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Introduction

General Framework

We deal with first-order differential equations
dy

dt
= f (t, y), where f

is a given function of two variables;

Any differentiable function y = φ(t) that satisfies this equation for all
t in some interval is called a solution;

We want to determine whether such functions exist and, if so, to
develop methods for finding them;

For an arbitrary function f , there is no general method for solving the
equation in terms of elementary functions;

So we focus on special types of first order equations:

Linear Equations;
Separable Equations;
Exact Equations;

George Voutsadakis (LSSU) Differential Equations January 2014 3 / 37



Introduction Linear Equations; Method of Integrating Factors

Subsection 1

Linear Equations; Method of Integrating Factors
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Introduction Linear Equations; Method of Integrating Factors

Linear Equations

If the function f in dy
dt

= f (t, y) depends linearly on the dependent
variable y , then the equation is called a first order linear equation;

A typical example is
dy

dt
= −ay + b,

where a, b are constants;

We consider a more general first order linear equation, obtained by
replacing the coefficients a and b by arbitrary functions of t;

The general first order linear equation in the standard form is

dy

dt
+ p(t)y = g(t),

where p and g are given functions of the independent variable t;
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Introduction Linear Equations; Method of Integrating Factors

Solving dy
dt

= −ay + b by Integrating

We work as follows:

dy

dt
= −ay + b

a 6=0
⇒

dy

dt
= −a

(

y −
b

a

)

y 6= b
a⇒

dy

y − b
a

= −adt ⇒

∫

dy

y − b
a

=

∫

−adt

⇒ ln

∣

∣

∣

∣

y −
b

a

∣

∣

∣

∣

= −at + C ⇒

∣

∣

∣

∣

y −
b

a

∣

∣

∣

∣

= eC e−at

y> b
a⇒ y =

b

a
+ ce−at ;
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Introduction Linear Equations; Method of Integrating Factors

Leibniz’s Integrating Factor Method: An Example

Solve the differential equation dy
dt

+ 1
2y = 1

2e
t/3;

Multiply both sides by a function µ(t), as yet undetermined:

µ(t)
dy

dt
+

1

2
µ(t)y =

1

2
µ(t)et/3;

Can we choose µ(t) so that the left side is recognizable as the
derivative of some particular expression?
Note that, by the product rule

d

dt
[µ(t)y ] = µ(t)

dy

dt
+

dµ(t)

dt
y ;

Thus, we need to choose

dµ(t)

dt
=

1

2
µ(t);
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Introduction Linear Equations; Method of Integrating Factors

Example (Cont’d)

We want to solve the differential equation dy
dt

+ 1
2y = 1

2e
t/3; We

multiplied by µ(t): µ(t)dy
dt

+ 1
2µ(t)y = 1

2µ(t)e
t/3; We found

dµ(t)
dt

= 1
2µ(t);

dµ(t)
dt

µ(t)
=

1

2
⇒

d

dt
ln |µ(t)| =

1

2

⇒ ln |µ(t)| =
1

2
t + C ⇒ µ(t) = cet/2;

Now, with c = 1, we obtain

et/2
dy

dt
+

1

2
et/2y =

1

2
e5t/6 ⇒

d

dt
(et/2y) =

1

2
e5t/6

⇒ et/2y =
1

2

6

5
e5t/6 + c ⇒ y =

3

5
et/3 + ce−t/2;
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Introduction Linear Equations; Method of Integrating Factors

The Integrating Factor Method

dy

dt
+ ay = g(t)

Multiply by the integrating factor µ(t) = eat :

eat
dy

dt
+ aeaty = eatg(t)

d

dt
[eaty ] = eatg(t)

eaty =

∫

eatg(t)dt + c

y = e−at

∫

eatg(t)dt + ce−at ;

or, if not possible to integrate explicitly,

y = e−at

∫ t

t0

easg(s)ds + ce−at .
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Introduction Linear Equations; Method of Integrating Factors

Applying the Method to An Example

Solve the differential equation dy
dt

− 2y = 4− t;
First a reminder:

∫

te−2tdt =
∫

t(−1
2e

−2t)′dt =

− 1
2 te

−2t −
∫

−1
2e

−2tdt = − 1
2te

−2t − 1
4e

−2t + c ;

Now we start the main work:

dy
dt

− 2y = 4− t ⇒ e−2t dy
dt

− 2e−2ty = (4− t)e−2t

⇒ d
dt
[e−2ty ] = (4− t)e−2t

⇒ e−2ty =
∫

4e−2tdt −
∫

te−2tdt

⇒ e−2ty = − 2e−2t + 1
2 te

−2t + 1
4e

−2t + c

⇒ e−2ty = 1
2te

−2t − 7
4e

−2t + c

⇒ y = 1
2t −

7
4 + ce2t ;
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Introduction Linear Equations; Method of Integrating Factors

Integrating Factor Method: The General Case

dy

dt
+ p(t)y = g(t)

e
∫
p(t)dt dy

dt
+ p(t)e

∫
p(t)dty = e

∫
p(t)dtg(t)

d

dt
[e

∫
p(t)dty ] = e

∫
p(t)dtg(t)

e
∫
p(t)dty =

∫

e
∫
p(t)dtg(t)dt + c

y = e−
∫
p(t)dt

[
∫

e
∫
p(t)dtg(t)dt + c

]

or, if not possible to integrate explicitly,

y = e−
∫
p(t)dt





t
∫

t0

e
∫
p(s)dsg(s)ds + c



 ;
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Introduction Linear Equations; Method of Integrating Factors

Example I

Solve the initial value problem

t
dy

dt
+ 2y = 4t2, y(1) = 2, for t > 0;

t dy
dt

+ 2y = 4t2 ⇒ dy
dt

+ 2
t
y = 4t; We compute the integrating factor:

µ(t) = e
∫

2
t
dt = e2 ln t = e ln (t

2) = t2; We start work on the equation:

dy
dt

+ 2
t
y = 4t ⇒ t2 dy

dt
+ 2ty = 4t3

⇒ d
dt
[t2y ] = 4t3 ⇒ t2y = t4 + c

⇒ y = t2 + c
t2
;

Finally we find the particular solution based on the given initial
condition:

y(1) = 2 ⇒ 1 + c = 2 ⇒ c = 1;

So the particular solution is y = t2 + 1
t2
, t > 0;
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Introduction Linear Equations; Method of Integrating Factors

Example II

Solve the initial value problem

2y ′ + ty = 2, y(0) = 1;

2y ′ + ty = 2 ⇒ y ′ + t
2y = 1; We compute the integrating factor:

µ(t) = e
∫

1
2
tdt = e

1
4
t2 ; We start work on the equation:

y ′ + t
2y = 1 ⇒ e

1
4
t2y ′ + t

2e
1
4
t2y = e

1
4
t2

⇒ d
dt
[e

1
4
t2y ] = e

1
4
t2 ⇒ e

1
4
t2y =

∫

e
1
4
t2dt + c

⇒ y = e−
1
4
t2
[
∫ t

0
e

1
4
s2ds + c

]

;

Finally we find the particular solution based on the given initial
condition: y(0) = 1 ⇒ c = 1; So the particular solution is

y = e−
1
4
t2
[
∫ t

0
e

1
4
s2ds + 1

]
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Introduction Separable Equations

Subsection 2

Separable Equations
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Introduction Separable Equations

Separable Equations

dy

dx
= f (x , y) is a special case of M(x , y) + N(x , y)

dy

dx
= 0

Just take M(x , y) = − f (x , y), N(x , y) = 1;

Assume that M(x , y) = M(x) is a function of x only and that
N(x , y) = N(y) is a function of y only; Then

M(x) + N(y)
dy

dx
= 0

N(y)
dy

dx
= −M(x)

N(y)dy = −M(x)dx ;

Because x , y can be separated in either side of the equation

M(x) + N(y)
dy

dx
= 0 is called a separable differential equation;
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Introduction Separable Equations

Solving a Separable Equation: Example

Find the general solution of the separable differential equation

dy

dx
=

x2

1− y2
;

dy

dx
=

x2

1− y2
⇒ (1− y2)dy = x2dx

⇒

∫

(1− y2)dy =

∫

x2dx

⇒ y −
1

3
y3 =

1

3
x3 + C ;
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Introduction Separable Equations

The General Separable Equation

Consider the separable differential equation M(x) + N(y)
dy

dx
= 0;

Assume that we are able to find H1(x) and H2(y), such that

∫

M(x)dx = H1(x),

∫

N(y)dy = H2(y);

Then, we get
N(y)dy = −M(x)dx

which yields ∫

N(y)dy = −

∫

M(x)dx

and, therefore,

H2(y) = −H1(y) + c , for some constant c ;
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Introduction Separable Equations

Solving a Separable Equation I

Solve the separable equation
dy

dx
=

3x2 + 4x + 2

2(y − 1)
, subject to the

initial condition y(0) = −1;

dy

dx
=

3x2 + 4x + 2

2(y − 1)

⇒ (2y − 2)dy = (3x2 + 4x + 2)dx

⇒
∫

(2y − 2)dy =
∫

(3x2 + 4x + 2)dx

⇒ y2 − 2y = x3 + 2x2 + 2x + c ;

For the particular solution:
y(0) = −1 ⇒ (−1)2 − 2(−1) = 0 + c ⇒ c = 3; Therefore, we obtain

y2 − 2y = x3 + 2x2 + 2x + 3;
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Introduction Separable Equations

Solving a Separable Equation II

Solve the separable equation
dy

dx
=

4x − x3

4 + y3
; Find the solution curve

passing through the point (0, 1);

dy

dx
=

4x − x3

4 + y3

⇒ (4 + y3)dy = (4x − x3)dx

⇒
∫

(4 + y3)dy =
∫

(4x − x3)dx

⇒ 4y +
1

4
y4 = 2x2 −

1

4
x4 + c ;

For the particular solution:

y(0) = 1 ⇒ 4 · 1 +
1

4
· 14 = 0 + c ⇒ c = 17

4 ; Therefore, we obtain

4y +
1

4
y4 = 2x2 −

1

4
x4 +

17

4
⇒ y4 + 16y + x4 − 8x2 = 17;
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Introduction Modeling with First Order Equations

Subsection 3

Modeling with First Order Equations
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Introduction Modeling with First Order Equations

Application: Mixing

At time t = 0 a tank contains Q0 lb of salt
dissolved in 100 gallons of water; Water con-
taining 1

4 lb of salt/gal is entering the tank at
a rate of r gal/min and the mixture is draining
from the tank at the same rate; Set up the
initial value problem that describes this flow
process and find the amount of salt Q(t) in
the tank at time t;

dQ
dt

= rate in− rate out ⇒ dQ
dt

= r
4 − rQ

100 and Q(0) = Q0;
dQ
dt

+ r
100Q = r

4 ⇒ e
r

100
t dQ
dt

+ r
100e

r
100

tQ = r
4e

r
100

t

⇒ d
dt
(e

r
100

tQ) = r
4e

r
100

t ⇒ e
r

100
tQ = 25e

r
100

t + c

⇒ Q = 25 + ce−
r

100
t ;

Now Q(0) = Q0 ⇒ 25 + c = Q0 ⇒ c = Q0 − 25; Therefore
Q(t) = 25 + (Q0 − 25)e−

r
100

t ;
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Introduction Modeling with First Order Equations

Application: Compound Interest

Suppose that a sum of money S0 is deposited in an account that pays
interest at an annual rate r ; Assume that compounding takes place
continuously; Set up a simple initial value problem that describes the value
S(t) of the investment at time t.

dS
dt

= rS and S(0) = S0;
dS
dt

− rS = 0 ⇒ e−rt dS
dt

− re−rtS = 0

⇒ d
dt
(e−rtS) = 0 ⇒ e−rtS = c

⇒ S = cert ;

Now S(0) = S0 ⇒ c = S0; Therefore, S(t) = S0e
rt ;
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Introduction Modeling with First Order Equations

Reviewing By-Parts Integration

Compute the integral

∫

et/2 sin 2tdt;

∫

et/2 sin 2tdt =

∫

(2et/2)′ sin 2tdt

= 2et/2 sin 2t −

∫

4et/2 cos 2tdt

= 2et/2 sin 2t −

∫

(8et/2)′ cos 2tdt

= 2et/2 sin 2t − 8et/2 cos 2t −

∫

16et/2 sin 2tdt;

Therefore,

17

∫

et/2 sin 2tdt = 2et/2 sin 2t − 8et/2 cos 2t
∫

et/2 sin 2tdt = 2
17e

t/2 sin 2t − 8
17e

t/2 cos 2t + C ;
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Introduction Modeling with First Order Equations

Application: Chemicals in a Pond

Consider a pond that initially contains 10 million gal of fresh water; Water
containing a chemical flows into the pond at the rate of 5 million gal/year,
and the mixture in the pond flows out at the same rate; The concentration
γ(t) of chemical in the incoming water varies periodically with time
according to the expression γ(t) = 2 + sin 2t grams/gal; Construct a
mathematical model of this flow process and determine the amount Q(t)
of chemical in the pond at time t;

dQ
dt

= rate in− rate out = 5 · 106(2 + sin 2t)− 5 · 106 Q
107

= 107 + 5 · 106 sin 2t − 1
2Q and Q0 = 0;

dQ
dt

+ 1
2Q = 107 + 5 · 106 sin 2t;
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Introduction Modeling with First Order Equations

Chemicals in a Pond (Cont’d)

dQ
dt

+ 1
2Q = 107 + 5 · 106 sin 2t

⇒ et/2 dQ
dt

+ 1
2e

t/2Q = (107 + 5 · 106 sin 2t)et/2

⇒ d
dt
(et/2Q) = 107et/2 + 5 · 106et/2 sin 2t

⇒ et/2Q = 2 · 107et/2 + 107

17 e
t/2 sin 2t − 4·107

17 et/2 cos 2t + c

⇒ Q = 2 · 107 + 107

17 sin 2t − 4·107

17 cos 2t + ce−t/2;

Now Q(0) = 0 ⇒ 2 · 107 − 4·107

17 + c = 0 ⇒ c = −30
17 · 10

7; Therefore,

Q(t) = 2 · 107 +
107

17
sin 2t −

4 · 107

17
cos 2t −

30

17
· 107e−t/2;
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Introduction Modeling with First Order Equations

Application: Velocity and Gravitation
A body of constant mass m is projected away from the earth in a direction
perpendicular to the earth’s surface with an initial velocity v0; Assuming
that there is no air resistance, but taking into account the variation of the
earths gravitational field with distance, find an expression for the velocity
during the ensuing motion;

The weight is inversely proportional to the square of the distance R + x of
the object from the center of the earth w(x) = − k

(R+x)2
;

Since on the surface of the earth, w(0) = −mg , we get that

− k
R2 = −mg ⇒ k = mgR2; Therefore, w(x) = − mgR2

(R+x)2
;

An application of Newton’s Law Force = Mass× Acceleration, gives

m
dv

dt
= −

mgR2

(R + x)2
, v(0) = v0;
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Introduction Modeling with First Order Equations

Velocity and Gravitation (Cont’d)

m
dv

dt
= −

mgR2

(R + x)2
⇒

dv

dx

dx

dt
= −

gR2

(R + x)2

⇒ v
dv

dx
= −

gR2

(R + x)2
⇒

∫

vdv =

∫

−
gR2

(R + x)2
dx

⇒
v2

2
=

gR2

R + x
+ c ;

Now, v(0) = v0 and x(0) = 0 yield
v20
2

=
gR2

R
+ c ⇒ c =

v20
2

− gR ;

Therefore,
v2

2
=

gR2

R + x
+

v20
2

− gR and, thus,

v = ±

√

v20 − 2gR +
2gR2

R + x
;
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Introduction Exact Equations and Integrating Factors

Subsection 4

Exact Equations and Integrating Factors
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Introduction Exact Equations and Integrating Factors

Example of Solving an Exact Equation

Solve the differential equation 2x + y2 + 2xyy ′ = 0;

The function ψ(x , y) = x2 + xy2 is such that

∂ψ

∂x
= 2x + y2 and

∂ψ

∂y
= 2xy ;

Therefore the differential equation can be written as

∂ψ

∂x
+
∂ψ

∂y

dy

dx
= 0;

Assuming that y is a function of x and considering the chain rule, we

obtain
dψ

dx
=

d

dx
(x2 + xy2) = 0;

Thus, ψ(x , y) = x2 + xy2 = c , where c is an arbitrary constant, is an
equation that defines the solutions of the given differential equation
implicitly.
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Introduction Exact Equations and Integrating Factors

General Form of Exact Equations

Consider the differential equation

M(x , y) + N(x , y)y ′ = 0;

Suppose that we can identify a function ψ, such that
∂ψ

∂x
(x , y) = M(x , y),

∂ψ

∂y
(x , y) = N(x , y) and ψ(x , y) = c defines

y = φ(x) implicitly as a differentiable function of x ;

Then

M(x , y) + N(x , y)y ′ =
∂ψ

∂x
+
∂ψ

∂y

dy

dx
=

d

dx
[ψ(x , φ(x))]

So the differential equation becomes
d

dx
[ψ(x , φ(x))] = 0;

In this case the equation is called an exact differential equation;

Its solutions are given implicitly by ψ(x , y) = c , where c is an
arbitrary constant;
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Introduction Exact Equations and Integrating Factors

A Recognition Theorem for Exact Differential Equations

For some equations it may not be possible to detect that they are
exact very easily;

The following theorem provides a systematic way of doing this:

Theorem (Detection of Exactness)

Let the functions M,N,My , and Nx , where subscripts denote partial
derivatives, be continuous in the rectangular region
R : α < x < β, γ < y < δ; Then M(x , y) + N(x , y)y ′ = 0 is an exact
differential equation in R if and only if My (x , y) = Nx(x , y) at each point
of R ; That is, there exists a function ψ satisfying

ψx(x , y) = M(x , y) and ψy (x , y) = N(x , y),

if and only if M and N satisfy My (x , y) = Nx(x , y);
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Introduction Exact Equations and Integrating Factors

Example I

Solve the differential equation
(y cos x + 2xey ) + (sin x + x2ey − 1)y ′ = 0;

Calculate My and Nx : My(x , y) = cos x + 2xey ;
Nx(x , y) = cos x + 2xey ; Therefore, My(x , y) = Nx (x , y), i.e., the
given equation is exact;
Thus there exists a ψ(x , y) such that

ψx(x , y) = y cos x + 2xey and ψy (x , y) = sin x + x2ey − 1;

Integrating the first, we obtain ψ(x , y) = y sin x + x2ey + h(y);
Setting ψy = N gives
ψy (x , y) = sin x + x2ey + h′(y) = sin x + x2ey − 1; Thus h′(y) = −1
and h(y) = −y ; (The constant of integration can be omitted;)
Substituting for h(y) gives ψ(x , y) = y sin x + x2ey − y ;
Hence the solutions are given implicitly by y sin x + x2ey − y = c ;
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Introduction Exact Equations and Integrating Factors

Example II

Solve the differential equation (3xy + y2) + (x2 + xy)y ′ = 0;

We get My (x , y) = 3x + 2y ; Nx(x , y) = 2x + y ; Since My 6= Nx , the
given equation is not exact;
To see that it cannot be solved by the procedure described above, let
us seek a function ψ, such that ψx(x , y) = 3xy + y2 and
ψy (x , y) = x2 + xy ;
Integrating the first gives ψ(x , y) = 3

2x
2y + xy2 + h(y), where h is an

arbitrary function of y only; To try to satisfy the second, we compute
ψy and set it equal to N, obtaining 3

2x
2 + 2xy + h′(y) = x2 + xy or

h′(y) = −1
2x

2 − xy ;
Since the right side depends on x as well as y , it is impossible to
solve for h(y); There is no ψ(x , y) satisfying both partial derivative
equations ψx(x , y) = 3xy + y2 and ψy (x , y) = x2 + xy ;
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Introduction Exact Equations and Integrating Factors

Integrating Factors: From Non-exact to Exact Equations

Consider the equation M(x , y)dx + N(x , y)dy = 0;

Multiply by a function µ and try to choose µ so that the resulting
equation µ(x , y)M(x , y)dx + µ(x , y)N(x , y)dy = 0 be exact;

For this to be exact, we need (µM)y = (µN)x ;

Thus, the integrating factor µ must satisfy the first order partial
differential equation Mµy − Nµx + (My − Nx)µ = 0;

If such a function µ can be found, then the original equation will be
exact;

The derived partial differential equation may have more than one
solution; If this is the case, any such solution may be used as an
integrating factor of the original equation;
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Introduction Exact Equations and Integrating Factors

Case Where Simple Integrating Factors Exist

Let us determine necessary conditions on M and N so that
M(x , y)dx + N(x , y)dy = 0 has an integrating factor µ that depends
on x only;

Assuming that µ is a function of x only, we have
(µM)y = µMy , (µN)x = µNx + N dµ

dx
;

Thus, for (µM)y = (µN)x , it is necessary that dµ
dx

=
My−Nx

N
µ;

If
My−Nx

N
is a function of x only, then there is an integrating factor µ

that also depends only on x ; Further, µ(x) can be found by solving
dµ
dx

=
My−Nx

N
µ, which is both linear and separable;

A similar procedure can be used to determine a condition under which
M(x , y)dx + N(x , y)dy = 0 has an integrating factor µ that depends
on y only;
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Introduction Exact Equations and Integrating Factors

Example of Conversion into an Exact Equation

Find an integrating factor for the equation
(3xy + y2) + (x2 + xy)y ′ = 0 and then solve the equation;

We have shown that this equation is not exact;
Let us determine whether it has an integrating factor that depends on
x only;
On computing the quantity

My−Nx

N
, we find that

My (x , y)− Nx(x , y)

N(x , y)
=

3x + 2y − (2x + y)

x2 + xy
=

1

x
;

Thus there is an integrating factor µ that is a function of x only, and
it satisfies the differential equation dµ

dx
= µ

x
; Hence µ(x) = x ;

Multiplying the original by this integrating factor, we obtain

(3x2y + xy2) + (x3 + x2y)y ′ = 0;
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Example of Conversion into an Exact Equation (Cont’d)

We obtained
(3x2y + xy2) + (x3 + x2y)y ′ = 0;

This equation is exact, since

∂M

∂y
=
∂(3x2y + xy2)

∂y
= 3x2 + 2xy =

∂(x3 + x2y)

∂x
=
∂N

∂x
;

Moreover,

ψ(x , y) =

∫

(3x2y + xy2)dx = x3y +
1

2
x2y2 + h(y);

Setting
x3 + x2y + h′(y) = x3 + x2y

we get y ′(y) = 0; So we can take h(y) = 0;
Thus h(x , y) = x3y + 1

2x
2y2;

So the solutions are given implicitly by x3y + 1
2x

2y2 = c ;
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