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Introduction

: : : . d
o We deal with first-order differential equations d_); = f(t,y), where f
is a given function of two variables;

o Any differentiable function y = ¢(t) that satisfies this equation for all
t in some interval is called a solution;

@ We want to determine whether such functions exist and, if so, to
develop methods for finding them;

o For an arbitrary function f, there is no general method for solving the
equation in terms of elementary functions;

@ So we focus on special types of first order equations:

o Linear Equations;
o Separable Equations;
o Exact Equations;

George Voutsadakis (LSSU)



Introduction Linear Equations; Method of Integrating Factors

Subsection 1

Linear Equations; Method of Integrating Factors
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Introduction

o If the function f in % = f(t,y) depends linearly on the dependent

variable y, then the equation is called a first order linear equation;
o A typical example is
dy
— =-—-ay+b
dt y )
where a, b are constants;

@ We consider a more general first order linear equation, obtained by
replacing the coefficients a and b by arbitrary functions of t;

o The general first order linear equation in the standard form is

&

4 TPty =g(t),

where p and g are given functions of the independent variable t;
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Linear Equations; Method of Integrating Factors

Introduction

Solving % = —ay + b by Integrating

We work as follows:

dy
E——ay—i—b g
b
V2 dybz—adt = /dyb=/—adt
Y =3 Y—=3
b _ ,C_—at
= ‘y ; ete
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Introduction Linear Equations; Method of Integrating Factors

Leibniz's Integrating Factor Method: An Example

o Solve the differential equation - - 2y = t/3

Multiply both sides by a functlon u(t), as yet undetermined:

u(t) 2u(t‘)y = 2u(t) e'/3;

Can we choose p(t) so that the left side is recognizable as the
derivative of some particular expression?
Note that, by the product rule

Sl = p(y 2 + 289,

Thus, we need to choose

du(t) _ 1 .
a  2F u(t);
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Introduction Linear Equations; Method of Integrating Factors

Example (Cont'd)

o We want to solve the differential equation % =+ %y = %et/3; We
multiplied by pu(t): ,u(t)% + Su(t)y = Su(t)et/3; We found

28 = Lu(e);

S oo Shll=
(t) 2 gt PTG

= In|u(t)|:%t+C = u(t) = cet’?,

Now, with ¢ = 1, we obtain

dy 1 1 d 1
et/2_ + _et/2y _ _e5t/6 — —(et/zy) _ _e5t/6
dt 2 2 dt 2
= et/2y _ %ge&m +c = y= get/3 + cet/2:
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Introduction Linear Equations; Method of Integrating Factors

The Integrating Factor Method

dy
t
- T =8()
Multiply by the integrating factor u(t) = e':
d
et dy + ae?ty = etg(t)

D leny] = ertg()
ety = /e"’tg(t)dt +c

y = e‘at/eatg(t)dt + ce™?t;

or, if not possible to integrate explicitly,

t
y= e“"t/ e?**g(s)ds + ce™?.
1

0
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Introduction Linear Equations; Method of Integrating Factors

Applying the Method to An Example

o Solve the differential equation % —2y=4—1t;
First a reminder:

[te™2dt = [t(—Le 2t)dt =
— %te‘zt —f —%e‘”dt = — %te"” = %e"zt + ¢;

Now we start the main work:

& oy=4-t = e NL _2e2y=(4-t)e ™

= %[e‘hy] =(4—t)e 2t

= e 2ty = [4e %dt— [te ?dt

= g y= e %te‘zr + %e‘zr +c
= e—2ty — %te—2t _ %e—zt T

= y=1it—1+4ce¥;
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Introduction Linear Equations; Method of Integrating Factors

Integrating Factor Method: The General Case

&y
dt
o p(t)dr% + p(t)e) POty — of PNt g (1)

+p(t)y = g(t)

© fel ptty] = of s)otg 1)
ef Plt)dty, _ / e POt g(1)dt +

y = e~ J p(t)dt [/ef Pt g(t)dt + ¢

or, if not possible to integrate explicitly,
t

y = e—fp(t)dt /efp(s)dsg(s)ds +c|;

to
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Introduction Linear Equations; Method of Integrating Factors

Example |

@ Solve the initial value problem

d

d—i 2oy =42, y(1)=2, fort>0;

t% + 2y :2 4t% = % + %y :2 4t; We compute the integrating factor:
u(t) = ef 19t = e2Int — In(¥*) — 2. We start work on the equation:

t

@2y =4t = 2% 2ty =413
= %[tzy] =43 = ty=t"4c
= y=t+3%;
Finally we find the particular solution based on the given initial
condition:
y(1)=2 = 14+c=2 = c=1

So the particular solution is y = t? + t—lz, t > 0;
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Introduction Linear Equations; Method of Integrating Factors

Example Il

@ Solve the initial value problem

2y +ty=2, y(0)=1,

2 +ty =2=y' + éy = 1; We compute the integrating factor
p(t) = el 2t — ¢1t; We start work on the equation:

0 B, — L2
Yy 3y = = y+ et y—e4
=

t
= y= e—it’ [/ e}tszds—i-c] ;
0

Finally we find the particular solution based on the given initial
condition: y(0) =1 =

_ltz t 152
y=¢€ 4 es® ds+1
0
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Introduction Separable Equations

Separable Equations

dy . . dy
ol f(x,y) is a special case of M(x,y) + N(x,y) vl 0

Just take M(x,y) = — f(x,y), N(x,y) =1;

Assume that M(x,y) = M(x) is a function of x only and that
N(x,y) = N(y) is a function of y only; Then

M) + N(y) 2 =0

dy
N(y)— =-M
()2 = -M(x)
N(y)dy = —M(x)dx;
Because x, y can be separated in either side of the equation

M(x) + N(y)d—i = 0 is called a separable differential equation;
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Introduction Separable Equations

Solving a Separable Equation: Example

o Find the general solution of the separable differential equation

dy <
dx 1-—y?'
d x?
d_i -1, = (1 — y?)dy = x?dx

= /(1 —y?2)dy = /xzdx

1
= y—gy §x +C;
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Introduction Separable Equations

The General Separable Equation

d
Consider the separable differential equation M(x) + N(y)d—i =0;

Assume that we are able to find Hj(x) and Ha(y), such that

/ M(x)dx = Ha(x), / N(y)dy = Ha(y)

Then, we get N(y)dy = —M(x)dx

which yields

/N(y)dy: —/M(x)dx

and, therefore,

Hx(y) = —Hi(y) + ¢, for some constant c;
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Introduction Separable Equations

Solving a Separable Equation |

dy 3x*>+4x+2
@ Solve the separable equation 2 w subject to the
dx 2(y —1)

initial condition y(0) = —1;
dy 3x2 4+ 4x + 2
dx  2(y—1)
= (2y —2)dy = (3x% + 4x + 2)dx
= [(2y —2)dy = [ (3x% + 4x + 2)dx
= y2-2y=x3+2x2+2x+;
For the particular solution:
y(0) = =1 = (1) —=2(=1) =0+ ¢ = ¢ = 3; Therefore, we obtain

y2 =2y =x3+2x2 +2x +3;
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Introduction Separable Equations

Solving a Separable Equation Il

. dy  Ax—x3 _ :
o Solve the separable equation . u; Find the solution curve
dx 4+y3

passing through the point (0, 1);
Q _ Ax— x3
dx  4+y3
= (4+y3dy = (4x — x3)dx
=  [(4+y3dy = [ (4x — x3)dx
1 1
= Ayt gyt=2¢ -t tc
For the particular solution:

1
y(0)=1=>4'1+z'14=0+c=>c=%; Therefore, we obtain
1

1 17
4y+Zy4:2x2—Zx4+I =  y* 416y +x* —8x% = 17;
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Subsection 3

Modeling with First Order Equations
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Introduction

At time t = 0 a tank contains Qg |b of salt
dissolved in 100 gallons of water; Water con-
taining 7 L b of salt/gal is entering the tank at
a rate of r gal/min and the mixture is draining
from the tank at the same rate; Set up the
initial value problem that describes this flow
process and find the amount of salt Q(t) in
the tank at time t;

dQ _ S aQ
at =rate In —rate out = gt — 1

daQ _
L1 hQ=§ =
= L(ew!Q)= ﬁeﬁ =

= Q=25+ ce o!;
Now Q(0) =
Q(t) =25+ (Qp — 25)e 100 ?;

rgal/min,f Ib/gal

I o

elootQ = 25e100t +c

Q=25+ c= Q= c= Qy— 25; Therefore



Introduction Modeling with First Order Equations

Application: Compound Interest

Suppose that a sum of money Sy is deposited in an account that pays
interest at an annual rate r; Assume that compounding takes place
continuously; Set up a simple initial value problem that describes the value
S(t) of the investment at time ¢.
ds .
G =1rS and S5(0) = So;
ds _ —rtdS —rtc _
GF—rS=0 = e"Z-re"5=0
= Z(e"S)=0 = e"S=c
= S=cet

Now S(0) = So = ¢ = Sp; Therefore, S(t) = Spe';
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Introduction Modeling with First Order Equations

Reviewing By-Parts Integration

Compute the integral /et/2 sin 2tdt;

/e'-‘/2 sin2tdt = /(2ef/2)' sin 2tdt
= 2e/?sin2t — /4e"“/2 cos 2tdt
= 2et/2sin2t — /(8et/2)’ cos 2tdt
= 2e'/?sin2t — 8e'/? cos 2t — /16et/2 sin 2tdt;
Therefore,

17/et/2 sin 2tdt = 2et/? sin 2t — 8et/2 cos 2t

/et/2 sin 2tdt = 1—27et/2 sin 2t — %et/z cos 2t + C;
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Introduction

Consider a pond that initially contains 10 million gal of fresh water; Water
containing a chemical flows into the pond at the rate of 5 million gal/year,
and the mixture in the pond flows out at the same rate; The concentration
~(t) of chemical in the incoming water varies periodically with time
according to the expression 7(t) = 2 + sin 2t grams/gal; Construct a
mathematical model of this flow process and determine the amount Q(t)
of chemical in the pond at time t;

dQ = rate in — rate out = 5- 10%(2 +sin2t) — 5 - 10637
:107+5-1065|n2t—§Q and Qo =0;
4@ + 1Q =107 +5-10°sin 2t;
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Introduction Modeling with First Order Equations

Chemicals in a Pond (Cont'd)

‘(’1_?+%Q=107+5-1065in2t
et/2dQ | 10t/2Q — (107 + 5 - 108 sin 2t)et/2
4 (e/2Q) = 107e'/2 + 5 - 10%/2 sin 2t
et/2Q = 2.107et/2 + 10 et/2sin 2t — 410 et/2 cos 2t + ¢

=
=
=
= t/2.

Q=2-10"+ 1 sm2t—%cos2t+ce
Now Q(0) =0=2-10" — 4107—i-C—O:>C— %-107; Therefore,

—2.107 & 2 g _ —I _ 2 107" t/2.
Q(t)=2-10" + 17 sin 2t 17 cos 2t 17 10%e™"%;

George Voutsadakis (LSSU) Differential Equations January 2014 25 / 37



Introduction

A body of constant mass m is projected away from the earth in a direction
perpendicular to the earth's surface with an initial velocity vg; Assuming
that there is no air resistance, but taking into account the variation of the
earths gravitational field with distance, find an expression for the velocity
during the ensuing motion;

R

The weight is inversely proportional to the square of the distance R + x of

the object from the center of the earth w(x) = —ﬁ;
Since on the surface of the earth, w(0) = — mg, we get that
—% = —mg = k = mgR?; Therefore, w(x) = —%;
An application of Newton's Law Force = Mass x Acceleration, gives
dv mgR?
m— = “Rix? v(0) = vo;
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Introduction Modeling with First Order Equations

Velocity and Gravitation (Cont'd)

dv mgR? dv dx gR?

Mgt~ (Rix2  dxdt (Rt x)p

dv gR? _ gR?
= v&__i(R—i—x)z = /vdv—/—i(R_i_x)zdx
v2 _ gR?

2 R+x

+ c;

2 R2 2
Now, v(0) = vo and x(0) = 0 yield "70 =%+c=>c= %O—gR;
v2 gR? ve

Therefore, — = — —gR and, th
erefore 5 R+x+ 5 gK an us,
2gR2
=g —2gR
Y \/ * R+ x’
George Voutsadakis (LSSU) Differential Equations January 2014
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Introduction Exact Equations and Integrating Factors

Subsection 4

Exact Equations and Integrating Factors
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Introduction Exact Equations and Integrating Factors

Example of Solving an Exact Equation

o Solve the differential equation 2x + y? + 2xyy’ = 0;
The function 9(x, y) = x2 + xy? is such that

g—qf =2x+y? and g—;’[/} = 2xy;

Therefore the differential equation can be written as
o  Opdy
Ox | Bydx

Assuming that y is a function of x and considering the chain rule, we
. dy  d
btain —— = —(x? 2 =0
obtain — dx(X + xy*)
Thus, ¥(x,y) = x*> + xy? = c, where c is an arbitrary constant, is an

equation that defines the solutions of the given differential equation
implicitly.
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Introduction

o Consider the differential equation
M(x,y) + N(x,y)y" = 0;

@ Suppose that we can |dent|fy a function 1, such that

20 (x9) = M(x,y). 22(x,y) = N(x,) and (x,y) = ¢ defines
X dy

y = ¢(x) implicitly as a differentiable function of x;
o Then

Mxy) + Moyl = 55+ G = 0 o00)

d
o So the differential equation becomes d—[¢(x, #(x))] =0;
b

@ In this case the equation is called an exact differential equation;
o Its solutions are given implicitly by 1(x, y) = ¢, where c is an
arbitrary constant;
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Introduction

o For some equations it may not be possible to detect that they are
exact very easily;

o The following theorem provides a systematic way of doing this:

Theorem (Detection of Exactness)

Let the functions M, N, M,, and N, where subscripts denote partial
derivatives, be continuous in the rectangular region
R:a<x<f,v<y<§d; Then M(x,y)+ N(x,y)y’ =0 is an exact
differential equation in R if and only if M, (x,y) = Nx(x,y) at each point
of R; That is, there exists a function % satisfying

¢x(X,Y)=M(XaY) and ¢y(XaY)=N(X,Y),

if and only if M and N satisfy M, (x,y) = Ny(x, y);
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Introduction

o Solve the differential equation

(y cos x + 2xe¥) + (sinx + x?e” — 1)y’ = 0;
Calculate M, and N,: M,(x,y) = cosx + 2xe;
Ny(x,y) = cosx + 2xe”; Therefore, M,(x,y) = Ni(x,y), i.e., the
given equation is exact;
Thus there exists a 1(x, y) such that

y(x,y) = ycosx +2xe¥ and 1 (x,y) =sinx + x’e’ —1;
Integrating the first, we obtain ¥(x,y) = ysinx + x2e’ + h(y);
Setting 1, = N gives
Yy (x,y) =sinx + x?e” + H(y) =sinx + x?¢” —1; Thus H'(y) = —1
and h(y) = —y; (The constant of integration can be omitted;)
Substituting for h(y) gives ¥(x,y) = ysinx + x?e¥ — y;
Hence the solutions are given implicitly by y sinx + x?e” — y = ¢;
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Introduction

o Solve the differential equation (3xy + y?) + (x® + xy)y’ = 0;

We get M, (x,y) = 3x +2y; Ni(x,y) =2x+y; Since M, # N, the
given equation is not exact;

To see that it cannot be solved by the procedure described above, let
us seek a function 1, such that ¢, (x,y) = 3xy + y? and

by (x,y) = x* + xy;

Integrating the first gives ¥(x,y) = %x2y + xy? + h(y), where h is an
arbitrary function of y only; To try to satisfy the second, we compute
1, and set it equal to N, obtaining %X2 +2xy + h'(y) = x? + xy or
H(y) = —3x* = xy;

Since the right side depends on x as well as y, it is impossible to
solve for h(y); There is no ¥(x, y) satisfying both partial derivative
equations ¥x(x,y) = 3xy + y? and ¥, (x,y) = x> + xy;
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Introduction

o Consider the equation M(x, y)dx + N(x,y)dy = 0;

@ Multiply by a function i and try to choose i so that the resulting
equation p(x, y)M(x, y)dx + p(x, y)N(x,y)dy = 0 be exact;

o For this to be exact, we need (uM), = (uN)y;

@ Thus, the integrating factor p must satisfy the first order partial
differential equation My, — Npy + (My, — Ny)p = 0;

o If such a function i can be found, then the original equation will be
exact;

o The derived partial differential equation may have more than one
solution; If this is the case, any such solution may be used as an
integrating factor of the original equation;
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Introduction

o Let us determine necessary conditions on M and N so that
M(x,y)dx + N(x, y)dy = 0 has an integrating factor yu that depends
on x only;

o Assuming that p is a function of x onIy, we have
(uM)y = My, (N)x = pNy + N9E;
o Thus, for (uM), = (uN)x, it is necessary that —’i NNX,u,

o If MYNNX is a function of x only, then there is an integrating factor p

that also depends only on x; Further, p(x) can be found by solving
dp _ My
dx

o A similar procedure can be used to determine a condition under which
M(x,y)dx + N(x, y)dy = 0 has an integrating factor y that depends
on y only;

M which is both linear and separable;
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Introduction

o Find an integrating factor for the equation
(3xy 4+ y?) + (x*> + xy)y’ = 0 and then solve the equation;
We have shown that this equation is not exact;
Let us determine whether it has an integrating factor that depends on
x only;
On computing the quantity

MM we find that

My(x,y) = Ne(x,y) _ 3x+2y —(2x+y) 1

N(x,y) N x2 + xy X

Thus there is an integrating factor u that is a function of x only, and

it satisfies the differential equation ‘;—i‘ = £; Hence p(x) = x;

x!

Multiplying the original by this integrating factor, we obtain

3%y +xv%) + (3 + xPy)y' = 0;
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Introduction Exact Equations and Integrating Factors

Example of Conversion into an Exact Equation (Cont'd)

o We obtained
3%y +xv%) + (x* + x%y)y’ = 0;
This equation is exact, since
OM  9(3x%y + xy?)
oy oy
Moreover,

1
wixy) = [ 3y Pk =y + 32 + hly)

o(x3+x%y)  ON
=3+ 2 = Ox ox '

Setting
X3 + X2_y —+ hl(y) — X3 + X2y
we get y'(y) = 0; So we can take h(y) = 0;
Thus h(x,y) = x3y + 3x2y?;
So the solutions are given implicitly by x3y L %x2y2 =c:
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