o The scalar ¢’ xq is called the value of P.

o The problem P is said to be soluble or insoluble according to
whether it has an optimal vector or not.
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Theorem

Suppose that the feasible set for the standard maximum problem P is a
non-empty polytope with extreme points as,...,ax. Let i€ {1,...,k} be
such that ¢"a; =max{c’ay,...,c"a,}. Then P is soluble having a; as an
optimal vector and value ¢ a;.

o Let x lie in the feasible set conv{ay,...,ax} of P. Then
X=A1a1+---+Agag,
for some Aq,...,Ax =0 with A1 +---+ A, =1. Then

c'x=McTa + -+AcTag<sAicTaj+--+AkcTa;=c’a;.
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o A tailor has 16 units of material A, 11 units of material B and 15
units of material C from which he cuts suits and dresses.
o Each suit requires 2 units of A, 1 unit of B, 1 unit of C.
o Each dress requires 1 unit of A, 2 units of B, 3 units of C.
o Suits sell at 30 units, dresses at 50 units.
o How can the tailor maximize his income?
o Suppose that the tailor makes x; suits and x, dresses.
o Then the tailor's problem is to

maximize 30x; +50x>

subject to 2x3 +x <16
x1+2x <11
x1+3x <15
x1=0,x =0.
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o Perhaps we should add the constraints that x; and x» are integers!

o We will, however, suppose that our tailor can produce, and sell, any
non-negative number of suits and dresses, subject only to the amount
of materials he has at his disposal.

o We refer to this example as the tailor's problem.

o The feasible set F for the problem is the
intersection of the closed halfplanes

2x1 +x0 < 16,
x1+2x0 <11,
x1+3x <15

with the nonnegative quadrant. :
o It is readily verified that F is the pentagon whose extreme points are

0=(0,0), Q=(80), R=(72), S=(34), T=(0,5)
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o The feasible set is the pentagon with
extreme points O = (0,0), Q = (8,0),
R=(7,2), S=(3,4), T=(0,5).

o The values of 30x; +50x, at the points O, Q,R,S, T are, respectively:
0,240, 310,290, 250.

o By the theorem, the problem has optimal vector (7,2) and value 310:

The tailor should make 7 suits and 2 dresses so as to give him a
maximal possible income of 310 units.
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Suppose that the function ¢’ x is bounded above as x ranges over a
non-empty feasible set F for the standard maximum problem P. Then P is
soluble and at least one of its optimal vectors is an extreme point of F.

o F is a subset of the non-negative orthant of R".
So it is a nonempty line-free polyhedral set in R".

The result now follows from the last theorem of the first section.
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o Suppose now that the standard maximum problem P has a non-empty
feasible set F.

o The preceding theorem shows that P is soluble when the set
{c"x: x € F} of real numbers has an upper bound.

o Suppose that, for some y = (y1,...,ym) =0, yTA=c’.
o Then c"x<yT"Ax<y"b for xe F, and P is soluble with value not
exceeding y T b.

o The smaller the number y " b, the more information we can deduce
about the value of P.

o We are thus led to consider the following problem:
minimize y " b subject to yTA=c",y =0.

o This problem turns out to be closely related to the standard maximum
problem P.
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o The standard minimum problem is:

minimize ¢’ x subject to Ax = b,x =0;

o That is,
mimmize C¢i1xy+- -+ CphXn
subject to ajixy+--+ainxy, = by

amiX1t+---+amnXn = bm
x120,...,x,=0.

o The definitions of feasible vector, feasible set, feasible, infeasible,
optimal vector, value, soluble and insoluble are modified in the
obvious way so as to apply to the standard minimum problem.
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o With each standard maximum problem P, we associate a standard
minimum problem P* called the dual of P as follows:

maximize c¢'x minimize b’y
subject to Ax<b subjectto ATy=c
x=0 y=0
that is that is
maximize cyxy+:- -+ CnXp minimize  byiyi +--- + bmym

subject to  a11xy +---+aipxn < by subject to  aj1y1+---+amiym=c1

am1x1+*+amnXn < bm alpy1+:-+amnYm=cp
x120,...,x,=0 v1=20,...,ym=0
o In the context that we are considering, the problem P is referred to as
the primal problem.
o We note that, ignoring the non-negativity constraints on x and y, the
primal problem has m constraints in n variables, whereas the dual
problem has n constraints in m variables.
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o Recall the tailor's problem

maximize 30x; +50x>

subject to  2x; +x» <16
x1+2x <11
x1+3x <15
x1=0,x =0.

o The dual of the tailor's problem is:

minimize  16y; + 11y +15y3

subject to 2y; +y> +y3 =30
v1+2y>+3y3 =50
y120,y220,y320.
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Theorem (Complementary Slackness Theorem)

Let x,y be feasible vectors for the problems P, P*, respectively. Then
c"x<b'y, with equality if and only if:

xj >0 implies agjy1 + - +amjym = ¢j;

y; >0 implies aj1x1 + -+ + ajpxp = b;.
Moreover, if cTx=b"y, then x,y are optimal vectors for their respective
problems.

o Since Ax<b and y =0, we have y" Ax <y T b, with equality holding
if and only if (ii) is true.

Similarly, ¢"x <y T Ax, with equality holding if and only if (i) is true.

Thus ¢"x<yTAx<y"band c"x=b"y if and only if both (i) and
(ii) hold.
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o Suppose now that c"x=b"y.
Let x',y’ be feasible vectors for the problems P, P*, respectively.

Then, by what we have just proved,
c'x'<b"y=c"x and bTy'=c"x=b"y.

This shows that x,y are optimal for their respective problems.
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Theorem (Duality Theorem of Linear Programming)

Denote by P the standard maximum problem, and by P* its dual.

If either one of P and P* is soluble, then so too is the other, and both
problems have the same value.

If both P and P* are feasible, then they are both soluble.

Suppose first that P is soluble with optimal vector xg and value v.
Then the inequality ¢ " x < v is a consequence of the consistent
combined system of inequalities Ax < b, —1,x <0. By a previous
theorem, there exist y; =0, u =0, such that yoTA—uT =c’ and
yOTbs v. This shows that y, is a feasible vector for P*. By the
preceding theorem, ¢ xg=v ZyOTb > ¢ xg. This proves that

¢ xo :yg—b. So yj is an optimal vector for P*. Thus, P* is soluble
and has the same value as P, namely v.
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o A similar argument shows that, if P* is soluble with value v, then so
too is P.

Suppose that both P and P* are feasible.
Let y, be a feasible vector for P*.
By the preceding theorem, for any feasible vector x of P,

c"x<b'y,.

A previous theorem shows that P is soluble.

Now the desired result follows from part (i) of this theorem.
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o We use the complementary slackness theorem to confirm that the
vector (x1,x2) =(7,2), obtained earlier by graphical means, is optimal
for the tailor's problem, and to obtain an optimal vector for its dual.

o Certainly (x1,x2) is a feasible vector for the problem.

o Suppose that there is a feasible vector (y1,y2,y3) for the dual which,
together with (x1,x2), satisfies conditions (i) and (ii) of the
complementary slackness theorem.

o Since x1,x2 >0, we have from (i) that:

2y1 +Vot+y3= 30 and V1 +2y2 +3y3 =50.

o Since the third constraint of the primal, i.e., x; +3x <15, is strictly
satisfied, we have from (ii) that y3 =0.

o Thus 2y1 +y2 =30, y1 +2y> =50.

° Soy =% 3 }/2—70

George Voutsadakis (LSSU) Convexity



Linear Programming

o A routine verification now shows (%,?,O) is feasible for the dual with

30-7+50-2= 16~1?0+11~7—??+15-0:310.

o The last statement of the complementary slackness theorem now
enables us to conclude that:
o (7,2) is optimal for the tailor's problem;
9 (%, E,O) is optimal for its dual;
o Both problems have value 310.

George Voutsadakis (LSSU) Convexity



Linear Programming |[SBasic Solutions of Einear Equations

Subsection 4

Basic Solutions of Linear Equations
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o Consider the following system of m linear equations in n variables:

di1X1+--+ainXn = b1

amiX1+- +amnXn = bm
o In matrix notation it is Ax = b, where A is a real mx n matrix [aj],

x=(x1,...,xp) and b= (by,..., bp).

o To avoid a vacuous discussion, we shall assume throughout, unless
stated otherwise, that some m of the columns of A form a linear basis
for R™, i.e., that A has rank m.

o In particular, we have m=<n.
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Denote the columns of A by ay,...,a,.

©

©

Then the system of equations can be written in the form

Xidi +Xpas+---+Xpadn = b.

©

Suppose that the columns aj,...,a; form a linear basis for R™.

©

Then there exist unique scalars x;,...,x; such that
Xpd@j tet X aj = b.

If we put the remaining n—m x;'s equal to zero, we obtain a solution
x=(xy,...,xp) of Ax=b.

©

A solution obtained in this way is called a basic solution of Ax = b.

©
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o Find the basic solutions of the system of equations:

3
10.

X1 +Xo2 + X3
3X1 + 2X2 + 4-X3

o Every two of the columns of the matrix of coefficients on the left-hand
side of this system of equations form a basis for R?, and so the system
has three basic solutions.

o First we put x; =0 to obtain the basic solution (0,1,2).
o Next we put xo =0 to obtain the basic solution (2,0,1).

o Lastly we put x3 =0 to obtain the basic solution (4,-1,0).
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The extreme points of the polyhedral set C ={x € R": Ax = b,x =0} are
precisely the non-negative basic solutions of Ax = b.

o Suppose that xq is a non-negative basic solution of Ax = b, say
xo0=(x1,-.-,Xm,0,...,0), where the first m columns ay,...,an, of A are
linearly independent.

Let xo=Ay + uz, where A,u>0 with A+u=1, and y,ze C.

Since y,z=0 and A,z >0, we deduce, on equating the last n—m
coordinates on each side of the last expression for xq, that y and z
must have the forms y = (y1,...,¥m,0,...,0), z=(z1,...,Zm,0,...,0).
Since y,z€ C, we have y1a1+---+ymam=b and ziay +---+znam = b.
But a3,...,a, are linearly independent, whence y; = z1,...,ym = zm.

Thus xo =y = x, which shows that xq is an extreme point of C.
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o Suppose next that xq is an extreme point of C.
If xo =0, certainly xq is a non-negative basic solution of Ax = b.
Assume, then, that xo #0; say xg = (x1,...,X,0,...,0) for some
refl,...,n}, where xq,...,x, >0. Then the first r columns of A, say
ai,...,a, must be linearly independent. To see why this is so, let the
scalars Aq,...,A, be such that A1a;+---+A,a,=0. Choose 6 >0 so
small that the points

y = (x1+0Aq,...,x,+64,,0,...,0),
z = (x1-01,....x,—0A,,0,...,0),

belong to C. Then xq = %(y+z). But xq is an extreme point of C.
So y=z. Hence, A1 =0,...,A4,=0. Thus, a,...,a, are linearly
independent.

By extending {a1,...,a,} to a linear basis for R™ using the columns of
A, we deduce that xq is a non-negative basic solution of Ax = b.
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o The canonical maximum problem is to

T

maximize ¢’ x subject to Ax=b,x=0.

o Note that now we also assume that some m columns of A are linearly
independent.

o A vector x =0 satisfying Ax = b is said to be a feasible vector for
the problem.

o The set of all such feasible vectors is called the feasible set for the
problem.

o A feasible vector xg such that ¢”x < ¢ xq, for all feasible vectors x,
is called an optimal vector for the problem.

o An optimal vector which is also a basic solution of Ax =b is called a
basic optimal vector for the problem.
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Suppose that the canonical maximum problem has an optimal vector. Then
it has a basic optimal vector.

o We consider the non-trivial case when ¢ # 0.

Suppose that the canonical maximum problem has feasible set C and
optimal vector xgq.

The hyperplane H with equation ¢-x = ¢ xq, supports C at xo.

The non-empty polyhedral set Cn H contains no lines.

So it possesses an extreme point, x* say.

By a previous theorem, x* is an extreme point of C.

By the preceding theorem, x* is a basic solution of Ax =b.

*

Since x* € C and ¢-x* =c-xg, x* is a basic optimal vector for the

canonical maximum problem.
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o Let A be any real m x n matrix, not necessarily with columns forming
a basis for R™.

o Recall that the standard maximum problem P

maximize ci1xy+-:++ CphXp

subject to  apixi+ -+ ainXn < b1, .., amiXt + o+ aAmnXn < bm
x1=0,...,x,=0.

o We pass from this problem involving m inequalities (excluding the
non-negativity constraints on xi,...,x,) to an equivalent problem
involving m equations by introducing m new variables x;:1,...,Xntm:

Xp+1 = bi—aiixi—---—ainxp

Xn+m bm—amix1—---—amnXn

o Since each x,4; (i =1,...,m) measures the amount of slack in

aj X1+ +ajnXn < bj, Xp+1,...,Xn+m are called slack variables.
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o It is now easy to see that the above standard maximum problem P is
equivalent to the following related canonical problem Pg:

maximize cix1+- -+ CnXn+0xp401+ - +0xpem
subject to  aj1xg + -+ a1pXp + Xp+1 = b1

amiX1+ -+ +amnXn + Xnerm = bm
x1=0,...,Xp4.m =0.

o Denote by F the feasible set for the standard maximum problem P,
and by Fgr the feasible set for the related canonical maximum problem
PRr.

o Then there is a natural bijection f: F — Fg defined by the equation
f(x)=1(x1,...,%n) =(X1,---, Xn+m) = (x, b— Ax).

o Clearly f preserves convex combinations of points.

o So the extreme points of F and Fg correspond under f.
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o We solve the tailor's problem using the preceding ideas.

o The canonical maximum problem related to the tailor's problem is:

maximize 30x; +50x> + 0x3 + 0xz + Oxs
subject to 2x3 +x2+x3 =16
X1+2x0+x3 =11
X1+ 3x + X5 = 15
x120,...,x5 =0.

o Clearly this canonical problem has an optimal vector, and hence a
basic optimal vector.

o Thus to solve the problem, we find at which nonnegative basic
solutions of the above system of equations the function 30x; +50x,
has its maximum.
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o We construct the following table:

Columns Basic Solution Extreme Fgr Extreme F 30xy +50xp
1,23 (3,4,6,0,0) (3,4,6,0,0) (3,4) 290
1,24  (£,%0,-%0)

1,25  (7,2,0,0,2) (7,2,0,0,2) (7,2) 310
1,3,4  (15,0,-14,-4,0)

1,35  (11,0,-6,0,4)

1,45  (8,0,0,3,7) (8,0,03,7)  (8,0) 240
2,34 (0,511,1,0) (0,511,1,0)  (0,5) 250
2,3,5 (0,4,2,0,-3)

2,45  (0,16,0,-21,-33)

3,45  (0,0,16,11,15)  (0,0,16,11,15) (0,0) 0

o The optimal vector for the canonical is (7,2,0,0,2) and for the tailor’s
problem (7,2).
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o The method just outlined for solving a linear programming problem is
rarely used in practice.
o The method gives no indication as to whether or not the problem has a
solution.
o The amount of work in finding a solution is often prohibitive.

A system of m equations in m+ n unknowns can have as many as
(m+ )

basic solutions, each one obtained as the solution of a system of
m ||near equations in m unknowns.

o A more practical method of solving linear programming problems is
required.

o The most well-known of such methods, the simplex algorithm, is
discussed in the next section.

George Voutsadakis (LSSU) Convexity



Linear Programming [SEheSimplextAlgorithm

Subsection 5

The Simplex Algorithm
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o Consider the following system of equations:

by

ai1xi+--+ainXn

AmiX1t+:+amnXn = bm.

o Suppose that aj; #0. Then we obtain a new system equivalent to the
given one as follows:
Divide the ith equation by aj;
Subtract multiples of the ith equation from the remaining ones in such
a way as to remove their x; term.
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o The new system that we obtain is:

aij aij aij
(311—a—;a,-l)xl+~~~+Oxj+---+(aln—a—l_ja,-,,)x,, = bl—a—;b,'
ALy 4o X e Siny — b
a; "1 J a; " ajj
amj .. Ox: amj .. - b amj p.
(3m1_a_,.ja/1)xl+"'+ Xj+"'+(amn_a_,.ja/n)xn = m ™~ 3, P

o We say that this new system has been obtained from the original one
by pivoting about aj;.

o This aj; is called the pivot.
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o The canonical form of the problem is to maximize X, subject to the
constraints:

30x; +50xo +0x3 +0x3+ Oxs = X

2x1 +Xo +X3 = 16
X1 +2x5 +Xy4 = 11
X1 +3xo +x5 = 15

and the non-negativity constraints x; =0,...,x5 = 0.

o Here we have added the defining equation of the objective function X
to the constraint equations of the problem.
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o We seek a basic optimal vector, beginning at the extreme point
(non-negative basic solution) (0,0,16,11,15), where X is 0.

o Can we find an extreme point where X > 07

o Yes, we can increase X by increasing x; from 0, while keeping x> at 0
and adjusting x3, x4, x5 as required by the equations.

o As xj increases in this way to 8,11,15, x3,xs, x5 decrease, respectively,
to 0.

o Since x3,x4,x5 must be non-negative, we can only increase x; to 8,
while keeping xo at 0, when x3,x4,x5 are 0,3,7 respectively.

We have thus arrived at the extreme point (8,0,0,3,7), where x = 240.

©
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o We now express X in terms of the new zero variables x;, x3.

o This we do by pivoting the whole system of equations about the 2 in
the second row and the first column to obtain the following system of

equations:
35xp —15x3 = Xx-240
X1 +%X2 +%X3 = 8
3 1 —
5X2 —5X3 +Xy4 = 3
5 1 —
5X2 —5X3 +x5 = 7

o It is clear from this system of equations that X =240 at the extreme
point (8,0,0,3,7).
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o Can we find an extreme point where X > 2407

o Yes, we can increase X by increasing x, from 0, while keeping x3 at 0
and adjusting xi, x4, X5.

o In fact x> can be increased to 2, when x; =7,x4 =0, x5 = 2.

o We have thus arrived at the extreme point (7,2,0,0,2), where x = 310.

o We now express X in terms of the new zero variables x3,x;.

o This we do by pivoting the whole system of equations about the % in

the third row and the second column to obtain the following system:

-0y -y = x-310
X1 +%X3 —%X4 = 7
X2 —%X3 +%X4 = 2
1 5 —
3X3 -3Xa t+x5 = 2

o It is clear from this system of equations that X =310 at the extreme
point (7,2,0,0,2).
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o Can we find an extreme point where X > 3107

o No, we cannot, for the first equation shows that

10 70
X=310- ?X3 - ?X4 <310,
since x3,x4 = 0 for all feasible vectors (x1,x2,x3, x4, x5) for the
canonical problem.
o This ends the search:

s (7,2,0,0,2) is a basic optimal vector for the canonical problem.
o Hence, the tailor's problem has optimal vector (7,2) and value 310.
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o We interpret the above solution to the tailor's problem geometrically:
o The search for an optimal vector began at the origin, where X was 0.
o It then moved to the adjacent extreme point A= (8,0), where X was
240.
o Finally, it moved to the adjacent extreme point (7,2), where X assumed
its maximum of 310.

o To summarize:

The search started at an extreme point of the feasible set and then
moved along the edges of the feasible set, passing from one extreme
point to an adjacent one, in such a way that X increased at each
successive extreme point until it reached its maximum on the feasible
set.

o This is the basic principle that underlies the
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o Consider the standard maximum problem, which, in canonical form, is
to maximize X subject to the constraints:

axy +er +enXp  A0xpp1 +o0 +0xpem = X

aiixy  +-0 +anXn  +HXpe1 = b

amiXy *+-o+ +amnXn +Xn+m = bny
and x1 =0, ..., Xpam =0.

o We denote by F the feasible set for the problem.
o To simplify our initial discussion, we make two assumptions about the
system of equations [A, I |(x1,...,Xn+m) = b.
b= (bl,...,bm) = 0;
Every non-negative solution (xi,...,Xn+m) of the system has at least m
positive coordinates. (non-degeneracy)
o Since (0,...,0,b1,...,bp) is a solution, assumptions (i) and (ii)
together imply that by,..., by, > 0.
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o The canonical problem can be usefully summarized in tableau form:

X1 X2 Xn | Xn+1 Xp+2 - Xn+m

a C ot Cp 0 0 e 0 X
all aip e ain 1 0 0 b1
ami am2 =+ amn| O 0o - 1 bm

o It is clear from this initial tableau that (0,...,0,by,...,bp) is an
extreme point of the feasible set F at which x=0.

o The variables xi,...,x, which are zero at this point are called the
non-basic variables and the non-zero variables x,41,...,Xp+m are
called the basic variables.
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o Can we increase X and continue to satisfy the constraints of the
problem?
o Certainly not if ¢; <0, ..., ¢, <0, for then

X= C1X1+ -+ Chxn <0,

as xi,...,Xp =0 for all vectors (x1,...,Xp+m) in the feasible set F.
o Thus in this case (0,...,0,b1,...,bm) is an optimal vector for the
problem and the problem has value 0.
o Suppose, then, that at least one of cy,...,c, is positive, say ¢; > 0.
o If all the numbers in the column below ¢; in the initial tableau are
non-positive, then, for any x; =0,

(Xl,o,...,o,bl—311X1,...,bm—am1X1)€ F

and X = cy1x; at this point.
o Thus X is not bounded above on F and the problem is insoluble.
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o Suppose, then, that at least one of a11,...,am1 Is positive.

o For each i such that a;; >0, find % and choose an i/ which minimizes
these quotients; say aj; >0 and that ab—lll is the minimum of the
quotients.

o We now increase x; from 0 to ab—lll, while keeping xo,...,x, at 0 and
adjusting Xp41,...,Xp+m as required by the constraints of the problem.

o We thus arrive at the extreme point

b by b
—,0,...,0,b2——321,...,bm——am1
an ail an
of F, where X = ab—lllcl > 0.
o We now express X in terms of the new non-basic (zero) variables
Xo,...,Xn+1 by pivoting about the number a;7 in the first tableau.
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o We obtain a second tableau with the following form:

/ / / _ b1
0 ol c, Coi1 0 0 2 C1
! ! ! by
I ap ap | Apsr O 0 ay
/ / / — LA
0 ay B, | Bpe1 1 0 | bo—g-am
0 4 a_ | a 0 1| b,—2a
m2 mn mn+1 m ™ 5, 9ml

o This new tableau shows immediately that X = abT11C1 at the new
extreme point of F, for here the variables x»,...,x,,1 are zero.

o Because of non-degeneracy, the elements in the last column of the
tableau under X — ab—lllcl cannot be zero - they must be positive.

o The non-zero coordinates xi,Xp42,...,Xnem Of the new extreme point
can be read off immediately from the above tableau.

o Since ab—lllcl >0, the value of X at the new extreme point is strictly
larger than its value at the initial extreme point.
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o Ifc5=<0, ..., ¢, =0, the extreme point just found will be an optimal
vector for the problem.

o Suppose, then, that at least one of ¢},..., ¢/ is positive, say (:Jf0 > 0.

o If all the numbers in the column below cfo in this second tableau are
non-positive, then X is not bounded above on F and the problem is
insoluble.

o Suppose, then, that at least one of a’l. ,...,a’mj0 is positive.

bl
o For each i such that a >0 consider a,— where b’ is the number in

the same row as al.j and in the last column of the tableau;

/
0

say a
’OJO
o Now p|vot about the number a:.o o in the second tableau to obtain a

third tableau, which will indicate a third extreme point, where the
value of X exceeds its value at the second extreme point.

George Voutsadakis (LSSU) Convexity



Linear Programming

o We now repeat the procedure.

o Since F, being a polyhedral set, has only a finite number of extreme
points and X strictly increases in value at each stage in the algorithm,
one of two possibilities must occur:

A tableau is reached in which the first m+ n numbers on the top row
are non-positive;

A tableau is reached which has one of its first m+ n numbers on the
top row positive with all the numbers below it non-positive.

o In Case (i), the tableau, which is called a final tableau, will yield an
optimal vector when the non-basic variables are put equal to zero and
the values of the basic variables are read off from the tableau;

The value v of the problem is to be found from the last entry on the
first row of the tableau which is X —v.

o In Case (ii), the problem is insoluble.
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o We use the simplex algorithm to solve the problem:

maximize
subject to

o We convert this standard problem to a canonical problem in the usual
way to obtain the following initial tableau in the simplex algorithm.

2x1 —3x0 + X3

3x1+6x2+x3<6
4x1+2x +x3<4
X=X +x3<3

x120,x = 0,X3 =0.

2 -3 1|10 0 00
3 6 1|1 0 0|6
4 2 1|0 1 0|4
1 -1 1|0 0 1|3

o We have omitted the X in the top right-hand corner of the tableau;
the number in this position is the negative of the value of X.
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9

The first tableau is

2 -3 1/]0 0 0]0 0 -4 2|0 -3 0]-2
3 6 1|1 0 0]6 0o 2 2[1 -2 o] 3
4 2 110 1 04 1510101
1 -1 1|0 0 1|3 o-%%o—%12

We examine the top row of the tableau for positive entries, selecting
the 2 in the first column (although the 1 in the third column would
serve equally well).

According to the simplex algorithm, we next choose the least of the
ratios g, %, % i.e., %.

So we pivot about the 4 in the first column, indicating this by marking
the 4 in the initial tableau.

We thus obtain the second tableau (shown on the right).
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o We have the tableau

1 1 1 _ 27 _10
0 -4 3]0 -3 0]-2 0 -3 0]0 -3 -2]-2
0%%1—%03 0501—%—%%
1§%0§01 1100?‘}3
3
0 -3 2|0 - 1| 2 0 -2 1|0 -3 3| %

o We examine the top row of the tableau for positive entries, selecting
the % in the third column.

o The least of the ratios to be considered, viz. 1/%, is the last

one.

12
1/4' 3/4°

o Thus we pivot about the % in the third column to obtain the third
tableau (shown on the right).
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o We obtained the tableau

o-3oo-§—§—%‘7’
0 5 0[1 -5 2| ¢
1 1ofo 1 -1 1

13| 8

o There are no positive entries on the top row here, so we have a final
tableau.

o The non-basic variables indicated by this tableau are x», x5, x5, which
are zero.

o The basic variables x7,x3,xs have values % %% respectively, which
can be easily read off from the above tableau.
o Hence (3,0,%,£,0,0) is an optimal vector for the canonical problem.

o Thus the standard problem has optimal vector (3,0,3) and value 2
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o Suppose that, in the usual notation, the initial and final tableaux
corresponding to the solution of the standard maximum problem by
the simplex algorithm are as follows:

c” o7 o
A I, b

—Z1y.-y—2Zn —Yiy.eer=Ym —V
* k k

where z1,...,2n,¥1,...,¥m =0 and v is the value of the problem.

o The method of operation of the simplex algorithm shows that the first
row of the final tableau is obtained from the initial tableau by adding
multiples of its last m rows to its first row.

o In particular, [-y1,...,—ym]| is a linear combination of the rows of /.

So the multiples referred to above are —y4,...,—ym, in that order.
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o Thus, writing y = (y1,...,¥m), we deduce that

[-z1,...,—zn] = CT+[—y1,...,—ym]A,
v = [-y1,.--,—yYm|b.
o Thus
ATy:c+(zl,...,zn)2c
and

v=b'y.
o This shows that:

o y is a feasible vector for the dual problem;
o b"y=v, where v is the value of the primal problem.

o By the Complementary Slackness Theorem, y is an optimal vector for
the dual.
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o In our discussion of the simplex algorithm we made two assumptions:
The vector b was non-negative;
The system of equations [A, I n](x1,-..,Xn+m) = b was non-degenerate.

o The first assumption was needed at the outset of the algorithm to
show that (0,...,0,bs,...,by) was an initial extreme point.

o Without this assumption, it would not have been clear how to find an
extreme point with which to begin the simplex algorithm - indeed such
an extreme point might not exist.

o We now describe a method which will tell us:

o If the feasible set of the canonical problem has an extreme point;
o If it does, how to find it.
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o Consider the canonical maximum problem:

maximize cixy+- +ChXp=X
subject to  [A I n](x1,.- -, Xnem) =b; X1,..., Xp+m =0,

under the single assumption of non-degeneracy.

o Since we have discussed the case when b= 0, we suppose that at least
one of by,..., by, is negative.

o Consider now the following augmented problem:

maximize —xg=X
subject to —xg+aiixy+---+aipXn + Xnr1 = b1

—Xg+amiX1+ -+ amnXn+ Xntm = bm
x0=0, x1=0, ..., Xp+m=0.
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o We have the following properties

The problem is feasible, for if xp is chosen so that b; +x9 =0, ...,
bm+xp =0, then (x0,0,...,0,b1 +Xp,...,bm+x0) is a feasible vector.
The objective function X = —xg is bounded above by 0, so, in view of
(i), the problem is soluble.
Suppose that the unaugmented problem has a feasible vector
(X1,--+»Xn+m)- Then (0,x1,...,Xn+m) is an optimal vector for the
augmented problem, which has value 0.
Conversely, if (xp,X1,...,Xn+m) is a basic optimal vector for the
augmented problem giving it value 0, then xp =0 and (x1,...,Xp+m) is
an extreme point of the feasible set for the canonical problem.
o Thus what we need first is to solve the augmented problem.

o If its value is negative, then the canonical problem is insoluble.

o If its value is zero and (0,x1,...,Xn+m) is one of its optimal vectors,
then (x1,...,Xp+m) is the sought-for extreme point of the feasible set
for the canonical problem.
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o We cannot initially solve the augmented problem by the simplex
algorithm, for at least one of by,..., b, is negative.

o Suppose, without loss of generality, that b is less than or equal to
each of by,..., by, and hence negative.

o We pivot about the —1 in the first row and the first column of the
system of equations to obtain the following problem, which is
equivalent to the augmented problem:

maximize —a11X1—-:--—aipXp—Xn+1=X—b1
subject to Xg—a11X1— - —ainXpn—Xns1 = —b1
an X1+ +ah Xnp—Xps1+Xns2=bo— by

! !
al X1+ + A Xn = Xn+1 + Xnem = bm — by
x0=20,x120,...,Xp:m=0,
where a’21,...,a;nn are real numbers whose specific values do not
interest us here.
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Since b1 <0,b1 sz,...,blsbm,

©

—b1>0,b2—b120,...,bm—b120.

We have a problem to which we can apply the simplex algorithm.

©

Hence we can find an extreme point of the feasible set of the
unaugmented problem (should such an extreme point exist).

©

This procedure for finding an extreme point by solving the augmented
problem is known as the method of the artificial variable.

©

o The name comes from the artificial introduction of variable xg, which
disappears before the final solution of the original problem is obtained.
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o We use the method of the artificial variable to solve the following
problem P, which can also be solved graphically:

maximize X1+ X
subject to 2x; +3x, <18
4x1+x, <13
—x1—2x0 <=5
x120,x =0.
o Denote by Pgr the canonical maximum problem related to P, and by
Fr the feasible set for Pg.

maximize xj3 +x2 +0x3 + 0xz + Oxs
subject to 2x; +3xp +x3 =18
4x1 +x0+x4 =13
—X1 — 2X> +x5=-5
x120,...,x5 =0.
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o The augmented problem associated with Pg is:

maximize —xp

subject to —xg+2x3 +3x +x3 =18
—Xg+4x1+x0+x4 =13
—XQ—X1—2X2 +x5=-5
x0=0,x1=0,...,x5 =0.

o The initial tableau for this problem is:

-1/ 0 0|0 0 0| O
-1} 2 3|1 0 018
-1/ 4 1|0 1 0|13
-1/-1 -2|0 0 1|-5
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o Since -5 is the smallest element in the right-hand column, we pivot
about the element in the same row as this and in the column of the
artificial variable, to obtain the following tableau:

0|1 2|0 0 -1 5
0|3 5|1 0 -1(23
0|5 3|0 1 -1|18
141 2(0 0 -1| 5

o This tableau is not final, because of the 1 and 2 in its top row.
o We choose a pivot in the column headed by the 2, which is easily seen
to be 2:

-1[/0 0[0 0 0 O
0|3 o1 0 3|3
_§%001iﬁ
1|z i3
2132 1]0 0 —5] 3
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o We see that the augmented problem has value 0 and optimal vector
(0,0,3,3,%,0)
) ) 2) 2 ) 2 ) -
o So (0,%,2—21,%,0) is an extreme point of Fg.
o The non-basic variables at this last extreme point are x; and xs.

o We now express the objective function x; +x, of Pgr in terms of x;
and xs.

5

~

o This enables us to write down an initial tableau for Pgr with starting

point (O,g,%,%,O):

o Since —x; —2x> + x5 = =5, it follows that x; +x = %xl + %X5 +

— O OO

O = OO
|
NN =N IIN |

O O RO
TR ST A

NN | <IN =N | =
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o Starting from that tableau we proceed to a final one as follows:

1 1 D) 1 3
I 0ofo o I7-%] [0 oJo -1 3[-4
5 010 % Z1 10 o1 —% 219
£0/0 1 2 2111 0]0 7 113
1 5 4
I 1{oo -1 3| |o 1|0 -4 -2 1
3 1 67
co oW lin
000 5 -3 1| R
1 0|-& = of £
o I pi
0 1] 5 -5 0] §
o Thus, P has an optimal vector (3§, %) and value %.
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o Throughout our discussion we have only considered non-degenerate
problems.

o We even made a tacit assumption of non-degeneracy in our account of
the method of the artificial variable just described.

o We need this non-degeneracy assumption in showing that the
algorithm terminated after a finite number of steps.

o Without the assumption, it would be possible to enter into an infinite
sequence of pivoting operations without ever reaching a solution (even
when one exists!).

o Such a phenomenon is called cycling.

o This difficulty is more apparent than real, for it can be shown that for
any problem, there is a sequence of pivots which will ensure that the
simplex algorithm is completed in a finite number of steps.

o In practice, cycling rarely occurs, although problems have been
specially constructed to demonstrate its existence.

George Voutsadakis (LSSU) Convexity



Linear Programming [SGame Fheory

Subsection 6

George Voutsadakis (LSSU) Convexity July 2023 102 / 132



Linear Programming

o A matrix game consists of the following:
o Two players compete against each other:
o A row player R;
o A column player C.
o A game is determined by a real mx n matrix A= [aj], called the
pay-off matrix of the game.
o The row player chooses a row of A (i.e., one of the numbers 1,...,m);
o The column player chooses a column of A (i.e., one of the numbers
1,...,n).
o Each players acts in ignorance of his opponent.
o If R chooses i and C chooses j, then R receives an amount aj; from C.
o This procedure constitutes one play of the game, and the game

consists of a large number of plays.

o The object of each player is to maximize/minimize his gains/losses.
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o Player R selects two of the numbers 1,2,4, while C independently
selects one of them.
o For each number chosen by R, but not by C, C pays R that number.
o For each number chosen by both R and C, R pays C that number.
o This is essentially a matrix game, since we can construct its pay-off
matrix.
o R has three choices: (i) 1,2; (ii) 1,4; (iii) 2,4;
o C has three choices: (i) 1; (i) 2; (iii) 4.
o Suppose that both players play their first choices. Then R pays 1 to C
and C pays 2 to R. The net result of this play is a gain of 1 to R.

So the element in row 1 and column 1 of the pay-off matrix is 1.

1 -1 3
o The completed matrixis [ 3 5 -3
6 2 -2
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o Consider a large number N of plays of the game.
o Suppose that R chooses 1,...,m, respectively, Ny,..., N, times.
o Then Ny +---+ Np, =N, and R has made the choice i (i=1,...,m)
with relative frequency x; = %
o Clearly, x1,...,xm =0 and xq +---+xm, = 1.
o Suppose, similarly, that C has made the choice j (j =1,...,n) with
relative frequency y;.
o Then yq,...,yp=0and y3+---+y,=1.
o We say that:
o R employs strategy x = (x1,...,Xm);
o C employs strategy y = (y1,.--,¥n)-
o How much can R expect to receive from C during the game?

o We assume that the players, within their preferred strategies, make
their choices in a random way.
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©

R chooses i with relative frequency x;.

C chooses j with relative frequency y;.

The relative frequency with which both R chooses i and C chooses j
is X;yj, the number of times this occurring being about x;y;N.

The amount which R receives from C as a result is ajjx;y;N.

o Thus the total amount R receives from C after N plays is

m n

Z Z a,-jx,-yjN.

i=1j=1

¢ ©

©

©

The average amount R can expect to receive from C for a single play

IS
m n

> 2 aixiyj.

i=1j=1
o This last expression, denoted by E(x,y), is called R's expected gain
and C's expected loss.
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©

9

Consider again the game determined by a real m x n matrix A= [a;].
A strategy for R is a vector x =(xi,...,xm) for which x,...,x, =0
and xg +---+xm, =1.
A strategy for C is a vector y = (y1,...,yn) for which y1,...,y, =0
and y1+---+y,=1.
The set of all strategies for R is denoted by S,.
The set of all strategies for C is denoted by S,.
The simplest strategies are the pure strategies in which a player
consistently chooses a given row or column.
o The ith pure strategy for R is the m-vector (0,...,1,...,0), which has
a 1 in the jth place and zeros elsewhere;
o The jth pure strategy for C is the n-vector (0,...,1,...,0), which has a
1 in the jth place and zeros elsewhere.

Clearly, the set S, of all strategies for R is a polytope in R™ whose
extreme points are R's pure strategies.
Similar remarks apply to S,,.
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o Suppose that R and C employ strategies x and y, respectively.

o Then R's expected gain (which is C's expected loss), denoted by
E(x,y), is defined by

E(x,y)= ZZaUx,yj—x Ay.
i=1j=1

o We observe that E(x,y) is simply a particular value of the bilinear
form associated with the matrix A.
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o Let a and a denote, respectively, the minimal and maximal elements of
the matrix A.

o Then it is easily seen that, whatever the strategies adopted by the two
players:
o R's expected gain is at least g;
o Cs expected loss is at most a.

o Consider the use of pure strategies by both players.

o If R plays his ith pure strategy against a pure strategy of C, his
expected gain will be one of the numbers ajq,...,a;,.

o So he can be certain of receiving at least min; aj;.

o Clearly, R should choose i in such a way as to make this minimum as
large as possible.
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o Suppose that the minimum min; a;; is maximized when i = fy, say.

o Then we have shown that, by suitable choice of a pure strategy, R can
guarantee an expected gain of at least

maxmina,-j
i

against any pure strategy of C.
o Similarly, for some j = jy, the joth pure strategy of C will keep his
expected loss to at most min;max; a;; against any pure strategy of R.

o By considering R's expected gain (C's expected loss) when R chooses
his igth pure strategy and C chooses his joth pure strategy, we can
deduce that

a<maxminaj; <minmaxaj; < a.
1 J J 1
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o Consider the matrix
3 7 2
8 1 6
4 9 5
o Here
1=a< maxmina; =4 <6=minmaxa; <a=09.
i j j i
o R's best pure strategy is to play his third row.
o C's best pure strategy is to play his third column.
o When both players choose their best pure strategies, the expected gain

(loss) is 5, which lies strictly between the max-min and min-max.
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o Consider the general matrix game, determined by a real m x n matrix
A= [aj], from the point of view of the row player R.

Suppose that he decides on some strategy x € S,,.

Denote by eq,...,e, the pure strategies of C.

Let y =(y1,-.-»¥n) € Sp.
Then E(X,y)

¢ © ¢ ©

E(X’YIel+"'+Ynen)
ylE(x e1) +y,,E(x e,,)
min {E(x, e1) ,E(x,ep)}.

o So R can be sure that his expectation is at Ieast equal to ug(x), where

ur(x) :}r,nEI_Q E(x,y)=min{E(x,e1),...,E(x,ep)}.

v

o The number ug(x) is called R's security level for his strategy x.

E(x,e1),...,E(x,ep) are linear in x, so they are continuous.

o Hence ug: Sm — IR, being the minimum of a finite number of
continuous functions, is itself continuous.
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o Player R will naturally choose a strategy x in such a way as to make
his security level ug(x) as large as possible.

o Since ug is a continuous real-valued function defined on the compact
set S, its maximal value, vg say, will be attained at some point xp
of Sp,.

o Thus

VR = ur(xg) = max ur(x) = ,’Jl%ﬁ}'li?n E(x,y).

o The number vg is called the value of R's game.

o Any strategy such as xg which gives R a security level of vg is called
an optimal strategy for R.
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o Player C can see his objective as minimizing R's expectation.
o Suppose C decides on a strategy y € S,,.
o Then he can be sure that R's expectation is at most

uc(y)= max E(x,y).

o In perfect analogy to R maximizing ug(x), C tries to minimize uc(y).
o There exist y €S, and v¢c € R such that

= = min = min max E(x,y).
ve=uc(yc) yE'SnUC(.V) D e (x,y)

o The number v¢ is called the value of C's game.
o Any strategy such as y - which gives uc(y) the value v¢ is called an
optimal strategy for C.
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o Suppose now that R and C have optimal strategies xg,y and that
the values of their games are vg, vc.

o If R uses xR, he can guarantee himself an expectation of at least vg;

o If C uses y, he guarantees that R's expectation will not exceed vc.

o Thus,
vr=E(xr,yc)=vc.
o The , proved below, asserts the equality of the values
vr and vc.
o The theorem, therefore, shows that every matrix game is in the

sense that there exists a number v for which:

o R can play so that his expectation is at least v;
o C can play so that R's expectation is at most v.
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Theorem (Von Neumann's Minimax Theorem)

In the matrix game determined by a real m x n matrix A, the value of R's
game is equal to the value of C's game, i.e.,

VR = max min xTAy = min max xTAy =vc.
XeS, YeS, YeS, XeS,
o Suppose first that the elements a;; of A are all positive. Consider the
following linear programming problem P and its dual P*:
maximize y1+---+Yyn minimize  x3+:-+Xm
subject to aj1y;+---+aipyn<1 subject to apixy+-- +amixm=1

amiy1+-+amnyn<1 a1nX1+ -+ amnXm =1
y120,...,y, =0 x120,...,xm=0
Since A has all positive elements, both P and P* are feasible. Hence,
by the Duality Theorem of linear programming, both P and P* are
soluble and have the same value, v say.
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o Let X=(X1,...,Xm), Y =(Y1,,..., Yn) be optimal vectors for P*, P,
respectively. Then X =0, Y =0, X"A=[1,...,1], AY <(1,...,1), and

X1+ +Xm=v=Y1+---+Y,.

Write xg = %X and yc = %Y. Then xg€ Sp, yc € Sp, and, for all

xesm’yesny
E(xry) = xhAy=1i[1,..1y=1;
E(x,yc) = xTAyc=ixT(1,...,1)=1.

Thus v¢ < % <vg. But vg <vc. So vg = % =vc. Hence xg,yc are
optimal strategies for R, C, respectively.
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o Consider now the general case when A is not assumed to be positive.
Let k be any real number such that the matrix B obtained by adding
k to each element of A is positive. By what we have just proved,

max min xTBy= min max xTBy.
XeSnYeS, YeS,XeS,

Equivalently,

k + max min xTAy =k + min max xTAy.
XeSnmYeS, YeS,XeS,

This proves the result.
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o Since, in a matrix game, the values vg and v¢ are the same, either of
them is referred to simply as the value of the game.
o By a solution to a matrix game is meant:

o An optimal strategy for R;
o An optimal strategy for C;
o The value of the game.

o In the course of proving the minimax theorem, we showed how the
solution of a matrix game could be found by solving a certain linear
programming problem and its dual.
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o Consider the matrix game that has pay-off matrix

1 -1 3 5 3 7
[ 3 5 3 ] [ 791 ]
6 2 -2 10 6 2
o There are some non-positive elements in this matrix.
o So we add 4 to each of its elements, and discuss the game with
pay-off matrix the one on the right.

o To find a solution to this game, we solve the following linear
programming problem and its dual:

maximize y1+y>+y3

subject to 5y; +3y,+7y3<1
7y1+9y2+y3sl
10y1 +6y>+2y3 <1
y1,y2y3=0.
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o This we do using the simplex algorithm as follows.

1 1 1/]0 0 0]0
5 3 7/1 0 0|1
7 9 1/]0 1 01
10 6 2|10 0 1|1
2 4 1 1
A S Tk T N
3 2 1] 1T 0 o %
4 6b { §
A B SR
7 7 0[|-7 0 1] 7
2 2 1 1
R S 1 - L B
g0 3 7y 0 p
5 - %y s Yy
5 00| 5§ -5 1] 5
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o We obtained

2 2 1 1
o S - L B
g9 3 7y 0 p
5 -~ % s Yy
5 00| 5§ -5 1] 5

o Thus (0, 75,75) and (&, 15,0) are optimal vectors for the problem and

its dual respectively, the value of both problems is é

o Referring back to the proof of the minimax theorem, we deduce that,
for the modified game: an optimal row strategy is (3 '3 0), an optimal
column strategy is (0, %, 2) and the value of the game is 5.

o For the original game: an optimal row strategy is (3, 3,0), an optimal
column strategy is (0,2,1) and its value is 5-4=1.
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o In a matrix game, the jth pure strategy for the row player is said to be
essential if there is an optimal strategy (xi,...,xm) for R in which
Xj > 0.

o A similar definition applies to the pure strategies for the column player.

o In the example, (%,1,0) and (0,3,3) were shown to be optimal
strategies for the row and column players, respectively.

Thus the first two pure strategies for the row player and the last two
pure strategies for the column player are essential.
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Theorem

Suppose that some pure strategy for a player in a matrix game is essential.
Then this strategy achieves the value of the game against each optimal
strategy of the opponent.

o Suppose that, in a game with m x n pay-off matrix A=[aj;] and value
v, R's ith pure strategy is essential and x =(xi,...,xm) is an optimal
strategy for R in which x; >0. Let y =(y1,...,¥n) be an optimal
strategy for C. Then E(x,y)=v, i.e.

x1(aiyr +--+anyn) + -+ Xm(@amiyi + -+ amnyn) = v.

Since (y1,...,yn) is optimal for C, it will give C an expected loss of at
most v against each pure strategy of R. Hence,

ailyirt--+tainyYn=V,-..,amiyirt+---tamnyn=V.
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o It now follows from the preceding together with the relations
X1, Xm =0, Xy +--+xn=1, x; >0, that

ajity1+---t+apyn=Vv.

Thus, R's ith pure strategy achieves the value v of the game against
any optimal strategy (y1,...,yn) of C.
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o Suppose that the (ip,jo)th position in a real mx n matrix A= [a;] is
such that aj j, is the least element in its row and the greatest element
in its column.

o Then A is said to have a saddle point at (ip,jo) with value ajgj,.

o Suppose that, in the game with pay-off matrix A, R plays his ipth pure
strategy and C plays an arbitrary strategy (y1,...,¥n)-

o Then R’s expected gain is ajy1y1 + -+ ajgnyn = ajj, and v =aj i,
where v denotes the value of the game.

o Suppose next that R plays an arbitrary strategy (xi,...,xm) and C
plays his joth pure strategy.

o Then C’s expected loss is ayjox1 + -+ + amjoXm < ajgjo, and v < ajj,.

o It follows that v = a;j;, and that R’s ipth pure strategy and C's joth
pure strategy are both optimal for their respective players.
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o Not all matrices have saddle points:

1 -1 3 3 7 2
3 5 -3 8 1 6 |.
6 2 -2 4 9 5

7 6 8
2 4 3
-1 8

o The matrix

1

has a saddle point at (1,2) with value 6.
The game defined by this matrix has value 6.

Optimal strategies for the row and column players are (1,0,0) and
(0,1,0), respectively.
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o We show how games whose pay-off matrices have either just two rows
or just two columns can be solved graphically.

o We illustrate the general method by solving the game determined by
the 2 x 3 matrix [ > 4 3

4 1 2

o Suppose that R employs the strategy x = (x,1—x), where 0<x<1.
o Denoting the pure strategies of C by e, e5, e3, we find that:
E(x,e1) = 2x+4(1-x)=4-2x;
E(x,e2) 4x+1(1-x) =1+3x;
E(x,e3) 3x+2(1-x)=2+x.

o Thus, we see that R's security level for his strategy x is given by the

equation
ur(x)=min{4-2x,1+3x,2+x}.
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Linear Programming

o The graphs of E(x,e1), E(x,e2) and E(x,e3)
are shown on the right, where the graph of ug
(x.e2)=1+3x
is drawn with a thick line. It is clear from this ‘ N o
figure that the value v of the game is given \ R
by the equations #r
2 Exep=4-2x
2
v=max{ur(x):0<x<1} :2§
and that this maximum occurs when x = % o %Gnm“ x

Thus (%,%) is an optimal strategy for R.

o Suppose now that (y1,y2,y3) is an optimal strategy for C. The figure
shows that C's second pure strategy does not achieve the value of the
game against R's optimal strategy (%,%) Thus, this strategy is not
essential for C, and so y» =0.
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Linear Programming

o Since both of R's pure strategies are essential, they must achieve the
value of the game against C's optimal strategy (y1,0,y3). Hence

2 2
2y1+3y3 = 2§ and 4y +2y3 = 25.

It follows that (3,0,%) is an optimal strategy for C.
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Linear Programming

o Consider a game whose pay-off matrix has rows rq,...,r, and columns
C1,...,Cp.

o Suppose that ri<r; (i #]).

o Then choosing the ith row offers no advantage to R over choosing the
jth row.

o So R can exclude the ith row in his search for an optimal strategy.
o We say that the ith row is dominated by the jth row.

o In this case the ith row can be omitted from the game.
o

Similarly, if ¢; <c¢; (i #), then choosing the jth column offers no
advantage to C over choosing the ith column.

©

We say that the jth column is dominated by the ith column.

©

In this case the jth column can be omitted from the game.
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Linear Programming

Consider the game with pay-off matrix is on the left:

©

2 4

31 150
2 3

Here the third row is dominated by the first row.

©

©

Hence we exclude the third row from the game, and consider the
reduced game determined by the matrix on the right.

©

This game is easily solved graphically.

o lIts value is 2%;

o Optimal strategies for row and column are (%,%) and (%,%).
Reverting to the original game, we see that:

©

o lts value is 2%;
o Optimal strategies for row and column are (%,%,0) and (%,%).
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