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Introduction Basic Mathematical Models: Direction Fields

Differential Equations and Models

Equations containing derivatives are differential equations;

A differential equation that describes some physical process is called a
mathematical model of the process;

Example: Suppose that an object is falling in the atmosphere near sea
level. Formulate a differential equation that describes the motion.

Typically, the variable t denotes time; Let v be the
velocity of the falling object; We measure time t in
seconds and velocity v in meters/second and assume v
is positive in the downward direction; Newtons second
law states: F = ma; Moreover, a = dv

dt
; Total force

acting on the falling object is

F = mg
︸︷︷︸
gravity

− γv ;
︸︷︷︸
drag

The previous two equations yield m dv
dt

= mg − γv ;
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Introduction Basic Mathematical Models: Direction Fields

Direction Fields

Consider a differential equation of the form dy
dt

= f (t, y); The
function f (t, y) is called the rate function;

A direction field for the differential equation is constructed by
evaluating f (t, y) at each point of a rectangular grid;

At each point of the grid, a short line segment is drawn whose slope
is the value of f at that point;

Each line segment is tangent to the graph of the solution passing
through that point;

Direction fields provide a good picture of the overall behavior of
solutions of a differential equation;

In constructing a direction field, we do not have to solve the equation,
but merely to evaluate the given function f (t, y) many times;
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Introduction Basic Mathematical Models: Direction Fields

Another Application: Field Mice Population

Consider a population of field mice inhabiting a certain rural area;

In the absence of predators we assume that the mouse population
increases at a rate proportional to the current population;

Denoting time by t and the mouse population by p(t), we get

dp

dt
= rp,

where r is a proportionality constant called the rate constant or
growth rate;

If we assume, in addition, that owls live in the same neighborhood
and that they kill field mice at a rate of k , then the new equation
modeling the mouse population would be

dp

dt
= rp

︸︷︷︸
rate of increase

− k ;
︸︷︷︸

rate of decrease
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Introduction Basic Mathematical Models: Direction Fields

Guidelines to Constructing Mathematical Models

Steps for constructing a model for a physical problem or phenomenon:

1 Identify the independent and dependent variables and assign letters to
represent them;

2 Choose the units of measurement for each variable;
3 Articulate the basic principle that underlies or governs the physical

problem under investigation; To do this, we must often be familiar with
the field in which the problem originates;

4 Express the principle or law of the previous step in terms of the
variables chosen for the modeling process;

5 A quick check that the equation is not fundamentally inconsistent is
that both terms in the equation have the same physical units;

In more complicated problems the mathematical model may not be
just a single differential equation.
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Introduction Solutions of Some Differential Equations

A Specific Initial Value Problem

Consider the following:

Initial Value Problem
︷ ︸︸ ︷

dy

dt
= ay − b, y(0) = y0

︸ ︷︷ ︸
Initial Condition

;

To solve it (i.e., find y = y(t)) we work as follows:

dy
dt

= ay − b ⇒ dy
dt

= a(y − b
a
) ⇒ dy

y− b
a

= adt

⇒

∫

dy

y− b
a

=

∫

adt ⇒ ln |y − b
a
| = at + C

⇒ y − b
a
= eat+C ⇒ y − b

a
= eCeat

⇒ y = b
a
+ ceat (General Solution);

y(0) = y0 ⇒ b
a
+ c = y0 ⇒ c = y0 −

b
a
;

Thus, we get y(t) = b
a
+ (y0 −

b
a
)eat (Particular Solution);
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Introduction Solutions of Some Differential Equations

Free Falling Object: General Solution

Recall the equation describing the free fall of an object of mass m:

m
dv

dt
= mg − γv ⇒

dv

dt
= g −

γ

m
v ;

Suppose m = 10 Kg, and the drag coefficient γ = 2 Kg/s; Finally,
recall g = 9.8(≈ 10) m/s2;

dv
dt

= g − γ
m
v ⇒ dv

dt
= 10− 2

10v ⇒ 5dv
dt

= 50− v

⇒ dv
50−v

= 1
5dt ⇒

∫

dv
50−v

=

∫

1
5dt

⇒ − ln (50− v) = 1
5t + C ⇒ 50− v = ce−t/5

⇒ v = 50− ce−t/5;
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Introduction Solutions of Some Differential Equations

An Initial Condition and a Particular Solution

We found that v = 50− ce−t/5 is the equation describing the velocity
of an object in free fall with mass m = 10 Kg, and drag coefficient
γ = 2 Kg/s;

If it is dropped by a height of h0 = 300 meters, can we find an
equation describing the distance x that the object travels in time t?
At time t = 0, v(0) = 0; Therefore, 50− c = 0 ⇒ c = 50; Thus, the
equation becomes: v = 50− 50e−t/5; Now, we get:

v = 50− 50e−t/5 ⇒ dx
dt

= 50− 50e−t/5

⇒ dx = (50 − 50e−t/5)dt ⇒

∫

dx =

∫

(50− 50e−t/5)dt

⇒ x(t) = 50t + 50 · 5e−t/5 + C ;

Since x(0) = 0 (no distance traveled yet),
0 = 50 · 5 + C ⇒ C = −250; So x(t) = 50t + 250e−t/5 − 250; The
height of the object at time t will be h(t) = 300− x(t) (dropping by
distance x(t)) or h(t) = 550 − 50t − 250e−t/5.
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Introduction Classification of Differential Equations

Ordinary versus Partial Differential Equations

Based on the number of independent variables on which the unknown
function depends:

If only one independent variable is involved, only ordinary derivatives
appear in the differential equation and it is said to be an ordinary
differential equation;
If several independent variables appear, then the derivatives are partial
derivatives, and the equation is called a partial differential equation;

Some Examples:
The charge Q(t) on a capacitor in a circuit with capacitance C ,
resistance R , and inductance L is given by the ordinary differential
equation:

L
d2Q(t)

dt2
+ R

dQ(t)

dt
+

1

C
Q(t) = E (t);

The heat conduction equation α2 ∂
2u(x , t)

∂x2
=

∂u(x , t)

∂t
is a partial

differential equation, as is the wave equation: a2
∂2u(x , t)

∂x2
=

∂2u(x , t)

∂t2
;
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Introduction Classification of Differential Equations

Systems of Differential Equations

Based on the number of unknown functions that are involved;

If there is a single function to be determined, then one equation is
sufficient;
If there are two or more unknown functions, then a system of equations
is required;

An example is the Lotka-Volterra, or predator-prey, equations,
which are important in ecological modeling:

x(t) and y(t) are the populations of the prey and predator species;
a, α, c and γ are constants based on empirical observations and depend
on the particular species being studied;
Then, the equations have the form







dx

dt
= ax − αxy

dy

dt
= −cy + γxy

George Voutsadakis (LSSU) Differential Equations January 2014 14 / 20



Introduction Classification of Differential Equations

Order of a Differential Equation

The order of a differential equation is the order of the highest
derivative that appears in the equation;

The equation F [t, u(t), u′(t), ..., u(n)(t)] = 0 is an ordinary differential
equation of the n-th order;

It is convenient and customary in differential equations to write y for
u(t), with y ′, y ′′, . . . , y (n) standing for u′(t), u′′(t), . . . , u(n)(t);

Example: y ′′′ + 2ety ′′ + yy ′ = t4 is a third order differential equation
for y = u(t);

We always assume that it is possible to solve a given ordinary
differential equation for the highest derivative, obtaining

y (n) = f (t, y , y ′, y ′′, ..., y (n−1)).
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Introduction Classification of Differential Equations

Linear and Nonlinear Equations

The ordinary differential equation F (t, y , y ′, ..., y (n)) = 0 is said to be
linear if F is a linear function of the variables y , y ′, . . . , y (n);

A similar definition applies to partial differential equations;

The general linear ordinary differential equation of order n is

a0(t)y
(n) + a1(t)y

(n−1) + · · · + an(t)y = g(t);

An equation that is not of this form is a nonlinear equation;

Example: A simple physical problem that leads to
a nonlinear differential equation is the oscillating
pendulum. The angle θ that an oscillating pendu-
lum of length L makes with the vertical direction
satisfies the equation

d2θ

dt2
+

g

L
sin θ = 0;
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Introduction Classification of Differential Equations

Advantages of Linearity and Linearization

The mathematical theory and methods for solving linear equations are
highly developed;

For nonlinear equations the theory is more complicated, and methods
of solution are less satisfactory;

It is fortunate that many significant problems lead to linear ordinary
differential equations or can be approximated by linear equations;

Example: For the pendulum, if the angle θ is small, then sin θ ∼= θ

and the pendulum equation d2θ
dt2

+ g
L
sin θ = 0 can be approximated by

the linear equation d2θ
dt2

+ g
L
θ = 0;

This process of approximating a nonlinear equation by a linear one is
called linearization and constitutes an extremely valuable way to deal
with nonlinear equations, when possible;

Since, there are many physical phenomena that cannot be represented
adequately by linear equations, to study those it is essential to deal
with nonlinear equations also;
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Introduction Classification of Differential Equations

Solutions of Differential Equations

Consider again the equation y (n) = f (t, y , y ′, y ′′, . . . , y (n−1));

A solution of this differential equation on the interval α < t < β is a
function φ, such that φ′, φ′′, . . . , φ(n) exist and satisfy
φ(n)(t) = f [t, φ(t), φ′(t), . . . , φ(n−1)(t)], for every t in α < t < β;

It is often not very easy to find solutions of differential equations;

It is usually relatively easy to check whether a given function is a
solution;

Example: Check whether y(t) = cos t is a solution of y ′′ + y = 0;

y(t) = cos t;
y ′(t) = − sin t;
y ′′(t) = − cos t;
y ′′ + y = − cos t + cos t = 0;
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Introduction Classification of Differential Equations

Existence and Uniqueness of Solutions

Does an equation of the form y (n) = f (t, y , y ′, y ′′, . . . , y (n−1)) always
have a solution?

NO! Writing down an equation of this form does not necessarily mean
that there is a function y = φ(t) that satisfies it;

The question of “whether some particular equation has a solution” is
the question of existence;

The question of “whether a given differential equation that has a
solution, has a unique solution” is the question of uniqueness;

If we find a solution of a given problem, and if we know that the
problem has a unique solution, then we can be sure that we have
completely solved the problem;

If there may be other solutions, then perhaps we should continue
exploring the solution space;
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Introduction Classification of Differential Equations

Practice of Finding Solutions

Knowledge of existence theory serves in avoiding pitfalls, such as
using a computer to find a numerical approximation to a “solution”
that does not exist;

On the other hand, even though we may know that a solution exists,
it is often the case that the solution is not expressible in terms of the
usual elementary functions (polynomial, trigonometric, exponential,
logarithmic, and hyperbolic functions);

We discuss elementary methods that can be used to obtain exact
solutions of certain relatively simple problems.
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