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Mixed Volumes and Extremum Problems Elementary Sets

Subsection 1

Elementary Sets
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Mixed Volumes and Extremum Problems Elementary Sets

Cells

The basic elementary set is the cell.

In R1 a cell is simply a bounded convex subset of the real line, i.e., a
set of one of the following forms, in which a,b ∈R with a< b:

;, {a}, [a,b], [a,b),(a,b],(a,b).

A cell I in Rn is a set of the form

I = I1×·· ·× In = {(x1, . . . ,xn) : x1 ∈ I1, . . . ,xn ∈ In},

where I1, . . . , In are cells in R1.

The empty set and singletons are examples of degenerate cells in Rn.

A typical cell in R2 is a closed rectangle with sides parallel to the
coordinate axes, possibly having some or all of its sides removed.
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Mixed Volumes and Extremum Problems Elementary Sets

Properties of Cells in R1

Let I and J be cells in R1.

Then I and J are bounded convex sets, whence so too are clI , intI ,
I ∩J, and I +J.

Thus, in R1 the closure and the interior of a cell are cells, as too are
the intersection and the vector sum of two cells.

In general, the set difference I \J is not a cell;

It is, however, easily verified that I \J can be expressed as the union of
two disjoint cells (one or both of which may be empty).

Example:
[3,7)\(4,5]= [3,4]∪ (5,7).
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Mixed Volumes and Extremum Problems Elementary Sets

Properties of Cells in Rn

Now let I and J be cells in Rn specified by the equations I = I1×·· ·× In
and J = J1×·· ·×Jn, where I1, . . . , In, J1, . . . ,Jn are cells in R1.

It is easily verified that

clI = clI1×·· ·×clIn and intI = intI1×·· ·× intIn,

whence the closure and the interior of a cell in Rn are also cells.

The readily established relations

I ∩J = (I1∩J1)×·· ·× (In∩Jn),

I +J = (I1+J1)×·· ·× (In+Jn)

show that the intersection and the vector sum of two cells in Rn are
themselves cells.
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Mixed Volumes and Extremum Problems Elementary Sets

Set Difference of Cells

We show that the set difference I \J can be expressed as a finite union
of pairwise disjoint cells.

For i = 1, . . . ,n, Ii ∩Ji is a cell contained in the cell Ii .

Since cells in R1 are simply intervals, there exist cells Pi and Qi in R1

such that the equation Ii =Pi ∪Qi ∪ (Ii ∩Ji ) expresses Ii as a union of
three pairwise disjoint cells.

It follows that

I = (P1∪Q1∪ (I1∩J1))×·· ·× (Pn∪Qn∪ (In∩Jn)).

Hence, by elementary set theory, I can be written as a union of 3n

pairwise disjoint cells in Rn, one of which is

(I1∩J1)×·· ·× (In∩Jn)= I ∩J .

Thus I \J, which equals I \(I ∩J), can be written as the union of 3n−1
pairwise disjoint cells.
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Mixed Volumes and Extremum Problems Elementary Sets

Elementary Sets and Properties

A set which can be expressed as a finite union of pairwise disjoint cells
in Rn is called an elementary set.

Every cell is an elementary set, as also is the set difference of two cells.

Theorem

Let A and B be elementary sets in Rn. Then A∩B , A\B , A∪B and A+B

are elementary sets.

Suppose that the equations A=
⋃m
i=1

Ii and B =
⋃p

j=1
Jj express A and

B as finite unions of pairwise disjoint cells in Rn.

Then the equation A∩B =
⋃m
i=1

⋃p

j=1
(Ii ∩Jj) expresses A∩B as a finite

union of pairwise disjoint cells in Rn. Hence A∩B is an elementary
set.

This result easily implies that the intersection of any finite non-zero
number of elementary sets is again an elementary set.
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Mixed Volumes and Extremum Problems Elementary Sets

Elementary Sets and Properties (Cont’d)

Now, for i = 1, . . . ,m, Ii \B = Ii\
⋃p

j=1
Jj =

⋂p

j=1
(Ii \Jj). So

A\B = (
⋃m
i=1

Ii )\B = ⋃m
i=1

⋂p

j=1
(Ii \Jj ). Thus A\B is a finite union of

pairwise disjoint elementary sets. So it is itself an elementary set.

The equation A∪B = (A\B)∪ (B\A)∪ (A∩B) shows that A∪B is a
finite union of pairwise disjoint elementary sets. Hence it is itself an
elementary set.

This result easily implies that the union of any finite number of
elementary sets is an elementary set.

The equation A+B =⋃m
i=1

⋃p

j=1
(Ii +Jj) exhibits A+B as a finite union

of elementary sets. So A+B is an elementary set.

Corollary

Every union of a finite number, and every intersection of a finite non-zero
number of elementary sets in Rn is an elementary set.
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Mixed Volumes and Extremum Problems Elementary Sets

Closure, Interior and Boundary of Elementary Sets

Corollary

The closure, the interior, and the boundary of an elementary set in Rn are
elementary sets.

Suppose that in Rn the elementary set A is the union of the pairwise
disjoint cells I1, . . . , Im. Then clA= (clI1)∪·· ·∪ (clIm). This shows that
clA is a union of the cells clI1, . . . ,clIm. So it is an elementary set by
the preceding corollary.

Let I be an open cell in Rn containing A. It can be shown that
intA= I \cl(I \A). Hence, by the theorem and the first part of this
corollary, intA is an elementary set.

Finally, bdA= clA\intA. So bdA is an elementary set by the theorem,
since clA and intA are elementary sets.
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Mixed Volumes and Extremum Problems Elementary Sets

Length and Volume

The length ℓ(I ) of a cell I in R1 is defined to be zero when I is
empty or a singleton, and to be b−a when I is a cell of one of the
forms [a,b], [a,b), (a,b] or (a,b), where a< b.

Suppose next that I is the cell I1×·· ·× In in Rn, where I1, . . . , In are
cells in R1.

Then the volume v(I ) of I is (uniquely) defined by the equation

v(I )= ℓ(I1) · · ·ℓ(In),

i.e., v(I ) is the product of the lengths of the cells from which I is
constructed.

This is a natural generalization of the definition of the area of a
rectangle and the volume of a rectangular block as encountered in
elementary geometry.

When I is a cell in R1, we have v(I )= ℓ(I ).
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Mixed Volumes and Extremum Problems Elementary Sets

Pairwise Disjoint Cells

Theorem

Let I0, I1, . . . , Im, where m≥ 1, be cells in Rn with I1, . . . , Im pairwise disjoint
and having union I0. Then v(I0)=

∑m
i=1

v(Ii ).

We argue by induction on m.

The assertion is trivially true when m= 1.

Suppose, then, that m> 1 and that the assertion is true for all
partitions of a cell into fewer than m cells.

If one of the cells I1, . . . , Im is empty, the assertion follows from the
induction hypothesis and the fact that the empty cell has volume zero.

Assume, then, that none of I1, . . . , Im is empty. For i = 0,1, . . . ,m, let
Ii = Ii1×·· ·× Iin, where Ii1, . . . , Iin are cells in R1. By hypothesis,

I1∩ I2 = (I11 ∩ I21)×·· ·× (I1n∩ I2n)=;.

So one of the cells I11∩ I21, . . ., I1n∩ I2n must be empty. Suppose that
I11∩ I21 is empty.

George Voutsadakis (LSSU) Convexity July 2023 12 / 161



Mixed Volumes and Extremum Problems Elementary Sets

Pairwise Disjoint Cells (Cont’d)

Since I1∪I2 ⊆ I0 and neither of I1 and I2 is empty,
I11 ∪ I21 ⊆ I01. It now follows easily that there
exist cells J11, J21 in R1 such that I11 ⊆ J11,
I21 ⊆ J21, J11∪J21 = I01, J11∩J21 =;.
Define cells P1 and P2 in Rn by the equations
P1 = J11×I02×·· ·×I0n and P2 = J21×I02×·· ·×I0n.

Then P1∪P2 = I0, P1∩P2 =;, and

v(P1)+v(P2)= (ℓ(J11)+ℓ(J21))ℓ(I02) · · ·ℓ(I0n)= ℓ(I01) · · ·ℓ(I0n)= v(I0).

Since the cells P1∩ I2 and P2∩ I1 are empty,

P1 =P1∩ I0 =
⋃m
i=1

(P1∩ Ii )= (P1∩ I1)∪ (P1∩ I3)∪·· ·∪ (P1∩ Im);
P2 =P2∩ I0 =

⋃m
i=1

(P2∩ Ii )= (P2∩ I2)∪ (P2∩ I3)∪·· ·∪ (P2∩ Im).
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Mixed Volumes and Extremum Problems Elementary Sets

Pairwise Disjoint Cells (Cont’d)

We deduce, using the induction hypothesis, that

v(P1)= v(P1∩ I1)+v(P1 ∩ I3)+·· ·+v(P1∩ Im)=
∑m

i=1
v(P1∩ Ii );

v(P2)= v(P2∩ I2)+v(P2 ∩ I3)+·· ·+v(P2∩ Im)=
∑m

i=1
v(P2∩ Ii ).

For i = 1, . . . ,m,

v(P1∩ Ii )+v(P2 ∩ Ii ) = (ℓ(J11∩ Ii1)+ℓ(J21 ∩ Ii1))ℓ(Ii2) · · ·ℓ(Iin)
= ℓ(Ii1)ℓ(Ii2) · · ·ℓ(Iin)
= v(I1).

Thus,

v(I0)= v(P1)+v(P2)=
n∑

i=1

v(P1∩ Ii )+
m∑

i=1

v(P2∩ Ii )=
m∑

i=1

v(Ii ).

This shows that the assertion is true for a partition of a cell into m

cells.
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Mixed Volumes and Extremum Problems Elementary Sets

Uniqueness of the Volume

Corollary

Suppose that I1, . . . , Im and J1, . . . ,Jm are partitions of an elementary set A
in Rn into cells. Then

m∑

i=1

v(Ii)=
p∑

j=1

v(Jj).

For i = 1, . . . ,m, the cell Ii is the union of the pairwise disjoint cells
Ii ∩J1, . . . , Ii ∩Jp. Thus, by the theorem, v(Ii )=

∑p

j=1
v(Ii ∩Jj). So

m∑

i=1

v(Ii)=
m∑

i=1

p∑

j=1

v(Ii ∩Jj)=
p∑

j=1

m∑

i=1

v(Ii ∩Jj)=
p∑

j=1

v(Jj).

Here we have deduced the last equation from the previous ones by
interchanging the roles of the I ’s and the J’s.
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Mixed Volumes and Extremum Problems Elementary Sets

Volume of Elementary Sets

Let A be an elementary set which is the union of pairwise disjoint cells
I1, . . . , Im in Rn.

Then the volume v(A) of A is defined by the equation

v(A)=
m∑

i=1

v(Ii ).

The preceding corollary shows that v(A) is uniquely determined by A,
i.e., that it is independent of the particular choice of the pairwise
disjoint cells I1, . . . , Im whose union is A.

A cell I in Rn is also an elementary set.

So it is assigned a volume in two ways.

By the preceding corollary the two definitions attach the same volume
to I . So the volume v(I ) of the cell I is unambiguous.
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Mixed Volumes and Extremum Problems Elementary Sets

Volume of Union of Pairwise Disjoint Elementary Sets

An immediate consequence of the definition of volume is that, if
A1, . . . ,Am are pairwise disjoint elementary sets in Rn, then

v(A1∪·· ·∪Am)= v(A1)+·· ·+v(Am).

Suppose now that A and B are elementary sets in Rn such that A⊆B .

Then A and B\A are disjoint elementary sets whose union is B .

Thus, we obtain:

v(B)= v(A)+v(B\A);
v(B\A)= v(B)−v(A);
v(A)≤ v(B).
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Mixed Volumes and Extremum Problems Elementary Sets

Property of Volume of Elementary Sets

Theorem

Let A and B be elementary sets in Rn. Then

v(A∪B)+v(A∩B)= v(A)+v(B).

The set A∪B is the union of the pairwise disjoint elementary sets
A\(A∩B), B\(A∩B) and A∩B .

So by the comments preceding the theorem,

v(A∪B) = v(A\(A∩B))+v(B\(A∩B))+v(A∩B)
= v(A)−v(A∩B)+v(B)−v(A∩B)+v(A∩B)
= v(A)+v(B)−v(A∩B).
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Mixed Volumes and Extremum Problems Elementary Sets

Union of Elementary Sets

Corollary

Let A1, . . . ,Am be elementary sets in Rn. Then

v(A1∪·· ·∪Am)≤ v(A1)+·· ·+v(Am).

We argue by induction with respect to m. The case m= 1 is trivial.
Suppose that m> 1 and that the assertion is true for families of fewer
than m elementary sets. Then, by the preceding theorem and the
induction hypothesis,

v(A1∪·· ·∪Am) = v((A1∪·· ·∪Am−1)∪Am)
≤ v(A1∪·· ·∪Am−1)+v(Am)
≤ v(A1)+·· ·+v(Am−1)+v(Am).

This completes the proof by induction.
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Mixed Volumes and Extremum Problems Elementary Sets

Interior and Closure and Boundary of Elementary Sets

Corollary

Let A be an elementary set in Rn. Then

v(intA)= v(A)= v(clA) and v(bdA)= 0.

We make use of the trivial result that a cell, its interior and its closure
all have the same volume. Let A= I1∪·· ·∪ Im, where I1, . . . , Im are
pairwise disjoint cells. Then, by the preceding corollary,

v(clA) = v(clI1∪·· ·∪clIm)≤ v(clI1)+·· ·+v(clIm)
= v(I1)+·· ·+v(Im)= v(A)≤ v(clA);

v(intA) ≥ v(intI1∪·· ·∪ intIm)= v(intI1)+·· ·+v(intIm)
= v(I1)+·· ·+v(Im)= v(A)≥ v(intA).

Hence v(clA)= v(intA)= v(A).

Finally, v(bdA)= v(clA\intA)= v(clA)−v(intA)= 0.
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Mixed Volumes and Extremum Problems Volume

Subsection 2

Volume
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Mixed Volumes and Extremum Problems Volume

Inner and Outer Volumes

Denote by E the class of elementary sets in Rn.

Let A be the bounded set in Rn whose volume we wish to define.

We should expect the (as yet undefined) volume of A to be an upper
bound for the set of volumes of elementary sets contained in A.

This observation leads us to define an inner-volume v(A) for A by
the equation

v(A)= sup{v(E ) :E ⊆A and E ∈ E }.

The assumption that A is bounded ensures that v(A) is a well-defined
non-negative real number.

Similarly, by considering the volumes of elementary sets containing A,
we are led to define an outer-volume v(A) by the equation

v(A)= inf {v(E ) :A⊆E and E ∈ E }.
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Mixed Volumes and Extremum Problems Volume

Basic Properties of Inner and Outer Volumes

Theorem

Let A and B be bounded sets in Rn. Then:

(i) v(A)≤ v(A);

(ii) v(A)= v(A)= v(A) when A is an elementary set;

(iii) v(A)≤ v(B) and v(A)≤ v(B) whenever A⊆B ;

(iv) v(A)= v(intA) and v(A)= v(clA);

(v) v(A∪B)+v (A∩B)≥ v(A)+v (B) and
v(A∪B)+v (A∩B)≤ v(A)+v (B).

Both (i) and (ii) follow immediately from the fact that v(E )≤ v(F )
whenever E and F are elementary sets with E ⊆ F .

(iii) is clear from the definitions of v and v .

Suppose now that E is an elementary set with E ⊆A. Then, by
previous corollaries, intE is an elementary set with v(intE )= v(E ).
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Mixed Volumes and Extremum Problems Volume

Basic Properties of Inner and Outer Volumes (Cont’d)

Also intE ⊆ intA. So

v(intA) = sup {v(E ) :E ⊆ intA and E ∈ E }

≥ sup {v(intE ) :E ⊆A and E ∈ E }

= sup {v(E ) :E ⊆A and E ∈ E }

= v(A).

But, by (iii), v(intA)≤ v(A). Hence v(intA)= v(A).

Similarly, v(clA)= v(A).

Finally, let E and F be elementary sets with E ⊆A and F ⊆B . Then
E ∪F and E ∩F are elementary with E ∪F ⊆A∪B and E ∩F ⊆A∩B .
By a previous theorem and (ii), (iii) above,

v(A∪B)+v(A∩B)≥ v(E ∪F )+v(E ∩F )= v(E )+v(F ).

Since this inequality holds for all elementary sets E and F with E ⊆A

and F ⊆B , we can deduce that v(A∪B)+v(A∩B)≥ v(A)+v (B).

The last part of (v) is proved similarly.
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Sets that Have Volume

It can happen that v(A)< v(A).

Example: Suppose that A is the set of rational numbers in the interval
[0,1] of the real line. Then intA=; and clA= [0,1]. Hence, by Parts
(ii) and (iv) of the theorem, v(A)= 0, whereas v(A)= 1.

Fortunately, however, for all the sets A in which we are interested the
numbers v(A) and v(A) are equal.

In particular, this is true when A is a bounded convex set.

We say that a set A in Rn has volume if it is bounded and
v(A)= v(A).

Part (ii) of the theorem shows that every elementary set in Rn has
volume.

For each set A in Rn which has volume, we write v(A) for the equal
numbers v(A) and v(A), and we say that A has volume v(A).

In this way, we have extended the volume function v from the class of
elementary sets to the class of all sets which have volume.
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Criterion for Having Volume

Theorem

The set A in Rn has volume if and only if, for each ε> 0, there are
elementary sets E and F in Rn such that E ⊆A⊆ F and v(F \E )< ε.

Suppose that A has volume and that ε> 0. Then there exist
elementary sets E and F in Rn with E ⊆A⊆ F such that

v(E )> v(A)−
1

2
ε= v(A)−

1

2
ε and v(F )< v(A)+

1

2
ε= v(A)+

1

2
ε.

Hence v(F \E )= v(F )−v(E )< ε.

Conversely, suppose that, for each ε> 0, there are elementary sets E
and F in Rn such that E ⊆A⊆F and v(F \E )< ε. This implies that A
is bounded. Let ε,E ,F be as described. Then

0≤ v(A)−v(A)≤ v(F )−v(E )= v(F \E )< ε.

Since ε> 0 is arbitrary, v(A)= v(A) and A has volume.
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Union, Intersection and Complementation

Theorem

Let A and B be sets in Rn which have volume. Then the sets A∪B , A∩B ,
and A\B have volume.

We show that A\B has volume. The other two proofs are similar.

Let ε> 0. Then there exist elementary sets E ,F ,G ,H in Rn with
E ⊆A⊆ F , G ⊆B ⊆H such that v(F \E )< 1

2
ε and v(H\G )< 1

2
ε.

Now E\H and F \G are elementary sets with E\H ⊆A\B ⊆F \G and

(F \G )\(E\H) ⊆ (F \E )∪ (H\G ).

Hence v((F \G )\(E\H)) ≤ v(F \E )+v(H\G )< ε. Thus A\B has
volume.

Corollary

All unions of a finite number, and all intersections of a finite non-zero
number, of sets in Rn which have volume also have volume.
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Interior, Closure and Volume

Theorem

Let A be a set in Rn which has volume. Then the sets intA and clA have
volume with

v(intA)= v(A)= v(clA).

By a previous theorem,

v(intA)≤ v(A)= v(A)= v(A)= v(intA)≤ v(intA).

Also
v(clA)= v(A)= v(A)= v(A)≤ v(clA)≤ v(clA).
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Relation of Volumes of Union and Intersection

Theorem

Let A and B be sets in Rn which have volume. Then

v(A∪B)+v(A∩B)= v(A)+v(B).

By previous theorems,

v(A∪B)+v(A∩B) = v(A∪B)+v(A∩B)
≤ v(A)+v (B)
= v(A)+v(B);

v(A∪B)+v(A∩B) = v(A∪B)+v(A∩B)
≥ v(A)+v (B)
= v(A)+v(B).
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Relative Complements and Volume

Corollary

Let A,B be sets in Rn which have volume and are such that A⊆B . Then

v(B\A)= v(B)−v(A) and v(A)≤ v(B).

The first assertion follows by applying the theorem to the sets B\A

and A.

v(B)= v(B)+0= v((B\A)∪A)+v((B\A)∩A)= v(B\A)+v(A).

The second assertion follows immediately from the first.
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Arbitrary Unions and Volume

Corollary

Let A1, . . . ,Am be sets in Rn which have volume. Then

v(A1∪·· ·∪Am)≤ v(A1)+·· ·+v(Am),

with equality holding when v(A1∩Aj)= 0, for 1≤ i < j ≤m.

We argue by induction on m. The case m= 1 is trivial. Let A1,A2 be
sets in Rn which have volume. By the theorem,

v(A1∪A2)+v(A1∩A2)= v(A1)+v(A2).

So v(A1∪A2)≤ v(A1)+v(A2), with equality if v(A1∩A2)= 0.

Suppose that m> 1 and that the assertion is true for all sequences of
m−1 sets.
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Arbitrary Unions and Volume (Cont’d)

Then, by the induction hypothesis and the case m= 2 just established,

v(A1∪·· ·∪Am) = v((A1∪·· ·∪Am−1)∪Am)
≤ v(A1∪·· ·∪Am−1)+v(Am)
≤ v(A1)+·· ·+v(Am−1)+v(Am).

If v(Ai ∩Aj)= 0 when 1≤ i < j ≤m, then

v((A1∪·· ·∪Am−1)∩Am) = v((A1∩Am)∪·· ·∪ (Am−1∩Am))
≤ v(A1∩Am)+·· ·+v(Am−1∩Am)
= 0.

Hence

v(A1∪·· ·∪Am) = v((A1∪·· ·Am−1)∪Am)
= v(A1∪·· ·∪Am−1)+v(Am)
= v(A1)+·· ·+v(Am−1)+v(Am).

Thus the assertion is true for all sequences of m sets.
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Volumes and Boundaries

Theorem

The bounded set A in Rn has volume if and only if its boundary bdA has
volume zero.

Suppose that A has volume. Then the equation bdA= clA\intA,
together with previous results, shows that bdA has volume zero.
Conversely, suppose that bdA has volume zero. Let ε> 0. Then there
exists an elementary set E in Rn with bdA⊆E and v(E )< ε. Let I be
a cell in Rn containing both E and A. Then I \E is an elementary set.
Suppose it is the union of the pairwise disjoint cells I1, . . . , Im in Rn. If
an Ii meets A, then it must be contained in A, for otherwise, by the
convexity of Ii , it would meet bdA, and hence E , which is impossible.
Let F be the union of those Ii ’s which meet A. Then F is an
elementary set contained in A, and E ∪F is an elementary set
containing A. Also v((E ∪F )\F )= v(E )< ε. Hence, by a previous
theorem, A has volume.
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Subdivision of the Boundary of a Cube

Lemma

Let a> 0 and let I be the n-cube in Rn defined by the equation

I = {(x1, . . . ,xn) :−a≤ xi ≤ a for i = 1, . . . ,n}.

Then, for each positive integer m, there exists a subset S of 2nmn−1 points

of bdI such that, for each x ∈ bdI , there is s ∈ S with ‖x −s‖≤ a
p
n−1
m .

Let J denote the set of midpoints of the intervals obtained by
subdividing the interval [−a,a] on the real line into m equal
subintervals in the obvious way. Then J is a subset of [−a,a] which
has m points. Moreover, for each x in [−a,a], there is a point t of J
such that |x − t | < a

m . Let S be that set in Rn consisting of all those
points exactly one of whose coordinates is either a or −a and whose
remaining coordinates belong to the set J. Then S is a subset of bdI
having 2nmn−1 points.
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Subdivision of the Boundary of a Cube (Cont’d)

Now let x = (x1, . . . ,xn) be a point of bdI . Then one of the coordinates
of x must be a or −a and all of its coordinates must belong to [−a,a].
Suppose, without loss of generality, that x1 = a. By the construction of
I , there exist points s2, . . . ,sn of I (supposing n≥ 2) such that
|si −xi | ≤ a

m for i = 2, . . . ,n. Put s = (a,s2, . . . ,sn). Then s ∈ S and

‖x −s‖2 = (a−a)2+ (x2− s2)
2+·· ·+ (xn− sn)

2

≤ (n−1) a2

m2 .

The desired result now follows.
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Bounded Convex Sets Have Volume

Theorem

Every bounded convex set in Rn has volume.

We show that the boundary of a bounded convex set has volume zero,
whence the set has volume by a previous theorem. Since, by a previous
corollary, a convex set and its closure have the same boundary, it will
suffice to prove the theorem for a compact convex set.

Let A be a non-empty compact convex set in Rn with projection
operator f . Let ε> 0. Since A is bounded, there exists a> 0 such that
A is contained in the cube I as defined in the statement of the lemma.
Choose an integer m such that m> 2n+1annn+1

ε , and let the set S be as
in the lemma. For each s ∈ S , let I (s) be the cube in Rn with center
f (s) defined by the equation

I (s)=
{

(x1, . . . ,xn) : |xi −yi | ≤
na

m
for i = 1, . . . ,n

}

.

where f (s)= (y1, . . . ,yn). We show that the union of the cubes f (s)
for s ∈ S contains bdA.
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Bounded Convex Sets Have Volume (Cont’d)

To see why this is so, suppose that a ∈ bdA. By a previous corollary,
there exists x ∈ bdI with f (x)= a. The construction of S shows that
there is s ∈ S such that

‖x −s‖ ≤
a
p
n−1

m
≤
na

m
.

Since f is a projection operator, we have

‖a− f (s)‖= ‖f (x)− f (s)‖ ≤ ‖x −s‖≤
na

m
.

It follows that a ∈ I (s). Thus bdA is contained in the union of the (at
most) 2nmn−1 cubes I (s), each of which has volume (2na

m )n.

By a previous corollary, the volume of this union does not exceed
2nmn−1(2na

m
)n = 2n+1annn+1

m
< ε. Hence v(bdA)< ε. So v(bdA)= 0.
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Bounded Subsets of Hyperplanes

Corollary

Every bounded subset of a hyperplane in Rn has volume zero.

Let A be a bounded subset of a hyperplane in Rn. The theorem shows
that convA has volume. By a previous theorem,

v(convA)= v(int(convA))= v(;)= 0.

It now follows easily that A has volume zero.
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Effects of Affine Transformations on Volume

We consider the effect that an affine transformation has on volume.

We will show that, if A is a set in Rn which has volume and
T :Rn →Rn is an affine transformation with associated matrix Q,
then the image T (A) of A under T has volume given by the formula

v(T (A))= |detQ|v(A).
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Effects of Translations on Volume

The simplest type of affine transformation is the translation.

Let A be a set in Rn which has volume and let a be a point of Rn.

If E is an elementary set contained in A, then it is easily verified that:

E +a is an elementary set contained in A+a;
v(E +a)= v(E ).

It follows that v(A+a)≥ v(A).

Similarly, we have v(A+a)≤ v(A).

Since A has volume,

v(A+a)≥ v(A+a)≥ v(A)= v(A)≥ v(A+a).

This shows that A+a has volume v(A).

So every translate of a set having volume has a volume equal to that
of the set itself.
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Elementary Matrices

A real n×n matrix is said to be an elementary matrix if it can be
obtained from the identity matrix I n by one of the following
operations:

(i) The multiplication of a row by a non-zero scalar;
(ii) The interchange of two rows;
(iii) The addition of one row to another one.

The matrices





1 0 0
0 1 0
0 0 −8



 ,





0 0 1
0 1 0
1 0 0



 ,





1 0 0
0 1 1
0 0 1





illustrate Types (i), (ii) and (iii) of elementary matrices.

We assume the result that every non-singular matrix can be expressed
as a product of elementary matrices.
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Elementary Transformations and Volumes

Lemma

Let T :Rn →Rn be the linear transformation given by T (x)=Qx for
x ∈Rn, where Q is an elementary matrix. Then, for each cell I in Rn, the
set T (I ) has volume |detQ|v(I ).

Let I = I1×·· ·× In, where I1, . . . , In are cells in R1.

T (I ) has volume, since it is bounded and convex.

The proof falls naturally into three parts, corresponding to the three
types of elementary matrix.

Suppose first that Q is an elementary matrix of Type (i); say Q is
obtained from I n by multiplying its r th row by a non-zero scalar λ.

Then T (I )= I1×·· ·×λIr ×·· ·× In. So we get

v(T (I ))= ℓ(I1) · · ·ℓ(λIr ) · · ·ℓ(In)= |λ|ℓ(I1) · · ·ℓ(In)= |detQ|v(I ).
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Elementary Transformations and Volumes (Cont’d)

Suppose next that Q is an elementary matrix of Type (ii), say Q is
obtained from I n by interchanging its r th and sth rows, where r < s.

Then detQ =−1. Further, T (I )= I1×·· ·× Is ×·· ·× Ir ×·· ·× In, i.e., the
cells Ir and Is are transposed from their natural order. So

v(T (I ))= ℓ(I1) · · ·ℓ(Is) · · ·ℓ(Ir ) · · ·ℓ(In)= ℓ(I1) · · ·ℓ(In)= |detQ|v(I ).

Suppose finally that Q is an elementary matrix of Type (iii), say Q is
obtained from I n by adding its second row to its first. Then detQ = 1.
For notational simplicity, we assume that

I = {(x1, . . . ,xn) : ai ≤ xi ≤ bi for i = 1, . . . ,n}

where ai < bi , for i = 1, . . . ,n. Then

T (I )= {(x1, . . . ,xn) : a1+x2 ≤ x1 ≤ b1+x2 and
ai ≤ xi ≤ bi , for i = 2, . . . ,n}.
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Elementary Transformations and Volumes (Cont’d)

Let bounded convex sets A and B be defined by the equations

A= {(x1, . . . ,xn) : a1+a2 ≤ x1 < a1+x2 and ai ≤ xi ≤ bi , i = 2, . . . ,n};
B = {(x1, . . . ,xn) : b1+x2 < x1 ≤ b1+b2 and ai ≤ xi ≤ bi , i = 2, . . . ,n}.

Then the cell [a1+a2,b1+b2]×[a2,b2]×
·· ·×[an,bn] is the pairwise disjoint union
of the sets A,T (I ) and B .

So we get

(b1−a1+b2−a2)(b2−a2) · · ·(bn−an)= v(A)+v(T (I ))+v(B).

The cell [a1+a2,a1+b2]× [a2,b2]×·· ·× [an,bn] is the disjoint union of
the bounded convex sets clA and B − (b1−a1)e1. Hence,

(b2−a2)(b2−a2) · · ·(bn−an)= v(clA)+v(B − (b1−a1)e1)= v(A)+v(B).

Subtracting the second from the first, v(T (I ))= v(I )= |detQ|v(I ).
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Affine Transformations and Volumes

Theorem

Let T :Rn →Rn be the affine transformation given by T (x)=Qx +q for
x ∈Rn, where Q is an n×n real matrix and q ∈Rn. Then, for each set A
in Rn that has volume, the set T (A) has volume |detQ|v(A).

We consider first the case when Q is an elementary matrix and q = 0.
Let ε> 0. Then there exist pairwise disjoint cells I1, . . . , Im in Rn such
that I1∪·· ·∪ Im ⊆A and v(I1)+·· ·+v(Im)= v(I1∪·· ·∪ Im)> v(A)−ε.
Now T (I1)∪·· ·∪T (Im)=T (I1∪·· ·∪ Im)⊆T (A). Using the lemma and
the fact that T is a bijection (as Q is non-singular), we deduce that

v(T (A)) ≥ v(T (I1)∪·· ·∪T (Im))
= v(T (I1))+·· ·+v(T (Im))
= |detQ|(v(I1)+·· ·+v(Im))
≥ |detQ|(v(A)−ε).

Since ε> 0 is arbitrary, v(T (A))≥ |detQ|v(A).
George Voutsadakis (LSSU) Convexity July 2023 45 / 161



Mixed Volumes and Extremum Problems Volume

Affine Transformations and Volumes (Cont’d)

Similarly, we have v(T (A))≤ |detQ|v(A).
Hence |detQ|v(A)≤ v(T (A))≤ v(T (A))≤ |detQ|v(A).
So T (A) has volume |detQ|v(A).
Let now Q be an arbitrary n×n real matrix and q = 0.
The theorem is obvious when Q is singular.
In that case, T (A) is a bounded subset of some hyperplane of Rn.

So both v(T (A)) and |detQ|v(A) are zero.
Suppose, then, that Q is non-singular, and that Q =Q1 · · ·Qm, where
Q1, . . . ,Qm are elementary matrices. By repeated applications of the
special case of the theorem just proved, we deduce that

v(T (A)) = |detQ1| · · · |detQm|v(A)
= |det(Q1 · · ·Qm)|v(A)
= |detQ|v(A).

Finally, the case q 6= 0 adds no difficulty, since translations leave
volumes unchanged.
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Scaling Translates, Congruence and Volume

Corollary

Let A be a set in Rn which has volume. Then, for all λ≥ 0 and a ∈Rn,

v(λA+a)=λnv(A).

Corollary

Let A and B be congruent sets in Rn with A having volume. Then

v(B)= v(A).

Since A and B are congruent, there exists an affine transformation
T :Rn →Rn given by T (x)=Qx +q for x ∈Rn, where Q is an n×n

orthogonal matrix and q ∈Rn, such that T (A)=B . Since the
determinant of an orthogonal matrix is ±1, the result follows from the
theorem.
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Continuity With Respect to Hausforff Distance

Theorem

Let A,A1, . . . ,Ak , . . . be non-empty compact convex sets in Rn such that
Ak →A as k →∞. Then v(Ak)→ v(A) as k →∞.

Throughout the proof we denote the Hausdorff distance ρ(Ak ,A)
between Ak and A by θk . Consider first the case when A has
non-empty interior. Since both volume and the Hausdorff distance are
unchanged by translations, we can assume that the origin is an interior
point of A, say rU ⊆A for some r > 0. Choose k so large that θk < r .
Then, by the definition of ρ,

Ak ⊆A+θkU ⊆A+ θk
r A= (1+ θk

r )A;

(1− θk
r
)A+ θk

r
A=A⊆Ak +θkU ⊆Ak + θk

k
A.

By a previous (cancelation) theorem, (1− θk
r
)A⊆Ak .
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Continuity With Respect to Hausforff Distance (Cont’d)

We showed that (1− θk
r )A⊆Ak . Thus, we have

(1− θk
r
)A⊆Ak ⊆ (1+ θk

r
)A;

(1− θk
r )

nv(A)≤ v(Ak)≤ (1+ θk
r )v(A).

So v(Ak)→ v(A) as k →∞.

Suppose now that A has empty interior. Then A lies in some
hyperplane of Rn.

If n= 1, then A is a singleton and v(Ak )≤ 2θk . So v(Ak )
k→∞−→ 0= v(A).

Suppose that n≥ 2. Since both volume and the Hausdorff distance are
unchanged by congruence transformations, we can assume that, for
some R > 0, A⊆ {(x1, . . . ,xn−1,0) : |x1|, . . . , |xn−1| ≤R}. Now

Ak ⊆A+θkU ⊆ {(x1, . . . ,xn) : |x1|, . . . , |xn−1| ≤R +θk , |xn | ≤ θk }.

So v(Ak )≤ 2(2R+2θk )
n−1θk

k→∞−→ 0= v(A).
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A Limit Theorem

Theorem

Let A be a union of a finite number of bounded convex sets in Rn each of
which has dimension at most n−2. Then

v ((A)λ)
λ

→ 0 as λ→ 0+.

Consider first the case of a bounded convex set A in Rn having
dimension at most n−2. We can assume that n≥ 3 and that, for some
R > 0, A⊆ {(0,0,x3, . . . ,xn) : |x3|, . . . , |xn| ≤R}. Thus, for λ> 0,

(A)λ ⊆ {(x1, . . . ,xn) : |x1|, |x2| ≤λ; |x3|, . . . , |xn| ≤R +λ}.

So
v((A)λ)≤ 4λ2(2R +2λ)n−2 = 2nλ2(R +λ)n−2

.

Hence,
v((A)λ)

λ
≤ 2nλ(R +λ)n−2 λ→0+

−→ 0.
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A Limit Theorem (Cont’d)

Consider now the general case when A is the union of bounded convex
sets A1, . . . ,Am in Rn, each of which has dimension at most n−2.
Then

v((A)λ)= v((A1)λ∪·· ·∪ (Am)λ)≤ v((A1)λ)+·· ·+v((Am)λ).

So, by what we have just proved,

v((A)λ)

λ
≤
v((A1)λ)

λ
+·· ·+

v((Am)λ)

λ

λ→0+
−→ 0.
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Subsection 3

The Determination of Volume
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Volumes of Parallelotopes

A set in Rn is called a parallelotope if it is the image of the unit
n-cube

{(x1, . . . ,xn) : 0≤ x1, . . . ,xn ≤ 1} = [0,1]×·· ·× [0,1]

under a non-singular affine transformation.

We find the volume of the n-parallelotope

P = {λ1a1+·· ·+λnan : 0≤λ1, . . . ,λn ≤ 1}+a,

where a,a1, . . . ,an ∈Rn with a1, . . . ,an linearly independent.

Let [a1, . . . ,an] be the matrix with columns a1, . . . ,an.

Then P is the image of. the n-cube

{(x1, . . . ,xn) : 0≤ x1, . . . ,xn ≤ 1} = [0,1]×·· ·× [0,1]

under the affine transformation which maps x to [a1, . . . ,an]x +a.

Hence, by a previous theorem, P has volume |det[a1, . . . ,an]|.
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Extending the Volume Functions

To indicate the dependence of the volume function v upon n, we write
vn for the volume function in Rn and refer to it as the n-volume.

Thus v1(= ℓ),v2,v3 denote, respectively, length in R1, area in R2 and
volume in R3.

It turns out to be necessary to enlarge the domain of definition of
vn−1, for n ≥ 2, to include those sets in Rn which are congruent to sets
in Rn−1 having (n−1)-volume.

Let A be a set in Rn (n ≥ 2) that is congruent to some set B in Rn−1

having (n−1)-volume vn−1(B).

Then we define vn−1(A) to be vn−1(B).

This defines vn−1(A) uniquely, for if A is also congruent to C in Rn−1,
then B and C are congruent, which shows that vn−1(B)= vn−1(C ).

It is also helpful to define a volume function v0 in R1 by putting
v0(;)= 0 and v0({a})= 1, for each real number a.
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Properties of Extended Volume Functions

If A is a set in Rn for which vn−1(A) is defined, then A must be a
bounded subset of some hyperplane of Rn.

Also, if A is a bounded subset of some (n−2)-flat in Rn (n≥ 2), then
it is congruent to some bounded subset of a hyperplane in Rn−1,
whence vn−1(A)= 0.

If T :Rn →Rn is a congruence transformation and λ≥ 0, then

vn−1(T (A))= vn−1(A) and vn−1(λA)=λn−1vn−1(A),

where A is a subset of Rn for which vn−1(A) is defined.
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Review of Riemann Integrability

Let f : [a,b]→R, where a< b, be a bounded real-valued function.
For each subdivision D of [a,b], where D is given by
a= ξ0 < ξ1 < ·· · < ξm = b, lower and upper sums s(D) and S(D) of f
with respect to D are defined by the equations

s(D) =
∑m−1

i=0
(ξi+1−ξi) inf {f (x) : ξi ≤ x ≤ ξi+1},

S(D) =
∑m−1

i=0
(ξi+1−ξi)sup {f (x) : ξi ≤ x ≤ ξi+1}.

Lower and upper integrals
∫b
a f (x)dx and

∫b
a f (x)dx of f on [a,b]

are defined by the equations:
∫b
a f (x)dx = sup {s(D) :D a subdivision of [a,b]},

∫b
a f (x)dx = inf {S(D) :D a subdivision of [a,b]}.

The inequality
∫b
a f (x)dx ≤

∫b
a f (x)dx always holds.

If
∫b
a f (x)dx =

∫b
a f (x)dx , then f is said to be Riemann integrable

on [a,b] and the common value is denoted by
∫b
a f (x)dx .
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Volumes and Integrals

Theorem

Let A be a bounded convex set in Rn. For each real number x , denote by
Ax the intersection of A with the hyperplane x1 = x in Rn. Let a and b be
real numbers such that a< b and Ax is empty whenever x < a or x > b.
Then

vn(A)=
∫b

a
vn−1(Ax)dx .

Let E be any elementary set contained in A. For each real number x ,
denote by Ex the intersection of E with the hyperplane x1 = x in Rn.
The function vn−1(Ex ) is a step function, and so is Riemann integrable.

Clearly
∫b
a vn−1(Ex )dx = vn(E ) and vn−1(Ex )≤ vn−1(Ax). Thus

vn(E )=
∫b

a
vn−1(Ex)dx ≤

∫b

a
vn−1(Ax)dx .
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Volumes and Integrals (Cont’d)

Since E is any elementary set contained in A, vn(A)≤
∫b
a vn−1(Ax )dx .

A similar argument shows that
∫b
a vn−1(Ax)dx ≤ vn(A).

Thus, vn−1(Ax) is Riemann integrable on [a,b] and

vn(A)=
∫b

a
vn−1(Ax)dx .

The formula of the theorem can be written

vn(A)=
∫∞

−∞
vn−1(Ax )dx ,

since vn−1(Ax )= 0 when either x < a or x > b.
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Volumes and Integrals Along Hyperplanes

Corollary

Let A be a bounded convex set in Rn and let u be a unit vector in Rn. For
each real number x , denote by Ax the intersection of A with the
hyperplane u ·x = x . Then

vn(A)=
∫∞

−∞
vn−1(Ax)dx .

Let T :Rn →Rn be a congruence transformation such that T (0)= 0

and T (u)= e1. By the theorem,

vn(A)= vn(T (A)) =
∫∞
−∞vn−1(T (A)∩ {x : x ·e1 = x})dx

=
∫∞
−∞vn−1(T (Ax ))dx

=
∫∞
−∞vn−1(Ax)dx .

George Voutsadakis (LSSU) Convexity July 2023 59 / 161



Mixed Volumes and Extremum Problems The Determination of Volume

Volume of a Cylindrical Set

Let A be a bounded convex subset of a hyper-
plane u ·x = u0 in Rn, where u0 ∈R,u ∈Rn

and ‖u‖ = 1. Let c ∈Rn. We compute the
volume of the cylindrical set

B =A+ {λc : 0≤λ≤ 1}.

In calculating vn(B), we assume initially that c ·u > 0. The hyperplane
u ·x = x meets B in a translate of A if u0 ≤ x ≤ u0+c ·u, and in the
empty set for other real values of x . But each translate of A has the
same (n−1)-volume as A itself. Thus, by the corollary,

vn(B)=
∫u0+c ·u

u0

vn−1(A)dx = (c ·u)vn−1(A).
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Volume of a Cylindrical Set (Cont’d)

In the general case, i.e., when c ·u is unrestricted, we have

vn(B)= |c ·u |vn−1(A).

This formula generalizes the result that the volume of a three
dimensional cylinder is the product of the area of its base with its
height.

If c is normal to the hyperplane u ·x = u0, then c ·u =±‖c‖ and the
above formula reduces to

vn(B)= ‖c‖vn−1(A).
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Volume of a Conical Set

Let A be a bounded convex subset of a hyper-
plane u ·x = u0 in Rn, where u0 ∈R,u ∈Rn and
‖u‖ = 1. Let c ∈Rn. We compute the volume
of the conical set

C = conv(A∪ {c }).

Assume first that A is non-empty and that u0 < c ·u. Clearly

C = conv(A∪ {c })=
⋃

(λc + (1−λ)A : 0≤λ≤ 1).

The hyperplane u ·x = x meets C in:

The set λc + (1−λ)A, for u0 ≤ x ≤ c ·u, where λ= x−u0
c ·u−u0

;
The empty set for other real values of x .
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Volume of a Conical Set (Cont’d)

We have

vn−1(λc + (1−λ)A)= vn−1((1−λ)A)= (1−λ)n−1vn−1(A).

So, by the corollary,

vn(C )=
∫c ·u

u0

(
c ·u−x

c ·u−u0

)n−1

vn−1(A)dx =
1

n
(c ·u−u0)vn−1(A).

In the general case, when c ·u is unrestricted and A may be empty, we
have

vn(C )=
1

n
|c ·u−u0|nn−1(A).

This formula generalizes the result that the volume of a three
dimensional cone is one third the product of the area of its base with
its height.
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Volume of a Simplex

Consider, first, the simplex Sn in Rn which is the polytope
conv{0,e1, . . . ,en}.

Let αn denote the n-volume of Sn.

For n≥ 2,

Sn = conv{0,e1, . . . ,en} = conv(conv{0,e1, . . . ,en−1}∪ {en}).

using the formula established above for the volume of a conical set,

αn =
αn−1

n
.

We also have α1 = 1.

We conclude that

αn =
1

n!
, for n ≥ 1.
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Volume of a Simplex (Cont’d)

Consider, next, the general n-simplex which is the convex hull of some
affinely independent set {a0, . . . ,an} in Rn, where ai = (ai1, . . . ,ain) for
i = 0, . . . ,n.

This simplex is the image of Sn under the affine transformation
T :Rn →Rn defined by the equation T (x)=Qx +q for x ∈Rn, where
Q is the n×n matrix with columns a1−a0, . . . ,an−a0 and q = a0.

Thus, conv{a0, . . . ,an} has n-volume

∣
∣
∣detQ

∣
∣
∣

n! , i.e., the absolute value of

1

n!
det






a11−a01 · · · an1−a01

...
...

a1n−a0n · · · ann−a0n




 =

1

n!
det









a01 a11 · · · an1

· · ·
...

...
a0n a1n · · · ann
1 1 · · · 1









.
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Volume of a Closed Unit Ball

We find a formula for ωn, the n-volume of the closed unit ball U in
R

n.

It is well known that ω1 = 2, ω2 =π, ω3 = 4π
3

.

By the preceding theorem, ωn =
∫1
−1 vn−1(Ux)dx , where

Ux = {(x1,x2, . . . ,xn) : x
2
2 +·· ·+x2

n = 1−x2
}, −1≤ x ≤ 1.

For −1< x < 1, Ux is congruent to a closed ball in Rn−1 of radiusp
1−x2. So

vn−1(Ux)= vn−1(
√

1−x2U)=ωn−1(1−x2)
n−1
2 , −1≤ x ≤ 1.

Thus,

ωn =
∫1

−1
ωn−1(1−x2)

n−1
2 dx = 2

∫1

0
ωn−1(1−x2)

n−1
2 dx .
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Volume of a Closed Unit Ball (Cont’d)

In the section on the Gamma and Beta Functions, it was shown that:
B(n+1

2 ,
n+1
2 )= 1

2n−1

∫1
0 (1−x2)

n−1
2 dx ;

B(n+1
2 ,

n+1
2 )= 1

2nB(
1
2 ,

n+1
2 ).

Using those, together with B(x ,y)= Γ(x)Γ(y )
Γ(x+y ) , we get

2

∫1

0
(1−x2)

n−1
2 dx =B

(
1

2
,
n+1

2

)

=
Γ

(
1
2

)

Γ
(
n+1
2

)

Γ
(
n+2
2

) =
p
πΓ

(
n+1
2

)

Γ
(
n+2
2

) .

Hence, since ωn = (2
∫1
0 (1−x2)

n−1
2 dx)ωn−1,

ωn =
p
πΓ( n+1

2 )

Γ( n+2
2 )

ωn−1 =
p
πΓ( n+1

2 )

Γ( n+2
2 )

·
p
πΓ( n2 )

Γ( n+1
2 )

ωn−2

= ·· · =
p
πΓ( n+1

2 )

Γ( n+2
2 )

·
p
πΓ( n2 )

Γ( n+1
2 )

· · ·
p
πΓ( 3

2 )

Γ( 4
2 )

ω1 = 2π
n
2

nΓ( n2 )
.

We thus have ω4 = π2

2
.
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Volume of a Symmetric Ellipsoid

An ellipse can be defined as the image of a closed circular disc under a
non-singular affine transformation.

A set in Rn is called an ellipsoid if it is the image of a closed ball
under a non-singular affine transformation.

Clearly every ellipsoid is a convex body.

We find the volume of the symmetric ellipsoid

E = {(x1, . . . ,xn) : (a11x1+·· ·+a1nxn)
2+·· ·+ (an1x1+·· ·+annxn)

2 ≤ r2
},

where A= [aij ] is a real n×n matrix with non-zero determinant and
r > 0.

The image of E under the linear transformation that maps x in Rn to
Ax is the closed ball rU .

Thus, by a previous theorem, |detA|vn(E )=ωnr
n.

Hence vn(E )= ωnr
n

∣
∣
∣detA

∣
∣
∣

.
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Volume of a Polytope

Theorem

Let u1, . . . ,um be the outward unit normals to the facets of an n-polytope
P in Rn corresponding to the facets F1, . . . ,Fm. Let h be the support
function of P . Then

vn(P)=
1

n

m∑

i=1

h(u i )vn−1(Fi ) and
m∑

i=1

vn−1(Fi)u i =0.

Suppose first that the origin is an interior point of P . For each
i = 1, . . . ,m, let Ci = conv({0}∪Fi ). Then P =C1∪·· ·∪Cm and
Ci ∩Cj = conv({0}∪ (Fi ∩Fj)), for i , j = 1, . . . ,m. So Ci ∩Cj (i 6= j) is at
most (n−1)-dimensional. Thus, vn(Ci ∩Cj )= 0, i 6= j . By a previous
corollary, vn(P)= vn(C1∪·· ·∪Cm)= vn(C1)+·· ·+vn(Cm). But, by the
formula obtained earlier for the volume of a conical set, for i = 1, . . . ,m,
vn(Ci )= 1

n
h(u i )vn−1(Fi). Hence, vn(P)= 1

n

∑m
i=1

h(u i)vn−1(Fi).
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Volume of a Polytope (Cont’d)

Denote by a the vector
∑m

i=1
vn−1(Fi)u i .

Choose λ> 0 small enough to ensure that the origin is an interior
point of the polytope P +λa.

Applying the formula established above for the volume of a polytope
having the origin as an interior point, we deduce that

vn(P) = vn(P +λa)

= 1
n

∑m
i=1

(hP+λa(u i))vn−1(Fi +λa)

= 1
n

∑m
i=1

(h(u i)+λa ·u i )vn−1(Fi )

= 1
n

∑m
i=1

h(u i)vn−1(Fi )+ 1
nλa · (

∑m
i=1

vn−1(Fi )u i )

= vn(P)+ λ
n‖a‖

2.

This shows that a =
∑m

i=1
vn−1(Fi )u i = 0, as required.
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Volume of a Polytope (Cont’d)

Consider now the general case when it is not assumed that the origin
is an interior point of P .
With each n-polytope P associate the vector

∑m
i=1

vn−1(Fi )u i .
Clearly, this vector is the same for all translates of P .
But for any translate of P which has the origin as an interior point,
this associated vector is the zero vector, by what we have just proved.
Thus,

∑m
i=1

vn−1(Fi)u i =0.

Finally, let c ∈Rn be such that the polytope P +c has the origin in its
interior. Then, by the first part of the proof,

vn(P) = vn(P +c)

= 1
n

∑m
i=1

(hP+c(u i))vn−1(Fi +c)

= 1
n

∑m
i=1

(h(u i )+c ·u i )vn−1(Fi)

= 1
n

∑m
i=1

h(u i)vn−1(Fi )+ c
n · (

∑m
i=1

vn−1(Fi )u i )

= 1
n

∑m
i=1

h(u i)vn−1(Fi ).
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Subsection 4

Mixed Volumes and Surface Area
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Blocks and Balls

Consider the following simple problem:

What is the volume of the convex body λA+µB, where A is the
rectangular block (i.e., 3-orthotope) with edge lengths a,b,c defined by
the equation

A= {(x ,y ,z) : 0≤ x ≤ a,0≤ y ≤ b,0≤ z ≤ c},

B is the closed unit ball in R3, and λ,µ are positive scalars?

λA is a rectangular block with edge lengths λa,λb,λc .

µB is the closed ball of radius µ centered at the origin in R3.

Thus λA+µB is the outer parallel body of λA at distance µ.
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Blocks and Balls (Cont’d)

We can see that λA+µB is the union of λA together with:

Six rectangular blocks (each with height µ and having a facet of λA as
base);
Twelve quadrants of circular cylinders (each with base radius µ and
having an edge of λA as axis);
Eight octants of balls (each with radius µ and having a vertex of λA as
center).

Any two different sets in this union meet in a set of volume zero.

The figure shows one example of each, indicating their positions
relative to λA.

George Voutsadakis (LSSU) Convexity July 2023 74 / 161



Mixed Volumes and Extremum Problems Mixed Volumes and Surface Area

Blocks and Balls (Volume)

It is readily found that v3(λA+µB) equals

(abc)λ3+2(ab+bc +ca)λ2µ+π(a+b+c)λµ2+
4π

3
µ3

,

the four terms representing in order the volumes of:

λA;
the union of the six rectangular blocks;
the union of the twelve quadrants of circular cylinders;
the union of the eight octants of balls.

Thus v3(λA+µB) is a homogeneous polynomial of degree three in λ

and µ with nonnegative coefficients.
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Combinations of Polytopes and Outward Normals

Lemma

Let C1, . . . ,Cr be polytopes in Rn and let α1, . . . ,αr > 0. Then
α1C1+·· ·+αrCr and C1+·· ·+Cr have the same dimension, and the sets of
outward unit normals to the (n−1)-faces of the two polytopes are equal.

The result is trivial when one of C1, . . . ,Cr is empty.

Suppose, then, that c1 ∈C1, . . ., c r ∈Cr . Let A be the flat
aff(C1+·· ·+Cr ). Then A− (c1+·· ·+c r ) is a subspace of Rn

containing each of the sets C1−c1, . . . ,Cr −c r . Hence, it contains the
set α1(C1−c1)+·· ·+αr (Cr −c r ). It follows that α1C1+·· ·+αrCr lies
in the translate A+ (α1−1)c1+·· ·+ (αr −1)c r of A. Hence the
dimension of α1C1+·· ·+αrCr does not exceed that of C1+·· ·+Cr .
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Combinations of Polytopes and Outward Normals (Cont’d)

It follows, from what we have just proved, that the dimension of the
set α−1

1 (α1C1)+α−1
r (αrCr ), i.e., C1+·· ·+Cr , does not exceed that of

α1C1+·· ·+αrCr . Thus the polytopes α1C1+·· ·+αrCr and
C1+·· ·+Cr have the same dimension.

A unit vector u is an outward normal to some (n−1)-face of
α1C1+·· ·+αrCr if and only if the set (α1C1+·· ·+αrCr )

u =
α1C

u
1 +·· ·+αrC

u
r has dimension n−1.

By the first part of the proof, this occurs precisely when
Cu

1 +·· ·+Cu
r = (C1+·· ·+Cr )

u has dimension n−1.

Therefore, u is an outward normal to some (n−1)-face of
α1C1+·· ·+αrCr if and only if it is an outward unit normal to some
(n−1)-face of C1+·· ·+Cr .

George Voutsadakis (LSSU) Convexity July 2023 77 / 161



Mixed Volumes and Extremum Problems Mixed Volumes and Surface Area

Volume of Linear Combinations of Polytopes

Lemma

Let A1, . . . ,Ar be polytopes in Rn. Then vn(λ1A1+·· ·+λrAr ) is, for all
λ1, . . . ,λr > 0, a homogeneous polynomial of degree n in λ1, . . . ,λr , with
nonnegative coefficients.

We argue by induction on n. If n= 1, then

v1(λ1A1+·· ·+λrAr )=λ1v1(A1)+·· ·+λrvr (Ar ), for λ1, . . . ,λr > 0,

when none of A1, . . . ,Ar is empty, and is zero otherwise. This proves
the lemma for the case n= 1.

Suppose, then, that the assertion is true in Rn−1, where n≥ 2.

If A1+·· ·+Ar has dimension less than n, then, by the preceding
lemma, so too does λ1A1+·· ·+λrAr . Hence vn(λ1A1+·· ·+λrAr ) is
zero for all λ1, . . . ,λr > 0, and the assertion is true in this case.
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Volume of Linear Combinations of Polytopes (Cont’d)

Suppose now that A1+·· ·+Ar has dimension n.

Since vn-volumes are preserved by translations, we can assume that
each of the polytopes A1, . . . ,Ar contains the origin.

Let u1, . . . ,um be the outward unit normals to the facets of
A1+·· ·+Ar . For each i = 1, . . . ,m, the polytopes A

u i

1
, . . . ,A

u i
r lie in

parallel hyperplanes of Rn. Since vn−1-volumes are preserved by
translations, in calculating vn−1(λ1A

u i

1
+·· ·+λrA

u i
r ), we can assume

that Au i

1
, . . . ,A

u i
r lie in the same hyperplane of Rn.

By identifying this hyperplane with Rn−1 and using the induction
hypothesis, we deduce the existence of a homogeneous polynomial pi
of degree n−1 in λ1, . . . ,λr with non-negative coefficients such that,
for all λ1, . . . ,λr > 0,

vn−1((λ1A1+·· ·+λrAr )
u i ) = vn−1(λ1A

u i

1
+·· ·+λrA

u i
r )

= pi (λ1, . . . ,λr ).
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Volume of Linear Combinations of Polytopes (Cont’d)

Let λ1, . . . ,λr > 0.

By the preceding lemma, the facets of λ1A1+·· ·+λrAr are
(λ1A1+·· ·+λrAr )

u i with corresponding outward unit normals u i .

A previous theorem shows that

vn(λ1A1+·· ·+λrAr )

= 1
n

∑m
i=1

(hλ1A1+···+λrAr
(u i))vn−1((λ1A1+·· ·+λrAr )

u i )

= 1
n

∑m
i=1

(λ1hA1
(u i)+·· ·+λrhAr

(u i))pi (λ1, . . . ,λr ).

Thus vn(λ1A1+·· ·+λrAr ) is a homogeneous polynomial of degree n

in λ1, . . . ,λr with nonnegative coefficients.

This completes the proof by induction.
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Volume of Linear Combinations of Compact Convex Sets

Theorem

Let A1, . . . ,Ar be compact convex sets in Rn. Then vn(λ1A1+·· ·+λrAr ) is,
for all λ1, . . . ,λr ≥ 0, a homogeneous polynomial of degree n in λ1, . . . ,λr

with non-negative coefficients.

We assume that the sets A1, . . . ,Ar are non-empty. For each i = 1, . . . ,r ,
let A1

i
,A2

i
, . . . ,A

j

i
, . . . be a sequence of polytopes converging to Ai . By

the preceding lemma, for each j = 1,2, . . ., there exist non-negative
scalars a

j

i1...in
for i1, . . . , in = 1, . . . ,r , such that, for all λ1, . . . ,λr > 0,

vn(λ1A
j
1+·· ·+λrA

j
r )=

r∑

i1=1

· · ·
r∑

in=1

a
j

i1...in
λi1 · · ·λin .

Since the r sequences of polytopes considered above are convergent,
there is a closed ball B in Rn such that Aj

i
⊆B for i = 1, . . . ,r and

j = 1,2, . . .. Setting λ1 = 1, . . ., λr = 1, we deduce a
j

i1...in
≤ rnvn(B).
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Linear Combinations of Compact Convex Sets (Cont’d)

Since every bounded sequence of real numbers contains a convergent
subsequence, it follows that there is a subsequence k1,k2, . . . ,kj , . . . of
1,2, . . . , j , . . . and nonnegative scalars ai1...in for i1, . . . , in = 1, . . . ,r , such

that a
kj
i1...in

→ ai1...in as j →∞ for i1, . . . , in = 1, . . . ,r . A previous result
shows that, for λ1, . . . ,λr > 0,

λ1A
kj
1
+·· ·+λrA

kj
r →λ1A1+·· ·+λrAr as j →∞.

The continuity of vn now shows that

vn(λ1A
kj
1
+·· ·+λrA

kj
r )→ vn(λ1A1+·· ·+λrAr ), as j →∞.

But from the displayed equation of the preceding slide

vn(λ1A
kj
1
+·· ·+λrA

kj
r )→

r∑

i1=1

· · ·
r∑

in=1

ai1...inλi1 · · ·λin as j →∞.
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Linear Combinations of Compact Convex Sets (Cont’d)

Thus, for all λ1, . . . ,λr > 0,

vn(λ1A1+·· ·+λrAr )=
r∑

i1=1

· · ·
r∑

in=1

ai1...inλi1 · · ·λin .

Suppose finally that λ1, . . . ,λr ≥ 0.

By what we have just proved, for each ε> 0,

vn((λ1+ε)A1+·· ·+ (λr +ε)Ar )=
r∑

i1=1

· · ·
r∑

in=1

ai1...in(λi1 +ε) · · ·(λin +ε).

Letting ε→ 0+ in the last equation, we find that

vn(λ1A1+·· ·+λrAr )=
r∑

i1=1

· · ·
r∑

in=1

ai1...inλi1 · · ·λin .

George Voutsadakis (LSSU) Convexity July 2023 83 / 161



Mixed Volumes and Extremum Problems Mixed Volumes and Surface Area

Homogeneous Polynomials

Each homogeneous polynomial p(λ1, . . . ,λr ) of degree n can be
uniquely represented in the form

p(λ1, . . . ,λr )=
∑

α1+···+αr=n

n!

α1! · · ·αr !
aα1···αr

λ
α1

1
· · ·λαr

r .

For integers i1, i2, . . . , in lying in {1, . . . ,r }, put

vi1i2...in = aα1α2...αr
, where λi1λi2 · · ·λin =λ

α1

1
λ
α2

2
· · ·λαr

r .

Then:

(i) vi1i2 ...in remains unchanged when i1, i2, . . . , in are permuted;
(ii) p(λ1, . . . ,λr )=

∑r
i1=1 · · ·

∑r
in=1 vi1 ...inλi1 · · ·λin .

Moreover, the vi1...in are uniquely determined by (i) and (ii).
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Mixed Volumes

When
p(λ1, . . . ,λr )= vn(λ1A1+·· ·+λrAr ),

where A1, . . . ,Ar are compact convex sets in Rn and λ1, . . . ,λr ≥ 0, the
numbers vi1...in are called the mixed volumes of A1, . . . ,Ar .

Example: Consider again the example studied previously in which A

was a rectangular block with edge lengths a,b,c and B was the closed
unit ball.

We found that, for λ,µ≥ 0,

v2(λA+µB)= (abc)λ3+2(ab+bc +ca)λ2µ+ (a+b+c)πλµ2+
4π

3
µ3

.

It follows easily from this equation that the mixed volumes of A,B are:

v111 = abc , v222 = 4π
3

,

v112 = v121 = v211 = 2
3
(ab+bc +ca)

v122 = v212 = v221 = 1
3
(a+b+c)π.
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Mixed Volumes’ Dependence on the Sets

The mixed volumes of compact convex sets A1, . . . ,Ar are determined
by the function vn(λ1A1+·· ·+λrAr ) of λ1, . . . ,λr .

It is tempting to assume that any particular mixed volume vi1...in

depends only upon the sets Ai1 , . . . ,Ain .

For example, when none of the sets A1, . . . ,Ar is empty, it is easy to
see that v1...1 = vn(A1), which only depends upon A1.

If, however, even one of the sets A1, . . . ,Ar is empty, then all the mixed
volumes vi1...in are zero.

We will show that, when none of the sets A1, . . . ,Ar is empty, the
mixed volume vi1...in does indeed depend only upon the sets Ai1 , . . . ,Ain .
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Scalar Associated with Tuple of Sets

With each n-tuple (A1, . . . ,An) of non-empty compact convex sets in
R

n we associate a non-negative scalar v(A1, . . . ,An) as follows.

Suppose that there are exactly s distinct sets occurring in (A1, . . . ,An).
We can assume, relabeling the Ai ’s if necessary, that the sets
A1, . . . ,As are distinct.

For i = 1, . . . ,s, let αi be the number of times which the set Ai occurs
in (A1, . . . ,An). Then α1+·· ·+αs = n. For all λ1, . . . ,λs ≥ 0,

vn(λ1A1+·· ·+λsAs)=
s∑

i1=1

· · ·
s∑

in=1

vi1...inλi1 . . .λin ,

where the vi1...in are the mixed volumes of A1, . . . ,As .
We now define

v(A1, . . . ,An)= v1 . . .1
︸ ︷︷ ︸

α1

...s . . .s
︸ ︷︷ ︸

αs

.

This determines v(A1, . . . ,An) uniquely and in such a way that it
remains unchanged when A1, . . . ,An are permuted.
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The Scalar v as a Mixed Volume

Theorem

Let A1, . . . ,Ar be non-empty compact convex sets in Rn. Then, for all
λ1, . . . ,λr ≥ 0,

vn(λ1A1+·· ·+λrAr )=
r∑

i1=1

· · ·
r∑

in=1

v(Ai1 , . . . ,Ain)λi1 · · ·λin .

We argue by induction on the redundancy number of the finite
sequence A1, . . . ,Ar ; This is defined to be the non-negative integer
r − s, where s is the number of distinct sets in the sequence.

The sequence has redundancy number zero when all of its terms are
different and r −1 when all of its terms are the same.

Suppose first that the sequence A1, . . . ,Ar has redundancy number
zero, i.e., all of its terms are different. For all λ1, . . . ,λr ≥ 0,

vn(λ1A1+·· ·+λrAr )=
r∑

i1=1

· · ·
r∑

in=1

vi1...inλi1 · · ·λin ,

where the vi1...in are the mixed volumes of A1, . . . ,Ar .
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The Scalar v as a Mixed Volume (Cont’d)

Consider a particular mixed volume vi1...in and the corresponding
n-tuple (Ai1 , . . . ,Ain). Suppose that there are exactly s distinct sets
occurring in this last n-tuple, say A1, . . . ,As . For i = 1, . . . ,s, let αi be
the number of times which the set Ai occurs in (Ai1 , . . . ,Ain). Then
α1+·· ·+αs = n. For all λ1, . . . ,λs ≥ 0,

vn(λ1A1+·· ·+λsAs)=
s∑

i1=1

· · ·
s∑

in=1

vi1...inλi1 · · ·λin .

By the definition of v(Ai1 , . . . ,Ain),

v(Ai1 , . . . ,Ain)= v1 . . .1
︸ ︷︷ ︸

α1

...s . . .s
︸ ︷︷ ︸

αs

= vi1...in .

Here we have used the fact that all the r sets A1, . . . ,Ar are different.
Thus the assertion is true for the case of redundancy number zero.
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The Scalar v as a Mixed Volume (Cont’d)

Suppose next that the assertion is true for sequences with redundancy
number m, where m≥ 0.

Let the sequence A1, . . . ,Ar have redundancy number m+1. Then at
least two terms of this sequence must be equal, say Ar−1 =Ar . Since
A1, . . . ,Ar−1 has redundancy number m, the induction hypothesis
shows that, for all λ1, . . . ,λr−1 ≥ 0,

vn(λ1A1+·· ·+λr−1Ar−1)=
r−1∑

i1=1

· · ·
r−1∑

in=1

v(Ai1 , . . . ,Ain)λi1 · · ·λin .

Let vi1...in be a typical mixed volume for the sequence A1, . . . ,Ar . Let
α1, . . . ,αr be non-negative integers such that i1, . . . , in is a
rearrangement of the sequence 1, . . . ,1

︸ ︷︷ ︸

α1

, . . . ,r , . . . ,r
︸ ︷︷ ︸

αr

. Then the coefficient

of the term λ
α1

1
· · ·λαr

r in the polynomial vn(λ1A1+·· ·+λrAr ) is
n!

α1!···αr !
v1 . . .1
︸ ︷︷ ︸

α1

...r . . . r
︸ ︷︷ ︸

αr

.
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The Scalar v as a Mixed Volume (Cont’d)

Now vn(λ1A1+·· ·+λrAr ) can be obtained from
vn(λ1A1+·· ·+λr−1Ar−1) by replacing λr−1 with λr−1+λr .

Thus the coefficient of λα1

1
· · ·λαr

r in vn(λ1A1+·· ·+λrAr ) is also the
product of the coefficient of the term λ

α1

1
· · ·λαr−2

r−2
λ
αr−1+αr

r−1
in

vn(λ1A1+·· ·+λr−1Ar−1) with the coefficient of the term λ
αr−1

r−1
λ
αr
r in

(λr−1+λr )
αr−1+αr , i.e., the product

n!
α1!···αr−2!(αr−1+αr )!

v( A1
︸︷︷︸

α1

, . . . ,Ar−2
︸ ︷︷ ︸

αr−2

, Ar−1
︸ ︷︷ ︸

αr−1+αr

)
(αr−1+αr )!
(αr−1)!(αr )!

= n!
α1!···αr !

v( A1
︸︷︷︸

α1

, . . . , Ar
︸︷︷︸

αr

).

The two expressions which we have found for the coefficient of
λ
α1

1
· · ·λαr

r in vn(λ1A1+·· ·+λrAr ) must be equal. So

vi1...in = v1 . . .1
︸ ︷︷ ︸

α1

,...,r . . .r
︸ ︷︷ ︸

αr

= v( A1
︸︷︷︸

α1

, . . . , Ar
︸︷︷︸

αr

)= v(Ai1 , . . . ,Ain).
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Restricted Linearity of Mixed Volume

Theorem

Let A′
1,A1,A2, . . . ,An be non-empty compact convex sets in Rn. Let

α′
1,α1 ≥ 0. Then

v(α′
1A

′
1+α1A1,A2, . . . ,An) = α′

1v(A
′
1,A2, . . . ,An)

+α1v(A1,A2, . . . ,An).

The coefficient of λ1 · · ·λn in vn(λ1(α
′
1A

′
1+α1A1)+λ2A2+·· ·+λnAn)

is n!v(α′
1A

′
1+α1A1,A2, . . . ,An), whereas in vn((λ1α

′
1)A

′
1+ (λ1α1)A1+

λ2A2+·· ·+λnAn) it is n!α′
1v(A

′
1,A2, . . . ,An)+n!α1v(A1,A2, . . . ,An).

Since the two polynomials are identical, the two coefficients must be
equal, whence

v(α′
1A

′
1+α1A1,A2, . . . ,An) = α′

1v(A
′
1,A2, . . . ,An)

+α1v(A1,A2, . . . ,An).
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Convergence and Coefficients of Polynomials

Lemma

Let m be a positive integer. For each i = 0,1,2, . . ., let

Pi (x)= aimx
m+·· ·+ai1x +ai0

be a real polynomial. Suppose that, for each x ≥ 0, Pi (x)→P0(x) as
i →∞. Then aij → a0j as i →∞, for j = 0,1, . . . ,m.

The m+1 vectors aλ = (λm, . . . ,λ,1) for λ= 0,1, . . . ,m are linearly
independent. So they form a basis for Rm+1. Thus, there are scalars
µ0,µ1, . . . ,µm such that (1,0, . . . ,0)=µ0a0+µ1a1+·· ·+µmam.

Writing those out, we get

µ0 +µ1 +µ2 +·· · +µm = 0;
0µ0 +1µ1 +2µ2 +·· · +mµm = 0;
· · ·

0mµ0 +1mµ1 +2mµ2 +·· · +mmµm = 1.
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Convergence and Coefficients of Polynomials (Cont’d)

For fixed i , multiplying the jth row by aij ,

µ0ai0 +µ1ai0 +µ2ai0 +·· · +µmai0 = 0;
0µ0ai1 +1µ1ai1 +2µ2ai1 +·· · +mµmai1 = 0;

...
0mµ0aim +1mµ1aim +2mµ2aim +·· · +mmµmaim = aim.

Adding vertically, we get

µ0Pi(0)+µ1Pi(1)+·· ·+µmPi(m)= aim.

By the hypothesis,

µ0Pi (0)+µ1Pi (1)+·· ·+µmPi (m)
→µ0P0(0)+µ1P0(1)+·· ·+µmP0(m) as i →∞.

Thus, aim → a0m as i →∞.

Similarly, we can see that aij → a0j as i →∞ for j = 0,1, . . . ,m−1.
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Continuity of Mixed Volumes

Theorem (Continuity of Mixed Volumes)

For each j = 1, . . . ,n, let A1
j

,A2
j

, . . . ,Ai
j
, . . . be a sequence of non-empty

compact convex sets converging to a non-empty compact convex set A0
j

in

R
n. Then v(Ai

1, . . . ,Ai
n)→ v(A0

1, . . . ,A0
n) as i →∞.

For i = 0,1,2, . . ., and for λ1, . . . ,λn ≥ 0, vn(λ1A
i
1+·· ·+λnA

i
n)=

Qi(λ1, . . . ,λn) say, is a real homogeneous polynomial of degree n in
λ1, . . . ,λn. Since vn is continuous, for all λ1, . . . ,λn ≥ 0,
Qi(λ1, . . . ,λn)→Q0(λ1, . . . ,λn) as i →∞. Choose a positive integer r

so large that the coefficient of x rx r
2 · · ·x rn in the real polynomial

Pi(x)=Qi (x
r ,x r

2
, . . . ,x r

n

) of the single variable x is n!v(Ai
1, . . . ,Ai

n).
For each x ≥ 0, Pi (x)→P0(x) as i →∞. We deduce from the lemma
that n!v(Ai

1, . . . ,Ai
n)→ n!v(A0

1, . . . ,A0
n) as i →∞. The desired result is

immediate.
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Volumes of Polytopes and Faces

Theorem

Let u1, . . . ,um be the outward unit normals to the (n−1)-faces of a
polytope P in Rn corresponding to faces F1, . . . ,Fm, respectively. Then, for
any non-empty compact convex set A in Rn with support function h,

lim
λ→0+

vn(P +λA)−vn(P)

λ
=

m∑

i=1

h(u i)vn−1(Fi ).

Both sides of the above equation are unchanged in value if A is
replaced by one of its translates. The non-trivial part of this assertion
follows from a previous theorem.

We can, therefore, assume that A contains the origin.

George Voutsadakis (LSSU) Convexity July 2023 96 / 161



Mixed Volumes and Extremum Problems Mixed Volumes and Surface Area

Volumes of Polytopes and Faces (Cont’d)

Consider first the case when P has dimension n. We begin by showing
that, for all λ> 0,

vn(P +λA)−vn(P)≥
m∑

i=1

λh(u i)vn−1(Fi ).

For each i = 1, . . . ,m, let ai ∈
A satisfy u i ·ai = h(u i). De-
fine a convex subset Ci of
P+λA by the equation

Ci = riFi +λ{µai : 0≤µ≤ 1}.
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Volumes of Polytopes and Faces (Cont’d)

The sets C1, . . . ,Cm are pairwise disjoint.

If they were not, there would exist points f i in riFi , f j in riFj and
scalars θi ,θj ≥ 0, with i 6= j , satisfying f i +θiai = f j +θjaj . Since P is
n-dimensional, f j 6∈Fi . Hence u i · f j <u i · f i . It follows easily from the
definition of h(u i) that u i ·aj ≤ u i ·ai . Hence

u i · f i +θiu i ·ai = u i · f j +θju i ·aj < u i · f i +θju i ·ai .

Since A contains the origin, h(u i )= u i ·ai ≥ 0. So θi < θj .

By symmetry, θj < θi .

This contradiction shows that the sets C1, . . . ,Cm are pairwise disjoint.
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Volumes of Polytopes and Faces (Cont’d)

For each i = 1, . . . ,m, vn(Ci ∩P)= 0 and

vn(Ci )= vn(clCi)= |λ(u i ·ai)vn−1(Fi)| =λh(u i )vn−1(Fi ).

We can thus deduce that

vn(P +λA)−vn(P)≥ vn(C1)+·· ·+vn(Cm)=
m∑

i=1

λh(u i )vn−1(Fi).

We upper bound vn(P +λA)−vn(P) by showing that, for λ> 0,

P +λA⊆P ∪clC1∪·· ·∪clCm∪ (S)λs ,

where S is the union of the (n−2)-dimensional faces of P and s is the
diameter of A.
To do this, we let x be in P+λA, but not in any of P , clC1, . . ., clCm,
and show that it is in (S)λs . Let f be the nearest point of P to x .
Then f ∈Fi for some i = 1, . . . ,m.

If f ∈ rebdFi , then f ∈S . So x ∈ (S)λs .
If f ∈ riFi , x = f +αu i , for some α> 0. Since x ∈P +λA, α≤λh(u i ).
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Let y = x − αai

h(u i )
.

Since α≤λh(u i), x 6∈ clCi shows that y 6∈Fi .
Further, u i ·y = u i ·x −α= u i · f +α−α= u i · f . So y ∈ affFi . Thus, for
some β, 0<β< 1, z = (1−β)y +βf lies in rebdFi , and hence in S .

Now we get

‖x −z‖ = ‖x −y +βy −βf ‖= ‖(1−β)(x −y)+β(x − f )‖
= ≤ (1−β)‖x −y‖+β‖x − f ‖ ≤ (1−β)λs +βλs =λs .

Hence x ∈ (S)λs . This establishes the claim.
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Volumes of Polytopes and Faces (Cont’d)

Now we have

vn(P +λA)≤ vn(P)+vn(clC1)+·· ·+vn(clCm)+vn((S)λs).

Combining this inequality with the one obtained previously, we deduce
that, for λ> 0,

m∑

i=1

h(u i)vn−1(Fi )≤
vn(P +λA)−vn(P)

λ
≤

m∑

i=1

h(u i)vn−1(Fi)+
1

λ
vn((S)λs ).

By a previous theorem,
vn((S)λs )

λ → 0 as λ→ 0+. Thus

lim
λ→0+

vn(P +λA)−vn(P)

λ
=

m∑

i=1

h(u i )vn−1(Fi ).

This completes the proof for the case when P is n-dimensional.
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Volumes of Polytopes and Faces (Cont’d)

Suppose next that P has dimension n−1.

Then m= 2, u1 = u, u2 =−u, F1 =P and F2 =P , where u is a unit
normal to the hyperplane containing P . The proof in this case is the
same as that just given, except that the sets C1 and C2 are not
disjoint but meet in the set riP , which has vn-volume zero.

When P has dimension less than n−1, the assertion of the theorem is
assumed to mean that

lim
λ→0+

vn(P +λA)−vn(P)

λ
= lim

λ→0+

vn(P +λA)

λ
= 0.

This is clear, since P +λA⊆ (P)λs , where s is the diameter of A and

by a previous theorem limλ→0+
vn((P)λs)

λ = 0.
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A Consequence

Corollary

Let u1, . . . ,um be the outward unit normals to the (n−1)-faces of a
non-empty polytope P in Rn corresponding to faces F1, . . . ,Fm,
respectively. Then, for any non-empty compact convex set A in Rn with
support function h,

v(A,P , . . . ,P)=
1

n

m∑

i=1

h(u i)vn−1(Fi ).

For all λ> 0, vn(P +λA)=
∑n

i=0

(n
i

)

v(A, . . . ,A
︸ ︷︷ ︸

i

,P , . . . ,P
︸ ︷︷ ︸

n−i

)λi . So

vn(P +λA)−vn(P)= nv(A,P , . . . ,P)λ+
n∑

i=2

(

n

i

)

v(A, . . . ,A
︸ ︷︷ ︸

i

,P , . . . ,P
︸ ︷︷ ︸

n−i

)λi
.

Thus limλ→0+
vn(P+λA)−vn(P)

λ = nv(A,P , . . . ,P).

The corollary now follows from the theorem.
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Expressing v In Terms of Normals

Theorem

Let P2, . . . ,Pn be non-empty polytopes in Rn (n ≥ 2). Let u1, . . . ,um be the
outward unit normals to the (n−1)-faces of P2+·· ·+Pn. Then there are
scalars α1, . . . ,αm ≥ 0 such that, for every non-empty compact convex set A
in Rn with support function h,

v(A,P2, . . . ,Pn)=
1

n

m∑

i=1

αih(u i ).

Let Q =λ2P2+·· ·+λnPn for λ2, . . . ,λn > 0. By repeated applications
of a previous theorem,

v(A,Q , . . . ,Q)=
n∑

i2=2

· · ·
n∑

in=2

v(A,Pi2 , . . . ,Pin)λi2 · · ·λin ,

which is a homogeneous polynomial of degree n−1 in λ2, . . . ,λn, the
coefficient of λ2 · · ·λn being (n−1)!v(A,P2, . . . ,Pn).
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Expressing v In Terms of Normals (Cont’d)

By a previous lemma, the set of outward unit normals to the
(n−1)-faces of Q is {u1, . . . ,um}. By the preceding corollary,

v(A,Q , . . . ,Q) = 1
n

∑m
i=1

h(u i )vn−1(Q
u i )

= 1
n

∑m
i=1

h(u i )vn−1(λ2P
u i

2
+·· ·+λnP

u i
n )

= 1
n

∑m
i=1

h(u i )(
∑n

j2=2
· · ·

∑n
jn=2

u(Pu i

j2
, . . . ,P

u i

jn
)λj1 · · ·λjn),

where u(Pu i

j2
, . . . ,P

u i

jn
) denotes an (n−1)-dimensional mixed volume.

This shows again that v(A,Q , . . . ,Q) is a homogeneous polynomial of
degree n−1 in λ2, . . . ,λn, the coefficient of λ2, . . . ,λn being

1

n

m∑

i=1

h(u i)(n−1)!u(Pu i

2
, . . . ,P

u i
n ).

Equating the two coefficients that we have found for the term λ2 · · ·λn

in v(A,Q , . . . ,Q), we get v(A,P2, . . . ,Pn)= 1
n

∑m
i=1

h(u i)u(P
u i

2
, . . . ,P

u i
n ).

The proof is completed by putting αi = u(Pu i

2
, . . . ,P

u i
n ).
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Monotonicity of v

Theorem

Let A1, . . . ,An, B1, . . . ,Bn be non-empty compact convex sets in Rn with
A1 ⊆B1, . . ., An ⊆Bn. Then v(A1, . . . ,An)≤ v(B1, . . . ,Bn).

We assume that n≥ 2. Consider first the case when A1, . . . ,An,
B1, . . . ,Bn are polytopes. Let hA1

,hB1
be the support functions of

A1,B1, respectively. Since A1 ⊆B1, hA1
(u)≤ hB1

(u) for all u in Rn.
Using the preceding theorem and an obvious notation, we get

v(A1,A2, . . . ,An) = 1
n

∑m
i=1

hA1
(u i)αi

≤ 1
n

∑m
i=1

hB1
(u i)αi

= v(B1,A2, . . . ,An).

Repeating n−1 times, v(A1,A2, . . . ,An)≤ v(B1,B2, . . . ,Bn).
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Monotonicity of v (Cont’d)

Consider now the general case.

For each i = 1, . . . ,n, let P1
i

, . . . ,P
j

i
, . . . and Q1, i , . . . ,Q

j

i
, . . . be sequences

of non-empty polytopes in Rn such that P j

i
→Ai , Q

j

i
→Bi as j →∞,

and P
j

i
⊆Q

j

i
, for j = 1,2, . . ..

Using the first part of the proof and the continuity of the mixed
volumes, we deduce that

v(A1, . . . ,An) = limj→∞ v(P j
1

, . . . ,P
j
n)

≤ limj→∞ v(Q
j
1

, . . . ,Q
j
n)

= v(B1, . . . ,Bn).
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Surface Area of a Compact Convex Set

A previous theorem applied for the special case when P is an
n-polytope and A is the closed unit ball U asserts that

m∑

i=1

vn−1(Fi )= lim
λ→0+

vn((P)λ)−vn(P)

λ
.

The left-hand side of this equation is what we intuitively regard as the
surface area of the polytope P , i.e. the sum of the vn−1-volumes of its
facets.

We define the surface area sn(A) of a compact convex set A in Rn

by the equation

sn(A)= lim
λ→0+

vn((A)λ)−vn(A)

λ
.

George Voutsadakis (LSSU) Convexity July 2023 108 / 161



Mixed Volumes and Extremum Problems Mixed Volumes and Surface Area

Surface Area In Terms of v

For non-empty A and λ> 0, we have

vn((A)λ) = vn(A+λU)

= vn(A)+nv(A, . . . ,A,U)λ+·· ·+vn(U)λn.

Hence, sn(A) is well defined and equals nv(A, . . . ,A,U).

In R1 this last assertion is taken to mean that s1(A)= v1(U)= 2.

Thus, we can define the surface area sn(A) of a compact convex set A
in Rn to be nv(A, . . . ,A,U) when A is non-empty, and to be zero when
A is empty.
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Example

We evaluate the surface area sn(U) of the closed unit ball U in Rn.

We know that, for any λ> 0,

vn((U)λ)= vn((1+λ)U)=ωn(1+λ)n .

Hence

sn(U)= lim
λ→0+

ωn(1+λ)n−ωn

λ
= nωn.

Thus, we get:

s2(U)= 2ω2 = 2π.

The perimeter of a circle of unit radius is 2π.
s3(U)= 3ω3 = 4π.

The surface area of a closed ball of unit radius in R3 is 4π.
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Properties of Surface Area

The value of sn(A), when A is a compact convex set in Rn of
dimension at most n−1, is 2vn−1(A).

Surface area is increasing in the sense that sn(A)≤ sn(B) whenever
A,B are compact convex sets in Rn with A⊆B .

Moreover it is continuous in the sense that sn(Ai )→ sn(A) as i →∞,
whenever A1, . . . ,Ai , . . . is a sequence of non-empty compact convex
sets which converges to the non-empty compact convex set A in Rn.

For obvious reasons, s2 is referred to as the perimeter function.

Let A,B be non-empty compact convex sets in R2.

Then, by a previous theorem,

s2(A+B)= 2v(A+B ,U)= 2v(A,U)+2v(B ,U)= s2(A)+ s2(B).

So the perimeter of A+B is the sum of the perimeters of A and B .
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Subsection 5

The Brunn-Minkowski Theorem
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Introduction

The Brunn-Minkowski Theorem asserts that:

If A,B are convex bodies in Rn, then

v
1/n
n (A+B)≥ v

1/n
n (A)+v

1/n
n (B),

with equality holding if and only if A and B are homothetic, i.e., if and
only if B =λA+a, for some λ> 0 and a ∈Rn.

We establish this important result, thereby also solving the most
famous of extremum problems, the Isoperimetric Problem:

Of all convex bodies in Rn with a given volume, which have the
smallest surface area?
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Sum and Volume

We saw that the vector sum of two elementary sets is an elementary
set.
The vector sum of two sets each of which has volume, however, need
not itself have volume.
Example: Consider the sets A,B in R2 defined by the equations:

A = {(x ,0),0≤ x ≤ 1,x rational};
B = {(0,y) : 0≤ y ≤ 1,y rational}.

Then the sets A and B have zero volume.

But the set

A+B = {(x ,y) : 0≤ x ,y ≤ 1;x ,y rational}

does not have volume: Its inner-volume is zero and its outer-volume is
one.
When A,B ,A+B are non-empty sets in Rn, all of which do have

volume, then we have: v
1/n
n (A+B)≥ v

1/n
n (A)+v

1/n
n (B).
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A Scaling Lemma

Lemma

Let A be a set in Rn which has volume. Let θ ≥ 0. Then, for i = 1, . . . ,n,
there is a scalar λi , such that

v({(x1, . . . ,xn) ∈A : xi <λi })= θv({(x1, . . . ,xn) ∈A : xi >λi }).

Since A is bounded, there is a> 0 such that

A⊆ {(x1, . . . ,xn) :−a≤ xi ≤ a, i = 1, . . . ,n}.

Define a function fi :R→R by the equation

fi(x)= v({(x1, . . . ,xn) ∈A : xi < x}), for x ∈R.

Then, for x < y ,

0≤ fi(y)− fi (x)= v({(x1, . . . ,xn) ∈A : x ≤ xi < y })≤ 2n−1an−1(y −x).

This shows that fi is continuous.
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A Scaling Lemma (Cont’d)

The function

fi(x)= v({(x1, . . . ,xn) ∈A : xi < x}), for x ∈R

is continuous. Moreover, fi (−a)= 0, fi(a)= v(A). By the Intermediate

Value Theorem, for some λi ∈ [−a,a], fi(λi )=
θv (A)
1+θ .

Now we get:

θv({(x1, . . . ,xn)∈A : xi >λi }) = θ(v(A)− fi (λi ))

= θ
(

v(A)− θv (A)
1+θ

)

= θv(A)
(

1− θ
1+θ

)

= θ
1+θv(A)= fi (λi)

= v({(x1, . . . ,xn)∈A : xi <λi }).
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Case of Pairwise Disjoint Cells

A non-degenerate cell is a cell which has non-empty interior.

Lemma

Let A= I1∪·· ·∪ Im, B = J1∪·· ·∪Jp, where I1, . . . , Im and J1, . . . ,Jp are
sequences of pairwise disjoint non-degenerate cells in Rn. Then

v1/n(A+B)≥ v1/n(A)+v1/n(B).

We argue by induction on m+p. Suppose first that m+p = 2, so that
m= 1, p = 1. Let A= S1×·· ·×Sn, B =T1×·· ·×Tn, where S1, . . . ,Sn,
T1, . . . ,Tn are cells in R1 with positive lengths a1, . . . ,an, b1, . . . ,bn,
respectively. A previous corollary justifies the inequality

v1/n(A+B) = ((a1+b1) · · ·(an+bn))
1/n

≥ (a1 · · ·an)1/n+ (b1 · · ·bn)1/n

= v1/n(A)+v1/n(B).

This proves the lemma in the case m+p = 2.

George Voutsadakis (LSSU) Convexity July 2023 117 / 161



Mixed Volumes and Extremum Problems The Brunn-Minkowski Theorem

Case of Pairwise Disjoint Cells (Cont’d)

Suppose next that m+p > 2 and that the assertion is true for all cases
in which the induction variable is less than m+p. We can assume that
m≥ 2. Since the cells I1 and I2 are disjoint, there is some i ∈ {1, . . . ,n}

and some scalar µ such that I1 lies in the closed halfspace xi ≤µ and
I2 lies in the closed halfspace xi ≥µ, or vice versa. Denote by A− and
A+ the intersections of A with the open halfspaces xi <µ and xi >µ,
respectively. Then each of A− and A+ is non-empty and is a union of
fewer than m pairwise disjoint non-degenerate cells. Since A is the
pairwise disjoint union of A−,A+ and a set of volume zero, v(A)
equals v(A−)+v(A+). The preceding lemma shows that there is a
scalar λ such that the hyperplane xi =λ divides B (in a fashion similar
to that considered above for A) into disjoint sets B−,B+ and a set of
volume zero such that

v(B−)

v(A−)
=
v(B+)

v(A+)
=α, say.
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Case of Pairwise Disjoint Cells (Cont’d)

Each of the sets B− and B+ is a union of p or fewer pairwise disjoint
non-degenerate cells, and v(B) equals v(B−)+v(B+). The sets
A−+B− and A++B+ lie in opposite open halfspaces bounded by the
hyperplane xi =λ+µ, and so are disjoint. Their union is a subset of
A+B . We deduce, applying the induction hypothesis to the pairs
(A−,B−) and (A+,B+), that

v(A+B) ≥ v(A−+B−)+v(A++B+)

≥ (v1/n(A−)+v1/n(B−))n+ (v1/n(A+)+v1/n(B+))n

= (v(A−)+v(A+))(1+α1/n)n

= v(A)(1+α1/n)n

= (v1/n(A)+α1/nv1/n(A))n

= (v1/n(A)+v1/n(B))n.

Thus v1/n(A+B)≥ v1/n(A)+v1/n(B).
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Brunn’s Inequality

Theorem (Brunn’s inequality)

Let A,B ,A+B be non-empty sets in Rn all of which have volume. Then

v1/n(A+B)≥ v1/n(A)+v1/n(B).

The inequality is trivial if either A or B has zero volume.

We assume, therefore, that v(A)> 0 and v(B)> 0.

There are sequences A1, . . . ,Ai , . . . and B1, . . . ,Bi , . . . of non-empty
elementary sets in Rn such that Ai ⊆A, Bi ⊆B for i = 1,2, . . ., and
v(Ai)→ v(A), v(Bi)→ v(B) as i →∞. We can assume that all of the
Ai ’s and Bi ’s are finite unions of pairwise disjoint non-degenerate cells.

By the preceding lemma,

v1/n(A+B)≥ v1/n(Ai +Bi)≥ v1/n(Ai)+v1/n(Bi).

Letting i →∞, we deduce v1/n(A+B)≥ v1/n(A)+v1/n(B).
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Volume of a Convex Combination

Corollary

Let A,B be non-empty bounded convex sets in Rn. Then the function
f : [0,1]→R defined by the equation

f (t)= v1/n((1− t)A+ tB), for 0≤ t ≤ 1,

is concave.

Let x ,y ∈ [0,1]. Let λ,µ≥ 0 with λ+µ= 1. We apply the theorem to
the sets λ((1−x)A+xB) and µ((1−y)A+yB) to deduce that

f (λx +µy) = v1/n((1− (λx +µy))A+ (λx +µy)B)

= v1/n(λ((1−x)A+xB)+µ((1−y)A+yB))

≥ λv1/n((1−x)A+xB)+µv1/n((1−y)A+yB)
= λf (x)+µf (y).

Thus the function f is concave.
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Minkowski’s Inequality for Mixed Volumes

Theorem (Minkowski’s Inequality for Mixed Volumes)

Let A and B be convex bodies in Rn. Then

v(A, . . . ,A,B)≥ v (n−1)/n(A)v1/n(B),

with equality holding if and only if v1/n(A+B)= v1/n(A)+v1/n(B).

Define a function f : [0,1]→R by the equation

f (t)= v1/n((1− t)A+ tB), for 0≤ t ≤ 1.

Then

f n(t)= v(A)(1− t)n+nv(A, . . . ,A,B)(1− t)n−1t+·· ·+v(B)tn

nf (t)n−1f ′(t)=−nv(A)(1− t)n−1+nv(A, . . . ,A,B)(1− t)n−1−·· ·
nv (n−1)/n(A)f ′(0)=−nv(A)+nv(A, . . . ,A,B) (f n−1(0)= v (n−1)/n(A))

f ′(0)= v (A,...,A,B)−v (A)
v (n−1)/n(A)

.
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Minkowski’s Inequality for Mixed Volumes (Cont’d)

We set
f (t)= v1/n((1− t)A+ tB), for 0≤ t ≤ 1,

and obtained

f ′(0)=
v(A, . . . ,A,B)−v(A)

v (n−1)/n(A)
.

By the preceding corollary, f is concave.

A previous corollary shows f ′(0)≥ f (1)− f (0).

Thus,

v (A,...,A,B)−v (A)
v (n−1)/n(A)

≥ v1/n(B)−v1/n(A)

v(A, . . . ,A,B)−v(A)≥ v (n−1)/n(A)v1/n(B)−v(A)

v(A, . . . ,A,B)≥ v (n−1)/n(A)v1/n(B).

This inequality becomes an equality if and only if f ′(0)= f (1)− f (0).

So we must show f ′(0)= f (1)− f (0) iff f (1
2
)= 1

2
(f (0)+ f (1)).
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Minkowski’s Inequality for Mixed Volumes (Cont’d)

We show f ′(0)= f (1)− f (0) if and only if f (1
2
)= 1

2
(f (0)+ f (1)).

Suppose first that f ′(0)= f (1)− f (0).

By a previous corollary,
f (x)−f (0)

x = f (1)− f (0), for 0< x ≤ 1.

Setting x = 1
2
, we get f (1

2
)= 1

2
(f (0)+ f (1)).

Suppose next that f (1
2
)= 1

2
(f (0)+ f (1)). Then

f (1)− f (1
2
)

1− 1
2

=
f (0)− f (1

2
)

0− 1
2

=
f (0)− 1

2
f (0)− 1

2
f (1)

−1
2

= f (1)− f (0).

Using the same corollary as above,

f (x)− f (1
2
)

x − 1
2

= f (1)− f (0), for x ∈ [0,1]\{
1

2
}.

Hence, f ′(0)= f (1)− f (0).
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Lemma for the Case of Equality

Lemma

(i) Let S be an n-simplex and let T be a convex body in Rn. Suppose
that v(S)= v(T ) and that v(S , . . . ,S ,T )= v (n−1)/n(S)v1/n(T ). Then
T is a translate of S .

(ii) Let A,B be convex bodies in Rn such that, for each n-simplex
contained in either one of them, there is some translate of it which is
contained in the other. Then B is a translate of A.

(i) Let F0, . . . ,Fn be the facets of S and let u0, . . . ,un be the
corresponding outward unit normals.

Let hT be the support function of T .

Let C be the simplex which is homothetic to S , and circumscribes T ,
i.e., T ⊆C and T meets each facet of C .

Suppose that C =λS +a, for some λ> 0 and a ∈Rn.
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Lemma for the Case of Equality (Cont’d)

By a previous corollary,

v (n−1)/n(S)v1/n(T )= v(S , . . . ,S ,T )=
1

n

n∑

i=0

hT (u i )vn−1(Fi ).

Also, if hC is the support function of C ,

λnv(S)= v(C )=
1

n

n∑

i=0

hC (u i)vn−1(λFi +a)=
1

n

n∑

i=0

hT (u i)vn−1(Fi ).

Thus

v (n−1)/n(S)v1/n(T )=λv(S), or v(T )=λnv(S)= v(C ).

But T ⊆C . So T =C .

Since v(S)= v(T ), λ must be 1, and T is the translate S +a of S .
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Lemma for the Case of Equality (Cont’d)

(ii) Clearly A and B must have the same diameter, s, say. Let a,a′ ∈A be
such that ‖a−a′‖= s. Then there is some x ∈Rn such that
a+x ,a′+x ∈B . Let c ∈A. Then a,a′,c belong to some n-simplex of
A. Hence, there is some y ∈Rn such that a+y , a′+y , c+y ∈B . Now

2‖y −x‖2+2s2 = 2‖y −x‖2+2‖a−a′‖2

= ‖y −x +a−a′‖2+‖y −x −a+a′‖2

= ‖(a+y)− (a′+x)‖2+‖(a′+y)− (a+x)‖2

≤ 2s2,

since B has diameter s. This shows that x = y .

Hence c +x ∈B for all c in A. So A+x ⊆B .

A similar argument shows that B −x ⊆A.

Thus B is the translate A+x of A.
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The Brunn-Minkowski Theorem

Theorem (Brunn-Minkowski Theorem)

Let A,B be convex bodies in Rn. Then v1/n(A+B)≥ v1/n(A)+v1/n(B),
with equality holding if and only if A and B are homothetic.

We have already established the inequality.

Now we establish the conditions under which equality occurs. If A and
B are homothetic, say B =µA+a, where µ> 0 and a ∈Rn, then
equality holds, since both sides are equal to (1+µ)v1/n(A).

Conversely, suppose that A,B give equality. Choose λ> 0 so that λB

and A have the same volume. The second assertion of the preceding
theorem shows that the sets A,λB also give equality

v1/n(A+λB)= v1/n(A)+v1/n(λB).
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The Brunn-Minkowski Theorem (Cont’d)

Let S be any n-simplex contained in A.
Then S = J0∩·· ·∩Jn for some closed halfspaces J0, . . . ,Jn in Rn.
Denote by K0 the translate of J0 which makes the volumes v(A∩J0)
and v((λB)∩K0) equal. We show that the sets A∩J0, (λB)∩K0 give
equality in Brunn’s inequality.
Consider A− =A∩J0, A

+ =A\A−, B− = (λB)∩K0, B
+ = (λB)\B−.

Suppose that A−,B− do not give equality in Brunn’s inequality.
Then v1/n(A−+B−)> v1/n(A−)+v1/n(B−).
The sets A−+B−, A+B+ are disjoint and are contained in A+λB .
By Brunn’s inequality and equalities v(A−)= v(B−), v(A+)= v(B+),

v1/n(A+λB) ≥ (v(A−+B−)+v(A++B+))1/n

> ((v1/n(A−)+v1/n(B−))n+ (v1/n(A+)+v1/n(B+))n)1/n

= v1/n(A)+v1/n(λB).

This contradicts that A,λB give equality in Brunn’s inequality.
Thus, A∩J0 and (λB)∩K0 yield equality in Brunn’s inequality.
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The Brunn-Minkowski Theorem (Cont’d)

We repeat the argument just given n more times to deduce the
existence of closed halfspaces K1, . . . ,Kn in Rn such that the convex
bodies

S =A∩J0∩·· ·∩Jn, T = (λB)∩K0∩·· ·∩Kn

have the same volume and produce equality in Brunn’s inequality.

We deduce, from the second assertion of the preceding theorem and
the first part of the lemma, that T must be a translate of S .

It follows, by symmetry, that, for each n-simplex contained in either
one of A and λB , there is some translate of it which is contained in
the other.

Hence, by the second part of the lemma, A is a translate of λB .

This shows that A and B are homothetic.
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An Additional Inequality

Theorem

Let A,B be convex bodies in Rn. Then

v(A, . . . ,A,B)≥ v (n−1)/n(A)v1/n(B)

with equality holding if and only if A and B are homothetic.

The result follows immediately from the preceding theorems.
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The Isoperimetric Inequality

Theorem (Isoperimetric Inequality)

Every convex body A in Rn has a surface area greater than that of a closed
ball with the same volume, unless it is itself a closed ball. More specifically,

sn(A)≥ωnn
nvn−1(A),

with equality holding if and only if A is a closed ball.

Let B be the closed unit ball U in the theoem. Then that

s(A)= nv(A, . . . ,A,U)≥ nv (n−1)/n(A)v1/n(U)= nv (n−1)/n(A)ω
1/n
n .

So sn(A)≥ωnn
nvn−1(A).

Equality holds if and only if A is homothetic to U , i.e. if and only if A
is a closed ball.
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The Isodiametric Inequality

Theorem (Isodiametric Inequality)

Every convex body A in Rn with diameter d has a volume less than that of
a closed ball with diameter d , unless it is itself a closed ball. More
specifically,

v(A)≤ωn

(
1

2
d

)n

,

with equality holding if and only if A is a closed ball.

Denote by F the family of all convex bodies in Rn with diameter d .
Let α= sup {v(A) :A ∈F }. Then there is a sequence A1, . . . ,Ak , . . . of
members of F which lie in the closed ball dU such that v(Ak)→α as
k →∞. By the Blaschke Selection Theorem, there exists a
subsequence i1, . . . , ik , . . . of 1, . . . ,k , . . . and a convex body A0 such that

Aik
k→∞−→ A0. Since both volume and diameter are continuous with

respect to Hausdorff distance, it follows that A0 ∈F , v(A)=α. Thus
A0 is a member of F having maximal possible volume.
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The Isodiametric Inequality (Cont’d)

Let C be any member of F having maximal volume. It is easily
verified that the convex body C ′ = 1

2
(C −C ) belongs to F . The

Brunn-Minkowski theorem shows that v(C ′)≥ v(C ) with equality
holding if and only if C is homothetic to −C . By the choice of C ,
v(C )≥ v(C ′). Thus v(C ′)= v(C ).

Hence C =−λC +c , for some λ> 0 and c ∈Rn. Since C has the same
volume as −C , λ= 1 and C =−C +c . Hence C − 1

2
c =−(C − 1

2
c), and

C − 1
2
c is a symmetric member of F having maximal volume.

The symmetry of C − 1
2
c together with the fact that its diameter is d

shows that C − 1
2
c ⊆ 1

2
dU . But 1

2
dU ∈F and v(C − 1

2
c)≤ v(1

2
dU).

Hence C − 1
2
c = 1

2
dU . Thus C is the closed ball 1

2
c + 1

2
dU .

The desired result is immediate.
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The Schwarz Rotation-Symmetral: An Example

Suppose that the given convex body is the square pyramid

A= conv{(0,0,0),(1,1,1),(1,1,−1),(1,−1,1),(1,−1,−1)}.

Then A has for its base a square of side 2 lying in the plane x1 = 1, for
its vertex the origin, and its height is 1.

For each x with 0< x ≤ 1, denote by Ax the intersection of A with the
hyperplane x1 = x .

Denote by Cx the closed circular disc which lies in the hyperplane
x1 = x , has its center on the x1-axis, and has the same area as Ax .

Clearly Ax is a square of side 2x and Cx has radius rx = 2xp
π
.

We write C0 = {(0,0,0)} and r0 = 0.

The union C =
⋃
(Cx : 0≤ x ≤ 1) of the circular discs Cx is called the

Schwarz rotation-symmetral of A in the x1-axis.

Here C is a right circular cone with base a closed disc of radius 2p
π

with axis the x1-axis, and vertex the origin.
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The Schwarz Rotation-Symmetral

Let A be a convex body in Rn, where n≥ 2.

For simplicity of notation, we suppose that the line of rotation is the
x1-axis and that A lies between parallel support hyperplanes x1 = a and
x1 = b to A, where a< b.

For each x with a≤ x ≤ b, denote by Ax the intersection of A with the
hyperplane x1 = x .

Define rx by the equation ωn−1r
n−1
x = vn−1(Ax).

Thus, for a< x < b, rx is the radius of an (n−1)-ball whose
vn−1-volume is the same as that of Ax .

For each x with a≤ x ≤ b, define a convex set Cx (indeed an
(n−1)-ball when a< x < b) by the equation

Cx = {(x ,x2, . . . ,xn) : x
2
2 +·· ·+x2

n ≤ r2
x }.

Then the set C =
⋃
(Cx : a≤ x ≤ b) is called the Schwarz rotation

symmetral of A in the x1-axis.
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Schwarz Construction for the Isoperimetric Problem

Theorem

Let A be a convex body in Rn (n ≥ 2) whose Schwarz rotation-symmetral
in the x1-axis is C . Then C is a convex body having the same volume as A.

We assume the notation introduced for the definition of the Schwarz
rotation-symmetral. First we show that r : [a,b]→R is a concave
function. Let x ,y ∈ [a,b] and let λ,µ≥ 0 with λ+µ= 1. By the
convexity of A, Aλx+µy ⊇λAx +µAy . Applying Brunn’s inequality in
R

n−1, we find that

v
1/(n−1)
n−1 (Aλx+µy ) ≥ v

1/(n−1)
n−1 (λAx +µAy )

≥ λv
1/(n−1)
n−1

(Ax)+µv
1/(n−1)
n−1

(Ay ).

Hence, rλx+µy ≥λrx +µry .
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Schwarz Construction (Cont’d)

We now establish the convexity of C , omitting the verification that it
is compact with nonempty interior.

Let u,v ∈C and let λ,µ≥ 0 with λ+µ= 1. Then u ∈Cx , v ∈Cy , for
some x ,y ∈ [a,b]. Thus ‖u− (x ,0, . . . ,0)‖ ≤ rx , ‖v − (y ,0, . . . ,0)‖ ≤ ry .
Now a≤λx +µy ≤ b and

‖λu+µv − (λx +µy ,0, . . . ,0)‖
≤λ‖u− (x ,0, . . . ,0)‖+µ‖v − (y ,0, . . . ,0)‖
≤λrx +µry

≤ rλx+µy .

Hence, λu+µv ∈Cλx+µy . So λu+µv ∈C . Thus, C is convex.

It follows from a previous theorem that

vn(A)=
∫b

a
vn−1(Ax)dx =

∫b

a
vn−1(Cx )dx = vn(C ).
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Example Revisited

Consider our earlier example in which A was a square pyramid in R3

and its Schwarz rotation-symmetral C was a circular cone.

A and C have the same volume 4
3 ;

A has surface area 4+4
p

2;
C has the smaller surface area 4+2

p
π+4.

It is a property of the Schwarz rotation-symmetral of a convex body
that its surface area never exceeds that of the body itself.
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Subsection 6

Steiner Symmetrization
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Informal Description of the Steiner Symmetral

Let A be a non-empty compact convex set and π a hyperplane in Rn.

Steiner’s construction produces from A and π a convex set Aπ in Rn

called the Steiner symmetral of A about π.

For each point p of A, denote by ℓp the line
through p perpendicular to the hyperplane π.

Translate the chord A∩ℓp of A along ℓp
until its midpoint lies on π.

The union Aπ of all such translated chords is
called the Steiner symmetral of A about π.
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Projection on a Hyperplane

Let u be a unit normal vector to a hyperplane π.

Then the projection π(A) of A on π is the subset of π defined by the
equation

π(A)= {p ∈π : p+θu ∈A, for some θ ∈R}.

We show that π(A) is convex.

Let p,q ∈π(A) and let λ,µ≥ 0 with λ+µ= 1. Then there exist
θ,ϕ ∈R such that p+θu,q+ϕu ∈A. Since A is convex,

λp+µq+ (λθ+µϕ)u =λ(p+θu)+µ(q+ϕu)∈A.

Hence λp+µq ∈π(A). So π(A) is convex.
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The Functions α,β,γ

For each p in π(A), denote by Ip the non-empty compact interval of
R defined by the equation

Ip = {θ ∈R : p+θu ∈A}.

Define functions α,β,γ :π(A)→R as follows:

α(p)=min Ip , β(p)=max Ip , γ(p)=β(p)−α(p), p ∈π(A).

Thus γ(p) is the length of the chord of A which is the intersection of
A with the line through p normal to π.

If we choose −u instead of u for a unit normal to π, then γ (unlike α

and β) remains unchanged.

Thus γ is uniquely determined by A and π.
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Concavity of γ

Theorem

The function γ :π(A)→R is concave.

Let p,q ∈π(A) and let λ,µ≥ 0 with λ+µ= 1. Then p+α(p)u,
q+α(q)u ∈A. The convexity of A shows that

λp+µq+ (λα(p)+µα(q))u =λ(p+α(p)u)+µ(q+α(q)u) ∈A.

Hence, α(λp+µq)≤λα(p)+µα(q).

Similarly, β(λp+µq)≥λβ(p)+µβ(q).

Thus,

γ(λp+µq) = β(λp+µq)−α(λp+µq)

≥ λ(β(p)−α(p))+µ(β(q)−α(q))

= λγ(p)+µγ(q).

So γ is concave.
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The Steiner Symmetral

We define the Steiner symmetral Aπ of A about π by the equation

Aπ =
{

p+θu : p ∈π(A), |θ| ≤
1

2
γ(p)

}

.

Some easy consequences of the definition are:

(i) Aπ is (in an obvious sense) symmetric about π;
(ii) If B is a closed ball with center on π, then Bπ =B;
(iii) If C is a compact convex set with A⊆C , then Aπ ⊆Cπ.
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Compactness, Convexity and Symmetral

Theorem

Let A be a non-empty compact convex set and let π be a hyperplane in
R

n. Then Aπ is a non-empty compact convex set, which is a convex body
when A is.

Let a,b ∈Aπ. Then there are p,q ∈π(A) and scalars θ,ϕ such that
a =p+θu, b =q+ϕu, where |θ| ≤ 1

2
γ(p), |ϕ| ≤ 1

2
γ(q). Let λ,µ≥ 0

with λ+µ= 1. Then

λa+µb=λp+µq+ (λθ+µϕ)u .

By the concavity of γ,

|λθ+µϕ| ≤λ|θ|+µ|ϕ| ≤
1

2
λγ(p)+

1

2
µγ(q)≤γ(λp+µq).

Thus λa+µb ∈Aπ. This shows that Aπ is convex.

George Voutsadakis (LSSU) Convexity July 2023 146 / 161



Mixed Volumes and Extremum Problems Steiner Symmetrization

Compactness, Convexity and Symmetral (Cont’d)

We now show that Aπ is closed. Let x1, , . . . ,xk , . . . be a sequence of
points of Aπ that converges to a point x of Rn. For each k = 1,2, . . .,
there exist pk ∈π(A), θk ∈R such that xk = pk +θku, |θk | ≤ 1

2
γ(pk).

The point x can be written in the form p+θu, p ∈π and θ ∈R.

Since ‖pk −p‖≤ ‖xk −x‖ and xk → x as k →∞, pk → p as k →∞.
The points yk = pk +α(pk)u, zk =pk +β(pk)u. lie in the compact
set A. Hence there is a subsequence i1, . . . , ik , . . . of 1, . . . ,k , . . . and
points y ,z ∈A such that y ik → y , z ik → z as k →∞.

A simple argument shows that y = p+au, z =p+bu, where a,b ∈R
are such that a≤ b and α(pik )→ a, β(pik )→ b as k →∞.

Thus, p ∈π(A) and

|θ| = lim
k→∞

|θik | ≤ lim
k→∞

1

2
(β(pik )−α(p ik ))=

1

2
(b−a)≤

1

2
γ(p).

This shows that x ∈Aπ. Hence Aπ is closed.
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Compactness, Convexity and Symmetral (Cont’d)

Since A is bounded, it lies in some closed ball C .

Hence, Aπ ⊆Cπ.

But Cπ is clearly a closed ball.

So Aπ is bounded.

We have thus shown that Aπ is both closed and bounded.

So Aπ is compact.

If A is a convex body, then it contains some closed ball B .

Hence, Bπ ⊆Aπ.

But Bπ is a closed ball.

So the compact convex set Aπ has a non-empty interior.

Therefore, Aπ is a convex body.

George Voutsadakis (LSSU) Convexity July 2023 148 / 161



Mixed Volumes and Extremum Problems Steiner Symmetrization

Sums and Symmetrals

Theorem

In Rn let A,B be non-empty compact convex sets and let π be a
hyperplane passing through the origin. Then

Aπ+Bπ ⊆ (A+B)π.

Let x ∈Aπ+Bπ. Then x = a+b for some a ∈Aπ, b ∈Bπ. We can
write, using an obvious notation, a =p+θu, b = q+ϕu, where
p ∈π(A), q ∈π(B) and |θ| ≤ 1

2
γA(p), |ϕ| ≤ 1

2
γB(q). Since π is a

subspace of Rn, p+q ∈π. From this follows that p+q ∈π(A+B).
Clearly γA+B(p+q)≥ γA(p)+γB(q). Hence

|θ+ϕ| ≤ |θ|+ |ϕ| ≤
1

2
γA(p)+

1

2
γB(q)≤

1

2
γA+B(p+q).

Thus, x =p+q+ (θ+ϕ)u ∈ (A+B)π. So Aπ+Bπ ⊆ (A+B)π.
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Comparing a Convex Set and its Symmetrization

Let D and R denote, respectively, diameter and circumradius.

Theorem

In Rn let A be a non-empty compact convex set and let π be a hyperplane.
Then vn(Aπ)= vn(A), sn(Aπ)≤ sn(A), D(Aπ)≤D(A), R(Aπ)≤R(A).

We suppose throughout that π contains the origin.

To show that vn(Aπ)= vn(A), we argue by induction on n.

The case n = 1 is trivial. Suppose that n≥ 2 and that the assertion is
known to be true in Rn−1. Let u be a unit vector lying in π.

A previous corollary shows that, in an obvious notation,

vn(A)=
∫∞

−∞
vn−1(Ax )dx , vn(Aπ)=

∫∞

−∞
vn−1((Aπ)x )dx .

We can show that (Aπ)x = (Ax)π. Using the induction hypothesis,
vn−1((Aπ)x )= vn−1((Ax)π)= vn−1(Ax ). Hence, vn(A)= vn(Aπ).
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Comparing a Convex Set and its Symmetrization (Cont’d)

The preceding theorem shows that, for each λ> 0,

Aπ+λU =Aπ+ (λU)π ⊆ (A+λU)π.

Thus, by the first part of this proof,

vn(Aπ+λU)≤ vn((A+λU)π)= vn(A+λU).

Hence,

lim
λ→0+

vn(Aπ+λU)−vn(Aπ)

λ
≤ lim

λ→0+

vn(A+λU)−vn(A)

λ
.

That is, sn(Aπ)≤ sn(A).
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Comparing a Convex Set and its Symmetrization (Cont’d)

Suppose now that u is a unit normal to π. Let x ,y ∈Aπ. Then
x = p+θu, y = q+ϕu, for some p,q ∈π(A) and θ,ϕ ∈R with
|θ| ≤ 1

2
γ(p), |ϕ| ≤ 1

2
γ(q). The points

xα =p+α(p)u , xβ = p+β(p)u ,

yα = q+α(q)u, yβ =q+β(q)u

belong to A. Moreover,

‖xα−yβ‖2 = ‖p−q‖2+|α(p)−β(q)|2,

‖xβ−yα‖2 = ‖p−q‖2+|β(p)−α(q)|2.
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Comparing a Convex Set and its Symmetrization (Cont’d)

Now

‖x −y‖2 = ‖p−q‖2+|θ−ϕ|2

≤ ‖p−q‖2+ 1
4
(γ(p)+γ(q))2

= ‖p−q‖2+ 1
4
(β(p)−α(q)+β(q)−α(p))2

≤ ‖p−q‖2+ 1
2
|β(p)−α(q)|2+ 1

2
|β(q)−α(p)|2

= 1
2
‖xα−yβ‖2+ 1

2
‖xβ−yα‖2

≤ D2(A).

This shows that D(Aπ)≤D(A).

Suppose C is a closed ball containing A.

Then Cπ is a translate of C containing Aπ.

Thus R(Aπ)≤R(A).
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The Isodiametric Inequality

The proof of a previous theorem shows that, for each d > 0, there
exists among all convex bodies in Rn of diameter d some convex body
C which has maximal volume.

Let C0 be the convex body obtained from C by successive Steiner
symmetrizations in the hyperplanes x1 = 0, . . ., xn = 0.

It is a simple exercise to show that C0 is a symmetric convex body,
which has the same volume, and no larger diameter than C0.

Since C0 is symmetric with diameter less than or equal to d , it must
lie in the ball 1

2
dU .

Thus, for any convex body A in Rn with diameter d , we have the
isodiametric inequality:

vn(A)≤ vn(C )= vn(C0)≤ωn

(
1

2
d

)n

.
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Continuity of Steiner Symmetrization

Theorem

Let A1, . . . ,Ak , . . . be a sequence of convex bodies that converges to a
convex body A in Rn. Then the sequence (A1)π, . . . ,(Ak)π, . . . of its Steiner
symmetrals about any hyperplane π of Rn converges to the Steiner
symmetral Aπ of A about it.

We assume that the origin is an interior point of A lying on π.

Thus there exist r ,s > 0 and a positive integer N1, such that
rU ⊆A⊆ sU and rU ⊆Ak ⊆ sU , for k >N1.

Hence, rU ⊆Aπ ⊆ sU and rU ⊆ (Ak)π ⊆ sU , for k >N1.

Let ε> 0. Since Ak →A as k →∞, there is a positive integer N2 such
that, for k >N2,

Ak ⊆A+
rε

s
U and A⊆Ak +

rε

s
U .
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Continuity of Steiner Symmetrization (Cont’d)

Let k >max {N1,N2}. Then

Ak ⊆A+
rε

s
U ⊆A+

ε

s
A=

(

1+
ε

s

)

A.

So
(Ak)π ⊆

(

1+
ε

s

)

Aπ =Aπ+
ε

s
Aπ ⊆Aπ+εU .

Similarly, Aπ ⊆ (Ak)π+εU .

Thus,
ρ((Ak)π,Aπ)≤ ε.

It follows that (Ak)π →Aπ as k →∞.
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Symmetrization and Approximation by Balls

Let A be a convex body in Rn.

Denote by S (A) the family of all convex bodies which can be
obtained from A by a finite number of symmetrizations about
hyperplanes through the origin.

Theorem

Let A be a convex body in Rn. Then there is a sequence of members of
S (A) which converges to the closed ball of volume vn(A) whose center is
the origin.

Let r0 = inf {r > 0 : there is C in S (A) such that C ⊆ rU}.

Then, for each k = 1,2, . . ., there exists Ak in S (A) such that
Ak ⊆ (r0+k−1)U . By the Blaschke Selection Theorem, there is a
subsequence of A1,A2, . . . which converges to some convex body, B ,
say. We assume that the sequence itself converges to B . Clearly
B ⊆ r0U and vn(B)= vn(A).
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Symmetrization and Approximation by Balls (Cont’d)

We complete the proof by showing that B = r0U .

Suppose that B 6= r0U . Then there exist x0 ∈ bdr0U and s > 0 such
that B(x0;s)∩B =;. Since bdr0U is compact, there exist distinct
points x0, . . . ,xm (m≥ 1) of bdr0U such that

bdr0U ⊆B(x0;s)∪·· ·∪B(xm;s).

For i = 0, . . . ,m, set Ci =B(x i ;s)∩bdr0U . Then bdr0U =C0∪·· ·∪Cm.

For i = 1, . . . ,m, let πi be the hyperplane through the origin which has
x i −x0 for a normal vector. Then C0 and Ci are mirror images of one
another in πi . From B(x0;s)∩B =; and the definition of Steiner
symmetrization, Bπ1 is disjoint from C0∪C1.

Similarly, (Bπ1)π2 is disjoint from C0∪C1∪C2.
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Symmetrization and Approximation by Balls (Cont’d)

Continuing, in this fashion, we find that the convex body B� obtained
from B by successive symmetrizations about π1, . . . ,πm is disjoint from
C0∪·· ·∪Cm. Hence, it is disjoint from bdr0U .

Since B� is a convex body lying in r0U , there exists ε, with 0< ε< r0,
such that B� ⊆ (r0−ε)U .

For k = 1,2, . . ., denote by A�

k
the convex body obtained from Ak by

successive symmetrizations about π1, . . . ,πm.

Then A�

k
∈S (A).

By the preceding theorem, A�

k
→B� as k →∞.

But B� ⊆ (r0−ε)U .

So there is a k such that A�

k
⊆

(

r0− 1
2
ε
)

U .

This, however, contradicts the definition of r0.

Thus B = r0U .
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New Proof of Isoperimetric Inequality

Let A be a convex body in Rn and let r be the radius of a ball having
the same volume as that of A, i.e., ωnr

n = vn(A).

The theorem shows the existence of a sequence of convex bodies
converging to rU , each of whose members has surface area not
exceeding sn(A).

Hence
sn(rU)= nωnr

n−1 ≤ sn(A).

We can thus deduce the isoperimetric inequality:

snn (A)≥ (nωnr
n−1)n = nnωn(ωnr

n)n−1 =ωnn
nvn−1

n (A).
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New Proof of Brunn’s Inequality

Let A,B be convex bodies in Rn and let r ,s > 0 be such that
vn(A)=ωnr

n, vn(B)=ωns
n.

Let 0< k < 1.

It follows, by applying the theorem twice, that there exists a finite
sequence of symmetrizations about hyperplanes through the origin
which sends A,B to convex bodies A�,B�, respectively, such that
A� ⊇ krU , B� ⊇ ksU .

A previous theorem shows, that for any hyperplane π through the
origin, vn(Aπ+Bπ)≤ vn((A+B)π)= vn(A+B).

We can deduce, by repeated applications of this result, that

ωnk
n(r + s)n = vn(k(r + s)U)≤ vn(A

�+B�)≤ vn(A+B).

Letting k → 1−, we deduce that ωn(r + s)n ≤ vn(A+B).

Hence
v

1/n
n (A)+v

1/n
n (B)≤ v

1/n
n (A+B).
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