Introduction to Convexity

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

(1) Convex Functions

- Convex Functions on the Real Line
- Classical Inequalities
- The Gamma and Beta Functions
- Convex Functions on \mathbb{R}^{n}
- Continuity and Differentiability
- Support Functions
- The Convex Programming Problem
- Matrix Inequalities

Subsection 1

Convex Functions on the Real Line

Convex and Concave Functions

- We will be concerned with a real-valued function $f: I \rightarrow \mathbb{R}$ defined on a non-degenerate (i.e., contains more than one point) interval I of the real line.
- Such a function f is said to be convex if

$$
f(\lambda x+\mu y) \leq \lambda f(x)+\mu f(y)
$$

whenever $x, y \in I$ and $\lambda, \mu \geq 0$ with $\lambda+\mu=1$.

- Geometrically, f is convex if every chord joining two points on its graph lies on or above the graph.
- If $-f: I \rightarrow \mathbb{R}$ is convex, then $f: l \rightarrow \mathbb{R}$ is said to be concave.

Example

- We show that the square function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined for real x by the equation

$$
f(x)=x^{2}
$$

is convex.

- Let $x, y \in \mathbb{R}$ and let $\lambda, \mu \geq 0$ with $\lambda+\mu=1$.
- Then

$$
\begin{aligned}
\lambda f(x)+\mu f(y)-f(\lambda x+\mu y) & =\lambda x^{2}+\mu y^{2}-(\lambda x+\mu y)^{2} \\
& =\lambda x^{2}+\mu y^{2}-\lambda^{2} x^{2}-2 \lambda \mu x y-\mu^{2} y^{2} \\
& =\lambda(1-\lambda) x^{2}-2 \lambda \mu x y+\mu(1-\mu) y^{2} \\
& =\lambda \mu x^{2}-2 \lambda \mu x y+\lambda \mu y^{2} \\
& =\lambda \mu\left(x^{2}-2 x y+y^{2}\right) \\
& =\lambda \mu(x-y)^{2} \geq 0 .
\end{aligned}
$$

- This establishes the convexity of the square function.

The Three Chords Lemma

Theorem (Three Chords Lemma)

Let $f: I \rightarrow \mathbb{R}$ be a convex function and let $x, y, z \in I$ satisfy $x<z<y$. Then

$$
\frac{f(z)-f(x)}{z-x} \leq \frac{f(y)-f(x)}{y-x} \leq \frac{f(y)-f(z)}{y-z} .
$$

- We express z as a convex combination of $x, y: z=\frac{y-z}{y-x} x+\frac{z-x}{y-x} y$. By the convexity of $f, f(z) \leq \frac{y-z}{y-x} f(x)+\frac{z-x}{y-x} f(y)$. Thus,

$$
f(z)-f(x) \leq \frac{y-z-y+x}{y-x} f(x)+\frac{z-x}{y-x} f(y)=\frac{z-x}{y-x}(f(y)-f(x)) .
$$

So, we get $\frac{f(z)-f(x)}{z-x} \leq \frac{f(y)-f(x)}{y-x}$.
The other inequality follows similarly.

The Slope Function

Corollary

Let $f: I \rightarrow \mathbb{R}$ be a convex function and let $a \in I$ ．Then the function $g: ハ\{a\} \rightarrow \mathbb{R}$ defined by the equation

$$
g(x)=\frac{f(x)-f(a)}{x-a}, \quad x \in ハ \backslash\{a\},
$$

is increasing．
－If $b, c \in ハ \backslash\{a\}$ with $b<c$ ，then we must show that $g(b) \leq g(c)$ ．
Either $b<c<a, b<a<c$ ，or $a<b<c$ ．Suppose that $b<c<a$ ．Then the theorem with $x=b, y=a, z=c$ shows that $g(b) \leq g(c)$ ．
The other cases can be proved in a similar fashion．

Convexity and Differentiability

Theorem

Let $f: I \rightarrow \mathbb{R}$ be a convex function. Then f possesses left and right derivatives at each interior point of I. Moreover, if a, b are interior points of I with $a<b$, then

$$
f_{-}^{\prime}(a) \leq f_{+}^{\prime}(a) \leq \frac{f(b)-f(a)}{b-a} \leq f_{-}^{\prime}(b) \leq f_{+}^{\prime}(b)
$$

- Let c be an interior point of f and let x, y be points of I such that $x<c<y$. The corollary shows that, as x increases to c from below, $\frac{f(x)-f(c)}{x-c}$ increases and is bounded above by $\frac{f(y)-f(c)}{y-c}$. Thus, the left derivative $f_{-}^{\prime}(c)$ exists and satisfies the inequality

$$
f_{-}^{\prime}(c) \leq \frac{f(y)-f(c)}{y-c}
$$

Convexity and Differentiability (Cont'd)

- Letting y decrease to c in this inequality, we see that the right derivative $f_{+}^{\prime}(c)$ exists and satisfies the inequality $f_{-}^{\prime}(c) \leq f_{+}^{\prime}(c)$. Thus, if a, b are interior points of I, then

$$
f_{-}^{\prime}(a) \leq f_{+}^{\prime}(a) \quad \text { and } \quad f_{-}^{\prime}(b) \leq f_{+}^{\prime}(b)
$$

By the corollary, for $a<x<b$,

$$
\frac{f(x)-f(a)}{x-a} \leq \frac{f(b)-f(a)}{b-a} \quad \text { and } \quad \frac{f(b)-f(a)}{b-a} \leq \frac{f(b)-f(x)}{b-x} .
$$

Letting $x \rightarrow a^{+}$in the first and $x \rightarrow b^{-}$in the second, we get

$$
f_{+}^{\prime}(a) \leq \frac{f(b)-f(a)}{b-a} \leq f_{-}^{\prime}(b)
$$

Convexity and Continuity

Corollary

Let $f: I \rightarrow \mathbb{R}$ be a convex function. Then, on the interior of I, f is continuous and $f_{-}^{\prime}, f_{+}^{\prime}$ are increasing.

- At each interior point of I, f has both left and right derivatives, and so is continuous from the left and from the right. Hence it is continuous.
That $f_{-}^{\prime}, f_{+}^{\prime}$ are increasing on the interior of f follows immediately from the theorem.

Behavior at the Boundary

- A convex function need not be continuous at the boundary points of its domain.

Example: The convex function $f:[0,1] \rightarrow \mathbb{R}$ defined by the equations

$$
f(x)= \begin{cases}0, & \text { if } 0<x<1 \\ 1, & \text { if } x=0,1\end{cases}
$$

is not continuous at 0 and 1 .

- Also a convex function need not be differentiable, even at an interior point of its domain.
Example: The modulus (absolute value) function is not differentiable at the origin. There its left and right derivatives are -1 and 1 , respectively.

Points of NonDifferentiability

Corollary

Let $f: I \rightarrow \mathbb{R}$ be a convex function. Then the set of those points of I at which f is not differentiable is countable.

- Let C be the set of points of intl at which f is not differentiable. With each c in C, we associate a rational r_{c} such that $f_{-}^{\prime}(c)<r_{c}<f_{+}^{\prime}(c)$. It follows from the theorem that, if $c, d \in C$ with $c<d$, then

$$
f_{-}^{\prime}(c)<r_{c}<f_{+}^{\prime}(c)<f_{-}^{\prime}(d)<r_{d}<f_{+}^{\prime}(d),
$$

whence $r_{c}<r_{d}$. This shows immediately that the set of points of int $/$, and hence of I, at which I is not differentiable is countable.

Criterion for Convexity

Theorem

Let $f: I \rightarrow \mathbb{R}$ be a differentiable function. Then f is convex if and only if f^{\prime} is increasing.

- Suppose first that f is convex. Let $a, b \in l$ with $a<b$. Then a previous corollary shows that

$$
f^{\prime}(a)=\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a} \leq \frac{f(b)-f(a)}{b-a} \leq \lim _{x \rightarrow b^{-}} \frac{f(x)-f(b)}{x-b}=f^{\prime}(b) .
$$

Hence $f^{\prime}(a)<f^{\prime}(b)$ and f^{\prime} is increasing.

Criterion for Convexity (Converse)

- Suppose next that f^{\prime} is increasing. Let $a, b \in I$ with $a<b$ and let $\lambda, \mu>0$ with $\lambda+\mu=1$. By the first Mean Value Theorem, there exist real numbers, c, d with $a<c<\lambda a+\mu b<d<b$, such that

$$
\frac{f(\lambda a+\mu b)-f(a)}{\lambda a+\mu b-a}=f^{\prime}(c) \leq f^{\prime}(d)=\frac{f(b)-f(\lambda a+\mu b)}{b-\lambda a-\mu b} .
$$

So we get

$$
\begin{gathered}
\frac{f(\lambda a+\mu b)-f(a)}{\mu(b-a)} \leq \frac{f(b)-f(\lambda a+\mu b)}{\lambda(b-a)} \\
\lambda f(\lambda a+\mu b)-\lambda f(a) \leq \mu f(b)-\mu f(\lambda a+\mu b) \\
f(\lambda a+\mu b) \leq \lambda f(a)+\mu f(b) .
\end{gathered}
$$

Hence, f is convex.

Corollary

Let $f: I \rightarrow \mathbb{R}$ be a twice differentiable function. Then f is convex if and only if $f^{\prime \prime}(x) \geq 0$ for all x in I.

Example

- The function e^{x} is convex on \mathbb{R}.

$$
\left(e^{x}\right)^{\prime \prime}=\left(e^{x}\right)^{\prime}=e^{x}>0
$$

- The function $-\log x$ is convex on $(0,+\infty)$.

$$
(-\log x)^{\prime \prime}=\left(-\frac{1}{x}\right)^{\prime}=\frac{1}{x^{2}}>0
$$

- The function $x \log x$ is convex on $(0,+\infty)$.

$$
(x \log x)^{\prime \prime}=\left(\log x+x \frac{1}{x}\right)^{\prime}=\frac{1}{x}>0 .
$$

- The function $x^{p}, p \geq 1$, is convex on $[0, \infty)$.

$$
\left(x^{p}\right)^{\prime \prime}=\left(p x^{p-1}\right)^{\prime}=p(p-1) x^{p-2} \geq 0
$$

Support

- Suppose that $f: I \rightarrow \mathbb{R}$ is a real-valued function defined on an open interval I of the real line and that $x_{0} \in I$.
- Then an affine transformation $T: \mathbb{R} \rightarrow \mathbb{R}$ is said to support f at x_{0} if $T\left(x_{0}\right)=f\left(x_{0}\right)$ and $T(x) \leq f(x)$, for all $x \in I$.
We say that f has support T at x_{0}.

- Such an affine transformation T can be expressed in the form $T(x)=f\left(x_{0}\right)+m\left(x-x_{0}\right)$ for some real number m.
- $y=f\left(x_{0}\right)+m\left(x-x_{0}\right)$ is the equation of the line with slope m passing through the point $\left(x_{0}, f\left(x_{0}\right)\right)$ on the graph of f.
- The condition $T(x) \leq f(x)$ means that this line lies on or below the graph of f.

Convexity and Support

Theorem

Let $f: I \rightarrow \mathbb{R}$ be a real-valued function defined on an open interval / of \mathbb{R}. Then f is convex if and only if it has support at each point of I.

- Suppose first that f has support at each point of I. Let $x, y \in I$ and let $\lambda, \mu \geq 0$ with $\lambda+\mu=1$. Let T support f at $\lambda x+\mu y$. Then

$$
f(\lambda x+\mu y)=T(\lambda x+\mu y)=\lambda T(x)+\mu T(y) \leq \lambda f(x)+\mu f(y)
$$

So f is convex.

Convexity and Support (Converse)

- Suppose next that f is convex. Let $x_{0} \in I$ and let m be a real number satisfying the inequalities $f_{-}^{\prime}\left(x_{0}\right) \leq m \leq f_{+}^{\prime}\left(x_{0}\right)$. Define an affine transformation $T: \mathbb{R} \rightarrow \mathbb{R}$ by the equation

$$
T(x)=f\left(x_{0}\right)+m\left(x-x_{0}\right), \quad x \in \mathbb{R} .
$$

Let $y, z \in I$ be such that $y<x_{0}<z$. Then, by a previous theorem,

$$
\begin{aligned}
\frac{f(y)-f\left(x_{0}\right)}{y-x_{0}} & \leq f_{-}^{\prime}\left(x_{0}\right) \\
& \leq \frac{T(y)-T\left(x_{0}\right)}{y-x_{0}}=m=\frac{T(z)-T\left(x_{0}\right)}{z-x_{0}} \\
& \leq f_{+}^{\prime}\left(x_{0}\right) \\
& \leq \frac{f(z)-f\left(x_{0}\right)}{z-x_{0}} .
\end{aligned}
$$

Hence $T(y) \leq f(y)$ and $T(z) \leq f(z)$. Thus T supports f at x_{0}.

Differentiability and Support

Theorem

Let $f: I \rightarrow \mathbb{R}$ be a convex function defined on an open interval $/$ of \mathbb{R}. Then f is differentiable at a point x_{0} of I if and only if it has unique support at x_{0}.

- Suppose first that f is differentiable at x_{0}. Let $T: \mathbb{R} \rightarrow \mathbb{R}$ support f at x_{0}; say

$$
T(x)=f\left(x_{0}\right)+m\left(x-x_{0}\right), \text { for } x \in \mathbb{R},
$$

where m is a real number. Let $y, z \in I$ be such that $y<x_{0}<z$. Then

$$
\frac{f(y)-f\left(x_{0}\right)}{y-x_{0}} \leq \frac{T(y)-T\left(x_{0}\right)}{y-x_{0}}=m=\frac{T(z)-T\left(x_{0}\right)}{z-x_{0}} \leq \frac{f(z)-f\left(x_{0}\right)}{z-x_{0}} .
$$

Thus, letting $y \rightarrow x_{0}^{-}, z \rightarrow x_{0}^{+}$, we deduce that $m=f^{\prime}\left(x_{0}\right)$. Hence, f has unique support at x_{0}.

Differentiability and Support (Converse)

- Suppose next that f has unique support at x_{0}.

Let the real number m satisfy $f_{-}^{\prime}\left(x_{0}\right) \leq m \leq f_{+}^{\prime}\left(x_{0}\right)$.
Then, as in the proof of the preceding theorem, the affine transformation T defined by the equation

$$
T(x)=f\left(x_{0}\right)+m\left(x-x_{0}\right)
$$

supports f at x_{0}. But f has unique support at x_{0}. Hence, m is unique and $f_{-}^{\prime}\left(x_{0}\right)=f_{+}^{\prime}\left(x_{0}\right)$.
So f is differentiable at x_{0}.

Subsection 2

Classical Inequalities

Jensen's Inequality

Theorem (Jensen's Inequality)

Let $f: I \rightarrow \mathbb{R}$ be a convex function. Let $x_{1}, \ldots, x_{m} \in I$ and let $\lambda_{1}, \ldots, \lambda_{m} \geq 0$ with $\lambda_{1}+\cdots+\lambda_{m}=1$. Then

$$
f\left(\lambda_{1} x_{1}+\cdots+\lambda_{m} x_{m}\right) \leq \lambda_{1} f\left(x_{1}\right)+\cdots+\lambda_{m} f\left(x_{m}\right) .
$$

- We argue by induction on m.

The inequality is trivially true when $m=1$.
Assume, then, that it is true when $m=k$, where $k \geq 1$.
Let a real number x be defined by the equation

$$
x=\lambda_{1} x_{1}+\cdots+\lambda_{k+1} x_{k+1},
$$

where $x_{1}, \ldots, x_{k+1} \in I$ and $\lambda_{1}, \ldots, \lambda_{k+1} \geq 0$ with $\lambda_{1}+\cdots+\lambda_{k+1}=1$.
At least one of $\lambda_{1}, \ldots, \lambda_{k+1}$ must be less than 1 , say $\lambda_{k+1}<1$.

Jensen's Inequality (Cont'd)

- Write

$$
\lambda=\lambda_{1}+\cdots+\lambda_{k}=1-\lambda_{k+1} .
$$

Then $\lambda>0$. Write

$$
y=\frac{\lambda_{1}}{\lambda} x_{1}+\cdots+\frac{\lambda_{k}}{\lambda} x_{k} .
$$

The induction hypothesis shows that

$$
f(y) \leq \frac{\lambda_{1}}{\lambda} f\left(x_{1}\right)+\cdots+\frac{\lambda_{k}}{\lambda} f\left(x_{k}\right) .
$$

Since f is convex,

$$
\begin{aligned}
f(x) & =f\left(\lambda y+\lambda_{k+1} x_{k+1}\right) \\
& \leq \lambda f(y)+\lambda_{k+1} f\left(x_{k+1}\right) \\
& \leq \lambda_{1} f\left(x_{1}\right)+\cdots+\lambda_{k+1} f\left(x_{k+1}\right) .
\end{aligned}
$$

This establishes the inequality for $m=k+1$.

Arithmetic and Geometric Means

- In this section the word number will be used exclusively to mean positive real number.
- The arithmetic mean and the geometric mean of numbers x_{1} and x_{2} are defined to be

$$
\frac{1}{2}\left(x_{1}+x_{2}\right) \quad \text { and } \quad \sqrt{x_{1} x_{2}}
$$

- The basic inequality between these means is that the geometric mean never exceeds the arithmetic mean, i.e., $\sqrt{x_{1} x_{2}} \leq \frac{1}{2}\left(x_{1}+x_{2}\right)$.
- This follows immediately from the fact that $\left(\sqrt{x_{1}}-\sqrt{x_{2}}\right)^{2} \geq 0$.
- The arithmetic mean and the geometric mean of numbers x_{1}, \ldots, x_{m} are defined, respectively, to be

$$
\frac{1}{m}\left(x_{1}+\cdots+x_{m}\right) \quad \text { and } \quad\left(x_{1} \cdots x_{m}\right)^{1 / m}
$$

- Once again the geometric mean never exceeds the arithmetic mean, although the proof is appreciably more difficult than when $m=2$.

Weighted Arithmetic and Geometric Means

- The concepts of arithmetic and geometric means can be generalized by attaching weights $\alpha_{1}, \ldots, \alpha_{m}$ to the numbers as follows.
- Let $\alpha_{1}, \ldots, \alpha_{m}$ be numbers whose sum is 1 .
- Then the numbers

$$
\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m} \quad \text { and } \quad x_{1}^{\alpha_{1}} \cdots x_{m}^{\alpha_{m}}
$$

are called, respectively, the weighted arithmetic mean and the weighted geometric mean of the numbers x_{1}, \ldots, x_{m} with respect to the weights $\alpha_{1}, \ldots, \alpha_{m}$.

- These weighted means reduce to the usual means when each of the weights $\alpha_{1}, \ldots, \alpha_{m}$ is $\frac{1}{m}$.

Relations Between Weighted Means

Theorem

Let $x_{1}, \ldots, x_{m}, \alpha_{1}, \ldots, \alpha_{m}>0$ with $\alpha_{1}+\cdots+\alpha_{m}=1$. Then

$$
x_{1}^{\alpha_{1}} \cdots x_{m}^{\alpha_{m}} \leq \alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}
$$

- The function - log is convex on $(0, \infty)$. Hence, by Jensen's inequality,

$$
\begin{aligned}
-\log \left(\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}\right) & \leq-\left(\alpha_{1} \log x_{1}+\cdots+\alpha_{m} \log x_{m}\right) \\
& =-\log \left(x_{1}^{\alpha_{1}} \cdots x_{m}^{\alpha_{m}}\right) .
\end{aligned}
$$

Since \log is a strictly increasing function, we can deduce that

$$
x_{1}^{\alpha_{1}} \cdots x_{m}^{\alpha_{m}} \leq \alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}
$$

Corollary

Let $x_{1}, \ldots, x_{m}>0$. Then

$$
\left(x_{1} \cdots x_{m}\right)^{1 / m} \leq \frac{1}{m}\left(x_{1}+\cdots+x_{m}\right) .
$$

A very General Inequality

Theorem

Let $a_{i j}>0(i=1, \ldots, m ; j=1, \ldots, n)$ and $\alpha_{1}, \ldots, \alpha_{m}>0$ with $\alpha_{1}+\cdots+\alpha_{m}=1$. Then

$$
a_{11}^{\alpha_{1}} \cdots a_{m 1}^{\alpha_{m}}+\cdots+a_{1 n}^{\alpha_{1}} \cdots a_{m n}^{\alpha_{m}} \leq\left(a_{11}+\cdots+a_{1 n}\right)^{\alpha_{1}} \cdots\left(a_{m 1}+\cdots+a_{m n}\right)^{\alpha_{m}} .
$$

- We use the inequality between weighted means to deduce that, for each $j=1, \ldots, n$,

$$
\frac{a_{1 j}^{\alpha_{1} \cdots a_{m j}^{\alpha_{m}}}}{\left(a_{11}+\cdots+a_{1 n}\right)^{\alpha_{1} \cdots\left(a_{m 1}+\cdots+a_{m n}\right)^{\alpha_{m}}} \leq \frac{\alpha_{1} a_{1 j}}{a_{11}+\cdots+a_{1 n}}+\cdots+\frac{\alpha_{m} a_{m j}}{a_{m 1}+\cdots+a_{m n}} . . ~ . ~ . ~}
$$

Adding these n inequalities together, we deduce that

$$
\sum_{j=1}^{n} \frac{a_{i j}^{\alpha_{1}} \cdots a_{m j}^{\alpha_{m}}}{\left(a_{11}+\cdots+a_{1 n}\right)^{\alpha_{1}} \cdots\left(a_{m 1}+\cdots+a_{m n}\right)^{\alpha_{m}}} \leq \alpha_{1}+\cdots+\alpha_{m}=1 .
$$

The desired result follows immediately.

Hölder's Inequality

Corollary

Let $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}>0$. Then

$$
\left(x_{1} \cdots x_{m}\right)^{1 / m}+\left(y_{1} \cdots y_{m}\right)^{1 / m} \leq\left(x_{1}+y_{1}\right)^{1 / m} \cdots\left(x_{m}+y_{m}\right)^{1 / m} .
$$

- Let $n=2, \alpha_{1}=\frac{1}{m}, \ldots, \alpha_{m}=\frac{1}{m}, a_{i 1}=x_{i}$ and $a_{i 2}=y_{i}$ in the theorem.

Corollary (Hölder's Inequality)

Let $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}>0$. Suppose that $p, q>0$ satisfy $\frac{1}{p}+\frac{1}{q}=1$. Then

$$
\sum_{i=1}^{n} x_{i} y_{i} \leq\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}\left(\sum_{i=1}^{n} y_{i}^{q}\right)^{1 / q}
$$

- Let $m=2, \alpha_{1}=\frac{1}{p}, \alpha_{2}=\frac{1}{q}$ and let $a_{1 j}=x_{j}^{p}, a_{2 j}=y_{j}^{q}$ in the above theorem.

Minkowski's Inequality

Theorem (Minkowski's Inequality)

Let $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}>0$ and let $p \geq 1$. Then

$$
\left(\sum_{i=1}^{n}\left(x_{1}+y_{i}\right)^{p}\right)^{1 / p} \leq\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}+\left(\sum_{i=1}^{n} y_{i}^{p}\right)^{1 / p}
$$

- Write $a=\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}$ and $b=\left(\sum_{i=1}^{n} y_{i}^{p}\right)^{1 / p}$. Since $x^{p}(p \geq 1)$ is convex on $(0, \infty)$, we can deduce that, for $i=1, \ldots, n$,

$$
\left(\frac{x_{i}+y_{i}}{a+b}\right)^{p}=\left(\frac{a}{a+b}\left(\frac{x_{i}}{a}\right)+\frac{b}{a+b}\left(\frac{y_{i}}{b}\right)\right)^{p} \leq \frac{a}{a+b}\left(\frac{x_{i}}{a}\right)^{p}+\frac{b}{a+b}\left(\frac{y_{i}}{b}\right)^{p}
$$

Adding these n inequalities together, we deduce

$$
\sum_{i=1}^{n}\left(\frac{x_{i}+y_{i}}{a+b}\right)^{p} \leq \frac{a}{a+b}\left(\frac{\sum_{i=1}^{n} x_{i}^{p}}{a^{p}}\right)+\frac{b}{a+b}\left(\frac{\sum_{i=1}^{n} y_{i}^{p}}{b^{p}}\right)=\frac{a}{a+b}+\frac{b}{a+b}=1
$$

Thus, $\sum_{i=1}^{n}\left(x_{1}+y_{i}\right)^{p} \leq(a+b)^{p}=\left(\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}+\left(\sum_{i=1}^{n} y_{i}^{p}\right)^{1 / p}\right)^{p}$.

Harmonic Mean and Root Mean Square

- Given the numbers x_{1}, \ldots, x_{m}, their harmonic mean is defined to be

$$
\frac{1}{\frac{1}{m}\left(\frac{1}{x_{1}}+\cdots+\frac{1}{x_{m}}\right)} .
$$

- Their root mean square is defined to be

$$
\sqrt{\frac{x_{1}^{2}+\cdots+x_{m}^{2}}{m}}
$$

- The basic inequalities connecting the four means are:

$$
\begin{aligned}
\text { harmonic mean } & \leq \text { geometric mean } \\
& \leq \text { arithmetic mean } \\
& \leq \text { root mean square. }
\end{aligned}
$$

Weighted Harmonic Mean and Root Mean Square

- The harmonic mean and the root mean square are generalized in the natural way to the corresponding weighted means.
- Let $\alpha_{1}, \ldots, \alpha_{m}>0$ with $\alpha_{1}+\cdots+\alpha_{m}=1$.
- Then the numbers

$$
\frac{1}{\frac{\alpha_{1}}{x_{1}}+\cdots+\frac{\alpha_{m}}{x_{m}}} \quad \text { and } \quad \sqrt{\alpha_{1} x_{1}^{2}+\cdots+\alpha_{m} x_{m}^{2}}
$$

are called, respectively, the weighted harmonic mean and the weighted root mean square of the numbers x_{1}, \ldots, x_{m} with respect to the weights $\alpha_{1}, \ldots, \alpha_{m}$.

- We will see that the basic inequalities stated above connecting the four unweighted means continue to hold for the weighted means.

Mean of Order t

- The four means so far introduced are special cases of the mean of order t :
- Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right), x=\left(x_{1}, \ldots, x_{m}\right)$, where $\alpha_{1}, \ldots, \alpha_{m}, x_{1}, \ldots, x_{m}>0$ and $\alpha_{1}+\cdots+\alpha_{m}=1$.
- Then for each non-zero real number t, the mean $M_{t}(\boldsymbol{x} ; \boldsymbol{\alpha})$ of order t is defined by the equation

$$
M_{t}(\boldsymbol{x} ; \boldsymbol{\alpha})=\left(\alpha_{1} x_{1}^{t}+\cdots+\alpha_{m} x_{m}^{t}\right)^{1 / t}
$$

- The values $t=-1,1,2$ give rise, respectively, to the weighted harmonic mean, the weighted arithmetic mean and the weighted root mean square.
- The weighted geometric mean is not the mean of order t for any non-zero real number t.

The Mean of Order Zero

- We consider the limit of $M_{t}(\boldsymbol{x} ; \boldsymbol{\alpha})$ as t tends to zero.
- Taking logarithms on both sides of the defining equation of $M_{t}(\boldsymbol{x} ; \boldsymbol{\alpha})$,

$$
\log M_{t}(\boldsymbol{x} ; \boldsymbol{\alpha})=\frac{\log \left(\alpha_{1} x_{1}^{t}+\cdots+\alpha_{m} x_{m}^{t}\right)}{t}
$$

- By definition, $\lim _{t \rightarrow 0} \frac{\log \left(\alpha_{1} x_{1}^{t}+\cdots+\alpha_{m} x_{m}^{t}\right)}{t}$ is the derivative of $\log \left(\alpha_{1} x_{1}^{t}+\cdots+\alpha_{m} x_{m}^{t}\right)$ at $t=0$.
- We calculate

$$
\left[\log \left(\alpha_{1} x_{1}^{t}+\cdots \alpha_{m} x_{m}^{t}\right)\right]^{\prime}=\frac{\alpha_{1} x_{1}^{t} \log x_{1}+\cdots+\alpha_{m} x_{m}^{t} \log x_{m}}{\alpha_{1} x_{1}^{t}+\cdots+\alpha_{m} x_{m}^{t}}
$$

- Therefore,

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{\log \left(\alpha_{1} x_{1}^{t}+\cdots+\alpha_{m} x_{m}^{t}\right)}{t} & =\alpha_{1} \log x_{1}+\cdots \alpha_{m} \log x_{m} \\
& =\log \left(x_{1}^{\alpha_{1}} \cdots x_{m}^{\alpha_{m}}\right)
\end{aligned}
$$

- Hence, $\lim _{t \rightarrow 0} \log M_{t}(\boldsymbol{x} ; \boldsymbol{\alpha})=\log \left(x_{1}^{\alpha_{1}} \cdots x_{m}^{\alpha_{m}}\right)$.

The Mean of Order Zero (Cont'd)

- We calculated

$$
\lim _{t \rightarrow 0} \log M_{t}(\boldsymbol{x} ; \boldsymbol{\alpha})=\log \left(x_{1}^{\alpha_{1}} \cdots x_{m}^{\alpha_{m}}\right)
$$

- Thus

$$
\begin{aligned}
\lim _{t \rightarrow 0} M_{t}(\boldsymbol{x} ; \boldsymbol{\alpha}) & =\lim _{t \rightarrow 0} e^{\log M_{t}(\boldsymbol{x} ; \boldsymbol{\alpha})} \\
& =e^{\lim }{ }_{t \rightarrow 0} \log M_{t}(\boldsymbol{x} ; \boldsymbol{\alpha}) \\
& =e^{\log \left(x_{1}^{\alpha_{1}} \cdots x_{m}^{\alpha_{m}}\right)} \\
& =x_{1}^{\alpha_{1}} \cdots x_{m}^{\alpha_{m}} .
\end{aligned}
$$

- So $M_{t}(\boldsymbol{x} ; \boldsymbol{\alpha}) \xrightarrow{t \rightarrow 0} x_{1}^{\alpha_{1}} \cdots x_{m}^{\alpha_{m}}$.
- We define the mean of order zero

$$
M_{0}(\boldsymbol{x} ; \boldsymbol{\alpha}):=x_{1}^{\alpha_{1}} \cdots x_{m}^{\alpha_{m}} .
$$

- $M_{t}(\boldsymbol{x} ; \boldsymbol{\alpha})$ is now defined for every real number t and is continuous on the whole of \mathbb{R}, in particular at $t=0$.

Monotonicity of Mean of Order t

Theorem

Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right), \alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$, where $x_{1}, \ldots, x_{m}, \alpha_{1}, \ldots, \alpha_{m}>0$ and $\alpha_{1}+\cdots+\alpha_{m}=1$. Then $M_{t}(\boldsymbol{x} ; \boldsymbol{\alpha})$ is an increasing function of t.

- Since \boldsymbol{x} and $\boldsymbol{\alpha}$ are fixed, we write $M_{t}(\boldsymbol{x} ; \boldsymbol{\alpha})$ simply as $M(t)$. We show that $M^{\prime}(t) \geq 0$ for all non-zero real numbers t.
Since M is continuous at 0 , this shows that M is increasing on \mathbb{R}.
We have $t \log M(t)=\log \left(\alpha_{1} x_{1}^{t}+\cdots+\alpha_{m} x_{m}^{t}\right)$.
So, by differentiating,

$$
t \frac{M^{\prime}(t)}{M(t)}+\log M(t)=\frac{\alpha_{1} x_{1}^{t} \log x_{1}+\cdots+\alpha_{m} x_{m}^{t} \log x_{m}}{\alpha_{1} x_{1}^{t}+\cdots+\alpha_{m} x_{m}^{t}}, t \neq 0 .
$$

Thus, for $t \neq 0$,

$$
t^{2} \frac{M^{\prime}(t)}{M(t)}+t \log M(t)=\frac{\alpha_{1} x_{1}^{t} \log x_{1}^{t}+\cdots+\alpha_{m} x_{m}^{t} \log x_{m}^{t}}{\alpha_{1} x_{1}^{t}+\cdots+\alpha_{m} x_{m}^{t}}
$$

Monotonicity of Mean of Order t (Cont'd)

- We get

$$
\begin{aligned}
\frac{t^{2} M^{\prime}(t)\left(\alpha_{1} x_{1}^{t}+\cdots+\alpha_{m} x_{m}^{t}\right)}{M(t)}= & \alpha_{1} x_{1}^{t} \log x_{1}^{t}+\cdots+\alpha_{m} x_{m}^{t} \log x_{m}^{t} \\
& -\left(\alpha_{1} x_{1}^{t}+\cdots+\alpha_{m} x_{m}^{t}\right) \log \left(\alpha_{1} x_{1}^{t}+\cdots+\alpha_{m} x_{m}^{t}\right)
\end{aligned}
$$

Jensen's inequality, applied to the convex function $y \log y$ on $(0, \infty)$, shows that, for all $y_{1}, \ldots, y_{m}>0$,

$$
\begin{aligned}
& \left(\alpha_{1} y_{1}+\cdots+\alpha_{m} y_{m}\right) \log \left(\alpha_{1} y_{1}+\cdots+\alpha_{m} y_{m}\right) \\
& \leq \alpha_{1} y_{1} \log y_{1}+\cdots+\alpha_{m} y_{m} \log y_{m} .
\end{aligned}
$$

If we put $y_{i}=x_{i}^{t}$ for $i=1, \ldots, m$ in this inequality, we deduce from the equality previously stated that $M^{\prime}(t) \geq 0$ for $t \neq 0$.

Corollary

Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right), \boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$, where $x_{1}, \ldots, x_{m}, \alpha_{1}, \ldots, \alpha_{m}>0$ and $\alpha_{1}+\cdots+\alpha_{m}=1$. Then $M_{-1}(\boldsymbol{x} ; \boldsymbol{\alpha}) \leq M_{0}(\boldsymbol{x} ; \boldsymbol{\alpha}) \leq M_{1}(\boldsymbol{x} ; \boldsymbol{\alpha}) \leq M_{2}(\boldsymbol{x} ; \boldsymbol{\alpha})$.

Subsection 3

The Gamma and Beta Functions

Hölder's Inequality for Intervals

- $\int_{I} f$ denotes the (Riemann) integral of a continuous function $f: I \rightarrow \mathbb{R}$ over an interval / of the real line.

Theorem (Hölder's Inequality for Integrals)

Let $f, g: I \rightarrow \mathbb{R}$ be continuous non-negative functions for which the integrals $\int_{1} f, \int_{1} g$ are positive. Let $\lambda, \mu \geq 0$ with $\lambda+\mu=1$. Then

$$
\int_{I} f^{\lambda} g^{\mu} \leq\left(\int_{I} f\right)^{\lambda}\left(\int_{I} g\right)^{\mu}
$$

- By a previous theorem, for $t \in I,\left(\frac{f(t)}{\int_{1} f}\right)^{\lambda}\left(\frac{g(t)}{f_{1} g}\right)^{\mu} \leq \lambda \frac{f(t)}{f_{1} f}+\mu \frac{g(t)}{\int_{I} g}$. We integrate both sides of this inequality to deduce that

$$
\frac{\int_{I} f^{\lambda}(t) g^{\mu}(t) d t}{\left(\int_{I} f\right)^{\lambda}\left(\int_{I} g\right)^{\mu}} \leq \lambda \frac{\int_{I} f}{\int_{I} f}+\mu \frac{\int_{I} g}{\int_{I} g}=\lambda+\mu=1
$$

Hence $\int_{I} f^{\lambda} f^{\mu} \leq\left(\int_{I} f\right)^{\lambda}\left(\int_{I} g\right)^{\mu}$.

Log-Convex Functions

- Let $f: I \rightarrow \mathbb{R}$ be a function defined on an interval / of the real line.
- Then I is said to be log-convex if it is positive and its logarithm, $\log f: I \rightarrow \mathbb{R}$, is convex.
- Thus a positive function f is log-convex on an interval $/$ if and only if, whenever $x, y \in I$ and $\lambda, \mu \geq 0$ with $\lambda+\mu=1$, we have

$$
\log f(\lambda x+\mu y) \leq \lambda \log f(x)+\mu \log f(y)=\log f^{\lambda}(x) f^{\mu}(y)
$$

- This amounts to

$$
f(\lambda x+\mu y) \leq f^{\lambda}(x) f^{\mu}(y) .
$$

- Since $f^{\lambda}(x) f^{\mu}(y) \leq \lambda f(x)+\mu f(y)$, it follows that every log-convex function is convex.
- On the other hand, on the interval $(0, \infty)$, the positive function x is convex but not log-convex.
- For any positive number a, the function a^{x} is log-convex on \mathbb{R}.

Closure Under Addition and Multiplication

- The class of functions which are log-convex on some interval / is closed under addition and multiplication.
- Suppose that the functions $f, g: I \rightarrow \mathbb{R}$ are log-convex.

Let $x, y \in I$ and let $\lambda, \mu \geq 0$ with $\lambda+\mu=1$.
By a previous theorem,

$$
\begin{aligned}
(f+g)(\lambda x+\mu y) & =f(\lambda x+\mu y)+g(\lambda x+\mu y) \\
& \leq f^{\lambda}(x) f^{\mu}(y)+g^{\lambda}(x) g^{\mu}(y) \\
& \leq(f(x)+g(x))^{\lambda}(f(y)+g(y))^{\mu} \\
& =(f+g)^{\lambda}(x)+(f+g)^{\mu}(y) \\
(f g)(\lambda x+\mu y) & =f(\lambda x+\mu y) g(\lambda x+\mu y) \\
& \leq f^{\lambda}(x) f^{\mu}(y) g^{\lambda}(x) g^{\mu}(y) \\
& =(f g)^{\lambda}(x)(f g)^{\mu}(y) .
\end{aligned}
$$

The Gamma Function

- The gamma function $\Gamma:(0, \infty) \rightarrow \mathbb{R}$ is defined by the equation

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t, \quad x>0
$$

- Elementary analysis shows that, for each $x>0, \Gamma(x)$ is a well-defined positive number.

Theorem

The gamma function has the following properties:
(i) $\Gamma(x+1)=x \Gamma(x)$ for $x>0$;
(ii) $\Gamma(1)=1$;
(iii) Γ is log-convex.

Proofs of the Properties

(i) For $x>0$,

$$
\Gamma(x+1)=\int_{0}^{\infty} t^{x} e^{-t} d t=\left[-t^{x} e^{-t}\right]_{0}^{\infty}+x \int_{0}^{\infty} t^{x-1} e^{-t} d t=x \Gamma(x)
$$

(ii) $\Gamma(1)=\int_{0}^{\infty} e^{-t} d t=\lim _{A \rightarrow \infty}\left[1-e^{-A}\right]=1$.
(iii) Let $x, y>0$. Let $\lambda, \mu \geq 0$ with $\lambda+\mu=1$. Then, by the preceding theorem,

$$
\begin{aligned}
\Gamma(\lambda x+\mu y) & =\int_{0}^{\infty} t^{\lambda x+\mu y-1} e^{-t} d t \\
& =\int_{0}^{\infty}\left(t^{x-1} e^{-t}\right)^{\lambda}\left(t^{y-1} e^{-t}\right)^{\mu} d t \\
& \leq\left(\int_{0}^{\infty} t^{x-1} e^{-t} d t\right)^{\lambda}\left(\int_{0}^{\infty} t^{y-1} e^{-t} d t\right)^{\mu} \\
& =\Gamma^{\lambda}(x) \Gamma^{\mu}(y) .
\end{aligned}
$$

Value on Integers and Limit Properties

Corollary

For $n=0,1,2, \ldots, \Gamma(n+1)=n!$.

- By the theorem, $\Gamma(1)=1$. Hence, for $n=1,2, \ldots$,

$$
\Gamma(n+1)=n \Gamma(n)=n(n-1) \Gamma(n-1)=n(n-1) \cdots \Gamma(1)=n!.
$$

Corollary

The gamma function is convex, continuous, and $x \Gamma(x) \rightarrow 1, \Gamma(x) \rightarrow \infty$ as $x \rightarrow 0^{+}$.

- The gamma function is log-convex. So it is convex. By a previous corollary, it must also be continuous. The continuity of Γ at 1 shows that

$$
x \Gamma(x)=\Gamma(x+1) \xrightarrow{x \rightarrow 0^{+}} \Gamma(1)=1 .
$$

Hence $\Gamma(x) \rightarrow \infty$ as $x \rightarrow 0^{+}$.

The Gamma Function and the Factorial Function

- Since $\Gamma(n+1)=n$! for $n=0,1,2, \ldots$, the gamma function can be considered to be an extension of the factorial function, even if the two functions are one unit out of phase with each other.
- There are, of course, infinitely many functions $f:(0, \infty) \rightarrow \mathbb{R}$ satisfying $f(n+1)=n!$ for $n=0,1,2, \ldots$.
- The natural question that arises is:

Is there some sense in which the gamma function is a unique extension of the factorial function?

- One answer is given by Artin's Characterization.

Artin's Characterization of the Gamma Function

Theorem (Artin's Characterization of the Gamma Function)

Let the function $f:(0, \infty) \rightarrow \mathbb{R}$ satisfy:
(i) $f(x+1)=x f(x)$ for $x>0$;
(ii) $f(1)=1$;
(iii) f is log-convex.

Then $f=\Gamma$.

- Conditions (i), (ii) imply that $f(n+1)=n$! for $n=0,1,2, \ldots$. Let $0<x \leq 1$ and let n be any positive integer. Then the log-convexity of f and condition (i) show that

$$
\begin{aligned}
f(n+1+x) & =f((1-x)(n+1)+x(n+2)) \\
& \leq f^{1-x}(n+1) f^{x}(n+2) \\
& =f^{1-x}(n+1)((n+1) f(n+1))^{x} \\
& =(n+1)^{x} f(n+1)=(n+1)^{x} n!.
\end{aligned}
$$

Artin's Characterization of the Gamma Function (Cont'd)

- We also have

$$
\begin{aligned}
n!=f(n+1) & =f(x(n+x)+(1-x)(n+1+x)) \\
& \leq f^{x}(n+x) f^{1-x}(n+1+x) \\
& =(n+x)^{-x} f^{x}(n+1+x) f^{1-x}(n+1+x) \\
& =(n+x)^{-x} f(n+1+x) .
\end{aligned}
$$

But $f(n+1+x)=(n+x)(n-1+x) \cdots x f(x)$.
Therefore,

$$
\left(1+\frac{x}{n}\right)^{x} \leq \frac{(n+x)(n-1+x) \cdots x f(x)}{n!n^{x}} \leq\left(1+\frac{1}{n}\right)^{x}
$$

Hence

$$
f(x)=\lim _{n \rightarrow \infty} \frac{n!n^{x}}{(n+x)(n-1+x) \cdots x}, \quad \text { for } 0<x \leq 1
$$

Artin's Characterization of the Gamma Function (Cont'd)

- Suppose that $x>1$. Let m be the positive integer such that $0<x-m \leq 1$. Then, by condition (i) and what we have just proved,

$$
\begin{aligned}
f(x) & =(x-1) \cdots(x-m) f(x-m) \\
& =(x-1) \cdots(x-m) \lim _{n \rightarrow \infty} \frac{n!n^{x-m}}{(n+x-m)(n-1+x-m) \cdots(x-m)} \\
& =\lim _{n \rightarrow \infty}\left(\frac{n!n^{x}}{(n+x)(n-1+x) \cdots x} \cdot \frac{(n+x)(n+x-1) \cdots(n+x-(m-1))}{n^{m}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{n!n^{x}}{(n+x)(n-1+x) \cdots x} \cdot \\
& =\lim _{n \rightarrow \infty} \frac{n!n^{x}}{}\left(\left(1+\frac{x}{n}\right)\left(1+\frac{x-1}{n}\right) \cdots\left(1+\frac{1+x-m}{n}\right)\right) \\
& =1(n-1+x) \cdots x
\end{aligned}
$$

Thus, for all $x>0, f(x)=\lim _{n \rightarrow \infty} \frac{n!n^{x}}{(n+x)(n-1+x) \cdots x}$.
This is a remarkable conclusion, since it shows that f is uniquely determined by conditions (i), (ii), and (iii).
Since Γ itself satisfies these three conditions, we must have $f=\Gamma$.

Gamma and Sine

Theorem

For every real x with $0<x<1$,

$$
\Gamma(x) \Gamma(1-x)=\frac{\pi}{\sin \pi x}
$$

- Artin's Theorem shows that for $0<x<1$,

$$
\begin{aligned}
\Gamma(x) \Gamma(1-x) & =\lim _{n \rightarrow \infty} \frac{n!n^{\times} n!n^{1-x}}{(n+x) \cdots x(n+1-x) \cdots(1-x)} \\
& =\lim _{n \rightarrow \infty} \frac{n}{(n+1-x) \times \frac{1}{1^{2} 2^{2} \cdots n^{2}}(1+x)(1-x) \cdots(n+x)(n-x)} \\
& =\frac{1}{x \prod_{k=1}^{\infty}\left(1-\frac{x^{2}}{k^{2}}\right)} \\
& =\frac{\pi}{\sin \pi x} . \quad\left(\sin x=x \prod_{k=1}^{\infty}\left(1-\frac{x^{2}}{k^{2} \pi^{2}}\right)\right)
\end{aligned}
$$

- From the Theorem, we get $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.

Legendre's Duplication Formula

Theorem (Legendre's Duplication Formula)

$$
\Gamma\left(\frac{x}{2}\right) \Gamma\left(\frac{x+1}{2}\right)=\frac{\sqrt{\pi}}{2^{x-1}} \Gamma(x), \text { for } x>0
$$

- Define a function $f:(0, \infty) \rightarrow \mathbb{R}$ by

$$
f(x)=\frac{2^{x-1}}{\sqrt{\pi}} \Gamma\left(\frac{x}{2}\right) \Gamma\left(\frac{x+1}{2}\right), \text { for } x>0
$$

Then f is a product of log-convex functions. So it is itself log-convex. We also have, for all $x>0$:

$$
\begin{aligned}
& f(x+1)=\frac{2^{x}}{\sqrt{\pi}} \Gamma\left(\frac{x+1}{2}\right) \Gamma\left(\frac{x+2}{2}\right)=2 \frac{2^{x-1}}{\sqrt{\pi}} \Gamma\left(\frac{x+1}{2}\right) \frac{x}{2} \Gamma\left(\frac{x}{2}\right)=x f(x) \\
& f(1)=\frac{1}{\sqrt{\pi}} \Gamma\left(\frac{1}{2}\right) \Gamma(1)=\frac{1}{\sqrt{\pi}} \sqrt{\pi} 1=1
\end{aligned}
$$

Thus, by Artin's Theorem, $f=\Gamma$.

Lemma for Stirling's Formula

Lemma

The sequence whose nth term is $\log n!-\left(n+\frac{1}{2}\right) \log n+n$ converges.

- Let $a_{n}=\log n!-\left(n+\frac{1}{2}\right) \log n+n$. First we show that the sequence $\left(a_{n}\right)$ is decreasing. Then we show that it is bounded below. We note that, for $n=1,2, \ldots, a_{n}-a_{n+1}=\left(n+\frac{1}{2}\right) \log \left(1+\frac{1}{n}\right)-1$. Since $\frac{1}{x}$ is convex on $(0, \infty)$, the area bounded by the graph of $y=\frac{1}{x}$, the x-axis, and the lines $x=n, x=n+1$ exceeds that of the trapezoid bounded by the tangent to $y=\frac{1}{x}$ at the point $\left(n+\frac{1}{2}, \frac{1}{n+\frac{1}{2}}\right)$, the x-axis, and the lines $x=n, x=n+1$; i.e.,

$$
\log \left(1+\frac{1}{n}\right)=\int_{n}^{n+1} \frac{d x}{x}>\frac{1}{n+\frac{1}{2}}
$$

It now follows from the preceding formula, that $a_{n}-a_{n+1}>0$. Hence the sequence $\left(a_{n}\right)$ is decreasing.

Lemma for Stirling's Formula (Cont'd)

- Since $\log x$ is concave on $(0, \infty)$, the area bounded by the graph of $y=\log x$, the x-axis, and the lines $x=r-\frac{1}{2}, x=r+\frac{1}{2}$ for $r=1,2, \ldots$, is less than that of the trapezoid bounded by the tangent to $y=\log x$ at the point $(r, \log r)$, the x-axis, and the lines $x=r-\frac{1}{2}, x=r+\frac{1}{2}$, i.e., $\int_{r-\frac{1}{2}}^{r+\frac{1}{2}} \log x d x<\log r$. It follows easily that, for $n \geq 3$,
$\int_{1}^{n} \log x d x=\int_{1}^{1 \frac{1}{2}} \log x d x+\int_{1 \frac{1}{2}}^{2 \frac{1}{2}} \log x d x+\cdots+\int_{n-\frac{3}{2}}^{n-\frac{1}{2}} \log x d x+\int_{n-\frac{1}{2}}^{n} \log x d x$
$<\frac{1}{2} \log 1 \frac{1}{2}+\log 2+\cdots+\log (n-1)+\frac{1}{2} \log n$
$<\frac{1}{2}+\log (n!)-\frac{1}{2} \log n$.
Thus,

$$
n \log n-n+1=\int_{1}^{n} \log x d x<\frac{1}{2}+\log n!-\frac{1}{2} \log n
$$

Hence $a_{n}=\log n!-\left(n+\frac{1}{2}\right) \log n+n>\frac{1}{2}$. Thus, the decreasing sequence $\left(a_{n}\right)$ is bounded below by $\frac{1}{2}$. So it converges.

Lemma for Stirling's Formula

Theorem (Stirling's Formula)

$n!\sim \sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n}$.

- In the notation of the proof of the lemma, let for $n=1,2, \ldots$,
$b_{n}=e^{a_{n}}=\frac{n!}{n^{n+\frac{1}{2}} e^{-n}}$. Then the sequence $\left(b_{n}\right)$ converges to some $b>0$.
Thus,

$$
\frac{\left(b_{n}\right)^{2}}{b_{2 n}}=\frac{(n!)^{2}(2 n)^{2 n+\frac{1}{2}} e^{-2 n}}{n^{2 n+1} e^{-2 n}(2 n)!}=\frac{2^{2 n+\frac{1}{2}}(n!)^{2}}{n^{\frac{1}{2}}(2 n)!} \rightarrow \frac{b^{2}}{b}=b, \text { as } n \rightarrow \infty
$$

For $n=1,2, \ldots$, let $c_{n}=\frac{n!n^{\frac{1}{2}}}{\left(n+\frac{1}{2}\right) \cdots \frac{3}{2} \frac{1}{2}}$. Then $c_{n} \xrightarrow{n \rightarrow \infty} \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$. So

$$
\frac{\left(b_{n}\right)^{2}}{b_{2 n}}=\frac{n!n^{1 / 2}(2 n+1) \sqrt{2}}{2 n \frac{(2 n+1)!}{2^{n+1} 2^{n} n!}}=c_{n}\left(1+\frac{1}{2 n}\right) \sqrt{2} \xrightarrow{n \rightarrow \infty} \sqrt{2 \pi} .
$$

Hence, $b=\sqrt{2 \pi}$. So $b_{n}=\frac{n!}{n^{n+\frac{1}{2}} e^{-n}} \xrightarrow{n \rightarrow \infty} \sqrt{2 \pi}$.

The Beta Function

- The beta function B is the real function of two variables defined by the equation

$$
B(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t, \text { for } x, y>0
$$

Theorem

The beta function has the following properties:
(i) $B(x+1, y)=\frac{x}{x+y} B(x, y)$ for $x, y>0$;
(ii) $B(x, y)$ is a log-convex function of x for each fixed $y>0$;
(iii) $B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}$, for $x, y>0$.

The Beta Function (Part (i))

(i) We have

$$
\begin{aligned}
B(x+1, y) & =\int_{0}^{1} t^{x}(1-t)^{y-1} d t \\
& =\int_{0}^{1} \frac{t^{x}}{(1-t)^{x}}(1-t)^{x}(1-t)^{y-1} d t \\
& =\int_{0}^{1}(1-t)^{x+y-1}\left(\frac{t}{1-t}\right)^{x} d t \\
& =\left[\frac{-(1-t)^{x+y}}{x+y}\left(\frac{t}{1-t}\right)^{x}\right]_{0}^{1}-\int_{0}^{1} \frac{-(1-t)^{x+y}}{x+y}\left[\left(\frac{t}{1-t}\right)^{x}\right]^{\prime} d t \\
& =\left[\frac{-(1-t)^{x+y}}{x+y}\left(\frac{t}{1-t}\right)^{x}\right]_{0}^{1}-\int_{0}^{1} \frac{-(1-t)^{x+y}}{x+y}\left[x \frac{t^{x-1}}{(1-t)^{x-1}} \frac{1}{(1-t)^{2}}\right] d t \\
& =\left[\frac{-(1-t)^{x+y}}{x+y}\left(\frac{t}{1-t}\right)^{x}\right]_{0}^{1}+\int_{0}^{1} \frac{x}{x+y} t^{x-1}(1-t)^{y-1} d t \\
& =\frac{x}{x+y} B(x, y)
\end{aligned}
$$

The Beta Function (Part (ii))

(ii) Let $a, b, y>0$. Let $\lambda, \mu \geq 0$, with $\lambda+\mu=1$.

By a previous theorem,

$$
\begin{aligned}
B(\lambda a+\mu b, y) & =\int_{0}^{1}\left(t^{\lambda a+\mu b-1}(1-t)^{y-1}\right) d t \\
& =\int_{0}^{1}\left(t^{a-1}(1-t)^{y-1}\right)^{\lambda}\left(t^{b-1}(1-t)^{y-1}\right)^{\mu} d t \\
& \leq\left(\int_{0}^{1} t^{a-1}(1-t)^{y-1} d t\right)^{\lambda}\left(\int_{0}^{1} t^{b-1}(1-t)^{y-1} d t\right)^{\mu} \\
& =B^{\lambda}(a, y) B^{\mu}(b, y) .
\end{aligned}
$$

Thus $B(x, y)$ is a log-convex function of x, for fixed y.

The Beta Function (Part (iii))

(iii) Let $y>0$. Define a function $f_{y}:(0, \infty) \rightarrow \mathbb{R}$ by

$$
f_{y}(x)=\frac{\Gamma(x+y) B(x, y)}{\Gamma(y)}, \text { for } x>0 .
$$

Then f_{y} is a product of log-convex functions. So it is log-convex. For $x>0$,

$$
\begin{aligned}
f_{y}(x+1) & =\frac{\Gamma(x+y+1) B(x+1, y)}{\Gamma(y)} \\
& =\frac{[(x+y) \Gamma(x+y)] \frac{x}{x+y} B(x, y)}{\Gamma(y)}=x f_{y}(x) ; \\
f_{y}(1) & =\frac{\Gamma(1+y) B(1, y)}{\Gamma(y)} \\
& =y \int_{0}^{1}(1+t)^{y-1} d t=1 .
\end{aligned}
$$

Thus, $f_{y}=\Gamma$ by Artin's Theorem. So $B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}$, for $x, y>0$.

An Integral Formula for B

- According to the definition,

$$
B\left(\frac{n+1}{2}, \frac{n+1}{2}\right)=\int_{0}^{1} t^{\frac{n-1}{2}}(1-t)^{\frac{n-1}{2}} d t .
$$

- Set $u=2 t-1$. Then $d t=\frac{1}{2} d u, t=\frac{1+u}{2}, 1-t=\frac{1-u}{2}$ and $t=0,1$ correspond to $u=-1,1$, respectively.
Thus, we get

$$
\begin{aligned}
B\left(\frac{n+1}{2}, \frac{n+1}{2}\right) & =\int_{-1}^{1}\left(\frac{1+u}{2}\right)^{\frac{n-1}{2}}\left(\frac{1-u}{2}\right)^{\frac{n-1}{2}} \frac{1}{2} d u \\
& =\frac{1}{2} \int_{-1}^{1} \frac{1}{2^{n-1}}\left(1-u^{2}\right)^{\frac{n-1}{2}} d u \\
& =\frac{1}{2^{n-1}} \int_{0}^{1}\left(1-u^{2}\right)^{\frac{n-1}{2}} d u .
\end{aligned}
$$

A Recursive Formula for B

- We prove by induction on n that $B\left(\frac{n+1}{2}, \frac{n+1}{2}\right)=\frac{1}{2^{n}} B\left(\frac{1}{2}, \frac{n+1}{2}\right)$.
- For the base case, we prove the formula for $n=0$ and $n=1$.
- For $n=0, B\left(\frac{0+1}{2}, \frac{0+1}{2}\right)=B\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{1}{2^{0}} B\left(\frac{1}{2}, \frac{0+1}{2}\right)$.
- For $n=1$, noting that $B(1, y)=\frac{1}{y}$, we get

$$
B\left(\frac{1+1}{2}, \frac{1+1}{2}\right)=B(1,1)=1=\frac{1}{2} \frac{1}{1 / 2}=\frac{1}{2} B\left(\frac{1}{2}, 1\right)=\frac{1}{2^{1}} B\left(\frac{1}{2}, \frac{1+1}{2}\right) .
$$

- Assume the formula holds for some n.
- Then, recalling $B(x+1, y)=\frac{x}{x+y} B(x, y)$, we get

$$
\begin{aligned}
B\left(\frac{(n+2)+1}{2}, \frac{(n+2)+1}{2}\right) & =\frac{\frac{n+1}{2}}{\frac{n+1+n+3}{2}} B\left(\frac{n+1}{2}, \frac{(n+2)+1}{2}\right) \\
& =\frac{n+1}{2(n+2)} \frac{n+1}{2(n+1)} B\left(\frac{n+1}{2}, \frac{n+1}{2}\right) \\
& =\frac{n+1}{2^{2}(n+2)} \frac{1}{2^{n}} B\left(\frac{1}{2}, \frac{n+1}{2}\right) \\
& =\frac{1}{2^{n+2}} \frac{\frac{n+1}{2}}{\frac{n+2}{2}} B\left(\frac{1}{2}, \frac{n+1}{2}\right) \\
& =\frac{1}{2^{n+2}} B\left(\frac{1}{2}, \frac{(n+2)+1}{2}\right)
\end{aligned}
$$

Subsection 4

Convex Functions on \mathbb{R}^{n}

Convex Function on \mathbb{R}^{n}

- A real-valued function f defined on a non-empty convex set X in \mathbb{R}^{n} is said to be convex if

$$
f(\lambda \boldsymbol{x}+\mu \boldsymbol{y}) \leq \lambda f(\boldsymbol{x})+\mu f(\boldsymbol{y})
$$

whenever $\boldsymbol{x}, \boldsymbol{y} \in X$ and $\lambda, \mu \geq 0$ with $\lambda+\mu=1$.

- The convexity of X ensures that $\lambda \boldsymbol{x}+\mu \boldsymbol{y} \in X$.
- A concave function is one whose negative is convex.
- Exactly as in the case of a convex function of a single real variable, each convex function $f: X \rightarrow \mathbb{R}^{n}$ satisfies Jensen's inequality:

$$
f\left(\lambda_{1} \boldsymbol{x}_{1}+\cdots+\lambda_{m} \boldsymbol{x}_{m}\right) \leq \lambda_{1} f\left(\boldsymbol{x}_{1}\right)+\cdots+\lambda_{m} f\left(x_{m}\right),
$$

whenever $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m} \in X$ and $\lambda_{1}, \ldots, \lambda_{m} \geq 0$ with $\lambda_{1}+\cdots+\lambda_{m}=1$.

- Affine transformations $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and their restrictions to non-empty convex subsets of \mathbb{R}^{n} provide important examples of convex functions.

Convexity of Distance of Convex Sets

- The distance function $d_{X}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of a non-empty set X in \mathbb{R}^{n} was defined by the equation

$$
d_{X}(\boldsymbol{u})=\inf \{\|\boldsymbol{u}-\boldsymbol{x}\|: \boldsymbol{x} \in X\} \text {, for } \boldsymbol{u} \in \mathbb{R}^{n}
$$

- We now assume that X is convex and show that in this case the resulting distance function d_{X} is convex.
- Let $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{n}$ and let $\lambda, \mu \geq 0$ with $\lambda+\mu=1$. Then, for each $\varepsilon>0$, there exist points $\boldsymbol{x}, \boldsymbol{y} \in X$ such that

$$
\|\boldsymbol{u}-\boldsymbol{x}\| \leq d_{X}(\boldsymbol{u})+\varepsilon \quad \text { and } \quad\|\boldsymbol{v}-\boldsymbol{y}\| \leq d_{X}(\boldsymbol{v})+\varepsilon
$$

Since X is convex, $\lambda \boldsymbol{x}+\mu \boldsymbol{y} \in X$. So

$$
\begin{aligned}
d_{X}(\lambda \boldsymbol{u}+\mu \boldsymbol{v}) & \leq\|\lambda \boldsymbol{u}+\mu \boldsymbol{v}-(\lambda \boldsymbol{x}+\mu \boldsymbol{y})\| \\
& \leq \lambda\|\boldsymbol{u}-\boldsymbol{x}\|+\mu\|\boldsymbol{v}-\boldsymbol{y}\| \\
& \leq \lambda d_{X}(\boldsymbol{u})+\mu d_{x}(\boldsymbol{v})+\varepsilon .
\end{aligned}
$$

But $\varepsilon>0$ is arbitrary. Hence, $d_{X}(\lambda \boldsymbol{u}+\mu \boldsymbol{v}) \leq \lambda d_{X}(\boldsymbol{u})+\mu d_{X}(\boldsymbol{v})$.

Example: Introducing Graphs

- Consider the convex function $f\left(x_{1}\right)=x_{1}^{2}$ defined on \mathbb{R}^{1}.
- The graph of f is the parabola $\left\{\left(x_{1}, x_{1}^{2}\right): x_{1} \in \mathbb{R}\right\}$ in \mathbb{R}^{2}, which is clearly not convex.
- The set of points $\left\{\left(x_{1}, x\right): x_{1} \in \mathbb{R}, x \geq x_{1}^{2}\right\}$ in \mathbb{R}^{2} which lie on or above the graph of f, however, is convex.
- Thus with this particular convex function of a single variable, we have associated a convex set in \mathbb{R}^{2}.
- We will show how the convexity of a real-valued function of n variables is equivalent to the convexity of a certain subset of \mathbb{R}^{n+1}.

Graphs and Epigraphs

- Let f be a real-valued function defined on a non-empty convex set X in \mathbb{R}^{n}.
- Then the graph of f is defined to be the subset

$$
\left\{\left(x_{1}, \ldots, x_{n}, f\left(x_{1}, \ldots, x_{n}\right)\right):\left(x_{1}, \ldots, x_{n}\right) \in X\right\}
$$

of \mathbb{R}^{n+1}.

- The epigraph of f, denoted epif, is defined to be the subset

$$
\left\{\left(x_{1}, \ldots, x_{n}, x\right):\left(x_{1}, \ldots, x_{n}\right) \in X, x \geq f\left(x_{1}, \ldots, x_{n}\right)\right\}
$$

$$
\text { of } \mathbb{R}^{n+1}
$$

Convex Functions and Their Epigraphs

Theorem

Let f be a real-valued function defined on a non-empty convex set X in \mathbb{R}^{n}. Then f is convex if and only if its epigraph is convex.

- For each point $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ of \mathbb{R}^{n} and for each scalar x, we denote by (\boldsymbol{x}, x) the point $\left(x_{1}, \ldots, x_{n}, x\right)$ of \mathbb{R}^{n+1}.
Suppose that f is convex. Let $(\boldsymbol{x}, x),(\boldsymbol{y}, y) \in$ epif. So $\boldsymbol{x}, \boldsymbol{y} \in X$ and $x \geq f(\boldsymbol{x}), y \geq f(\boldsymbol{y})$. Let $\lambda, \mu \geq 0$ with $\lambda+\mu=1$. Then the convexity of f shows that

$$
f(\lambda \boldsymbol{x}+\mu \boldsymbol{y}) \leq \lambda f(\boldsymbol{x})+\mu f(\boldsymbol{y}) \leq \lambda x+\mu y .
$$

Thus the point $\lambda(\boldsymbol{x}, x)+\mu(\boldsymbol{y}, y)=(\lambda \boldsymbol{x}+\mu \boldsymbol{y}, \lambda x+\mu y)$ belongs to epif. So epif is convex.

Convex Functions and Their Epigraphs (Converse)

- Conversely, suppose that epif is convex.

Let $\boldsymbol{x}, \boldsymbol{y} \in X$ and let $\lambda, \mu \geq 0$ with $\lambda+\mu=1$.
Since epif is convex, the point

$$
\lambda(\boldsymbol{x}, f(\boldsymbol{x}))+\mu(\boldsymbol{y}, f(\boldsymbol{y}))=(\lambda \boldsymbol{x}+\mu \boldsymbol{y}, \lambda f(\boldsymbol{x})+\mu f(\boldsymbol{y}))
$$

belongs to epif.
Hence

$$
f(\lambda \boldsymbol{x}+\mu \boldsymbol{y}) \leq \lambda f(\boldsymbol{x})+\mu f(\boldsymbol{y}) .
$$

This shows that f is a convex function.

Properties of Convex Functions and of Convex Sets

Theorem

Let ($f_{i}: i \in I$) be a non-empty family of convex functions defined on a non-empty convex set X in \mathbb{R}^{n} such that, for each \boldsymbol{x} in X, the set $\left\{f_{i}(\boldsymbol{x}): i \in I\right\}$ of real numbers is bounded above. Then the function $f: X \rightarrow \mathbb{R}$ defined by the equation $f(\boldsymbol{x})=\sup \left\{f_{i}(\boldsymbol{x}): i \in I\right\}$, for $\boldsymbol{x} \in X$, is convex.

- We observe that

$$
\begin{aligned}
\text { epif } & =\left\{\left(x_{1}, \ldots, x_{n}, x\right):\left(x_{1}, \ldots, x_{n}\right) \in X, x \geq f\left(x_{1}, \ldots, x_{n}\right)\right\} \\
& =\left\{\left(x_{1}, \ldots, x_{n}, x\right):\left(x_{1}, \ldots, x_{n}\right) \in X, x \geq f_{i}\left(x_{1}, \ldots, x_{n}\right) \text { for } i \in I\right\} \\
& =\bigcap_{i \in I}\left\{\left(x_{1}, \ldots, x_{n}, x\right):\left(x_{1}, \ldots, x_{n}\right) \in X, x \geq f_{i}\left(x_{1}, \ldots, x_{n}\right)\right\} \\
& =\bigcap_{i \in I} \text { epif } f_{i} .
\end{aligned}
$$

The preceding theorem shows that all of the sets epif f_{i} are convex. Hence so is their intersection epif. Thus, by the same theorem f is a convex function.

Linear Combinations of Convex Functions

Theorem

Let f, g be convex functions defined on a non-empty convex subset X of \mathbb{R}^{n} and let $\alpha, \beta \geq 0$. Then the function $\alpha f+\beta g$ is convex.

- Let $\boldsymbol{x}, \boldsymbol{y} \in X$ and let $\lambda, \mu \geq 0$ with $\lambda+\mu=1$.

Then

$$
\begin{aligned}
(\alpha f+\beta g)(\lambda \boldsymbol{x}+\mu \boldsymbol{y}) & =\alpha f(\lambda \boldsymbol{x}+\mu \boldsymbol{y})+\beta g(\lambda \boldsymbol{x}+\mu \boldsymbol{y}) \\
& \leq \alpha(\lambda f(\boldsymbol{x})+\mu f(\boldsymbol{y}))+\beta(\lambda g(\boldsymbol{x})+\mu g(\boldsymbol{y})) \\
& =\lambda(\alpha f+\beta g)(\boldsymbol{x})+\mu(\alpha f+\beta g)(\boldsymbol{y})
\end{aligned}
$$

Composition of Convex and Increasing Convex Functions

Theorem

Let f be a convex function defined on a non-empty convex set X in \mathbb{R}^{n} and let $g: I \rightarrow \mathbb{R}$ be an increasing convex function defined on an interval I of \mathbb{R} which contains the image $f(X)$ of X under f. Then the composite function $g \circ f: X \rightarrow \mathbb{R}$ is convex.

- Let $\boldsymbol{x}, \boldsymbol{y} \in X$ and let $\lambda, \mu \geq 0$, with $\lambda+\mu=1$.

Then

$$
\begin{aligned}
(g \circ f)(\lambda \boldsymbol{x}+\mu \boldsymbol{y}) & =g(f(\lambda \boldsymbol{x}+\mu \boldsymbol{y})) \\
& \leq g(\lambda f(\boldsymbol{x})+\mu f(\boldsymbol{y})) \\
& \leq \lambda g(f(\boldsymbol{x}))+\mu g(f(\boldsymbol{y})) \\
& =\lambda(g \circ f)(\boldsymbol{x})+\mu(g \circ f)(\boldsymbol{y}) .
\end{aligned}
$$

Supporting Affine Transformations

- Let f be a real-valued function defined on a convex set X in \mathbb{R}^{n} and let $x_{0} \in X$.
- Then an affine transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to support f at x_{0} if $T\left(\boldsymbol{x}_{0}\right)=f\left(\boldsymbol{x}_{0}\right)$ and $T(\boldsymbol{x}) \leq f(\boldsymbol{x})$ for all $\boldsymbol{x} \in X$.
- The geometrical interpretation of T supporting f at x_{0} is clear. The set

$$
\left\{\left(x_{1}, \ldots, x_{n}, T\left(x_{1}, \ldots, x_{n}\right)\right):\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}\right\}
$$

is a hyperplane in \mathbb{R}^{n+1} that passes through the point $\left(x_{0}, f\left(x_{0}\right)\right)$ and lies on or below the graph

$$
\left\{\left(x_{1}, \ldots, x_{n}, f\left(x_{1}, \ldots, x_{n}\right)\right):\left(x_{1}, \ldots, x_{n}\right) \in X\right\}
$$

of f.

Convexity and Support

Theorem

Let f be a real-valued function defined on a non-empty open convex set X in \mathbb{R}^{n}. Then f is convex if and only if it has support at each point of X.

- Suppose that f has support at each point of X. Let $\boldsymbol{x}, \boldsymbol{y} \in X$ and let $\lambda, \mu \geq 0$ with $\lambda+\mu=1$. Then there is an affine transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}$ which supports f at $\lambda \boldsymbol{x}+\mu \boldsymbol{y}$. Hence

$$
f(\lambda \boldsymbol{x}+\mu \boldsymbol{y})=T(\lambda \boldsymbol{x}+\mu \boldsymbol{y})=\lambda T(\boldsymbol{x})+\mu T(\boldsymbol{y}) \leq \lambda f(\boldsymbol{x})+\mu f(\boldsymbol{y}) .
$$

This shows that f is convex.
Conversely, suppose that f is convex and that $x_{0} \in X$. Since f is convex, its epigraph epif is a convex set in \mathbb{R}^{n+1}. Now $\left(x_{0}, f\left(x_{0}\right)\right)$ is a boundary point of epif. So there exists a support hyperplane H to epif at $\left(x_{0}, f\left(x_{0}\right)\right)$.

Convexity and Support (Converse)

- Suppose that H has equation $a_{1} x_{1}+\cdots+a_{n} x_{n}+a_{n+1} x_{n+1}=a_{0}$. Suppose, also, that $a_{1} x_{1}+\cdots+a_{n} x_{n}+a_{n+1} x_{n+1} \geq a_{0}$, whenever $\left(x_{1}, \ldots, x_{n}\right) \in X$ and $x_{n+1} \geq f\left(x_{1}, \ldots, x_{n}\right)$.
- We have $a_{n+1} \neq 0$. Otherwise, the hyperplane in \mathbb{R}^{n} with equation $a_{1} x_{1}+\cdots+a_{n} x_{n}=a_{0}$ supports X at \boldsymbol{x}_{0}. This is impossible because \boldsymbol{x}_{0} is an interior point of X.
- For each $\left(x_{1}, \ldots, x_{n}\right) \in X, a_{1} x_{1}+\cdots+a_{n} x_{n}+a_{n+1} \lambda \geq a_{0}$ for all $\lambda \geq f\left(x_{1}, \ldots, x_{n}\right)$. Hence, $a_{n+1}>0$.
Define an affine transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by the equation

$$
T\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{a_{n+1}}\left(a_{0}-a_{1} x_{1}-\cdots-a_{n} x_{n}\right), \text { for }\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
$$

Since H supports epif at $\left(x_{0}, f\left(x_{0}\right)\right)$ and $a_{n+1}>0$,

- $T\left(x_{0}\right)=\frac{1}{a_{n+1}}\left(a_{0}-a_{1} x_{1}^{0}-\cdots-a_{n} x_{n}^{0}\right)=\frac{a_{n+1} x_{n+1}^{0}}{a_{n+1}}=x_{n+1}^{0}=f\left(x_{0}\right)$;
- For all $\boldsymbol{x} \in X, T(\boldsymbol{x})=\frac{1}{a_{n+1}}\left(a_{0}-a_{1} x_{1}-\cdots-a_{n} x_{n}\right) \leq \frac{a_{n+1} x_{n+1}}{a_{n+1}}=f(\boldsymbol{x})$.

Thus, T supports f at x_{0}.

Positively Homogeneous Functions

- Many of the functions which arise naturally in convexity are real-valued functions f defined on a convex cone X in \mathbb{R}^{n} (often \mathbb{R}^{n} itself) that satisfy the equation

$$
f(\lambda x)=\lambda f(x), \text { for all } x \in X \text { and all } \lambda \geq 0
$$

- Such functions are called positively homogeneous.
- The most important example of such a function is the norm mapping $\|\cdot\|$, which is defined on the whole of \mathbb{R}^{n}.

Positive Homogeneous vs. Convex Functions

Theorem

Let f be a positively homogeneous function defined on a convex cone X in \mathbb{R}^{n}. Then f is convex if and only if $f(\boldsymbol{x}+\boldsymbol{y}) \leq f(\boldsymbol{x})+f(\boldsymbol{y})$ for all $\boldsymbol{x}, \boldsymbol{y} \in X$.

- Suppose that f is convex. Let $\boldsymbol{x}, \boldsymbol{y} \in X$. Then

$$
\frac{1}{2} f(x+y)=f\left(\frac{1}{2} x+\frac{1}{2} y\right) \leq \frac{1}{2} f(x)+\frac{1}{2} f(y) .
$$

So $f(\boldsymbol{x}+\boldsymbol{y}) \leq f(\boldsymbol{x})+f(\boldsymbol{y})$.
Conversely, suppose that $f(\boldsymbol{x}+\boldsymbol{y}) \leq f(\boldsymbol{x})+f(\boldsymbol{y})$ for all $\boldsymbol{x}, \boldsymbol{y} \in X$. Then, for all $\boldsymbol{x}, \boldsymbol{y} \in X$ and for all $\lambda, \mu \geq 0$ with $\lambda+\mu=1$,

$$
f(\lambda \boldsymbol{x}+\mu \boldsymbol{y}) \leq f(\lambda \boldsymbol{x})+f(\mu \boldsymbol{y})=\lambda f(\boldsymbol{x})+\mu f(\boldsymbol{y})
$$

This shows that f is convex.

The Level Sets of a Function

- Let f be a real-valued function defined on a non-empty convex set X in \mathbb{R}^{n}.
- Then, for each scalar α, the level set L_{α} of f at height α is the set defined by the equation

$$
L_{\alpha}=\{\boldsymbol{x} \in X: f(\boldsymbol{x}) \leq \alpha\} .
$$

- We show that each level set L_{α} of a convex function $f: X \rightarrow \mathbb{R}$ is convex.
Let $\boldsymbol{x}, \boldsymbol{y} \in L_{\alpha}$ and let $\lambda, \mu \geq 0$ with $\lambda+\mu=1$. Then, since f is convex,

$$
f(\lambda \boldsymbol{x}+\mu \boldsymbol{y}) \leq \lambda f(\boldsymbol{x})+\mu f(\boldsymbol{y}) \leq \lambda \alpha+\mu \alpha=\alpha .
$$

Thus $\lambda \boldsymbol{x}+\mu \boldsymbol{y} \in L_{\alpha}$ and L_{α} is convex.

- There exist non-convex functions all of whose level sets are convex. An example is the cube function defined on the real line.

Non-Negative Positive Homogeneous Case

Theorem

Let f be a non-negative positively homogeneous function defined on a convex cone X in \mathbb{R}^{n} such that the level set $\{\boldsymbol{x} \in X: f(\boldsymbol{x}) \leq 1\}$ is convex. Then f is a convex function.

- We use the criterion of the preceding theorem to show that f is convex. Let $\boldsymbol{x}, \boldsymbol{y} \in X$. Choose scalars α, β such that $\alpha>f(\boldsymbol{x})$, $\beta>f(\boldsymbol{y})$. Since f is non-negative and positively homogeneous, $f\left(\frac{\boldsymbol{x}}{\alpha}\right) \leq 1$ and $f\left(\frac{\boldsymbol{y}}{\beta}\right) \leq 1$. Thus $\frac{\boldsymbol{x}}{\alpha}$ and $\frac{\boldsymbol{y}}{\beta}$ lie in the level set of f at height 1 . The assumed convexity of this level set shows that

$$
\begin{aligned}
\frac{1}{\alpha+\beta} f(\boldsymbol{x}+\boldsymbol{y}) & =f\left(\frac{\boldsymbol{x}+\boldsymbol{y}}{\alpha+\beta}\right)=f\left(\frac{\alpha}{\alpha+\beta} \frac{\boldsymbol{x}}{\alpha}+\frac{\beta}{\alpha+\beta} \frac{\boldsymbol{y}}{\beta}\right) \\
& \leq \frac{\alpha}{\alpha+\beta} f\left(\frac{\boldsymbol{x}}{\alpha}\right)+\frac{\beta}{\alpha+\beta} f\left(\frac{\boldsymbol{y}}{\beta}\right) \leq \frac{\alpha}{\alpha+\beta}+\frac{\beta}{\alpha+\beta}=1
\end{aligned}
$$

Hence $f(\boldsymbol{x}+\boldsymbol{y}) \leq \alpha+\beta$ whenever $\alpha>f(\boldsymbol{x}), \beta>f(\boldsymbol{y})$. So $f(\boldsymbol{x}+\boldsymbol{y}) \leq f(\boldsymbol{x})+f(\boldsymbol{y})$. This shows that f is convex.

Example

- Let $p \geq 1$. Define a function f on the nonnegative orthant X of \mathbb{R}^{n} by the equation

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}^{p}+\cdots+x_{n}^{p}\right)^{1 / p}, \text { for } x_{1}, \ldots, x_{n} \geq 0
$$

Then f is non-negative and positively homogeneous.
It follows from a previous theorem and the fact that the function x^{p} is convex on the interval $[0, \infty)$, that the function $f^{p}: X \rightarrow \mathbb{R}$ is convex. Hence the level set $\left\{\boldsymbol{x} \in X: f^{P}(\boldsymbol{x}) \leq 1\right\}=\{\boldsymbol{x} \in X: f(\boldsymbol{x}) \leq 1\}$ is convex.
By the preceding theorem, f is convex.
Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right), \boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ belong to X.
Then, by a previous theorem, $f(\boldsymbol{x}+\boldsymbol{y}) \leq f(\boldsymbol{x})+f(\boldsymbol{y})$. That is,

$$
\left(\left(x_{1}+y_{1}\right)^{p}+\cdots+\left(x_{n}+y_{n}\right)^{p}\right)^{1 / p} \leq\left(x_{1}^{p}+\cdots+x_{n}^{p}\right)^{1 / p}+\left(y_{1}^{p}+\cdots+y_{n}^{p}\right)^{1 / p}
$$

We have re-proved Minkowski's inequality.

Subsection 5

Continuity and Differentiability

Convex Functions on Open Convex Sets

- Let f be a convex function defined on an open convex set X in \mathbb{R}^{n}.
- Let $\boldsymbol{x} \in X$ and $\boldsymbol{y} \in \mathbb{R}^{n}$.
- Then the set $I=\{\lambda \in \mathbb{R}: \boldsymbol{x}+\lambda \boldsymbol{y} \in X\}$ is an open interval of \mathbb{R} which contains the origin.
- The function $g: I \rightarrow \mathbb{R}$ defined by the equation

$$
g(\lambda)=f(\boldsymbol{x}+\lambda \boldsymbol{y}), \text { for } \lambda \in I,
$$

is convex.
To see that g is convex, let $a, b \in I$ and let $\lambda, \mu \geq 0$ with $\lambda+\mu=1$.
Then

$$
\begin{aligned}
g(\lambda a+\mu b) & =f(\boldsymbol{x}+(\lambda a+\mu b) \boldsymbol{y}) \\
& =f(\lambda(\boldsymbol{x}+a \boldsymbol{y})+\mu(\boldsymbol{x}+b \boldsymbol{y})) \\
& \leq \lambda f(\boldsymbol{x}+a \boldsymbol{y})+\mu f(\boldsymbol{x}+b \boldsymbol{y}) \\
& =\lambda g(a)+\mu g(b) .
\end{aligned}
$$

- Thus $g_{+}^{\prime}(0)=\lim _{\lambda \rightarrow 0^{+}} \frac{g(\lambda)-g(0)}{\lambda}=\lim _{\lambda \rightarrow 0^{+}} \frac{f(\boldsymbol{x}+\lambda \boldsymbol{y})-f(\boldsymbol{x})}{\lambda}$ exists.

Continuity

Theorem

Let f be a convex function defined on a non-empty open convex set X in \mathbb{R}^{n}. Then f is continuous on X.

- Let $\boldsymbol{x}_{0} \in X$ and let $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{m}$ be the vertices of some polytope P which is contained in X and has x_{0} as an interior point. Choose $r>0$ such that $B\left[x_{0} ; r\right] \subseteq P$. Each point \boldsymbol{x} of $B\left[x_{0} ; r\right]$ can be expressed in the form $\boldsymbol{x}=\lambda_{1} \boldsymbol{y}_{1}+\cdots+\lambda_{m} \boldsymbol{y}_{m}$ for some $\lambda_{1}, \ldots, \lambda_{m} \geq 0$ with $\lambda_{1}+\cdots+\lambda_{m}=1$. Setting $M=\max \left\{f\left(\boldsymbol{y}_{1}\right), \ldots, f\left(\boldsymbol{y}_{m}\right)\right\}$ and applying Jensen's inequality to f, we get

$$
\begin{aligned}
f(\boldsymbol{x}) & =f\left(\lambda_{1} \boldsymbol{y}_{1}+\cdots+\lambda_{m} \boldsymbol{y}_{m}\right) \\
& \leq \lambda_{1} f\left(\boldsymbol{y}_{1}\right)+\cdots+\lambda_{m} f\left(\boldsymbol{y}_{m}\right) \\
& \leq \lambda_{1} M+\cdots+\lambda_{m} M=M .
\end{aligned}
$$

Hence f is bounded above by M on the closed ball $B\left[x_{0} ; r\right]$.

Continuity (Cont'd)

- Let $\boldsymbol{x} \in \mathbb{R}^{n}$ satisfy the inequalities $0<\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\| \leq r$. Then the function $g:[-r, r] \rightarrow \mathbb{R}$ defined by the equation

$$
g(t)=f\left(\boldsymbol{x}_{0}+t \frac{\boldsymbol{x}-\boldsymbol{x}_{0}}{\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|}\right), \text { for }-r \leq t \leq r
$$

is convex, and $g(t) \leq M$ for $-r \leq t \leq r$. By a previous corollary,

$$
\begin{aligned}
-\frac{M-g(0)}{r} \leq \frac{g(-r)-g(0)}{-r} & \leq \frac{g\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|\right)-g(0)}{\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|} \\
& \leq \frac{g(r)-g(0)}{r} \leq \frac{M-g(0)}{r}
\end{aligned}
$$

Hence

$$
\left|f(x)-f\left(x_{0}\right)\right|=\left|g\left(\left\|x-x_{0}\right\|\right)-g(0)\right| \leq \frac{M-f\left(x_{0}\right)}{r}\left\|x-x_{0}\right\| .
$$

Thus, if $x_{1}, \ldots, x_{k}, \ldots$ is a sequence of points of X that converges to \boldsymbol{x}_{0}, then $f\left(\boldsymbol{x}_{k}\right) \rightarrow f\left(\boldsymbol{x}_{0}\right)$ as $k \rightarrow \infty$. So f is continuous at \boldsymbol{x}_{0}.

Partial Derivatives

- Let f be a real-valued function defined on an open set X in \mathbb{R}^{n} and let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ be a point of X.
- Recall that the ith partial derivative $\frac{\partial f}{\partial x_{i}}$ of f at \boldsymbol{x}, when it exists, is the derivative at x_{i} of the function of a single variable obtained by regarding f as a function of its i th variable only, the remaining $n-1$ variables being held fixed to their values at \boldsymbol{x}.
- Thus, for $i=1, \ldots, n$,

$$
\frac{\partial f}{\partial x_{i}}=\lim _{\lambda \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{i-1}, x_{i}+\lambda, x_{i+1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right)}{\lambda} .
$$

- More succinctly,

$$
\frac{\partial f}{\partial x_{i}}(\boldsymbol{x})=\lim _{\lambda \rightarrow 0} \frac{f\left(\boldsymbol{x}+\lambda \boldsymbol{e}_{i}\right)-f(\boldsymbol{x})}{\lambda},
$$

where \boldsymbol{e}_{i} denotes the i th elementary vector in \mathbb{R}^{n}.

Directional Derivatives

- For the directional derivative, which is a natural generalization of a partial derivative, we simply consider the above limit with an arbitrary vector \boldsymbol{y} in \mathbb{R}^{n} replacing the vector \boldsymbol{e}_{i}.
- The directional derivative of f at \boldsymbol{x} relative to \boldsymbol{y} is defined to be the limit

$$
\lim _{\lambda \rightarrow 0} \frac{f(\boldsymbol{x}+\lambda \boldsymbol{y})-f(\boldsymbol{x})}{\lambda}
$$

whenever this limit exists.

- Thus the partial derivative $\frac{\partial f}{\partial x_{i}}$ is simply the directional derivative of f relative to \boldsymbol{e}_{i}.

One-Sided Directional Derivatives

- A convex function defined on an open interval of \mathbb{R} need not be differentiable, but it always possesses both one-sided derivatives.
- The one-sided directional derivative of f at \boldsymbol{x} relative to \boldsymbol{y} is defined to be the limit

$$
f^{\prime}(x ; y)=\lim _{\lambda \rightarrow 0^{+}} \frac{f(\boldsymbol{x}+\lambda \boldsymbol{y})-f(\boldsymbol{x})}{\lambda}
$$

provided that this limit exists.

- We have

$$
-f^{\prime}(\boldsymbol{x} ;-\boldsymbol{y})=\lim _{\lambda \rightarrow 0^{-}} \frac{f(\boldsymbol{x}+\lambda \boldsymbol{y})-f(\boldsymbol{x})}{\lambda}
$$

- So the directional derivative of f at \boldsymbol{x} relative to \boldsymbol{y} exists if and only if both of the one-sided directional derivatives $f^{\prime}(\boldsymbol{x} ; \boldsymbol{y})$ and $f^{\prime}(\boldsymbol{x} ;-\boldsymbol{y})$ exist and satisfy the relation $f^{\prime}(\boldsymbol{x} ; \boldsymbol{y})=-f^{\prime}(\boldsymbol{x} ;-\boldsymbol{y})$.

Notation and Remark

- If, for some $\boldsymbol{x} \in X$, the one-sided directional derivative $f^{\prime}(\boldsymbol{x} ; \boldsymbol{y})$ exists for each $\boldsymbol{y} \in \mathbb{R}^{n}$, we write $f^{\prime}(\boldsymbol{x} ;)$ to denote the function $f^{\prime}(\boldsymbol{x} ;): \mathbb{R}^{n} \rightarrow \mathbb{R}$ whose value at \boldsymbol{y} is $f^{\prime}(\boldsymbol{x} ; \boldsymbol{y})$.
- The remarks before the preceding theorem show that, for each convex function $f: X \rightarrow \mathbb{R}^{n}$, the one-sided directional derivative $f^{\prime}(\boldsymbol{x} ; \boldsymbol{y})$ exists for every \boldsymbol{x} in the interior of X and for all \boldsymbol{y} in \mathbb{R}^{n}.

Example

- Consider the convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined, for each $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$, by

$$
f(\boldsymbol{x})=\|\boldsymbol{x}\|^{2}=x_{1}^{2}+\cdots+x_{n}^{2} .
$$

- Then, for each $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ in \mathbb{R}^{n},

$$
\begin{aligned}
f^{\prime}(\boldsymbol{x} ; \boldsymbol{y}) & =\lim _{\lambda \rightarrow 0^{+}} \frac{f(\boldsymbol{x}+\lambda \boldsymbol{y})-f(\boldsymbol{x})}{\lambda} \\
& =\lim _{\lambda \rightarrow 0^{+}} \frac{2 \lambda\left(x_{1} y_{1}+\cdots+x_{n} y_{n}\right)+\lambda^{2}\left(y_{1}^{2}+\cdots+y_{n}^{2}\right)}{\lambda} \\
& =2 x_{1} y_{1}+\cdots+2 x_{n} y_{n} \\
& =2 \boldsymbol{x} \cdot \boldsymbol{y} .
\end{aligned}
$$

- Thus $f^{\prime}(\boldsymbol{x} ; \boldsymbol{y})$ exists and equals $2 \boldsymbol{x} \cdot \boldsymbol{y}$.
- For this particular function, the (two-sided) directional derivative of f at \boldsymbol{x} relative to \boldsymbol{y} exists.
- The one-sided derivative $f^{\prime}(\boldsymbol{x} ;): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is linear for each \boldsymbol{x} in \mathbb{R}^{n}.

Properties of Directional Derivative Function

Theorem

Let f be a convex function defined on an open convex set X in \mathbb{R}^{n} and let $\boldsymbol{x} \in X$. Then $f^{\prime}(\boldsymbol{x} ;)$ is a positively homogeneous convex function such that $f^{\prime}(\boldsymbol{x} ; \boldsymbol{y}) \geq-f^{\prime}(\boldsymbol{x} ;-\boldsymbol{y})$ for all \boldsymbol{y} in \mathbb{R}^{n}. If f has a directional derivative at \boldsymbol{x} relative to \boldsymbol{y}, then $f^{\prime}(\boldsymbol{x} ; \lambda \boldsymbol{y})=\lambda f^{\prime}(\boldsymbol{x} ; \boldsymbol{y})$ for all scalars λ.

- Let $\mu>0$ and let $\boldsymbol{y} \in \mathbb{R}^{n}$. Then

$$
f^{\prime}(\boldsymbol{x} ; \mu \boldsymbol{y})=\lim _{\lambda \rightarrow 0^{+}} \frac{f(\boldsymbol{x}+\lambda \mu \boldsymbol{y})-f(\boldsymbol{x})}{\lambda}=\lim _{\lambda \rightarrow 0^{+}} \mu \frac{f(\boldsymbol{x}+\lambda \mu \boldsymbol{y})-f(\boldsymbol{x})}{\lambda \mu}=\mu f^{\prime}(\boldsymbol{x} ; \boldsymbol{y}) .
$$

This shows that $f^{\prime}(\boldsymbol{x} ;)$ is positively homogeneous.
Let $\boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^{n}$. By the convexity of f,

$$
\begin{aligned}
f^{\prime}(\boldsymbol{x} ; \boldsymbol{y}+\boldsymbol{z}) & =\lim _{\lambda \rightarrow 0^{+}} \frac{f(\boldsymbol{x}+\lambda(\boldsymbol{y}+\boldsymbol{z}))-f(\boldsymbol{x})}{(\boldsymbol{x}} \\
& \leq \lim _{\lambda \rightarrow 0^{+}}\left(\frac{1}{2} \frac{f(\boldsymbol{x}+2 \lambda \boldsymbol{y})-f(\boldsymbol{x})}{\lambda}+\frac{1}{2} \frac{f(\boldsymbol{x}+2 \lambda \boldsymbol{z})-f(\boldsymbol{x})}{\lambda}\right) \\
& =f^{\prime}(\boldsymbol{x} ; \boldsymbol{y})+f^{\prime}(\boldsymbol{x} ; \boldsymbol{z}) .
\end{aligned}
$$

Properties of Directional Derivative Function (Cont'd)

- A previous theorem shows that $f^{\prime}(\boldsymbol{x} ;)$ is convex.

By what we have just proved, for each \boldsymbol{y} in \mathbb{R}^{n},

$$
0=f^{\prime}(\boldsymbol{x} ; \mathbf{0})=f^{\prime}(\boldsymbol{x} ; \boldsymbol{y}-\boldsymbol{y}) \leq f^{\prime}(\boldsymbol{x} ; \boldsymbol{y})+f^{\prime}(\boldsymbol{x} ;-\boldsymbol{y}) .
$$

Hence $f^{\prime}(\boldsymbol{x} ; \boldsymbol{y}) \geq-f^{\prime}(\boldsymbol{x} ;-\boldsymbol{y})$.
Suppose, finally, that f has a directional derivative at \boldsymbol{x} relative to \boldsymbol{y}. Then $f^{\prime}(\boldsymbol{x} ; \boldsymbol{y})=-f^{\prime}(\boldsymbol{x} ; \boldsymbol{y})$. If $\lambda<0$, then, since f is positively homogeneous,

$$
f^{\prime}(\boldsymbol{x} ; \lambda \boldsymbol{y})=f^{\prime}(\boldsymbol{x} ;(-\lambda)(-\boldsymbol{y}))=-\lambda f^{\prime}(\boldsymbol{x} ;-\boldsymbol{y})=\lambda f^{\prime}(\boldsymbol{x} ; \boldsymbol{y}) .
$$

Hence $f^{\prime}(\boldsymbol{x} ; \lambda \boldsymbol{y})=\lambda f^{\prime}(\boldsymbol{x} ; \boldsymbol{y})$ for all scalars λ.

Differentiability and Gradient

- Suppose now that f is a real-valued function defined on an open set X in \mathbb{R}^{n} and that \boldsymbol{x} is a point of X.
- Recall that f is differentiable at \boldsymbol{x} if there exists a vector \boldsymbol{x}^{\prime} (necessarily unique) such that

$$
\lim _{\boldsymbol{u} \rightarrow \mathbf{0}} \frac{f(\boldsymbol{x}+\boldsymbol{u})-f(\boldsymbol{x})-\boldsymbol{x}^{\prime} \cdot \boldsymbol{u}}{\|\boldsymbol{u}\|}=0
$$

- When such an \boldsymbol{x}^{\prime} exists it is called the gradient of f at \boldsymbol{x}.

Gradient and Directional Derivatives

- Suppose that f is a real-valued function defined on an open set X in \mathbb{R}^{n} and that \boldsymbol{x} is a point of X.
- Let f be differentiable at \boldsymbol{x} with gradient \boldsymbol{x}^{\prime} there.
- Then, for any non-zero vector \boldsymbol{y} in \mathbb{R}^{n},

$$
\begin{aligned}
&\left.0=\lim _{\lambda \rightarrow 0} \frac{\mid f(\boldsymbol{x}+}{}+\boldsymbol{y} \boldsymbol{y}\right)-f(\boldsymbol{x})-\boldsymbol{x}^{\prime} \cdot(\lambda \boldsymbol{y}) \mid \\
&\|\lambda \boldsymbol{y}\| \\
&=\lim _{\lambda \rightarrow 0} \frac{1}{\|\boldsymbol{y}\|}\left|\frac{f(\boldsymbol{x}+\lambda \boldsymbol{y})-f(\boldsymbol{x})}{\lambda}-\boldsymbol{x}^{\prime} \cdot \boldsymbol{y}\right|
\end{aligned}
$$

- This shows that f possesses a directional derivative at \boldsymbol{x} relative to \boldsymbol{y} and that $f^{\prime}(\boldsymbol{x} ; \boldsymbol{y})=\boldsymbol{x}^{\prime} \cdot \boldsymbol{y}$.
- So $f^{\prime}(\boldsymbol{x} ;)$ is linear.

Directional Derivatives and Differentiability

- The existence of the directional derivatives of f at \boldsymbol{x} relative to all points \boldsymbol{y} in \mathbb{R}^{n} neither guarantees that f is differentiable nor that $f^{\prime}(x ;)$ is linear.

Theorem

Suppose that a convex function f defined on an open convex set X in \mathbb{R}^{n} possesses all its partial derivatives $\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}$ at some point \boldsymbol{x} of X. Then f is differentiable at \boldsymbol{x}.

- Let $r>0$ be such that $B(\boldsymbol{x} ; r) \subseteq X$. For each $\boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right)$ in $B(\mathbf{0} ; r)$, let

$$
\psi(\boldsymbol{u})=f(\boldsymbol{x}+\boldsymbol{u})-f(\boldsymbol{x})-\left(\frac{\partial f}{\partial x_{1}} u_{1}+\cdots+\frac{\partial f}{\partial x_{n}} u_{n}\right) .
$$

Then ψ is convex on $B(0 ; r)$.

Directional Derivatives and Differentiability (Cont'd)

- For each $i=1, \ldots, n$, define a function θ_{i} on $B(\mathbf{0} ; r)$ at a point $\boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right)$ of $B(\mathbf{0} ; r)$ as follows:

$$
\theta_{i}(\boldsymbol{u})= \begin{cases}\frac{\psi\left(u_{i} \boldsymbol{e}_{i}\right)}{u_{i}}, & \text { for } u_{i} \neq 0 \\ 0, & \text { for } u_{i}=0\end{cases}
$$

Then $\theta_{i}(\boldsymbol{u}) \rightarrow 0$ as $\boldsymbol{u} \rightarrow \mathbf{0}$. For each $\boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right)$ such that $n\|\boldsymbol{u}\|<r$, Jensen's inequality applied to the convex function ψ shows that

$$
\begin{aligned}
\psi(\boldsymbol{u}) & =\psi\left(\frac{1}{n}\left(n u_{1} \boldsymbol{e}_{1}\right)+\cdots+\frac{1}{n}\left(n u_{n} \boldsymbol{e}_{n}\right)\right) \leq \frac{1}{n} \psi\left(n u_{1} \boldsymbol{e}_{1}\right)+\cdots+\frac{1}{n} \psi\left(n u_{n} \boldsymbol{e}_{n}\right) \\
& =u_{1} \theta_{1}(n \boldsymbol{u})+\cdots+u_{n} \theta_{n}(n \boldsymbol{u}) \leq\|\boldsymbol{u}\|\left(\left|\theta_{1}(n \boldsymbol{u})\right|+\cdots+\left|\theta_{n}(n \boldsymbol{u})\right|\right) .
\end{aligned}
$$

But $0=\psi\left(\frac{1}{2} \boldsymbol{u}+\frac{1}{2}(-\boldsymbol{u})\right) \leq \frac{1}{2} \psi(\boldsymbol{u})+\frac{1}{2} \psi(-\boldsymbol{u})$. So $\psi(\boldsymbol{u}) \geq-\psi(-\boldsymbol{u})$.
Thus,

$$
-\|\boldsymbol{u}\|\left(\left|\theta_{1}(-n \boldsymbol{u})\right|+\cdots+\left|\theta_{n}(-n \boldsymbol{u})\right|\right) \leq \psi(\boldsymbol{u}) \leq\|\boldsymbol{u}\|\left(\left|\theta_{1}(n \boldsymbol{u})\right|+\cdots+\left|\theta_{n}(n \boldsymbol{u})\right|\right) .
$$

So $\frac{\psi(\boldsymbol{U})}{\|\boldsymbol{U}\|} \rightarrow 0$ as $\boldsymbol{u} \rightarrow \mathbf{0}$. Hence f has gradient $\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)$ at \boldsymbol{x}.

Differentiability and Uniqueness of Support

Theorem

Let f be a convex function defined on an open convex set X in \mathbb{R}^{n}. Then f is differentiable at a point \boldsymbol{x}_{0} of X if and only if it has unique support at \boldsymbol{x}_{0}.

- Suppose that f is differentiable at \boldsymbol{x}_{0}. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a support for f at \boldsymbol{x}_{0}. Then there exists $\boldsymbol{x}^{\prime} \in \mathbb{R}^{n}$ such that, for all $\boldsymbol{x} \in \mathbb{R}^{n}$, $T\left(\boldsymbol{x}_{0}+\boldsymbol{x}\right)=f\left(\boldsymbol{x}_{0}\right)+\boldsymbol{x}^{\prime} \cdot \boldsymbol{x}$. Let $\boldsymbol{y} \in \mathbb{R}^{n}$. Then, for all sufficiently small $\lambda>0$,

$$
f\left(x_{0}+\lambda \boldsymbol{y}\right)-f\left(x_{0}\right) \geq \lambda x^{\prime} \cdot \boldsymbol{y} .
$$

Hence $f^{\prime}\left(x_{0} ; \boldsymbol{y}\right) \geq \boldsymbol{x}^{\prime} \cdot \boldsymbol{y}$. Replacing \boldsymbol{y} by $-\boldsymbol{y}$ in this last inequality and using the fact that f is differentiable at \boldsymbol{x}_{0}, we deduce that

$$
-f^{\prime}\left(x_{0} ; \boldsymbol{y}\right)=f^{\prime}\left(\boldsymbol{x}_{0} ;-\boldsymbol{y}\right) \geq-\boldsymbol{x}^{\prime} \cdot \boldsymbol{y}
$$

Hence $f^{\prime}\left(\boldsymbol{x}_{0} ; \boldsymbol{y}\right)=\boldsymbol{x}^{\prime} \cdot \boldsymbol{y}$. It follows that $\boldsymbol{x}^{\prime}=\left(f^{\prime}\left(\boldsymbol{x}_{0} ; \boldsymbol{e}_{1}\right), \ldots, f^{\prime}\left(\boldsymbol{x}_{0} ; \boldsymbol{e}_{n}\right)\right)$. So f has unique support T at x_{0}.

Differentiability and Uniqueness of Support (Cont'd)

- Suppose next that f has unique support $T: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at \boldsymbol{x}_{0}. Let m be any real number satisfying $-f^{\prime}\left(\boldsymbol{x}_{0} ;-\boldsymbol{e}_{1}\right) \leq m \leq f^{\prime}\left(\boldsymbol{x}_{0} ; \boldsymbol{e}_{1}\right)$. Let L be the line in \mathbb{R}^{n+1} defined by the equation

$$
L=\left\{\left(\boldsymbol{x}_{0}+t \boldsymbol{e}_{1}, f\left(\boldsymbol{x}_{0}\right)+m t\right): t \in \mathbb{R}\right\} .
$$

It can be shown that $f\left(\boldsymbol{x}_{0}\right)+m t \leq f\left(\boldsymbol{x}_{0}+t \boldsymbol{e}_{1}\right)$, for $\boldsymbol{x}_{0}+t \boldsymbol{e}_{1} \in X$.
Thus, L meets the epigraph of f at $\left(x_{0}, f\left(x_{0}\right)\right)$ but does not meet its interior. A previous corollary shows that there is a support hyperplane to the epigraph of f at $\left(x_{0}, f\left(x_{0}\right)\right)$ which contains L.
The uniqueness of the support to f at x_{0} shows that this support hyperplane must be the graph of T. Hence

$$
T\left(\mathbf{x}_{0}+t \boldsymbol{e}_{1}\right)=f\left(\mathbf{x}_{0}\right)+m t=T\left(\mathbf{x}_{0}\right)+m t, \text { for } t \in \mathbb{R}
$$

Differentiability and Uniqueness of Support (Cont'd)

- Thus, m is uniquely determined by T. Thus, by the choice of m,

$$
-f^{\prime}\left(\boldsymbol{x}_{0} ;-\boldsymbol{e}_{1}\right)=f^{\prime}\left(\boldsymbol{x}_{0} ; \boldsymbol{e}_{1}\right)
$$

This shows that the partial derivative $\frac{\partial f}{\partial x_{1}}$ at \boldsymbol{x}_{0} exists. Similarly, the partial derivatives $\frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}$ exist. By the preceding theorem, f is differentiable.

Criterion for Convexity

Theorem

Let f be a real-valued function which is defined and has continuous second-order partial derivatives on a non-empty convex set X in \mathbb{R}^{n}. Then f is convex if and only if, for every $\boldsymbol{x} \in X$,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n}\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right]_{\boldsymbol{x}} z_{i} z_{j} \geq 0
$$

for all $\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{R}^{n}$.

- Let $\boldsymbol{y} \in X$ and $\boldsymbol{z}=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{R}^{n}$. Let f be the open interval of \mathbb{R} defined by the equation $I=\{\lambda \in \mathbb{R}: \boldsymbol{y}+\lambda \boldsymbol{z} \in X\}$. We have already seen that the function $g: I \rightarrow \mathbb{R}$ defined by the equation $g(\lambda)=f(\boldsymbol{y}+\lambda \boldsymbol{z})$ for $\lambda \in I$ is convex when f is. Conversely, suppose that each such function g is convex. We show that this implies that f is convex.

Criterion for Convexity (Cont'd)

- Let $\boldsymbol{x}, \boldsymbol{y} \in X$ and let $0 \leq \lambda \leq 1$. Write $\boldsymbol{z}=\boldsymbol{x}-\boldsymbol{y}$. Since g is convex,

$$
\begin{aligned}
f(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}) & =f(\boldsymbol{y}+\lambda(\boldsymbol{x}-\boldsymbol{y})) \\
& =g((1-\lambda) 0+\lambda 1) \\
& \leq(1-\lambda) g(0)+\lambda g(1) \\
& =\lambda f(\boldsymbol{x})+(1-\lambda) f(\boldsymbol{y}) .
\end{aligned}
$$

This shows that f is convex. Thus f is convex on X if and only if each function g (as above) is convex on f. Since f has continuous second-order partial derivatives on X, each function g is differentiable twice on f. The first two derivatives of g can be calculated from the chain rule for functions of n variables:

$$
g^{\prime}(\lambda)=\sum_{j=1}^{n}\left[\frac{\partial f}{\partial x_{j}}\right]_{\boldsymbol{x}} z_{j}, \quad g^{\prime \prime}(\lambda)=\sum_{i=1}^{n} \sum_{j=1}^{n}\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right]_{\boldsymbol{x}} z_{i} z_{j}
$$

where $\lambda \in I$ and the partial derivatives are evaluated at the point $\boldsymbol{x}=\boldsymbol{y}+\boldsymbol{\lambda} \boldsymbol{z}$. The desired result follows by a previous corollary.

The Hessian

- Suppose that f is as in the last theorem.
- Then the $n \times n$ matrix whose (i, j) th element is $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$ evaluated at a point \boldsymbol{x} of X is called the Hessian matrix of f at \boldsymbol{x}.
- The conditions which we have imposed upon f ensure that this matrix is symmetric.
- We have thus proved that:
f is convex on X if and only if its Hessian matrix is non-negative semidefinite at each point of X.

Subsection 6

Support Functions

Family of Parallel Hyperplanes

- Let A be a non-empty compact convex set in \mathbb{R}^{n} and let \boldsymbol{u} be a nonzero vector in \mathbb{R}^{n}.
- For each real number α, denote by H_{α} the hyperplane defined by the equation

$$
H_{\alpha}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{u} \cdot \boldsymbol{x}=\alpha\right\} .
$$

- Denote by H_{α}^{-}the closed halfspace defined by the equation

$$
H_{\alpha}^{-}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{u} \cdot \boldsymbol{x} \leq \alpha\right\} .
$$

- As α increases, the hyperplane H_{α} describes a family of parallel hyperplanes each having \boldsymbol{u} as a normal
 vector.

Family of Parallel Hyperplanes (Cont'd)

- In general, there will be two values of α for which the hyperplane H_{α} supports A.
- These values are α_{1} and α_{2} in the figure.
- Only one of these, α_{2} in the figure, will be such that $A \subseteq H_{\alpha}^{-}$.
- Clearly $A \subseteq H_{\alpha}^{-}$if and only if $\boldsymbol{u} \cdot \boldsymbol{a} \leq \alpha$ for all \boldsymbol{a} in A, i.e., if and only if

$$
\sup \{\boldsymbol{u} \cdot \boldsymbol{a}: \boldsymbol{a} \in A\} \leq \alpha
$$

- If, in addition to the requirement $A \subseteq H_{\alpha}^{-}$, it is also demanded that H_{α} supports A, then, for some point \boldsymbol{a}_{0} of $A, \boldsymbol{u} \cdot \boldsymbol{a}_{0}=\alpha$.
- Thus H_{α} is a support hyperplane to A such that $A \subseteq H_{\alpha}^{-}$if and only if

$$
\alpha=\sup \{\boldsymbol{u} \cdot \boldsymbol{a}: \boldsymbol{a} \in A\} .
$$

The Support Function of a Nonempty Compact Convex Set

- The support function h, or more precisely h_{A}, of a non-empty compact convex set A in \mathbb{R}^{n} is defined by the equation

$$
h(\boldsymbol{u})=\sup \{\boldsymbol{u} \cdot \boldsymbol{a}: \boldsymbol{a} \in A\} \text {, for each } \boldsymbol{u} \text { in } \mathbb{R}^{n} .
$$

- Since A is non-empty and bounded, for each \boldsymbol{u} in \mathbb{R}^{n}, the subset $\{\boldsymbol{u} \cdot \boldsymbol{a}: \boldsymbol{a} \in A\}$ of \mathbb{R} is non-empty and bounded. Hence $h(\boldsymbol{u})$ is well defined.
- The above definition of h makes sense even if A is only assumed to be non-empty and bounded.
- For our purposes, it will suffice to consider the restricted case when A is a non-empty compact convex set.

Example

- We find the support function h of the regular n-crosspolytope A defined by the equation

$$
A=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}:\left|x_{1}\right|+\cdots+\left|x_{n}\right| \leq 1\right\}
$$

- Let $\boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right)$.
- Then

$$
\begin{aligned}
h(\boldsymbol{u}) & =\sup \{\boldsymbol{u} \cdot \boldsymbol{a}: \boldsymbol{a} \in A\} \\
& =\sup \left\{u_{1} a_{1}+\cdots+u_{n} a_{n}:\left|a_{1}\right|+\cdots+\left|a_{n}\right| \leq 1\right\} \\
& \leq \sup \left\{\left|u_{1}\right|\left|a_{1}\right|+\cdots+\left|u_{n}\right|\left|a_{n}\right|:\left|a_{1}\right|+\cdots+\left|a_{n}\right| \leq 1\right\} \\
& \leq \sup \left\{\left(\max \left\{\left|u_{1}\right|, \ldots,\left|u_{n}\right|\right\}\right)\left(\left|a_{1}\right|+\cdots+\left|a_{n}\right|\right):\right. \\
& =\max \left\{\left|u_{1}\right| \ldots,\left|u_{n}\right|\right\} .
\end{aligned}
$$

Example (Cont'd)

- Let $m \in\{1, \ldots, n\}$ be such that $\left|u_{m}\right|=\max \left\{\left|u_{1}\right|, \ldots,\left|u_{n}\right|\right\}$.
- Define a point $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right)$ of A by the conditions $a_{i}=0$ when $i \neq m$ and a_{m} is 1 or -1 according as u_{m} is non-negative or negative.
- Then

$$
\boldsymbol{u} \cdot \boldsymbol{a}=\left|u_{m}\right|=\max \left\{\left|u_{1}\right|, \ldots,\left|u_{n}\right|\right\} .
$$

- Hence $h(\boldsymbol{u}) \geq \max \left\{\left|u_{1}\right|, \ldots,\left|u_{n}\right|\right\}$.
- We have thus shown that

$$
h(\boldsymbol{u})=\max \left\{\left|u_{1}\right|, \ldots,\left|u_{n}\right|\right\} .
$$

- We note that this support function is positively homogeneous and convex.

Positive Homogeneity and Convexity

Theorem

The support function of a non-empty compact convex set in \mathbb{R}^{n} is positively homogeneous and convex.

- Let h be the support function of a non-empty compact convex set A in \mathbb{R}^{n}. Let $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{n}$ and let $\lambda>0$. Then

$$
h(\lambda \boldsymbol{u})=\sup \{(\lambda \boldsymbol{u}) \cdot \boldsymbol{a}: \boldsymbol{a} \in A\}=\lambda \sup \{\boldsymbol{u} \cdot \boldsymbol{a}: \boldsymbol{a} \in A\}=\lambda h(\boldsymbol{u}) .
$$

This shows that h is positively homogeneous.
Also

$$
\begin{aligned}
h(\boldsymbol{u}+\boldsymbol{v}) & =\sup \{(\boldsymbol{u}+\boldsymbol{v}) \cdot \boldsymbol{a}: \boldsymbol{a} \in A\} \\
& =\sup \{\boldsymbol{u} \cdot \boldsymbol{a}+\boldsymbol{v} \cdot \boldsymbol{a}: \boldsymbol{a} \in A\} \\
& \leq \sup \{\boldsymbol{u} \cdot \boldsymbol{a}: \boldsymbol{a} \in A\}+\sup \{\boldsymbol{v} \cdot \boldsymbol{a}: \boldsymbol{a} \in A\} \\
& =h(\boldsymbol{u})+h(\boldsymbol{v}) .
\end{aligned}
$$

The convexity of h now follows from a previous theorem.

Exposed Face and Outward Normal

- Suppose that h is the support function of a non-empty compact convex set A in \mathbb{R}^{n}, and that \boldsymbol{u} is a non-zero vector in \mathbb{R}^{n}.
- By the definition of $h, \boldsymbol{u} \cdot \mathbf{a} \leq h(\boldsymbol{u})$ for each \boldsymbol{a} in A, whence $A \subseteq\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{u} \cdot \boldsymbol{x} \leq h(\boldsymbol{u})\right\}$.
- Consider the function $f: A \rightarrow \mathbb{R}$ defined by the rule $f(\boldsymbol{a})=\boldsymbol{u} \cdot \boldsymbol{a}$ for each point \boldsymbol{a} in A.
- Then f is continuous, and so is bounded and attains its bounds on the compact set A.
- In particular, there exists a point \boldsymbol{a}_{0} in A such that

$$
\boldsymbol{u} \cdot \boldsymbol{a}_{0}=\sup \{\boldsymbol{u} \cdot \boldsymbol{a}: \boldsymbol{a} \in A\}=h(\boldsymbol{u})
$$

- So the hyperplane with equation $\boldsymbol{u} \cdot \boldsymbol{x}=h(\boldsymbol{u})$ supports A at \boldsymbol{a}_{0}.

Exposed Face and Outward Normal (Cont'd)

- The distance of this support hyperplane from the origin is $\frac{|h(\boldsymbol{U})|}{\|\boldsymbol{U}\|}$, which simplifies to $h(\boldsymbol{u})$ when \boldsymbol{u} is a unit vector and the origin is a point of A.
- The earlier discussion shows that the set

$$
\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{u} \cdot \boldsymbol{x}=h(\boldsymbol{u})\right\} \cap A=\{\boldsymbol{x} \in A: \boldsymbol{u} \cdot \boldsymbol{x}=h(\boldsymbol{u})\}
$$

is a non-empty exposed face of A.

- It is called the exposed face of A with outward normal \boldsymbol{u} and is denoted by $A^{\boldsymbol{U}}$.
- Since h is positively homogeneous, for $\lambda>0$,

$$
\begin{aligned}
A^{\lambda \boldsymbol{u}} & =\{\boldsymbol{x} \in A:(\lambda \boldsymbol{u}) \cdot \boldsymbol{x}=h(\lambda \boldsymbol{u})\} \\
& =\{\boldsymbol{x} \in A: \boldsymbol{u} \cdot \boldsymbol{x}=h(\boldsymbol{u})\} \\
& =A^{\boldsymbol{u}} .
\end{aligned}
$$

Properties of the Support Function

Theorem

Let A, B be non-empty compact convex sets in \mathbb{R}^{n} with support functions h_{A}, h_{B}, respectively. Then the support functions h_{A+B} of $A+B$ and $h_{\lambda A}$ of λA, where $\lambda \geq 0$, are given by the equations $h_{A+B}=h_{A}+h_{B}$ and $h_{\lambda A}=\lambda h_{A}$.

- Let $\boldsymbol{u} \in \mathbb{R}^{n}$. Then

$$
\begin{aligned}
h_{A+B}(\boldsymbol{u}) & =\sup \{\boldsymbol{u} \cdot(\boldsymbol{a}+\boldsymbol{b}): \boldsymbol{a} \in A, \boldsymbol{b} \in B\} \\
& =\sup \{\boldsymbol{u} \cdot \boldsymbol{a}: \boldsymbol{a} \in A\}+\sup \{\boldsymbol{u} \cdot \boldsymbol{b}: \boldsymbol{b} \in B\} \\
& =h_{A}(\boldsymbol{u})+h_{B}(\boldsymbol{u}) .
\end{aligned}
$$

Hence $h_{A+B}=h_{A}+h_{B}$. Also

$$
h_{\lambda A}(\boldsymbol{u})=\sup \{\boldsymbol{u} \cdot(\lambda \mathbf{a}): \boldsymbol{a} \in A\}=\lambda \sup \{\boldsymbol{u} \cdot \boldsymbol{a}: \mathbf{a} \in A\}=\lambda h_{A}(\boldsymbol{u}) .
$$

Hence $h_{\lambda A}=\lambda h_{A}$.

Properties of the Exposed Face

Theorem

Let A, B be non-empty compact convex sets in \mathbb{R}^{n}. Then, for each non-zero vector \boldsymbol{u} in \mathbb{R}^{n} and for each $\lambda \geq 0,(A+B)^{\boldsymbol{u}}=A^{\boldsymbol{u}}+B^{\boldsymbol{u}}$ and $(\lambda A)^{\boldsymbol{u}}=\lambda A^{\boldsymbol{u}}$.

- We note that

$$
\begin{aligned}
(A+B)^{\boldsymbol{u}} & =\left\{\boldsymbol{a}+\boldsymbol{b}: \boldsymbol{a} \in A, \boldsymbol{b} \in B, h_{A+B}(\boldsymbol{u})=\boldsymbol{u} \cdot(\boldsymbol{a}+\boldsymbol{b})\right\} \\
& =\left\{\boldsymbol{a}+\boldsymbol{b}: \boldsymbol{a} \in A, \boldsymbol{b} \in B, h_{A}(\boldsymbol{u})+h_{B}(\boldsymbol{u})=\boldsymbol{u} \cdot \boldsymbol{a}+\boldsymbol{u} \cdot \boldsymbol{b}\right\} \\
& =\left\{\boldsymbol{a}+\boldsymbol{b}: \boldsymbol{a} \in A, \boldsymbol{b} \in B, h_{A}(\boldsymbol{u})=\boldsymbol{u} \cdot \boldsymbol{a}, h_{B}(\boldsymbol{u})=\boldsymbol{u} \cdot \boldsymbol{b}\right\} \\
& =\left\{\boldsymbol{a} \in A: h_{A}(\boldsymbol{u})=\boldsymbol{u} \cdot \boldsymbol{a}\right\}+\left\{\boldsymbol{b} \in B: h_{B}(\boldsymbol{u})=\boldsymbol{u} \cdot \boldsymbol{b}\right\} \\
& =A^{\boldsymbol{u}}+B^{\boldsymbol{u}} .
\end{aligned}
$$

We also have, for $\lambda \geq 0$,

$$
\begin{aligned}
(\lambda A)^{\boldsymbol{u}} & =\left\{\lambda \mathbf{a}: \mathbf{a} \in A, h_{\lambda A}(\boldsymbol{u})=\boldsymbol{u} \cdot(\lambda \mathbf{a})\right\} \\
& =\lambda\left\{\mathbf{a} \in A: \lambda h_{A}(\boldsymbol{u})=\lambda \boldsymbol{u} \cdot \mathbf{a}\right\} \\
& =\lambda\left\{\boldsymbol{a} \in A: h_{A}(\boldsymbol{u})=\boldsymbol{u} \cdot \boldsymbol{a}\right\} \\
& =\lambda A^{\boldsymbol{u}} .
\end{aligned}
$$

Convex Sets Determined By Support Functions

Theorem

Let h be the support function of a non-empty compact convex set A in \mathbb{R}^{n}. Then $A=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{u} \cdot \boldsymbol{x} \leq h(\boldsymbol{u})\right.$ for all $\left.\boldsymbol{u} \in \mathbb{R}^{n}\right\}$.

- We prove the theorem by showing that:
(i) If $\boldsymbol{a} \in A, \boldsymbol{u} \in \mathbb{R}^{n}$, then $\boldsymbol{u} \cdot \boldsymbol{a} \leq h(\boldsymbol{u})$;
(ii) If $\boldsymbol{a}_{0} \in \mathbb{R}^{n} \backslash A$, then $\boldsymbol{u} \cdot \boldsymbol{a}_{0}>h(\boldsymbol{u})$ for some $\boldsymbol{u} \in \mathbb{R}^{n}$.

Statement (i) follows immediately from the definition of h.
Suppose that $\boldsymbol{a}_{0} \in \mathbb{R}^{n} \backslash A$. Then $\left\{\boldsymbol{a}_{0}\right\}$ and A can be strictly separated by a hyperplane. Thus there exists $\boldsymbol{u} \in \mathbb{R}^{n}$ such that

$$
h(\boldsymbol{u})=\sup \{\boldsymbol{u} \cdot \boldsymbol{a}: \boldsymbol{a} \in A\}<\boldsymbol{u} \cdot \boldsymbol{a}_{0} .
$$

This verifies Statement (ii).

Positively Homogeneous Convex Functions as Supports

Theorem

Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a positively homogeneous convex function. Then the set A defined by the equation

$$
A=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{u} \cdot \boldsymbol{x} \leq g(\boldsymbol{u}) \text { for all } \boldsymbol{u} \in \mathbb{R}^{n}\right\}
$$

is non-empty, compact, convex, and has support function g.

- Let $\boldsymbol{u} \in \mathbb{R}^{n}$. Since g is convex, it has support at \boldsymbol{u}. So there exist $a_{0} \in \mathbb{R}, \boldsymbol{a} \in \mathbb{R}^{n}$ such that $a_{0}+\boldsymbol{a} \cdot \boldsymbol{u}=g(\boldsymbol{u})$ and $a_{0}+\boldsymbol{a} \cdot \boldsymbol{v} \leq g(\boldsymbol{v})$, for $\boldsymbol{v} \in \mathbb{R}^{n}$. Putting $\boldsymbol{v}=\lambda \boldsymbol{u}$, we get, for all $\lambda \geq 0$,

$$
a_{0}+\lambda(\boldsymbol{a} \cdot \boldsymbol{u}) \leq g(\lambda \boldsymbol{u})=\lambda g(\boldsymbol{u})=\lambda a_{0}+\lambda(\boldsymbol{a} \cdot \boldsymbol{u})
$$

Thus, $a_{0} \leq \lambda a_{0}$ for all $\lambda \geq 0$. Hence, $a_{0}=0$. Putting $a_{0}=0$ in the same relations, we find that $\boldsymbol{a} \cdot \boldsymbol{u}=g(\boldsymbol{u})$ and $\boldsymbol{a} \in A$.

Positively Homogeneous Convex Functions (Cont'd)

- We have just shown that A is non-empty.

From its definition, A is an intersection of closed halfspaces, and so is closed and convex.
For each $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right)$ in A, and $i=1, \ldots, n$,

$$
-g\left(-\boldsymbol{e}_{i}\right) \leq \boldsymbol{a} \cdot \boldsymbol{e}_{i}=a_{i} \leq g\left(\boldsymbol{e}_{i}\right) .
$$

This shows that A is bounded.
Thus A is a non-empty compact convex set.
Denote by h the support function of A. Let $\boldsymbol{u} \in \mathbb{R}^{n}$.
By the first part of this proof, there is $\boldsymbol{a} \in A$ for which $\boldsymbol{a} \cdot \boldsymbol{u}=g(\boldsymbol{u})$. Hence, $g(\boldsymbol{u}) \leq h(\boldsymbol{u})$. For each a in $A, \boldsymbol{a} \cdot \boldsymbol{u} \leq g(\boldsymbol{u})$. So $h(\boldsymbol{u}) \leq g(\boldsymbol{u})$.
Thus $g=h$ and g is the support function of A.

The Gauge Function

- Let A be a closed convex set in \mathbb{R}^{n} having the origin as an interior point.
- Then it follows easily that $\lambda A \subseteq \mu A$ whenever $0 \leq \lambda \leq \mu$.
- Moreover, for each \boldsymbol{x} in \mathbb{R}^{n}, there is some $\lambda \geq 0$ such that $x \in \lambda A$.
- Thus \mathbb{R}^{n} can be expressed as an increasing union of convex sets as follows:

$$
\mathbb{R}^{n}=\bigcup(\lambda A: \lambda \geq 0)
$$

- The gauge function g, or more precisely g_{A}, of A is the function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined, for each x in \mathbb{R}^{n}, by the equation

$$
g(x)=\inf \{\lambda \geq 0: x \in \lambda A\} .
$$

- In view of the earlier comments, g is well defined.

Properties of the Gauge Function

- Some immediate consequences of the definition are:
(i) $g(\mathbf{0})=0$ and $g(\boldsymbol{x}) \geq 0$ for $\boldsymbol{x} \in \mathbb{R}^{n}$;
(ii) $g(x) \leq 1$ when $x \in A$;
(iii) If $g(x)=0$, then $\{\mu x: \mu \geq 0\} \subseteq A$;
(iv) $g(x)=0$ for all $\boldsymbol{x} \in \mathbb{R}^{n}$ if and only if $A=\mathbb{R}^{n}$.
- Suppose now that $g(\boldsymbol{x})>0$. Then, for each $\varepsilon>0, \boldsymbol{x} \in(g(\boldsymbol{x})+\varepsilon) A$. Hence $\frac{\boldsymbol{x}}{g(\boldsymbol{X})+\varepsilon} \in A$. Letting $\varepsilon \rightarrow 0^{+}$and using our assumption that A is closed, we deduce that $\frac{\boldsymbol{x}}{g(\boldsymbol{x})} \in A$. Hence $\boldsymbol{x} \in g(\boldsymbol{x}) A$. In particular, if $0<g(\boldsymbol{x}) \leq 1$, then $\boldsymbol{x} \in g(\boldsymbol{x}) A \subseteq A$. We have thus established:
(v) $A=\left\{x \in \mathbb{R}^{n}: g(x) \leq 1\right\}$.

Theorem

The gauge function of a closed convex set having the origin as an interior point is positively homogeneous and convex.

- Let g be the gauge function of a closed convex set A in \mathbb{R}^{n} which contains the origin in its interior.
Let $\boldsymbol{x} \in \mathbb{R}^{n}$ and let $\lambda>0$. Then $\lambda \boldsymbol{x} \in \mu A$ if and only if $\boldsymbol{x} \in \frac{\mu}{\lambda} A$. It follows easily from the definition of g that

$$
\frac{1}{\lambda} g(\lambda \boldsymbol{x})=\frac{1}{\lambda} \inf \{\mu \geq 0: \lambda \boldsymbol{x} \in \mu A\}=\inf \left\{\frac{\mu}{\lambda}: \boldsymbol{x} \in \frac{\mu}{\lambda} A\right\}=g(\boldsymbol{x}) .
$$

Trivially, $g(0 \boldsymbol{x})=0 g(\boldsymbol{x})$. Thus g is positively homogeneous. Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ and let $\lambda, \mu \geq 0$ with $\lambda+\mu=1$. Then, for each $\varepsilon>0$, $\boldsymbol{x} \in(g(\boldsymbol{x})+\varepsilon) A, \boldsymbol{y} \in(g(\boldsymbol{y})+\varepsilon) A$. So $\lambda \boldsymbol{x}+\mu \boldsymbol{y} \in(\lambda g(\boldsymbol{x})+\mu g(\boldsymbol{y})+\varepsilon) A$. Since $\varepsilon>0$ is arbitrary, $g(\lambda \boldsymbol{x}+\mu \boldsymbol{y}) \leq \lambda g(\boldsymbol{x})+\mu g(\boldsymbol{y})$. This shows that g is convex.

Example

- We find the gauge function g of the n-cube A defined by the equation

$$
A=\left\{\left(x_{1}, \ldots, x_{n}\right):\left|x_{1}\right|, \ldots,\left|x_{n}\right| \leq 1\right\} .
$$

Let $\boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right)$. Then, for $\lambda \geq 0$,

$$
\lambda A=\left\{\left(x_{1}, \ldots, x_{n}\right):\left|x_{1}\right|, \ldots,\left|x_{n}\right| \leq \lambda\right\} .
$$

So $\boldsymbol{u} \in \lambda A$ if and only if $\max \left\{\left|u_{1}\right|, \ldots,\left|u_{n}\right|\right\} \leq \lambda$. Thus,

$$
g(\boldsymbol{u})=\max \left\{\left|u_{1}\right|, \ldots,\left|u_{n}\right|\right\} .
$$

Nonnegative Positively Homogeneous Convex Functions

Theorem

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a non-negative positively homogeneous convex function. Then the set A defined by the equation

$$
A=\left\{x \in \mathbb{R}^{n}: f(x) \leq 1\right\}
$$

is closed, convex, contains the origin in its interior and has gauge function f.

- The function f is continuous by a previous theorem. Thus A is closed and contains the open set $\left\{\boldsymbol{x} \in \mathbb{R}^{n}: f(\boldsymbol{x})<1\right\}$, which contains the origin. The set A is convex, being the level set of a convex function. Hence A is a closed convex set containing the origin in its interior.

Nonnegative Positively Homogeneous Convex Functions |I

- Denote by g the gauge function of A.

Then, as proved earlier, $A=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: g(\boldsymbol{x}) \leq 1\right\}$.
Suppose that $\boldsymbol{u} \in \mathbb{R}^{n}$ satisfies $g(\boldsymbol{u})>0$.
Since g is positively homogeneous, $g\left(\frac{\boldsymbol{u}}{g(\boldsymbol{u})}\right)=1$. Hence $\frac{\boldsymbol{u}}{g(\boldsymbol{u})} \in A$.
Since f is positively homogeneous and $\frac{\boldsymbol{u}}{g(\boldsymbol{U})} \in A, f\left(\frac{\boldsymbol{u}}{g(\boldsymbol{U})}\right)=\frac{f(\boldsymbol{u})}{g(\boldsymbol{U})} \leq 1$.
This shows that $f(\boldsymbol{u}) \leq g(\boldsymbol{u})$.
If $g(\boldsymbol{u})=0$, then, for all $\lambda>0, \lambda \boldsymbol{u} \in A$.
So $0 \leq f(\lambda \boldsymbol{u})=\lambda f(\boldsymbol{u}) \leq 1$. It follows that $f(\boldsymbol{u})=0$.
Thus $f(\boldsymbol{u}) \leq g(\boldsymbol{u})$ for all $\boldsymbol{u} \in \mathbb{R}^{n}$.
By a similar argument, $g(\boldsymbol{u}) \leq f(\boldsymbol{u})$ for all $\boldsymbol{u} \in \mathbb{R}^{n}$. Hence $f=g$ and f is the gauge function of A.

Example

- We have already seen that the support function of the regular n-crosspolytope

$$
\left\{\left(x_{1}, \ldots, x_{n}\right):\left|x_{1}\right|+\cdots+\left|x_{n}\right| \leq 1\right\}
$$

and the gauge function of its dual, the n-cube

$$
\left\{\left(x_{1}, \ldots, x_{n}\right):\left|x_{1}\right|, \ldots,\left|x_{n}\right| \leq 1\right\}
$$

are the same, namely the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by the equation

$$
f(\boldsymbol{u})=\max \left\{\left|u_{1}\right|, \ldots,\left|u_{n}\right|\right\}, \text { for } \boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}^{n} .
$$

Duality: Support and Gauge Functions

Theorem

Suppose that g, h are the gauge and support functions, respectively, of a compact convex set A in \mathbb{R}^{n} which has the origin as an interior point. Then the gauge and support functions of the dual A^{*} of A are h, g, respectively.

- If $\boldsymbol{u} \in A^{*}$, then $\boldsymbol{u} \cdot \boldsymbol{a} \leq 1$ for all \boldsymbol{a} in A, whence $h(\boldsymbol{u}) \leq 1$.

Conversely, if $h(\boldsymbol{u}) \leq 1$, then $\boldsymbol{u} \cdot \boldsymbol{a} \leq 1$ for all \boldsymbol{a} in A, and so $\boldsymbol{u} \in A^{*}$. Thus,

$$
A^{*}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: h(\boldsymbol{x}) \leq 1\right\} .
$$

Since A contains the origin, h is non-negative.
Thus h is a non-negative, positively homogeneous convex function. Hence, by the preceding theorem, h is the gauge function of A^{*}.
By what we have just proved, the support function of A^{*} is the gauge function of $A^{* *}=A$, viz. g.

Subsection 7

The Convex Programming Problem

The Convex Programming Problem

- Throughout this section f, g_{1}, \ldots, g_{m} will denote convex functions defined on \mathbb{R}^{n}.
- The convex programming problem is to minimize $f(x)$ subject to the constraints $\boldsymbol{x} \geq 0, g_{1}(\boldsymbol{x}) \leq 0, \ldots, g_{m}(\boldsymbol{x}) \leq 0$.
- The feasible set for the problem is the convex set X defined by the equation

$$
X=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{x} \geq 0, g_{1}(\boldsymbol{x}) \leq 0, \ldots, g_{m}(\boldsymbol{x}) \leq 0\right\}
$$

- Thus the convex programming problem is to find $x_{0} \in X$ such that $f\left(\boldsymbol{x}_{0}\right) \leq f(\boldsymbol{x})$ for all $\boldsymbol{x} \in X$.

Existence of Coefficients

Theorem

Let f_{1}, \ldots, f_{k} be convex functions defined on a nonempty convex set Y in \mathbb{R}^{n}. Suppose that there exists no \boldsymbol{y} in Y such that $f_{1}(\boldsymbol{y})<0, \ldots, f_{k}(\boldsymbol{y})<0$. Then there exist $a_{1}, \ldots, a_{k} \geq 0$, not all zero, such that

$$
a_{1} f_{1}(\boldsymbol{y})+\cdots+a_{k} f_{k}(\boldsymbol{y}) \geq 0, \text { for all } \boldsymbol{y} \in Y .
$$

- Define a set C in \mathbb{R}^{k} by the equation

$$
C=\left\{\left(z_{1}, \ldots, z_{k}\right) \text { : there is } \boldsymbol{y} \in Y \text { such that } f_{i}(\boldsymbol{y})<z_{i} \text { for } i=1, \ldots, k\right\} .
$$

Let $\boldsymbol{u}=\left(u_{1}, \ldots, u_{k}\right), \boldsymbol{v}=\left(v_{1}, \ldots, v_{k}\right) \in C$. Let $\lambda, \mu \geq 0$ with $\lambda+\mu=1$.
Then there exist $\boldsymbol{a}, \boldsymbol{b} \in Y$ such that, for $i=1, \ldots, k, f_{i}(\boldsymbol{a})<u_{i}$ and $f_{i}(\boldsymbol{b})<v_{i}$. The convexity of f_{1}, \ldots, f_{k} shows that, for $i=1, \ldots, k$,

$$
f_{i}(\lambda \boldsymbol{a}+\mu \boldsymbol{b}) \leq \lambda f_{i}(\boldsymbol{a})+\mu f_{i}(\boldsymbol{b})<\lambda u_{i}+\mu v_{i}
$$

Hence, since $\lambda \boldsymbol{a}+\mu \boldsymbol{b} \in Y, \lambda \boldsymbol{u}+\mu \boldsymbol{v} \in C$. Thus C is convex.

Existence of Coefficients (Cont'd)

- By hypothesis, C does not contain the origin of \mathbb{R}^{k}. So the origin and C can be separated by a hyperplane.
Thus, there exist scalars a_{1}, \ldots, a_{k}, not all zero, such that, for all $\boldsymbol{y} \in Y$ and all $\lambda_{1}, \ldots, \lambda_{k}>0$,

$$
a_{1}\left(f_{1}(\boldsymbol{y})+\lambda_{1}\right)+\cdots+a_{k}\left(f_{k}(\boldsymbol{y})+\lambda_{k}\right) \geq 0 .
$$

Letting $\lambda_{1} \rightarrow \infty$, whilst keeping $\lambda_{2}, \ldots, \lambda_{k}$ fixed in, we deduce that $a_{1} \geq 0$. Similarly, $a_{2} \geq 0, \ldots, a_{k} \geq 0$.
Letting $\lambda_{1} \rightarrow 0^{+}, \ldots, \lambda_{k} \rightarrow 0^{+}$, we deduce that, for all \boldsymbol{y} in Y,

$$
a_{1} f_{1}(\boldsymbol{y})+\cdots+a_{k} f_{k}(\boldsymbol{y}) \geq 0 .
$$

Lagrangian Function and Saddle-Point Problem

- The Lagrangian function associated with the convex programming problem is the function F of the $m+n$ variables $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$ defined by the equation

$$
F(\boldsymbol{x}, \boldsymbol{y})=f(\boldsymbol{x})+y_{1} g_{1}(\boldsymbol{x})+\cdots+y_{m} g_{m}(\boldsymbol{x}),
$$

where $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right), \boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right)$.

- The saddle-point problem is to determine a saddle point of F, that is, a point $\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)$ of \mathbb{R}^{m+n} such that $\boldsymbol{x}_{0} \geq \mathbf{0}, \boldsymbol{y}_{0} \geq \mathbf{0}$ and

$$
F\left(\boldsymbol{x}_{0}, \boldsymbol{y}\right) \leq F\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right) \leq F\left(\boldsymbol{x}, \boldsymbol{y}_{0}\right),
$$

for all $\boldsymbol{x} \geq \mathbf{0}, \boldsymbol{y} \geq \mathbf{0}$.

Saddle-Points and Convex Programming Problem

Theorem

Let $\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)$ be a saddle point of the Lagrangian function F. Then \boldsymbol{x}_{0} is a solution to the convex programming problem and $F\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)=f\left(\boldsymbol{x}_{0}\right)$.

- Let $\boldsymbol{x}_{0}=\left(x_{1}^{0}, \ldots, x_{n}^{0}\right) \geq \mathbf{0}$ and $\boldsymbol{y}_{0}=\left(y_{1}^{0}, \ldots, y_{m}^{0}\right) \geq \mathbf{0}$. For all $\boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right) \geq \mathbf{0}, F\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right) \geq F\left(\boldsymbol{x}_{0}, \boldsymbol{y}\right)$. So

$$
y_{1}^{0} g_{1}\left(\boldsymbol{x}_{0}\right)+\cdots+y_{m}^{0} g_{m}\left(\boldsymbol{x}_{0}\right) \geq y_{1} g_{1}\left(\boldsymbol{x}_{0}\right)+\cdots+y_{m} g_{m}\left(\boldsymbol{x}_{0}\right) .
$$

By fixing y_{2}, \ldots, y_{m} and letting $y_{1} \rightarrow \infty$, we deduce that $g_{1}\left(x_{0}\right) \leq 0$.
Similarly, $g_{2}\left(\boldsymbol{x}_{0}\right) \leq 0, \ldots, g_{m}\left(\boldsymbol{x}_{0}\right) \leq 0$.
Thus x_{0} is a point of the feasible set X of the convex programming problem.

Saddle-Points and Convex Programming Problem (Cont'd)

- Putting $\boldsymbol{y}=\mathbf{0}$ in the saddle-point inequality $F\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right) \geq F\left(\boldsymbol{x}_{0}, \boldsymbol{y}\right)$ and using the fact that $x_{0} \in X$, we deduce that

$$
f\left(\boldsymbol{x}_{0}\right) \leq f\left(\boldsymbol{x}_{0}\right)+y_{1}^{0} g_{1}\left(\boldsymbol{x}_{0}\right)+\cdots+y_{m}^{0} g_{m}\left(\boldsymbol{x}_{0}\right) .
$$

Therefore, since $\boldsymbol{y}_{0} \geq \mathbf{0}$ and $g_{i}\left(\boldsymbol{x}_{0}\right) \leq 0$,

$$
0 \leq y_{1}^{0} g_{1}\left(\boldsymbol{x}_{0}\right)+\cdots+y_{m}^{0} g_{m}\left(\boldsymbol{x}_{0}\right) \leq 0 .
$$

Hence

$$
y_{1}^{0} g_{1}\left(\boldsymbol{x}_{0}\right)+\cdots+y_{m}^{0} g_{m}\left(\boldsymbol{x}_{0}\right)=0 \text { and } F\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)=f\left(\boldsymbol{x}_{0}\right)
$$

Since $F\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right) \leq F\left(\boldsymbol{x}, \boldsymbol{y}_{0}\right)$ for all $\boldsymbol{x} \geq \mathbf{0}$, we deduce that, for all $\boldsymbol{x} \in X$,

$$
f\left(\boldsymbol{x}_{0}\right) \leq f(\boldsymbol{x})+y_{1}^{0} g_{1}(\boldsymbol{x})+\cdots+y_{m}^{0} g_{m}(\boldsymbol{x}) \leq f(\boldsymbol{x}) .
$$

This shows that x_{0} is a solution to the convex programming problem.

A Partial Converse

- It is not true that, given any solution x_{0} of the convex programming problem, there is always a \boldsymbol{y}_{0} such that $\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)$ is a saddle point of the Lagrangian function F.

Theorem

Suppose that x_{0} is a solution of the convex programming problem.
Suppose also that there exists $\boldsymbol{x}^{*} \geq 0$ such that $g_{1}\left(\boldsymbol{x}^{*}\right)<0, \ldots, g_{m}\left(\boldsymbol{x}^{*}\right)<0$.
Then there exists $\boldsymbol{y}_{0} \in \mathbb{R}^{m}$ for which $\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)$ is a saddle point of the Lagrangian function F.

- Suppose that \boldsymbol{x} belongs to the nonnegative orthant Y of \mathbb{R}^{n}. Then not all of the following inequalities can hold: $g_{1}(\boldsymbol{x})<0, \ldots, g_{m}(\boldsymbol{x})<0$, $f(\boldsymbol{x})-f\left(x_{0}\right)<0$. Thus, by a previous theorem, there exist $a_{1}, \ldots, a_{m}, a_{0} \geq 0$, not all zero, such that

$$
a_{1} g_{1}(\boldsymbol{x})+\cdots+a_{m} g_{m}(\boldsymbol{x})+a_{0}\left(f(\boldsymbol{x})-f\left(\boldsymbol{x}_{0}\right)\right) \geq 0
$$

whenever $\boldsymbol{x} \in Y$, i.e., $\boldsymbol{x} \geq \mathbf{0}$.

A Partial Converse (Cont'd)

- If $a_{0}=0$, then

$$
0>a_{1} g_{1}\left(\boldsymbol{x}^{*}\right)+\cdots+a_{m} g_{m}\left(\boldsymbol{x}^{*}\right) \geq 0,
$$

which is impossible. Thus $a_{0}>0$. For $i=1, \ldots, m$, let $y_{i}^{0}=\frac{a_{i}}{a_{0}}$ and let $\boldsymbol{y}_{0}=\left(y_{1}^{0}, \ldots, y_{m}^{0}\right) \geq \mathbf{0}$. Then, for any $\boldsymbol{x} \geq \mathbf{0}$, we deduce from the displayed inequality that

$$
f\left(\boldsymbol{x}_{0}\right) \leq f(\boldsymbol{x})+y_{1}^{0} g_{1}(\boldsymbol{x})+\cdots+y_{m}^{0} g_{m}(\boldsymbol{x})=F\left(\boldsymbol{x}, \boldsymbol{y}_{0}\right)
$$

Hence

$$
f\left(\boldsymbol{x}_{0}\right) \leq f\left(\boldsymbol{x}_{0}\right)+y_{1}^{0} g_{1}\left(\boldsymbol{x}_{0}\right)+\cdots+y_{m}^{0} g_{m}\left(\boldsymbol{x}_{0}\right) \leq f\left(\boldsymbol{x}_{0}\right) .
$$

So $y_{1}^{0} g_{1}\left(\boldsymbol{x}_{0}\right)+\cdots+y_{m}^{0} g_{m}\left(\boldsymbol{x}_{0}\right)=0$. Thus, for all $\boldsymbol{x} \geq \mathbf{0}$, $F\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)=f\left(\boldsymbol{x}_{0}\right) \leq F\left(\boldsymbol{x}, \boldsymbol{y}_{0}\right)$. For $\boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right) \geq \mathbf{0}$,

$$
F\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)=f\left(\boldsymbol{x}_{0}\right) \geq f\left(\boldsymbol{x}_{0}\right)+y_{1} g_{1}\left(\boldsymbol{x}_{0}\right)+\cdots+y_{m} g_{m}\left(\boldsymbol{x}_{0}\right)=F\left(\boldsymbol{x}_{0}, \boldsymbol{y}\right) .
$$

This shows that $\left(x_{0}, y_{0}\right)$ is a saddle point of F.

Kuhn-Tucker Conditions

Theorem (Kuhn-Tucker Conditions)

Suppose that the convex functions $f, g_{1}, \ldots, g_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are differentiable. Then $\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)$, where $\boldsymbol{x}_{0}=\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)$ and $\boldsymbol{y}_{0}=\left(y_{1}^{0}, \ldots, y_{m}^{0}\right)$, is a saddle point of the Lagrangian function F if and only if

$$
\begin{aligned}
& \boldsymbol{x}_{0} \geq 0, \\
& \frac{\partial F}{\partial x_{j}}\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)=\frac{\partial f}{\partial x_{j}}\left(\boldsymbol{x}_{0}\right)+\sum_{i=1}^{m} y_{i}^{0} \frac{\partial g_{i}}{\partial x_{j}}\left(\boldsymbol{x}_{0}\right) \geq 0, \\
& \frac{\partial F}{\partial x_{j}}\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)=0, \text { if } x_{j}^{0}>0,
\end{aligned}
$$

and

$$
\begin{aligned}
& \boldsymbol{y}_{0} \geq 0, \\
& \frac{\partial F}{\partial y_{j}}\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)=g_{j}\left(\boldsymbol{x}_{0}\right) \leq 0, \\
& \frac{\partial F}{\partial y_{j}}\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)=0, \text { if } y_{j}^{0}>0 .
\end{aligned}
$$

Proof

- Suppose first that $\left(x_{0}, y_{0}\right)$ is a saddle point of F.

Then certainly the first conditions of each triple are satisfied.
For each $j=1, \ldots, n$,

$$
F\left(\boldsymbol{x}_{0}+\lambda \boldsymbol{e}_{j}, \boldsymbol{y}_{0}\right) \geq f\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right) \text {, if } \lambda \geq-x_{j}^{0} .
$$

It now follows, by elementary calculus, that

$$
\frac{\partial F}{\partial x_{j}}\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right) \geq 0 \text { and } \frac{\partial F}{\partial x_{j}}\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)=0, \text { if } x_{j}^{0}>0 .
$$

Thus, the last two conditions of the first triple are satisfied. By a previous theorem, the remaining conditions are also satisfied.

Proof (Converse)

- Suppose next that the six Kuhn-Tucker conditions are satisfied. The function $F\left(\boldsymbol{x}, \boldsymbol{y}_{0}\right)$ of \boldsymbol{x}, for fixed \boldsymbol{y}_{0}, is convex and differentiable, because f, g_{1}, \ldots, g_{m} are, and $\boldsymbol{y}_{0} \geq \mathbf{0}$. Thus $F\left(\boldsymbol{x}, \boldsymbol{y}_{0}\right)$ has unique support at \boldsymbol{x}_{0}. Hence, for all $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \geq \mathbf{0}$,

$$
\begin{aligned}
F\left(\boldsymbol{x}, \boldsymbol{y}_{0}\right) & \geq F\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)+\left(x_{1}-x_{1}^{0}\right) \frac{\partial F}{\partial x_{1}}\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)+\cdots+\left(x_{n}-x_{n}^{0}\right) \frac{\partial F}{\partial x_{n}}\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right) \\
& =F\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)+x_{1} \frac{\partial F}{\partial x_{1}}\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)+\cdots+x_{n} \frac{\partial F}{\partial x_{n}}\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right) \\
& \geq F\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right) .
\end{aligned}
$$

The first set of conditions was used here.
Finally for $\boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right) \geq \mathbf{0}$, we have

$$
\begin{aligned}
F\left(\boldsymbol{x}_{0}, \boldsymbol{y}\right) & =F\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)+\left(y_{1}-y_{1}^{0}\right) g_{1}\left(\boldsymbol{x}_{0}\right)+\cdots+\left(y_{m}-y_{m}^{0}\right) g_{m}\left(\boldsymbol{x}_{0}\right) \\
& =F\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)+y_{1} g_{1}\left(\boldsymbol{x}_{0}\right)+\cdots+y_{m} g_{m}\left(\boldsymbol{x}_{0}\right) \\
& \leq F\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right) .
\end{aligned}
$$

Here we have used the second set of conditions.
We have thus shown that $\left(x_{0}, y_{0}\right)$ is a saddle point of F.

Example

- Solve the convex programming problem:

$$
\begin{array}{ll}
\operatorname{minimize} & -6 x_{1}+2 x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2} \\
\text { subject to } & x_{1}+x_{2} \leq 2, x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

Write $f\left(x_{1}, x_{2}\right)=-6 x_{1}+2 x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2}$ and $g\left(x_{1}, x_{2}\right)=x_{1}+x_{2}-2$. The Lagrangian function F is defined by the equation

$$
F(\boldsymbol{x}, \boldsymbol{y})=-6 x_{1}+2 x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2}+y_{1}\left(x_{1}+x_{2}-2\right) .
$$

The Kuhn-Tucker conditions give the following equations and inequalities:

$$
\begin{array}{rrr}
x_{1}\left(-6+4 x_{1}-2 x_{2}+y_{1}\right)=0, & -6+4 x_{1}-2 x_{2}+y_{1} \geq 0, \\
x_{2}\left(-2 x_{1}+4 x_{2}+y_{1}\right)=0, & -2 x_{1}+4 x_{2}+y_{1} \geq 0, \\
y_{1}\left(x_{1}+x_{2}-2\right)=0, & x_{1}+x_{2}-2 \leq 0, \\
& x_{1} \geq 0, x_{2} \geq 0, \quad y_{1} \geq 0 .
\end{array}
$$

Example (Cont'd)

- The three equations have the following six solutions:

	x_{1}	x_{2}	y_{1}
(i)	0	0	0
(ii)	0	2	-8
(iii)	$\frac{3}{2}$	0	0
(iv)	2	0	-2
(v)	2	1	0
(vi)	$\frac{3}{2}$	$\frac{1}{2}$	1.

Of these solutions only (vi) satisfies all the remaining inequalities. Hence f has minimal value $-\frac{11}{2}$ at $\left(\frac{3}{2}, \frac{1}{2}\right)$.

Subsection 8

Matrix Inequalities

A Problem Involving Quadratic Forms

- Associated with each real symmetric square matrix \boldsymbol{A} of order n, there is a quadratic function $q: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined for each \boldsymbol{x} in \mathbb{R}^{n} by the equation

$$
q(x)=x^{T} \boldsymbol{A} x=(A x) \cdot x
$$

- Let $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}$ be an orthonormal sequence in \mathbb{R}^{n} consisting of eigenvectors of \boldsymbol{A} corresponding to the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of \boldsymbol{A}.
- Then, for $i=1, \ldots, n, \boldsymbol{u}_{i}^{T} \boldsymbol{A} \boldsymbol{u}_{i}=\left(\boldsymbol{A} \boldsymbol{u}_{i}\right) \cdot \boldsymbol{u}_{i}=\left(\lambda_{i} \boldsymbol{u}_{i}\right) \cdot \boldsymbol{u}_{i}=\lambda_{i}$.
- Hence $\left(q\left(\boldsymbol{u}_{1}\right), \ldots, q\left(\boldsymbol{u}_{n}\right)\right)=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
- We consider the following problem:

If $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ is any orthonormal sequence in \mathbb{R}^{n}, how are the points $\boldsymbol{u}=\left(q\left(\boldsymbol{u}_{1}\right), \ldots, q\left(\boldsymbol{u}_{n}\right)\right)$ and $\boldsymbol{v}=\left(q\left(\boldsymbol{v}_{1}\right), \ldots, q\left(\boldsymbol{v}_{n}\right)\right)$ related to one another?

Answering the Problem

- Express each \boldsymbol{v}_{i}, for $i=1, \ldots, n$, as a linear combination of $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}$, thus:

$$
\boldsymbol{v}_{i}=\left(\boldsymbol{v}_{i} \cdot \boldsymbol{u}_{1}\right) \boldsymbol{u}_{1}+\cdots+\left(\boldsymbol{v}_{i} \cdot \boldsymbol{u}_{n}\right) \boldsymbol{u}_{n}
$$

- Hence

$$
\begin{aligned}
q\left(\boldsymbol{v}_{i}\right)= & \left(\left(\boldsymbol{v}_{i} \cdot \boldsymbol{u}_{1}\right) \boldsymbol{A} \boldsymbol{u}_{1}+\cdots+\left(\boldsymbol{v}_{i} \cdot \boldsymbol{u}_{n}\right) \boldsymbol{A} \boldsymbol{u}_{n}\right) . \\
& \left(\left(\boldsymbol{v}_{i} \cdot \boldsymbol{u}_{1}\right) \boldsymbol{u}_{1}+\cdots+\left(\boldsymbol{v}_{i} \cdot \boldsymbol{u}_{n}\right) \boldsymbol{u}_{n}\right) \\
= & \left(\lambda_{1}\left(\boldsymbol{v}_{i} \cdot \boldsymbol{u}_{1}\right) \boldsymbol{u}_{1}+\cdots+\lambda_{n}\left(\boldsymbol{v}_{i} \cdot \mathbf{u}_{n}\right) \boldsymbol{u}_{n}\right) . \\
& \left(\left(\boldsymbol{v}_{i} \cdot \boldsymbol{u}_{1}\right) \boldsymbol{u}_{1}+\cdots+\left(\boldsymbol{v}_{i} \cdot \boldsymbol{u}_{n}\right) \boldsymbol{u}_{n}\right) \\
= & \left(\boldsymbol{v}_{i} \cdot \boldsymbol{u}_{1}\right)^{2} \lambda_{1}+\cdots+\left(\boldsymbol{v}_{i} \cdot \boldsymbol{u}_{n}\right)^{2} \lambda_{n} \\
= & \left(\boldsymbol{v}_{i} \cdot \boldsymbol{u}_{1}\right)^{2} q\left(\boldsymbol{u}_{1}\right)+\cdots+\left(\boldsymbol{v}_{i} \cdot u_{n}\right)^{2} q\left(\boldsymbol{u}_{n}\right) .
\end{aligned}
$$

- Thus $\boldsymbol{v}=\boldsymbol{S} \boldsymbol{u}$, where \boldsymbol{S} is the square matrix of order n whose (i, j) th element is $\left(\boldsymbol{v}_{i} \cdot \boldsymbol{u}_{j}\right)^{2}$.

Double Stochasticity of the Matrix S

- The matric \boldsymbol{S} is a square matrix all of whose elements are non-negative real numbers.
- Squaring both sides of equation $\boldsymbol{v}_{i}=\left(\boldsymbol{v}_{i} \cdot \boldsymbol{u}_{1}\right) \boldsymbol{u}_{1}+\cdots+\left(\boldsymbol{v}_{i} \cdot \boldsymbol{u}_{n}\right) \boldsymbol{u}_{n}$, and using the orthonormality of the sequences $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}$ and $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$, we deduce that, for $i=1, \ldots, n$,

$$
\left(\boldsymbol{v}_{i} \cdot \boldsymbol{u}_{1}\right)^{2}+\cdots+\left(\boldsymbol{v}_{i} \cdot \boldsymbol{u}_{n}\right)^{2}=\left\|\boldsymbol{v}_{i}\right\|^{2}=1
$$

- Similarly, for $j=1, \ldots, n$,

$$
\left(\boldsymbol{u}_{j} \cdot \boldsymbol{v}_{1}\right)^{2}+\cdots+\left(\boldsymbol{u}_{j} \cdot \boldsymbol{v}_{n}\right)^{2}=\left\|\boldsymbol{u}_{j}\right\|^{2}=1
$$

- Thus \boldsymbol{S} is a square matrix of order n whose elements are non-negative real numbers, and the sum of the elements in each of its rows and columns is equal to 1 .
- Such a matrix is called a doubly stochastic matrix.
- The set of all doubly stochastic $n \times n$ matrices will be denoted by Ω_{n}.

Permutation Matrices

- The simplest example of a doubly stochastic matrix is a permutation matrix, which is a square matrix with precisely one 1 in each row and column, all of its other elements being zero.
- Equivalently, a permutation matrix is one that can be obtained by permuting the rows of an identity matrix.
- Clearly every convex combination (in the obvious sense) of permutation matrices is a doubly stochastic matrix.
- The converse of this result, namely that every doubly stochastic matrix is a convex combination of permutation matrices, is also true and it is known as Birkhoff's Theorem.
- This theorem, which will be proven here, is perhaps the most fundamental result in the whole study of doubly stochastic matrices.
- In a natural way we may regard each real $n \times n$ matrix $\boldsymbol{A}=\left[a_{i j}\right]$ as a point $\boldsymbol{a}=\left(a_{i j}\right)$ of $\mathbb{R}^{n^{2}}$, the n^{2} elements of \boldsymbol{A} corresponding in some prescribed way to the n^{2} coordinates of \boldsymbol{a}.
- To be definite, we set up the correspondence

$$
\boldsymbol{A}=\left[a_{i j}\right] \leftrightarrow\left(a_{11}, \ldots, a_{1 n}, a_{21}, \ldots, a_{2 n}, \ldots, a_{n 1}, \ldots, a_{n n}\right)=\boldsymbol{a} .
$$

- This correspondence is a bijection between the set of all real $n \times n$ matrices and the set of points in $\mathbb{R}^{n^{2}}$.
- It preserves linear combinations, and so we can usefully identify the matrix \boldsymbol{A} with the point \boldsymbol{a}.
- Under this identification, we may think of the set Ω_{n} of doubly stochastic $n \times n$ matrices as a set in $\mathbb{R}^{n^{2}}$ and refer to some of its members as being permutation matrices.

Lemma on Non-Singular 0-1-Block Matrices

Lemma

Let \boldsymbol{B} be a non-singular square matrix of order n that can be partitioned in the form $\left[\begin{array}{l}\boldsymbol{P} \\ \boldsymbol{Q}\end{array}\right]$, where \boldsymbol{P} and \boldsymbol{Q} are matrices of 0 's and 1 's, such that no column of either \boldsymbol{P} or \boldsymbol{Q} contains more than one 1 . Then $\operatorname{det} \boldsymbol{B}= \pm 1$.

- We argue by induction on n. The case $n=2$ is trivial.

Suppose that $n \geq 3$ and that the assertion is true for square matrices of order $n-1$. Let \boldsymbol{B} be as in the statement of the lemma.
At least one column of \boldsymbol{B} contains precisely one 1 .
Otherwise the rows of \boldsymbol{P} could be added to the negatives of the rows of \boldsymbol{Q} to produce a zero row, contradicting the non-singularity of \boldsymbol{B}. Expanding $\operatorname{det} \boldsymbol{B}$ by a column with precisely one $1, \operatorname{det} \boldsymbol{B}= \pm \operatorname{det} \boldsymbol{C}$. But C is a square matrix of order $n-1$ of the form in the lemma. Hence, $\operatorname{det} \boldsymbol{B}= \pm 1$, since $\operatorname{det} \boldsymbol{C}= \pm 1$ by the induction hypothesis.

Birkhoff's Theorem

Theorem

The set Ω_{n} is a polytope in $\mathbb{R}^{n^{2}}$ whose extreme points are the permutation matrices in Ω_{n}. Every doubly stochastic matrix is a convex combination of permutation matrices.

- The set Ω_{n} is polyhedral, since it consists of those points $\left(x_{i j}\right)$ in $\mathbb{R}^{n^{2}}$ satisfying the relations:

$$
\begin{aligned}
x_{i j} & \geq 0, \quad i, j=1, \ldots, n \\
\sum_{j=1}^{n} x_{i j} & =1, \quad i=1, \ldots, n ; \\
\sum_{i=1}^{n} x_{i j} & =1, \quad j=1, \ldots, n-1
\end{aligned}
$$

Note that the equality $x_{1 n}+\cdots+x_{n n}=1$ follows from the $2 n-1$ equations in the last two lines.
The relations of the first two lines show that, if $\left(x_{i j}\right) \in \Omega_{n}$, then $0 \leq x_{i j} \leq 1$. Hence Ω_{n} is a bounded polyhedral set, i.e., a polytope.

Birkhoff's Theorem (Cont'd)

- That each permutation matrix in Ω_{n} is one of its extreme points follows easily from the definitions of extreme point and permutation matrix. The non-trivial part of the proof is to show that each extreme point of Ω_{n} is a permutation matrix. Let $\left(a_{i j}\right)$ be an extreme point of Ω_{n}. Then, by a previous theorem, $\left(a_{i j}\right)$ is a nonnegative basic solution for the system of the $2 n-1$ equations in the last two lines above, i.e., of $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, where
$\boldsymbol{A}=\left[\begin{array}{cccc}111 \ldots 11 & 000 \ldots 00 & \cdots & 000 \ldots 00 \\ 000 \ldots 00 & 111 \ldots 11 & \cdots & 000 \ldots 00 \\ \vdots & \vdots & & \vdots \\ 000 \ldots 00 & 000 \ldots 00 & \cdots & 111 \ldots 11 \\ 100 \ldots 00 & 100 \ldots 00 & \cdots & 100 \ldots 00 \\ 010 \ldots 00 & 010 \ldots 00 & \cdots & 010 \ldots 00 \\ \vdots & \vdots & & \vdots \\ 000 \ldots 10 & 000 \ldots 10 & \cdots & 000 \ldots 10\end{array}\right]$ and $\boldsymbol{b}=(1, \ldots, 1) \in \mathbb{R}^{2 n-1}$.

Birkhoff's Theorem (Cont'd)

- At least $n^{2}-(2 n-1)=(n-1)^{2}$ of the $a_{i j}$ must be zero. The others, $a_{1}, \ldots, a_{2 n-1}$, say, satisfy a system of linear equations of the form

$$
\boldsymbol{B}\left(a_{1}, \ldots, a_{2 n-1}\right)=\boldsymbol{b}
$$

where \boldsymbol{B} is a non-singular $(2 n-1) \times(2 n-1)$ submatrix of \boldsymbol{A}.
The matrix \boldsymbol{B} satisfies the conditions of the lemma. So $\operatorname{det} \boldsymbol{B}= \pm 1$.
Thus the elements of \boldsymbol{B}^{-1}, and hence of $\left(a_{1}, \ldots, a_{2 n-1}\right)$, are integers.
It follows that the doubly stochastic matrix $\left(a_{i j}\right)$ has only integer elements. So it must be a permutation matrix.
We complete the proof by noting that a polytope is the convex hull of its extreme points.

The $\boldsymbol{\lambda}$-Set of a Real Symmetric Matrix

- Suppose now that $\boldsymbol{\lambda}$ is an n-tuple of the (necessarily real) eigenvalues, in some order, of a real symmetric $n \times n$ matrix \boldsymbol{A}.
- The set $\Lambda_{\boldsymbol{A}}$ of all such n-tuples $\boldsymbol{\lambda}$ is called the $\boldsymbol{\lambda}$-set of \boldsymbol{A}.
- Clearly $\Lambda_{\boldsymbol{A}}$ is a finite set containing at most n ! points.

Theorem

Let $f: X \rightarrow \mathbb{R}$ be a convex function which is defined on a convex set X in \mathbb{R}^{n} containing the $\boldsymbol{\lambda}$-set $\Lambda_{\boldsymbol{A}}$ of a real symmetric $n \times n$ matrix \boldsymbol{A}. Let $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be a point of $\Lambda_{\boldsymbol{A}}$ where f assumes its maximum on $\Lambda_{\boldsymbol{A}}$. Then, for any orthonormal sequence $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ in \mathbb{R}^{n},

$$
f\left(\boldsymbol{v}_{1}^{T} \boldsymbol{A} \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}^{T} \boldsymbol{A} \boldsymbol{v}_{n}\right) \leq f\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Proof of the Theorem

- We show:
- First that the point $\boldsymbol{v}=\left(\boldsymbol{v}_{1}^{T} \boldsymbol{A} \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}^{T} \boldsymbol{A} \boldsymbol{v}_{n}\right)$ lies in X;
- Then that $f(\boldsymbol{v}) \leq f(\boldsymbol{\lambda})$, where $\boldsymbol{\lambda}=\left(\boldsymbol{\lambda}_{1}, \ldots, \lambda_{n}\right)$.

Let $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}$ be an orthonormal sequence of eigenvectors of \boldsymbol{A} corresponding to the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Then, as we proved at the beginning of this section, there is a matrix \boldsymbol{S} of Ω_{n} such that $\boldsymbol{v}=\boldsymbol{S} \boldsymbol{\lambda}$. By Birkhoff's Theorem, there exist $\mu_{1}, \ldots, \mu_{m} \geq 0$ with $\mu_{1}+\cdots+\mu_{m}=1$ such that $\boldsymbol{S}=\mu_{1} \boldsymbol{P}_{1}+\cdots+\mu_{m} \boldsymbol{P}_{m}$, where $\boldsymbol{P}_{1}, \ldots, \boldsymbol{P}_{m}$ are the permutation matrices in Ω_{n}. Hence

$$
\boldsymbol{v}=\boldsymbol{S} \boldsymbol{\lambda}=\mu_{1}\left(\boldsymbol{P}_{1} \boldsymbol{\lambda}\right)+\cdots+\mu_{m}\left(\boldsymbol{P}_{m} \boldsymbol{\lambda}\right) \in \operatorname{conv} \Lambda_{\boldsymbol{A}} \subseteq X
$$

The convexity of f shows that

$$
f(\boldsymbol{v}) \leq \mu_{1} f\left(\boldsymbol{P}_{1} \boldsymbol{\lambda}\right)+\cdots+\mu_{m} f\left(\boldsymbol{P}_{m} \boldsymbol{\lambda}\right) \leq \mu_{1} f(\boldsymbol{\lambda})+\cdots+\mu_{m} f(\boldsymbol{\lambda})=f(\boldsymbol{\lambda}) .
$$

Nonnegative Semidefinite Matrices

Theorem

Let \boldsymbol{A} be a non-negative semidefinite $n \times n$ matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Then, for any orthonormal sequence $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ in \mathbb{R}^{n},

$$
\operatorname{det} \boldsymbol{A}=\lambda_{1} \cdots \lambda_{n} \leq \prod_{j=1}^{n} \boldsymbol{v}_{j}^{T} \boldsymbol{A} \boldsymbol{v}_{j}
$$

- Since \boldsymbol{A} is non-negative semidefinite, $\lambda_{1}, \ldots, \lambda_{n} \geq 0$. The function $f: X \rightarrow \mathbb{R}$ defined on the non-negative orthant X of \mathbb{R}^{n} by the equation

$$
f\left(x_{1}, \ldots, x_{n}\right)=-\left(x_{1} \cdots x_{n}\right)^{1 / n}, \text { for } x_{1}, \ldots, x_{n} \geq 0
$$

is easily seen to be convex from a previous corollary. The $\boldsymbol{\lambda}$-set of \boldsymbol{A} is clearly contained in X. The preceding theorem shows that

$$
-\left(\prod_{j=1}^{n} \boldsymbol{v}_{j}^{T} \boldsymbol{A} \boldsymbol{v}_{j}\right)^{1 / n} \leq-\left(\lambda_{1} \cdots \lambda_{n}\right)^{1 / n}=-(\operatorname{det} \boldsymbol{A})^{1 / n}
$$

Hadamard's Determinant Inequality

Theorem (Hadamard's Determinant Inequality)

Let $\boldsymbol{A}=\left[a_{i j}\right]$ be a real $n \times n$ matrix. Then

$$
(\operatorname{det} \boldsymbol{A})^{2} \leq\left(a_{11}^{2}+\cdots+a_{n 1}^{2}\right) \cdots\left(a_{1 n}^{2}+\cdots+a_{n n}^{2}\right) .
$$

If \boldsymbol{A} is nonnegative semidefinite, then $\operatorname{det} \boldsymbol{A} \leq a_{11} \cdots a_{n n}$.

- Let $\boldsymbol{B}=\left[b_{i j}\right]$ denote the nonnegative semidefinite matrix $\boldsymbol{A}^{T} \boldsymbol{A}$. Applying the preceding theorem to \boldsymbol{B}, and using the orthonormal sequence $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}$ of elementary vectors, we deduce that

$$
(\operatorname{det} \boldsymbol{A})^{2}=\operatorname{det} \boldsymbol{B} \leq \prod_{j=1}^{n} \boldsymbol{e}_{j}^{T} \boldsymbol{B} \boldsymbol{e}_{j}=b_{11} \cdots b_{1 n} .
$$

Hence $(\operatorname{det} \boldsymbol{A})^{2} \leq\left(a_{11}^{2}+\cdots+a_{n 1}^{2}\right) \cdots\left(a_{1 n}^{2}+\cdots+a_{n n}^{2}\right)$.
When \boldsymbol{A} is itself non-negative semidefinite, we apply the preceding theorem to \boldsymbol{A} and the sequence $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}$ to get $\operatorname{det} \boldsymbol{A} \leq a_{11} \cdots a_{n n}$.

Minkowski's Determinant Inequality

Theorem (Minkowski's Determinant Inequality)

Let $\boldsymbol{A}, \boldsymbol{B}$ be nonnegative semidefinite $n \times n$ matrices. Then

$$
(\operatorname{det}(\boldsymbol{A}+\boldsymbol{B}))^{1 / n} \geq(\operatorname{det} \boldsymbol{A})^{1 / n}+(\operatorname{det} \boldsymbol{B})^{1 / n} .
$$

- Let $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ be an orthonormal sequence of eigenvectors of the non-negative semidefinite matrix $\boldsymbol{A}+\boldsymbol{B}$ corresponding to eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Then, using previous proven inequalities,

$$
\begin{aligned}
(\operatorname{det}(\boldsymbol{A}+\boldsymbol{B}))^{1 / n} & =\left(\lambda_{1} \cdots \lambda_{n}\right)^{1 / n} \\
& =\left(\prod_{j=1}^{n} \boldsymbol{v}_{j}^{T}(\boldsymbol{A}+\boldsymbol{B}) \boldsymbol{v}_{j}\right)^{1 / n} \\
& =\left(\prod_{j=1}^{n}\left(\boldsymbol{v}_{j}^{T} \boldsymbol{A} \boldsymbol{v}_{j}+\boldsymbol{v}_{j}^{T} \boldsymbol{B} \boldsymbol{v}_{j}\right)\right)^{1 / n} \\
& \geq\left(\prod_{j=1}^{n} \boldsymbol{v}_{j}^{T} \boldsymbol{A} \boldsymbol{v}_{j}\right)^{1 / n}+\left(\prod_{j=1}^{n} \boldsymbol{v}_{j}^{T} \boldsymbol{B} \boldsymbol{v}_{j}\right)^{1 / n} \\
& \geq(\operatorname{det} \boldsymbol{A})^{1 / n}+(\operatorname{det} \boldsymbol{B})^{1 / n} .
\end{aligned}
$$

Diagonals of a Square Matrix

- A diagonal of a real $n \times n$ matrix $\boldsymbol{A}=\left[a_{i j}\right]$ is a finite sequence $a_{1 \sigma(1)}, \ldots, a_{n \sigma(n)}$ of elements of \boldsymbol{A}, where $\sigma(1), \ldots, \sigma(n)$ is a permutation of $1, \ldots, n$.
- To form such a diagonal:
- We first choose any element d_{1} in the first row of \boldsymbol{A}.
- Next we choose any element d_{2} in the second row of \boldsymbol{A} not lying in the same column as d_{1}.
- Then we choose any element d_{3} in the third row of \boldsymbol{A} not lying in the same column as either d_{1} or d_{2}.
- Continuing in this way, we produce a diagonal d_{1}, \ldots, d_{n} of \boldsymbol{A}.
- Clearly \boldsymbol{A} has at most n ! different diagonals.
- The diagonal $a_{11}, \ldots, a_{n n}$ is called the leading diagonal of \boldsymbol{A}.

Positive Diagonals and Doubly Stochastic Matrices

- A diagonal d_{1}, \ldots, d_{n} of \boldsymbol{A} is said to be positive if $d_{1}, \cdots, d_{n}>0$.
- It is a non-trivial fact that a doubly stochastic matrix always has a positive diagonal.
Indeed, by Birkhoff's Theorem, each doubly stochastic matrix \boldsymbol{A} in Ω_{n} can be expressed in the form

$$
\boldsymbol{A}=\lambda_{1} \boldsymbol{P}_{1}+\cdots+\lambda_{m} \boldsymbol{P}_{m},
$$

where $\boldsymbol{P}_{1}, \ldots, \boldsymbol{P}_{m}$ are permutation matrices and $\lambda_{1}, \ldots, \lambda_{m}>0$ with $\lambda_{1}+\cdots+\lambda_{m}=1$.
For each $i=1, \ldots, n$, let \boldsymbol{P}_{1}, have a 1 in its i th row and $\sigma(i)$ th column. Then $a_{1 \sigma(1)}, \ldots, a_{n \sigma(n)}$ is a positive diagonal of \boldsymbol{A}.

A Corollary to Birkhoff's Theorem

Theorem

Let $\boldsymbol{C}=\left[c_{i j}\right]$ be a real $n \times n$ matrix. Then there exists a diagonal $c_{1 \sigma(1)}, \ldots, c_{n \sigma(n)}$ of \boldsymbol{C} such that

$$
c_{1 \sigma(1)}+\cdots+c_{n \sigma(n)} \leq \sum_{i, j=1}^{n} c_{i j} s_{i j},
$$

for every doubly stochastic $n \times n$ matrix $S=\left[s_{i j}\right]$.

- Define a function $f: \Omega_{n} \rightarrow \mathbb{R}$ by the equation

$$
f(\boldsymbol{S})=\sum_{i, j=1}^{n} c_{i j} s_{i j},
$$

for each doubly stochastic matrix $\boldsymbol{S}=\left[s_{i j}\right]$ in Ω_{n}. Let $\boldsymbol{P}_{1}, \ldots, \boldsymbol{P}_{m}$ be the permutation matrices in Ω_{n}. Choose one of these matrices, $\boldsymbol{P}=\left[p_{i j}\right]$, say, for which $f(\boldsymbol{P})=\min \left\{f\left(\boldsymbol{P}_{1}\right), \ldots, f\left(\boldsymbol{P}_{m}\right)\right\}$. Suppose that the 1 in the i th row of \boldsymbol{P} lies in its $\sigma(i)$ th column.

A Corollary to Birkhoff's Theorem (Cont'd)

- By Birkhoff's Theorem, each doubly stochastic matrix $\boldsymbol{S}=\left[s_{i j}\right]$ in Ω_{n} can be written in the form $\boldsymbol{S}=\lambda_{1} \boldsymbol{P}_{1}+\cdots+\lambda_{m} \boldsymbol{P}_{m}$, for some $\lambda_{1}, \ldots, \lambda_{m} \geq 0$ with $\lambda_{1}+\cdots+\lambda_{m}=1$. Thus,

$$
f(\boldsymbol{S})=\lambda_{1} f\left(\boldsymbol{P}_{1}\right)+\cdots+\lambda_{m} f\left(\boldsymbol{P}_{m}\right) \geq f(\boldsymbol{P})
$$

Finally,

$$
\begin{aligned}
c_{1 \sigma(1)}+\cdots+c_{n \sigma(n)} & =\sum_{i, j=1}^{n} c_{i j} p_{i j} \\
& =f(\boldsymbol{P}) \\
& \leq f(\boldsymbol{S}) \\
& =\sum_{i, j=1}^{n} c_{i j} s_{i j}
\end{aligned}
$$

Doubly Stochastic Matrices and Average Size of a Diagonal

Theorem

Each doubly stochastic $n \times n$ matrix has a positive diagonal whose harmonic mean is at least $\frac{1}{n}$.

- Let $\boldsymbol{A}=\left[a_{i j}\right]$ be an $n \times n$ doubly stochastic matrix. Define an $n \times n$ matrix [$c_{i j}$] by the equations

$$
c_{i j}= \begin{cases}\frac{1}{a_{i j}}, & \text { for } a_{i j}>0 \\ n^{2}+1, & \text { for } a_{i j}=0\end{cases}
$$

By the preceding theorem, some diagonal $c_{1 \sigma(1)}, \ldots, c_{n \sigma(n)}$ of $\left[c_{i j}\right]$ satisfies the inequalities

$$
c_{1 \sigma(1)}+\cdots+c_{n \sigma(n)} \leq \sum_{i, j=1}^{n} c_{i j} a_{i j} \leq n^{2} .
$$

Now all the terms on the left-hand side are positive, and so no term can be equal to $n^{2}+1$.

Doubly Stochastic Matrices and Size of a Diagonal (Cont'd)

- This implies that, for $i=1, \ldots, n, a_{i \sigma(i)}>0$ and $c_{i \sigma(i)}=\frac{1}{a_{i \sigma(i)}}$. Thus, from the inequality, we get

$$
\frac{1}{a_{1 \sigma(1)}}+\cdots+\frac{1}{a_{n \sigma(n)}} \leq n^{2}
$$

Consequently, the harmonic mean

$$
\left(\frac{1}{n}\left(\frac{1}{a_{1 \sigma(1)}}+\cdots+\frac{1}{a_{n \sigma(n)}}\right)\right)^{-1}
$$

of the diagonal $a_{1 \sigma(1)}, \ldots, a_{n \sigma(n)}$ is at least $\frac{1}{n}$.

A Consequence

Corollary

Each doubly stochastic $n \times n$ matrix [$a_{i j}$] has a positive diagonal $a_{1 \sigma(1)}, \ldots, a_{n \sigma(n)}$ satisfying the inequalities

$$
a_{1 \sigma(1)}+\cdots+a_{n \sigma(n)} \geq 1 \quad \text { and } \quad a_{1 \sigma(1)} \cdots a_{n \sigma(n)} \geq n^{-n} .
$$

- By the theorem,

$$
\frac{1}{n} \leq \frac{n}{\frac{1}{a_{1 \sigma(1)}}+\cdots+\frac{1}{a_{n \sigma(n)}}} .
$$

But the harmonic arithmetic and geometric means satisfy

$$
\frac{n}{\frac{1}{a_{1 \sigma(1)}}+\cdots+\frac{1}{a_{n \sigma(n)}}} \leq \sqrt[n]{a_{1 \sigma(1)} \cdots a_{n \sigma(n)}} \leq \frac{a_{1 \sigma(1)}+\cdots+a_{n \sigma(n)}}{n} .
$$

Therefore, $a_{1 \sigma(1)}+\cdots+a_{n \sigma(n)} \geq 1$ and $a_{1 \sigma(1)} \cdots a_{n \sigma(n)} \geq n^{-n}$.

