Elementary Differential Equations

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 310

George Voutsadakis (LSSU)

Second Order Linear Equations

- Homogeneous Equations with Constant Coefficients
- Solutions of Linear Homogeneous Equations; the Wronskian
- Complex Roots of the Characteristic Equation
- Repeated Roots; Reduction of Order
- Nonhomogeneous Equations; Undetermined Coefficients
- Variation of Parameters

Subsection 1

Homogeneous Equations with Constant Coefficients

Linear and Nonlinear Second Order Equations

- A second order ordinary differential equation has the form $\frac{d^2y}{dt^2} = f(t, y, \frac{dy}{dt})$, where f is a given function;
- The equation is called **linear** if the function f has the form $f(t, y, \frac{dy}{dt}) = g(t) p(t)\frac{dy}{dt} q(t)y$, i.e., if f is linear in y and $\frac{dy}{dt}$;
- g, p, and q are specified functions of the independent variable t, but do not depend on y;
- In this case the equation can be rewritten as

$$y'' + p(t)y' + q(t)y = g(t),$$

where the primes denote differentiation with respect to *t*;

- One sometimes sees the form P(t)y'' + Q(t)y' + R(t)y = G(t); If $P(t) \neq 0$, we can divide by P(t) to obtain the previous form;
- We operate under the hypothesis that *p*, *q*, and *g* are continuous functions in an interval of interest;
- Equations that are not linear are called **nonlinear**;

Homogeneous and Non-homogeneous Equations

• An initial value problem has the form

$$rac{d^2 y}{dt^2} = f(t,y,rac{dy}{dt}), \ y(t_0) = y_0, \ y'(t_0) = y'_0,$$

where y_0 and y'_0 are given numbers;

- A second order linear equation is said to be homogeneous if the term G(t) in P(t)y" + Q(t)y' + R(t)y = G(t) is zero for all t;
- Otherwise, the equation is called nonhomogeneous; As a result, the term G(t) is sometimes called the nonhomogeneous term;
- We write homogeneous equations in the form P(t)y'' + Q(t)y' + R(t)y = 0;
- Once the homogeneous equation has been solved, it is always possible to solve the corresponding nonhomogeneous equation; Thus, solving the homogeneous equation is fundamental;

Homogeneous Equations With Constant Coefficients

- General Form P(t)y'' + Q(t)y' + R(t)y = G(t);
- Homogeneous Form P(t)y'' + Q(t)y' + R(t)y = 0;
- We now focus on equations in which the functions *P*, *Q*, and *R* are constants. In this case we deal with

$$ay'' + by' + cy = 0,$$

where a, b, and c are given constants;

- These are the (second-order linear) homogeneous equations with constant coefficients;
- It turns out that the equation with constant coefficients can always be solved easily in terms of the elementary functions of calculus;

Example I

 Solve the equation y" − y = 0 and also find the solution that satisfies the initial conditions y(0) = 2, y'(0) = −1;

This is a linear homogeneous equation with a = 1, b = 0, c = -1; We seek a function with the property that the second derivative of the function is the same as the function itself; We know of some such examples from calculus: $y_1(t) = e^t$, $y_2(t) = e^{-t}$; Note that constant multiples of these two solutions are also solutions, i.e., $c_1y_1(t) = c_1e^t$ and $c_2y_2(t) = c_2e^{-t}$ are solutions; Note, also, that the sum of any two solutions is also a solution; Thus, $y = c_1y_1(t) + c_2y_2(t) = c_1e^t + c_2e^{-t}$ is a solution; This can be verified by calculating the second derivative;

To pick out a particular solution satisfying our initial conditions, we first compute $y' = c_1 e^t - c_2 e^{-t}$ and then

$$\begin{cases} y(0) = 2\\ y'(0) = -1 \end{cases} \Rightarrow \begin{cases} c_1 + c_2 = 2\\ c_1 - c_2 = -1 \end{cases} \Rightarrow \begin{cases} c_1 = \frac{1}{2}\\ c_2 = \frac{3}{2} \end{cases};$$

hus, the particular solution is $y = \frac{1}{2}e^t + \frac{3}{2}e^{-t};$

The Characteristic Equation

- How can we solve ay'' + by' + cy = 0, where a, b, and c are arbitrary (real) constants?
- Seek exponential solutions of the form $y = e^{rt}$, where r is a parameter to be determined;

• Then,
$$y' = re^{rt}$$
 and $y'' = r^2 e^{rt}$;

- So, we have $(ar^2 + br + c)e^{rt} = 0$, i.e., $ar^2 + br + c = 0$;
- This equation is called the characteristic equation;
- Suppose that it has two real and different roots r₁ and r₂;
- Then $y_1(t) = e^{r_1 t}$ and $y_2(t) = e^{r_2 t}$ are two solutions and it follows $y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$ is also a solution;
- To find the particular member of the family of these solutions that satisfy $y(t_0) = y_0$ and $y'(t_0) = y'_0$,
 - Compute the derivative;
 - Substitute $t = t_0$ in the equations for y and y';
 - Solve the resulting system for c_1 and c_2 ;

Example I

- Find the general solution of y'' + 5y' + 6y = 0; We assume that $y = e^{rt}$; Then r must be a root of $r^2 + 5r + 6 = 0$ or (r + 2)(r + 3) = 0; The roots are $r_1 = -2$ and $r_2 = -3$; The general solution is $y = c_1e^{-2t} + c_2e^{-3t}$;
- Find the solution of the initial value problem y'' + 5y' + 6y = 0, y(0) = 2, y'(0) = 3; We found $y = c_1e^{-2t} + c_2e^{-3t}$; Since y(0) = 2, we get $c_1 + c_2 = 2$; Moreover, $y' = -2c_1e^{-2t} - 3c_2e^{-3t}$; Since y'(0) = 3 $-2c_1 - 3c_2 = 3$; By solving those, we find that $c_1 = 9$ and $c_2 = -7$; Thus, the particular solution is $y = 9e^{-2t} - 7e^{-3t}$;

Example II

Find the solution of the initial value problem

$$4y'' - 8y' + 3y = 0, y(0) = 2, y'(0) = \frac{1}{2};$$

If $y = e^{rt}$, then the characteristic equation is $4r^2 - 8r + 3 = 0$, i.e., (2r-3)(2r-1) = 0: Its roots are $r = \frac{3}{2}$ and $r = \frac{1}{2}$; Therefore the general solution of the differential equation is $v = c_1 e^{3t/2} + c_2 e^{t/2}$ Applying the initial conditions, we obtain the following two equations for c_1 and c_2 : $c_1 + c_2 = 2, \frac{3}{2}c_1 + \frac{1}{2}c_2 = \frac{1}{2};$ Thus, we get $\begin{cases} c_1 + c_2 = 2 \\ 3c_1 + c_2 = 1 \end{cases} \Rightarrow \begin{cases} c_1 = -\frac{1}{2} \\ c_2 = \frac{5}{2} \end{cases}$ So the solution of the initial value problem is $y = -\frac{1}{2}e^{3t/2} + \frac{5}{2}e^{t/2}$;

Subsection 2

Solutions of Linear Homogeneous Equations; the Wronskian

Differential Operators

- Let p and q be continuous functions on an open interval I = (α, β); The cases α = -∞, or β = ∞, or both, are included;
- Then, for any function ϕ that is twice differentiable on I, we define

$$L[\phi] = \phi'' + p\phi' + q\phi;$$

L[\u03c6] is a function on I; The value of L[\u03c6] at a point t is

$$L[\phi](t) = \phi''(t) + p(t)\phi'(t) + q(t)\phi(t);$$

- The operator L is sometimes written L = D² + pD + q, where D is the derivative operator;
- Goal: Study second order linear homogeneous equation $L[\phi](t) = 0$;

Example

• Compute $L[\phi](t)$ for

$$p(t) = t^2$$
, $q(t) = 1 + t$, $\phi(t) = \sin 3t$

Since $\phi'(t) = 3\cos 3t$ and $\phi''(t) = -9\sin 3t$, we get

$$\begin{aligned} -[\phi](t) &= \phi''(t) + p(t)\phi'(t) + q(t)\phi(t) \\ &= -9\sin 3t + 3t^2\cos 3t + (1+t)\sin 3t \\ &= (t-8)\sin 3t + 3t^2\cos 3t; \end{aligned}$$

Existence and Uniqueness Theorem

Existence and Uniqueness Theorem

Consider the initial value problem y'' + p(t)y' + q(t)y = g(t), with $y(t_0) = y_0, y'(t_0) = y'_0$, where p, q, and g are continuous on an open interval I that contains the point t_0 ; Then there is exactly one solution $y = \phi(t)$ of this problem, and the solution exists throughout the interval I.

- The theorem says actually three things:
 - The initial value problem has a solution, i.e., a solution exists;
 - The initial value problem has only one solution, i.e., the solution is unique;
 - The solution \u03c6 is defined throughout the interval I where the coefficients are continuous and is at least twice differentiable there;

Example

• Find the longest interval in which the solution of the initial value problem

$$(t^2-3t)y''+ty'-(t+3)y=0, \quad y(1)=2, \ y'(1)=1,$$

is guaranteed to exist;

In the standard form

$$p(t) = \frac{1}{t-3}, \quad q(t) = -\frac{t+3}{t(t-3)}, \quad g(t) = 0;$$

The only points of discontinuity of the coefficients are t = 0 and t = 3; Therefore, the longest open interval, containing the initial point t = 1, in which all the coefficients are continuous is 0 < t < 3; Thus, this is the longest interval in which the theorem guarantees that the solution exists;

George Voutsadakis (LSSU)

Example

Find the unique solution of the initial value problem

$$y'' + p(t)y' + q(t)y = 0, \quad y(t_0) = 0, \quad y'(t_0) = 0,$$

where p and q are continuous in an open interval I containing t_0 ;

The function $y = \phi(t) = 0$, for all t in I certainly satisfies the differential equation and initial conditions;

By the uniqueness part, it is the only solution of the given problem;

The Superposition Principle

- Assume that y_1 and y_2 are two solutions of y'' + p(t)y' + q(t)y = 0;
- Then, we can generate more solutions by forming linear combinations of y₁ and y₂;

Theorem (Principle of Superposition)

If y_1 and y_2 are two solutions of the differential equation L[y] = y'' + p(t)y' + q(t)y = 0, then the linear combination $c_1y_1 + c_2y_2$ is also a solution for any values of the constants c_1 and c_2 .

 Can the constants be chosen so as to satisfy the initial conditions y(t₀) = y₀ and y'(t₀) = y'₀? This requires solving for c₁, c₂ the system

$$\left\{\begin{array}{c} c_1y_1(t_0) + c_2y_2(t_0) = y_0 \\ c_1y_1'(t_0) + c_2y_2'(t_0) = y_0' \end{array}\right\};$$

The Wronskian

- The system $\left\{\begin{array}{c} c_1 y_1(t_0) + c_2 y_2(t_0) = y_0 \\ c_1 y_1'(t_0) + c_2 y_2'(t_0) = y_0' \end{array}\right\};$
- By linear algebra, if

$$W = \begin{vmatrix} y_1(t_0) & y_2(t_0) \\ y'_1(t_0) & y'_2(t_0) \end{vmatrix} = y_1(t_0)y'_2(t_0) - y'_1(t_0)y_2(t_0) \neq 0, \text{ there}$$

exists a unique solution, given by

$$c_1 = rac{1}{W} \left| egin{array}{c} y_0 & y_2(t_0) \ y_0' & y_2'(t_0) \end{array}
ight| \quad ext{and} \quad c_2 = rac{1}{W} \left| egin{array}{c} y_1(t_0) & y_0 \ y_1'(t_0) & y_0' \end{array}
ight|;$$

• The determinant *W* is called the **Wronskian determinant**, or simply the **Wronskian**, of the solutions *y*₁ and *y*₂;

Theorem

Let y_1 and y_2 be two solutions of L[y] = y'' + p(t)y' + q(t)y = 0 and that the initial conditions $y(t_0) = y_0$, $y'(t_0) = y'_0$ are assigned; Then it is always possible to choose the constants c_1 , c_2 so that $y = c_1y_1(t) + c_2y_2(t)$ satisfies the differential equation and the initial conditions if and only if the Wronskian W is not zero at t_0 .

Example of Application of the Wronskian

- The functions $y_1(t) = e^{-2t}$ and $y_2(t) = e^{-3t}$ are solutions of the differential equation y'' + 5y' + 6y = 0;
- The Wronskian of y_1 and y_2 is

$$W = \left| egin{array}{cc} y_1(t) & y_2(t) \ y_1'(t) & y_2'(t) \end{array}
ight| = \left| egin{array}{cc} e^{-2t} & e^{-3t} \ -2e^{-2t} & -3e^{-3t} \end{array}
ight| = -e^{-5t};$$

- Since *W* is nonzero for all values of *t*, the functions *y*₁ and *y*₂ can be used to construct solutions of the given differential equation, together with initial conditions prescribed at any value of *t*;
- We already solved one of these in a previous problem;

Generality of Solutions

Theorem (Generality of Solutions for Nonzero Wronskian)

Suppose that y_1 and y_2 are two solutions of the differential equation L[y] = y'' + p(t)y' + q(t)y = 0; The family of solutions $y = c_1y_1(t) + c_2y_2(t)$ with arbitrary coefficients c_1 and c_2 includes every solution of the equation if and only if there is a point t_0 where the Wronskian of y_1 and y_2 is not zero.

- The theorem states that, if and only if the Wronskian of y_1 and y_2 is not everywhere zero, then the linear combination $c_1y_1 + c_2y_2$ contains all solutions of the differential equation; It is therefore natural to call the expression $y = c_1y_1(t) + c_2y_2(t)$ with arbitrary constant coefficients the **general solution** of the differential equation;
- The solutions y₁ and y₂ are said to form a **fundamental set of solutions** of the differential equation if and only if their Wronskian is nonzero;

Example I

• Suppose that $y_1(t) = e^{r_1 t}$ and $y_2(t) = e^{r_2 t}$ are two solutions of an equation y'' + p(t)y' + q(t)y = 0; Show that they form a fundamental set of solutions if $r_1 \neq r_2$;

Calculate the Wronskian of y_1 and y_2 :

$$W = \left| \begin{array}{cc} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{array} \right| = \left| \begin{array}{cc} e^{r_1 t} & e^{r_2 t} \\ r_1 e^{r_1 t} & r_2 e^{r_2 t} \end{array} \right| = (r_2 - r_1) e^{(r_1 + r_2)t};$$

Since $e^{(r_1+r_2)t} \neq 0$, and, by hypothesis $r_1 \neq r_2$, it follows that $W \neq 0$, for all t; Consequently, y_1 and y_2 form a fundamental set of solutions;

Example II

Show that y₁(t) = t^{1/2} and y₂(t) = t⁻¹ form a fundamental set of solutions of 2t²y" + 3ty' - y = 0, t > 0;

First, verify that y_1 and y_2 are solutions of the differential equation:

$$y_{1}(t) = t^{1/2} \quad y_{1}'(t) = \frac{1}{2}t^{-1/2} \quad y_{1}''(t) = -\frac{1}{4}t^{-3/2}$$

$$y_{2}(t) = t^{-1} \quad y_{2}'(t) = -t^{-2} \quad y_{2}''(t) = 2t^{-3};$$

$$2t^{2}y'' + 3ty' - y = 2t^{2}(-\frac{1}{4}t^{-3/2}) + 3t(\frac{1}{2}t^{-1/2}) - t^{1/2} = -\frac{1}{2}t^{1/2} + \frac{3}{2}t^{1/2} - t^{1/2} = 0;$$

$$2t^{2}y'' + 3ty' - y = 2t^{2}(2t^{-3}) + 3t(-t^{-2}) - t^{-1} = 4t^{-1} - 3t^{-1} - t^{-1} = 0;$$

Now, calculate the Wronskian W of y_1 and y_2 :

$$W = \left| \begin{array}{c} y_1(t) & y_2(t) \\ y'_1(y) & y'_2(t) \end{array} \right| = \left| \begin{array}{c} t^{1/2} & t^{-1} \\ \frac{1}{2}t^{-1/2} & -t^{-2} \end{array} \right| = -\frac{3}{2}t^{-3/2};$$

Since $W \neq 0$ for t > 0, y_1 and y_2 form a fundamental set of solutions in $(0, \infty)$;

Existence of Fundamental Solutions

Theorem (Existence of Fundamental Solutions)

Consider the differential equation L[y] = y'' + p(t)y' + q(t)y = 0, whose coefficients p and q are continuous on some open interval I; Choose some point t_0 in I; Let y_1 be the solution that also satisfies the initial conditions $y(t_0) = 1$, $y'(t_0) = 0$, and let y_2 be the solution that satisfies the initial conditions $y(t_0) = 0$, $y'(t_0) = 1$; Then y_1 and y_2 form a fundamental set of solutions of the differential equation.

• The existence of y_1 and y_2 is ensured by the Existence Theorem;

• To see that they form a fundamental set of solutions, we need only calculate their Wronskian at *t*₀:

$$W(y_1, y_2)(t_0) = \left| egin{array}{cc} y_1(t_0) & y_2(t_0) \\ y_1'(t_0) & y_2'(t_0) \end{array}
ight| = \left| egin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}
ight| = 1;$$

Since the Wronskian is not zero at t_0 , the functions y_1 and y_2 form a fundamental set of solutions;

George Voutsadakis (LSSU)

Example

 Use the theorem to find the fundamental set of solutions for the differential equation y" - y = 0 using the initial point t₀ = 0; The two solutions of are y₁(t) = e^t and y₂(t) = e^{-t}; The Wronskian of these solutions is

$$W(y_1, y_2)(t) = \left| \begin{array}{c} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{array} \right| = \left| \begin{array}{c} e^t & e^{-t} \\ e^t & -e^{-t} \end{array} \right| = -2 \neq 0,$$

so they form a fundamental set of solutions;

These are not the fundamental solutions of the Theorem because they do not satisfy the initial conditions mentioned in the theorem at t = 0;

• Let $y(t) = c_1 e^t + c_2 e^{-t}$.

Let $y_3(t)$ be the solution that satisfies y(0) = 1 and y'(0) = 0. To find it, we solve the system:

$$\left\{ \begin{array}{rrr} c_1 + c_2 &= & 1 \\ c_1 - c_2 &= & 0 \end{array}
ight\} \Rightarrow \left\{ \begin{array}{rrr} c_1 = rac{1}{2} \\ c_2 = rac{1}{2} \end{array}
ight.$$

Let $y_4(t)$ be the solution that satisfies y(0) = 0 and y'(0) = 1; To find it, we solve the system:

$$\begin{cases} c_1 + c_2 = 0\\ c_1 - c_2 = 1 \end{cases} \Rightarrow \begin{cases} c_1 = \frac{1}{2}\\ c_2 = -\frac{1}{2} \end{cases}$$

Thus, $y_3(t) = \frac{1}{2}e^t + \frac{1}{2}e^{-t}$ and $y_4(t) = \frac{1}{2}e^t - \frac{1}{2}e^{-t}$;
Since the Wronskian of y_3 and y_4 is

$$W(y_3, y_4)(t) = \begin{vmatrix} \frac{1}{2}e^t + \frac{1}{2}e^{-t} & \frac{1}{2}e^t - \frac{1}{2}e^{-t} \\ \frac{1}{2}e^t - \frac{1}{2}e^{-t} & \frac{1}{2}e^t + \frac{1}{2}e^{-t} \end{vmatrix} = 1,$$

these functions also form a fundamental set of solutions;

Abel's Theorem

Abel's Theorem

If y_1 and y_2 are solutions of L[y] = y'' + p(t)y' + q(t)y = 0 where p and q are continuous on an open interval I, then the Wronskian $W(y_1, y_2)(t)$ is given by $W(y_1, y_2)(t) = ce^{-\int p(t)dt}$, where c is a certain constant that depends on y_1 and y_2 , but not on t; Further, $W(y_1, y_2)(t)$ either is zero for all t in I (if c = 0) or else is never zero in I (if $c \neq 0$).

• Note that y_1 and y_2 satisfy

$$y_1'' + p(t)y_1' + q(t)y_1 = 0;$$

 $y_2'' + p(t)y_2' + q(t)y_2 = 0.$

Multiply the first by $-y_2$, the second by y_1 , and add:

$$-y_1''y_2 - p(t)y_1'y_2 - q(t)y_1y_2 = 0;$$

$$y_1y_2'' + p(t)y_1y_2 + q(t)y_1y_2 = 0;$$

$$(y_1y_2'' - y_1''y_2) + p(t)(y_1y_2' - y_1'y_2) = 0;$$

Abel's Theorem (Cont'd)

• We got
$$(y_1y_2'' - y_1''y_2) + p(t)(y_1y_2' - y_1'y_2) = 0;$$

Next, we let $W(t) = W(y_1, y_2)(t);$
We have

V

$$\begin{array}{rcl} \mathcal{N}' & = & (y_1y_2' - y_1'y_2)' \\ & = & y_1'y_2' + y_1y_2'' - (y_1''y_2 + y_1'y_2') \\ & = & y_1y_2'' - y_1''y_2; \end{array}$$

Thus, we get

$$W'+p(t)W=0 \Rightarrow rac{1}{W}dW=-p(t)dt \Rightarrow \ln|W|=-\int p(t)dt;$$

Thus $W(t) = ce^{-\int p(t)dt}$, for a constant c; W(t) is not zero unless c = 0, in which case W(t) is zero for all t;

Example

• Recall that $y_1(t) = t^{1/2}$ and $y_2(t) = t^{-1}$ were shown to be solutions of $2t^2y'' + 3ty' - y = 0, t > 0$; Verify that the Wronskian of y_1 and y_2 is given by the formula in Abel's Theorem;

We have already computed $W(y_1, y_2)(t) = -\frac{3}{2}t^{-3/2}$; To use Abel's Theorem, we must write the differential equation $2t^2y'' + 3ty' - y = 0$ in the standard form: $y'' + \frac{3}{2t}y' - \frac{1}{2t^2}y = 0$; Thus, $p(t) = \frac{3}{2t}$; This yields

$$W(y_1, y_2)(t) = ce^{-\int p(t)dt} = ce^{-\int \frac{3}{2t}dt} = ce^{-\frac{3}{2}\ln t} = ct^{-3/2};$$

For the particular solutions given in the example $c = -\frac{3}{2}$, which yields the Wronskian, as computed before;

Subsection 3

Complex Roots of the Characteristic Equation

Characteristic Equations with Complex Roots

- Consider ay'' + by' + cy = 0, where a, b, and c are real constants;
- Solutions of the form $y = e^{rt}$ are obtained for r a root of the characteristic equation $ar^2 + br + c = 0$;
- If the roots r_1 and r_2 are real and different, which occurs when $b^2 4ac > 0$, then the general solution is $y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$;
- If b² − 4ac < 0, then the quadratic has two complex conjugate roots, say r₁ = λ + iμ, r₂ = λ − iμ, with λ, μ real;
- Then, the solutions are $y_1(t) = e^{(\lambda + i\mu)t}$, $y_2(t) = e^{(\lambda i\mu)t}$;
- What is the meaning of an exponential with a complex exponent?
- For example, if $\lambda = -1$, $\mu = 2$, and t = 3, then $y_1(3) = e^{-3+6i}$;
- What does it mean to raise the number e to a complex power? The answer is provided by an important relation known as Eulers formula;

Euler's Formula

• The MacLaurin series for e^t , $\cos t$ and $\sin t$ are (for t in \mathbb{R}):

$$e^t = \sum_{n=0}^{\infty} \frac{t^n}{n!}, \ \cos t = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{(2n)!}, \ \sin t = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} t^{2n-1}}{(2n-1)!};$$

• If we can substitute *it* for *t*, then

$$e^{it} = \sum_{n=0}^{\infty} \frac{(it)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{(2n)!} + i \sum_{n=1}^{\infty} \frac{(-1)^{n-1} t^{2n-1}}{(2n-1)!}$$

= cos t + i sin t;

The equation e^{it} = cos t + i sin t is known as Euler's formula;
We adopt this equation as the definition of e^{it}:

 $e^{it} = \cos t + i \sin t.$

George Voutsadakis (LSSU)

Some Variations of Euler's Formula

- If we replace t by -t and recall that cos (-t) = cos t and sin (-t) = sin t, then we have e^{-it} = cos t i sin t;
- If t is replaced by μt, then we obtain a generalized version of Euler's formula: e^{iμt} = cos μt + i sin μt;
- For arbitrary complex exponents $(\lambda + i\mu)t$, we get

$$e^{(\lambda+i\mu)t} = e^{\lambda t}e^{i\mu t} = e^{\lambda t}(\cos \mu t + i\sin \mu t);$$

- We adopt this as the definition of $e^{(\lambda+i\mu)t}$;
- With these definitions, one can show that all the usual laws of exponents are valid for the complex exponential function;
- Moreover, the differentiation formula $\frac{d}{dt}(e^{rt}) = re^{rt}$ holds for complex values of r as well;

Example

Find the general solution of y" + y' + ³⁷/₄y = 0; Also find the solution that satisfies the initial conditions y(0) = 2, y'(0) = 8;

The characteristic equation is $r^2 + r + \frac{37}{4} = 0$; Its roots are $r_1 = -\frac{1}{2} + 3i$ and $r_2 = -\frac{1}{2} - 3i$; Therefore two solutions of the differential equation are

$$y_1(t) = e^{(-\frac{1}{2}+3i)t} = e^{-t/2}(\cos 3t + i \sin 3t)$$

$$y_2(t) = e^{(-\frac{1}{2}-3i)t} = e^{-t/2}(\cos 3t - i \sin 3t);$$

The Wronskian

$$W(y_1, y_2)(t) = \begin{vmatrix} e^{(-\frac{1}{2}+3i)t} & e^{(-\frac{1}{2}-3i)t} \\ (-\frac{1}{2}+3i)e^{(-\frac{1}{2}+3i)t} & (-\frac{1}{2}-3i)e^{(-\frac{1}{2}-3i)t} \\ = (-\frac{1}{2}-3i)e^{-t} - (-\frac{1}{2}+3i)e^{-t} = -6ie^{-t} \neq 0; \end{vmatrix}$$

So the general solution can be expressed as a linear combination of $y_1(t)$ and $y_2(t)$ with arbitrary coefficients.

Rather than using the complex-valued solutions

$$y_1(t) = e^{-t/2}(\cos 3t + i \sin 3t),$$

$$y_2(t) = e^{-t/2}(\cos 3t - i \sin 3t),$$

we find a fundamental set of solutions that are real-valued;

- Any linear combination of two solutions is also a solution;
- So, form the linear combinations $y_1(t) + y_2(t)$ and $y_1(t) y_2(t)$:

$$y_1(t) + y_2(t) = 2e^{-t/2}\cos 3t,$$

 $y_1(t) - y_2(t) = 2ie^{-t/2}\sin 3t;$

• Dropping the constants 2 and 2*i*, we obtain

$$u(t) = e^{-t/2} \cos 3t$$
 and $v(t) = e^{-t/2} \sin 3t$;

• We came up with the solutions

$$u(t) = e^{-t/2} \cos 3t$$
 and $v(t) = e^{-t/2} \sin 3t$;

The Wronskian is

$$W(u, v)(t) = \begin{vmatrix} e^{-t/2}\cos 3t & e^{-t/2}\sin 3t \\ -\frac{1}{2}e^{-t/2}\cos 3t - 3e^{-t/2}\sin 3t & -\frac{1}{2}e^{-t/2}\sin 3t + 3e^{-t/2}\cos 3t \\ = e^{-t/2}\cos 3t(-\frac{1}{2}e^{-t/2}\sin 3t + 3e^{-t/2}\cos 3t) \\ -e^{-t/2}\sin 3t(-\frac{1}{2}e^{-t/2}\cos 3t - 3e^{-t/2}\sin 3t) \\ = 3e^{-t}(\cos^2 3t + \sin^2 3t) = 3e^{-t} \neq 0. \end{aligned}$$

So u(t) and v(t) form a fundamental set of solutions; The general solution can be written as

$$y = c_1 u(t) + c_2 v(t) = e^{-t/2} (c_1 \cos 3t + c_2 \sin 3t);$$

So we have

$$\begin{array}{lll} y(t) &=& e^{-t/2}(c_1\cos 3t + c_2\sin 3t);\\ y'(t) &=& -\frac{1}{2}c_1e^{-t/2}\cos 3t - 3c_1e^{-t/2}\sin 3t\\ && -\frac{1}{2}c_2e^{-t/2}\sin 3t + 3c_2e^{-t/2}\cos 3t\\ &=& -\frac{1}{2}e^{-t/2}(c_1\cos 3t + c_2\sin 3t)\\ && +e^{-t/2}(3c_2\cos 3t - 3c_1\sin 3t). \end{array}$$

• To satisfy the initial conditions, we set

$$\left\{\begin{array}{c} y(0)=2\\ y'(0)=8 \end{array}\right\} \Rightarrow \left\{\begin{array}{c} c_1=2\\ -\frac{1}{2}c_1+3c_2=8 \end{array}\right\} \Rightarrow \left\{\begin{array}{c} c_1=2\\ c_2=3 \end{array}\right\};$$

• Therefore $y = e^{-t/2} (2 \cos 3t + 3 \sin 3t);$

Complex Roots: The General Case

- The functions y₁(t) = e^{(λ+iμ)t} and y₂(t) = e^{(λ-iμ)t} are solutions of ay" + by' + cy = 0 when the roots of the characteristic equation ar² + br + c = 0 are the complex numbers λ ± iμ;
- To find real-valued solutions, we proceed just as in the preceding example: We form the sum and then the difference of y_1 and y_2 ; We have

$$y_1(t) + y_2(t) = e^{\lambda t} (\cos \mu t + i \sin \mu t) + e^{\lambda t} (\cos \mu t - i \sin \mu t)$$

= $2e^{\lambda t} \cos \mu t;$
$$y_1(t) - y_2(t) = e^{\lambda t} (\cos \mu t + i \sin \mu t) - e^{\lambda t} (\cos \mu t - i \sin \mu t)$$

= $2ie^{\lambda t} \sin \mu t;$

Neglecting constants, we get

$$u(t) = e^{\lambda t} \cos \mu t$$
 and $v(t) = e^{\lambda t} \sin \mu t$;

Complex Roots: The General Case (Cont'd)

We found

$$u(t) = e^{\lambda t} \cos \mu t$$
 and $v(t) = e^{\lambda t} \sin \mu t$

• The Wronskian of *u* and *v* is

$$W(u, v)(t) = \begin{vmatrix} e^{\lambda t} \cos \mu t & e^{\lambda t} \sin \mu t \\ \lambda e^{\lambda t} \cos \mu t - \mu e^{\lambda t} \sin \mu t & \lambda e^{\lambda t} \sin \mu t + \mu e^{\lambda t} \cos \mu t \end{vmatrix}$$
$$= e^{2\lambda t} \cos \mu t (\lambda \sin \mu t + \mu \cos \mu t) \\ - e^{2\lambda t} \sin \mu t (\lambda \cos \mu t - \mu \sin \mu t)$$
$$= \mu e^{2\lambda t} (\cos^2 \mu t + \sin^2 \mu t) = \mu e^{2\lambda t}.$$

- If $\mu \neq 0$, u and v form a fundamental set of solutions;
- If the roots of the characteristic equation are $\lambda \pm i\mu$, with $\mu \neq 0$, then the general solution is

$$y = c_1 e^{\lambda t} \cos \mu t + c_2 e^{\lambda t} \sin \mu t;$$

Example I

Find the solution of the initial value problem

$$16y'' - 8y' + 145y = 0$$
, $y(0) = -2$, $y'(0) = 1$;

The characteristic equation is $16r^2 - 8r + 145 = 0$ and its roots are $r = \frac{1}{4} \pm 3i$;

General solution of the differential equation is

$$y = c_1 e^{t/4} \cos 3t + c_2 e^{t/4} \sin 3t;$$

To apply the first initial condition, we set t = 0; this gives $y(0) = c_1 = -2$; For the second initial condition we first differentiate and then set t = 0; In this way we find that $y'(0) = \frac{1}{4}c_1 + 3c_2 = 1$; So, $c_2 = \frac{1}{2}$; Thus, the solution of the initial value problem is $y = -2e^{t/4}\cos 3t + \frac{1}{2}e^{t/4}\sin 3t$;

Example II

Find the general solution of y" + 9y = 0; The characteristic equation is r² + 9 = 0 with the roots r = ± 3i; Thus, λ = 0 and μ = 3; The general solution is y = c₁ cos 3t + c₂ sin 3t; Note that if the real part of the roots is zero, then there is no exponential factor in the solution.

Subsection 4

Repeated Roots; Reduction of Order

The Case of a Repeated Root

- We saw how to solve ay'' + by' + cy = 0, when the roots of $ar^2 + br + c = 0$ are
 - real and different or
 - complex conjugates;
- What if the two roots r_1 and r_2 are equal?
- Recall that this occurs when the discriminant $b^2 4ac = 0$ and the roots are $r_1 = r_2 = -\frac{b}{2a}$;
- In this case both roots yield the same solution: $y_1(t) = e^{-bt/2a}$;
- How do we find a second solution?

Example

• Solve the differential equation y'' + 4y' + 4y = 0;

The characteristic equation is $r^2 + 4r + 4 = (r + 2)^2 = 0$, whence $r_1 = r_2 = -2$; Therefore one solution is $y_1(t) = e^{-2t}$; We know that $cy_1(t)$ is also a solution;

We replace c by a function v(t) and try to determine v(t) so that the $v(t)y_1(t)$ is also a solution:

$$y = v(t)y_1(t) = v(t)e^{-2t};$$

Then

$$\begin{array}{rcl} y' &=& v'(t)e^{-2t}-2v(t)e^{-2t}\\ y'' &=& v''(t)e^{-2t}-4v'(t)e^{-2t}+4v(t)e^{-2t}; \end{array}$$

Therefore, since y'' + 4y' + 4y = 0, we get

$$[v''(t) - 4v'(t) + 4v(t) + 4v'(t) - 8v(t) + 4v(t)]e^{-2t} = 0,$$

i.e., v''(t) = 0;

Example (Cont'd)

• We set $y(t) = v(t)y_1(t)$ and discovered that v''(t) = 0. This yields $v'(t) = c_1$ and $v(t) = c_1t + c_2$; Thus

$$y = c_1 t e^{-2t} + c_2 e^{-2t};$$

The second term corresponds to the original solution $y_1(t) = e^{-2t}$; The first hints at a second solution

$$y_2(t) = te^{-2t};$$

These two solutions form a fundamental set: $W(y_1, y_2)(t) = \begin{vmatrix} e^{-2t} & te^{-2t} \\ -2e^{-2t} & (1-2t)e^{-2t} \end{vmatrix} = e^{-4t} - 2te^{-4t} + 2te^{-4t} = e^{-4t} \neq 0;$ Thus,

$$y_1(t) = e^{-2t}, \quad y_2(t) = te^{-2t}$$

form a fundamental set of solutions;

The General Case

• Suppose the coefficients in ay'' + by' + cy = 0 satisfy $b^2 - 4ac = 0$; Then $y_1(t) = e^{-bt/2a}$ is a solution; Assume that

$$y = v(t)y_1(t) = v(t)e^{-bt/2a}$$

is also a solution; We then get

Therefore, since ay'' + by' + cy = 0,

$$\begin{bmatrix} a[v''(t) - \frac{b}{a}v'(t) + \frac{b^2}{4a^2}v(t)] \\ + b[v'(t) - \frac{b}{2a}v(t)] + cv(t)\end{bmatrix}e^{-bt/2a} = 0;$$

The General Case (Cont'd)

• Canceling the factor $e^{-bt/2a}$, we obtain

$$av''(t)+(-b+b)v'(t)+(rac{b^2}{4a}-rac{b^2}{2a}+c)v(t)=0;$$

The term involving v'(t) is zero; The coefficient of v(t) is $c - \frac{b^2}{4a}$, which is also zero because $b^2 - 4ac = 0$; Thus, v''(t) = 0; So $v(t) = c_1 + c_2t$; and, therefore,

$$y = c_1 e^{-bt/2a} + c_2 t e^{-bt/2a};$$

Thus, y is a linear combination of the two solutions

$$y_1(t) = e^{-bt/2a}, y_2(t) = te^{-bt/2a};$$

The Wronskian of these two solutions is $W(y_1, y_2)(t) = \begin{vmatrix} e^{-bt/2a} & te^{-bt/2a} \\ -\frac{b}{2a}e^{-bt/2a} & (1-\frac{bt}{2a})e^{-bt/2a} \end{vmatrix} = e^{-bt/a} \neq 0,$ whence the solutions y_1 and y_2 are a fundamental set of solutions.

Example

Find the solution of the initial value problem

$$y'' - y' + \frac{1}{4}y = 0, \ y(0) = 2, \ y'(0) = \frac{1}{3};$$

The characteristic equation is $r^2 - r + \frac{1}{4} = 0$, So the roots are $r_1 = r_2 = \frac{1}{2}$; Thus the general solution of the differential equation is $y = c_1 e^{t/2} + c_2 t e^{t/2}$; The first initial condition requires that $y(0) = c_1 = 2$; To satisfy the second initial condition, we first differentiate and then set t = 0; $y'(0) = \frac{1}{2}c_1 + c_2 = \frac{1}{3}$, so $c_2 = -\frac{2}{3}$; Thus the solution of the initial value problem is

$$y = 2e^{t/2} - \frac{2}{3}te^{t/2};$$

Reduction of Order

- Suppose that we know one solution $y_1(t)$ of y'' + p(t)y' + q(t)y = 0;
- To find a second solution, let $y = v(t)y_1(t)$;
- Then,

$$\begin{array}{lll} y' &=& v'(t)y_1(t) + v(t)y_1'(t); \\ y'' &=& v''(t)y_1(t) + v'(t)y_1'(t) + v'(t)y_1'(t) + v(t)y_1''(t) \\ &=& v''(t)y_1(t) + 2v'(t)y_1'(t) + v(t)y_1''(t); \end{array}$$

• Thus, since y'' + py' + qy = 0,

$$[v''y_1 + 2v'y_1' + vy_1''] + p[v'y_1 + vy_1'] + qvy_1 = 0; y_1v'' + (2y_1' + py_1)v' + (y_1'' + py_1' + qy_1)v = 0;$$

• Since y_1 is a solution, the coefficient of v is zero, so $y_1v'' + (2y'_1 + py_1)v' = 0;$

Reduction of Order (Cont'd)

• We set $y = v(t)y_1(t)$ and found

$$y_1v'' + (2y'_1 + py_1)v' = 0;$$

- This is actually a first order equation for the function v' and can be solved either as a first order linear equation or as a separable equation;
- Once v' has been found, then v is obtained by an integration;
- Then, we can determine y;
- The procedure outlined here is called the method of reduction of order, because we solve a first order differential equation for v' rather than the second order equation for y;

Example

• Given that $y_1(t) = t^{-1}$ is a solution of $2t^2y'' + 3ty' - y = 0, t > 0$, find a fundamental set of solutions;

We set $y = v(t)t^{-1}$; Then

$$y' = v't^{-1} - vt^{-2};$$

$$y'' = v''t^{-1} - v't^{-2} - v't^{-2} + 2vt^{-3};$$

$$= v''t^{-1} - 2v't^{-2} + 2vt^{-3};$$

Substituting in the original equation and collecting terms, we obtain:

$$2t^{2}(v''t^{-1} - 2v't^{-2} + 2vt^{-3}) + 3t(v't^{-1} - vt^{-2}) - vt^{-1}$$

= $2tv'' + (-4 + 3)v' + (4t^{-1} - 3t^{-1} - t^{-1})v$
= $2tv'' - v' = 0;$

Example (Cont'd)

• We set $y = v(t)t^{-1}$ and found

$$2tv''-v'=0;$$

Separating the variables and solving for v'(t), we find that $v'(t) = ct^{1/2}$; Thus, $v(t) = \frac{2}{3}ct^{3/2} + k$; It follows that

$$y = \frac{2}{3}ct^{1/2} + kt^{-1};$$

The second term on the right side is a multiple of $y_1(t)$ and can be dropped, but the first term provides a new solution $y_2(t) = t^{1/2}$; The Wronskian of y_1 and y_2 is

$$W(y_1,y_2)(t) = \left| egin{array}{cc} t^{-1} & t^{1/2} \ -t^{-2} & rac{1}{2}t^{-1/2} \end{array}
ight| = rac{1}{2}t^{-3/2} + t^{-3/2} = rac{3}{2}t^{-3/2};$$

Since t > 0, y_1 and y_2 form a fundamental set of solutions;

Subsection 5

Nonhomogeneous Equations; Undetermined Coefficients

The Nonhomogeneous Second Order Differential Equation

- We now return to the nonhomogeneous equation
 L[y] = y" + p(t)y' + q(t)y = g(t), where p, q, and g are given (continuous) functions on the open interval I;
- The equation L[y] = y" + p(t)y' + q(t)y = 0 is called the homogeneous equation corresponding to the original equation;

Theorem

If Y_1 and Y_2 are two solutions of the nonhomogeneous, then their difference $Y_1 - Y_2$ is a solution of the corresponding homogeneous; If, in addition, y_1 and y_2 are a fundamental set of solutions of the homogeneous, then $Y_1(t) - Y_2(t) = c_1y_1(t) + c_2y_2(t)$ with c_1 , c_2 constants.

Theorem

The general solution of the nonhomogeneous can be written in the form $y = \phi(t) = c_1y_1(t) + c_2y_2(t) + Y(t)$, where y_1 and y_2 are a fundamental set of solutions of the corresponding homogeneous, c_1 and c_2 are arbitrary constants, and Y is some specific solution of the nonhomogeneous.

Steps for Solving the Nonhomogeneous Equation

- In somewhat different words, the last theorem states that to solve the nonhomogeneous equation y'' + p(t)y' + q(t)y = g(t), we must do three things:
 - Find the general solution c₁y₁(t) + c₂y₂(t) of the corresponding homogeneous equation; This solution is called the **complementary solution** and denoted by y_c(t);
 - Find some solution Y(t) of the nonhomogeneous equation; This solution is referred to as a particular solution;
 - Add together the functions found in the two preceding steps;
- We have already discussed how to find y_c(t), at least when the homogeneous equation has constant coefficients;
- We focus, now, on finding a particular solution Y(t) of the nonhomogeneous equation;
- We study two methods:
 - The method of undetermined coefficients;
 - The method of variation of parameters;

Method of Undetermined Coefficients

• Method of undetermined coefficients:

- Make an initial assumption about the form of the particular solution Y(t), but with the coefficients left unspecified;
- Substitute the assumed expression into the equation and attempt to determine the coefficients so as to obtain a solution;
- If we are successful, then we have found a particular solution Y(t) of the differential equation; If we cannot determine the coefficients, then there is no solution of the form assumed; In this case we may modify the initial assumption and try again;
- The technique is straightforward to execute once the assumption is made as to the form of Y(t);
- Its major limitation is that it is useful primarily for equations for which we can easily write down the correct form of the particular solution in advance;
- We consider only nonhomogeneous terms that consist of polynomials, exponential functions, sines, and cosines;

Example I

• Find a particular solution of $y'' - 3y' - 4y = 3e^{2t}$;

We seek a function Y such that $Y''(t) - 3Y'(t) - 4Y(t) = 3e^{2t}$; The exponential function reproduces itself through differentiation; So, we assume that Y(t) is some multiple of e^{2t} , i.e., $Y(t) = Ae^{2t}$, where the coefficient A is to be determined;

To find A, we calculate $Y'(t) = 2Ae^{2t}$, $Y''(t) = 4Ae^{2t}$; Then

$$4Ae^{2t} - 3 \cdot 2Ae^{2t} - 4 \cdot Ae^{2t} = 3e^{2t}$$

$$\Rightarrow (4A - 6A - 4A)e^{2t} = 3e^{2t}$$

$$\Rightarrow -6Ae^{2t} = 3e^{2t}$$

$$\Rightarrow A = -\frac{1}{2};$$

Thus, a particular solution is $Y(t) = -\frac{1}{2}e^{2t}$;

Example II

• Find a particular solution of $y'' - 3y' - 4y = 2 \sin t$;

Assume that $Y(t) = A \sin t$, where A is a constant to be determined; We obtain $Y'(t) = A \cos t$, $Y''(t) = -A \sin t$, whence $-A\sin t - 3A\cos t - 4A\sin t = 2\sin t \Rightarrow -5A\sin t - 3A\cos t =$ $2\sin t \Rightarrow (2+5A)\sin t + 3A\cos t = 0$; We want this hold for all t; Thus, it must hold for t = 0 and $t = \frac{\pi}{2}$; We get 3A = 0 and 2 + 5A = 0; There is no choice of the constant A that makes the assumed expression a solution of the differential equation; Let us include a cosine term in Y(t) and give it another try, i.e., $Y(t) = A \sin t + B \cos t$, where A and B are to be determined; Then $Y'(t) = A \cos t - B \sin t$, $Y''(t) = -A \sin t - B \cos t$; Therefore, we get $(-A+3B-4A)\sin t + (-B-3A-4B)\cos t = 2\sin t$; Matching the coefficients of sin t and cos t on each side of the equation, we get -5A + 3B = 2, -3A - 5B = 0, obtaining $A = -\frac{5}{17}$ and $B = \frac{3}{17}$; Thus, $Y(t) = -\frac{5}{17} \sin t + \frac{3}{17} \cos t$;

Short Summary

• To summarize our conclusions up to this point:

- If the nonhomogeneous term g(t) is an exponential function $e^{\alpha t}$, then assume that Y(t) is proportional to the same exponential function;
- If g(t) is sin βt or cos βt, then assume that Y(t) is a linear combination of sin βt and cos βt;
- If g(t) is a polynomial, then assume that Y(t) is a polynomial of like degree.

Thus, to find a particular solution of $y'' - 3y' - 4y = 4t^2 - 1$ we initially assume that Y(t) is a polynomial of the same degree as the nonhomogeneous term, that is, $Y(t) = At^2 + Bt + C$;

• The same principle extends to the case where g(t) is a product of any two, or all three, of these types of functions;

Example III

Find a particular solution of y" - 3y' - 4y = -8e^t cos 2t;
 We assume that Y(t) is the product of e^t and a linear combination of cos 2t and sin 2t, that is, Y(t) = Ae^t cos 2t + Be^t sin 2t; We get

$$\begin{array}{lll} Y'(t) &=& Ae^t \cos 2t - 2Ae^t \sin 2t + Be^t \sin 2t + 2Be^t \cos 2t \\ &=& (A+2B)e^t \cos 2t + (-2A+B)e^t \sin 2t; \\ Y''(t) &=& (A+2B)e^t \cos 2t - 2(A+2B)e^t \sin 2t \\ &+& (-2A+B)e^t \sin 2t + 2(-2A+B) \cos 2t \\ &=& (-3A+4B)e^t \cos 2t + (-4A-3B)e^t \sin 2t; \end{array}$$

Thus, A and B must satisfy the equation $(-3A + 4B)e^t \cos 2t + (-4A - 3B)e^t \sin 2t - 3[(A + 2B)e^t \cos 2t + (-2A + B)e^t \sin 2t] - 4[Ae^t \cos 2t + Be^t \sin 2t] = -8e^t \cos 2t$, or $(-3A + 4B - 3A - 6B - 4A)e^t \cos 2t + (-4A - 3B + 6A - 3B - 4B)e^t \sin 2t = -8e^t \cos 2t$; So 10A + 2B = 8 and 2A - 10B = 0; These yield $A = \frac{10}{13}$ and $B = \frac{2}{13}$; Therefore, a particular solution is $Y(t) = \frac{10}{13}e^t \cos 2t + \frac{2}{13}e^t \sin 2t$;

Decomposition Into a Sum of Differential Equations

- Now suppose that g(t) is the sum of two terms, g(t) = g₁(t) + g₂(t);
 Suppose that
 - Y_1 is a solution of $ay'' + by' + cy = g_1(t)$; Y_2 is a solution of $ay'' + by' + cy = g_2(t)$.
- Then $Y_1 + Y_2$ is a solution of the equation

$$ay'' + by' + cy = g(t).$$

• Therefore, for an equation whose nonhomogeneous function g(t) can be expressed as a sum, one can consider instead several simpler equations and then add the results together;

Example IV

Find a particular solution of

$$y'' - 3y' - 4y = 3e^{2t} + 2\sin t - 8e^t\cos 2t;$$

By splitting up the right side, we obtain the three equations

$$y'' - 3y' - 4y = 3e^{2t}, y'' - 3y' - 4y = 2 \sin t, y'' - 3y' - 4y = -8e^t \cos 2t;$$

We have already solved all these three equations; The respective solutions were

$$\begin{array}{rcl} Y_1(t) &=& -\frac{1}{2}e^{2t}, \\ Y_2(t) &=& \frac{3}{17}\cos t - \frac{5}{17}\sin t, \\ Y_3(t) &=& \frac{10}{13}e^t\cos 2t + \frac{2}{13}e^t\sin 2t; \end{array}$$

Therefore a particular solution of the given equation is their sum:

$$Y(t) = -\frac{1}{2}e^{2t} + \frac{3}{17}\cos t - \frac{5}{17}\sin t + \frac{10}{13}e^t\cos 2t + \frac{2}{13}e^t\sin 2t;$$

Example V

• Find a particular solution of $y'' - 3y' - 4y = 2e^{-t}$; Assume that $Y(t) = Ae^{-t}$; Then $Y'(t) = -Ae^{-t}$ and $Y''(t) = Ae^{-t}$; Thus, we get

$$Ae^{-t} - 3(-Ae^{-t}) - 4Ae^{-t} = 2e^{-t} \Rightarrow 0 = 2e^{-t};$$

No choice of A satisfies this equation;

The homogeneous equation y'' - 3y' - 4y = 0, has characteristic

$$r^2 - 3r - 4 = 0 \implies (r - 4)(r + 1) = 0 \implies r = 4 \text{ or } r = -1.$$

So we get a fundamental set of solutions $y_1(t) = e^{-t}$ and $y_2(t) = e^{4t}$; Thus the chosen particular solution is actually a solution of the homogeneous equation and it cannot be a solution of the nonhomogeneous equation;

Example V (Cont'd)

To find a particular solution of y" - 3y' - 4y = 2e^{-t} consider the form Y(t) = Ate^{-t};
 Then

$$Y'(t) = Ae^{-t} - Ate^{-t};$$

 $Y''(t) = -Ae^{-t} - Ae^{-t} + Ate^{-t};$
 $= -2Ae^{-t} + Ate^{-t};$

Therefore,

$$(-2Ae^{-t} + Ate^{-t}) - 3(Ae^{-t} - Ate^{-t}) - 4Ate^{-t} = 2e^{-t}$$
$$(-2A - 3A)e^{-t} + (A + 3A - 4A)te^{-t} = 2e^{-t}$$
$$-5Ae^{-t} = 2e^{-t} \implies A = -\frac{2}{5};$$

Thus a particular solution of the given equation is

$$Y(t)=-\frac{2}{5}te^{-t};$$

Summary

- Steps for finding the solution of ay'' + by' + cy = g(t);
 - Find the general solution of the corresponding homogeneous equation;
 - Assume the function g(t) involves only exponential functions, sines, cosines, polynomials, or sums or products of such functions; (If this is not the case, use the method of variation of parameters (next section))
 - If g(t) = g₁(t) + ··· + g_n(t), form n subproblems, each containing only one of g₁(t), ..., g_n(t); The *i*-th subproblem consists of the equation ay" + by' + cy = g_i(t);
 - So For the *i*-th subproblem assume an appropriate particular solution $Y_i(t)$; If there is any duplication in the assumed form of $Y_i(t)$ with the solutions of the homogeneous equation (of Step 1), then multiply $Y_i(t)$ by t, or (if necessary) by t^2 ;
 - Solution Find a particular solution $Y_i(t)$ for each of the subproblems. Then the sum $Y_1(t) + \ldots + Y_n(t)$ is a particular solution of original equation;
 - Form the sum of the general solution of the homogeneous equation and the particular solution of the nonhomogeneous equation; This is the general solution of the nonhomogeneous equation;

Subsection 6

Variation of Parameters

Discussion of Variation of Parameters

- The method of variation of parameters complements the method of undetermined coefficients;
- Its main advantage is that it is very general; In principle, it can be applied to any equation, and it requires no detailed assumptions about the form of the solution;
- It can be used to derive a formula for a particular solution of an arbitrary second order linear nonhomogeneous differential equation;
- It eventually requires the evaluation of certain integrals involving the nonhomogeneous term in the differential equation, and this may present difficulties.

Example I

• Find a particular solution of $y'' + 4y = 3 \csc t$;

The corresponding homogeneous equation is y'' + 4y = 0; Its characteristic equation is $r^2 + 4 = 0$; It has solutions $r = \pm 2i$; The general solution of homogeneous is $y_c(t) = c_1 \cos 2t + c_2 \sin 2t$; Replace the constants c_1 and c_2 by functions $u_1(t)$ and $u_2(t)$, respectively, and try to determine these functions so that $y = u_1(t) \cos 2t + u_2(t) \sin 2t$ is a solution of the nonhomogeneous; Differentiate y:

$$y' = -2u_1(t)\sin 2t + 2u_2(t)\cos 2t + u'_1(t)\cos 2t + u'_2(t)\sin 2t;$$

Suppose, additionally, that we require the sum of the last two terms on the right to be zero: $u'_1(t)\cos 2t + u'_2(t)\sin 2t = 0$; Then $y' = -2u_1(t)\sin 2t + 2u_2(t)\cos 2t$; By differentiating y', we obtain $y'' = -4u_1(t)\cos 2t - 4u_2(t)\sin 2t - 2u'_1(t)\sin 2t + 2u'_2(t)\cos 2t$;

Example I (Cont'd)

• We have, under $u'_{1}(t) \cos 2t + u'_{2}(t) \sin 2t = 0$,

$$y' = -2u_1(t)\sin 2t + 2u_2(t)\cos 2t + u'_1(t)\cos 2t + u'_2(t)\sin 2t;$$

$$y'' = -4u_1(t)\cos 2t - 4u_2(t)\sin 2t - 2u'_1(t)\sin 2t + 2u'_2(t)\cos 2t;$$

Then, substituting for y and y'' in $y'' + 4y = 3 \csc t$, we find

$$-4u_1(t)\cos 2t - 4u_2(t)\sin 2t - 2u'_1(t)\sin 2t + 2u'_2(t)\cos 2t +4u_1(t)\cos 2t + 4u_2(t)\sin 2t = 3\csc t.$$

Thus, $u_1(t)$ and $u_2(t)$ must satisfy $-2u'_1(t)\sin 2t + 2u'_2(t)\cos 2t = 3\csc t;$

Example I (Cont'd)

• We want to choose u_1 and u_2 so that

$$u'_{1}(t)\cos 2t + u'_{2}(t)\sin 2t = 0, -2u'_{1}(t)\sin 2t + 2u'_{2}(t)\cos 2t = 3\csc t;$$

Solve the first for $u'_2(t) = -u'_1(t)\frac{\cos 2t}{\sin 2t}$; Substitute for $u'_2(t)$ in the second and simplify:

$$-2u'_{1}(t)\sin 2t + 2(-u'_{1}(t)\frac{\cos 2t}{\sin 2t})\cos 2t = 3\csc t$$

$$\frac{-2u'_{1}(t)\sin^{2}2t - 2u'_{1}(t)\cos^{2}2t}{\sin 2t} = 3\csc t$$

$$-2u'_{1}(t)(\sin^{2}2t + \cos^{2}2t) = 3\csc t\sin 2t$$

$$u'_{1}(t) = \frac{3\csc t2\sin t\cos t}{-2} = -3\cos t;$$

Back-substituting in the first equation, we get

$$u_2'(t) = \frac{3\cos t\cos 2t}{\sin 2t} = \frac{3(1-2\sin^2 t)}{2\sin t} = \frac{3}{2}\csc t - 3\sin t;$$

Example I (Cont'd)

• We found $u'_1(t) = -3\cos t$, $u'_2(t) = \frac{3}{2}\csc t - 3\sin t$. By integration

$$u_1(t) = -3\sin t + c_1; u_2(t) = \frac{3}{2}\ln|\csc t - \cot t| + 3\cos t + c_2;$$

Therefore, we obtain

$$y = -3\sin t\cos 2t + \frac{3}{2}\ln|\csc t - \cot t|\sin 2t + 3\cos t\sin 2t + c_1\cos 2t + c_2\sin 2t = -3\sin t(2\cos^2 t - 1) + \frac{3}{2}\ln|\csc t - \cot t|\sin 2t + 3\cos t2\sin t\cos t + c_1\cos 2t + c_2\sin 2t = 3\sin t + \frac{3}{2}\ln|\csc t - \cot t|\sin 2t + c_1\cos 2t + c_2\sin 2t;$$

The terms involving c_1 and c_2 are the general solution of the homogeneous; The other terms are a particular solution of the nonhomogeneous; Thus, the last expression gives the general solution of the original equation;

Description of Variation of Parameters I

- Consider y" + p(t)y' + q(t)y = g(t) where p, q, and g are continuous on an open interval I;
- Assume that we know the general solution $y_c(t) = c_1y_1(t) + c_2y_2(t)$ of the homogeneous y'' + p(t)y' + q(t)y = 0;
- We replace the constants c_1 and c_2 by functions $u_1(t)$ and $u_2(t)$ to get $y = u_1(t)y_1(t) + u_2(t)y_2(t)$;
- Then we try to determine $u_1(t)$ and $u_2(t)$ so as to get a solution of the nonhomogeneous;
- Differentiate to obtain

 $y' = u'_1(t)y_1(t) + u_1(t)y'_1(t) + u'_2(t)y_2(t) + u_2(t)y'_2(t);$

- Set the terms involving $u'_1(t)$ and $u'_2(t)$ equal to zero, i.e., require that $u'_1(t)y_1(t) + u'_2(t)y_2(t) = 0$;
- Thus, $y' = u_1(t)y'_1(t) + u_2(t)y'_2(t)$;
- By differentiating again, we get $y'' = u'_1(t)y'_1(t) + u_1(t)y''_1(t) + u'_2(t)y'_2(t) + u_2(t)y''_2(t);$

Description of Variation of Parameters II

• Under $u'_{1}(t)y_{1}(t) + u'_{2}(t)y_{2}(t) = 0$, we found $y' = u_1(t)y'_1(t) + u_2(t)y'_2(t),$ $y'' = u'_1(t)y'_1(t) + u_1(t)y''_1(t) + u'_2(t)y'_2(t) + u_2(t)y''_2(t);$ Substituting into y'' + p(t)y' + q(t)y = g(t), we get $(u_1'(t)y_1'(t) + u_1(t)y_1''(t) + u_2'(t)y_2'(t) + u_2(t)y_2''(t))$ $+ p(t)(u_1(t)y'_1(t) + u_2(t)y'_2(t))$ $+ q(t)(u_1(t)y_1(t) + u_2(t)y_2(t)) = g(t)$ $u_1(t)[y_1''(t) + p(t)y_1'(t) + q(t)y_1(t)]$ $+ u_2(t)[v_2''(t) + p(t)v_2'(t) + q(t)v_2(t)]$ $+ u_1'(t)v_1'(t) + u_2'(t)v_2'(t) = g(t);$

- Each of the expressions in square brackets is zero because y₁ and y₂ are solutions of the homogeneous, so we get u'₁(t)y'₁(t) + u'₂(t)y'₂(t) = g(t);
- So we get a system of two linear algebraic equations for the derivatives u'₁(t) and u'₂(t) of the unknown functions;

Description of Variation of Parameters III

By solving it, we obtain

$$\begin{array}{rcl} u_1'(t) &=& -\frac{y_2(t)g(t)}{W(y_1,y_2)(t)}, \\ u_2'(t) &=& \frac{y_1(t)g(t)}{W(y_1,y_2)(t)}, \end{array}$$

where $W(y_1, y_2)$ is the Wronskian of y_1 and y_2 ;

• By integrating, we find the desired functions $u_1(t)$ and $u_2(t)$:

$$u_1(t) = -\int rac{y_2(t)g(t)}{W(y_1,y_2)(t)} dt + c_1, u_2(t) = \int rac{y_1(t)g(t)}{W(y_1,y_2)(t)} dt + c_2;$$

 If the integrals can be evaluated in terms of elementary functions, then we substitute back the results to obtain the general solution;

Main Theorem

Theorem

If the functions p, q, and g are continuous on an open interval I, and if the functions y_1 and y_2 are a fundamental set of solutions of the homogeneous y'' + p(t)y' + q(t)y = 0, then a particular solution of y'' + p(t)y' + q(t)y = g(t) is $Y(t) = -y_1(t) \int_{t_0}^t \frac{y_2(s)g(s)}{W(y_1, y_2)(s)} ds + y_2(t) \int_{t_0}^t \frac{y_1(s)g(s)}{W(y_1, y_2)(s)} ds$, where t_0 is any conveniently chosen point in I; The general solution is

 $y = c_1 y_1(t) + c_2 y_2(t) + Y(t).$

- Difficulties in using the method of variation of parameters:
 - Determination of y₁(t) and y₂(t), a fundamental set of solutions of the homogeneous equation, when the coefficients in that equation are not constants;
 - Evaluation of the integrals appearing in the theorem;
- The advantage: Expression for Y(t) in terms of an arbitrary g(t);