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o Elementary Sets

o Volume

o The Determination of Volume

o Mixed Volumes and Surface Area
o The Brunn-Minkowski Theorem
o Steiner Symmetrization
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Mixed Volumes and Extremum Problems [SEIEmentan/Sets

Subsection 1

Elementary Sets
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Mixed Volumes and Extremum Problems

o The basic elementary set is the cell.
o In R! a cell is simply a bounded convex subset of the real line, i.e., a
set of one of the following forms, in which a,be R with a< b:
@,1a}, [a, b],[a, b), (a, b], (a, b).
o Acell I in R" is a set of the form
I=hx-xly={(x1,...,xn) : X1 € l1,...,xn € I},
where I1,..., 1, are cells in RL.
o The empty set and singletons are examples of degenerate cells in R".
o A typical cell in R? is a closed rectangle with sides parallel to the

coordinate axes, possibly having some or all of its sides removed.
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Mixed Volumes and Extremum Problems

Let / and J be cells in RL.

)

o Then [ and J are bounded convex sets, whence so too are cl/, int/,
InJ, and [ +J.

o Thus, in R! the closure and the interior of a cell are cells, as too are
the intersection and the vector sum of two cells.

o In general, the set difference /\J is not a cell;

o It is, however, easily verified that /\J can be expressed as the union of

two disjoint cells (one or both of which may be empty).

[3,7)\(4,5] = [3,4] U (5,7).
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Mixed Volumes and Extremum Problems

o Now let I and J be cells in R" specified by the equations / =/ x---x [,
and J=Jy x---xJ,, where li,...,1n, Ji,...,Jn are cells in R1.

o It is easily verified that
cl=clly x---xcll, and int/=intly x---xintl,,

whence the closure and the interior of a cell in R" are also cells.

o The readily established relations

Ind = (hnd)x---x(l,ndp),
I+J (h+Jh)x-x(ln+Jp)

show that the intersection and the vector sum of two cells in R" are
themselves cells.

George Voutsadakis (LSSU) Convexity



Mixed Volumes and Extremum Problems

o We show that the set difference /\J can be expressed as a finite union
of pairwise disjoint cells.

o Fori=1,...,n, I;nJ;is a cell contained in the cell /;.

o Since cells in R! are simply intervals, there exist cells P; and Q; in R*
such that the equation /; = P;u Q; U (/;nJ;) expresses /; as a union of
three pairwise disjoint cells.

o It follows that

I=(PLu@Qu(hnd))x--x(PouQnu(lnndp)).

o Hence, by elementary set theory, | can be written as a union of 3"
pairwise disjoint cells in R", one of which is

(hnJ)x---x(l,ndy)=1nJ.

o Thus /\J, which equals /\(/nJ), can be written as the union of 3" -1
pairwise disjoint cells.
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Mixed Volumes and Extremum Problems

o A set which can be expressed as a finite union of pairwise disjoint cells
in R" is called an elementary set.

o Every cell is an elementary set, as also is the set difference of two cells.

Theorem

Let A and B be elementary sets in R". Then AnB, A\B, AUB and A+ B
are elementary sets.

© Suppose that the equations A=U, /; and B = Uf:lJJ' express A and
B as finite unions of pairwise disjoint cells in R".
Then the equation AnB=U", UJ‘.’ZI(I,-OJJ-) expresses AN B as a finite

union of pairwise disjoint cells in R"”. Hence An B is an elementary
set.

This result easily implies that the intersection of any finite non-zero
number of elementary sets is again an elementary set.
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Mixed Volumes and Extremum Problems

o Now, for i=1,...,m, [;\B= /;\Uj.ll Jr= ﬂj;l(/;\Jj). So
A\B= (U, )\B= U;’;lﬂj;l(l,-\.lj). Thus A\B is a finite union of
pairwise disjoint elementary sets. So it is itself an elementary set.
The equation AuB =(A\B)uU(B\A)uU(An B) shows that AuB is a
finite union of pairwise disjoint elementary sets. Hence it is itself an
elementary set.
This result easily implies that the union of any finite number of
elementary sets is an elementary set.
The equation A+B=UT", UJ‘.’ZI(I,-+JJ-) exhibits A+ B as a finite union
of elementary sets. So A+ B is an elementary set.

Corollary

Every union of a finite number, and every intersection of a finite non-zero
number of elementary sets in R" is an elementary set.
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Mixed Volumes and Extremum Problems

Corollary

The closure, the interior, and the boundary of an elementary set in R" are
elementary sets.

o Suppose that in R" the elementary set A is the union of the pairwise
disjoint cells h,...,Im. Then clA=(clh)u---u(clly). This shows that
clA is a union of the cells clh,...,cl/,. So it is an elementary set by
the preceding corollary.

Let / be an open cell in R" containing A. It can be shown that
intA=/\cl(/\A). Hence, by the theorem and the first part of this
corollary, intA is an elementary set.

Finally, bdA =clA\intA. So bdA is an elementary set by the theorem,
since clA and intA are elementary sets.
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Mixed Volumes and Extremum Problems

o The length ¢(1) of a cell I in R is defined to be zero when / is
empty or a singleton, and to be b—a when [ is a cell of one of the
forms [a, b], [a,b), (a,b] or (a,b), where a< b.

o Suppose next that / is the cell /; x---x [, in R", where I,..., 1, are
cells in R!.

o Then the volume v(/) of | is (uniquely) defined by the equation
v(l)=2¢(h)---¢(1y),

i.e., v(I) is the product of the lengths of the cells from which / is
constructed.

o This is a natural generalization of the definition of the area of a
rectangle and the volume of a rectangular block as encountered in
elementary geometry.

o When [ is a cell in RY, we have v(/)=¢(/).



Mixed Volumes and Extremum Problems

Let lo, l,...,Im, where m=1, be cells in R"” with f,..., I, pairwise disjoint
and having union lo. Then v(lp) =X", v(/;).

o We argue by induction on m.
The assertion is trivially true when m=1.
Suppose, then, that m>1 and that the assertion is true for all
partitions of a cell into fewer than m cells.
If one of the cells h,..., 1, is empty, the assertion follows from the
induction hypothesis and the fact that the empty cell has volume zero.
Assume, then, that none of h,..., 1, is empty. For i=0,1,...,m, let
li=1liy x -+ x l;,, where [;1,...,l;, are cells in R'. By hypothesis,

/10/2=(/110/21)><~~~><(/1nﬁ/2n)=¢.

So one of the cells h1 N b1, ..., N, must be empty. Suppose that
h1 N b is empty.
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o Since LUl < Iy and neither of /; and I, is empty,
h1U by € lg1. It now follows easily that there
exist cells Ji1, Jo1 in R! such that 1 € 1,
b1 b1, J1nUbr=lh1, hinkbi1=0.

Define cells P; and P, in R" by the equations
P1 = Ji1xlopx---xlop and Py = Joy x fpp x-+-x Iop,.

Then PLuPr=1ly, PLnP> =@, and o
V(P1)+V(P2)=([(Jll)+€(J21))€(/02)~'€(/0n)=€(/01)~~~€(/0n)=V(/o).

Since the cells PLn /b and P, N are empty,

Plzplﬁl(): 7;1(:‘310/,'):(PlﬁIl)U(Plﬂlg)U"'U(Plﬂlm);
P2=P20/0=U;Zl(Pgﬂ/,')=(P2ﬂ/2)U(P20/3)U---U(Pgﬂ/m).
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Mixed Volumes and Extremum Problems

o We deduce, using the induction hypothesis, that

V(Pl) = V(Pl N /1) + V(Pl n /3) + o0+ V(Pl N Im) = Z,n;l V(Pl n /,');
V(Pg) = V(P2 N /2) + V(P2 N /3) TPooo TP V(P2 N /m) = ?;1 V(P2 N /,').

Fori=1,...,m,
(€(h1nlin) +€(J1nlin))e(li2)---€(1in)
0(1i1)0(1i2)---€(1in)

v(Pinl)+v(Panl;)

= V(/l).
Thus,
V(/o) = V(Pl) P V(P2) = i V(Pl n /,') P i V(P2 n /,') = i V(/,').
i=1 i=1 i=1

This shows that the assertion is true for a partition of a cell into m

cells.
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Corollary

Suppose that I,...,I, and Ji,...,J, are partitions of an elementary set A
in R" into cells. Then

il V()= 3 V().

o For i=1,...,m, the cell /; is the union of the pairwise disjoint cells

lindy,.. I NJp. Thus, by the theorem, v(/;)=X"_; v(linJ;). So
m P m p
3 vl = 3 Y d)= £ 3 vllind) = 3 vl
i=1 i=1j=1 j=1i=1 j=1

Here we have deduced the last equation from the previous ones by
interchanging the roles of the /'s and the J's.
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o Let A be an elementary set which is the union of pairwise disjoint cells
ly...;lm in R,
o Then the volume v(A) of A is defined by the equation

m

v(A) =2 v(lh).

i=1

o The preceding corollary shows that v(A) is uniquely determined by A,
i.e., that it is independent of the particular choice of the pairwise
disjoint cells I, ..., I, whose union is A.

o A cell I in R" is also an elementary set.
So it is assigned a volume in two ways.

By the preceding corollary the two definitions attach the same volume
to /. So the volume v(/) of the cell I is unambiguous.
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Mixed Volumes and Extremum Problems

o An immediate consequence of the definition of volume is that, if
A1,...,Am are pairwise disjoint elementary sets in R”, then

V(AU UAR) = v(A1)+--+v(Am).

o Suppose now that A and B are elementary sets in R" such that Ac B.

Then A and B\A are disjoint elementary sets whose union is B.
Thus, we obtain:

s v(B)=v(A)+v(B\A);

o v(B\A)=v(B)-v(A);

o v(A) = v(B).
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Mixed Volumes and Extremum Problems

Let A and B be elementary sets in R". Then

v(AuB)+v(AnB)=v(A)+v(B).

o The set Au B is the union of the pairwise disjoint elementary sets
A\(AnB), B\(AnB) and AnB.

So by the comments preceding the theorem,

v(AuB)

v(A\(AnB))+v(B\(AnB))+v(AnB)
v(A)-v(AnB)+v(B)-v(AnB)+v(AnB)
v(A)+v(B)-v(AnB).
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Corollary

Let Aq,...,An be elementary sets in R". Then

V(AU UAR) s v(A1)+--+Vv(Am).

o We argue by induction with respect to m. The case m=1 is trivial.
Suppose that m>1 and that the assertion is true for families of fewer
than m elementary sets. Then, by the preceding theorem and the
induction hypothesis,

v(Aju---UApR) v((Atu---UAn-1)UAR)
V(AU UAm-1) +Vv(Am)

V(A1) 4+ v(Am-1) + v(Am).

IA A

This completes the proof by induction.



Mixed Volumes and Extremum Problems

Corollary

Let A be an elementary set in R". Then

v(intA)=v(A)=v(clA) and v(bdA)=0.

o We make use of the trivial result that a cell, its interior and its closure
all have the same volume. Let A=l u---Ul,;,, where h,..., I, are
pairwise disjoint cells. Then, by the preceding corollary,

v(clA) = v(clhu- ucllm) sv(clh)+---+v(clly)
= )+ v(Im) = V(A ><v(clA>
v(intA) = v(mtll U---uintly) = v(inth)+---+ v(int/y,)

v(h)+ +v(l) V(A )Zv(lntA)

Hence v(clA) = v(intA) = v(A).
Finally, v(bdA) = v(clA\intA) = v(clA) — v(intA) = 0.
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Mixed Volumes and Extremum Problems Volume

Subsection 2

Volume
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Mixed Volumes and Extremum Problems

o Denote by & the class of elementary sets in R".

o Let A be the bounded set in R" whose volume we wish to define.

o We should expect the (as yet undefined) volume of A to be an upper
bound for the set of volumes of elementary sets contained in A.

o This observation leads us to define an inner-volume v(A) for A by
the equation

v(A)=sup{v(E):EcAand E€é&}.

o The assumption that A is bounded ensures that v(A) is a well-defined
non-negative real number.

o Similarly, by considering the volumes of elementary sets containing A,
we are led to define an outer-volume v(A) by the equation

V(A)=inf{v(E):AcE and E€é&}.
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Mixed Volumes and Extremum Problems

Let A and B be bounded sets in R". Then:
v(A)=V(A);
v(A)=v(A)=V(A) when A is an elementary set;
v(A) = v(B) and v(A) =Vv(B) whenever Ac B;
v(A) = v(intA) and V(A) =V(clA);
v(AuB)+v(AnB)=v(A)+v(B) and
V(AuB)+Vv(AnB)<V(A)+Vv(B).

=
=

o Both (i) and (ii) follow immediately from the fact that v(E) < v(F)
whenever E and F are elementary sets with E C F.

(iii) is clear from the definitions of v and V.

Suppose now that E is an elementary set with E < A. Then, by
previous corollaries, intE is an elementary set with v(intE) = v(E).
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Mixed Volumes and Extremum Problems

o Also intE cintA. So
v(intA) sup{v(E): E<intA and E€ &}

sup{v(intE): EcA and E€ &}

sup{v(E):EcAand E€é&}

v(A).

But, by (iii), v(intA) < v(A). Hence v(intA) = v(A).

Similarly, v(clA) =v(A).

Finally, let E and F be elementary sets with E<S A and F < B. Then

EUF and ENF are elementary with EUFSAuB and EnF<ANB.
By a previous theorem and (ii), (iii) above,

v(AuB)+v(AnB)z=v(EUF)+v(EnF)=v(E)+v(F).

Since this inequality holds for all elementary sets E and F with EC A
and F < B, we can deduce that v(AuB)+v(AnB)zv(A)+v(B).
The last part of (v) is proved similarly.
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Mixed Volumes and Extremum Problems

o It can happen that v(A) <Vv(A).
: Suppose that A is the set of rational numbers in the interval

[0,1] of the real line. Then intA=¢@ and clA=0,1]. Hence, by Parts
(ii) and (iv) of the theorem, v(A) =0, whereas v(A) = 1.

o Fortunately, however, for all the sets A in which we are interested the
numbers v(A) and v(A) are equal.

o In particular, this is true when A is a bounded convex set.

o We say that a set A in R"” has volume if it is bounded and
Y(A)=T(A).

o Part (ii) of the theorem shows that every elementary set in R" has
volume.

o For each set A in R" which has volume, we write v(A) for the equal
numbers v(A) and v(A), and we say that A has volume v(A).

o In this way, we have extended the volume function v from the class of
elementary sets to the class of all sets which have volume.
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Mixed Volumes and Extremum Problems

The set A in R" has volume if and only if, for each € >0, there are
elementary sets E and F in R"” such that EC A< F and v(F\E) <e.

o Suppose that A has volume and that £ >0. Then there exist
elementary sets E and F in R"” with E < A< F such that

V(E) > v(A) - %e — v(A)- %e and  v(F) <v(A)+ %e — V(A)+ %e.

Hence v(F\E)=v(F)-v(E) <e.

Conversely, suppose that, for each € >0, there are elementary sets E
and F in R" such that E€ A< F and v(F\E) <e. This implies that A
is bounded. Let ¢, E, F be as described. Then

0<v(A)-v(A)sv(F)-v(E)=v(F\E)<e.
Since € >0 is arbitrary, v(A) =v(A) and A has volume.



Mixed Volumes and Extremum Problems

Let A and B be sets in R” which have volume. Then the sets AuUB, An B,
and A\B have volume.

o We show that A\B has volume. The other two proofs are similar.
Let €>0. Then there exist elementary sets E,F,G,H in R" with
EcAcF, G BcH such that v(F\E) < %e and v(H\G) < %e.
Now E\H and F\G are elementary sets with E\H< A\B< F\G and

(F\G)\(E\H) < (F\E)U(H\G).

Hence v((F\G)\(E\H)) = v(F\E)+v(H\G) <e. Thus A\B has
volume.

Corollary

All unions of a finite number, and all intersections of a finite non-zero
number, of sets in R” which have volume also have volume.
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Mixed Volumes and Extremum Problems Volume

Interior, Closure and Volume

Let A be a set in R” which has volume. Then the sets intA and clA have
volume with

v(intA) = v(A) = v(clA).
o By a previous theorem,

v(intA) = v(A) = v(A) = v(A) = v(intA) < v(intA).
Also
v(clA) =V(A) = v(A) = v(A) = v(clA) = V(clA).
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Mixed Volumes and Extremum Problems [\/olime

Relation of Volumes of Union and Intersection

Let A and B be sets in R” which have volume. Then

v(AuB)+v(AnB)=v(A)+v(B).

o By previous theorems,

v(AuB)+v(AnB) v(AuB)+Vv(AnB)
v(A)+Vv(B)
v(A)+v(B);
v(AuB)+v(AnB)
v(A)+y(B)
v(A)+v(B).

IIA

v(AuB)+v(AnB)

v
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Corollary

Let A, B be sets in R"” which have volume and are such that Ac B. Then

v(B\A)=v(B)-v(A) and v(A)=<v(B).

o The first assertion follows by applying the theorem to the sets B\A
and A.

v(B) = v(B)+0=v((B\A)UA) +v((B\A) N A) = v(B\A) + v(A).

The second assertion follows immediately from the first.
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Corollary

Let Ay,...,A; be sets in R™ which have volume. Then
V(AU UAR) s v(A1)+--+Vv(Am),

with equality holding when v(A;1nA;) =0, for 1<i<j<m.

o We argue by induction on m. The case m=1 is trivial. Let Ay, A5 be
sets in R" which have volume. By the theorem,

V(Al U A2) + V(Al N A2) = V(Al) + V(Az).

So v(A1UA2) < v(A1) + v(Az), with equality if v(A;nAy)=0.
Suppose that m>1 and that the assertion is true for all sequences of
m—1 sets.
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o Then, by the induction hypothesis and the case m =2 just established,

v(ALU---UApR) v(AtU - UAm-1)UAR)
v(ALU---UAm-1) +Vv(Am)
V(A1) 4+ +v(Am-1) + v(Am).

If v(AinA;)=0 when 1<i<j<m, then

IANCIN

v((AiU - UAm-1)NAm) v(AinAm)U---U(Am—1nAm))

Al

v(A1nAn)+-+v(Am-1nAp)
0.
Hence
v(Aju---UAL) = v((Alu---Ap1)UAR)

v(Aiu---UAm-1)+v(Am)
V(A1) +- -+ v(Am-1) + v(Am).

Thus the assertion is true for all sequences of m sets.
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The bounded set A in R" has volume if and only if its boundary bdA has
volume zero.

o Suppose that A has volume. Then the equation bdA = clA\intA,
together with previous results, shows that bdA has volume zero.
Conversely, suppose that bdA has volume zero. Let € >0. Then there
exists an elementary set E in R” with bdAc E and v(E) <e. Let / be
a cell in R" containing both E and A. Then /\E is an elementary set.
Suppose it is the union of the pairwise disjoint cells I,..., [, in R". If
an /; meets A, then it must be contained in A, for otherwise, by the
convexity of /;, it would meet bdA, and hence E, which is impossible.
Let F be the union of those /;'s which meet A. Then F is an
elementary set contained in A, and EUF is an elementary set
containing A. Also v((EuU F)\F)=v(E) <e. Hence, by a previous
theorem, A has volume.
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Lemma

Let a>0 and let / be the n-cube in R" defined by the equation

I={(x1,...,xp):—a<x;<afori=1,..,nh

Then, for each positive integer m, there exists a subset S of 2nm"~1 points
of bd/ such that, for each x € bd/, there is s € S with | x—s| < a—”,’n_l.

o Let J denote the set of midpoints of the intervals obtained by
subdividing the interval [-a, a] on the real line into m equal
subintervals in the obvious way. Then J is a subset of [—a, a] which
has m points. Moreover, for each x in [—-a,a], there is a point t of J
such that [x—t|<-Z. Let S be that set in R" consisting of all those
points exactly one of whose coordinates is either a or —a and whose

remaining coordinates belong to the set J. Then S is a subset of bd/
having 2nm"~! points.
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o Now let x =(xq,...,x,) be a point of bd/. Then one of the coordinates
of x must be a or —a and all of its coordinates must belong to [-a, a].
Suppose, without loss of generality, that x; = a. By the construction of
I, there exist points sp,...,s, of | (supposing n=2) such that
lsi—xjl <2 for i=2,...,n. Put s=(a,%,...,5,). Then s€ S and

Ix-sl? = (a—a)2-2|-(x2—52)2+---+(x,7—s,,)2
< (n-1)Z.

The desired result now follows.
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Every bounded convex set in R" has volume.

o We show that the boundary of a bounded convex set has volume zero,
whence the set has volume by a previous theorem. Since, by a previous
corollary, a convex set and its closure have the same boundary, it will
suffice to prove the theorem for a compact convex set.

Let A be a non-empty compact convex set in IR” with projection
operator f. Let €>0. Since A is bounded, there exists a >0 such that
A is contained in the cube / as defined in the statement of the lemma.
Choose an integer m such that m> 272" and let the set S be as
in the lemma. For each s€ S, let /(s) be the cube in R" with center
f(s) defined by the equation

na ]
/(5)2{(X1,.-.,Xn) Hxi—yil < - for i= 1,...,n}.

where f(s)=(y1,...,¥n). We show that the union of the cubes f(s)
for s€ S contains bdA.
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o To see why this is so, suppose that a € bdA. By a previous corollary,
there exists x € bd/ with f(x) =a. The construction of S shows that
there is s € S such that

avn—-1 na
[x-s|l<————=<—.
m m
Since f is a projection operator, we have
na
la—f(s)l=1f(x)-f(s)ll<lx—sl< —.

It follows that a€ /(s). Thus bdA is contained in the union of the (at
most) 2nm"~1 cubes /(s), each of which has volume (222)".

By a previous corolllary, tbe volume of this union does not exceed
Dl (2L = M < €. Hence v(bdA) <e. So v(bdA) =0.

m
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Bounded Subsets of Hyperplanes

Corollary

Every bounded subset of a hyperplane in R"” has volume zero.

o Let A be a bounded subset of a hyperplane in R". The theorem shows
that convA has volume. By a previous theorem,

v(convA) = v(int(convA)) = v(@) =0.

It now follows easily that A has volume zero.
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o We consider the effect that an affine transformation has on volume.

o We will show that, if A is a set in R" which has volume and
T:R" —1R" is an affine transformation with associated matrix Q,
then the image T(A) of A under T has volume given by the formula

V(T(A)) = det Qv (A).
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o The simplest type of affine transformation is the translation.

o Let A be a set in R" which has volume and let a be a point of R".
o If E is an elementary set contained in A, then it is easily verified that:

o E +ais an elementary set contained in A+ a;
o v(E+a)=v(E).

o It follows that v(A+a)=v(A).
o Similarly, we have V(A+a) <v(A).

o Since A has volume,
v(A+a)zv(A+a)=v(A)=Vv(A)=V(A+a).

o This shows that A+ a has volume v(A).

o So every translate of a set having volume has a volume equal to that
of the set itself.
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o A real nx n matrix is said to be an elementary matrix if it can be
obtained from the identity matrix I, by one of the following
operations:

The multiplication of a row by a non-zero scalar;
The interchange of two rows;
The addition of one row to another one.

0 01 1 00
01 0], 011
—8 1 00 0 01

illustrate Types (i), (ii) and (iii) of elementary matrices.

o The matrices

o We assume the result that
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Lemma
Let T:R"” — R" be the linear transformation given by T(x)= Qx for
x € R", where Q is an elementary matrix. Then, for each cell / in R”, the

set T(/) has volume |detQ|v(/).

o Let I=h x---x1, where I,...,1, are cells in R1.
T (/) has volume, since it is bounded and convex.
The proof falls naturally into three parts, corresponding to the three
types of elementary matrix.
Suppose first that Q is an elementary matrix of Type (i); say Q is
obtained from I, by multiplying its rth row by a non-zero scalar A.

Then T(/)=h x---xAlyx---xI,. So we get
v(T(1)=0(h)---€(Al)---€(1y) =1A1€(h)--- (1) = |det Qv ([).
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o Suppose next that Q is an elementary matrix of Type (ii), say Q is
obtained from I, by interchanging its rth and sth rows, where r <s.
Then det@Q = —1. Further, T(/)=h x---xlsx---x [ x---x1I,, i.e., the
cells I, and /s are transposed from their natural order. So

V(T (1)) =€(h)---€(ls)---€(lr) - €(ln) = €(h)---£(In) = |detQIv (/).

Suppose finally that Q is an elementary matrix of Type (iii), say Q is
obtained from I, by adding its second row to its first. Then det@Q =1.
For notational simplicity, we assume that

/={(X1,...,Xn):a,'SX,'Sb,' for i = 1,...,n}
where a; < b;, for i=1,...,n. Then
T()={(x1,---,%n) a1+ x2 < x1 < by + x2 and

aj<x;<bj, fori=2,...,n}.
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o Let bounded convex sets A and B be defined by the equations

A={(X1,...,Xn):al+82 =X1<a1+Xp and a,-SX,-Sb,-,i:2,...,n};
B={(x1,....xn) :b1+x2<x31<bi+by and a; < x; < b;,i =2,...,n}.

(asarb) (arbab) (yshrby)
Then the cell [a; +az, by + bo] x [ag, bo] x [ o by
. . . L. . A L =
---x[ap, by] is the pairwise disjoint union 4 2 T =" »
of the sets A, T(/) and B. (artanap e

So we get
(bl —a;+ b2 —32)(1)2 = 32)"' (b,,—a,,) = V(A) al V(T(/)) + V(B).

The cell [a1 + ap, a1 + by] x [a2, bp] x -+ x [ap, by] is the disjoint union of
the bounded convex sets clA and B —(b; —a;1)e;. Hence,

(b2 - 32)([32 - 32) (bn - a,,) = V(ClA) + V(B — (bl — al)el) = V(A) + V(B).
Subtracting the second from the first, v(T(/)) = v(/) =|detQIv(/).
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Theorem

Let T:R"™ — R" be the affine transformation given by T(x)= Qx + q for
x € R", where Q is an n x n real matrix and g€ R". Then, for each set A
in R" that has volume, the set T(A) has volume |detQ|v(A).

o We consider first the case when @ is an elementary matrix and g =0.
Let £>0. Then there exist pairwise disjoint cells h,..., /I, in R" such
that hu---ulpcAand v(h)+-+v(lm)=v(hu---Ulp)>v(A)-e.
Now T(h)u---UT(ly)=T(hu---Uly,)< T(A). Using the lemma and
the fact that T is a bijection (as @ is non-singular), we deduce that

v(T(A) = v(T(h)u---UT(lm))
= v(T(h)+-+v(T(lm))
= |detQI(v(h)+---+v(Im))
> |detQI(v(A)—¢).

Since € >0 is arbitrary, v(T(A)) = |detQ|v(A).
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o Similarly, we have V(T (A)) < |detQ|v(A).
Hence |detQ|v(A) < v(T(A)) = Vv(T(A)) <|detQ|v(A).
So T(A) has volume |detQ|v(A).
Let now @ be an arbitrary nx n real matrix and g =0.
The theorem is obvious when Q is singular.
In that case, T(A) is a bounded subset of some hyperplane of R".
So both v(T(A)) and |det@Q|v(A) are zero.
Suppose, then, that Q is non-singular, and that @ = Q1--- @, where
Q1,...,Q,, are elementary matrices. By repeated applications of the
special case of the theorem just proved, we deduce that

v(T(A)) |detQ1]---|detQmlv(A)
|det(Q1--- Qm)Iv(A)
|detQ|v(A).

Finally, the case g # 0 adds no difficulty, since translations leave
volumes unchanged.
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Corollary

Let A be a set in R" which has volume. Then, for all A=0 and aeR",

V(AA+a) = A"v(A).

Corollary

Let A and B be congruent sets in R” with A having volume. Then

v(B)=v(A).

o Since A and B are congruent, there exists an affine transformation
T:R"—R" given by T(x)=Qx+q for xe R", where Q is an nxn
orthogonal matrix and q € R", such that T(A) = B. Since the
determinant of an orthogonal matrix is +1, the result follows from the
theorem.
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Let A As,..., Ak, ... be non-empty compact convex sets in R" such that
Ak — A as k —oo. Then v(Ax) — v(A) as k — co.

o Throughout the proof we denote the Hausdorff distance p(Ak, A)
between Ay and A by 0. Consider first the case when A has
non-empty interior. Since both volume and the Hausdorff distance are
unchanged by translations, we can assume that the origin is an interior
point of A, say rU < A for some r>0. Choose k so large that 6, <r.
Then, by the definition of p,

Ak A+ Uc A+ %A= (1+%)A;
(1-2)A+ %A= Ac Ay +0,Uc Ap+ %A,
By a previous (cancelation) theorem, (1 - 07")A§Ak.
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o We showed that (1- QTk)AgAk. Thus, we have

(1—97k)A§Akg(1+97k)A;
(1=5)"v(A) = v(A) = (1+ 5)v(A).

So v(Ak) — v(A) as k — co.
Suppose now that A has empty interior. Then A lies in some
hyperplane of R".

o If n=1, then A is a singleton and v(Ag) =20k. So v(A) pint v(A).
o Suppose that n=2. Since both volume and the Hausdorff distance are
unchanged by congruence transformations, we can assume that, for

some R>0, A<{(x1,...,Xn-1,0) : Ix1l,...,Ixp—1] = R}. Now

A A+0,Uc{(x1,..., xn) X1l [Xn—1] € R+ 60k, Ixn| < 04}
So v(Ak) = 2(2R+20,)" 10, =20 = v(A).
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Let A be a union of a finite number of bounded convex sets in R" each of
which has dimension at most n—2. Then W —0as A—0".

o Consider first the case of a bounded convex set A in R" having
dimension at most n—2. We can assume that n=3 and that, for some
R>0, A<{(0,0,x3,...,Xn) : IX3],...,IXn| < R}. Thus, for A >0,

(A ci(x1,....xn) : Ixal, Ixal < A5 Ix3l, ..., Il < R+ AL

So
v((A)2) <4A2(2R+21)"2 =2"A2(R+ A)" 2.

Hence, (A))
v((A), _> A—0*
I <2"AU(R+A)"2 S 0.
L <2"A(R+ 1)

George Voutsadakis (LSSU) Convexity



Mixed Volumes and Extremum Problems

o Consider now the general case when A is the union of bounded convex
sets Aj,...,Amn in R", each of which has dimension at most n—2.
Then

v((A)a) = v((A)au---U(Am)a) < v((A1)a) + -+ v((Am)a)-

So, by what we have just proved,

v((A)a) _ v((A1)a) v((Am)a) 1—o0*
1 < N frocod; 1 — 0.
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Subsection 3

The Determination of Volume
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o A setin R" is called a parallelotope if it is the image of the unit
n-cube

{(x1).-»Xn) :0=x1,...,x, =1} =[0,1] x --- x [0,1]

under a non-singular affine transformation.
o We find the volume of the n-parallelotope

P={Mai+---+A,a,:0<14,..., A, <1} +a,

where a, aq,...,a, € R" with ay,...,a, linearly independent.
o Let [a1,...,a,] be the matrix with columns aj,...,a,.
o Then P is the image of. the n-cube

{(x1,--,Xn) :0<x1,...,x, <1} =[0,1] x --- x [0, 1]

under the affine transformation which maps x to [ay,...,an]|x + a.
o Hence, by a previous theorem, P has volume |det[ay,...,an]|.
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o To indicate the dependence of the volume function v upon n, we write
vy, for the volume function in R"” and refer to it as the n-volume.

o Thus vi(=7),v2,v3 denote, respectively, length in R, area in R? and
volume in R3.

o It turns out to be necessary to enlarge the domain of definition of
Vn_1, for n=2, to include those sets in R" which are congruent to sets
in R"! having (n—1)-volume.

o Let A be a setin R" (n>2) that is congruent to some set B in R™1
having (n—1)-volume v,_1(B).

Then we define v,_1(A) to be v,_1(B).

o This defines v,,_1(A) uniquely, for if A is also congruent to C in R"1,
then B and C are congruent, which shows that v,,_1(B) = vp-1(C).

o It is also helpful to define a volume function vg in R! by putting
vo(®) =0 and vy({a}) =1, for each real number a.
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o If Ais a set in R" for which v,_1(A) is defined, then A must be a
bounded subset of some hyperplane of R".

o Also, if A is a bounded subset of some (n—2)-flat in R" (n=2), then
it is congruent to some bounded subset of a hyperplane in R,
whence v,_1(A) =0.

o If T:R"—1R" is a congruence transformation and A =0, then

Vo-1(T(A) = va1(A)  and  v,_1(1A) = A"y, 1(A),

where A is a subset of R” for which v,,_1(A) is defined.
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o Let f:[a,b] = R, where a< b, be a bounded real-valued function.

o For each subdivision 2 of [a, b], where 9 is given by
a=¢g<éy1<---<ém=>b, lower and upper sums s(2) and S(2) of f
with respect to 2 are defined by the equations

s(2) = LM —&)inf{f(x): & <x <&l
S5(2) = ZMEiv1—&i)supif(x): &= x <&k

o Lower and upper integrals fab f(x)dx and f_ab f(x)dx of f on [a,b]
are defined by the equations:

fab f(x)dx =sup{s(2):2 a subdivision of [a, b]},
TP F(x)dx = inf{S(2) : 2 a subdivision of [a, b]}.
o The inequality fab f(x)dx < f_ab f(x)dx always holds.
o If fab f(x)dx = jab f(x)dx, then f is said to be Riemann integrable
on_[a, b] and the common value is denoted by fab f(x)dx.
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Theorem
Let A be a bounded convex set in R". For each real number x, denote by
Ay the intersection of A with the hyperplane x; = x in R". Let a and b be
real numbers such that a< b and Ay is empty whenever x < a or x> b.

Then b
va(A) = f Va1 (Ay)dx.

o Let E be any elementary set contained in A. For each real number x,
denote by Ey the intersection of E with the hyperplane x; = x in R".
The function v,_1(Ex) is a step function, and so is Riemann integrable.

Clearly fab Vn-1(Ex)dx = vp(E) and vp-1(Ex) < vp-1(Ax). Thus
b b
v,,(E)=f vn_l(EX)dxsf Va1 (Ax)dx.
Ja Ja
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o Since E is any elementary set contained in A, v,(A) < fab Vn—1(Ax)dx.

A similar argument shows that f_ab Vn—1(Ax)dx < vy (A).
Thus, v,-1(Ax) is Riemann integrable on [a, b] and

b
Va(A) = f Va1 (Ax)dx.
a
o The formula of the theorem can be written
Va(A) = f Vne1(Ay)d,

since v,—1(Ax) =0 when either x < a or x > b.
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Corollary

Let A be a bounded convex set in R" and let u be a unit vector in R". For
each real number x, denote by Ay the intersection of A with the
hyperplane u-x=x. Then

V(A) = f : Vo1 (Ax)dx.

o Let T:R" —R" be a congruence transformation such that 7(0) =0
and T(u)=e;. By the theorem,

va(A)=vn(T(A)) = [ va-1(T(A)Nnix:x-e1=x})dx
=[S vn-1(T(Ax))dx
= [ va-1(Ax)dx.
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o Let A be a bounded convex subset of a hyper-
plane u-x = ug in R", where ug e R,ueR"
and |ull =1. Let ce R". We compute the
volume of the cylindrical set c

B=A+{Ac:0<A<1}.

L

In calculating vp(B), we assume initially that ¢-u>0. The hyperplane
u-x=x meets B in a translate of A if ug<x<ug+c-u, and in the
empty set for other real values of x. But each translate of A has the
same (n—1)-volume as A itself. Thus, by the corollary,

va(B) = f (A = (¢ )vy1(A).

0
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o In the general case, i.e., when c-u is unrestricted, we have
va(B) =lc-ulvp-1(A).

o This formula generalizes the result that the volume of a three
dimensional cylinder is the product of the area of its base with its
height.

o If ¢ is normal to the hyperplane u-x = ug, then ¢-u = | c|| and the
above formula reduces to

Va(B) = lIclva-1(A).
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o Let A be a bounded convex subset of a hyper- c
plane u-x = ug in R", where uge R,ue R" and
lul=1. Let ce R". We compute the volume
of the conical set

C =conv(Au{c}).

Assume first that A is non-empty and that ug < c-u. Clearly
C=conv(Aufct)=J(Ac+(1-1)A:0<1<1).
The hyperplane u-x = x meets C in:
X—Ug

o The set Ac+(1—A)A, for ug<x<c-u, where 1 = Ci-tg’
o The empty set for other real values of x.
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o We have

Voo1(Ae+ (1=2)A) = vp_1((1-21)A) = (1-1)""Lv,_1(A).
So, by the corollary,

CUic.y—x)\"t 1
n(C ~1(A)dx==(c-u- ~1(A).
©= [ (S s = 2= s)un-a(A
In the general case, when c-u is unrestricted and A may be empty, we
have

1
va(C) = ;Ic-u— uolnp-1(A).

o This formula generalizes the result that the volume of a three
dimensional cone is one third the product of the area of its base with
its height.
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o Consider, first, the simplex S, in R" which is the polytope
conv{0,eq,...,en}.
Let a, denote the n-volume of S,,.
For n=2,

Sp=conv{0, ey, ..., ey} = conv(convi0,ey,...,e,_1} U{e,}).

using the formula established above for the volume of a conical set,

Xp-1

an=
n

We also have a7 =1.
We conclude that |
a,=—, forn=1.
n!
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o Consider, next, the general n-simplex which is the convex hull of some
affinely independent set {ao,...,a,} in R"”, where a; = (aj1,...,aj) for
i=0,...,n.

This simplex is the image of S, under the affine transformation
T :R" — R" defined by the equation T(x)= Qx+q for xe R", where
Q is the nx n matrix with columns a; — ag,...,a,—ag and q = ap.

detQ
Thus, conviay,...,a,} has n-volume ) - ‘ i.e., the absolute value of

dpo1 d11 - dnl
d11—401 -°°°  dnl—4ol
1 1
—|det = —|det
g g aon din *** dnn
dlpn—4on **° dnn—40n 1 1 1
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o We find a formula for w,, the n-volume of the closed unit ball U in
Rn
It is well known that w1 =2, wy =7, w3 = 4—”

By the preceding theorem, w, = f_l vn_l(UX)dx, where

UX={(X1,X2,...,X,-,)ZX22+"'+X,%=1—X2}, -l=<x=<l1.
For —1<x<1, Uy is congruent to a closed ball in R""! of radius
V1-x2. So
Vn—1( —vnlmU =wp-1(1- X)%l, -l=<x=<l.
Thus,

1 _ 1 o
wn:f wn—l(l—Xz)TldX=2 wn_l(l—X2)TldX.
-1 0

George Voutsadakis (LSSU) Convexity



Mixed Volumes and Extremum Problems

o In the section on the Gamma and Beta Functions, it was shown that:
1 n+l el
° B("El,”ﬁl) 7 1f(1) (1 X 2)"7 dx;
° B(%3,%57) = 5B(3, %)

Using those, together with B(x,y) = rr(gzi%) we get

- r(3)r(zt (2
2[ 1-52) 11 = B(1n+1)— (2) (22)=\/7_t(22)
r(«) r(«)
Hence, since w, = (2 f5 (1-x2)" dx)w,-1,
n+l n+l n
Wp = \/f(r,g 22))wn—1:\/f(r%zz))'\l{féz))wn—2
_ YA VAL(3) | VATG) o ot
MER) T T@) )

2
We thus have w, = 7.
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o An ellipse can be defined as the image of a closed circular disc under a
non-singular affine transformation.

o A setin R" is called an ellipsoid if it is the image of a closed ball
under a non-singular affine transformation.

o Clearly every ellipsoid is a convex body.

o We find the volume of the symmetric ellipsoid

2

[E= {(Xl,...,Xn) : (811X1 +---+alan)2 +---+(a,,1x1 +~~~+a,,,,xn) = r2},

where A =[ajj| is a real nx n matrix with non-zero determinant and
r>0.

o The image of E under the linear transformation that maps x in R" to
Ax is the closed ball rU.

o Thus, by a previous theorem, |detA|v,(E) =wpr"

o Hence v,(E) =

‘detA)
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Theorem

Let uy,...,u,, be the outward unit normals to the facets of an n-polytope
P in R" corresponding to the facets Fi,..., F,. Let h be the support
function of P. Then

3

v,,(P):%_ hu)vas(F) and Y- voos(Fi)u; =0,

1 i=1

o Suppose first that the origin is an interior point of P. For each
i=1,...,m, let C;=conv({0}uF;). Then P=CiuU---UCp, and
GnGCj=conv({0yu(F;inFj)), fori,j=1,...,m. So GGnC; (i #j) is at
most (n—1)-dimensional. Thus, v,(C;nC;) =0, i#,. By a previous
corollary, va(P)=vha(CGiU---UCp)=vn(C1)+---+vn(Cp). But, by the
formula obtained earlier for the volume of a conical set, for i=1,...,m,
Vn(C,') = %h(u,—)v,,_l(F,-). Hence, Vn(P) = %Zzl h(u,-)v,,_l(F,-).
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o Denote by a the vector X7, v,_1(F;)u;.
Choose A >0 small enough to ensure that the origin is an interior
point of the polytope P+ Aa.

Applying the formula established above for the volume of a polytope
having the origin as an interior point, we deduce that

va(P) = vp(P+A1a)
= L1¥™ (hpra(ui))va-1(Fi+Aa)
= %Z;’;l(h(u;)+]La-u,-)v,,_1(F,-)
= %27;1 h(u,-)vn_l(F,-)+%)La~(Zlf’;1 vn_1(F,-)u,-)

= vy(P)+2al2

This shows that a=3Y", v, 1(F;)u; =0, as required.
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o Consider now the general case when it is not assumed that the origin
is an interior point of P.
With each n-polytope P associate the vector Y, v,_1(F;)u;.
Clearly, this vector is the same for all translates of P.
But for any translate of P which has the origin as an interior point,
this associated vector is the zero vector, by what we have just proved.
Thus, Zgl v,,_l(F,-)u,- =0.
Finally, let c € R" be such that the polytope P+ ¢ has the origin in its
interior. Then, by the first part of the proof,

va(P) = wva(P+c)
= L¥™ (hprc(ui))va-1(Fi+c)
= 227 (h(ui)+c-uj)vn-1(Fi)
= %27;1 h(ui)Vn—l(Fi)"'%'(Zgl vn—1(Fi)u;)
= X7 h(ui)ve-r(F)-
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Subsection 4

Mixed Volumes and Surface Area
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o Consider the following simple problem:

What is the volume of the convex body AA+ uB, where A is the
rectangular block (i.e., 3-orthotope) with edge lengths a, b, ¢ defined by
the equation

A={(x,y,2):0=sx<a0<y=<b0<z=<c},

B is the closed unit ball in R3, and A, u are positive scalars?
o AA is a rectangular block with edge lengths 1a,Ab, Ac.
o uB is the closed ball of radius p centered at the origin in R3.
o Thus AA+ uB is the outer parallel body of 1A at distance pu.
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o We can see that AA+ uB is the union of AA together with:

A d

o Six rectangular blocks (each with height u and having a facet of 1A as
base);

o Twelve quadrants of circular cylinders (each with base radius u and
having an edge of 1A as axis);

o Eight octants of balls (each with radius p and having a vertex of AA as
center).

o Any two different sets in this union meet in a set of volume zero.

o The figure shows one example of each, indicating their positions
relative to 1A.
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o It is readily found that v3(1A+ uB) equals

4
(abc)A3 +2(ab+ bc+ ca)A\?u+m(a+ b+ c)Au® + ?u3,

the four terms representing in order the volumes of:

o AA;

o the union of the six rectangular blocks;

o the union of the twelve quadrants of circular cylinders;

o the union of the eight octants of balls.

o Thus v3(AA+puB) is a homogeneous polynomial of degree three in A

and u with nonnegative coefficients.
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Lemma

Let Ci,...,C, be polytopes in R" and let ay,...,a,>0. Then
a1 C+---+a,C, and C; +---+ C, have the same dimension, and the sets of
outward unit normals to the (n—1)-faces of the two polytopes are equal.

o The result is trivial when one of Ci,..., C, is empty.

Suppose, then, that ¢1 € Cy, ..., ¢, € C,. Let A be the flat
aff(Gi+---+ C;). Then A—(c1+---+c,) is a subspace of R"
containing each of the sets C; —cy,...,C, — ¢,. Hence, it contains the
set a1(Cr—c1)+--+a,(C—c,). It follows that a1 Gy +--- + a, C; lies
in the translate A+ (a;—1)c1+---+(a,—1)c, of A. Hence the
dimension of a1 C; +---+a,C, does not exceed that of C; +---+ C,.

George Voutsadakis (LSSU) Convexity



Mixed Volumes and Extremum Problems

o It follows, from what we have just proved, that the dimension of the
set aIl(alCl)Jra;l(a,Cr), i.e., Ci+---+ C,, does not exceed that of
a1Cy +---+a,C,. Thus the polytopes a1C; +---+a,C, and
C1 +---+ C, have the same dimension.

A unit vector u is an outward normal to some (n—1)-face of
a1Ci+---+a,C, if and only if the set (a1 Cy +-+-+a,C )Y =

a1 CH +---+a,CH has dimension n—1.

By the first part of the proof, this occurs precisely when
Cl+--+CH=(C+--+C)Y has dimension n—1.

Therefore, u is an outward normal to some (n—1)-face of

a1 Cy +---+a,C, if and only if it is an outward unit normal to some
(n—1)-face of Gy +---+ C,;.
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Lemma

Let Aj,..., A, be polytopes in R"”. Then v,(A11A1+---+A,A,) is, for all
A1,...,A- >0, a homogeneous polynomial of degree nin Aq,...,A,, with
nonnegative coefficients.

o We argue by induction on n. If n=1, then
Vl(ﬂlAl P ooo +ﬂrAr) = A,l V1(A1) qpoooqF /lrvr(A,), for A,l,...,ﬂr >0,
when none of Aj,..., A, is empty, and is zero otherwise. This proves
the lemma for the case n=1.

Suppose, then, that the assertion is true in R""1, where n=2.
pp

If A1 +---+A, has dimension less than n, then, by the preceding
lemma, so too does A1A; +---+A,A,. Hence v (A11A1+---+ A A,) is
zero for all Aq,...,A, >0, and the assertion is true in this case.
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o Suppose now that A; +---+ A, has dimension n.
Since v,-volumes are preserved by translations, we can assume that
each of the polytopes As,...,A, contains the origin.
Let uy,...,u, be the outward unit normals to the facets of
Ai+---+A,. For each i=1,...,m, the polytopes Af",...,Ay" lie in
parallel hyperplanes of R". Since v,_1-volumes are preserved by
translations, in calculating vn_l(]LlAf" +---+/1,Af”'), we can assume
that Ai”',...,Af”' lie in the same hyperplane of R".
By identifying this hyperplane with R~ and using the induction
hypothesis, we deduce the existence of a homogeneous polynomial p;
of degree n—1 in A,...,A, with non-negative coefficients such that,
for all A4,...,A,>0,

Vne1 (A1 A1+ + A4, A) Y7

Va1 (MAD +---+ A,AM)
p,'(/ll,...,lr).
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o Let Ay4,...,4,>0.

By the preceding lemma, the facets of A1A; +---+ A, A, are
(A1 A1 +---+ A, A )Y with corresponding outward unit normals u;.

A previous theorem shows that
Vn(ﬂlAl Jpoocoqr ﬂrAr)
=L3m (hyasara, (U)ot (A AL+ + A, AU
= %Z,{Zl(/llhAl(ui) SGEEEE ArhAr(u,'))p,'(Al,...,/lr).

Thus vp(A1A1+---+A,A;) is a homogeneous polynomial of degree n
in A1,...,A, with nonnegative coefficients.

This completes the proof by induction.
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Theorem

Let Aj,...,A; be compact convex sets in R”. Then v,(11A1+---+A/A/)
for all A4,...,A4, =0, a homogeneous polynomial of degree nin Aq,...,A,
with non-negative coefficients.

=<
=
<
T

o We assume that the sets Ay, ..., A, are non-empty. For each i=1,...,r,
let A},A,?,...,Aji,... be a sequence of polytopes converging to A;. By
the preceding lemma, for each j=1,2,..., there exist non-negative
scalars aﬁlm,.n for it,...,in=1,...,r, such that, for all 1,...,A4,>0,

o r r o
VoM A, + -+ 2, AL) = Z DI AT IR
1=1 ip=1

Since the r sequences of polytopes considered above are convergent,
there is a closed ball B in R" such that AJI. cBfori=1,...,r and

j=1,2,.... Setting A1 =1, ..., A, =1, we deduce af.lml." < r'vy(B).
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o Since every bounded sequence of real numbers contains a convergent
subsequence it follows that there is a subsequence ki, ko, ..., kj,... of
1,2,. . and nonnegative scalars a;, ; for i,...,in=1,...,r, such

that a . —aj ;j asj—oo for ii,...,in=1,...,r. A previous result
..dn In
shows that for A1,...,A,>0,

MAS 4o £ 1A = 1AL+ + A A, as j— co.
The continuity of v, now shows that
Va(MAY -4 A, AS) = V(A1 Ay +--+ A, A,), as j— oo,

But from the displayed equation of the preceding slide

Va(AAY -+ LAY Z Za,l,- LA as j— oo,

11—
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o Thus, for all A4,...,1,>0,
Vn(/11A1+ +/1 A ) Z oo Z a,-lm,-nﬂl,-l ---A,' 5

Suppose finally that A4,...,1,=0.

By what we have just proved, for each € >0,

r r
Vo((A1+€)A1+-+(Ar+€)A) = Y - > ap i (A +€) -+ (A, +&).
=] 1

in

Letting € — 0% in the last equation, we find that

Vn(/11A1+ +/1 A ) Z Z ai1...in]Li1"']Li .
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o Each homogeneous polynomial p(A,...,1,) of degree n can be
uniquely represented in the form

n! «

_ 1 a
p(A1,..,Ar) = ﬁaal...arﬂl AT
ar1++a,=n @11 Cp!

o For integers i1, fp,..., i lying in {1,...,r}, put
a [04 a
Vilfz...in = aalaz...a,; Where //tl-]_ﬂ’l'z o '//tl-,, = A’11A’22 ,“/’trr_
o Then:

Viiia..i, remains unchanged when i1, i, ..., i, are permuted;
P(AL, - s Ar) =20 g X0 g VigigAiy o Ay

o Moreover, the v;,_; are uniquely determined by (i) and (ii)
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o When
p()tl,...,ﬂr) = Vn(ﬂlAl Shill +ﬂrAr),
where Aq,..., A, are compact convex sets in R" and 14,...,4, =0, the
numbers v;,_; are called the mixed volumes of Ay,...,A,.

: Consider again the example studied previously in which A

was a rectangular block with edge lengths a, b,c and B was the closed
unit ball.

We found that, for A,z =0,

4
va(AA+uB) = (abc)A® +2(ab+ bc+ ca)A?u+ (a+ b+ c)mAu® + ?n;ﬁ.
It follows easily from this equation that the mixed volumes of A, B are:

viz1 = abc, vao = 3
V112 = V121 = W11 = §(ab+ bc + ca)
V122 = V212 = V021 = §(a+ b+ C)TL’
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o The mixed volumes of compact convex sets Ay,...,A, are determined
by the function v,(A1A1+---+ A,A;) of 11,..., A,

o It is tempting to assume that any particular mixed volume v;, ;.
depends only upon the sets Aj,...,A; .

o For example, when none of the sets Aj,..., A, is empty, it is easy to
see that vq_1 = v»(A1), which only depends upon A;.

o If, however, even one of the sets Ay,..., A, is empty, then all the mixed
volumes v, _; are zero.

o We will show that, when none of the sets Aj,..., A, is empty, the
mixed volume v;, ; does indeed depend only upon the sets A;,..., A; .

n
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o With each n-tuple (Aj,...,Ap) of non-empty compact convex sets in
R" we associate a non-negative scalar v(Aj,...,Ap) as follows.

o Suppose that there are exactly s distinct sets occurring in (Ag,...,Ap).

o We can assume, relabeling the A;'s if necessary, that the sets
Ai,...,As are distinct.

o For i=1,...,s, let a; be the number of times which the set A; occurs
in (A1,...,Ap). Then a1 +---+as=n. Forall 14,...,As=0,

s s
Vn(/11A1+~~~+/15A5) = Z Z Vi1...in/1i1 ...A,‘n,
1 =1

=
where the v;,_; are the mixed volumes of Ay, ..., As.
o We now define
V(AL An) =V 1. s
o This determines v(A;1,...,Ap) uniquely and in such a way that it
remains unchanged when Aj,..., A, are permuted.
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Let Ay,...,A, be non-empty compact convex sets in R". Then, for all
Al,...,/erO,

Va(M1 AL+ + A A) = Z Z V(Ai .. Ai )iy - A

ih=1 in=1

o We argue by induction on the redundancy number of the finite
sequence Aj,...,A,; This is defined to be the non-negative integer
r—s, where s is the number of distinct sets in the sequence.

The sequence has redundancy number zero when all of its terms are
different and r—1 when all of its terms are the same.

Suppose first that the sequence Aj,..., A, has redundancy number
zero, i.e., all of its terms are different For aII Al,.., Ar =0,

Vn(AlAl"'"""ArAr): Z Z Viy...ip 11 : ln

=1 =
where the vj,_; are the mixed volumes of A1,...,A,.
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o Consider a particular mixed volume v;, ; and the corresponding
n-tuple (Aj,,...,A; ). Suppose that there are exactly s distinct sets
occurring in this last n-tuple, say Ag,...,As. For i=1,...,s, let a; be
the number of times which the set A; occurs in (Aj,...,A; ). Then
a1 +--+as=n. For all 11,...,1s =0,

S S
Va(A1Ar +--+ AsAs) = D - ) Vi i iy -+ A
=l Q=1
By the definition of v(Aj,...,A;),
V(Ais 0 AL) =V 1 s, s = Virdse
—— N~
ay as

Here we have used the fact that all the r sets Ay,..., A, are different.
Thus the assertion is true for the case of redundancy number zero.
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o Suppose next that the assertion is true for sequences with redundancy
number m, where m=0.
Let the sequence Ag,..., A, have redundancy number m+1. Then at
least two terms of this sequence must be equal, say A,_1 = A,. Since
A1,...,Ar_1 has redundancy number m, the induction hypothesis
shows that, for all A4,...,1,_1 =0,

r—1 r—1
Vn(llAl qpooo +Ar_1Ar_1) = Z Z V(A,‘l,...,A,'n)/l,'1 ~~~A,‘n.
=1 Q=1
Let vj,.; be a typical mixed volume for the sequence Aj,...,A,. Let
ai,..., &, be non-negative integers such that i,...,i, is a
rearrangement of the sequence 1,...,1,...,r,...,r. Then the coefficient
—— ——
a1 a,

of the term A7*---A7" in the polynomial v,(A1 A1+ -+ A,A/) is

n!
alaVl...l.r...r:
—— N~

ay ar
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o Now v,(A1A1+---+A,A;) can be obtained from
Va(A1A1+---+A,—1A,-1) by replacing 1,1 with 1,1+ A,.
Thus the coefficient of A7*---A7" in v,(A1A1 +---+A,A,) is also the
product of the coefficient of the term A7*--- A% 2A% 174" in
Va(A1A1 + -+ A,—1A,-1) with the coefficient of the term Affllﬂt'f’ in
(Ap—1+ A,p)%r1%ar e, the product

n! (ar—1+ar)!
arlarol(ar_1+ar)! V( AL, Ar2y A )(a,,l)!(a,)!
al Ar2 QAr-1+Qr
= WV( Ai,..., Ar )
051 a,

The two expressions which we have found for the coefficient of
ALY A7 in vp(A1A1 +--- + A, A;) must be equal. So

Visin =V1 .. 1ror = V(f}.}“"ffa): V(A,‘l,...,A,'n).

ay ar ai ar
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Let A’l,Al,Az,...,An be non-empty compact convex sets in R". Let
aj,@1=0. Then

v(a’lA’1+a1A1,A2,...,A,,) = a’lv(A’,Ag,...,A,,)
+C¥1V(A1,A2,...,An).

o The coefficient of A1--- A, in vp(Ar(a@] Al + @1 A1) + A2A2+ -+ A, A,)
is nlv(aj Al +a1A1,A,...,An), whereas in v,((A1a])A] +(A1a1)Ar+
12A2+~~~+/1,,An) it is n!a’lv(A’l,Ag,...,An)+n!a1v(A1,A2,...,A,,).
Since the two polynomials are identical, the two coefficients must be
equal, whence

V((X&A& + (X1A1,A2,...,An) = (X&V(AQ,AQ,...,A,,)
+a1v(A1,A2,...,A,,).
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Lemma
Let m be a positive integer. For each i=0,1,2,..., let

P,'(X) = a,'me +---+aj1X+ajo

be a real polynomial. Suppose that, for each x=0, P;j(x) — Pp(x) as
i — o0o. Then ajj — agj as i — oo, for j=0,1,...,m.

o The m+1 vectors ay =(A™,...,4,1) for A=0,1,...,m are linearly
independent. So they form a basis for R™*1. Thus, there are scalars

Ho, 1, -+, m such that (1,0,...,0) = yoag + p1ai+ -+ tUmam.
Writing those out, we get

Ho +H1 tH2 e +tum = 0
Opo  +1pr +2pp +---  +muy, = 0
0Muo +1mMp; +2"pp 4+ +mTu, = 1
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o For fixed i, multiplying the jth row by ajj,

Hodio t+H13i0 +Uza;0 +---
Omoain  +lpiain  +2m0aj; +---

0"woaim +1"waim +2Mp2aim +--+ +mTMpumaim

Adding vertically, we get

[,toP,'(O) +[J1P,'(].) ShELL +,umP,-(m) =aim-

By the hypothesis,
poPi(0) + pr Pi(1) + -+ + pm Pi(m)

— poPo(0) + 1 Po(1) ++++ + ptmPo(m) as i — oo.

Thus, ajm — agm as i — oo.

Similarly, we can see that aj; — agj as i — oo for j=0,1,...,m—1.
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Theorem (Continuity of Mixed Volumes)

For each j=1,...,n, let A},AJ?,...,AJ’:,... be a sequence of non-empty
compact convex sets converging to a non-empty compact convex set Aj.) in
R". Then v(Ai,...,Al)— v(AY,...,A%) as i — oo.

o For i=0,1,2,..., and for A,...,An 20, vp(A1 A} +---+ A, A}) =
Qi(A1,...,An) say, is a real homogeneous polynomial of degree n in
A1,...,An. Since v, is continuous, for all A4,...,A,=0,

Qi(A1,..,An) = Qo(Aq,...,Ap) as i — oo. Choose a positive integer r
so large that the coefficient of x"x™--x™" in the real polynomial
Pi(x) = Qi(x",x",...,x"") of the single variable x is nlv(Al,..., Al).
For each x =0, P;(x) — Po(x) as i — oco. We deduce from the lemma
that nlv(Al,...,Al) — nlv(AY,...,A%) as i — co. The desired result is
immediate.
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Theorem

Let uy,...,um be the outward unit normals to the (n—1)-faces of a
polytope P in R" corresponding to faces Fy,..., Fr,, respectively. Then, for
any non-empty compact convex set A in R" with support function h,

im va(P+AA) -
A—0* A

m
Z ul Vn1 )

=

—

o Both sides of the above equation are unchanged in value if A is
replaced by one of its translates. The non-trivial part of this assertion
follows from a previous theorem.

We can, therefore, assume that A contains the origin.
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o Consider first the case when P has dimension n. We begin by showing
that, for all 1 >0,

va(P+ AA) = va(P) = 3" Ah(u;)var(F3).
i=1

For each i=1,...,m, let a; €
A satisfy u;-a; = h(u;j). De-

fine a convex subset C; of '
P+ AA by the equation %

C,-=riF,-+/1{ua,-:05/.ts 1}. -

P+2A
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o The sets Cy,..., Cy, are pairwise disjoint.

If they were not, there would exist points f; in riF;, f; in rif; and
scalars 0;,0; =0, with i #j, satisfying f;+0;a; = f;+0;a;. Since P is
n-dimensional, f; ¢ F;. Hence u;-f;<u;-f;. It follows easily from the
definition of h(u;) that u;-aj < u;-a;. Hence

u,--f,-+9,-u,--a,-:u,'-fj+9ju,--aj<u,--f,-+6ju,--a,-.

Since A contains the origin, h(u;)=u;-a;=0. So 6; <6;.
By symmetry, 0; <0;.

This contradiction shows that the sets C,..., C, are pairwise disjoint.
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o For each i=1,...,m, vp(G;nP)=0 and
Va(Gi) = va(clG;) = 1A (u; - @j)va-1(Fi)l = Ah(ui)va-1(Fi).
We can thus deduce that

V(P +AA) = vp(P) = vp(CGr) + -+ vn(C Z)Lh(u, Wh-1(Fj).
i=1
We upper bound v,(P +AA) - v,(P) by showing that, for 1 >0,

P+AAc PucCGu---ucCphu(S)is,

where S is the union of the (n—2)-dimensional faces of P and s is the
diameter of A.
To do this, we let x be in P+ AA, but not in any of P, clCy, ..., clCp,
and show that it is in (S))s. Let f be the nearest point of P to x.
Then f € F; for some i=1,...,m.

o If fFerebdF;, then f€S. So x€(S))s.

o If feriF;, x=Ff+au;, for some a>0. Since x€ P+ AA, a < Ah(u;).
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o Lety=x- h‘ZZ,)

Since a < Ah(u;), x € clC; shows that y ¢ F;.
Further, uj-y=u;-x—a=u;- f+a—a=u;-f. So y € affF;. Thus, for
some B, 0< B <1, z=(1-p)y+pf lies in rebdF;, and hence in S.

x

///I
2 h ‘i
TN

Ix—y+By—BFfll=1(1-B)(x-y)+B(x-F)l
<(1-pB)Ix -yl +Blx—Fll < (1-p)As+pAs=

Hence x € (S))s. This establishes the claim.

Now we get

Ix -zl
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o Now we have
Va(P+AA) < v (P) + vp(clGr) + -+ + vp(cl Ci) + v ((S) 2s)-

Combining this inequality with the one obtained previously, we deduce
that, for 1 >0,

3 hur-a(F) = TR < 5 v () + 3 vnl(S))

1

[y

By a previous theorem, M —0as A—0". Thus

Va(P+AA)—vp(P)

iR g edealf)

This completes the proof for the case when P is n-dimensional.
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o Suppose next that P has dimension n—1.
Then m=2, uy=u, us=—u, F; =P and F> = P, where u is a unit
normal to the hyperplane containing P. The proof in this case is the
same as that just given, except that the sets C; and G, are not
disjoint but meet in the set riP, which has v,-volume zero.

When P has dimension less than n—1, the assertion of the theorem is
assumed to mean that
Va(P +AA) = vp(P) Va(P + AA)

lim = lim ———==0
A—0* A A—0* A

This is clear, since P+ AA< (P),s, where s is the diameter of A and

by a previous theorem limj_.g+ M =0.
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Corollary

Let uy,...,um be the outward unit normals to the (n—1)-faces of a
non-empty polytope P in R" corresponding to faces Fi,...,
respectively. Then, for any non-empty compact convex set A in R" with

support function h,

V(AP,...,P)= 1

3

h(u,-)v,,_l(F,-).

[y

o Forall 1>0, vp(P+AA) =X, (T)v(A,..
\*/

Va(P+AA)—vp(P)=nv(AP,...,P

Thus limy_g+ —V"(PMQ)_V"(P)

=nv(AP,...,

The corollary now follows from the theorem.
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Theorem

Let P,,..., P, be non-empty polytopes in R" (n=2). Let uy,...,un, be the
outward unit normals to the (n—1)-faces of Py+---+ P,. Then there are
scalars ay,...,am =0 such that, for every non-empty compact convex set A
in R™ with support function h,

1m
V(A, P2,..., P,,) = ; Z a,-h(u,-).

o Let Q=P+ +A,P, for Ay,...,A,>0. By repeated applications
of a previous theorem,
V(Aror---ro Z Z V(A Plzr L9) ) “A‘i,,r
=2 (=
which is a homogeneous polynomial of degree n—1 in A5,...,1,, the
coefficient of Aa---Ap being (n—1)!v(A, Pa,..., Pp).
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o By a previous lemma, the set of outward unit normals to the
(n—1)-faces of Q is {uy,...,um}. By the preceding corollary,

V(AQu Q) = FET hu)va-1(QY) u
= %Zgl h(ui)Vn—n1(12P2 ’n+...+/}fpn ,) .
= IXM h(u)(Zh X0 u(PY . PEYA, A,
where ”(Pjgi,“"Pﬁi) denotes an (n—1)-dimensional mixed volume.

This shows again that v(A, Q,..., Q) is a homogeneous polynomial of
degree n—1in A,,...,A,, the coefficient of A,...,A, being

o 2 Hw) (= 1)1u(PE" .. PR

Equating the two coefficients that we have found for the term A,--- 1,
in V(A Q,...,Q), we get V(A Pa,...,Pp)=1¥m h(u)u(Py",...,P).
The proof is completed by putting a; = u(qu",...,P,',”').
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Let Aq,...,An, Bi,...,B, be non-empty compact convex sets in R"” with
A1 < Bl, B0y A,,E Bn. Then V(Al,...,An) = V(Bl,...,Bn).

o We assume that n=2. Consider first the case when Ay,...,A,,
Bi,..., By are polytopes. Let ha,, hg, be the support functions of
A1, By, respectively. Since A; € By, ha,(u) < hg,(u) for all u in R".
Using the preceding theorem and an obvious notation, we get

V(AL Az Ap) = L1ET ha (ui)a;
=< %27;1 hBl(u,-)a,-
= V(Bl,Az,...,An).

Repeating n—1 times, v(A1,As,...,Ap) <v(By, By, ..., By).
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o Consider now the general case.
For each i=1,...,n, let P},...,PIJ.',... and Ql,i,...,Q{,... be sequences
of non-empty polytopes in R” such that Pf — A, QIJ — B; as j — oo,
and P{; Q,’ for j=1,2,....

Using the first part of the proof and the continuity of the mixed
volumes, we deduce that

V(Al,...,An)

limj—oo V(P{,,P{,)

limj oo v(Q@,..., Q)
V(Bl,...,Bn).

IA
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o A previous theorem applied for the special case when P is an
n-polytope and A is the closed unit ball U asserts that

= _ o va((P)a) — va(P)
;:Zl va-1(Fi) = Ah—»"c}+ P '

o The left-hand side of this equation is what we intuitively regard as the
surface area of the polytope P, i.e. the sum of the v,_i-volumes of its
facets.

o We define the surface area s,(A) of a compact convex set A in R”
by the equation
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o For non-empty A and 1 >0, we have

Vn((A)A)

va(A+AU)

= Vp(A)+nv(A ..., A UL+ +vp(U)A".
o Hence, s,(A) is well defined and equals nv(A,...,A,U).
o In R! this last assertion is taken to mean that s1(A) = vi(U) =2.

o Thus, we can define the surface area s,(A) of a compact convex set A
in R™ to be nv(A,...,A U) when A is non-empty, and to be zero when
Ais empty.
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o We evaluate the surface area s,(U) of the closed unit ball U in R".

o We know that, for any A >0,
va((U)a) =va(1+A)U) =wn(1+21)".

o Hence
wn(1+21)"—wp

= nw,.

o Thus, we get:
o s(U)=2wy =2m7.
The perimeter of a circle of unit radius is 27.
o 53(U)=3w3=4m.
The surface area of a closed ball of unit radius in R3 is 4.
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o The value of s,(A), when A is a compact convex set in R"” of
dimension at most n—1, is 2v,_1(A).

o Surface area is increasing in the sense that s,(A) < s,(B) whenever
A, B are compact convex sets in R" with Ac B.

o Moreover it is continuous in the sense that s,(A;) — sp(A) as i — oo,
whenever Ay,..., A;,... is a sequence of non-empty compact convex
sets which converges to the non-empty compact convex set A in R”.

o For obvious reasons, s, is referred to as the perimeter function.
o Let A, B be non-empty compact convex sets in R?.

Then, by a previous theorem,
s2(A+B)=2v(A+B,U)=2v(A U)+2v(B,U) = s3(A) + s2(B).

So the perimeter of A+ B is the sum of the perimeters of A and B.
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Subsection 5

The Brunn-Minkowski Theorem
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o The Brunn-Minkowski Theorem asserts that:
If A, B are convex bodies in R", then

v A+B) = v (A)+ v (B),

with equality holding if and only if A and B are homothetic, i.e., if and
only if B=AA+a, for some 1>0 and ae R".

o We establish this important result, thereby also solving the most
famous of extremum problems, the Isoperimetric Problem:
Of all convex bodies in R" with a given volume, which have the
smallest surface area?
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o We saw that the vector sum of two elementary sets is an elementary
set.
o The vector sum of two sets each of which has volume, however, need
not itself have volume.
. Consider the sets A, B in R? defined by the equations:

A = {(x,0),0=x<1,x rational};
B = {(0,y):0<y<1,y rational}.
Then the sets A and B have zero volume.

But the set
A+B={(x,y):0<x,y<1;x,y rational}

does not have volume: Its inner-volume is zero and its outer-volume is
one.

o When A, B,A+ B are non-empty sets in R", all of which do have
volume, then we have: v,%/n(A+ B)= v,l,/n(A) + v,l,/n(B).
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Lemma

Let A be a set in R" which has volume. Let 8 =0. Then, for i=1,...,n,
there is a scalar A;, such that

v({(x1,...,xn) €A xi < Ai}) =0v({(x1,...,xn) €A x; > Aj}).

o Since A is bounded, there is a> 0 such that
Ac{(xy,...,xn):—a<x;<a,i=1,...,n}
Define a function f;: R — R by the equation
fi(x)=v({(x1,...,xn) € A: x; < x}), for xeR.
Then, for x<y,
0<fi(y)-fi(x) = v(i(x1,...,xn) EA: x < x; < y}) < 2" 1a"(y - x).
This shows that f; is continuous.
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o The function
fi(x) =v({(x1,...,xn) €A: x; < x}), for xe R

is continuous. Moreover, fi(—a) =0, fi(a) = v(A). By the Intermediate

Value Theorem, for some A; € [-a,a|, fi(1;) = eﬁg\)_

Now we get:

Ov({(x1,....,.xn) €A x; > A;}) O(v(A)-fi(A)))
_ o(v(a)- )
= 0v(A)(1- %)
= 1v(A)=1i(A)
= v({(x1,..., xn) EA: x; < Aj}).
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o A non-degenerate cell is a cell which has non-empty interior.

Lemma

Let A=huU---Ulp, B=Jiu---UJp, where Iy,...,I5 and Jy,...,Jp are
sequences of pairwise disjoint non-degenerate cells in R". Then

v/ (A+B) = v (A)+ v (B).

o We argue by induction on m+ p. Suppose first that m+p =2, so that
m=1,p=1. Let A=S;x---xS,, B=Tyx---x T,, where Sy,...,S,,
Ti,..., Tp are cells in R with positive lengths a1,...,an, b1,..., b,
respectively. A previous corollary justifies the inequality

v/"(A+B) ((a1+b1)-++(an+bn))/"

(ay---ap)Y"+(by---by)t/"

viI/n(A)+vi/n(B).

This proves the lemma in the case m+p=2.
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o Suppose next that m+ p>2 and that the assertion is true for all cases
in which the induction variable is less than m+ p. We can assume that
m=2. Since the cells /; and I, are disjoint, there is some i € {1,...,n}
and some scalar p such that /1 lies in the closed halfspace x; <y and
I> lies in the closed halfspace x; = y, or vice versa. Denote by A~ and
A* the intersections of A with the open halfspaces x; < u and x; > g,
respectively. Then each of A~ and A" is non-empty and is a union of
fewer than m pairwise disjoint non-degenerate cells. Since A is the
pairwise disjoint union of A7, A" and a set of volume zero, v(A)
equals v(A™)+v(A*). The preceding lemma shows that there is a
scalar A such that the hyperplane x; = A divides B (in a fashion similar
to that considered above for A) into disjoint sets B~,B™ and a set of

volume zero such that
B~ B*
A = —V( ) =a, say.

v(AT)  v(AY)
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o Each of the sets B~ and B* is a union of p or fewer pairwise disjoint
non-degenerate cells, and v(B) equals v(B™)+v(B™). The sets
A~ + B~ and A* + B lie in opposite open halfspaces bounded by the
hyperplane x; = A + 1, and so are disjoint. Their union is a subset of
A+ B. We deduce, applying the induction hypothesis to the pairs
(A7,B7) and (A*,B"), that

v(A+B)

v v

v(AT+B7)+v(AT+BY)
(Vl/n(A—)+Vl/n(B—))n+(V1/n(A+)+Vl/n(B+))n
(v(A7)+v(AT)) (1 +al/")"

v(A)(1+al/m)"

(Vl/n(A)+a’1/nV1/n(A))n

(v/7(A)+vi/"(B))".

Thus v¥/"(A+B) = v/"(A) + vY/"(B).
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Theorem (Brunn's inequality)

Let A, B,A+ B be non-empty sets in R" all of which have volume. Then

v/ (A+B) = v (A)+ v (B).

o The inequality is trivial if either A or B has zero volume.
We assume, therefore, that v(A) >0 and v(B) > 0.
There are sequences As,...,A;,... and By,...,B;,... of non-empty
elementary sets in R"” such that A;c A, BicB for i=1,2,..., and
v(A;) = v(A), v(B;) — v(B) as i — co. We can assume that all of the
A;'s and B;'s are finite unions of pairwise disjoint non-degenerate cells.
By the preceding lemma,

VY (A+B) = VYA + Bj) = v (A) + v (B)).
Letting i — oo, we deduce v!/"(A+ B) = v'/"(A)+v/"(B).
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Corollary

Let A, B be non-empty bounded convex sets in R"”. Then the function
f:]0,1] = R defined by the equation

F(t)=v/"((1-t)A+tB), for 0<t<1,
is concave.

o Let x,y€0,1]. Let A,p=0 with A+ p=1. We apply the theorem to
the sets A((1-x)A+xB) and u((1—y)A+yB) to deduce that

Vn((1= (Ax + py))A+ (Ax + ) B)
VP (A((1=x)A+xB) +p((1-y)A+yB))
MWM(1=x)A+xB) +uvY"((1-y)A+yB)
Af(x)+puf(y).

Thus the function f is concave.

f(Ax+py)

v
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Theorem (Minkowski's Inequality for Mixed Volumes)
Let A and B be convex bodies in R". Then

V(A...,AB)zv"DIn(A) (B,
with equality holding if and only if v1/"(A+ B) = v1/"(A)+v'/"(B).

o Define a function f:[0,1] — R by the equation

f(t)=v/"((1-t)A+tB), for O<t<1.
Then
f1(t)=v(A)(1-t)"+nv(A,...,AB)(1-t)"tt+---+v(B)t"
nf(t)" L (t) = —nv(A)(1- )"t +nv(A,..., A B)(1-t)" -
nv(=D/n(A)F'(0) = —nv(A) +nv(A,...,AB) (f"71(0) = v(r-D/n(A))

A..,AB)-v(A
(0) = "o -
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o We set
f(t)=v/"(1-t)A+tB), for 0=t=1,

and obtained

v(A,...,A B)-v(A)
V(n—l)/n(A) :

By the preceding corollary, f is concave.

A previous corollary shows f(0) = f(1)—f(0).

Thus,

£(0) =

v(A,..,AB)-v(A n n
A = v (B) = v/ (A)

v(A,...,A B)=v(A) = v(m=D/n(A)W/"(B) - v(A)
v(A,...,A B) = v(r=D/n(A)1/n(B).
This inequality becomes an equality if and only if f'(0) = (1) —(0).
So we must show f'(0) = £(1) - £(0) iff £(3)=3(£(0)+£(1)).
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o We show f'(0) = f(1)—£(0) if and only if £(3)=21(f(0)+£(1)).
Suppose first that /(0) = (1) —7(0).
By a previous corollary, w =f(1)-£(0), for 0<x<1.
Setting x = 1, we get f(3)=3(f(0)+f(1)).
Suppose next that f(1)=1(f(0)+£(1)). Then

f)-fG) _fO)-f(3) _f(0)-3f(0)-5f(1)

= =f(1)-£(0).
1-3 0-1 -1
Using the same corollary as above,
f(x)-f(3 1
le) =f(1)-£(0), for x€ |0, 1]\{5}.
X=3

Hence, f'(0) = £(1) - £(0).
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Let S be an n-simplex and let T be a convex body in R". Suppose
that v(S) = v(T) and that v(S,...,S, T) = v(")/7(S)y1/"(T). Then
T is a translate of S.

Let A, B be convex bodies in R" such that, for each n-simplex
contained in either one of them, there is some translate of it which is
contained in the other. Then B is a translate of A.

Let Fo,...,F, be the facets of S and let uy,...,u, be the
corresponding outward unit normals.

Let ht be the support function of T.

Let C be the simplex which is homothetic to S, and circumscribes T,
i.e., T<C and T meets each facet of C.

Suppose that C=AS +a, for some A >0 and ae R".
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o By a previous corollary,

v D/ (SN (T) = v(S,...,5,T) = % Y hr(ui)va-1(Fi).
i=0
Also, if h¢ is the support function of C,
n 1Z 1Z
A V(S) = V(C) = ; hC(u,-)v,,_l(/lF,- +a) = ; Z hT(U,')Vn_l(F;).
=0 i=0

I

Thus
v/ ()P (T) = Av(S), or v(T) =A"v(S) = v(C).

But TcC. So T=C.
Since v(S)=v(T), A must be 1, and T is the translate S+a of S.
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Clearly A and B must have the same diameter, s, say. Let a,a’ € A be
such that |a—a’|| =s. Then there is some x € R" such that

a+x,a' +xeB. Let ce A. Then a,a’,c belong to some n-simplex of

A. Hence, there is some y € R" such that a+y, a’+y, c+y e B. Now

2y —xlI2+2s> = 2ly-x|?>+2]a-a'|?
= |y-x+a-a|°+lly-x-a+a'|?
= ||(a+y)—(a’+x)||2+||(a’+y)—(a+x)||2
< 282

since B has diameter s. This shows that x=y.
Hence c+x€ B for all ¢ in A. So A+x < B.
A similar argument shows that B—x < A.
Thus B is the translate A+ x of A.

George Voutsadakis (LSSU) Convexity



Mixed Volumes and Extremum Problems

Theorem (Brunn-Minkowski Theorem)

Let A, B be convex bodies in R". Then v¥/"(A+ B) = v¥/"(A)+v/"(B),
with equality holding if and only if A and B are homothetic.

o We have already established the inequality.

Now we establish the conditions under which equality occurs. If A and
B are homothetic, say B =uA+a, where u>0 and a€ R", then
equality holds, since both sides are equal to (1+u)v!/"(A).
Conversely, suppose that A, B give equality. Choose A >0 so that 1B
and A have the same volume. The second assertion of the preceding
theorem shows that the sets A,AB also give equality

v/"(A+AB) = v/ (A) +v/"(AB).
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o Let S be any n-simplex contained in A.

Then S=Jyn---nJ, for some closed halfspaces Jy,...,J, in R".
Denote by Kj the translate of Jy which makes the volumes v(An Jy)
and v((AB)n Kp) equal. We show that the sets AnJy, (1B)n Ky give
equality in Brunn's inequality.
Consider A== An Jo, A* = A\A~, B~ = (AB)n Ko, B* =(AB)\B~.
Suppose that A7, B~ do not give equality in Brunn's inequality.
Then v/"(A=+B™) > vl/"(A7) +vY/"(B").
The sets A~ + B~, A*B™ are disjoint and are contained in A+ AB.
By Brunn's inequality and equalities v(A~) =v(B7), v(A*) =v(B"),

vi/"(A+AB) (V(A~+B7) +v(A* + B*))Y/n

((vl/n(A—) + Vl/n(B—))n + (Vl/n(A+) + vl/n(B+))n)l/n

vi/P(A)+v1/"(AB).

This contradicts that A, AB give equality in Brunn's inequality.

Thus, AnJy and (AB)n Ky yield equality in Brunn's inequality.
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o We repeat the argument just given n more times to deduce the
existence of closed halfspaces Ki,..., K, in R" such that the convex
bodies

S=AnJon---ndp,, T=AB)nKon---nK,
have the same volume and produce equality in Brunn's inequality.

We deduce, from the second assertion of the preceding theorem and
the first part of the lemma, that T must be a translate of S.

It follows, by symmetry, that, for each n-simplex contained in either
one of A and AB, there is some translate of it which is contained in
the other.

Hence, by the second part of the lemma, A is a translate of AB.
This shows that A and B are homothetic.
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An Additional Inequality

Let A, B be convex bodies in R”. Then

V(Areec A, B) 2 A7) 1/7(B)
with equality holding if and only if A and B are homothetic.

o The result follows immediately from the preceding theorems.
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Theorem (Isoperimetric Inequality)

Every convex body A in R"” has a surface area greater than that of a closed
ball with the same volume, unless it is itself a closed ball. More specifically,

s"(A) = w,n"v™LH(A),
with equality holding if and only if A is a closed ball.
o Let B be the closed unit ball U in the theoem. Then that
s(A) = nv(A,...,A U) = ™D/ (A (U) = D/ A) k.

So s"(A) = w,n"v"L(A).

Equality holds if and only if A is homothetic to U, i.e. if and only if A
is a closed ball.
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Theorem (Isodiametric Inequality)
Every convex body A in R" with diameter d has a volume less than that of
a closed ball with diameter d, unless it is itself a closed ball. More
specifically, 10

v(A) s w, (—d) ,

with equality holding if and only if A is a closed ball.

o Denote by & the family of all convex bodies in R" with diameter d.
Let @ =sup{v(A): Ae F}. Then there is a sequence Ay,...,Ag,... of
members of & which lie in the closed ball dU such that v(Ax) — @ as
k — oo. By the Blaschke Selection Theorem, there exists a
subsequence i1,...,/k,... of 1,...,k,... and a convex body Ag such that

Ai, koo Ap. Since both volume and diameter are continuous with
respect to Hausdorff distance, it follows that Ag € &, v(A)=a. Thus

Ao is a member of & having maximal possible volume.
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o Let C be any member of & having maximal volume. It is easily
verified that the convex body C’=3(C - C) belongs to &. The
Brunn-Minkowski theorem shows that v(C’) = v(C) with equality
holding if and only if C is homothetic to —C. By the choice of C,
v(C)=v(C"). Thus v(C")=v(C).

Hence C=-AC +c, for some A >0 and c€R". Since C has the same
vqurlne as —C,A=1and C=-C+c. Hence C-1c=—(C-1c), and

C - 5c is a symmetric member of & having maximal volume.

The symmetry of C— %c together with the fact that its diameter is d
shows that C—3c< 3dU. But 3dU e F and v(C-3c) < v(3dU).

Hence C—%c: %dU. Thus C is the closed ball %c+%dU.

The desired result is immediate.
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o Suppose that the given convex body is the square pyramid
A= conv{(0,0,0),(1,1,1),(1,1,-1),(1,-1,1),(1,-1,-1)}.

o Then A has for its base a square of side 2 lying in the plane x; =1, for
its vertex the origin, and its height is 1.

o For each x with 0 <x <1, denote by A, the intersection of A with the
hyperplane x; = x.

o Denote by C, the closed circular disc which lies in the hyperplane
x1 = x, has its center on the xj-axis, and has the same area as A,.

o Clearly Ay is a square of side 2x and C, has radius ry = 2—\/’%

o We write Cp ={(0,0,0)} and ry=0.

o The union C=U(Cx:0=<x=<1) of the circular discs Cy is called the
Schwarz rotation-symmetral of A in the xi-axis.

o Here C is a right circular cone with base a closed disc of radius %
with axis the xj-axis, and vertex the origin.
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o Let A be a convex body in R", where n=2.

o For simplicity of notation, we suppose that the line of rotation is the
x1-axis and that A lies between parallel support hyperplanes x; = a and
x1=b to A, where a< b.

o For each x with a< x < b, denote by A, the intersection of A with the
hyperplane x; = x.

o Define r, by the equation w,_1r"™* = v, 1(Ax).

o Thus, for a<x < b, ry is the radius of an (n—1)-ball whose
Vp—1-volume is the same as that of A,.

o For each x with a<x < b, define a convex set C (indeed an
(n—1)-ball when a< x < b) by the equation

L2
Ce=1{(x,x2,..., Xn) i X5 + -+ x5 S rgh

o Then the set C =U(C:a<x<b) is called the Schwarz rotation
symmetral of A in the xj-axis.
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Let A be a convex body in R” (n=2) whose Schwarz rotation-symmetral
in the x;-axis is C. Then C is a convex body having the same volume as A.

o We assume the notation introduced for the definition of the Schwarz
rotation-symmetral. First we show that r:[a,b] — R is a concave
function. Let x,y €[a,b] and let A, u=0 with A+p=1. By the
convexity of A, Ajyspy 2 AAx+uA, . Applying Brunn's inequality in
R"1, we find that

D (Are) = VUV A A
= A A) TV (A,

Hence, mix+uy = Arx+pry.
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o We now establish the convexity of C, omitting the verification that it
is compact with nonempty interior.
Let u,ve C and let A, u=0 with A+ pu=1. Then ue C;, ve C,, for
some x,y € [a,b]. Thus u—(x,0,...,0)[ <rx, Iv—=(y,0,...,0) <r,.
Now a<Ax+puy < b and

[Au+ pv — (Ax +uy,0,...,0)|
s]tllu—(x,O,...,O)ll +ullv=(y,0,...,0)I
< Ary +pury,

= Nix+py-

Hence, Au+puve Cyyypy. So Au+puve C. Thus, C is convex.
It follows from a previous theorem that

Va(A) = f 1 () dx = f o 1(Co)dx = va(C).
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o Consider our earlier example in which A was a square pyramid in R3
and its Schwarz rotation-symmetral C was a circular cone.

o A and C have the same volume %;
o A has surface area 4 +4v/2;
o C has the smaller surface area 4 +2vm+4.
o It is a property of the Schwarz rotation-symmetral of a convex body
that its surface area never exceeds that of the body itself.
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Subsection 6

Steiner Symmetrization

George Voutsadakis (LSSU) Convexity July 2023 140 / 161



Mixed Volumes and Extremum Problems

o Let A be a non-empty compact convex set and 7 a hyperplane in R".

o Steiner's construction produces from A and 7 a convex set A; in R”
called the Steiner symmetral of A about 7.

o For each point p of A, denote by ¢, the line K’p—\

through p perpendicular to the hyperplane 7.

o Translate the chord An?¢, of A along ¢,
until its midpoint lies on 7.

o The union A, of all such translated chords is K\

called the Steiner symmetral of A about .

1/
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o Let u be a unit normal vector to a hyperplane 7.

o Then the projection 7(A) of A on 7 is the subset of 7 defined by the
equation
n(A)={pen:p+0ucA, for some O € R}.

o We show that 7(A) is convex.

Let p,gem(A) and let A,u=0 with A+p=1. Then there exist
0,9 € R such that p+60u,q+@ue A. Since A is convex,

Ap+uq+ (A0 +pp)u=A(p+0u)+u(qg+ou)cA.

Hence Ap+pq e n(A). So n(A) is convex.
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o For each p in 7(A), denote by /p the non-empty compact interval of
R defined by the equation

Ip={0eR:p+OucA.
o Define functions a, B,y : m1(A) — R as follows:
a(p) =minlp, B(p) =maxip, y(p) = f(p)-a(p), pen(A).

o Thus y(p) is the length of the chord of A which is the intersection of
A with the line through p normal to 7.

o If we choose —u instead of u for a unit normal to m, then y (unlike
and B) remains unchanged.

o Thus vy is uniquely determined by A and 7.
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The function y: 7(A) — R is concave.

o Let p,gen(A) and let A,u=0 with A+pu=1. Then p+a(p)u,
q+a(q)ue A. The convexity of A shows that
Ap+uq+(Aa(p) +pa(q))u=A(p+a(p)u) +p(q+a(q)u) € A

Hence, a(Ap+pq) < Aa(p) + pa(q).

Similarly, B(Ap +pq) = AB(p) +1p(q).
Thus,

B(Ap+uq)—a(Ap +1q)
A(B(p)—a(p)) +u(B(q) - a(q))
Ay(p) + 1y (q).

Y(Ap +1q)

vV

So y is concave.
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Mixed Volumes and Extremum Problems

o We define the Steiner symmetral A, of A about 7 by the equation

Ay = {p+9u :pemn(A)160] = %Y(P)}-

o Some easy consequences of the definition are:

Ay is (in an obvious sense) symmetric about 7;
If B is a closed ball with center on 7, then B, = B;
If C is a compact convex set with A< C, then A, c C;.
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Mixed Volumes and Extremum Problems

Theorem
Let A be a non-empty compact convex set and let = be a hyperplane in
IR". Then A, is a non-empty compact convex set, which is a convex body

when A is.

o Let a,be A;. Then there are p,q € n(A) and scalars 6, ¢ such that
a=p+0u, b=q+ @u, where |0| < %y(p), lp| < %y(q). Let ,u=0
with A+ =1. Then

Aa+pub=Ap+uq+ (A0 + up)u.
By the concavity of v,
1 1
A6 + ol < 161 + plgl < S Ay (p) + s uy(q) < y(Ap +1q).

Thus Aa+ube A;. This shows that A, is convex.
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Mixed Volumes and Extremum Problems

o We now show that A, is closed. Let x,,...,Xk,... be a sequence of
points of A, that converges to a point x of R". For each k=1,2,...,
there exist py € (A), O, € R such that xx = p +0xu, 10| < 3y(py).
The point x can be written in the form p+0u, pe and 6 € R.
Since |px —pll < lIx,— x|l and xx — x as k — 0o, py — p as k — oco.
The points y, = pi + a(py)u, zx =pi+B(py)u. lie in the compact
set A. Hence there is a subsequence i,...,ik,... of 1,...,k,... and
points y,z€ A such that y; —y, zj —z as k—co.

A simple argument shows that y = p+au, z=p+ bu, where a,be R
are such that a< b and a(p; ) — a, B(p;,) — b as k — oo.
Thus, pen(A) and

. 1 1 1
01=lim 16 |= lim =(B(p;)-a(p;))=7(b-2a)=5y(p).

This shows that x € A;. Hence A, is closed.



Mixed Volumes and Extremum Problems

o Since A is bounded, it lies in some closed ball C.
Hence, A; < C;.
But C; is clearly a closed ball.
So A, is bounded.
We have thus shown that A, is both closed and bounded.
So Ay is compact.
If Ais a convex body, then it contains some closed ball B.
Hence, B; € A;.
But Bj is a closed ball.
So the compact convex set A; has a non-empty interior.
Therefore, A, is a convex body.
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Mixed Volumes and Extremum Problems

In R" let A, B be non-empty compact convex sets and let 7 be a
hyperplane passing through the origin. Then

Ar+Brc(A+B),.

o Let xe A; +B;. Then x=a+b for some a€ A;, be B;. We can
write, using an obvious notation, a=p+0u, b= q+ @u, where
pen(A), gen(B) and |0] < %)/A(p), lp| < %yg(q). Since 7 is a
subspace of R", p+ g€ m. From this follows that p+qen(A+ B).

Clearly yars(p+4q)=va(p)+v8(q). Hence
1 1 1
16+l <10+ gl < EYA(P) + EYB(q) < 5YA+B(P+ q).

Thus, x=p+q+(0+¢@)uc(A+B);. So A+ B, <(A+B),.



Mixed Volumes and Extremum Problems

o Let D and R denote, respectively, diameter and circumradius.

In R" let A be a non-empty compact convex set and let & be a hyperplane.
Then vp(Az) = vn(A), sn(Az) <sn(A), D(A;) < D(A), R(Ar) < R(A).

o We suppose throughout that 7 contains the origin.
To show that v,(Ay) = v,(A), we argue by induction on n.
The case n=1 is trivial. Suppose that n=>2 and that the assertion is
known to be true in R""!. Let u be a unit vector lying in 7.
A previous corollary shows that, in an obvious notation,

(e.o]

V(A) = f T V1(A)dx,  va(Ar) = f s (A ke

—00 —00

We can show that (A;)x = (Ax)z. Using the induction hypothesis,
Va-1((Ar)x) = Va-1((Ax)x) = va—1(Ax)- Hence, vp(A) = va(Ar).



Mixed Volumes and Extremum Problems

o The preceding theorem shows that, for each 1 >0,
Ap+AU=A;+(AU)r < (A+AU),.
Thus, by the first part of this proof,
Va(Ar + AU) < vp((A+AU)z) = vp(A+ AU).

Hence,

im Va(Azr + AU) = vn(Ar) < Iim v,,(A+)LU)—vn(A).
A—0* A A—0* A

That is, sp(Az) < sn(A).
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Mixed Volumes and Extremum Problems

o Suppose now that u is a unit normal to w. Let x,y € A;. Then
x=p+0u, y=q+q@u, for some p,qen(A) and 6,9 € R with
61 < 3v(p). l9l < 37(q). The points

xqa=p+a(p)u, xpg=p+p(p)u,
Yoe=q+a(q)u, ysz=q+p(q)u

belong to A. Moreover,

lp—ql? +la(p) - B(q)P,
lp—ql?+16(p) - a(q)P.

Ixa —yplI2
Ixg =yl
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Mixed Volumes and Extremum Problems

o Now

lIx -yl lp—qll®>+10 — ¢

2

< lp-ql*+3(r(p)+v(q))

= lp—ql*+3(B(p)-a(q)+p(q) - a(p))?

< lp-ql?+318(p)-a(q)?+316(q) - a(p)?
SIxa—ypsl?+3lxp—yql?

< D?(A).

This shows that D(A;) < D(A).

Suppose C is a closed ball containing A.
Then G, is a translate of C containing A;.
Thus R(Az) < R(A).
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Mixed Volumes and Extremum Problems

o The proof of a previous theorem shows that, for each d >0, there
exists among all convex bodies in R" of diameter d some convex body
C which has maximal volume.

o Let Cy be the convex body obtained from C by successive Steiner
symmetrizations in the hyperplanes x; =0, ..., x, =0.

o It is a simple exercise to show that Cy is a symmetric convex body,
which has the same volume, and no larger diameter than Gy.

o Since Cp is symmetric with diameter less than or equal to d, it must
lie in the ball %dU.

o Thus, for any convex body A in R" with diameter d, we have the
isodiametric inequality:

va(A) < va(C) = va(Co) < wn (%d)n.
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Mixed Volumes and Extremum Problems

Theorem

Let Aq,...,Ay,... be a sequence of convex bodies that converges to a
convex body A in R". Then the sequence (A1)z,...,(Ak)x,... of its Steiner
symmetrals about any hyperplane 7 of R" converges to the Steiner
symmetral A; of A about it.

o We assume that the origin is an interior point of A lying on 7.
Thus there exist r,s >0 and a positive integer Ny, such that
rUcAcsU and rUc A csU, for k> Nj.
Hence, rU< Ay < sU and rU < (Ak)r S sU, for k> Nj.
Let €>0. Since Ay — A as k — oo, there is a positive integer Ny such
that, for k> N,

AkgA+’—:U and AgAk+’—:U.
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Mixed Volumes and Extremum Problems [SSteinerSymmetrization

Continuity of Steiner Symmetrization (Cont'd)

o Let k> max{Ny, No}. Then
AccA+Zuca+Ea= (1+5)A.
S S S

So
(Adn <1+ E)A,, = An+ ZA,, cAg+eU.

Similarly, Ay < (Ak)r +€U.
Thus,
P((Ak)m, Ax) <.

It follows that (Ax)r — Ay as k — co.
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Mixed Volumes and Extremum Problems

o Let A be a convex body in R".

o Denote by #(A) the family of all convex bodies which can be
obtained from A by a finite number of symmetrizations about
hyperplanes through the origin.

Theorem
Let A be a convex body in R". Then there is a sequence of members of
& (A) which converges to the closed ball of volume v,(A) whose center is

the origin.

o Let rp=inf{r>0:thereis C in #(A) such that C c rU}.
Then, for each k=1,2,..., there exists Ay in #(A) such that
Ax S (ro+k 1)U. By the Blaschke Selection Theorem, there is a
subsequence of A1, Ay, ... which converges to some convex body, B,
say. We assume that the sequence itself converges to B. Clearly
B<c U and vy(B) = va(A).
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Mixed Volumes and Extremum Problems

o We complete the proof by showing that B=ryU.

Suppose that B # rpU. Then there exist xg € bdrpU and s >0 such
that B(xp;s)n B =@. Since bdrpU is compact, there exist distinct
points Xg,...,Xm (m=1) of bdryU such that

bdroU < B(xg;s)U---UB(xm;s).

For i=0,...,m, set C;=B(x;;s)nbdroU. Then bdryU =Cou---U Cp,.

For i=1,...,m, let m; be the hyperplane through the origin which has
x;—xq for a normal vector. Then Cy and C; are mirror images of one
another in ;. From B(xo;s)N B =@ and the definition of Steiner
symmetrization, By, is disjoint from CGyu C;.

Similarly, (Bg, ), is disjoint from Cou G U Co.
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Mixed Volumes and Extremum Problems

o Continuing, in this fashion, we find that the convex body B" obtained
from B by successive symmetrizations about 71,...,7, is disjoint from
CoU---U Cpy. Hence, it is disjoint from bdrg U.

Since B is a convex body lying in roU, there exists €, with 0 < € < rg,
such that BY < (rp—¢)U.

For k=1,2,..., denote by AE the convex body obtained from Ay by
successive symmetrizations about 71,...,7 .

Then Al e #(A).

By the preceding theorem, AE — BY as k — oo.
But BY ¢ (rp—e)U.

So there is a k such that AE c(rn-3e)U.
This, however, contradicts the definition of ry.
Thus B=ryU.
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Mixed Volumes and Extremum Problems

o Let A be a convex body in R" and let r be the radius of a ball having
the same volume as that of A, i.e., w,r" = v,y(A).

o The theorem shows the existence of a sequence of convex bodies
converging to rU, each of whose members has surface area not
exceeding sp(A).

o Hence

sn(rU) = nw,r" ! < s,(A).

o We can thus deduce the isoperimetric inequality:

ST(A) = (nw,r" " = n"w,(w, ™) = w,n"v(A).

George Voutsadakis (LSSU) Convexity



Mixed Volumes and Extremum Problems

o Let A, B be convex bodies in R" and let r,s >0 be such that
Va(A) =wnr", va(B) =w,s".

o Let0<k<1.

o It follows, by applying the theorem twice, that there exists a finite
sequence of symmetrizations about hyperplanes through the origin
which sends A, B to convex bodies AY, BY, respectively, such that
A9 2 krU, BY 2 ksU.

o A previous theorem shows, that for any hyperplane 7 through the
origin, vp(Az+ Bx) < vp((A+ B)z) = va(A+ B).

o We can deduce, by repeated applications of this result, that

Wnk™(r+5)" = vp(k(r +s)U) < vo(AZ + BY) < v, (A+ B).

o Letting k — 17, we deduce that wp(r+s)" < v,(A+B).

o Hence
va"(A)+va/"(B) = v/ "(A+ B).
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