Introduction to Convexity

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

D Convex Functions

- Convex Functions on the Real Line
- Classical Inequalities
- The Gamma and Beta Functions
- Convex Functions on \mathbb{R}^n
- Continuity and Differentiability
- Support Functions
- The Convex Programming Problem
- Matrix Inequalities

Subsection 1

Convex Functions on the Real Line

Convex and Concave Functions

- We will be concerned with a real-valued function f: I → R defined on a non-degenerate (i.e., contains more than one point) interval I of the real line.
- Such a function f is said to be convex if

 $f(\lambda x + \mu y) \leq \lambda f(x) + \mu f(y),$

whenever $x, y \in I$ and $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$.

- Geometrically, f is convex if every chord joining two points on its graph lies on or above the graph.
- If $-f: I \to \mathbb{R}$ is convex, then $f: I \to \mathbb{R}$ is said to be **concave**.

Example

• We show that the square function $f : \mathbb{R} \to \mathbb{R}$ defined for real x by the equation

$$f(x) = x^2$$

is convex.

• Let $x, y \in \mathbb{R}$ and let $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$.

Then

$$\begin{split} \lambda f(x) + \mu f(y) - f(\lambda x + \mu y) &= \lambda x^2 + \mu y^2 - (\lambda x + \mu y)^2 \\ &= \lambda x^2 + \mu y^2 - \lambda^2 x^2 - 2\lambda \mu x y - \mu^2 y^2 \\ &= \lambda (1 - \lambda) x^2 - 2\lambda \mu x y + \mu (1 - \mu) y^2 \\ &= \lambda \mu x^2 - 2\lambda \mu x y + \lambda \mu y^2 \\ &= \lambda \mu (x^2 - 2xy + y^2) \\ &= \lambda \mu (x - y)^2 \ge 0. \end{split}$$

• This establishes the convexity of the square function.

The Three Chords Lemma

Theorem (Three Chords Lemma)

Let $f : I \to \mathbb{R}$ be a convex function and let $x, y, z \in I$ satisfy x < z < y. Then

$$\frac{f(z) - f(x)}{z - x} \le \frac{f(y) - f(x)}{y - x} \le \frac{f(y) - f(z)}{y - z}$$

• We express z as a convex combination of x, y: $z = \frac{y-z}{y-x}x + \frac{z-x}{y-x}y$. By the convexity of f, $f(z) \le \frac{y-z}{y-x}f(x) + \frac{z-x}{y-x}f(y)$. Thus,

$$f(z) - f(x) \le \frac{y - z - y + x}{y - x} f(x) + \frac{z - x}{y - x} f(y) = \frac{z - x}{y - x} (f(y) - f(x)).$$

So, we get
$$\frac{f(z) - f(x)}{z - x} \le \frac{f(y) - f(x)}{y - x}$$

The other inequality follows similarly.

George Voutsadakis (LSSU)

The Slope Function

Corollary

Let $f: I \to \mathbb{R}$ be a convex function and let $a \in I$. Then the function $g: I \setminus \{a\} \to \mathbb{R}$ defined by the equation

$$g(x) = \frac{f(x) - f(a)}{x - a}, \quad x \in I \setminus \{a\},$$

is increasing.

If b, c ∈ I \{a} with b < c, then we must show that g(b) ≤ g(c).
Either b < c < a, b < a < c, or a < b < c. Suppose that b < c < a. Then the theorem with x = b, y = a, z = c shows that g(b) ≤ g(c).
The other cases can be proved in a similar fashion.

Convexity and Differentiability

Theorem

Let $f: I \to \mathbb{R}$ be a convex function. Then f possesses left and right derivatives at each interior point of I. Moreover, if a, b are interior points of I with a < b, then

$$f'_{-}(a) \le f'_{+}(a) \le \frac{f(b) - f(a)}{b - a} \le f'_{-}(b) \le f'_{+}(b).$$

• Let c be an interior point of f and let x, y be points of I such that x < c < y. The corollary shows that, as x increases to c from below, $\frac{f(x)-f(c)}{x-c}$ increases and is bounded above by $\frac{f(y)-f(c)}{y-c}$. Thus, the left derivative $f'_{-}(c)$ exists and satisfies the inequality

$$f'_{-}(c) \leq \frac{f(y) - f(c)}{y - c}$$

Convexity and Differentiability (Cont'd)

Letting y decrease to c in this inequality, we see that the right derivative f'₊(c) exists and satisfies the inequality f'₋(c) ≤ f'₊(c). Thus, if a, b are interior points of I, then

$$f'_{-}(a) \le f'_{+}(a)$$
 and $f'_{-}(b) \le f'_{+}(b)$.

By the corollary, for a < x < b,

$$\frac{f(x)-f(a)}{x-a} \leq \frac{f(b)-f(a)}{b-a} \quad \text{and} \quad \frac{f(b)-f(a)}{b-a} \leq \frac{f(b)-f(x)}{b-x}.$$

Letting $x \to a^+$ in the first and $x \to b^-$ in the second, we get

$$f'_{+}(a) \leq \frac{f(b) - f(a)}{b - a} \leq f'_{-}(b).$$

Convexity and Continuity

Corollary

Let $f: I \to \mathbb{R}$ be a convex function. Then, on the interior of I, f is continuous and f'_{-} , f'_{+} are increasing.

• At each interior point of *I*, *f* has both left and right derivatives, and so is continuous from the left and from the right.

Hence it is continuous.

That f'_{-} , f'_{+} are increasing on the interior of f follows immediately from the theorem.

Behavior at the Boundary

• A convex function need not be continuous at the boundary points of its domain.

Example: The convex function $f : [0,1] \rightarrow \mathbb{R}$ defined by the equations

$$f(x) = \begin{cases} 0, & \text{if } 0 < x < 1, \\ 1, & \text{if } x = 0, 1. \end{cases}$$

is not continuous at 0 and 1.

• Also a convex function need not be differentiable, even at an interior point of its domain.

Example: The modulus (absolute value) function is not differentiable at the origin. There its left and right derivatives are -1 and 1, respectively.

Points of NonDifferentiability

Corollary

Let $f: I \to \mathbb{R}$ be a convex function. Then the set of those points of I at which f is not differentiable is countable.

• Let C be the set of points of intI at which f is not differentiable. With each c in C, we associate a rational r_c such that $f'_-(c) < r_c < f'_+(c)$. It follows from the theorem that, if $c, d \in C$ with c < d, then

$$f'_{-}(c) < r_{c} < f'_{+}(c) < f'_{-}(d) < r_{d} < f'_{+}(d),$$

whence $r_c < r_d$. This shows immediately that the set of points of int*I*, and hence of *I*, at which *I* is not differentiable is countable.

Criterion for Convexity

Theorem

Let $f: I \to \mathbb{R}$ be a differentiable function. Then f is convex if and only if f' is increasing.

Suppose first that f is convex. Let a, b ∈ I with a < b. Then a previous corollary shows that

$$f'(a) = \lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} \le \frac{f(b) - f(a)}{b - a} \le \lim_{x \to b^-} \frac{f(x) - f(b)}{x - b} = f'(b).$$

Hence f'(a) < f'(b) and f' is increasing.

Criterion for Convexity (Converse)

• Suppose next that f' is increasing. Let $a, b \in I$ with a < b and let $\lambda, \mu > 0$ with $\lambda + \mu = 1$. By the first Mean Value Theorem, there exist real numbers, c, d with $a < c < \lambda a + \mu b < d < b$, such that

$$\frac{f(\lambda a + \mu b) - f(a)}{\lambda a + \mu b - a} = f'(c) \le f'(d) = \frac{f(b) - f(\lambda a + \mu b)}{b - \lambda a - \mu b}.$$

So we get

$$\frac{f(\lambda a + \mu b) - f(a)}{\mu(b - a)} \le \frac{f(b) - f(\lambda a + \mu b)}{\lambda(b - a)}$$
$$\lambda f(\lambda a + \mu b) - \lambda f(a) \le \mu f(b) - \mu f(\lambda a + \mu b)$$
$$f(\lambda a + \mu b) \le \lambda f(a) + \mu f(b).$$

Hence, f is convex.

Corollary

Let $f: I \to \mathbb{R}$ be a twice differentiable function. Then f is convex if and only if $f''(x) \ge 0$ for all x in I.

George Voutsadakis (LSSU)

Example

• The function e^x is convex on \mathbb{R} .

$$(e^{x})'' = (e^{x})' = e^{x} > 0.$$

• The function $-\log x$ is convex on $(0, +\infty)$.

$$(-\log x)'' = \left(-\frac{1}{x}\right)' = \frac{1}{x^2} > 0.$$

• The function $x \log x$ is convex on $(0, +\infty)$.

$$(x \log x)'' = \left(\log x + x\frac{1}{x}\right)' = \frac{1}{x} > 0.$$

• The function x^p , $p \ge 1$, is convex on $[0,\infty)$.

$$(x^{p})'' = (px^{p-1})' = p(p-1)x^{p-2} \ge 0.$$

Support

- Suppose that f: I → ℝ is a real-valued function defined on an open interval I of the real line and that x₀ ∈ I.
- Then an affine transformation T : ℝ → ℝ is said to support f at x₀ if T(x₀) = f(x₀) and T(x) ≤ f(x), for all x ∈ I. We say that f has support T at x₀.

- Such an affine transformation T can be expressed in the form $T(x) = f(x_0) + m(x x_0)$ for some real number m.
- y = f(x₀) + m(x − x₀) is the equation of the line with slope m passing through the point (x₀, f(x₀)) on the graph of f.
- The condition $T(x) \le f(x)$ means that this line lies on or below the graph of f.

Convexity and Support

Theorem

Let $f: I \to \mathbb{R}$ be a real-valued function defined on an open interval I of \mathbb{R} . Then f is convex if and only if it has support at each point of I.

• Suppose first that f has support at each point of I. Let $x, y \in I$ and let $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$. Let T support f at $\lambda x + \mu y$. Then

$$f(\lambda x + \mu y) = T(\lambda x + \mu y) = \lambda T(x) + \mu T(y) \le \lambda f(x) + \mu f(y).$$

So f is convex.

Convexity and Support (Converse)

• Suppose next that f is convex. Let $x_0 \in I$ and let m be a real number satisfying the inequalities $f'_-(x_0) \le m \le f'_+(x_0)$. Define an affine transformation $T : \mathbb{R} \to \mathbb{R}$ by the equation

$$T(x) = f(x_0) + m(x - x_0), \quad x \in \mathbb{R}.$$

Let $y, z \in I$ be such that $y < x_0 < z$. Then, by a previous theorem,

$$\begin{array}{rcl} \frac{f(y)-f(x_0)}{y-x_0} & \leq & f'_-(x_0) \\ & \leq & \frac{T(y)-T(x_0)}{y-x_0} = m = \frac{T(z)-T(x_0)}{z-x_0} \\ & \leq & f'_+(x_0) \\ & \leq & \frac{f(z)-f(x_0)}{z-x_0}. \end{array}$$

Hence $T(y) \le f(y)$ and $T(z) \le f(z)$. Thus T supports f at x_0 .

Differentiability and Support

Theorem

Let $f: I \to \mathbb{R}$ be a convex function defined on an open interval I of \mathbb{R} . Then f is differentiable at a point x_0 of I if and only if it has unique support at x_0 .

• Suppose first that f is differentiable at x_0 . Let $T : \mathbb{R} \to \mathbb{R}$ support f at x_0 ; say

$$T(x) = f(x_0) + m(x - x_0), \text{ for } x \in \mathbb{R},$$

where *m* is a real number. Let $y, z \in I$ be such that $y < x_0 < z$. Then

$$\frac{f(y) - f(x_0)}{y - x_0} \le \frac{T(y) - T(x_0)}{y - x_0} = m = \frac{T(z) - T(x_0)}{z - x_0} \le \frac{f(z) - f(x_0)}{z - x_0}.$$

Thus, letting $y \to x_0^-$, $z \to x_0^+$, we deduce that $m = f'(x_0)$. Hence, f has unique support at x_0 .

Differentiability and Support (Converse)

Suppose next that f has unique support at x₀.
 Let the real number m satisfy f'_(x₀) ≤ m ≤ f'₊(x₀).
 Then, as in the proof of the preceding theorem, the affine transformation T defined by the equation

$$T(x) = f(x_0) + m(x - x_0)$$

supports f at x_0 . But f has unique support at x_0 . Hence, m is unique and $f'_-(x_0) = f'_+(x_0)$. So f is differentiable at x_0 .

Subsection 2

Classical Inequalities

Jensen's Inequality

Theorem (Jensen's Inequality)

Let $f: I \to \mathbb{R}$ be a convex function. Let $x_1, \ldots, x_m \in I$ and let $\lambda_1, \ldots, \lambda_m \ge 0$ with $\lambda_1 + \cdots + \lambda_m = 1$. Then

$$f(\lambda_1 x_1 + \dots + \lambda_m x_m) \le \lambda_1 f(x_1) + \dots + \lambda_m f(x_m)$$

We argue by induction on m.

The inequality is trivially true when m = 1.

Assume, then, that it is true when m = k, where $k \ge 1$.

Let a real number x be defined by the equation

$$x = \lambda_1 x_1 + \dots + \lambda_{k+1} x_{k+1},$$

where $x_1, \ldots, x_{k+1} \in I$ and $\lambda_1, \ldots, \lambda_{k+1} \ge 0$ with $\lambda_1 + \cdots + \lambda_{k+1} = 1$. At least one of $\lambda_1, \ldots, \lambda_{k+1}$ must be less than 1, say $\lambda_{k+1} < 1$.

Jensen's Inequality (Cont'd)

Write

$$\lambda = \lambda_1 + \dots + \lambda_k = 1 - \lambda_{k+1}.$$

Then $\lambda > 0$. Write

$$y = \frac{\lambda_1}{\lambda} x_1 + \dots + \frac{\lambda_k}{\lambda} x_k.$$

The induction hypothesis shows that

$$f(y) \leq \frac{\lambda_1}{\lambda} f(x_1) + \dots + \frac{\lambda_k}{\lambda} f(x_k).$$

Since f is convex,

$$f(x) = f(\lambda y + \lambda_{k+1} x_{k+1}) \\ \leq \lambda f(y) + \lambda_{k+1} f(x_{k+1}) \\ \leq \lambda_1 f(x_1) + \dots + \lambda_{k+1} f(x_{k+1}).$$

This establishes the inequality for m = k + 1.

Arithmetic and Geometric Means

- In this section the word number will be used exclusively to mean *positive real number*.
- The arithmetic mean and the geometric mean of numbers x₁ and x₂ are defined to be

$$\frac{1}{2}(x_1+x_2) \quad \text{and} \quad \sqrt{x_1x_2}.$$

- The basic inequality between these means is that the geometric mean never exceeds the arithmetic mean, i.e., $\sqrt{x_1x_2} \le \frac{1}{2}(x_1 + x_2)$.
- This follows immediately from the fact that $(\sqrt{x_1} \sqrt{x_2})^2 \ge 0$.
- The arithmetic mean and the geometric mean of numbers x_1, \ldots, x_m are defined, respectively, to be

$$\frac{1}{m}(x_1+\cdots+x_m)$$
 and $(x_1\cdots x_m)^{1/m}$.

• Once again the geometric mean never exceeds the arithmetic mean, although the proof is appreciably more difficult than when m = 2.

Weighted Arithmetic and Geometric Means

- The concepts of arithmetic and geometric means can be generalized by attaching weights $\alpha_1, \ldots, \alpha_m$ to the numbers as follows.
- Let $\alpha_1, \ldots, \alpha_m$ be numbers whose sum is 1.
- Then the numbers

$$\alpha_1 x_1 + \dots + \alpha_m x_m$$
 and $x_1^{\alpha_1} \cdots x_m^{\alpha_m}$

are called, respectively, the weighted arithmetic mean and the weighted geometric mean of the numbers x_1, \ldots, x_m with respect to the weights $\alpha_1, \ldots, \alpha_m$.

• These weighted means reduce to the usual means when each of the weights $\alpha_1, \ldots, \alpha_m$ is $\frac{1}{m}$.

Relations Between Weighted Means

Theorem

Let
$$x_1, \dots, x_m, \alpha_1, \dots, \alpha_m > 0$$
 with $\alpha_1 + \dots + \alpha_m = 1$. Then
 $x_1^{\alpha_1} \cdots x_m^{\alpha_m} \le \alpha_1 x_1 + \dots + \alpha_m x_m$.

• The function – log is convex on $(0,\infty)$. Hence, by Jensen's inequality,

$$-\log(\alpha_1 x_1 + \dots + \alpha_m x_m) \leq -(\alpha_1 \log x_1 + \dots + \alpha_m \log x_m) \\ = -\log(x_1^{\alpha_1} \cdots x_m^{\alpha_m}).$$

Since log is a strictly increasing function, we can deduce that

$$x_1^{\alpha_1}\cdots x_m^{\alpha_m} \leq \alpha_1 x_1 + \cdots + \alpha_m x_m.$$

Corollary

Let $x_1, ..., x_m > 0$. Then

$$(x_1\cdots x_m)^{1/m}\leq \frac{1}{m}(x_1+\cdots+x_m).$$

George Voutsadakis (LSSU)

A very General Inequality

Theorem

Let $a_{ij} > 0$ (i = 1, ..., m; j = 1, ..., n) and $\alpha_1, ..., \alpha_m > 0$ with $\alpha_1 + \cdots + \alpha_m = 1$. Then

$$a_{11}^{\alpha_1} \cdots a_{m1}^{\alpha_m} + \cdots + a_{1n}^{\alpha_1} \cdots a_{mn}^{\alpha_m} \le (a_{11} + \cdots + a_{1n})^{\alpha_1} \cdots (a_{m1} + \cdots + a_{mn})^{\alpha_m}$$

• We use the inequality between weighted means to deduce that, for each *j* = 1,...,*n*,

$$\frac{a_{1j}^{\alpha_1} \cdots a_{mj}^{\alpha_m}}{(a_{11} + \cdots + a_{1n})^{\alpha_1} \cdots (a_{m1} + \cdots + a_{mn})^{\alpha_m}} \le \frac{\alpha_1 a_{1j}}{a_{11} + \cdots + a_{1n}} + \cdots + \frac{\alpha_m a_{mj}}{a_{m1} + \cdots + a_{mn}}.$$

Adding these n inequalities together, we deduce that

$$\sum_{j=1}^{n} \frac{a_{ij}^{\alpha_1} \cdots a_{mj}^{\alpha_m}}{(a_{11} + \cdots + a_{1n})^{\alpha_1} \cdots (a_{m1} + \cdots + a_{mn})^{\alpha_m}} \leq \alpha_1 + \cdots + \alpha_m = 1.$$

The desired result follows immediately.

Hölder's Inequality

Corollary

Let $x_1, ..., x_m, y_1, ..., y_m > 0$. Then

$$(x_1 \cdots x_m)^{1/m} + (y_1 \cdots y_m)^{1/m} \le (x_1 + y_1)^{1/m} \cdots (x_m + y_m)^{1/m}$$

• Let
$$n = 2$$
, $\alpha_1 = \frac{1}{m}, ..., \alpha_m = \frac{1}{m}, a_{i1} = x_i$ and $a_{i2} = y_i$ in the theorem.

Corollary (Hölder's Inequality)

Let $x_1, \ldots, x_n, y_1, \ldots, y_n > 0$. Suppose that p, q > 0 satisfy $\frac{1}{p} + \frac{1}{q} = 1$. Then

$$\sum_{i=1}^{n} x_{i} y_{i} \le \left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1/p} \left(\sum_{i=1}^{n} y_{i}^{q}\right)^{1/q}$$

• Let m = 2, $\alpha_1 = \frac{1}{p}$, $\alpha_2 = \frac{1}{q}$ and let $a_{1j} = x_j^p$, $a_{2j} = y_j^q$ in the above theorem.

George Voutsadakis (LSSU)

Minkowski's Inequality

Theorem (Minkowski's Inequality)

Let $x_1, \ldots, x_n, y_1, \ldots, y_n > 0$ and let $p \ge 1$. Then

$$\left(\sum_{i=1}^{n} (x_1 + y_i)^p\right)^{1/p} \le \left(\sum_{i=1}^{n} x_i^p\right)^{1/p} + \left(\sum_{i=1}^{n} y_i^p\right)^{1/p}$$

• Write $a = (\sum_{i=1}^{n} x_i^p)^{1/p}$ and $b = (\sum_{i=1}^{n} y_i^p)^{1/p}$. Since x^p $(p \ge 1)$ is convex on $(0, \infty)$, we can deduce that, for i = 1, ..., n,

$$\left(\frac{x_i+y_i}{a+b}\right)^p = \left(\frac{a}{a+b}\left(\frac{x_i}{a}\right) + \frac{b}{a+b}\left(\frac{y_i}{b}\right)\right)^p \le \frac{a}{a+b}\left(\frac{x_i}{a}\right)^p + \frac{b}{a+b}\left(\frac{y_i}{b}\right)^p.$$

Adding these n inequalities together, we deduce

$$\sum_{i=1}^{n} \left(\frac{x_{i}+y_{i}}{a+b}\right)^{p} \leq \frac{a}{a+b} \left(\frac{\sum_{i=1}^{n} x_{i}^{p}}{a^{p}}\right) + \frac{b}{a+b} \left(\frac{\sum_{i=1}^{n} y_{i}^{p}}{b^{p}}\right) = \frac{a}{a+b} + \frac{b}{a+b} = 1.$$

Thus, $\sum_{i=1}^{n} (x_{1}+y_{i})^{p} \leq (a+b)^{p} = \left(\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1/p} + \left(\sum_{i=1}^{n} y_{i}^{p}\right)^{1/p}\right)^{p}.$

Harmonic Mean and Root Mean Square

• Given the numbers x_1, \ldots, x_m , their harmonic mean is defined to be

$$\frac{1}{\frac{1}{m}\left(\frac{1}{x_1}+\cdots+\frac{1}{x_m}\right)}$$

• Their root mean square is defined to be

$$\sqrt{\frac{x_1^2 + \dots + x_m^2}{m}}.$$

- The basic inequalities connecting the four means are:
 - harmonic mean ≤ geometric mean
 - ≤ arithmetic mean
 - \leq root mean square.

Weighted Harmonic Mean and Root Mean Square

- The harmonic mean and the root mean square are generalized in the natural way to the corresponding weighted means.
- Let $\alpha_1, \ldots, \alpha_m > 0$ with $\alpha_1 + \cdots + \alpha_m = 1$.
- Then the numbers

$$\frac{1}{\frac{\alpha_1}{x_1} + \dots + \frac{\alpha_m}{x_m}} \quad \text{and} \quad \sqrt{\alpha_1 x_1^2 + \dots + \alpha_m x_m^2}$$

are called, respectively, the weighted harmonic mean and the weighted root mean square of the numbers x_1, \ldots, x_m with respect to the weights $\alpha_1, \ldots, \alpha_m$.

• We will see that the basic inequalities stated above connecting the four unweighted means continue to hold for the weighted means.

Mean of Order *t*

- The four means so far introduced are special cases of the mean of order *t*:
- Let $\alpha = (\alpha_1, \dots, \alpha_m)$, $x = (x_1, \dots, x_m)$, where $\alpha_1, \dots, \alpha_m, x_1, \dots, x_m > 0$ and $\alpha_1 + \dots + \alpha_m = 1$.
- Then for each non-zero real number t, the mean $M_t(x; \alpha)$ of order t is defined by the equation

$$M_t(\boldsymbol{x};\boldsymbol{\alpha}) = (\alpha_1 x_1^t + \dots + \alpha_m x_m^t)^{1/t}.$$

- The values t = -1, 1, 2 give rise, respectively, to the weighted harmonic mean, the weighted arithmetic mean and the weighted root mean square.
- The weighted geometric mean is not the mean of order *t* for any non-zero real number *t*.

The Mean of Order Zero

- We consider the limit of $M_t(\mathbf{x}; \boldsymbol{\alpha})$ as t tends to zero.
- Taking logarithms on both sides of the defining equation of $M_t(\mathbf{x}; \boldsymbol{\alpha})$,

$$\log M_t(\boldsymbol{x};\boldsymbol{\alpha}) = \frac{\log(\alpha_1 x_1^t + \dots + \alpha_m x_m^t)}{t}$$

- By definition, $\lim_{t\to 0} \frac{\log(\alpha_1 x_1^t + \dots + \alpha_m x_m^t)}{t}$ is the derivative of $\log(\alpha_1 x_1^t + \dots + \alpha_m x_m^t)$ at t = 0.
- We calculate

$$\left[\log\left(\alpha_{1}x_{1}^{t}+\cdots+\alpha_{m}x_{m}^{t}\right)\right]'=\frac{\alpha_{1}x_{1}^{t}\log x_{1}+\cdots+\alpha_{m}x_{m}^{t}\log x_{m}}{\alpha_{1}x_{1}^{t}+\cdots+\alpha_{m}x_{m}^{t}}.$$

Therefore,

$$\lim_{t \to 0} \frac{\log(\alpha_1 x_1^t + \dots + \alpha_m x_m^t)}{t} = \alpha_1 \log x_1 + \dots + \alpha_m \log x_m$$
$$= \log(x_1^{\alpha_1} \cdots x_m^{\alpha_m}).$$

• Hence, $\lim_{t\to 0} \log M_t(\mathbf{x}; \mathbf{\alpha}) = \log (x_1^{\alpha_1} \cdots x_m^{\alpha_m}).$

The Mean of Order Zero (Cont'd)

We calculated

$$\lim_{t\to 0} \log M_t(\mathbf{x}; \boldsymbol{\alpha}) = \log (x_1^{\alpha_1} \cdots x_m^{\alpha_m}).$$

Thus

$$\lim_{t \to 0} M_t(\boldsymbol{x}; \boldsymbol{\alpha}) = \lim_{t \to 0} e^{\log M_t(\boldsymbol{x}; \boldsymbol{\alpha})}$$
$$= e^{\lim_{t \to 0} \log M_t(\boldsymbol{x}; \boldsymbol{\alpha})}$$
$$= e^{\log(x_1^{\alpha_1} \cdots x_m^{\alpha_m})}$$
$$= x_1^{\alpha_1} \cdots x_m^{\alpha_m}.$$

• So
$$M_t(\mathbf{x}; \boldsymbol{\alpha}) \xrightarrow{t \to 0} x_1^{\alpha_1} \cdots x_m^{\alpha_m}$$
.

• We define the mean of order zero

$$M_0(\boldsymbol{x};\boldsymbol{\alpha}):=x_1^{\alpha_1}\cdots x_m^{\alpha_m}.$$

• $M_t(\mathbf{x}; \boldsymbol{\alpha})$ is now defined for every real number t and is continuous on the whole of \mathbb{R} , in particular at t = 0.

Monotonicity of Mean of Order *t*

Theorem

Let $\mathbf{x} = (x_1, \dots, x_m)$, $\alpha = (\alpha_1, \dots, \alpha_m)$, where x_1, \dots, x_m , $\alpha_1, \dots, \alpha_m > 0$ and $\alpha_1 + \dots + \alpha_m = 1$. Then $M_t(\mathbf{x}; \boldsymbol{\alpha})$ is an increasing function of t.

Since x and α are fixed, we write M_t(x; α) simply as M(t). We show that M'(t) ≥ 0 for all non-zero real numbers t. Since M is continuous at 0, this shows that M is increasing on ℝ. We have tlog M(t) = log (α₁x₁^t + ··· + α_mx_m^t). So, by differentiating,

$$t\frac{M'(t)}{M(t)} + \log M(t) = \frac{\alpha_1 x_1^t \log x_1 + \dots + \alpha_m x_m^t \log x_m}{\alpha_1 x_1^t + \dots + \alpha_m x_m^t}, \ t \neq 0.$$

Thus, for $t \neq 0$,

$$t^2 \frac{M'(t)}{M(t)} + t \log M(t) = \frac{\alpha_1 x_1^t \log x_1^t + \dots + \alpha_m x_m^t \log x_m^t}{\alpha_1 x_1^t + \dots + \alpha_m x_m^t}.$$

Monotonicity of Mean of Order t (Cont'd)

We get

$$\frac{t^2 M'(t)(\alpha_1 x_1^t + \dots + \alpha_m x_m^t)}{M(t)} = \alpha_1 x_1^t \log x_1^t + \dots + \alpha_m x_m^t \log x_m^t - (\alpha_1 x_1^t + \dots + \alpha_m x_m^t) \log (\alpha_1 x_1^t + \dots + \alpha_m x_m^t).$$

Jensen's inequality, applied to the convex function $y \log y$ on $(0,\infty)$, shows that, for all $y_1, \ldots, y_m > 0$,

$$(\alpha_1 y_1 + \dots + \alpha_m y_m) \log (\alpha_1 y_1 + \dots + \alpha_m y_m)$$

$$\leq \alpha_1 y_1 \log y_1 + \dots + \alpha_m y_m \log y_m.$$

If we put $y_i = x_i^t$ for i = 1, ..., m in this inequality, we deduce from the equality previously stated that $M'(t) \ge 0$ for $t \ne 0$.

Corollary

Let $\mathbf{x} = (x_1, \dots, x_m)$, $\mathbf{\alpha} = (\alpha_1, \dots, \alpha_m)$, where x_1, \dots, x_m , $\alpha_1, \dots, \alpha_m > 0$ and $\alpha_1 + \dots + \alpha_m = 1$. Then $M_{-1}(\mathbf{x}; \mathbf{\alpha}) \le M_0(\mathbf{x}; \mathbf{\alpha}) \le M_1(\mathbf{x}; \mathbf{\alpha}) \le M_2(\mathbf{x}; \mathbf{\alpha})$.
Subsection 3

The Gamma and Beta Functions

Hölder's Inequality for Intervals

• $\int_I f$ denotes the (Riemann) integral of a continuous function $f: I \to \mathbb{R}$ over an interval I of the real line.

Theorem (Hölder's Inequality for Integrals)

Let $f,g: I \to \mathbb{R}$ be continuous non-negative functions for which the integrals $\int_I f$, $\int_I g$ are positive. Let $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$. Then

$$\int_{I} f^{\lambda} g^{\mu} \leq \left(\int_{I} f \right)^{\lambda} \left(\int_{I} g \right)^{\mu}.$$

• By a previous theorem, for $t \in I$, $\left(\frac{f(t)}{\int_I f}\right)^{\lambda} \left(\frac{g(t)}{\int_I g}\right)^{\mu} \leq \lambda \frac{f(t)}{\int_I f} + \mu \frac{g(t)}{\int_I g}$. We integrate both sides of this inequality to deduce that

$$\frac{\int_{I} f^{\lambda}(t) g^{\mu}(t) dt}{(\int_{I} f)^{\lambda} (\int_{I} g)^{\mu}} \leq \lambda \frac{\int_{I} f}{\int_{I} f} + \mu \frac{\int_{I} g}{\int_{I} g} = \lambda + \mu = 1.$$

Hence $\int_I f^{\lambda} f^{\mu} \leq (\int_I f)^{\lambda} (\int_I g)^{\mu}$.

Log-Convex Functions

- Let $f: I \to \mathbb{R}$ be a function defined on an interval I of the real line.
- Then *I* is said to be log-convex if it is positive and its logarithm, log *f* : *I* → ℝ, is convex.
- Thus a positive function f is log-convex on an interval I if and only if, whenever $x, y \in I$ and $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$, we have

$$\log f(\lambda x + \mu y) \le \lambda \log f(x) + \mu \log f(y) = \log f^{\lambda}(x) f^{\mu}(y).$$

This amounts to

$$f(\lambda x + \mu y) \le f^{\lambda}(x)f^{\mu}(y).$$

- Since $f^{\lambda}(x)f^{\mu}(y) \leq \lambda f(x) + \mu f(y)$, it follows that every log-convex function is convex.
- On the other hand, on the interval (0,∞), the positive function x is convex but not log-convex.
- For any positive number *a*, the function a^x is log-convex on \mathbb{R} .

Closure Under Addition and Multiplication

- The class of functions which are log-convex on some interval *I* is closed under addition and multiplication.
- Suppose that the functions f,g: I → ℝ are log-convex.
 Let x, y ∈ I and let λ, μ ≥ 0 with λ + μ = 1.
 By a previous theorem,

$$\begin{aligned} (f+g)(\lambda x + \mu y) &= f(\lambda x + \mu y) + g(\lambda x + \mu y) \\ &\leq f^{\lambda}(x)f^{\mu}(y) + g^{\lambda}(x)g^{\mu}(y) \\ &\leq (f(x) + g(x))^{\lambda}(f(y) + g(y))^{\mu} \\ &= (f+g)^{\lambda}(x) + (f+g)^{\mu}(y); \\ (fg)(\lambda x + \mu y) &= f(\lambda x + \mu y)g(\lambda x + \mu y) \\ &\leq f^{\lambda}(x)f^{\mu}(y)g^{\lambda}(x)g^{\mu}(y) \\ &= (fg)^{\lambda}(x)(fg)^{\mu}(y). \end{aligned}$$

The Gamma Function

• The gamma function $\Gamma:(0,\infty) \to \mathbb{R}$ is defined by the equation

$$\Gamma(x)=\int_0^\infty t^{x-1}e^{-t}dt, \quad x>0.$$

 Elementary analysis shows that, for each x > 0, Γ(x) is a well-defined positive number.

Theorem

The gamma function has the following properties:

(i)
$$\Gamma(x+1) = x\Gamma(x)$$
 for $x > 0$;

- (ii) $\Gamma(1) = 1;$
- (iiii) Γ is log-convex.

Proofs of the Properties

(i) For
$$x > 0$$
,

$$\Gamma(x+1) = \int_0^\infty t^x e^{-t} dt = [-t^x e^{-t}]_0^\infty + x \int_0^\infty t^{x-1} e^{-t} dt = x \Gamma(x).$$

(ii)
$$\Gamma(1) = \int_0^\infty e^{-t} dt = \lim_{A \to \infty} [1 - e^{-A}] = 1.$$

iii) Let x, y > 0. Let $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$. Then, by the preceding theorem,

$$\begin{split} \Gamma(\lambda x + \mu y) &= \int_0^\infty t^{\lambda x + \mu y - 1} e^{-t} dt \\ &= \int_0^\infty (t^{x - 1} e^{-t})^\lambda (t^{y - 1} e^{-t})^\mu dt \\ &\leq (\int_0^\infty t^{x - 1} e^{-t} dt)^\lambda (\int_0^\infty t^{y - 1} e^{-t} dt)^\mu \\ &= \Gamma^\lambda(x) \Gamma^\mu(y). \end{split}$$

Value on Integers and Limit Properties

Corollary

- For $n = 0, 1, 2, ..., \Gamma(n+1) = n!$.
 - By the theorem, $\Gamma(1) = 1$. Hence, for n = 1, 2, ...,

$$\Gamma(n+1) = n\Gamma(n) = n(n-1)\Gamma(n-1) = n(n-1)\cdots\Gamma(1) = n!.$$

Corollary

The gamma function is convex, continuous, and $x\Gamma(x) \rightarrow 1$, $\Gamma(x) \rightarrow \infty$ as $x \rightarrow 0^+$.

• The gamma function is log-convex. So it is convex. By a previous corollary, it must also be continuous. The continuity of Γ at 1 shows that

$$x\Gamma(x) = \Gamma(x+1) \xrightarrow{x \to 0^+} \Gamma(1) = 1.$$

Hence $\Gamma(x) \to \infty$ as $x \to 0^+$.

The Gamma Function and the Factorial Function

- Since Γ(n+1) = n! for n = 0, 1, 2, ..., the gamma function can be considered to be an extension of the factorial function, even if the two functions are one unit out of phase with each other.
- There are, of course, infinitely many functions $f:(0,\infty) \to \mathbb{R}$ satisfying f(n+1) = n! for n = 0, 1, 2, ...
- The natural question that arises is:

Is there some sense in which the gamma function is a unique extension of the factorial function?

• One answer is given by Artin's Characterization.

Artin's Characterization of the Gamma Function

Theorem (Artin's Characterization of the Gamma Function)

- Let the function $f:(0,\infty) \to \mathbb{R}$ satisfy:
 - (i) f(x+1) = xf(x) for x > 0;
- (ii) f(1) = 1;
- (iii) f is log-convex.

Then $f = \Gamma$.

Conditions (i), (ii) imply that f(n+1) = n! for n = 0, 1, 2,
 Let 0 < x ≤ 1 and let n be any positive integer. Then the log-convexity of f and condition (i) show that

$$\begin{array}{rcl} f(n+1+x) &=& f((1-x)(n+1)+x(n+2)) \\ &\leq& f^{1-x}(n+1)f^x(n+2) \\ &=& f^{1-x}(n+1)((n+1)f(n+1))^x \\ &=& (n+1)^x f(n+1) = (n+1)^x n!. \end{array}$$

Artin's Characterization of the Gamma Function (Cont'd)

We also have

$$n! = f(n+1) = f(x(n+x) + (1-x)(n+1+x))$$

$$\leq f^{x}(n+x)f^{1-x}(n+1+x)$$

$$= (n+x)^{-x}f^{x}(n+1+x)f^{1-x}(n+1+x)$$

$$= (n+x)^{-x}f(n+1+x).$$

But $f(n+1+x) = (n+x)(n-1+x)\cdots xf(x)$. Therefore,

$$\left(1+\frac{x}{n}\right)^{\times} \leq \frac{(n+x)(n-1+x)\cdots xf(x)}{n!n^{\times}} \leq \left(1+\frac{1}{n}\right)^{\times}.$$

Hence

$$f(x) = \lim_{n \to \infty} \frac{n! n^x}{(n+x)(n-1+x)\cdots x}, \quad \text{for } 0 < x \le 1.$$

Artin's Characterization of the Gamma Function (Cont'd)

• Suppose that x > 1. Let *m* be the positive integer such that $0 < x - m \le 1$. Then, by condition (i) and what we have just proved,

$$f(x) = (x-1)\cdots(x-m)f(x-m) = (x-1)\cdots(x-m)\lim_{n\to\infty} \frac{n!n^{x-m}}{(n+x-m)(n-1+x-m)\cdots(x-m)} = \lim_{n\to\infty} \left(\frac{n!n^x}{(n+x)(n-1+x)\cdots x} \cdot \frac{(n+x)(n+x-1)\cdots(n+x-(m-1))}{n^m}\right) = \lim_{n\to\infty} \frac{n!n^x}{(n+x)(n-1+x)\cdots x} \cdot \lim_{n\to\infty} \left((1+\frac{x}{n})(1+\frac{x-1}{n})\cdots(1+\frac{1+x-m}{n})\right) = \lim_{n\to\infty} \frac{n!n^x}{(n+x)(n-1+x)\cdots x}.$$

Thus, for all x > 0, $f(x) = \lim_{n \to \infty} \frac{n!n^x}{(n+x)(n-1+x)\cdots x}$. This is a remarkable conclusion, since it shows that f is uniquely determined by conditions (i), (ii), and (iii). Since Γ itself satisfies these three conditions, we must have $f = \Gamma$.

Gamma and Sine

Theorem

For every real x with 0 < x < 1,

$$\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin \pi x}.$$

• Artin's Theorem shows that for 0 < x < 1,

$$\Gamma(x)\Gamma(1-x) = \lim_{n \to \infty} \frac{\frac{n!n^{x}n!n^{1-x}}{(n+x)\cdots x(n+1-x)\cdots(1-x)}}{\frac{n}{(n+1-x)x\frac{1}{1222\dots n^{2}}(1+x)(1-x)\cdots(n+x)(n-x)}}$$

= $\frac{1}{x\prod_{k=1}^{\infty}(1-\frac{x^{2}}{k^{2}})}$
= $\frac{\pi}{\sin \pi x}$. $(\sin x = x \prod_{k=1}^{\infty}(1-\frac{x^{2}}{k^{2}\pi^{2}}))$

• From the Theorem, we get $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.

Legendre's Duplication Formula

Theorem (Legendre's Duplication Formula)

$$\Gamma\left(\frac{x}{2}\right)\Gamma\left(\frac{x+1}{2}\right) = \frac{\sqrt{\pi}}{2^{x-1}}\Gamma(x), \text{ for } x > 0.$$

• Define a function $f:(0,\infty) \to \mathbb{R}$ by

$$f(x) = \frac{2^{x-1}}{\sqrt{\pi}} \Gamma\left(\frac{x}{2}\right) \Gamma\left(\frac{x+1}{2}\right), \text{ for } x > 0.$$

Then *f* is a product of log-convex functions. So it is itself log-convex. We also have, for all x > 0:

•
$$f(x+1) = \frac{2^x}{\sqrt{\pi}} \Gamma(\frac{x+1}{2}) \Gamma(\frac{x+2}{2}) = 2 \frac{2^{x-1}}{\sqrt{\pi}} \Gamma(\frac{x+1}{2}) \frac{x}{2} \Gamma(\frac{x}{2}) = xf(x);$$

• $f(1) = \frac{1}{\sqrt{\pi}} \Gamma(\frac{1}{2}) \Gamma(1) = \frac{1}{\sqrt{\pi}} \sqrt{\pi} 1 = 1.$

Thus, by Artin's Theorem, $f = \Gamma$.

Lemma for Stirling's Formula

Lemma

The sequence whose *n*th term is $\log n! - (n + \frac{1}{2})\log n + n$ converges.

• Let $a_n = \log n! - (n + \frac{1}{2})\log n + n$. First we show that the sequence (a_n) is decreasing. Then we show that it is bounded below. We note that, for $n = 1, 2, ..., a_n - a_{n+1} = (n + \frac{1}{2})\log(1 + \frac{1}{n}) - 1$. Since $\frac{1}{x}$ is convex on $(0, \infty)$, the area bounded by the graph of $y = \frac{1}{x}$, the *x*-axis, and the lines x = n, x = n + 1 exceeds that of the trapezoid bounded by the tangent to $y = \frac{1}{x}$ at the point $\left(n + \frac{1}{2}, \frac{1}{n + \frac{1}{2}}\right)$, the *x*-axis, and the lines x = n, x = n + 1; i.e.,

$$\log\left(1+\frac{1}{n}\right) = \int_{n}^{n+1} \frac{dx}{x} > \frac{1}{n+\frac{1}{2}}.$$

It now follows from the preceding formula, that $a_n - a_{n+1} > 0$. Hence the sequence (a_n) is decreasing.

Lemma for Stirling's Formula (Cont'd)

• Since log x is concave on $(0,\infty)$, the area bounded by the graph of $y = \log x$, the x-axis, and the lines $x = r - \frac{1}{2}$, $x = r + \frac{1}{2}$ for r = 1, 2, ..., is less than that of the trapezoid bounded by the tangent to $y = \log x$ at the point $(r, \log r)$, the x-axis, and the lines $x = r - \frac{1}{2}$, $x = r + \frac{1}{2}$, i.e., $\int_{r-\frac{1}{2}}^{r+\frac{1}{2}} \log x dx < \log r$. It follows easily that, for $n \ge 3$,

$$\int_{1}^{n} \log x dx = \int_{1}^{1\frac{1}{2}} \log x dx + \int_{1\frac{1}{2}}^{2\frac{1}{2}} \log x dx + \dots + \int_{n-\frac{3}{2}}^{n-\frac{1}{2}} \log x dx + \int_{n-\frac{1}{2}}^{n} \log x dx \\ < \frac{1}{2} \log 1\frac{1}{2} + \log 2 + \dots + \log (n-1) + \frac{1}{2} \log n \\ < \frac{1}{2} + \log (n!) - \frac{1}{2} \log n.$$

Thus,

$$n\log n - n + 1 = \int_{1}^{n}\log x dx < \frac{1}{2} + \log n! - \frac{1}{2}\log n.$$

Hence $a_n = \log n! - (n + \frac{1}{2}) \log n + n > \frac{1}{2}$. Thus, the decreasing sequence (a_n) is bounded below by $\frac{1}{2}$. So it converges.

Lemma for Stirling's Formula

Theorem (Stirling's Formula)

 $n! \sim \sqrt{2\pi} n^{n+\frac{1}{2}} e^{-n}.$

• In the notation of the proof of the lemma, let for n = 1, 2, ..., $b_n = e^{a_n} = \frac{n!}{n^{n+\frac{1}{2}}e^{-n}}$. Then the sequence (b_n) converges to some b > 0. Thus,

$$\frac{(b_n)^2}{b_{2n}} = \frac{(n!)^2 (2n)^{2n+\frac{1}{2}} e^{-2n}}{n^{2n+1} e^{-2n} (2n)!} = \frac{2^{2n+\frac{1}{2}} (n!)^2}{n^{\frac{1}{2}} (2n)!} \to \frac{b^2}{b} = b, \text{ as } n \to \infty.$$

For $n = 1, 2, ..., \text{ let } c_n = \frac{n! n^{\frac{1}{2}}}{(n+\frac{1}{2})\cdots\frac{3}{2}\frac{1}{2}}$. Then $c_n \xrightarrow{n \to \infty} \Gamma(\frac{1}{2}) = \sqrt{\pi}$. So
 $\frac{(b_n)^2}{b_{2n}} = \frac{n! n^{1/2} (2n+1)\sqrt{2}}{2n \frac{(2n+1)!}{2^{n+1}2^n n!}} = c_n \left(1 + \frac{1}{2n}\right) \sqrt{2} \xrightarrow{n \to \infty} \sqrt{2\pi}.$
Hence, $b = \sqrt{2\pi}$. So $b_n = \frac{n!}{n^{n+\frac{1}{2}} e^{-n}} \xrightarrow{n \to \infty} \sqrt{2\pi}.$

The Beta Function

• The **beta function** *B* is the real function of two variables defined by the equation

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt, \text{ for } x, y > 0.$$

Theorem

The beta function has the following properties:

(i)
$$B(x+1,y) = \frac{x}{x+y}B(x,y)$$
 for $x, y > 0$;

(ii) B(x,y) is a log-convex function of x for each fixed y > 0;

(iii)
$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$
, for $x, y > 0$.

The Beta Function (Part (i))

(i) We have

$$\begin{split} B(x+1,y) &= \int_0^1 t^x (1-t)^{y-1} dt \\ &= \int_0^1 \frac{t^x}{(1-t)^x} (1-t)^x (1-t)^{y-1} dt \\ &= \int_0^1 (1-t)^{x+y-1} (\frac{t}{1-t})^x dt \\ &= \left[\frac{-(1-t)^{x+y}}{x+y} (\frac{t}{1-t})^x \right]_0^1 - \int_0^1 \frac{-(1-t)^{x+y}}{x+y} \left[(\frac{t}{1-t})^x \right]' dt \\ &= \left[\frac{-(1-t)^{x+y}}{x+y} (\frac{t}{1-t})^x \right]_0^1 - \int_0^1 \frac{-(1-t)^{x+y}}{x+y} \left[x \frac{t^{x-1}}{(1-t)^{x-1}} \frac{1}{(1-t)^2} \right] dt \\ &= \left[\frac{-(1-t)^{x+y}}{x+y} (\frac{t}{1-t})^x \right]_0^1 + \int_0^1 \frac{x}{x+y} t^{x-1} (1-t)^{y-1} dt \\ &= \frac{x}{x+y} B(x,y). \end{split}$$

The Beta Function (Part (ii))

(ii) Let
$$a, b, y > 0$$
. Let $\lambda, \mu \ge 0$, with $\lambda + \mu = 1$.
By a previous theorem,

$$\begin{split} B(\lambda a + \mu b, y) &= \int_0^1 (t^{\lambda a + \mu b - 1} (1 - t)^{y - 1}) dt \\ &= \int_0^1 (t^{a - 1} (1 - t)^{y - 1})^{\lambda} (t^{b - 1} (1 - t)^{y - 1})^{\mu} dt \\ &\leq (\int_0^1 t^{a - 1} (1 - t)^{y - 1} dt)^{\lambda} (\int_0^1 t^{b - 1} (1 - t)^{y - 1} dt)^{\mu} \\ &= B^{\lambda}(a, y) B^{\mu}(b, y). \end{split}$$

Thus B(x, y) is a log-convex function of x, for fixed y.

The Beta Function (Part (iii))

(iii) Let y > 0. Define a function $f_y : (0, \infty) \to \mathbb{R}$ by

$$f_{y}(x) = \frac{\Gamma(x+y)B(x,y)}{\Gamma(y)}, \text{ for } x > 0.$$

Then f_y is a product of log-convex functions. So it is log-convex. For x > 0,

$$f_{y}(x+1) = \frac{\frac{\Gamma(x+y+1)B(x+1,y)}{\Gamma(y)}}{\frac{\Gamma(y)}{\Gamma(y)}} = \frac{\frac{[(x+y)\Gamma(x+y)]\frac{x}{x+y}B(x,y)}{\Gamma(y)}}{\frac{\Gamma(y)}{\Gamma(y)}} = xf_{y}(x);$$

$$f_{y}(1) = \frac{\frac{\Gamma(1+y)B(1,y)}{\Gamma(y)}}{\frac{\Gamma(y)}{\Gamma(y)}} = y\int_{0}^{1}(1+t)^{y-1}dt = 1.$$

Thus, $f_y = \Gamma$ by Artin's Theorem. So $B(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$, for x, y > 0.

An Integral Formula for *B*

According to the definition,

$$B\left(\frac{n+1}{2},\frac{n+1}{2}\right) = \int_0^1 t^{\frac{n-1}{2}} (1-t)^{\frac{n-1}{2}} dt.$$

• Set u = 2t - 1. Then $dt = \frac{1}{2}du$, $t = \frac{1+u}{2}$, $1 - t = \frac{1-u}{2}$ and t = 0, 1 correspond to u = -1, 1, respectively. Thus, we get

$$B\left(\frac{n+1}{2}, \frac{n+1}{2}\right) = \int_{-1}^{1} \left(\frac{1+u}{2}\right)^{\frac{n-1}{2}} \left(\frac{1-u}{2}\right)^{\frac{n-1}{2}} \frac{1}{2} du$$

$$= \frac{1}{2} \int_{-1}^{1} \frac{1}{2^{n-1}} (1-u^2)^{\frac{n-1}{2}} du$$

$$= \frac{1}{2^{n-1}} \int_{0}^{1} (1-u^2)^{\frac{n-1}{2}} du.$$

A Recursive Formula for B

- We prove by induction on *n* that $B(\frac{n+1}{2}, \frac{n+1}{2}) = \frac{1}{2^n}B(\frac{1}{2}, \frac{n+1}{2})$. • For the base case, we prove the formula for n = 0 and n = 1.
 - For n = 0, $B(\frac{0+1}{2}, \frac{0+1}{2}) = B(\frac{1}{2}, \frac{1}{2}) = \frac{1}{2^0}B(\frac{1}{2}, \frac{0+1}{2}).$
 - For n = 1, noting that $B(1, y) = \frac{1}{y}$, we get $B(\frac{1+1}{2}, \frac{1+1}{2}) = B(1, 1) = 1 = \frac{1}{2}\frac{1}{1/2} = \frac{1}{2}B(\frac{1}{2}, 1) = \frac{1}{2^1}B(\frac{1}{2}, \frac{1+1}{2}).$
- Assume the formula holds for some n.
- Then, recalling $B(x+1,y) = \frac{x}{x+y}B(x,y)$, we get

$$B\left(\frac{(n+2)+1}{2}, \frac{(n+2)+1}{2}\right) = \frac{\frac{n+1}{2}}{\frac{n+1+n+3}{2}}B\left(\frac{n+1}{2}, \frac{(n+2)+1}{2}\right)$$
$$= \frac{n+1}{2(n+2)}\frac{n+1}{2(n+1)}B\left(\frac{n+1}{2}, \frac{n+1}{2}\right)$$
$$= \frac{n+1}{2^2(n+2)}\frac{1}{2^n}B\left(\frac{1}{2}, \frac{n+1}{2}\right)$$
$$= \frac{1}{2^{n+2}}\frac{\frac{n+1}{2}}{\frac{n+2}{2}}B\left(\frac{1}{2}, \frac{n+1}{2}\right)$$
$$= \frac{1}{2^{n+2}}B\left(\frac{1}{2}, \frac{(n+2)+1}{2}\right).$$

Subsection 4

Convex Functions on \mathbb{R}^n

Convex Function on \mathbb{R}^n

A real-valued function *f* defined on a non-empty convex set X in ℝⁿ is said to be convex if

$$f(\lambda \boldsymbol{x} + \mu \boldsymbol{y}) \leq \lambda f(\boldsymbol{x}) + \mu f(\boldsymbol{y})$$

whenever $\mathbf{x}, \mathbf{y} \in X$ and $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$.

- The convexity of X ensures that $\lambda x + \mu y \in X$.
- A concave function is one whose negative is convex.
- Exactly as in the case of a convex function of a single real variable, each convex function f: X → ℝⁿ satisfies Jensen's inequality:

$$f(\lambda_1 \boldsymbol{x}_1 + \dots + \lambda_m \boldsymbol{x}_m) \leq \lambda_1 f(\boldsymbol{x}_1) + \dots + \lambda_m f(\boldsymbol{x}_m),$$

whenever $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_m \in X$ and $\lambda_1, \ldots, \lambda_m \ge 0$ with $\lambda_1 + \cdots + \lambda_m = 1$.

• Affine transformations $f : \mathbb{R}^n \to \mathbb{R}$ and their restrictions to non-empty convex subsets of \mathbb{R}^n provide important examples of convex functions.

Convexity of Distance of Convex Sets

• The distance function $d_X : \mathbb{R}^n \to \mathbb{R}$ of a non-empty set X in \mathbb{R}^n was defined by the equation

$$d_X(\boldsymbol{u}) = \inf \{ \|\boldsymbol{u} - \boldsymbol{x}\| : \boldsymbol{x} \in X \}, \text{ for } \boldsymbol{u} \in \mathbb{R}^n.$$

- We now assume that X is convex and show that in this case the resulting distance function d_X is convex.
- Let $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$ and let $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$. Then, for each $\varepsilon > 0$, there exist points $\boldsymbol{x}, \boldsymbol{y} \in X$ such that

$$\|\boldsymbol{u} - \boldsymbol{x}\| \le d_X(\boldsymbol{u}) + \varepsilon$$
 and $\|\boldsymbol{v} - \boldsymbol{y}\| \le d_X(\boldsymbol{v}) + \varepsilon$.

Since X is convex, $\lambda \mathbf{x} + \mu \mathbf{y} \in X$. So

$$d_X(\lambda \boldsymbol{u} + \mu \boldsymbol{v}) \leq \|\lambda \boldsymbol{u} + \mu \boldsymbol{v} - (\lambda \boldsymbol{x} + \mu \boldsymbol{y})\| \\ \leq \lambda \|\boldsymbol{u} - \boldsymbol{x}\| + \mu \|\boldsymbol{v} - \boldsymbol{y}\| \\ \leq \lambda d_X(\boldsymbol{u}) + \mu d_X(\boldsymbol{v}) + \varepsilon.$$

But $\varepsilon > 0$ is arbitrary. Hence, $d_X(\lambda \boldsymbol{u} + \mu \boldsymbol{v}) \leq \lambda d_X(\boldsymbol{u}) + \mu d_X(\boldsymbol{v})$.

Example: Introducing Graphs

- Consider the convex function $f(x_1) = x_1^2$ defined on \mathbb{R}^1 .
- The graph of f is the parabola $\{(x_1, x_1^2) : x_1 \in \mathbb{R}\}$ in \mathbb{R}^2 , which is clearly not convex.
- The set of points $\{(x_1, x) : x_1 \in \mathbb{R}, x \ge x_1^2\}$ in \mathbb{R}^2 which lie on or above the graph of f, however, is convex.
- Thus with this particular convex function of a single variable, we have associated a convex set in \mathbb{R}^2 .
- We will show how the convexity of a real-valued function of *n* variables is equivalent to the convexity of a certain subset of \mathbb{R}^{n+1} .

Graphs and Epigraphs

- Let f be a real-valued function defined on a non-empty convex set X in \mathbb{R}^n .
- Then the graph of f is defined to be the subset

$$\{(x_1,...,x_n, f(x_1,...,x_n)) : (x_1,...,x_n) \in X\}$$

of \mathbb{R}^{n+1} .

• The epigraph of f, denoted epif, is defined to be the subset

$$\{(x_1,\ldots,x_n,x):(x_1,\ldots,x_n)\in X,x\geq f(x_1,\ldots,x_n)\}$$

of \mathbb{R}^{n+1} .

Convex Functions and Their Epigraphs

Theorem

Let f be a real-valued function defined on a non-empty convex set X in \mathbb{R}^n . Then f is convex if and only if its epigraph is convex.

For each point x = (x₁,...,x_n) of ℝⁿ and for each scalar x, we denote by (x,x) the point (x₁,...,x_n,x) of ℝⁿ⁺¹.
Suppose that f is convex. Let (x,x), (y,y) ∈ epif. So x, y ∈ X and x ≥ f(x), y ≥ f(y). Let λ, μ≥0 with λ + μ = 1. Then the convexity of f shows that

$$f(\lambda \boldsymbol{x} + \mu \boldsymbol{y}) \leq \lambda f(\boldsymbol{x}) + \mu f(\boldsymbol{y}) \leq \lambda x + \mu y.$$

Thus the point $\lambda(\mathbf{x}, x) + \mu(\mathbf{y}, y) = (\lambda \mathbf{x} + \mu \mathbf{y}, \lambda x + \mu y)$ belongs to epif. So epif is convex.

Convex Functions and Their Epigraphs (Converse)

• Conversely, suppose that epif is convex. Let $\mathbf{x}, \mathbf{y} \in X$ and let $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$. Since epif is convex, the point

$$\lambda(\mathbf{x}, f(\mathbf{x})) + \mu(\mathbf{y}, f(\mathbf{y})) = (\lambda \mathbf{x} + \mu \mathbf{y}, \lambda f(\mathbf{x}) + \mu f(\mathbf{y}))$$

belongs to epif.

Hence

$$f(\lambda \mathbf{x} + \mu \mathbf{y}) \leq \lambda f(\mathbf{x}) + \mu f(\mathbf{y}).$$

This shows that f is a convex function.

Properties of Convex Functions and of Convex Sets

Theorem

Let $(f_i : i \in I)$ be a non-empty family of convex functions defined on a non-empty convex set X in \mathbb{R}^n such that, for each \mathbf{x} in X, the set $\{f_i(\mathbf{x}) : i \in I\}$ of real numbers is bounded above. Then the function $f : X \to \mathbb{R}$ defined by the equation $f(\mathbf{x}) = \sup\{f_i(\mathbf{x}) : i \in I\}$, for $\mathbf{x} \in X$, is convex.

We observe that

$$\begin{array}{ll} {\rm epi} f & = & \{(x_1, \dots, x_n, x) : (x_1, \dots, x_n) \in X, x \ge f(x_1, \dots, x_n)\} \\ & = & \{(x_1, \dots, x_n, x) : (x_1, \dots, x_n) \in X, x \ge f_i(x_1, \dots, x_n) \text{ for } i \in I\} \\ & = & \bigcap_{i \in I} \{(x_1, \dots, x_n, x) : (x_1, \dots, x_n) \in X, x \ge f_i(x_1, \dots, x_n)\} \\ & = & \bigcap_{i \in I} {\rm epi} f_i. \end{array}$$

The preceding theorem shows that all of the sets $epif_i$ are convex. Hence so is their intersection epif. Thus, by the same theorem f is a convex function.

George Voutsadakis (LSSU)

Linear Combinations of Convex Functions

Theorem

Let f,g be convex functions defined on a non-empty convex subset X of \mathbb{R}^n and let $\alpha, \beta \ge 0$. Then the function $\alpha f + \beta g$ is convex.

• Let $\mathbf{x}, \mathbf{y} \in X$ and let $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$. Then

$$(\alpha f + \beta g)(\lambda \mathbf{x} + \mu \mathbf{y}) = \alpha f(\lambda \mathbf{x} + \mu \mathbf{y}) + \beta g(\lambda \mathbf{x} + \mu \mathbf{y})$$

$$\leq \alpha (\lambda f(\mathbf{x}) + \mu f(\mathbf{y})) + \beta (\lambda g(\mathbf{x}) + \mu g(\mathbf{y}))$$

$$= \lambda (\alpha f + \beta g)(\mathbf{x}) + \mu (\alpha f + \beta g)(\mathbf{y}).$$

Composition of Convex and Increasing Convex Functions

Theorem

Let f be a convex function defined on a non-empty convex set X in \mathbb{R}^n and let $g: I \to \mathbb{R}$ be an increasing convex function defined on an interval Iof \mathbb{R} which contains the image f(X) of X under f. Then the composite function $g \circ f: X \to \mathbb{R}$ is convex.

• Let
$$\mathbf{x}, \mathbf{y} \in X$$
 and let $\lambda, \mu \ge 0$, with $\lambda + \mu = 1$.

Then

$$(g \circ f)(\lambda \mathbf{x} + \mu \mathbf{y}) = g(f(\lambda \mathbf{x} + \mu \mathbf{y}))$$

$$\leq g(\lambda f(\mathbf{x}) + \mu f(\mathbf{y}))$$

$$\leq \lambda g(f(\mathbf{x})) + \mu g(f(\mathbf{y}))$$

$$= \lambda (g \circ f)(\mathbf{x}) + \mu (g \circ f)(\mathbf{y}).$$

Supporting Affine Transformations

- Let f be a real-valued function defined on a convex set X in \mathbb{R}^n and let $\mathbf{x}_0 \in X$.
- Then an affine transformation $T : \mathbb{R}^n \to \mathbb{R}$ is said to support f at x_0 if $T(x_0) = f(x_0)$ and $T(x) \le f(x)$ for all $x \in X$.
- The geometrical interpretation of T supporting f at x₀ is clear. The set

$$\{(x_1,\ldots,x_n,T(x_1,\ldots,x_n)):(x_1,\ldots,x_n)\in\mathbb{R}^n\}$$

is a hyperplane in \mathbb{R}^{n+1} that passes through the point $(\mathbf{x}_0, f(\mathbf{x}_0))$ and lies on or below the graph

$$\{(x_1,...,x_n, f(x_1,...,x_n)) : (x_1,...,x_n) \in X\}$$

of *f* .

Convexity and Support

Theorem

Let f be a real-valued function defined on a non-empty open convex set X in \mathbb{R}^n . Then f is convex if and only if it has support at each point of X.

• Suppose that f has support at each point of X. Let $\mathbf{x}, \mathbf{y} \in X$ and let $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$. Then there is an affine transformation $T : \mathbb{R}^n \to \mathbb{R}$ which supports f at $\lambda \mathbf{x} + \mu \mathbf{y}$. Hence

$$f(\lambda \mathbf{x} + \mu \mathbf{y}) = T(\lambda \mathbf{x} + \mu \mathbf{y}) = \lambda T(\mathbf{x}) + \mu T(\mathbf{y}) \le \lambda f(\mathbf{x}) + \mu f(\mathbf{y}).$$

This shows that f is convex.

Conversely, suppose that f is convex and that $\mathbf{x}_0 \in X$. Since f is convex, its epigraph epif is a convex set in \mathbb{R}^{n+1} . Now $(\mathbf{x}_0, f(\mathbf{x}_0))$ is a boundary point of epif. So there exists a support hyperplane H to epif at $(\mathbf{x}_0, f(\mathbf{x}_0))$.

Convexity and Support (Converse)

- Suppose that *H* has equation $a_1x_1 + \dots + a_nx_n + a_{n+1}x_{n+1} = a_0$. Suppose, also, that $a_1x_1 + \dots + a_nx_n + a_{n+1}x_{n+1} \ge a_0$, whenever $(x_1, \dots, x_n) \in X$ and $x_{n+1} \ge f(x_1, \dots, x_n)$.
 - We have $a_{n+1} \neq 0$. Otherwise, the hyperplane in \mathbb{R}^n with equation $a_1x_1 + \cdots + a_nx_n = a_0$ supports X at x_0 . This is impossible because x_0 is an interior point of X.
 - For each $(x_1,\ldots,x_n) \in X$, $a_1x_1 + \cdots + a_nx_n + a_{n+1}\lambda \ge a_0$ for all $\lambda \ge f(x_1,\ldots,x_n)$. Hence, $a_{n+1} > 0$.

Define an affine transformation $T : \mathbb{R}^n \to \mathbb{R}$ by the equation

$$T(x_1,...,x_n) = \frac{1}{a_{n+1}}(a_0 - a_1 x_1 - \dots - a_n x_n), \text{ for } (x_1,...,x_n) \in \mathbb{R}^n.$$

Since H supports epif at $(\mathbf{x}_0, f(\mathbf{x}_0))$ and $a_{n+1} > 0$,

• $T(\mathbf{x}_0) = \frac{1}{a_{n+1}} (a_0 - a_1 x_1^0 - \dots - a_n x_n^0) = \frac{a_{n+1} x_{n+1}^0}{a_{n+1}} = x_{n+1}^0 = f(\mathbf{x}_0);$ • For all $\mathbf{x} \in X$, $T(\mathbf{x}) = \frac{1}{a_{n+1}} (a_0 - a_1 x_1 - \dots - a_n x_n) \le \frac{a_{n+1} x_{n+1}}{a_{n+1}} = f(\mathbf{x}).$ Thus, T supports f at \mathbf{x}_0 .

Positively Homogeneous Functions

 Many of the functions which arise naturally in convexity are real-valued functions f defined on a convex cone X in Rⁿ (often Rⁿ itself) that satisfy the equation

$$f(\lambda \mathbf{x}) = \lambda f(\mathbf{x})$$
, for all $\mathbf{x} \in X$ and all $\lambda \ge 0$.

- Such functions are called **positively homogeneous**.
Positive Homogeneous vs. Convex Functions

Theorem

Let f be a positively homogeneous function defined on a convex cone X in \mathbb{R}^n . Then f is convex if and only if $f(\mathbf{x} + \mathbf{y}) \leq f(\mathbf{x}) + f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in X$.

• Suppose that f is convex. Let $x, y \in X$. Then

$$\frac{1}{2}f(\boldsymbol{x}+\boldsymbol{y})=f\left(\frac{1}{2}\boldsymbol{x}+\frac{1}{2}\boldsymbol{y}\right)\leq\frac{1}{2}f(\boldsymbol{x})+\frac{1}{2}f(\boldsymbol{y}).$$

So $f(\mathbf{x} + \mathbf{y}) \leq f(\mathbf{x}) + f(\mathbf{y})$.

Conversely, suppose that $f(\mathbf{x} + \mathbf{y}) \le f(\mathbf{x}) + f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in X$. Then, for all $\mathbf{x}, \mathbf{y} \in X$ and for all $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$,

$$f(\lambda \mathbf{x} + \mu \mathbf{y}) \leq f(\lambda \mathbf{x}) + f(\mu \mathbf{y}) = \lambda f(\mathbf{x}) + \mu f(\mathbf{y}).$$

This shows that f is convex.

The Level Sets of a Function

- Let f be a real-valued function defined on a non-empty convex set X in ℝⁿ.
- Then, for each scalar α, the level set L_α of f at height α is the set defined by the equation

$$L_{\alpha} = \{ \mathbf{x} \in X : f(\mathbf{x}) \le \alpha \}.$$

• We show that each level set L_{α} of a convex function $f: X \to \mathbb{R}$ is convex.

Let $\mathbf{x}, \mathbf{y} \in L_{\alpha}$ and let $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$. Then, since f is convex,

$$f(\lambda \mathbf{x} + \mu \mathbf{y}) \leq \lambda f(\mathbf{x}) + \mu f(\mathbf{y}) \leq \lambda \alpha + \mu \alpha = \alpha.$$

Thus $\lambda \mathbf{x} + \mu \mathbf{y} \in L_{\alpha}$ and L_{α} is convex.

• There exist non-convex functions all of whose level sets are convex. An example is the cube function defined on the real line.

Non-Negative Positive Homogeneous Case

Theorem

Let f be a non-negative positively homogeneous function defined on a convex cone X in \mathbb{R}^n such that the level set $\{x \in X : f(x) \le 1\}$ is convex. Then f is a convex function.

We use the criterion of the preceding theorem to show that f is convex. Let x, y ∈ X. Choose scalars α, β such that α > f(x), β > f(y). Since f is non-negative and positively homogeneous, f(^x/_α) ≤ 1 and f(^y/_β) ≤ 1. Thus ^x/_α and ^y/_β lie in the level set of f at height 1. The assumed convexity of this level set shows that

$$\frac{1}{\alpha+\beta}f(\boldsymbol{x}+\boldsymbol{y}) = f\left(\frac{\boldsymbol{x}+\boldsymbol{y}}{\alpha+\beta}\right) = f\left(\frac{\alpha}{\alpha+\beta}\frac{\boldsymbol{x}}{\alpha} + \frac{\beta}{\alpha+\beta}\frac{\boldsymbol{y}}{\beta}\right)$$
$$\leq \frac{\alpha}{\alpha+\beta}f\left(\frac{\boldsymbol{x}}{\alpha}\right) + \frac{\beta}{\alpha+\beta}f\left(\frac{\boldsymbol{y}}{\beta}\right) \leq \frac{\alpha}{\alpha+\beta} + \frac{\beta}{\alpha+\beta} = 1.$$

Hence $f(\mathbf{x} + \mathbf{y}) \le \alpha + \beta$ whenever $\alpha > f(\mathbf{x})$, $\beta > f(\mathbf{y})$. So $f(\mathbf{x} + \mathbf{y}) \le f(\mathbf{x}) + f(\mathbf{y})$. This shows that f is convex.

Example

• Let $p \ge 1$. Define a function f on the nonnegative orthant X of \mathbb{R}^n by the equation

$$f(x_1,...,x_n) = (x_1^p + \dots + x_n^p)^{1/p}, \text{ for } x_1,...,x_n \ge 0.$$

Then f is non-negative and positively homogeneous.

It follows from a previous theorem and the fact that the function x^p is convex on the interval $[0,\infty)$, that the function $f^p: X \to \mathbb{R}$ is convex. Hence the level set $\{x \in X : f^p(x) \le 1\} = \{x \in X : f(x) \le 1\}$ is convex. By the preceding theorem, f is convex. Let $x = (x_1, ..., x_n), y = (y_1, ..., y_n)$ belong to X.

Then, by a previous theorem, $f(\mathbf{x} + \mathbf{y}) \le f(\mathbf{x}) + f(\mathbf{y})$. That is,

$$((x_1+y_1)^p+\cdots+(x_n+y_n)^p)^{1/p} \le (x_1^p+\cdots+x_n^p)^{1/p}+(y_1^p+\cdots+y_n^p)^{1/p}.$$

We have re-proved Minkowski's inequality.

Subsection 5

Continuity and Differentiability

Convex Functions on Open Convex Sets

- Let f be a convex function defined on an open convex set X in \mathbb{R}^n .
- Let $\mathbf{x} \in X$ and $\mathbf{y} \in \mathbb{R}^n$.
- Then the set $I = \{\lambda \in \mathbb{R} : x + \lambda y \in X\}$ is an open interval of \mathbb{R} which contains the origin.
- The function $g: I \to \mathbb{R}$ defined by the equation

$$g(\lambda) = f(\mathbf{x} + \lambda \mathbf{y}), \text{ for } \lambda \in I,$$

is convex.

To see that g is convex, let $a, b \in I$ and let $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$. Then

$$g(\lambda a + \mu b) = f(\mathbf{x} + (\lambda a + \mu b)\mathbf{y})$$

= $f(\lambda(\mathbf{x} + a\mathbf{y}) + \mu(\mathbf{x} + b\mathbf{y}))$
 $\leq \lambda f(\mathbf{x} + a\mathbf{y}) + \mu f(\mathbf{x} + b\mathbf{y})$
= $\lambda g(a) + \mu g(b).$

• Thus $g'_+(0) = \lim_{\lambda \to 0^+} \frac{g(\lambda) - g(0)}{\lambda} = \lim_{\lambda \to 0^+} \frac{f(\mathbf{x} + \lambda \mathbf{y}) - f(\mathbf{x})}{\lambda}$ exists.

Continuity

Theorem

Let f be a convex function defined on a non-empty open convex set X in \mathbb{R}^n . Then f is continuous on X.

• Let $\mathbf{x}_0 \in X$ and let $\mathbf{y}_1, \dots, \mathbf{y}_m$ be the vertices of some polytope Pwhich is contained in X and has \mathbf{x}_0 as an interior point. Choose r > 0such that $B[\mathbf{x}_0; r] \subseteq P$. Each point \mathbf{x} of $B[\mathbf{x}_0; r]$ can be expressed in the form $\mathbf{x} = \lambda_1 \mathbf{y}_1 + \dots + \lambda_m \mathbf{y}_m$ for some $\lambda_1, \dots, \lambda_m \ge 0$ with $\lambda_1 + \dots + \lambda_m = 1$. Setting $M = \max\{f(\mathbf{y}_1), \dots, f(\mathbf{y}_m)\}$ and applying Jensen's inequality to f, we get

$$f(\mathbf{x}) = f(\lambda_1 \mathbf{y}_1 + \dots + \lambda_m \mathbf{y}_m) \\ \leq \lambda_1 f(\mathbf{y}_1) + \dots + \lambda_m f(\mathbf{y}_m) \\ \leq \lambda_1 M + \dots + \lambda_m M = M.$$

Hence f is bounded above by M on the closed ball $B[\mathbf{x}_0; r]$.

Continuity (Cont'd)

• Let $x \in \mathbb{R}^n$ satisfy the inequalities $0 < ||x - x_0|| \le r$. Then the function $g: [-r, r] \to \mathbb{R}$ defined by the equation

$$g(t) = f\left(\mathbf{x}_0 + t \frac{\mathbf{x} - \mathbf{x}_0}{\|\mathbf{x} - \mathbf{x}_0\|}\right), \text{ for } -r \le t \le r,$$

is convex, and $g(t) \le M$ for $-r \le t \le r$. By a previous corollary,

$$-\frac{M-g(0)}{r} \le \frac{g(-r)-g(0)}{-r} \le \frac{g(\|\mathbf{x}-\mathbf{x}_0\|)-g(0)}{\|\mathbf{x}-\mathbf{x}_0\|} \le \frac{g(r)-g(0)}{r} \le \frac{M-g(0)}{r}.$$

Hence

$$|f(\mathbf{x}) - f(\mathbf{x}_0)| = |g(||\mathbf{x} - \mathbf{x}_0||) - g(0)| \le \frac{M - f(\mathbf{x}_0)}{r} ||\mathbf{x} - \mathbf{x}_0||.$$

Thus, if x_1, \ldots, x_k, \ldots is a sequence of points of X that converges to x_0 , then $f(x_k) \rightarrow f(x_0)$ as $k \rightarrow \infty$. So f is continuous at x_0 .

Partial Derivatives

- Let f be a real-valued function defined on an open set X in \mathbb{R}^n and let $\mathbf{x} = (x_1, \dots, x_n)$ be a point of X.
- Recall that the *i*th partial derivative ∂f/∂x_i of f at x, when it exists, is the derivative at x_i of the function of a single variable obtained by regarding f as a function of its *i*th variable only, the remaining n-1 variables being held fixed to their values at x.
- Thus, for $i = 1, \ldots, n$,

$$\frac{\partial f}{\partial x_i} = \lim_{\lambda \to 0} \frac{f(x_1, \dots, x_{i-1}, x_i + \lambda, x_{i+1}, \dots, x_n) - f(x_1, \dots, x_n)}{\lambda}.$$

More succinctly,

$$\frac{\partial f}{\partial x_i}(\mathbf{x}) = \lim_{\lambda \to 0} \frac{f(\mathbf{x} + \lambda \mathbf{e}_i) - f(\mathbf{x})}{\lambda},$$

where e_i denotes the *i*th elementary vector in \mathbb{R}^n .

Directional Derivatives

- For the directional derivative, which is a natural generalization of a partial derivative, we simply consider the above limit with an arbitrary vector y in Rⁿ replacing the vector e_i.
- The directional derivative of f at x relative to y is defined to be the limit

$$\lim_{\lambda\to 0}\frac{f(\boldsymbol{x}+\lambda\boldsymbol{y})-f(\boldsymbol{x})}{\lambda},$$

whenever this limit exists.

• Thus the partial derivative $\frac{\partial f}{\partial x_i}$ is simply the directional derivative of f relative to e_i .

One-Sided Directional Derivatives

- A convex function defined on an open interval of ${\rm I\!R}$ need not be differentiable, but it always possesses both one-sided derivatives.
- The one-sided directional derivative of *f* at *x* relative to *y* is defined to be the limit

$$f'(\mathbf{x};\mathbf{y}) = \lim_{\lambda \to 0^+} \frac{f(\mathbf{x} + \lambda \mathbf{y}) - f(\mathbf{x})}{\lambda},$$

provided that this limit exists.

We have

$$-f'(\boldsymbol{x};-\boldsymbol{y}) = \lim_{\lambda \to 0^{-}} \frac{f(\boldsymbol{x}+\lambda \boldsymbol{y})-f(\boldsymbol{x})}{\lambda}.$$

So the directional derivative of f at x relative to y exists if and only if both of the one-sided directional derivatives f'(x; y) and f'(x; -y) exist and satisfy the relation f'(x; y) = -f'(x; -y).

Notation and Remark

- If, for some x ∈ X, the one-sided directional derivative f'(x; y) exists for each y ∈ ℝⁿ, we write f'(x;) to denote the function f'(x;): ℝⁿ → ℝ whose value at y is f'(x; y).
- The remarks before the preceding theorem show that, for each convex function $f: X \to \mathbb{R}^n$, the one-sided directional derivative $f'(\mathbf{x}; \mathbf{y})$ exists for every \mathbf{x} in the interior of X and for all \mathbf{y} in \mathbb{R}^n .

Example

• Consider the convex function $f : \mathbb{R}^n \to \mathbb{R}$ defined, for each $\mathbf{x} = (x_1, \dots, x_n)$, by

$$f(\mathbf{x}) = \|\mathbf{x}\|^2 = x_1^2 + \dots + x_n^2$$

• Then, for each $\mathbf{y} = (y_1, \dots, y_n)$ in \mathbb{R}^n ,

$$F'(\mathbf{x}; \mathbf{y}) = \lim_{\lambda \to 0^+} \frac{f(\mathbf{x} + \lambda \mathbf{y}) - f(\mathbf{x})}{\lambda}$$

=
$$\lim_{\lambda \to 0^+} \frac{2\lambda (x_1 y_1 + \dots + x_n y_n) + \lambda^2 (y_1^2 + \dots + y_n^2)}{\lambda}$$

=
$$2x_1 y_1 + \dots + 2x_n y_n$$

=
$$2\mathbf{x} \cdot \mathbf{y}.$$

- Thus $f'(\mathbf{x}; \mathbf{y})$ exists and equals $2\mathbf{x} \cdot \mathbf{y}$.
- For this particular function, the (two-sided) directional derivative of *f* at *x* relative to *y* exists.
- The one-sided derivative $f'(\mathbf{x};): \mathbb{R}^n \to \mathbb{R}$ is linear for each \mathbf{x} in \mathbb{R}^n .

Properties of Directional Derivative Function

Theorem

Let f be a convex function defined on an open convex set X in \mathbb{R}^n and let $\mathbf{x} \in X$. Then $f'(\mathbf{x}; \mathbf{y})$ is a positively homogeneous convex function such that $f'(\mathbf{x}; \mathbf{y}) \ge -f'(\mathbf{x}; -\mathbf{y})$ for all \mathbf{y} in \mathbb{R}^n . If f has a directional derivative at \mathbf{x} relative to \mathbf{y} , then $f'(\mathbf{x}; \lambda \mathbf{y}) = \lambda f'(\mathbf{x}; \mathbf{y})$ for all scalars λ .

• Let
$$\mu > 0$$
 and let $\mathbf{y} \in \mathbb{R}^{n}$. Then

$$f'(\mathbf{x}; \mu \mathbf{y}) = \lim_{\lambda \to 0^{+}} \frac{f(\mathbf{x} + \lambda \mu \mathbf{y}) - f(\mathbf{x})}{\lambda} = \lim_{\lambda \to 0^{+}} \mu \frac{f(\mathbf{x} + \lambda \mu \mathbf{y}) - f(\mathbf{x})}{\lambda \mu} = \mu f'(\mathbf{x}; \mathbf{y}).$$
This shows that $f'(\mathbf{x};)$ is positively homogeneous.
Let $\mathbf{y}, \mathbf{z} \in \mathbb{R}^{n}$. By the convexity of f ,

$$f'(\mathbf{x}; \mathbf{y} + \mathbf{z}) = \lim_{\lambda \to 0^{+}} \frac{f(\mathbf{x} + \lambda (\mathbf{y} + \mathbf{z})) - f(\mathbf{x})}{\lambda}$$

$$\leq \lim_{\lambda \to 0^{+}} \left(\frac{1}{2} \frac{f(\mathbf{x} + 2\lambda \mathbf{y}) - f(\mathbf{x})}{\lambda} + \frac{1}{2} \frac{f(\mathbf{x} + 2\lambda \mathbf{z}) - f(\mathbf{x})}{\lambda}\right)$$

$$= f'(\mathbf{x}; \mathbf{y}) + f'(\mathbf{x}; \mathbf{z}).$$

Properties of Directional Derivative Function (Cont'd)

A previous theorem shows that f'(x;) is convex.
 By what we have just proved, for each y in Rⁿ,

$$0 = f'(\boldsymbol{x}; \boldsymbol{0}) = f'(\boldsymbol{x}; \boldsymbol{y} - \boldsymbol{y}) \le f'(\boldsymbol{x}; \boldsymbol{y}) + f'(\boldsymbol{x}; -\boldsymbol{y}).$$

Hence $f'(\mathbf{x}; \mathbf{y}) \ge -f'(\mathbf{x}; -\mathbf{y})$.

Suppose, finally, that f has a directional derivative at x relative to y. Then f'(x; y) = -f'(x; y). If $\lambda < 0$, then, since f is positively homogeneous,

$$f'(\boldsymbol{x};\lambda\boldsymbol{y}) = f'(\boldsymbol{x};(-\lambda)(-\boldsymbol{y})) = -\lambda f'(\boldsymbol{x};-\boldsymbol{y}) = \lambda f'(\boldsymbol{x};\boldsymbol{y}).$$

Hence $f'(\mathbf{x}; \lambda \mathbf{y}) = \lambda f'(\mathbf{x}; \mathbf{y})$ for all scalars λ .

Differentiability and Gradient

- Suppose now that f is a real-valued function defined on an open set X in Rⁿ and that x is a point of X.
- Recall that f is differentiable at x if there exists a vector x' (necessarily unique) such that

$$\lim_{\boldsymbol{u}\to\boldsymbol{0}}\frac{f(\boldsymbol{x}+\boldsymbol{u})-f(\boldsymbol{x})-\boldsymbol{x}'\cdot\boldsymbol{u}}{\|\boldsymbol{u}\|}=0.$$

• When such an x' exists it is called the gradient of f at x.

Gradient and Directional Derivatives

- Suppose that f is a real-valued function defined on an open set X in \mathbb{R}^n and that \mathbf{x} is a point of X.
- Let f be differentiable at x with gradient x' there.
- Then, for any non-zero vector \boldsymbol{y} in \mathbb{R}^n ,

$$0 = \lim_{\lambda \to 0} \frac{|f(\mathbf{x} + \lambda \mathbf{y}) - f(\mathbf{x}) - \mathbf{x}' \cdot (\lambda \mathbf{y})|}{\|\lambda \mathbf{y}\|} = \lim_{\lambda \to 0} \frac{1}{\|\mathbf{y}\|} \left| \frac{f(\mathbf{x} + \lambda \mathbf{y}) - f(\mathbf{x})}{\lambda} - \mathbf{x}' \cdot \mathbf{y} \right|.$$

- This shows that f possesses a directional derivative at x relative to y and that f'(x; y) = x' · y.
- So $f'(\mathbf{x};)$ is linear.

Directional Derivatives and Differentiability

The existence of the directional derivatives of f at x relative to all points y in Rⁿ neither guarantees that f is differentiable nor that f'(x;) is linear.

Theorem

Suppose that a convex function f defined on an open convex set X in \mathbb{R}^n possesses all its partial derivatives $\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}$ at some point \mathbf{x} of X. Then f is differentiable at \mathbf{x} .

• Let r > 0 be such that $B(\mathbf{x}; r) \subseteq X$. For each $\mathbf{u} = (u_1, \dots, u_n)$ in $B(\mathbf{0}; r)$, let

$$\psi(\boldsymbol{u}) = f(\boldsymbol{x} + \boldsymbol{u}) - f(\boldsymbol{x}) - \left(\frac{\partial f}{\partial x_1}u_1 + \dots + \frac{\partial f}{\partial x_n}u_n\right).$$

Then ψ is convex on $B(\mathbf{0}; r)$.

Directional Derivatives and Differentiability (Cont'd)

For each i = 1,..., n, define a function θ_i on B(0; r) at a point u = (u₁,..., u_n) of B(0; r) as follows:

$$\theta_i(\boldsymbol{u}) = \begin{cases} \frac{\psi(u_i \boldsymbol{e}_i)}{u_i}, & \text{for } u_i \neq 0, \\ 0, & \text{for } u_i = 0. \end{cases}$$

Then $\theta_i(\boldsymbol{u}) \to 0$ as $\boldsymbol{u} \to \boldsymbol{0}$. For each $\boldsymbol{u} = (u_1, \dots, u_n)$ such that $n \|\boldsymbol{u}\| < r$, Jensen's inequality applied to the convex function ψ shows that

$$\psi(\boldsymbol{u}) = \psi\left(\frac{1}{n}(nu_1\boldsymbol{e}_1) + \dots + \frac{1}{n}(nu_n\boldsymbol{e}_n)\right) \leq \frac{1}{n}\psi(nu_1\boldsymbol{e}_1) + \dots + \frac{1}{n}\psi(nu_n\boldsymbol{e}_n)$$

= $u_1\theta_1(n\boldsymbol{u}) + \dots + u_n\theta_n(n\boldsymbol{u}) \leq \|\boldsymbol{u}\|(|\theta_1(n\boldsymbol{u})| + \dots + |\theta_n(n\boldsymbol{u})|).$

But
$$0 = \psi(\frac{1}{2}\boldsymbol{u} + \frac{1}{2}(-\boldsymbol{u})) \leq \frac{1}{2}\psi(\boldsymbol{u}) + \frac{1}{2}\psi(-\boldsymbol{u})$$
. So $\psi(\boldsymbol{u}) \geq -\psi(-\boldsymbol{u})$.
Thus,

$$-\|\boldsymbol{u}\|(|\theta_1(-n\boldsymbol{u})|+\dots+|\theta_n(-n\boldsymbol{u})|) \leq \psi(\boldsymbol{u}) \leq \|\boldsymbol{u}\|(|\theta_1(n\boldsymbol{u})|+\dots+|\theta_n(n\boldsymbol{u})|).$$

So $\frac{\psi(\boldsymbol{u})}{\|\boldsymbol{u}\|} \to 0$ as $\boldsymbol{u} \to \boldsymbol{0}$. Hence f has gradient $(\frac{\partial f}{\partial x_1},\dots,\frac{\partial f}{\partial x_n})$ at \boldsymbol{x} .

Differentiability and Uniqueness of Support

Theorem

Let f be a convex function defined on an open convex set X in \mathbb{R}^n . Then f is differentiable at a point x_0 of X if and only if it has unique support at x_0 .

Suppose that f is differentiable at x₀. Let T : ℝⁿ → ℝ be a support for f at x₀. Then there exists x' ∈ ℝⁿ such that, for all x ∈ ℝⁿ, T(x₀ + x) = f(x₀) + x' ⋅ x. Let y ∈ ℝⁿ. Then, for all sufficiently small λ > 0,

$$f(\mathbf{x}_0 + \lambda \mathbf{y}) - f(\mathbf{x}_0) \ge \lambda \mathbf{x}' \cdot \mathbf{y}.$$

Hence $f'(\mathbf{x}_0; \mathbf{y}) \ge \mathbf{x}' \cdot \mathbf{y}$. Replacing \mathbf{y} by $-\mathbf{y}$ in this last inequality and using the fact that f is differentiable at \mathbf{x}_0 , we deduce that

$$-f'(\boldsymbol{x}_0;\boldsymbol{y})=f'(\boldsymbol{x}_0;-\boldsymbol{y})\geq-\boldsymbol{x}'\cdot\boldsymbol{y}.$$

Hence $f'(\mathbf{x}_0; \mathbf{y}) = \mathbf{x}' \cdot \mathbf{y}$. It follows that $\mathbf{x}' = (f'(\mathbf{x}_0; \mathbf{e}_1), \dots, f'(\mathbf{x}_0; \mathbf{e}_n))$. So f has unique support T at \mathbf{x}_0 .

Differentiability and Uniqueness of Support (Cont'd)

Suppose next that f has unique support T: ℝⁿ → ℝ at x₀. Let m be any real number satisfying -f'(x₀; -e₁) ≤ m ≤ f'(x₀; e₁). Let L be the line in ℝⁿ⁺¹ defined by the equation

$$L = \{ (\boldsymbol{x}_0 + t \boldsymbol{e}_1, f(\boldsymbol{x}_0) + mt) : t \in \mathbb{R} \}.$$

It can be shown that $f(\mathbf{x}_0) + mt \le f(\mathbf{x}_0 + t\mathbf{e}_1)$, for $\mathbf{x}_0 + t\mathbf{e}_1 \in X$.

Thus, *L* meets the epigraph of *f* at $(x_0, f(x_0))$ but does not meet its interior. A previous corollary shows that there is a support hyperplane to the epigraph of *f* at $(x_0, f(x_0))$ which contains *L*.

The uniqueness of the support to f at x_0 shows that this support hyperplane must be the graph of T. Hence

$$T(\boldsymbol{x}_0 + t\boldsymbol{e}_1) = f(\boldsymbol{x}_0) + mt = T(\boldsymbol{x}_0) + mt, \text{ for } t \in \mathbb{R}.$$

Differentiability and Uniqueness of Support (Cont'd)

• Thus, *m* is uniquely determined by *T*. Thus, by the choice of *m*,

$$-f'(\boldsymbol{x}_0;-\boldsymbol{e}_1)=f'(\boldsymbol{x}_0;\boldsymbol{e}_1).$$

This shows that the partial derivative $\frac{\partial f}{\partial x_1}$ at \mathbf{x}_0 exists. Similarly, the partial derivatives $\frac{\partial f}{\partial x_2}$, ..., $\frac{\partial f}{\partial x_n}$ exist. By the preceding theorem, f is differentiable.

Criterion for Convexity

Theorem

Let f be a real-valued function which is defined and has continuous second-order partial derivatives on a non-empty convex set X in \mathbb{R}^n . Then f is convex if and only if, for every $x \in X$,

$$\sum_{j=1}^{n}\sum_{j=1}^{n}\left[\frac{\partial^{2}f}{\partial x_{i}\partial x_{j}}\right]_{\mathbf{X}}z_{i}z_{j}\geq0,$$

for all $(z_1,\ldots,z_n) \in \mathbb{R}^n$.

Let y ∈ X and z = (z₁,...,z_n) ∈ ℝⁿ. Let f be the open interval of ℝ defined by the equation I = {λ ∈ ℝ : y + λz ∈ X}. We have already seen that the function g : I → ℝ defined by the equation g(λ) = f(y + λz) for λ ∈ I is convex when f is. Conversely, suppose that each such function g is convex. We show that this implies that f is convex.

Criterion for Convexity (Cont'd)

• Let $x, y \in X$ and let $0 \le \lambda \le 1$. Write z = x - y. Since g is convex,

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) = f(\mathbf{y} + \lambda(\mathbf{x} - \mathbf{y}))$$

= $g((1 - \lambda)0 + \lambda 1)$
 $\leq (1 - \lambda)g(0) + \lambda g(1)$
= $\lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}).$

This shows that f is convex. Thus f is convex on X if and only if each function g (as above) is convex on f. Since f has continuous second-order partial derivatives on X, each function g is differentiable twice on f. The first two derivatives of g can be calculated from the chain rule for functions of n variables:

$$g'(\lambda) = \sum_{j=1}^{n} \left[\frac{\partial f}{\partial x_j} \right]_{\boldsymbol{X}} z_j, \quad g''(\lambda) = \sum_{i=1}^{n} \sum_{j=1}^{n} \left[\frac{\partial^2 f}{\partial x_i \partial x_j} \right]_{\boldsymbol{X}} z_i z_j,$$

where $\lambda \in I$ and the partial derivatives are evaluated at the point $\mathbf{x} = \mathbf{y} + \lambda \mathbf{z}$. The desired result follows by a previous corollary.

The Hessian

- Suppose that *f* is as in the last theorem.
- Then the $n \times n$ matrix whose (i, j)th element is $\frac{\partial^2 f}{\partial x_i \partial x_j}$ evaluated at a point **x** of X is called the **Hessian matrix of** f at **x**.
- The conditions which we have imposed upon *f* ensure that this matrix is symmetric.
- We have thus proved that:

f is convex on X if and only if its Hessian matrix is *non-negative* semidefinite at each point of X.

Subsection 6

Support Functions

Family of Parallel Hyperplanes

- Let A be a non-empty compact convex set in \mathbb{R}^n and let \boldsymbol{u} be a nonzero vector in \mathbb{R}^n .
- For each real number α , denote by H_{α} the hyperplane defined by the equation

$$H_{\alpha} = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{u} \cdot \boldsymbol{x} = \alpha \}.$$

Denote by H⁻_α the closed halfspace defined by the equation

 $H_{\alpha}^{-} = \{ \boldsymbol{x} \in \mathbb{R}^{n} : \boldsymbol{u} \cdot \boldsymbol{x} \leq \alpha \}.$

As α increases, the hyperplane H_α describes a family of parallel hyperplanes each having u as a normal vector.

Family of Parallel Hyperplanes (Cont'd)

- In general, there will be two values of *α* for which the hyperplane H_α supports A.
- These values are α_1 and α_2 in the figure.
- Only one of these, α_2 in the figure, will be such that $A \subseteq H_{\alpha}^-$.
- Clearly $A \subseteq H_{\alpha}^{-}$ if and only if $\boldsymbol{u} \cdot \boldsymbol{a} \leq \alpha$ for all \boldsymbol{a} in A, i.e., if and only if

$$\sup \{ \boldsymbol{u} \cdot \boldsymbol{a} : \boldsymbol{a} \in A \} \le \alpha.$$

- If, in addition to the requirement $A \subseteq H_{\alpha}^{-}$, it is also demanded that H_{α} supports A, then, for some point \mathbf{a}_{0} of A, $\mathbf{u} \cdot \mathbf{a}_{0} = \alpha$.
- Thus H_{α} is a support hyperplane to A such that $A \subseteq H_{\alpha}^{-}$ if and only if

$$\alpha = \sup \{ \boldsymbol{u} \cdot \boldsymbol{a} : \boldsymbol{a} \in A \}.$$

The Support Function of a Nonempty Compact Convex Set

• The support function h, or more precisely h_A , of a non-empty compact convex set A in \mathbb{R}^n is defined by the equation

 $h(\boldsymbol{u}) = \sup \{ \boldsymbol{u} \cdot \boldsymbol{a} : \boldsymbol{a} \in A \}, \text{ for each } \boldsymbol{u} \text{ in } \mathbb{R}^n.$

- Since A is non-empty and bounded, for each u in ℝⁿ, the subset {u · a : a ∈ A} of ℝ is non-empty and bounded.
 Hence h(u) is well defined.
- The above definition of *h* makes sense even if *A* is only assumed to be non-empty and bounded.
- For our purposes, it will suffice to consider the restricted case when A is a non-empty compact convex set.

Example

• L • T

• We find the support function *h* of the regular *n*-crosspolytope *A* defined by the equation

$$A = \{(x_1, \dots, x_n) \in \mathbb{R}^n : |x_1| + \dots + |x_n| \le 1\}.$$

et $\boldsymbol{u} = (u_1, \dots, u_n).$
Then

$$h(\mathbf{u}) = \sup \{\mathbf{u} \cdot \mathbf{a} : \mathbf{a} \in A\}$$

= $\sup \{u_1 a_1 + \dots + u_n a_n : |a_1| + \dots + |a_n| \le 1\}$
 $\le \sup \{|u_1||a_1| + \dots + |u_n||a_n| : |a_1| + \dots + |a_n| \le 1\}$
 $\le \sup \{(\max \{|u_1|, \dots, |u_n|\})(|a_1| + \dots + |a_n|) : |a_1| + \dots + |a_n| \le 1\}$

$$= \max\{|u_1|,\ldots,|u_n|\}.$$

Example (Cont'd)

- Let $m \in \{1, ..., n\}$ be such that $|u_m| = \max\{|u_1|, ..., |u_n|\}$.
- Define a point $\mathbf{a} = (a_1, \dots, a_n)$ of A by the conditions $a_i = 0$ when $i \neq m$ and a_m is 1 or -1 according as u_m is non-negative or negative.

Then

$$\boldsymbol{u} \cdot \boldsymbol{a} = |\boldsymbol{u}_m| = \max\{|\boldsymbol{u}_1|, \dots, |\boldsymbol{u}_n|\}.$$

- Hence $h(\boldsymbol{u}) \ge \max\{|u_1|, \dots, |u_n|\}$.
- We have thus shown that

$$h(\boldsymbol{u}) = \max\{|u_1|,\ldots,|u_n|\}.$$

• We note that this support function is positively homogeneous and convex.

Positive Homogeneity and Convexity

Theorem

The support function of a non-empty compact convex set in \mathbb{R}^n is positively homogeneous and convex.

• Let *h* be the support function of a non-empty compact convex set *A* in \mathbb{R}^n . Let $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$ and let $\lambda > 0$. Then

$$h(\lambda \boldsymbol{u}) = \sup \{ (\lambda \boldsymbol{u}) \cdot \boldsymbol{a} : \boldsymbol{a} \in A \} = \lambda \sup \{ \boldsymbol{u} \cdot \boldsymbol{a} : \boldsymbol{a} \in A \} = \lambda h(\boldsymbol{u}).$$

This shows that h is positively homogeneous. Also

$$h(\boldsymbol{u} + \boldsymbol{v}) = \sup \{ (\boldsymbol{u} + \boldsymbol{v}) \cdot \boldsymbol{a} : \boldsymbol{a} \in A \}$$

=
$$\sup \{ \boldsymbol{u} \cdot \boldsymbol{a} + \boldsymbol{v} \cdot \boldsymbol{a} : \boldsymbol{a} \in A \}$$

$$\leq \sup \{ \boldsymbol{u} \cdot \boldsymbol{a} : \boldsymbol{a} \in A \} + \sup \{ \boldsymbol{v} \cdot \boldsymbol{a} : \boldsymbol{a} \in A \}$$

=
$$h(\boldsymbol{u}) + h(\boldsymbol{v}).$$

The convexity of h now follows from a previous theorem.

Exposed Face and Outward Normal

- Suppose that *h* is the support function of a non-empty compact convex set *A* in \mathbb{R}^n , and that *u* is a non-zero vector in \mathbb{R}^n .
- By the definition of h, $\boldsymbol{u} \cdot \boldsymbol{a} \le h(\boldsymbol{u})$ for each \boldsymbol{a} in A, whence $A \subseteq \{\boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{u} \cdot \boldsymbol{x} \le h(\boldsymbol{u})\}.$
- Consider the function $f : A \to \mathbb{R}$ defined by the rule $f(a) = u \cdot a$ for each point a in A.
- Then *f* is continuous, and so is bounded and attains its bounds on the compact set *A*.
- In particular, there exists a point a_0 in A such that

$$\boldsymbol{u} \cdot \boldsymbol{a}_0 = \sup \{ \boldsymbol{u} \cdot \boldsymbol{a} : \boldsymbol{a} \in A \} = h(\boldsymbol{u}).$$

• So the hyperplane with equation $\boldsymbol{u} \cdot \boldsymbol{x} = h(\boldsymbol{u})$ supports A at \boldsymbol{a}_0 .

Exposed Face and Outward Normal (Cont'd)

- The distance of this support hyperplane from the origin is $\frac{|h(\boldsymbol{u})|}{\|\boldsymbol{u}\|}$, which simplifies to $h(\boldsymbol{u})$ when \boldsymbol{u} is a unit vector and the origin is a point of A.
- The earlier discussion shows that the set

$$\{\boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{u} \cdot \boldsymbol{x} = h(\boldsymbol{u})\} \cap A = \{\boldsymbol{x} \in A : \boldsymbol{u} \cdot \boldsymbol{x} = h(\boldsymbol{u})\}$$

is a non-empty exposed face of A.

- It is called the exposed face of A with outward normal u and is denoted by A^u.
- Since *h* is positively homogeneous, for $\lambda > 0$,

$$A^{\lambda \boldsymbol{u}} = \{\boldsymbol{x} \in A : (\lambda \boldsymbol{u}) \cdot \boldsymbol{x} = h(\lambda \boldsymbol{u})\}$$

= $\{\boldsymbol{x} \in A : \boldsymbol{u} \cdot \boldsymbol{x} = h(\boldsymbol{u})\}$
= $A^{\boldsymbol{u}}.$

Properties of the Support Function

Theorem

Let A, B be non-empty compact convex sets in \mathbb{R}^n with support functions h_A , h_B , respectively. Then the support functions h_{A+B} of A+B and $h_{\lambda A}$ of λA , where $\lambda \ge 0$, are given by the equations $h_{A+B} = h_A + h_B$ and $h_{\lambda A} = \lambda h_A$.

• Let $\boldsymbol{u} \in \mathbb{R}^n$. Then

$$h_{A+B}(\boldsymbol{u}) = \sup \{ \boldsymbol{u} \cdot (\boldsymbol{a} + \boldsymbol{b}) : \boldsymbol{a} \in A, \boldsymbol{b} \in B \}$$

=
$$\sup \{ \boldsymbol{u} \cdot \boldsymbol{a} : \boldsymbol{a} \in A \} + \sup \{ \boldsymbol{u} \cdot \boldsymbol{b} : \boldsymbol{b} \in B \}$$

=
$$h_A(\boldsymbol{u}) + h_B(\boldsymbol{u}).$$

Hence $h_{A+B} = h_A + h_B$. Also

 $h_{\lambda A}(\boldsymbol{u}) = \sup \{ \boldsymbol{u} \cdot (\lambda \boldsymbol{a}) : \boldsymbol{a} \in A \} = \lambda \sup \{ \boldsymbol{u} \cdot \boldsymbol{a} : \boldsymbol{a} \in A \} = \lambda h_A(\boldsymbol{u}).$

Hence $h_{\lambda A} = \lambda h_A$.

Properties of the Exposed Face

Theorem

Let A, B be non-empty compact convex sets in \mathbb{R}^n . Then, for each non-zero vector \boldsymbol{u} in \mathbb{R}^n and for each $\lambda \ge 0$, $(A+B)^{\boldsymbol{u}} = A^{\boldsymbol{u}} + B^{\boldsymbol{u}}$ and $(\lambda A)^{\boldsymbol{u}} = \lambda A^{\boldsymbol{u}}$.

We note that

$$(A+B)^{\boldsymbol{u}} = \{\boldsymbol{a}+\boldsymbol{b}: \boldsymbol{a}\in A, \boldsymbol{b}\in B, h_{A+B}(\boldsymbol{u}) = \boldsymbol{u}\cdot(\boldsymbol{a}+\boldsymbol{b})\}$$

$$= \{\boldsymbol{a}+\boldsymbol{b}: \boldsymbol{a}\in A, \boldsymbol{b}\in B, h_A(\boldsymbol{u}) + h_B(\boldsymbol{u}) = \boldsymbol{u}\cdot\boldsymbol{a} + \boldsymbol{u}\cdot\boldsymbol{b}\}$$

$$= \{\boldsymbol{a}+\boldsymbol{b}: \boldsymbol{a}\in A, \boldsymbol{b}\in B, h_A(\boldsymbol{u}) = \boldsymbol{u}\cdot\boldsymbol{a}, h_B(\boldsymbol{u}) = \boldsymbol{u}\cdot\boldsymbol{b}\}$$

$$= \{\boldsymbol{a}\in A: h_A(\boldsymbol{u}) = \boldsymbol{u}\cdot\boldsymbol{a}\} + \{\boldsymbol{b}\in B: h_B(\boldsymbol{u}) = \boldsymbol{u}\cdot\boldsymbol{b}\}$$

$$= A^{\boldsymbol{u}} + B^{\boldsymbol{u}}.$$

We also have, for $\lambda \ge 0$,

$$(\lambda A)^{\boldsymbol{u}} = \{\lambda \boldsymbol{a} : \boldsymbol{a} \in A, h_{\lambda A}(\boldsymbol{u}) = \boldsymbol{u} \cdot (\lambda \boldsymbol{a})\} \\ = \lambda \{\boldsymbol{a} \in A : \lambda h_A(\boldsymbol{u}) = \lambda \boldsymbol{u} \cdot \boldsymbol{a}\} \\ = \lambda \{\boldsymbol{a} \in A : h_A(\boldsymbol{u}) = \boldsymbol{u} \cdot \boldsymbol{a}\} \\ = \lambda A^{\boldsymbol{u}}.$$
Convex Sets Determined By Support Functions

Theorem

Let *h* be the support function of a non-empty compact convex set *A* in \mathbb{R}^n . Then $A = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{u} \cdot \mathbf{x} \le h(\mathbf{u}) \text{ for all } \mathbf{u} \in \mathbb{R}^n \}.$

• We prove the theorem by showing that:

i) If
$$\boldsymbol{a} \in A, \boldsymbol{u} \in \mathbb{R}^n$$
, then $\boldsymbol{u} \cdot \boldsymbol{a} \leq h(\boldsymbol{u})$;

i) If $\mathbf{a}_0 \in \mathbb{R}^n \setminus A$, then $\mathbf{u} \cdot \mathbf{a}_0 > h(\mathbf{u})$ for some $\mathbf{u} \in \mathbb{R}^n$.

Statement (i) follows immediately from the definition of h.

Suppose that $a_0 \in \mathbb{R}^n \setminus A$. Then $\{a_0\}$ and A can be strictly separated by a hyperplane. Thus there exists $u \in \mathbb{R}^n$ such that

$$h(\boldsymbol{u}) = \sup \{ \boldsymbol{u} \cdot \boldsymbol{a} : \boldsymbol{a} \in A \} < \boldsymbol{u} \cdot \boldsymbol{a}_0.$$

This verifies Statement (ii).

Positively Homogeneous Convex Functions as Supports

Theorem

Let $g:\mathbb{R}^n\to\mathbb{R}$ be a positively homogeneous convex function. Then the set A defined by the equation

$$A = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{u} \cdot \boldsymbol{x} \le g(\boldsymbol{u}) \text{ for all } \boldsymbol{u} \in \mathbb{R}^n \}$$

is non-empty, compact, convex, and has support function g.

• Let $\boldsymbol{u} \in \mathbb{R}^n$. Since g is convex, it has support at \boldsymbol{u} . So there exist $a_0 \in \mathbb{R}$, $\boldsymbol{a} \in \mathbb{R}^n$ such that $a_0 + \boldsymbol{a} \cdot \boldsymbol{u} = g(\boldsymbol{u})$ and $a_0 + \boldsymbol{a} \cdot \boldsymbol{v} \leq g(\boldsymbol{v})$, for $\boldsymbol{v} \in \mathbb{R}^n$. Putting $\boldsymbol{v} = \lambda \boldsymbol{u}$, we get, for all $\lambda \geq 0$,

$$a_0 + \lambda(\boldsymbol{a} \cdot \boldsymbol{u}) \leq g(\lambda \boldsymbol{u}) = \lambda g(\boldsymbol{u}) = \lambda a_0 + \lambda(\boldsymbol{a} \cdot \boldsymbol{u}).$$

Thus, $a_0 \le \lambda a_0$ for all $\lambda \ge 0$. Hence, $a_0 = 0$. Putting $a_0 = 0$ in the same relations, we find that $\mathbf{a} \cdot \mathbf{u} = g(\mathbf{u})$ and $\mathbf{a} \in A$.

Positively Homogeneous Convex Functions (Cont'd)

• We have just shown that A is non-empty.

From its definition, A is an intersection of closed halfspaces, and so is closed and convex.

For each $\boldsymbol{a} = (a_1, \dots, a_n)$ in A, and $i = 1, \dots, n$,

$$-g(-\boldsymbol{e}_i) \leq \boldsymbol{a} \cdot \boldsymbol{e}_i = a_i \leq g(\boldsymbol{e}_i).$$

This shows that A is bounded.

Thus A is a non-empty compact convex set.

Denote by *h* the support function of *A*. Let $\boldsymbol{u} \in \mathbb{R}^n$.

By the first part of this proof, there is $a \in A$ for which $a \cdot u = g(u)$. Hence, $g(u) \le h(u)$. For each a in A, $a \cdot u \le g(u)$. So $h(u) \le g(u)$. Thus g = h and g is the support function of A.

The Gauge Function

- Let A be a closed convex set in \mathbb{R}^n having the origin as an interior point.
- Then it follows easily that $\lambda A \subseteq \mu A$ whenever $0 \le \lambda \le \mu$.
- Moreover, for each x in \mathbb{R}^n , there is some $\lambda \ge 0$ such that $x \in \lambda A$.
- Thus \mathbb{R}^n can be expressed as an increasing union of convex sets as follows:

$$\mathbb{R}^n = \bigcup (\lambda A : \lambda \ge 0).$$

• The gauge function g, or more precisely g_A , of A is the function $g: \mathbb{R}^n \to \mathbb{R}$ defined, for each x in \mathbb{R}^n , by the equation

 $g(\boldsymbol{x}) = \inf \{\lambda \ge 0 : \boldsymbol{x} \in \lambda A\}.$

• In view of the earlier comments, g is well defined.

Properties of the Gauge Function

• Some immediate consequences of the definition are:

i)
$$g(\mathbf{0}) = 0$$
 and $g(\mathbf{x}) \ge 0$ for $\mathbf{x} \in \mathbb{R}^n$;

ii)
$$g(\mathbf{x}) \leq 1$$
 when $\mathbf{x} \in A$;

iii) If
$$g(\mathbf{x}) = 0$$
, then $\{\mu \mathbf{x} : \mu \ge 0\} \subseteq A$;

(iv) $g(\mathbf{x}) = 0$ for all $\mathbf{x} \in \mathbb{R}^n$ if and only if $A = \mathbb{R}^n$.

Positive Homogeneity and Convexity of the Gauge Function

Theorem

The gauge function of a closed convex set having the origin as an interior point is positively homogeneous and convex.

• Let g be the gauge function of a closed convex set A in \mathbb{R}^n which contains the origin in its interior.

Let $\mathbf{x} \in \mathbb{R}^n$ and let $\lambda > 0$. Then $\lambda \mathbf{x} \in \mu A$ if and only if $\mathbf{x} \in \frac{\mu}{\lambda} A$. It follows easily from the definition of g that

$$\frac{1}{\lambda}g(\lambda \boldsymbol{x}) = \frac{1}{\lambda}\inf \left\{ \mu \ge 0 : \lambda \boldsymbol{x} \in \mu A \right\} = \inf \left\{ \frac{\mu}{\lambda} : \boldsymbol{x} \in \frac{\mu}{\lambda} A \right\} = g(\boldsymbol{x}).$$

Trivially, $g(0\mathbf{x}) = 0g(\mathbf{x})$. Thus g is positively homogeneous. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and let $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$. Then, for each $\varepsilon > 0$, $\mathbf{x} \in (g(\mathbf{x}) + \varepsilon)A$, $\mathbf{y} \in (g(\mathbf{y}) + \varepsilon)A$. So $\lambda \mathbf{x} + \mu \mathbf{y} \in (\lambda g(\mathbf{x}) + \mu g(\mathbf{y}) + \varepsilon)A$. Since $\varepsilon > 0$ is arbitrary, $g(\lambda \mathbf{x} + \mu \mathbf{y}) \le \lambda g(\mathbf{x}) + \mu g(\mathbf{y})$. This shows that g is convex.

George Voutsadakis (LSSU)

Example

• We find the gauge function g of the *n*-cube A defined by the equation

$$A = \{ (x_1, \dots, x_n) : |x_1|, \dots, |x_n| \le 1 \}.$$

Let $\boldsymbol{u} = (u_1, \dots, u_n)$. Then, for $\lambda \ge 0$,

$$\lambda A = \{ (x_1, \dots, x_n) : |x_1|, \dots, |x_n| \le \lambda \}.$$

So $\boldsymbol{u} \in \lambda A$ if and only if max{ $|u_1|, ..., |u_n|$ } $\leq \lambda$. Thus,

$$g(\boldsymbol{u}) = \max\{|u_1|,\ldots,|u_n|\}.$$

Nonnegative Positively Homogeneous Convex Functions

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a non-negative positively homogeneous convex function. Then the set A defined by the equation

 $A = \{ \mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) \le 1 \}$

is closed, convex, contains the origin in its interior and has gauge function f.

The function f is continuous by a previous theorem. Thus A is closed and contains the open set {x ∈ ℝⁿ : f(x) < 1}, which contains the origin. The set A is convex, being the level set of a convex function. Hence A is a closed convex set containing the origin in its interior.

Nonnegative Positively Homogeneous Convex Functions II

Denote by g the gauge function of A. 0 Then, as proved earlier, $A = \{x \in \mathbb{R}^n : g(x) \le 1\}$. Suppose that $\boldsymbol{u} \in \mathbb{R}^n$ satisfies $g(\boldsymbol{u}) > 0$. Since g is positively homogeneous, $g\left(\frac{u}{g(u)}\right) = 1$. Hence $\frac{u}{g(u)} \in A$. Since f is positively homogeneous and $\frac{u}{\sigma(u)} \in A$, $f\left(\frac{u}{\sigma(u)}\right) = \frac{f(u)}{\sigma(u)} \leq 1$. This shows that $f(\boldsymbol{u}) \leq g(\boldsymbol{u})$. If $g(\boldsymbol{u}) = 0$, then, for all $\lambda > 0$, $\lambda \boldsymbol{u} \in A$. So $0 \le f(\lambda \boldsymbol{u}) = \lambda f(\boldsymbol{u}) \le 1$. It follows that $f(\boldsymbol{u}) = 0$. Thus $f(\boldsymbol{u}) \leq g(\boldsymbol{u})$ for all $\boldsymbol{u} \in \mathbb{R}^n$. By a similar argument, $g(\boldsymbol{u}) \leq f(\boldsymbol{u})$ for all $\boldsymbol{u} \in \mathbb{R}^n$. Hence f = g and f is the gauge function of A.

Example

• We have already seen that the support function of the regular *n*-crosspolytope

$$\{(x_1,...,x_n): |x_1|+\cdots+|x_n| \le 1\}$$

and the gauge function of its dual, the n-cube

$$\{(x_1, \dots, x_n) : |x_1|, \dots, |x_n| \le 1\}$$

are the same, namely the function $f : \mathbb{R}^n \to \mathbb{R}$ defined by the equation

$$f(\boldsymbol{u}) = \max\{|u_1|, ..., |u_n|\}, \text{ for } \boldsymbol{u} = (u_1, ..., u_n) \in \mathbb{R}^n.$$

Duality: Support and Gauge Functions

Theorem

Suppose that g, h are the gauge and support functions, respectively, of a compact convex set A in \mathbb{R}^n which has the origin as an interior point. Then the gauge and support functions of the dual A^* of A are h, g, respectively.

• If $u \in A^*$, then $u \cdot a \leq 1$ for all a in A, whence $h(u) \leq 1$. Conversely, if $h(u) \leq 1$, then $u \cdot a \leq 1$ for all a in A, and so $u \in A^*$. Thus,

$$A^* = \{ \boldsymbol{x} \in \mathbb{R}^n : h(\boldsymbol{x}) \le 1 \}.$$

Since A contains the origin, h is non-negative.

Thus *h* is a non-negative, positively homogeneous convex function. Hence, by the preceding theorem, *h* is the gauge function of A^* . By what we have just proved, the support function of A^* is the gauge function of $A^{**} = A$, viz. *g*.

Subsection 7

The Convex Programming Problem

The Convex Programming Problem

- Throughout this section f, g_1, \dots, g_m will denote convex functions defined on \mathbb{R}^n .
- The convex programming problem is to minimize f(x) subject to the constraints x ≥ 0, g₁(x) ≤ 0,...,g_m(x) ≤ 0.
- The **feasible set** for the problem is the convex set X defined by the equation

$$X = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{x} \ge \boldsymbol{0}, g_1(\boldsymbol{x}) \le 0, \dots, g_m(\boldsymbol{x}) \le 0 \}.$$

• Thus the convex programming problem is to find $x_0 \in X$ such that $f(x_0) \le f(x)$ for all $x \in X$.

Existence of Coefficients

Theorem

Let f_1, \ldots, f_k be convex functions defined on a nonempty convex set Y in \mathbb{R}^n . Suppose that there exists no y in Y such that $f_1(y) < 0, \ldots, f_k(y) < 0$. Then there exist $a_1, \ldots, a_k \ge 0$, not all zero, such that

$$a_1 f_1(\mathbf{y}) + \dots + a_k f_k(\mathbf{y}) \ge 0$$
, for all $\mathbf{y} \in Y$.

• Define a set C in \mathbb{R}^k by the equation

 $C = \{(z_1, \ldots, z_k) : \text{there is } \mathbf{y} \in Y \text{ such that } f_i(\mathbf{y}) < z_i \text{ for } i = 1, \ldots, k\}.$

Let $\boldsymbol{u} = (u_1, \dots, u_k)$, $\boldsymbol{v} = (v_1, \dots, v_k) \in C$. Let $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$. Then there exist $\boldsymbol{a}, \boldsymbol{b} \in Y$ such that, for $i = 1, \dots, k$, $f_i(\boldsymbol{a}) < u_i$ and $f_i(\boldsymbol{b}) < v_i$. The convexity of f_1, \dots, f_k shows that, for $i = 1, \dots, k$,

$$f_i(\lambda \boldsymbol{a} + \mu \boldsymbol{b}) \leq \lambda f_i(\boldsymbol{a}) + \mu f_i(\boldsymbol{b}) < \lambda u_i + \mu v_i.$$

Hence, since $\lambda \boldsymbol{a} + \mu \boldsymbol{b} \in Y$, $\lambda \boldsymbol{u} + \mu \boldsymbol{v} \in C$. Thus *C* is convex.

Existence of Coefficients (Cont'd)

By hypothesis, C does not contain the origin of ℝ^k.
 So the origin and C can be separated by a hyperplane.
 Thus, there exist scalars a₁,..., a_k, not all zero, such that, for all y ∈ Y and all λ₁,..., λ_k > 0,

$$a_1(f_1(\mathbf{y}) + \lambda_1) + \cdots + a_k(f_k(\mathbf{y}) + \lambda_k) \ge 0.$$

Letting $\lambda_1 \to \infty$, whilst keeping $\lambda_2, ..., \lambda_k$ fixed in, we deduce that $a_1 \ge 0$. Similarly, $a_2 \ge 0, ..., a_k \ge 0$.

Letting $\lambda_1 \to 0^+, \dots, \lambda_k \to 0^+$, we deduce that, for all \boldsymbol{y} in \boldsymbol{Y} ,

$$a_1f_1(\boldsymbol{y}) + \cdots + a_kf_k(\boldsymbol{y}) \geq 0.$$

Lagrangian Function and Saddle-Point Problem

• The Lagrangian function associated with the convex programming problem is the function F of the m + n variables $x_1, \ldots, x_n, y_1, \ldots, y_m$ defined by the equation

$$F(\mathbf{x},\mathbf{y}) = f(\mathbf{x}) + y_1g_1(\mathbf{x}) + \dots + y_mg_m(\mathbf{x}),$$

where $\mathbf{x} = (x_1, ..., x_n), \ \mathbf{y} = (y_1, ..., y_m).$

• The saddle-point problem is to determine a saddle point of F, that is, a point $(\mathbf{x}_0, \mathbf{y}_0)$ of \mathbb{R}^{m+n} such that $\mathbf{x}_0 \ge \mathbf{0}$, $\mathbf{y}_0 \ge \mathbf{0}$ and

$$F(\boldsymbol{x}_0, \boldsymbol{y}) \leq F(\boldsymbol{x}_0, \boldsymbol{y}_0) \leq F(\boldsymbol{x}, \boldsymbol{y}_0),$$

for all $x \ge 0$, $y \ge 0$.

Saddle-Points and Convex Programming Problem

Theorem

Let $(\mathbf{x}_0, \mathbf{y}_0)$ be a saddle point of the Lagrangian function F. Then \mathbf{x}_0 is a solution to the convex programming problem and $F(\mathbf{x}_0, \mathbf{y}_0) = f(\mathbf{x}_0)$.

• Let
$$\mathbf{x}_0 = (x_1^0, \dots, x_n^0) \ge \mathbf{0}$$
 and $\mathbf{y}_0 = (y_1^0, \dots, y_m^0) \ge \mathbf{0}$. For all
 $\mathbf{y} = (y_1, \dots, y_m) \ge \mathbf{0}$, $F(\mathbf{x}_0, \mathbf{y}_0) \ge F(\mathbf{x}_0, \mathbf{y})$. So
 $y_1^0 g_1(\mathbf{x}_0) + \dots + y_m^0 g_m(\mathbf{x}_0) \ge y_1 g_1(\mathbf{x}_0) + \dots + y_m g_m(\mathbf{x}_0)$.

By fixing y_2, \ldots, y_m and letting $y_1 \to \infty$, we deduce that $g_1(\mathbf{x}_0) \le 0$. Similarly, $g_2(\mathbf{x}_0) \le 0, \ldots, g_m(\mathbf{x}_0) \le 0$.

Thus x_0 is a point of the feasible set X of the convex programming problem.

Saddle-Points and Convex Programming Problem (Cont'd)

• Putting y = 0 in the saddle-point inequality $F(x_0, y_0) \ge F(x_0, y)$ and using the fact that $x_0 \in X$, we deduce that

$$f(\mathbf{x}_0) \leq f(\mathbf{x}_0) + y_1^0 g_1(\mathbf{x}_0) + \dots + y_m^0 g_m(\mathbf{x}_0).$$

Therefore, since $\mathbf{y}_0 \ge \mathbf{0}$ and $g_i(\mathbf{x}_0) \le 0$,

$$0 \leq y_1^0 g_1(\boldsymbol{x}_0) + \cdots + y_m^0 g_m(\boldsymbol{x}_0) \leq 0.$$

Hence

$$y_1^0 g_1(x_0) + \dots + y_m^0 g_m(x_0) = 0$$
 and $F(x_0, y_0) = f(x_0)$.

Since $F(\mathbf{x}_0, \mathbf{y}_0) \le F(\mathbf{x}, \mathbf{y}_0)$ for all $\mathbf{x} \ge \mathbf{0}$, we deduce that, for all $\mathbf{x} \in X$,

$$f(\boldsymbol{x}_0) \leq f(\boldsymbol{x}) + y_1^0 g_1(\boldsymbol{x}) + \dots + y_m^0 g_m(\boldsymbol{x}) \leq f(\boldsymbol{x}).$$

This shows that x_0 is a solution to the convex programming problem.

A Partial Converse

It is not true that, given any solution x₀ of the convex programming problem, there is always a y₀ such that (x₀, y₀) is a saddle point of the Lagrangian function F.

Theorem

Suppose that \mathbf{x}_0 is a solution of the convex programming problem. Suppose also that there exists $\mathbf{x}^* \ge 0$ such that $g_1(\mathbf{x}^*) < 0, ..., g_m(\mathbf{x}^*) < 0$. Then there exists $\mathbf{y}_0 \in \mathbb{R}^m$ for which $(\mathbf{x}_0, \mathbf{y}_0)$ is a saddle point of the Lagrangian function F.

• Suppose that \mathbf{x} belongs to the nonnegative orthant Y of \mathbb{R}^n . Then not all of the following inequalities can hold: $g_1(\mathbf{x}) < 0, ..., g_m(\mathbf{x}) < 0,$ $f(\mathbf{x}) - f(\mathbf{x}_0) < 0$. Thus, by a previous theorem, there exist $a_1, ..., a_m, a_0 \ge 0$, not all zero, such that

$$a_1g_1(\boldsymbol{x}) + \cdots + a_mg_m(\boldsymbol{x}) + a_0(f(\boldsymbol{x}) - f(\boldsymbol{x}_0)) \ge 0$$

whenever $x \in Y$, i.e., $x \ge 0$.

A Partial Converse (Cont'd)

• If $a_0 = 0$, then

$$0 > a_1g_1(\boldsymbol{x}^*) + \cdots + a_mg_m(\boldsymbol{x}^*) \ge 0,$$

which is impossible. Thus $a_0 > 0$. For i = 1, ..., m, let $y_i^0 = \frac{a_i}{a_0}$ and let $\mathbf{y}_0 = (y_1^0, ..., y_m^0) \ge \mathbf{0}$. Then, for any $\mathbf{x} \ge \mathbf{0}$, we deduce from the displayed inequality that

$$f(\boldsymbol{x}_0) \leq f(\boldsymbol{x}) + y_1^0 g_1(\boldsymbol{x}) + \dots + y_m^0 g_m(\boldsymbol{x}) = F(\boldsymbol{x}, \boldsymbol{y}_0).$$

Hence

$$f(\mathbf{x}_0) \leq f(\mathbf{x}_0) + y_1^0 g_1(\mathbf{x}_0) + \dots + y_m^0 g_m(\mathbf{x}_0) \leq f(\mathbf{x}_0).$$

So $y_1^0 g_1(x_0) + \dots + y_m^0 g_m(x_0) = 0$. Thus, for all $x \ge 0$, $F(x_0, y_0) = f(x_0) \le F(x, y_0)$. For $y = (y_1, \dots, y_m) \ge 0$,

$$F(\mathbf{x}_0, \mathbf{y}_0) = f(\mathbf{x}_0) \ge f(\mathbf{x}_0) + y_1 g_1(\mathbf{x}_0) + \dots + y_m g_m(\mathbf{x}_0) = F(\mathbf{x}_0, \mathbf{y}).$$

This shows that $(\mathbf{x}_0, \mathbf{y}_0)$ is a saddle point of F.

Kuhn-Tucker Conditions

Theorem (Kuhn-Tucker Conditions)

Suppose that the convex functions $f, g_1, \ldots, g_m : \mathbb{R}^n \to \mathbb{R}$ are differentiable. Then $(\mathbf{x}_0, \mathbf{y}_0)$, where $\mathbf{x}_0 = (x_1^0, \ldots, x_n^0)$ and $\mathbf{y}_0 = (y_1^0, \ldots, y_m^0)$, is a saddle point of the Lagrangian function F if and only if

$$\begin{aligned} \mathbf{x}_0 &\geq \mathbf{0}, \\ \frac{\partial F}{\partial x_j}(\mathbf{x}_0, \mathbf{y}_0) &= \frac{\partial f}{\partial x_j}(\mathbf{x}_0) + \sum_{i=1}^m y_i^0 \frac{\partial g_i}{\partial x_j}(\mathbf{x}_0) \geq 0, \\ \frac{\partial F}{\partial x_j}(\mathbf{x}_0, \mathbf{y}_0) &= 0, \text{ if } x_j^0 > 0, \end{aligned}$$

and

$$\begin{aligned} \mathbf{y}_0 &\geq \mathbf{0}, \\ \frac{\partial F}{\partial y_j}(\mathbf{x}_0, \mathbf{y}_0) &= g_j(\mathbf{x}_0) \leq 0, \\ \frac{\partial F}{\partial y_j}(\mathbf{x}_0, \mathbf{y}_0) &= 0, \text{ if } y_j^0 > 0. \end{aligned}$$

Proof

Suppose first that (x₀, y₀) is a saddle point of F.
 Then certainly the first conditions of each triple are satisfied.
 For each j = 1,..., n,

$$F(\boldsymbol{x}_0 + \lambda \boldsymbol{e}_j, \boldsymbol{y}_0) \ge f(\boldsymbol{x}_0, \boldsymbol{y}_0), \text{ if } \lambda \ge -x_j^0.$$

It now follows, by elementary calculus, that

$$\frac{\partial F}{\partial x_j}(\boldsymbol{x}_0, \boldsymbol{y}_0) \ge 0 \text{ and } \frac{\partial F}{\partial x_j}(\boldsymbol{x}_0, \boldsymbol{y}_0) = 0, \text{ if } x_j^0 > 0.$$

Thus, the last two conditions of the first triple are satisfied. By a previous theorem, the remaining conditions are also satisfied.

Proof (Converse)

 Suppose next that the six Kuhn-Tucker conditions are satisfied. The function F(x, y₀) of x, for fixed y₀, is convex and differentiable, because f, g₁,...,g_m are, and y₀ ≥ 0. Thus F(x, y₀) has unique support at x₀. Hence, for all x = (x₁,...,x_n) ≥ 0,

$$F(\mathbf{x}, \mathbf{y}_0) \geq F(\mathbf{x}_0, \mathbf{y}_0) + (x_1 - x_1^0) \frac{\partial F}{\partial x_1}(\mathbf{x}_0, \mathbf{y}_0) + \dots + (x_n - x_n^0) \frac{\partial F}{\partial x_n}(\mathbf{x}_0, \mathbf{y}_0)$$

$$= F(\mathbf{x}_0, \mathbf{y}_0) + x_1 \frac{\partial F}{\partial x_1}(\mathbf{x}_0, \mathbf{y}_0) + \dots + x_n \frac{\partial F}{\partial x_n}(\mathbf{x}_0, \mathbf{y}_0)$$

$$\geq F(\mathbf{x}_0, \mathbf{y}_0).$$

The first set of conditions was used here. Finally for $\mathbf{y} = (y_1, \dots, y_m) \ge \mathbf{0}$, we have

$$F(\mathbf{x}_{0}, \mathbf{y}) = F(\mathbf{x}_{0}, \mathbf{y}_{0}) + (y_{1} - y_{1}^{0})g_{1}(\mathbf{x}_{0}) + \dots + (y_{m} - y_{m}^{0})g_{m}(\mathbf{x}_{0})$$

= $F(\mathbf{x}_{0}, \mathbf{y}_{0}) + y_{1}g_{1}(\mathbf{x}_{0}) + \dots + y_{m}g_{m}(\mathbf{x}_{0})$
 $\leq F(\mathbf{x}_{0}, \mathbf{y}_{0}).$

Here we have used the second set of conditions. We have thus shown that (x_0, y_0) is a saddle point of F.

George Voutsadakis (LSSU)

Example

• Solve the convex programming problem:

minimize
$$-6x_1 + 2x_1^2 - 2x_1x_2 + 2x_2^2$$

subject to $x_1 + x_2 \le 2$, $x_1 \ge 0$, $x_2 \ge 0$.

Write $f(x_1, x_2) = -6x_1 + 2x_1^2 - 2x_1x_2 + 2x_2^2$ and $g(x_1, x_2) = x_1 + x_2 - 2$. The Lagrangian function F is defined by the equation

$$F(\mathbf{x}, \mathbf{y}) = -6x_1 + 2x_1^2 - 2x_1x_2 + 2x_2^2 + y_1(x_1 + x_2 - 2).$$

The Kuhn-Tucker conditions give the following equations and inequalities:

$$x_{1}(-6+4x_{1}-2x_{2}+y_{1}) = 0, \qquad -6+4x_{1}-2x_{2}+y_{1} \ge 0,$$

$$x_{2}(-2x_{1}+4x_{2}+y_{1}) = 0, \qquad -2x_{1}+4x_{2}+y_{1} \ge 0,$$

$$y_{1}(x_{1}+x_{2}-2) = 0, \qquad x_{1}+x_{2}-2 \le 0,$$

$$x_{1} \ge 0, \qquad x_{2} \ge 0, \qquad y_{1} \ge 0.$$

Example (Cont'd)

• The three equations have the following six solutions:

	x_1	<i>x</i> ₂	<i>y</i> ₁
(i)	0	0	0
(ii)	0	2	-8
(iii)	$\frac{3}{2}$	0	0
(iv)	2	0	-2
(v)	2	1	0
(vi)	$\frac{3}{2}$	$\frac{1}{2}$	1.

Of these solutions only (vi) satisfies all the remaining inequalities. Hence f has minimal value $-\frac{11}{2}$ at $(\frac{3}{2}, \frac{1}{2})$.

Subsection 8

Matrix Inequalities

A Problem Involving Quadratic Forms

• Associated with each real symmetric square matrix A of order n, there is a quadratic function $q : \mathbb{R}^n \to \mathbb{R}$ defined for each x in \mathbb{R}^n by the equation

$$q(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = (\mathbf{A} \mathbf{x}) \cdot \mathbf{x}.$$

- Let $u_1, ..., u_n$ be an orthonormal sequence in \mathbb{R}^n consisting of eigenvectors of A corresponding to the eigenvalues $\lambda_1, ..., \lambda_n$ of A.
- Then, for i = 1, ..., n, $\boldsymbol{u}_i^T \boldsymbol{A} \boldsymbol{u}_i = (\boldsymbol{A} \boldsymbol{u}_i) \cdot \boldsymbol{u}_i = (\lambda_i \boldsymbol{u}_i) \cdot \boldsymbol{u}_i = \lambda_i$.
- Hence $(q(\boldsymbol{u}_1),\ldots,q(\boldsymbol{u}_n)) = (\lambda_1,\ldots,\lambda_n).$
- We consider the following problem:

If $v_1, ..., v_n$ is any orthonormal sequence in \mathbb{R}^n , how are the points $u = (q(u_1), ..., q(u_n))$ and $v = (q(v_1), ..., q(v_n))$ related to one another?

Answering the Problem

• Express each v_i , for i = 1, ..., n, as a linear combination of $u_1, ..., u_n$, thus:

$$\boldsymbol{v}_i = (\boldsymbol{v}_i \cdot \boldsymbol{u}_1) \boldsymbol{u}_1 + \cdots + (\boldsymbol{v}_i \cdot \boldsymbol{u}_n) \boldsymbol{u}_n.$$

Hence

$$q(\mathbf{v}_{i}) = ((\mathbf{v}_{i} \cdot \mathbf{u}_{1})\mathbf{A}\mathbf{u}_{1} + \dots + (\mathbf{v}_{i} \cdot \mathbf{u}_{n})\mathbf{A}\mathbf{u}_{n}) \cdot ((\mathbf{v}_{i} \cdot \mathbf{u}_{1})\mathbf{u}_{1} + \dots + (\mathbf{v}_{i} \cdot \mathbf{u}_{n})\mathbf{u}_{n})$$

$$= (\lambda_{1}(\mathbf{v}_{i} \cdot \mathbf{u}_{1})\mathbf{u}_{1} + \dots + \lambda_{n}(\mathbf{v}_{i} \cdot \mathbf{u}_{n})\mathbf{u}_{n}) \cdot ((\mathbf{v}_{i} \cdot \mathbf{u}_{1})\mathbf{u}_{1} + \dots + (\mathbf{v}_{i} \cdot \mathbf{u}_{n})\mathbf{u}_{n})$$

$$= (\mathbf{v}_{i} \cdot \mathbf{u}_{1})^{2}\lambda_{1} + \dots + (\mathbf{v}_{i} \cdot \mathbf{u}_{n})^{2}\lambda_{n}$$

$$= (\mathbf{v}_{i} \cdot \mathbf{u}_{1})^{2}q(\mathbf{u}_{1}) + \dots + (\mathbf{v}_{i} \cdot \mathbf{u}_{n})^{2}q(\mathbf{u}_{n}).$$

• Thus $\mathbf{v} = \mathbf{S}\mathbf{u}$, where \mathbf{S} is the square matrix of order n whose (i,j)th element is $(\mathbf{v}_i \cdot \mathbf{u}_j)^2$.

Double Stochasticity of the Matrix **S**

- The matric **S** is a square matrix all of whose elements are non-negative real numbers.
- Squaring both sides of equation $\mathbf{v}_i = (\mathbf{v}_i \cdot \mathbf{u}_1)\mathbf{u}_1 + \dots + (\mathbf{v}_i \cdot \mathbf{u}_n)\mathbf{u}_n$, and using the orthonormality of the sequences $\mathbf{u}_1, \dots, \mathbf{u}_n$ and $\mathbf{v}_1, \dots, \mathbf{v}_n$, we deduce that, for $i = 1, \dots, n$,

$$(\boldsymbol{v}_i \cdot \boldsymbol{u}_1)^2 + \cdots + (\boldsymbol{v}_i \cdot \boldsymbol{u}_n)^2 = \|\boldsymbol{v}_i\|^2 = 1.$$

• Similarly, for $j = 1, \ldots, n$,

$$(\boldsymbol{u}_j \cdot \boldsymbol{v}_1)^2 + \cdots + (\boldsymbol{u}_j \cdot \boldsymbol{v}_n)^2 = \|\boldsymbol{u}_j\|^2 = 1.$$

- Thus **S** is a square matrix of order *n* whose elements are non-negative real numbers, and the sum of the elements in each of its rows and columns is equal to 1.
- Such a matrix is called a **doubly stochastic matrix**.
- The set of all doubly stochastic $n \times n$ matrices will be denoted by Ω_n .

Permutation Matrices

- The simplest example of a doubly stochastic matrix is a **permutation matrix**, which is a square matrix with precisely one 1 in each row and column, all of its other elements being zero.
- Equivalently, a permutation matrix is one that can be obtained by permuting the rows of an identity matrix.
- Clearly every convex combination (in the obvious sense) of permutation matrices is a doubly stochastic matrix.
- The converse of this result, namely that every doubly stochastic matrix is a convex combination of permutation matrices, is also true and it is known as Birkhoff's Theorem.
- This theorem, which will be proven here, is perhaps the most fundamental result in the whole study of doubly stochastic matrices.

${\it n} imes {\it n}$ Matrices and ${\mathbb R}^{n^2}$

- In a natural way we may regard each real n×n matrix A = [a_{ij}] as a point a = (a_{ij}) of ℝ^{n²}, the n² elements of A corresponding in some prescribed way to the n² coordinates of a.
- To be definite, we set up the correspondence

$$\boldsymbol{A} = [a_{ij}] \leftrightarrow (a_{11}, \ldots, a_{1n}, a_{21}, \ldots, a_{2n}, \ldots, a_{n1}, \ldots, a_{nn}) = \boldsymbol{a}.$$

- This correspondence is a bijection between the set of all real n×n matrices and the set of points in ℝ^{n²}.
- It preserves linear combinations, and so we can usefully identify the matrix **A** with the point **a**.
- Under this identification, we may think of the set Ω_n of doubly stochastic $n \times n$ matrices as a set in \mathbb{R}^{n^2} and refer to some of its members as being permutation matrices.

_emma on Non-Singular 0-1-Block Matrices

Lemma

Let **B** be a non-singular square matrix of order *n* that can be partitioned in the form $\begin{bmatrix} P \\ Q \end{bmatrix}$, where **P** and **Q** are matrices of 0's and 1's, such that no column of either **P** or **Q** contains more than one 1. Then det**B** = ±1.

We argue by induction on n. The case n = 2 is trivial.
Suppose that n ≥ 3 and that the assertion is true for square matrices of order n-1. Let B be as in the statement of the lemma. At least one column of B contains precisely one 1.
Otherwise the rows of P could be added to the negatives of the rows of Q to produce a zero row, contradicting the non-singularity of B. Expanding detB by a column with precisely one 1, detB = ±detC. But C is a square matrix of order n-1 of the form in the lemma. Hence, detB = ±1, since detC = ±1 by the induction hypothesis.

Birkhoff's Theorem

Theorem

The set Ω_n is a polytope in \mathbb{R}^{n^2} whose extreme points are the permutation matrices in Ω_n . Every doubly stochastic matrix is a convex combination of permutation matrices.

The set Ω_n is polyhedral, since it consists of those points (x_{ij}) in ℝ^{n²} satisfying the relations:

$$\begin{array}{rcl} x_{ij} & \geq & 0, & i, j = 1, \dots, n; \\ \sum_{j=1}^{n} x_{ij} & = & 1, & i = 1, \dots, n; \\ \sum_{i=1}^{n} x_{ij} & = & 1, & j = 1, \dots, n-1. \end{array}$$

Note that the equality $x_{1n} + \cdots + x_{nn} = 1$ follows from the 2n-1 equations in the last two lines.

The relations of the first two lines show that, if $(x_{ij}) \in \Omega_n$, then $0 \le x_{ij} \le 1$. Hence Ω_n is a bounded polyhedral set, i.e., a polytope.

Birkhoff's Theorem (Cont'd)

That each permutation matrix in Ω_n is one of its extreme points follows easily from the definitions of extreme point and permutation matrix. The non-trivial part of the proof is to show that each extreme point of Ω_n is a permutation matrix. Let (a_{ij}) be an extreme point of Ω_n. Then, by a previous theorem, (a_{ij}) is a nonnegative basic solution for the system of the 2n-1 equations in the last two lines above, i.e., of Ax = b, where

	[11111	00000	•••	00000
	00000	11111	•••	00000
	÷	÷		:
	00000	00000	•••	11111
4 =	10000	10000	•••	10000
	01000	01000	•••	01000
	÷	÷		÷
	00010	00010		00010

and
$$\boldsymbol{b} = (1, ..., 1) \in \mathbb{R}^{2n-1}$$
.

Birkhoff's Theorem (Cont'd)

• At least $n^2 - (2n-1) = (n-1)^2$ of the a_{ij} must be zero. The others, a_1, \ldots, a_{2n-1} , say, satisfy a system of linear equations of the form

$$\boldsymbol{B}(a_1,\ldots,a_{2n-1})=\boldsymbol{b},$$

where **B** is a non-singular $(2n-1) \times (2n-1)$ submatrix of **A**. The matrix **B** satisfies the conditions of the lemma. So det $\mathbf{B} = \pm 1$. Thus the elements of \mathbf{B}^{-1} , and hence of (a_1, \dots, a_{2n-1}) , are integers. It follows that the doubly stochastic matrix (a_{ij}) has only integer elements. So it must be a permutation matrix. We complete the proof by noting that a polytope is the convex hull of its extreme points.

The λ -Set of a Real Symmetric Matrix

- Suppose now that λ is an n-tuple of the (necessarily real) eigenvalues, in some order, of a real symmetric n × n matrix A.
- The set $\Lambda_{\boldsymbol{A}}$ of all such *n*-tuples $\boldsymbol{\lambda}$ is called the $\boldsymbol{\lambda}$ -set of \boldsymbol{A} .
- Clearly $\Lambda_{\mathbf{A}}$ is a finite set containing at most n! points.

Theorem

Let $f: X \to \mathbb{R}$ be a convex function which is defined on a convex set X in \mathbb{R}^n containing the λ -set $\Lambda_{\boldsymbol{A}}$ of a real symmetric $n \times n$ matrix \boldsymbol{A} . Let $(\lambda_1, \ldots, \lambda_n)$ be a point of $\Lambda_{\boldsymbol{A}}$ where f assumes its maximum on $\Lambda_{\boldsymbol{A}}$. Then, for any orthonormal sequence $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n$ in \mathbb{R}^n ,

$$f(\boldsymbol{v}_1^T \boldsymbol{A} \boldsymbol{v}_1, \dots, \boldsymbol{v}_n^T \boldsymbol{A} \boldsymbol{v}_n) \leq f(\lambda_1, \dots, \lambda_n).$$
Proof of the Theorem

• We show:

- First that the point $\mathbf{v} = (\mathbf{v}_1^T \mathbf{A} \mathbf{v}_1, \dots, \mathbf{v}_n^T \mathbf{A} \mathbf{v}_n)$ lies in X;
- Then that $f(\mathbf{v}) \leq f(\boldsymbol{\lambda})$, where $\boldsymbol{\lambda} = (\lambda_1, \dots, \lambda_n)$.

Let $\boldsymbol{u}_1, \ldots, \boldsymbol{u}_n$ be an orthonormal sequence of eigenvectors of \boldsymbol{A} corresponding to the eigenvalues $\lambda_1, \ldots, \lambda_n$. Then, as we proved at the beginning of this section, there is a matrix \boldsymbol{S} of Ω_n such that $\boldsymbol{v} = \boldsymbol{S}\boldsymbol{\lambda}$. By Birkhoff's Theorem, there exist $\mu_1, \ldots, \mu_m \ge 0$ with $\mu_1 + \cdots + \mu_m = 1$ such that $\boldsymbol{S} = \mu_1 \boldsymbol{P}_1 + \cdots + \mu_m \boldsymbol{P}_m$, where $\boldsymbol{P}_1, \ldots, \boldsymbol{P}_m$ are the permutation matrices in Ω_n . Hence

$$\boldsymbol{v} = \boldsymbol{S}\boldsymbol{\lambda} = \mu_1(\boldsymbol{P}_1\boldsymbol{\lambda}) + \dots + \mu_m(\boldsymbol{P}_m\boldsymbol{\lambda}) \in \operatorname{conv}\boldsymbol{\Lambda}_{\boldsymbol{A}} \subseteq \boldsymbol{X}.$$

The convexity of f shows that

$$f(\mathbf{v}) \leq \mu_1 f(\mathbf{P}_1 \boldsymbol{\lambda}) + \cdots + \mu_m f(\mathbf{P}_m \boldsymbol{\lambda}) \leq \mu_1 f(\boldsymbol{\lambda}) + \cdots + \mu_m f(\boldsymbol{\lambda}) = f(\boldsymbol{\lambda}).$$

Nonnegative Semidefinite Matrices

Theorem

Let **A** be a non-negative semidefinite $n \times n$ matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$. Then, for any orthonormal sequence $\mathbf{v}_1, \ldots, \mathbf{v}_n$ in \mathbb{R}^n ,

$$\det \boldsymbol{A} = \lambda_1 \cdots \lambda_n \leq \prod_{j=1}^n \boldsymbol{v}_j^T \boldsymbol{A} \boldsymbol{v}_j.$$

• Since **A** is non-negative semidefinite, $\lambda_1, \ldots, \lambda_n \ge 0$. The function $f: X \to \mathbb{R}$ defined on the non-negative orthant X of \mathbb{R}^n by the equation

$$f(x_1,...,x_n) = -(x_1\cdots x_n)^{1/n}$$
, for $x_1,...,x_n \ge 0$,

is easily seen to be convex from a previous corollary. The λ -set of A is clearly contained in X. The preceding theorem shows that

$$-\left(\prod_{j=1}^{n}\boldsymbol{v}_{j}^{T}\boldsymbol{A}\boldsymbol{v}_{j}\right)^{1/n} \leq -(\lambda_{1}\cdots\lambda_{n})^{1/n} = -(\det\boldsymbol{A})^{1/n}.$$

George Voutsadakis (LSSU)

Hadamard's Determinant Inequality

Theorem (Hadamard's Determinant Inequality)

Let $\mathbf{A} = [a_{ij}]$ be a real $n \times n$ matrix. Then

$$(\det \mathbf{A})^2 \le (a_{11}^2 + \dots + a_{n1}^2) \cdots (a_{1n}^2 + \dots + a_{nn}^2).$$

If **A** is nonnegative semidefinite, then det $\mathbf{A} \leq a_{11} \cdots a_{nn}$.

• Let $\boldsymbol{B} = [b_{ij}]$ denote the nonnegative semidefinite matrix $\boldsymbol{A}^T \boldsymbol{A}$. Applying the preceding theorem to \boldsymbol{B} , and using the orthonormal sequence $\boldsymbol{e}_1, \dots, \boldsymbol{e}_n$ of elementary vectors, we deduce that

$$(\det \boldsymbol{A})^2 = \det \boldsymbol{B} \leq \prod_{j=1}^n \boldsymbol{e}_j^T \boldsymbol{B} \boldsymbol{e}_j = b_{11} \cdots b_{1n}.$$

Hence $(\det A)^2 \leq (a_{11}^2 + \dots + a_{n1}^2) \cdots (a_{1n}^2 + \dots + a_{nn}^2)$. When A is itself non-negative semidefinite, we apply the preceding theorem to A and the sequence e_1, \dots, e_n to get $\det A \leq a_{11} \cdots a_{nn}$.

Minkowski's Determinant Inequality

Theorem (Minkowski's Determinant Inequality)

Let A, B be nonnegative semidefinite $n \times n$ matrices. Then

$$(\det(\boldsymbol{A}+\boldsymbol{B}))^{1/n} \ge (\det \boldsymbol{A})^{1/n} + (\det \boldsymbol{B})^{1/n}.$$

Let *v*₁,..., *v*_n be an orthonormal sequence of eigenvectors of the non-negative semidefinite matrix *A*+*B* corresponding to eigenvalues λ₁,..., λ_n. Then, using previous proven inequalities,

$$\begin{aligned} (\det(\boldsymbol{A}+\boldsymbol{B}))^{1/n} &= (\lambda_1 \cdots \lambda_n)^{1/n} \\ &= (\prod_{j=1}^n \boldsymbol{v}_j^T (\boldsymbol{A}+\boldsymbol{B}) \boldsymbol{v}_j)^{1/n} \\ &= (\prod_{j=1}^n (\boldsymbol{v}_j^T \boldsymbol{A} \boldsymbol{v}_j + \boldsymbol{v}_j^T \boldsymbol{B} \boldsymbol{v}_j))^{1/n} \\ &\geq (\prod_{j=1}^n \boldsymbol{v}_j^T \boldsymbol{A} \boldsymbol{v}_j)^{1/n} + (\prod_{j=1}^n \boldsymbol{v}_j^T \boldsymbol{B} \boldsymbol{v}_j)^{1/n} \\ &\geq (\det \boldsymbol{A})^{1/n} + (\det \boldsymbol{B})^{1/n}. \end{aligned}$$

Diagonals of a Square Matrix

- A diagonal of a real $n \times n$ matrix $\mathbf{A} = [a_{ij}]$ is a finite sequence $a_{1\sigma(1)}, \ldots, a_{n\sigma(n)}$ of elements of \mathbf{A} , where $\sigma(1), \ldots, \sigma(n)$ is a permutation of $1, \ldots, n$.
- To form such a diagonal:
 - We first choose any element d_1 in the first row of **A**.
 - Next we choose any element d_2 in the second row of **A** not lying in the same column as d_1 .
 - Then we choose any element d_3 in the third row of **A** not lying in the same column as either d_1 or d_2 .
 - Continuing in this way, we produce a diagonal d_1, \ldots, d_n of **A**.
- Clearly **A** has at most *n*! different diagonals.
- The diagonal a_{11}, \ldots, a_{nn} is called the **leading diagonal** of **A**.

Positive Diagonals and Doubly Stochastic Matrices

- A diagonal d_1, \ldots, d_n of **A** is said to be **positive** if $d_1, \cdots, d_n > 0$.
- It is a non-trivial fact that a doubly stochastic matrix always has a positive diagonal.

Indeed, by Birkhoff's Theorem, each doubly stochastic matrix **A** in Ω_n can be expressed in the form

$$\boldsymbol{A} = \lambda_1 \boldsymbol{P}_1 + \cdots + \lambda_m \boldsymbol{P}_m,$$

where P_1, \ldots, P_m are permutation matrices and $\lambda_1, \ldots, \lambda_m > 0$ with $\lambda_1 + \cdots + \lambda_m = 1$.

For each i = 1, ..., n, let P_1 , have a 1 in its *i*th row and $\sigma(i)$ th column. Then $a_{1\sigma(1)}, ..., a_{n\sigma(n)}$ is a positive diagonal of A.

A Corollary to Birkhoff's Theorem

Theorem

Let $C = [c_{ij}]$ be a real $n \times n$ matrix. Then there exists a diagonal $c_{1\sigma(1)}, \ldots, c_{n\sigma(n)}$ of C such that

$$c_{1\sigma(1)} + \cdots + c_{n\sigma(n)} \leq \sum_{i,j=1}^{n} c_{ij} s_{ij},$$

for every doubly stochastic $n \times n$ matrix $\boldsymbol{S} = [s_{ij}]$.

• Define a function $f:\Omega_n \to \mathbb{R}$ by the equation

$$f(\boldsymbol{S}) = \sum_{i,j=1}^n c_{ij} s_{ij},$$

for each doubly stochastic matrix $\mathbf{S} = [s_{ij}]$ in Ω_n . Let $\mathbf{P}_1, \dots, \mathbf{P}_m$ be the permutation matrices in Ω_n . Choose one of these matrices, $\mathbf{P} = [p_{ij}]$, say, for which $f(\mathbf{P}) = \min \{f(\mathbf{P}_1), \dots, f(\mathbf{P}_m)\}$. Suppose that the 1 in the *i*th row of \mathbf{P} lies in its $\sigma(i)$ th column.

A Corollary to Birkhoff's Theorem (Cont'd)

By Birkhoff's Theorem, each doubly stochastic matrix S = [s_{ij}] in Ω_n can be written in the form S = λ₁P₁ + ··· + λ_mP_m, for some λ₁,..., λ_m ≥ 0 with λ₁ + ··· + λ_m = 1. Thus,

$$f(\boldsymbol{S}) = \lambda_1 f(\boldsymbol{P}_1) + \dots + \lambda_m f(\boldsymbol{P}_m) \ge f(\boldsymbol{P}).$$

Finally,

$$c_{1\sigma(1)} + \dots + c_{n\sigma(n)} = \sum_{i,j=1}^{n} c_{ij} p_{ij}$$

= $f(\mathbf{P})$
 $\leq f(\mathbf{S})$
= $\sum_{i,j=1}^{n} c_{ij} s_{ij}.$

Doubly Stochastic Matrices and Average Size of a Diagonal

Theorem

Each doubly stochastic $n \times n$ matrix has a positive diagonal whose harmonic mean is at least $\frac{1}{n}$.

• Let **A** = [a_{ij}] be an n × n doubly stochastic matrix. Define an n × n matrix [c_{ij}] by the equations

$$c_{ij} = \begin{cases} \frac{1}{a_{ij}}, & \text{for } a_{ij} > 0\\ n^2 + 1, & \text{for} a_{ij} = 0. \end{cases}$$

By the preceding theorem, some diagonal $c_{1\sigma(1)}, \ldots, c_{n\sigma(n)}$ of $[c_{ij}]$ satisfies the inequalities

$$c_{1\sigma(1)} + \cdots + c_{n\sigma(n)} \leq \sum_{i,j=1}^n c_{ij}a_{ij} \leq n^2.$$

Now all the terms on the left-hand side are positive, and so no term can be equal to $n^2 + 1$.

George Voutsadakis (LSSU)

Doubly Stochastic Matrices and Size of a Diagonal (Cont'd)

• This implies that, for i = 1, ..., n, $a_{i\sigma(i)} > 0$ and $c_{i\sigma(i)} = \frac{1}{a_{i\sigma(i)}}$. Thus, from the inequality, we get

$$\frac{1}{a_{1\sigma(1)}} + \dots + \frac{1}{a_{n\sigma(n)}} \le n^2.$$

Consequently, the harmonic mean

$$\left(\frac{1}{n}\left(\frac{1}{a_{1\sigma(1)}}+\cdots+\frac{1}{a_{n\sigma(n)}}\right)\right)^{-1}$$

of the diagonal $a_{1\sigma(1)}, \ldots, a_{n\sigma(n)}$ is at least $\frac{1}{n}$.

A Consequence

Corollary

Each doubly stochastic $n \times n$ matrix $[a_{ij}]$ has a positive diagonal $a_{1\sigma(1)}, \ldots, a_{n\sigma(n)}$ satisfying the inequalities

$$a_{1\sigma(1)} + \dots + a_{n\sigma(n)} \ge 1$$
 and $a_{1\sigma(1)} \cdots a_{n\sigma(n)} \ge n^{-n}$.

By the theorem,

$$\frac{1}{n} \le \frac{n}{\frac{1}{a_{1\sigma(1)}} + \dots + \frac{1}{a_{n\sigma(n)}}}$$

But the harmonic arithmetic and geometric means satisfy

$$\frac{n}{\frac{1}{a_{1\sigma(1)}} + \dots + \frac{1}{a_{n\sigma(n)}}} \leq \sqrt[n]{a_{1\sigma(1)} \cdots a_{n\sigma(n)}} \leq \frac{a_{1\sigma(1)} + \dots + a_{n\sigma(n)}}{n}.$$

Therefore, $a_{1\sigma(1)} + \cdots + a_{n\sigma(n)} \ge 1$ and $a_{1\sigma(1)} \cdots a_{n\sigma(n)} \ge n^{-n}$