Elementary Differential Equations

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 310

(1) Introduction

- Linear Equations; Method of Integrating Factors
- Separable Equations
- Modeling with First Order Equations
- Exact Equations and Integrating Factors

General Framework

- We deal with first-order differential equations $\frac{d y}{d t}=f(t, y)$, where f is a given function of two variables;
- Any differentiable function $y=\phi(t)$ that satisfies this equation for all t in some interval is called a solution;
- We want to determine whether such functions exist and, if so, to develop methods for finding them;
- For an arbitrary function f, there is no general method for solving the equation in terms of elementary functions;
- So we focus on special types of first order equations:
- Linear Equations;
- Separable Equations;
- Exact Equations;

Subsection 1

Linear Equations; Method of Integrating Factors

Linear Equations

- If the function f in $\frac{d y}{d t}=f(t, y)$ depends linearly on the dependent variable y, then the equation is called a first order linear equation;
- A typical example is

$$
\frac{d y}{d t}=-a y+b
$$

where a, b are constants;

- We consider a more general first order linear equation, obtained by replacing the coefficients a and b by arbitrary functions of t;
- The general first order linear equation in the standard form is

$$
\frac{d y}{d t}+p(t) y=g(t)
$$

where p and g are given functions of the independent variable t;

Solving $\frac{d y}{d t}=-a y+b$ by Integrating

We work as follows:

$$
\begin{aligned}
& \frac{d y}{d t}=-a y+b \stackrel{a \neq 0}{\Rightarrow} \frac{d y}{d t}=-a\left(y-\frac{b}{a}\right) \\
& \stackrel{y \neq \frac{b}{a}}{\Rightarrow} \frac{d y}{y-\frac{b}{a}}=-a d t \Rightarrow \int \frac{d y}{y-\frac{b}{a}}=\int-a d t \\
& \Rightarrow \ln \left|y-\frac{b}{a}\right|=-a t+C \Rightarrow\left|y-\frac{b}{a}\right|=e^{C} e^{-a t} \\
& \stackrel{y>\frac{b}{a}}{\Rightarrow} y=\frac{b}{a}+c e^{-a t} ;
\end{aligned}
$$

Leibniz's Integrating Factor Method: An Example

- Solve the differential equation $\frac{d y}{d t}+\frac{1}{2} y=\frac{1}{2} e^{t / 3}$; Multiply both sides by a function $\mu(t)$, as yet undetermined:

$$
\mu(t) \frac{d y}{d t}+\frac{1}{2} \mu(t) y=\frac{1}{2} \mu(t) e^{t / 3}
$$

Can we choose $\mu(t)$ so that the left side is recognizable as the derivative of some particular expression?
Note that, by the product rule

$$
\frac{d}{d t}[\mu(t) y]=\mu(t) \frac{d y}{d t}+\frac{d \mu(t)}{d t} y
$$

Thus, we need to choose

$$
\frac{d \mu(t)}{d t}=\frac{1}{2} \mu(t)
$$

Example (Cont'd)

- We want to solve the differential equation $\frac{d y}{d t}+\frac{1}{2} y=\frac{1}{2} e^{t / 3}$; We multiplied by $\mu(t): \mu(t) \frac{d y}{d t}+\frac{1}{2} \mu(t) y=\frac{1}{2} \mu(t) e^{t / 3}$; We found $\frac{d \mu(t)}{d t}=\frac{1}{2} \mu(t)$;

$$
\begin{aligned}
& \frac{\frac{d \mu(t)}{d t}}{\mu(t)}=\frac{1}{2} \quad \Rightarrow \quad \frac{d}{d t} \ln |\mu(t)|=\frac{1}{2} \\
& \quad \Rightarrow \quad \ln |\mu(t)|=\frac{1}{2} t+C \quad \Rightarrow \quad \mu(t)=c e^{t / 2}
\end{aligned}
$$

Now, with $c=1$, we obtain

$$
\begin{aligned}
& e^{t / 2} \frac{d y}{d t}+\frac{1}{2} e^{t / 2} y=\frac{1}{2} e^{5 t / 6} \quad \Rightarrow \quad \frac{d}{d t}\left(e^{t / 2} y\right)=\frac{1}{2} e^{5 t / 6} \\
& \quad \Rightarrow \quad e^{t / 2} y=\frac{1}{2} \frac{6}{5} e^{5 t / 6}+c \quad \Rightarrow \quad y=\frac{3}{5} e^{t / 3}+c e^{-t / 2}
\end{aligned}
$$

The Integrating Factor Method

$$
\frac{d y}{d t}+a y=g(t)
$$

Multiply by the integrating factor $\mu(t)=e^{a t}$:

$$
\begin{aligned}
& e^{a t} \frac{d y}{d t}+a e^{a t} y=e^{a t} g(t) \\
& \frac{d}{d t}\left[e^{a t} y\right]=e^{a t} g(t) \\
& e^{a t} y=\int e^{a t} g(t) d t+c \\
& y=e^{-a t} \int e^{a t} g(t) d t+c e^{-a t} ;
\end{aligned}
$$

or, if not possible to integrate explicitly,

$$
y=e^{-a t} \int_{t_{0}}^{t} e^{a s} g(s) d s+c e^{-a t} .
$$

Applying the Method to An Example

- Solve the differential equation $\frac{d y}{d t}-2 y=4-t$; First a reminder:

$$
\begin{aligned}
& \int t e^{-2 t} d t=\int t\left(-\frac{1}{2} e^{-2 t}\right)^{\prime} d t= \\
& -\frac{1}{2} t e^{-2 t}-\int-\frac{1}{2} e^{-2 t} d t=-\frac{1}{2} t e^{-2 t}-\frac{1}{4} e^{-2 t}+c
\end{aligned}
$$

Now we start the main work:

$$
\begin{aligned}
& \frac{d y}{d t}-2 y=4-t \quad \Rightarrow \quad e^{-2 t} \frac{d y}{d t}-2 e^{-2 t} y=(4-t) e^{-2 t} \\
& \quad \Rightarrow \quad \frac{d}{d t}\left[e^{-2 t} y\right]=(4-t) e^{-2 t} \\
& \quad \Rightarrow \quad e^{-2 t} y=\int 4 e^{-2 t} d t-\int t e^{-2 t} d t \\
& \quad \Rightarrow \quad e^{-2 t} y=-2 e^{-2 t}+\frac{1}{2} t e^{-2 t}+\frac{1}{4} e^{-2 t}+c \\
& \quad \Rightarrow \quad e^{-2 t} y=\frac{1}{2} t e^{-2 t}-\frac{7}{4} e^{-2 t}+c \\
& \quad \Rightarrow \quad y=\frac{1}{2} t-\frac{7}{4}+c e^{2 t}
\end{aligned}
$$

Integrating Factor Method: The General Case

$$
\begin{aligned}
& \frac{d y}{d t}+p(t) y=g(t) \\
& e^{\int p(t) d t} \frac{d y}{d t}+p(t) e^{\int p(t) d t} y=e^{\int p(t) d t} g(t) \\
& \frac{d}{d t}\left[e^{\int p(t) d t} y\right]=e^{\int p(t) d t} g(t) \\
& e^{\int p(t) d t} y=\int e^{\int p(t) d t} g(t) d t+c \\
& y=e^{-\int p(t) d t}\left[\int e^{\int p(t) d t} g(t) d t+c\right]
\end{aligned}
$$

or, if not possible to integrate explicitly,
$y=e^{-\int p(t) d t}\left[\int_{t_{0}}^{t} e^{\int p(s) d s} g(s) d s+c\right] ;$

Example I

- Solve the initial value problem

$$
t \frac{d y}{d t}+2 y=4 t^{2}, \quad y(1)=2, \quad \text { for } t>0
$$

$t \frac{d y}{d t}+2 y=4 t^{2} \Rightarrow \frac{d y}{d t}+\frac{2}{t} y=4 t$; We compute the integrating factor:
$\mu(t)=e^{\int \frac{2}{t} d t}=e^{2 \ln t}=e^{\ln \left(t^{2}\right)}=t^{2}$; We start work on the equation:

$$
\begin{aligned}
& \frac{d y}{d t}+\frac{2}{t} y=4 t \quad \Rightarrow \quad t^{2} \frac{d y}{d t}+2 t y=4 t^{3} \\
& \quad \Rightarrow \quad \frac{d}{d t}\left[t^{2} y\right]=4 t^{3} \quad \Rightarrow \quad t^{2} y=t^{4}+c \\
& \quad \Rightarrow \quad y=t^{2}+\frac{c}{t^{2}} ;
\end{aligned}
$$

Finally we find the particular solution based on the given initial condition:

$$
y(1)=2 \Rightarrow 1+c=2 \Rightarrow c=1 ;
$$

So the particular solution is $y=t^{2}+\frac{1}{t^{2}}, t>0$;

Example II

- Solve the initial value problem

$$
2 y^{\prime}+t y=2, \quad y(0)=1
$$

$2 y^{\prime}+t y=2 \Rightarrow y^{\prime}+\frac{t}{2} y=1$; We compute the integrating factor: $\mu(t)=e^{\int \frac{1}{2} t d t}=e^{\frac{1}{4} t^{2}}$; We start work on the equation:

$$
\begin{aligned}
y^{\prime} & +\frac{t}{2} y=1 \quad \Rightarrow \quad e^{\frac{1}{4} t^{2}} y^{\prime}+\frac{t}{2} e^{\frac{1}{4} t^{2}} y=e^{\frac{1}{4} t^{2}} \\
& \Rightarrow \quad \frac{d}{d t}\left[e^{\frac{1}{4} t^{2}} y\right]=e^{\frac{1}{4} t^{2}} \quad \Rightarrow \quad e^{\frac{1}{4} t^{2}} y=\int e^{\frac{1}{4} t^{2}} d t+c \\
& \Rightarrow y=e^{-\frac{1}{4} t^{2}}\left[\int_{0}^{t} e^{\frac{1}{4} s^{2}} d s+c\right]
\end{aligned}
$$

Finally we find the particular solution based on the given initial condition: $y(0)=1 \quad \Rightarrow \quad c=1$; So the particular solution is $y=e^{-\frac{1}{4} t^{2}}\left[\int_{0}^{t} e^{\frac{1}{4} s^{2}} d s+1\right]$

Subsection 2

Separable Equations

Separable Equations

$$
\frac{d y}{d x}=f(x, y) \text { is a special case of } M(x, y)+N(x, y) \frac{d y}{d x}=0
$$

$$
\text { Just take } M(x, y)=-f(x, y), N(x, y)=1
$$

Assume that $M(x, y)=M(x)$ is a function of x only and that $N(x, y)=N(y)$ is a function of y only; Then

$$
\begin{aligned}
& M(x)+N(y) \frac{d y}{d x}=0 \\
& N(y) \frac{d y}{d x}=-M(x) \\
& N(y) d y=-M(x) d x
\end{aligned}
$$

Because x, y can be separated in either side of the equation $M(x)+N(y) \frac{d y}{d x}=0$ is called a separable differential equation;

Solving a Separable Equation: Example

- Find the general solution of the separable differential equation

$$
\frac{d y}{d x}=\frac{x^{2}}{1-y^{2}}
$$

$$
\begin{aligned}
\frac{d y}{d x}=\frac{x^{2}}{1-y^{2}} & \Rightarrow \quad\left(1-y^{2}\right) d y=x^{2} d x \\
& \Rightarrow \quad \int\left(1-y^{2}\right) d y=\int x^{2} d x \\
& \Rightarrow \quad y-\frac{1}{3} y^{3}=\frac{1}{3} x^{3}+C
\end{aligned}
$$

The General Separable Equation

Consider the separable differential equation $M(x)+N(y) \frac{d y}{d x}=0$; Assume that we are able to find $H_{1}(x)$ and $H_{2}(y)$, such that

$$
\int M(x) d x=H_{1}(x), \quad \int N(y) d y=H_{2}(y)
$$

Then, we get

$$
N(y) d y=-M(x) d x
$$

which yields

$$
\int N(y) d y=-\int M(x) d x
$$

and, therefore,

$$
H_{2}(y)=-H_{1}(y)+c, \quad \text { for some constant } c ;
$$

Solving a Separable Equation I

- Solve the separable equation $\frac{d y}{d x}=\frac{3 x^{2}+4 x+2}{2(y-1)}$, subject to the initial condition $y(0)=-1$;

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{3 x^{2}+4 x+2}{2(y-1)} \\
& \Rightarrow \quad(2 y-2) d y=\left(3 x^{2}+4 x+2\right) d x \\
& \Rightarrow \int(2 y-2) d y=\int\left(3 x^{2}+4 x+2\right) d x \\
& \Rightarrow y^{2}-2 y=x^{3}+2 x^{2}+2 x+c
\end{aligned}
$$

For the particular solution:
$y(0)=-1 \Rightarrow(-1)^{2}-2(-1)=0+c \Rightarrow c=3$; Therefore, we obtain

$$
y^{2}-2 y=x^{3}+2 x^{2}+2 x+3
$$

Solving a Separable Equation II

- Solve the separable equation $\frac{d y}{d x}=\frac{4 x-x^{3}}{4+y^{3}}$; Find the solution curve passing through the point $(0,1)$;

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{4 x-x^{3}}{4+y^{3}} \\
& \Rightarrow \quad\left(4+y^{3}\right) d y=\left(4 x-x^{3}\right) d x \\
& \Rightarrow \quad \int\left(4+y^{3}\right) d y=\int\left(4 x-x^{3}\right) d x \\
& \Rightarrow \quad 4 y+\frac{1}{4} y^{4}=2 x^{2}-\frac{1}{4} x^{4}+c
\end{aligned}
$$

For the particular solution:

$$
\begin{gathered}
y(0)=1 \Rightarrow 4 \cdot 1+\frac{1}{4} \cdot 1^{4}=0+c \Rightarrow c=\frac{17}{4} ; \text { Therefore, we obtain } \\
\quad 4 y+\frac{1}{4} y^{4}=2 x^{2}-\frac{1}{4} x^{4}+\frac{17}{4} \Rightarrow y^{4}+16 y+x^{4}-8 x^{2}=17
\end{gathered}
$$

Subsection 3

Modeling with First Order Equations

Application: Mixing

At time $t=0$ a tank contains $Q_{0} \mathrm{lb}$ of salt dissolved in 100 gallons of water; Water containing $\frac{1}{4} \mathrm{lb}$ of salt/gal is entering the tank at a rate of $r \mathrm{gal} / \mathrm{min}$ and the mixture is draining from the tank at the same rate; Set up the initial value problem that describes this flow process and find the amount of salt $Q(t)$ in
r gal/min, $\frac{1}{4} \mathrm{Ib} / \mathrm{gal}$
 the tank at time t;

$$
\begin{aligned}
& \frac{d Q}{d t}=\text { rate in - rate out } \Rightarrow \quad \frac{d Q}{d t}=\frac{r}{4}-\frac{r Q}{100} \quad \text { and } \quad Q(0)=Q_{0} ; \\
& \frac{d Q}{d t}+\frac{r}{100} Q=\frac{r}{4} \Rightarrow e^{\frac{r}{100}} t \frac{d Q}{d t}+\frac{r}{100} e^{\frac{r}{100} t} Q=\frac{r}{4} e^{\frac{r}{100} t} \\
& \Rightarrow \quad \frac{d}{d t}\left(e^{\frac{r}{100} t} Q\right)=\frac{r}{4} e^{\frac{r}{100} t} \Rightarrow \quad e^{\frac{r}{100} t} Q=25 e^{\frac{r}{100} t}+c \\
& \Rightarrow \quad Q=25+c e^{-\frac{r}{100} t ;}
\end{aligned}
$$

Now $Q(0)=Q_{0} \Rightarrow 25+c=Q_{0} \Rightarrow c=Q_{0}-25$; Therefore $Q(t)=25+\left(Q_{0}-25\right) e^{-\frac{r}{100} t}$;

Application: Compound Interest

Suppose that a sum of money S_{0} is deposited in an account that pays interest at an annual rate r; Assume that compounding takes place continuously; Set up a simple initial value problem that describes the value $S(t)$ of the investment at time t.

$$
\begin{aligned}
\frac{d S}{d t} & =r S \quad \text { and } \quad S(0)=S_{0} ; \\
\frac{d S}{d t} & -r S=0 \quad \Rightarrow \quad e^{-r t} \frac{d S}{d t}-r e^{-r t} S=0 \\
& \Rightarrow \quad \frac{d}{d t}\left(e^{-r t} S\right)=0 \quad \Rightarrow \quad e^{-r t} S=c \\
& \Rightarrow S=c e^{r t}
\end{aligned}
$$

Now $S(0)=S_{0} \Rightarrow c=S_{0}$; Therefore, $S(t)=S_{0} e^{r t}$;

Reviewing By-Parts Integration

Compute the integral $\int e^{t / 2} \sin 2 t d t$;

$$
\begin{aligned}
\int e^{t / 2} \sin 2 t d t & =\int\left(2 e^{t / 2}\right)^{\prime} \sin 2 t d t \\
& =2 e^{t / 2} \sin 2 t-\int 4 e^{t / 2} \cos 2 t d t \\
& =2 e^{t / 2} \sin 2 t-\int\left(8 e^{t / 2}\right)^{\prime} \cos 2 t d t \\
& =2 e^{t / 2} \sin 2 t-8 e^{t / 2} \cos 2 t-\int 16 e^{t / 2} \sin 2 t d t
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& 17 \int e^{t / 2} \sin 2 t d t=2 e^{t / 2} \sin 2 t-8 e^{t / 2} \cos 2 t \\
& \int e^{t / 2} \sin 2 t d t=\frac{2}{17} e^{t / 2} \sin 2 t-\frac{8}{17} e^{t / 2} \cos 2 t+C
\end{aligned}
$$

Application: Chemicals in a Pond

Consider a pond that initially contains 10 million gal of fresh water; Water containing a chemical flows into the pond at the rate of 5 million gal/year, and the mixture in the pond flows out at the same rate; The concentration $\gamma(t)$ of chemical in the incoming water varies periodically with time according to the expression $\gamma(t)=2+\sin 2 t$ grams/gal; Construct a mathematical model of this flow process and determine the amount $Q(t)$ of chemical in the pond at time t;

$$
\begin{aligned}
& \frac{d Q}{d t}=\text { rate in }- \text { rate out }=5 \cdot 10^{6}(2+\sin 2 t)-5 \cdot 10^{6} \frac{Q}{10^{7}} \\
& =10^{7}+5 \cdot 10^{6} \sin 2 t-\frac{1}{2} Q \quad \text { and } \quad Q_{0}=0 ; \\
& \frac{d Q}{d t}+\frac{1}{2} Q=10^{7}+5 \cdot 10^{6} \sin 2 t ;
\end{aligned}
$$

Chemicals in a Pond (Cont'd)

$$
\begin{aligned}
& \frac{d Q}{d t}+\frac{1}{2} Q=10^{7}+5 \cdot 10^{6} \sin 2 t \\
& \quad \Rightarrow \quad e^{t / 2} \frac{d Q}{d t}+\frac{1}{2} e^{t / 2} Q=\left(10^{7}+5 \cdot 10^{6} \sin 2 t\right) e^{t / 2} \\
& \quad \Rightarrow \quad \frac{d}{d t}\left(e^{t / 2} Q\right)=10^{7} e^{t / 2}+5 \cdot 10^{6} e^{t / 2} \sin 2 t \\
& \quad \Rightarrow \quad e^{t / 2} Q=2 \cdot 10^{7} e^{t / 2}+\frac{10^{7}}{17} e^{t / 2} \sin 2 t-\frac{4 \cdot 10^{7}}{17} e^{t / 2} \cos 2 t+c \\
& \quad \Rightarrow \quad Q=2 \cdot 10^{7}+\frac{10^{7}}{17} \sin 2 t-\frac{4 \cdot 10^{7}}{17} \cos 2 t+c e^{-t / 2}
\end{aligned}
$$

Now $Q(0)=0 \Rightarrow 2 \cdot 10^{7}-\frac{4 \cdot 10^{7}}{17}+c=0 \Rightarrow c=-\frac{30}{17} \cdot 10^{7}$; Therefore,

$$
Q(t)=2 \cdot 10^{7}+\frac{10^{7}}{17} \sin 2 t-\frac{4 \cdot 10^{7}}{17} \cos 2 t-\frac{30}{17} \cdot 10^{7} e^{-t / 2}
$$

Application: Velocity and Gravitation

A body of constant mass m is projected away from the earth in a direction perpendicular to the earth's surface with an initial velocity v_{0}; Assuming that there is no air resistance, but taking into account the variation of the earths gravitational field with distance, find an expression for the velocity during the ensuing motion;

The weight is inversely proportional to the square of the distance $R+x$ of the object from the center of the earth $w(x)=-\frac{k}{(R+x)^{2}}$;
Since on the surface of the earth, $w(0)=-m g$, we get that $-\frac{k}{R^{2}}=-m g \Rightarrow k=m g R^{2}$; Therefore, $w(x)=-\frac{m g R^{2}}{(R+x)^{2}}$;
An application of Newton's Law Force $=$ Mass \times Acceleration, gives

$$
m \frac{d v}{d t}=-\frac{m g R^{2}}{(R+x)^{2}}, \quad v(0)=v_{0}
$$

Velocity and Gravitation (Cont'd)

$$
\begin{aligned}
& m \frac{d v}{d t}=-\frac{m g R^{2}}{(R+x)^{2}} \Rightarrow \frac{d v}{d x} \frac{d x}{d t}=-\frac{g R^{2}}{(R+x)^{2}} \\
& \quad \Rightarrow \quad v \frac{d v}{d x}=-\frac{g R^{2}}{(R+x)^{2}} \Rightarrow \int v d v=\int-\frac{g R^{2}}{(R+x)^{2}} d x \\
& \quad \Rightarrow \quad \frac{v^{2}}{2}=\frac{g R^{2}}{R+x}+c
\end{aligned}
$$

Now, $v(0)=v_{0}$ and $x(0)=0$ yield $\frac{v_{0}^{2}}{2}=\frac{g R^{2}}{R}+c \Rightarrow c=\frac{v_{0}^{2}}{2}-g R$;
Therefore, $\frac{v^{2}}{2}=\frac{g R^{2}}{R+x}+\frac{v_{0}^{2}}{2}-g R$ and, thus,

$$
v= \pm \sqrt{v_{0}^{2}-2 g R+\frac{2 g R^{2}}{R+x}}
$$

Subsection 4

Exact Equations and Integrating Factors

Example of Solving an Exact Equation

- Solve the differential equation $2 x+y^{2}+2 x y y^{\prime}=0$;

The function $\psi(x, y)=x^{2}+x y^{2}$ is such that

$$
\frac{\partial \psi}{\partial x}=2 x+y^{2} \quad \text { and } \quad \frac{\partial \psi}{\partial y}=2 x y
$$

Therefore the differential equation can be written as

$$
\frac{\partial \psi}{\partial x}+\frac{\partial \psi}{\partial y} \frac{d y}{d x}=0
$$

Assuming that y is a function of x and considering the chain rule, we obtain $\frac{d \psi}{d x}=\frac{d}{d x}\left(x^{2}+x y^{2}\right)=0$;
Thus, $\psi(x, y)=x^{2}+x y^{2}=c$, where c is an arbitrary constant, is an equation that defines the solutions of the given differential equation implicitly.

General Form of Exact Equations

- Consider the differential equation

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

- Suppose that we can identify a function ψ, such that $\frac{\partial \psi}{\partial x}(x, y)=M(x, y), \frac{\partial \psi}{\partial y}(x, y)=N(x, y)$ and $\psi(x, y)=c$ defines $y=\phi(x)$ implicitly as a differentiable function of x;
- Then

$$
M(x, y)+N(x, y) y^{\prime}=\frac{\partial \psi}{\partial x}+\frac{\partial \psi}{\partial y} \frac{d y}{d x}=\frac{d}{d x}[\psi(x, \phi(x))]
$$

- So the differential equation becomes $\frac{d}{d x}[\psi(x, \phi(x))]=0$;
- In this case the equation is called an exact differential equation;
- Its solutions are given implicitly by $\psi(x, y)=c$, where c is an arbitrary constant;

A Recognition Theorem for Exact Differential Equations

- For some equations it may not be possible to detect that they are exact very easily;
- The following theorem provides a systematic way of doing this:

Theorem (Detection of Exactness)

Let the functions M, N, M_{y}, and N_{x}, where subscripts denote partial derivatives, be continuous in the rectangular region
$R: \alpha<x<\beta, \gamma<y<\delta$; Then $M(x, y)+N(x, y) y^{\prime}=0$ is an exact differential equation in R if and only if $M_{y}(x, y)=N_{x}(x, y)$ at each point of R; That is, there exists a function ψ satisfying

$$
\psi_{x}(x, y)=M(x, y) \quad \text { and } \quad \psi_{y}(x, y)=N(x, y)
$$

if and only if M and N satisfy $M_{y}(x, y)=N_{x}(x, y)$;

Example I

- Solve the differential equation
$\left(y \cos x+2 x e^{y}\right)+\left(\sin x+x^{2} e^{y}-1\right) y^{\prime}=0 ;$
Calculate M_{y} and $N_{x}: M_{y}(x, y)=\cos x+2 x e^{y}$;
$N_{x}(x, y)=\cos x+2 x e^{y}$; Therefore, $M_{y}(x, y)=N_{x}(x, y)$, i.e., the given equation is exact;
Thus there exists a $\psi(x, y)$ such that

$$
\psi_{x}(x, y)=y \cos x+2 x e^{y} \quad \text { and } \quad \psi_{y}(x, y)=\sin x+x^{2} e^{y}-1
$$ Integrating the first, we obtain $\psi(x, y)=y \sin x+x^{2} e^{y}+h(y)$;

Setting $\psi_{y}=N$ gives
$\psi_{y}(x, y)=\sin x+x^{2} e^{y}+h^{\prime}(y)=\sin x+x^{2} e^{y}-1$; Thus $h^{\prime}(y)=-1$ and $h(y)=-y$; (The constant of integration can be omitted;)
Substituting for $h(y)$ gives $\psi(x, y)=y \sin x+x^{2} e^{y}-y$;
Hence the solutions are given implicitly by $y \sin x+x^{2} e^{y}-y=c$;

Example II

- Solve the differential equation $\left(3 x y+y^{2}\right)+\left(x^{2}+x y\right) y^{\prime}=0$;

We get $M_{y}(x, y)=3 x+2 y ; N_{x}(x, y)=2 x+y ;$ Since $M_{y} \neq N_{x}$, the given equation is not exact;
To see that it cannot be solved by the procedure described above, let us seek a function ψ, such that $\psi_{x}(x, y)=3 x y+y^{2}$ and $\psi_{y}(x, y)=x^{2}+x y$;
Integrating the first gives $\psi(x, y)=\frac{3}{2} x^{2} y+x y^{2}+h(y)$, where h is an arbitrary function of y only; To try to satisfy the second, we compute ψ_{y} and set it equal to N, obtaining $\frac{3}{2} x^{2}+2 x y+h^{\prime}(y)=x^{2}+x y$ or $h^{\prime}(y)=-\frac{1}{2} x^{2}-x y$;
Since the right side depends on x as well as y, it is impossible to solve for $h(y)$; There is no $\psi(x, y)$ satisfying both partial derivative equations $\psi_{x}(x, y)=3 x y+y^{2}$ and $\psi_{y}(x, y)=x^{2}+x y$;

Integrating Factors: From Non-exact to Exact Equations

- Consider the equation $M(x, y) d x+N(x, y) d y=0$;
- Multiply by a function μ and try to choose μ so that the resulting equation $\mu(x, y) M(x, y) d x+\mu(x, y) N(x, y) d y=0$ be exact;
- For this to be exact, we need $(\mu M)_{y}=(\mu N)_{x}$;
- Thus, the integrating factor μ must satisfy the first order partial differential equation $M \mu_{y}-N \mu_{x}+\left(M_{y}-N_{x}\right) \mu=0$;
- If such a function μ can be found, then the original equation will be exact;
- The derived partial differential equation may have more than one solution; If this is the case, any such solution may be used as an integrating factor of the original equation;

Case Where Simple Integrating Factors Exist

- Let us determine necessary conditions on M and N so that $M(x, y) d x+N(x, y) d y=0$ has an integrating factor μ that depends on x only;
- Assuming that μ is a function of x only, we have $(\mu M)_{y}=\mu M_{y},(\mu N)_{x}=\mu N_{x}+N \frac{d \mu}{d x} ;$
- Thus, for $(\mu M)_{y}=(\mu N)_{x}$, it is necessary that $\frac{d \mu}{d x}=\frac{M_{y}-N_{x}}{N} \mu$;
- If $\frac{M_{y}-N_{x}}{N}$ is a function of x only, then there is an integrating factor μ that also depends only on x; Further, $\mu(x)$ can be found by solving $\frac{d \mu}{d x}=\frac{M_{y}-N_{x}}{N} \mu$, which is both linear and separable;
- A similar procedure can be used to determine a condition under which $M(x, y) d x+N(x, y) d y=0$ has an integrating factor μ that depends on y only;

Example of Conversion into an Exact Equation

- Find an integrating factor for the equation
$\left(3 x y+y^{2}\right)+\left(x^{2}+x y\right) y^{\prime}=0$ and then solve the equation;
We have shown that this equation is not exact;
Let us determine whether it has an integrating factor that depends on x only;
On computing the quantity $\frac{M_{y}-N_{x}}{N}$, we find that

$$
\frac{M_{y}(x, y)-N_{x}(x, y)}{N(x, y)}=\frac{3 x+2 y-(2 x+y)}{x^{2}+x y}=\frac{1}{x}
$$

Thus there is an integrating factor μ that is a function of x only, and it satisfies the differential equation $\frac{d \mu}{d x}=\frac{\mu}{x}$; Hence $\mu(x)=x$; Multiplying the original by this integrating factor, we obtain

$$
\left(3 x^{2} y+x y^{2}\right)+\left(x^{3}+x^{2} y\right) y^{\prime}=0
$$

Example of Conversion into an Exact Equation (Cont'd)

- We obtained

$$
\left(3 x^{2} y+x y^{2}\right)+\left(x^{3}+x^{2} y\right) y^{\prime}=0
$$

This equation is exact, since

$$
\frac{\partial M}{\partial y}=\frac{\partial\left(3 x^{2} y+x y^{2}\right)}{\partial y}=3 x^{2}+2 x y=\frac{\partial\left(x^{3}+x^{2} y\right)}{\partial x}=\frac{\partial N}{\partial x}
$$

Moreover,

$$
\psi(x, y)=\int\left(3 x^{2} y+x y^{2}\right) d x=x^{3} y+\frac{1}{2} x^{2} y^{2}+h(y)
$$

Setting

$$
x^{3}+x^{2} y+h^{\prime}(y)=x^{3}+x^{2} y
$$

we get $y^{\prime}(y)=0$; So we can take $h(y)=0$;
Thus $h(x, y)=x^{3} y+\frac{1}{2} x^{2} y^{2}$;
So the solutions are given implicitly by $x^{3} y+\frac{1}{2} x^{2} y^{2}=c$;

