Elementary Differential Equations

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 310

(1) Second Order Linear Equations

- Homogeneous Equations with Constant Coefficients
- Solutions of Linear Homogeneous Equations; the Wronskian
- Complex Roots of the Characteristic Equation
- Repeated Roots; Reduction of Order
- Nonhomogeneous Equations; Undetermined Coefficients
- Variation of Parameters

Subsection 1

Homogeneous Equations with Constant Coefficients

Linear and Nonlinear Second Order Equations

- A second order ordinary differential equation has the form $\frac{d^{2} y}{d t^{2}}=f\left(t, y, \frac{d y}{d t}\right)$, where f is a given function;
- The equation is called linear if the function f has the form $f\left(t, y, \frac{d y}{d t}\right)=g(t)-p(t) \frac{d y}{d t}-q(t) y$, i.e., if f is linear in y and $\frac{d y}{d t}$;
- g, p, and q are specified functions of the independent variable t, but do not depend on y;
- In this case the equation can be rewritten as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

where the primes denote differentiation with respect to t;

- One sometimes sees the form $P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=G(t)$; If $P(t) \neq 0$, we can divide by $P(t)$ to obtain the previous form;
- We operate under the hypothesis that p, q, and g are continuous functions in an interval of interest;
- Equations that are not linear are called nonlinear;

Homogeneous and Non-homogeneous Equations

- An initial value problem has the form

$$
\frac{d^{2} y}{d t^{2}}=f\left(t, y, \frac{d y}{d t}\right), y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
$$

where y_{0} and y_{0}^{\prime} are given numbers;

- A second order linear equation is said to be homogeneous if the term $G(t)$ in $P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=G(t)$ is zero for all t;
- Otherwise, the equation is called nonhomogeneous; As a result, the term $G(t)$ is sometimes called the nonhomogeneous term;
- We write homogeneous equations in the form $P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=0 ;$
- Once the homogeneous equation has been solved, it is always possible to solve the corresponding nonhomogeneous equation; Thus, solving the homogeneous equation is fundamental;

Homogeneous Equations With Constant Coefficients

- General Form $P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=G(t)$;
- Homogeneous Form $P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=0$;
- We now focus on equations in which the functions P, Q, and R are constants. In this case we deal with

$$
a y^{\prime \prime}+b y^{\prime}+c y=0,
$$

where a, b, and c are given constants;

- These are the (second-order linear) homogeneous equations with constant coefficients;
- It turns out that the equation with constant coefficients can always be solved easily in terms of the elementary functions of calculus;

Example I

- Solve the equation $y^{\prime \prime}-y=0$ and also find the solution that satisfies the initial conditions $y(0)=2, y^{\prime}(0)=-1$;
This is a linear homogeneous equation with $a=1, b=0, c=-1$; We seek a function with the property that the second derivative of the function is the same as the function itself; We know of some such examples from calculus: $y_{1}(t)=e^{t}, y_{2}(t)=e^{-t}$; Note that constant multiples of these two solutions are also solutions, i.e., $c_{1} y_{1}(t)=c_{1} e^{t}$ and $c_{2} y_{2}(t)=c_{2} e^{-t}$ are solutions; Note, also, that the sum of any two solutions is also a solution; Thus,
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)=c_{1} e^{t}+c_{2} e^{-t}$ is a solution; This can be verified by calculating the second derivative;
To pick out a particular solution satisfying our initial conditions, we first compute $y^{\prime}=c_{1} e^{t}-c_{2} e^{-t}$ and then

$$
\left\{\begin{array}{l}
y(0)=2 \\
y^{\prime}(0)=-1
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
c_{1}+c_{2}=2 \\
c_{1}-c_{2}=-1
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
c_{1}=\frac{1}{2} \\
c_{2}=\frac{3}{2}
\end{array}\right\} ;
$$

Thus, the particular solution is $y=\frac{1}{2} e^{t}+\frac{3}{2} e^{-t}$;

The Characteristic Equation

- How can we solve $a y^{\prime \prime}+b y^{\prime}+c y=0$, where a, b, and c are arbitrary (real) constants?
- Seek exponential solutions of the form $y=e^{r t}$, where r is a parameter to be determined;
- Then, $y^{\prime}=r e^{r t}$ and $y^{\prime \prime}=r^{2} e^{r t}$;
- So, we have $\left(a r^{2}+b r+c\right) e^{r t}=0$, i.e., $a r^{2}+b r+c=0$;
- This equation is called the characteristic equation;
- Suppose that it has two real and different roots r_{1} and r_{2};
- Then $y_{1}(t)=e^{r_{1} t}$ and $y_{2}(t)=e^{r_{2} t}$ are two solutions and it follows $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$ is also a solution;
- To find the particular member of the family of these solutions that satisfy $y\left(t_{0}\right)=y_{0}$ and $y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$,
- Compute the derivative;
- Substitute $t=t_{0}$ in the equations for y and y^{\prime};
- Solve the resulting system for c_{1} and c_{2};

Example I

- Find the general solution of $y^{\prime \prime}+5 y^{\prime}+6 y=0$;

We assume that $y=e^{r t}$;
Then r must be a root of $r^{2}+5 r+6=0$ or $(r+2)(r+3)=0$;
The roots are $r_{1}=-2$ and $r_{2}=-3$;
The general solution is $y=c_{1} e^{-2 t}+c_{2} e^{-3 t}$;

- Find the solution of the initial value problem $y^{\prime \prime}+5 y^{\prime}+6 y=0$,
$y(0)=2, y^{\prime}(0)=3$;
We found $y=c_{1} e^{-2 t}+c_{2} e^{-3 t}$;
Since $y(0)=2$, we get $c_{1}+c_{2}=2$;
Moreover, $y^{\prime}=-2 c_{1} e^{-2 t}-3 c_{2} e^{-3 t}$; Since $y^{\prime}(0)=3$
$-2 c_{1}-3 c_{2}=3$;
By solving those, we find that $c_{1}=9$ and $c_{2}=-7$;
Thus, the particular solution is $y=9 e^{-2 t}-7 e^{-3 t}$;

Example II

- Find the solution of the initial value problem

$$
4 y^{\prime \prime}-8 y^{\prime}+3 y=0, y(0)=2, y^{\prime}(0)=\frac{1}{2}
$$

If $y=e^{r t}$, then the characteristic equation is $4 r^{2}-8 r+3=0$, i.e., $(2 r-3)(2 r-1)=0$;
Its roots are $r=\frac{3}{2}$ and $r=\frac{1}{2}$;
Therefore the general solution of the differential equation is
$y=c_{1} e^{3 t / 2}+c_{2} e^{t / 2}$;
Applying the initial conditions, we obtain the following two equations for c_{1} and $c_{2}: c_{1}+c_{2}=2, \frac{3}{2} c_{1}+\frac{1}{2} c_{2}=\frac{1}{2}$;
Thus, we get $\left\{\begin{array}{l}c_{1}+c_{2}=2 \\ 3 c_{1}+c_{2}=1\end{array}\right\} \Rightarrow\left\{\begin{array}{l}c_{1}=-\frac{1}{2} \\ c_{2}=\frac{5}{2}\end{array}\right\}$
So the solution of the initial value problem is $y=-\frac{1}{2} e^{3 t / 2}+\frac{5}{2} e^{t / 2}$;

Subsection 2

Solutions of Linear Homogeneous Equations; the Wronskian

Differential Operators

- Let p and q be continuous functions on an open interval $I=(\alpha, \beta)$; The cases $\alpha=-\infty$, or $\beta=\infty$, or both, are included;
- Then, for any function ϕ that is twice differentiable on I, we define

$$
L[\phi]=\phi^{\prime \prime}+p \phi^{\prime}+q \phi ;
$$

- $L[\phi]$ is a function on I; The value of $L[\phi]$ at a point t is

$$
L[\phi](t)=\phi^{\prime \prime}(t)+p(t) \phi^{\prime}(t)+q(t) \phi(t) ;
$$

- The operator L is sometimes written $L=D^{2}+p D+q$, where D is the derivative operator;
- Goal: Study second order linear homogeneous equation $L[\phi](t)=0$;

Example

- Compute $L[\phi](t)$ for

$$
p(t)=t^{2}, \quad q(t)=1+t, \quad \phi(t)=\sin 3 t
$$

Since $\phi^{\prime}(t)=3 \cos 3 t$ and $\phi^{\prime \prime}(t)=-9 \sin 3 t$, we get

$$
\begin{aligned}
L[\phi](t) & =\phi^{\prime \prime}(t)+p(t) \phi^{\prime}(t)+q(t) \phi(t) \\
& =-9 \sin 3 t+3 t^{2} \cos 3 t+(1+t) \sin 3 t \\
& =(t-8) \sin 3 t+3 t^{2} \cos 3 t
\end{aligned}
$$

Existence and Uniqueness Theorem

Existence and Uniqueness Theorem

Consider the initial value problem $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$, with $y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$, where p, q, and g are continuous on an open interval l that contains the point t_{0}; Then there is exactly one solution $y=\phi(t)$ of this problem, and the solution exists throughout the interval I.

- The theorem says actually three things:
(1) The initial value problem has a solution, i.e., a solution exists;
(2) The initial value problem has only one solution, i.e., the solution is unique;
(3) The solution ϕ is defined throughout the interval I where the coefficients are continuous and is at least twice differentiable there;

Example

- Find the longest interval in which the solution of the initial value problem

$$
\left(t^{2}-3 t\right) y^{\prime \prime}+t y^{\prime}-(t+3) y=0, \quad y(1)=2, \quad y^{\prime}(1)=1
$$

is guaranteed to exist;
In the standard form

$$
p(t)=\frac{1}{t-3}, \quad q(t)=-\frac{t+3}{t(t-3)}, \quad g(t)=0 ;
$$

The only points of discontinuity of the coefficients are $t=0$ and $t=3$; Therefore, the longest open interval, containing the initial point $t=1$, in which all the coefficients are continuous is $0<t<3$; Thus, this is the longest interval in which the theorem guarantees that the solution exists;

Example

- Find the unique solution of the initial value problem

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0, \quad y\left(t_{0}\right)=0, \quad y^{\prime}\left(t_{0}\right)=0
$$

where p and q are continuous in an open interval $/$ containing t_{0};
The function $y=\phi(t)=0$, for all t in I certainly satisfies the differential equation and initial conditions;
By the uniqueness part, it is the only solution of the given problem;

The Superposition Principle

- Assume that y_{1} and y_{2} are two solutions of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$;
- Then, we can generate more solutions by forming linear combinations of y_{1} and y_{2};

Theorem (Principle of Superposition)

If y_{1} and y_{2} are two solutions of the differential equation $L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, then the linear combination $c_{1} y_{1}+c_{2} y_{2}$ is also a solution for any values of the constants c_{1} and c_{2}.

- Can the constants be chosen so as to satisfy the initial conditions $y\left(t_{0}\right)=y_{0}$ and $y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$?
This requires solving for c_{1}, c_{2} the system

$$
\left\{\begin{array}{l}
c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right)=y_{0} \\
c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
\end{array}\right\} ;
$$

The Wronskian

- The system $\left\{\begin{array}{l}c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right)=y_{0} \\ c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right)=y_{0}^{\prime}\end{array}\right\}$;
- By linear algebra, if

$$
W=\left|\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right|=y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{1}^{\prime}\left(t_{0}\right) y_{2}\left(t_{0}\right) \neq 0, \text { there }
$$

exists a unique solution, given by

$$
c_{1}=\frac{1}{W}\left|\begin{array}{ll}
y_{0} & y_{2}\left(t_{0}\right) \\
y_{0}^{\prime} & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right| \quad \text { and } \quad c_{2}=\frac{1}{W}\left|\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{0} \\
y_{1}^{\prime}\left(t_{0}\right) & y_{0}^{\prime}
\end{array}\right|
$$

- The determinant W is called the Wronskian determinant, or simply the Wronskian, of the solutions y_{1} and y_{2};

Theorem

Let y_{1} and y_{2} be two solutions of $L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ and that the initial conditions $y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$ are assigned; Then it is always possible to choose the constants c_{1}, c_{2} so that $y=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ satisfies the differential equation and the initial conditions if and only if the Wronskian W is not zero at t_{0}.

Example of Application of the Wronskian

- The functions $y_{1}(t)=e^{-2 t}$ and $y_{2}(t)=e^{-3 t}$ are solutions of the differential equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$;
- The Wronskian of y_{1} and y_{2} is

$$
W=\left|\begin{array}{cc}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right|=\left|\begin{array}{cc}
e^{-2 t} & e^{-3 t} \\
-2 e^{-2 t} & -3 e^{-3 t}
\end{array}\right|=-e^{-5 t}
$$

- Since W is nonzero for all values of t, the functions y_{1} and y_{2} can be used to construct solutions of the given differential equation, together with initial conditions prescribed at any value of t;
- We already solved one of these in a previous problem;

Generality of Solutions

Theorem (Generality of Solutions for Nonzero Wronskian)

Suppose that y_{1} and y_{2} are two solutions of the differential equation $L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$; The family of solutions $y=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ with arbitrary coefficients c_{1} and c_{2} includes every solution of the equation if and only if there is a point t_{0} where the Wronskian of y_{1} and y_{2} is not zero.

- The theorem states that, if and only if the Wronskian of y_{1} and y_{2} is not everywhere zero, then the linear combination $c_{1} y_{1}+c_{2} y_{2}$ contains all solutions of the differential equation; It is therefore natural to call the expression $y=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ with arbitrary constant coefficients the general solution of the differential equation;
- The solutions y_{1} and y_{2} are said to form a fundamental set of solutions of the differential equation if and only if their Wronskian is nonzero;

Example I

- Suppose that $y_{1}(t)=e^{r_{1} t}$ and $y_{2}(t)=e^{r_{2} t}$ are two solutions of an equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$; Show that they form a fundamental set of solutions if $r_{1} \neq r_{2}$;
Calculate the Wronskian of y_{1} and y_{2} :

$$
W=\left|\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right|=\left|\begin{array}{cc}
e^{r_{1} t} & e^{r_{2} t} \\
r_{1} e^{r_{1} t} & r_{2} e^{r_{2} t}
\end{array}\right|=\left(r_{2}-r_{1}\right) e^{\left(r_{1}+r_{2}\right) t} ;
$$

Since $e^{\left(r_{1}+r_{2}\right) t} \neq 0$, and, by hypothesis $r_{1} \neq r_{2}$, it follows that $W \neq 0$, for all t; Consequently, y_{1} and y_{2} form a fundamental set of solutions;

Example II

- Show that $y_{1}(t)=t^{1 / 2}$ and $y_{2}(t)=t^{-1}$ form a fundamental set of solutions of $2 t^{2} y^{\prime \prime}+3 t y^{\prime}-y=0, t>0$;
First, verify that y_{1} and y_{2} are solutions of the differential equation:

$$
\begin{aligned}
& y_{1}(t)=t^{1 / 2} \quad y_{1}^{\prime}(t)=\frac{1}{2} t^{-1 / 2} \quad y_{1}^{\prime \prime}(t)=-\frac{1}{4} t^{-3 / 2} \\
& y_{2}(t)=t^{-1} \quad y_{2}^{\prime}(t)=-t^{-2} \quad y_{2}^{\prime \prime}(t)=2 t^{-3} ; \\
& 2 t^{2} y^{\prime \prime}+3 t y^{\prime}-y=2 t^{2}\left(-\frac{1}{4} t^{-3 / 2}\right)+3 t\left(\frac{1}{2} t^{-1 / 2}\right)-t^{1 / 2}= \\
& -\frac{1}{2} t^{1 / 2}+\frac{3}{2} t^{1 / 2}-t^{1 / 2}=0 ; \\
& 2 t^{2} y^{\prime \prime}+3 t y^{\prime}-y=2 t^{2}\left(2 t^{-3}\right)+3 t\left(-t^{-2}\right)-t^{-1}= \\
& 4 t^{-1}-3 t^{-1}-t^{-1}=0 ;
\end{aligned}
$$

Now, calculate the Wronskian W of y_{1} and y_{2} :

$$
W=\left|\begin{array}{cc}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(y) & y_{2}^{\prime}(t)
\end{array}\right|=\left|\begin{array}{cc}
t^{1 / 2} & t^{-1} \\
\frac{1}{2} t^{-1 / 2} & -t^{-2}
\end{array}\right|=-\frac{3}{2} t^{-3 / 2}
$$

Since $W \neq 0$ for $t>0, y_{1}$ and y_{2} form a fundamental set of solutions in $(0, \infty)$;

Existence of Fundamental Solutions

Theorem (Existence of Fundamental Solutions)

Consider the differential equation $L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, whose coefficients p and q are continuous on some open interval l; Choose some point t_{0} in I; Let y_{1} be the solution that also satisfies the initial conditions $y\left(t_{0}\right)=1, y^{\prime}\left(t_{0}\right)=0$, and let y_{2} be the solution that satisfies the initial conditions $y\left(t_{0}\right)=0, y^{\prime}\left(t_{0}\right)=1$; Then y_{1} and y_{2} form a fundamental set of solutions of the differential equation.

- The existence of y_{1} and y_{2} is ensured by the Existence Theorem;
- To see that they form a fundamental set of solutions, we need only calculate their Wronskian at t_{0} :

$$
W\left(y_{1}, y_{2}\right)\left(t_{0}\right)=\left|\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right|=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1 ;
$$

Since the Wronskian is not zero at t_{0}, the functions y_{1} and y_{2} form a fundamental set of solutions;

Example

- Use the theorem to find the fundamental set of solutions for the differential equation $y^{\prime \prime}-y=0$ using the initial point $t_{0}=0$; The two solutions of are $y_{1}(t)=e^{t}$ and $y_{2}(t)=e^{-t}$; The Wronskian of these solutions is

$$
W\left(y_{1}, y_{2}\right)(t)=\left|\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right|=\left|\begin{array}{rr}
e^{t} & e^{-t} \\
e^{t} & -e^{-t}
\end{array}\right|=-2 \neq 0
$$

so they form a fundamental set of solutions;
These are not the fundamental solutions of the Theorem because they do not satisfy the initial conditions mentioned in the theorem at $t=0$;

Example (Cont'd)

- Let $y(t)=c_{1} e^{t}+c_{2} e^{-t}$.

Let $y_{3}(t)$ be the solution that satisfies $y(0)=1$ and $y^{\prime}(0)=0$. To find it, we solve the system:

$$
\left\{\begin{array}{l}
c_{1}+c_{2}=1 \\
c_{1}-c_{2}=0
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
c_{1}=\frac{1}{2} \\
c_{2}=\frac{1}{2}
\end{array}\right.
$$

Let $y_{4}(t)$ be the solution that satisfies $y(0)=0$ and $y^{\prime}(0)=1$; To find it, we solve the system:

$$
\left\{\begin{array}{l}
c_{1}+c_{2}=0 \\
c_{1}-c_{2}=1
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
c_{1}=\frac{1}{2} \\
c_{2}=-\frac{1}{2}
\end{array}\right.
$$

Thus, $y_{3}(t)=\frac{1}{2} e^{t}+\frac{1}{2} e^{-t}$ and $y_{4}(t)=\frac{1}{2} e^{t}-\frac{1}{2} e^{-t}$;
Since the Wronskian of y_{3} and y_{4} is

$$
W\left(y_{3}, y_{4}\right)(t)=\left|\begin{array}{ll}
\frac{1}{2} e^{t}+\frac{1}{2} e^{-t} & \frac{1}{2} e^{t}-\frac{1}{2} e^{-t} \\
\frac{1}{2} e^{t}-\frac{1}{2} e^{-t} & \frac{1}{2} e^{t}+\frac{1}{2} e^{-t}
\end{array}\right|=1
$$

these functions also form a fundamental set of solutions;

Abel's Theorem

Abel's Theorem

If y_{1} and y_{2} are solutions of $L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ where p and q are continuous on an open interval I, then the Wronskian $W\left(y_{1}, y_{2}\right)(t)$ is given by $W\left(y_{1}, y_{2}\right)(t)=c e^{-\int p(t) d t}$, where c is a certain constant that depends on y_{1} and y_{2}, but not on t; Further, $W\left(y_{1}, y_{2}\right)(t)$ either is zero for all t in I (if $c=0$) or else is never zero in I (if $c \neq 0$).

- Note that y_{1} and y_{2} satisfy

$$
\begin{aligned}
& y_{1}^{\prime \prime}+p(t) y_{1}^{\prime}+q(t) y_{1}=0 \\
& y_{2}^{\prime \prime}+p(t) y_{2}^{\prime}+q(t) y_{2}=0
\end{aligned}
$$

Multiply the first by $-y_{2}$, the second by y_{1}, and add:

$$
\begin{aligned}
-y_{1}^{\prime \prime} y_{2}-p(t) y_{1}^{\prime} y_{2}-q(t) y_{1} y_{2} & =0 ; \\
y_{1} y_{2}^{\prime \prime}+p(t) y_{1} y_{2}^{\prime}+q(t) y_{1} y_{2} & =0 ; \\
\left(y_{1} y_{2}^{\prime \prime}-y_{1}^{\prime \prime} y_{2}\right)+p(t)\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right) & =0 ;
\end{aligned}
$$

Abel's Theorem (Cont'd)

- We got $\left(y_{1} y_{2}^{\prime \prime}-y_{1}^{\prime \prime} y_{2}\right)+p(t)\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right)=0$;

Next, we let $W(t)=W\left(y_{1}, y_{2}\right)(t)$;
We have

$$
\begin{aligned}
W^{\prime} & =\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right)^{\prime} \\
& =y_{1}^{\prime} y_{2}^{\prime}+y_{1} y_{2}^{\prime \prime}-\left(y_{1}^{\prime \prime} y_{2}+y_{1}^{\prime} y_{2}^{\prime}\right) \\
& =y_{1} y_{2}^{\prime \prime}-y_{1}^{\prime \prime} y_{2} ;
\end{aligned}
$$

Thus, we get

$$
W^{\prime}+p(t) W=0 \Rightarrow \frac{1}{W} d W=-p(t) d t \Rightarrow \ln |W|=-\int p(t) d t
$$

Thus $W(t)=c e^{-\int p(t) d t}$, for a constant $c ; W(t)$ is not zero unless $c=0$, in which case $W(t)$ is zero for all t;

Example

- Recall that $y_{1}(t)=t^{1 / 2}$ and $y_{2}(t)=t^{-1}$ were shown to be solutions of $2 t^{2} y^{\prime \prime}+3 t y^{\prime}-y=0, t>0$; Verify that the Wronskian of y_{1} and y_{2} is given by the formula in Abel's Theorem;
We have already computed $W\left(y_{1}, y_{2}\right)(t)=-\frac{3}{2} t^{-3 / 2}$;
To use Abel's Theorem, we must write the differential equation $2 t^{2} y^{\prime \prime}+3 t y^{\prime}-y=0$ in the standard form: $y^{\prime \prime}+\frac{3}{2 t} y^{\prime}-\frac{1}{2 t^{2}} y=0$; Thus, $p(t)=\frac{3}{2 t}$; This yields

$$
W\left(y_{1}, y_{2}\right)(t)=c e^{-\int p(t) d t}=c e^{-\int \frac{3}{2 t} d t}=c e^{-\frac{3}{2} \ln t}=c t^{-3 / 2}
$$

For the particular solutions given in the example $c=-\frac{3}{2}$, which yields the Wronskian, as computed before;

Subsection 3

Complex Roots of the Characteristic Equation

Characteristic Equations with Complex Roots

- Consider $a y^{\prime \prime}+b y^{\prime}+c y=0$, where a, b, and c are real constants;
- Solutions of the form $y=e^{r t}$ are obtained for r a root of the characteristic equation $a r^{2}+b r+c=0$;
- If the roots r_{1} and r_{2} are real and different, which occurs when $b^{2}-4 a c>0$, then the general solution is $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$;
- If $b^{2}-4 a c<0$, then the quadratic has two complex conjugate roots, say $r_{1}=\lambda+i \mu, r_{2}=\lambda-i \mu$, with λ, μ real;
- Then, the solutions are $y_{1}(t)=e^{(\lambda+i \mu) t}, y_{2}(t)=e^{(\lambda-i \mu) t}$;
- What is the meaning of an exponential with a complex exponent?
- For example, if $\lambda=-1, \mu=2$, and $t=3$, then $y_{1}(3)=e^{-3+6 i}$;
- What does it mean to raise the number e to a complex power? The answer is provided by an important relation known as Eulers formula;

Euler's Formula

- The MacLaurin series for $e^{t}, \cos t$ and $\sin t$ are (for t in \mathbb{R}):

$$
e^{t}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!}, \cos t=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n}}{(2 n)!}, \sin t=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} t^{2 n-1}}{(2 n-1)!}
$$

- If we can substitute it for t, then

$$
\begin{aligned}
e^{i t} & =\sum_{n=0}^{\infty} \frac{(i t)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n}}{(2 n)!}+i \sum_{n=1}^{\infty} \frac{(-1)^{n-1} t^{2 n-1}}{(2 n-1)!} \\
& =\cos t+i \sin t
\end{aligned}
$$

- The equation $e^{i t}=\cos t+i \sin t$ is known as Euler's formula;
- We adopt this equation as the definition of $e^{i t}$:

$$
e^{i t}=\cos t+i \sin t
$$

Some Variations of Euler's Formula

- If we replace t by $-t$ and recall that $\cos (-t)=\cos t$ and $\sin (-t)=-\sin t$, then we have $e^{-i t}=\cos t-i \sin t$;
- If t is replaced by μt, then we obtain a generalized version of Euler's formula: $e^{i \mu t}=\cos \mu t+i \sin \mu t$;
- For arbitrary complex exponents $(\lambda+i \mu) t$, we get

$$
e^{(\lambda+i \mu) t}=e^{\lambda t} e^{i \mu t}=e^{\lambda t}(\cos \mu t+i \sin \mu t)
$$

- We adopt this as the definition of $e^{(\lambda+i \mu) t}$;
- With these definitions, one can show that all the usual laws of exponents are valid for the complex exponential function;
- Moreover, the differentiation formula $\frac{d}{d t}\left(e^{r t}\right)=r e^{r t}$ holds for complex values of r as well;

Example

- Find the general solution of $y^{\prime \prime}+y^{\prime}+\frac{37}{4} y=0$; Also find the solution that satisfies the initial conditions $y(0)=2, y^{\prime}(0)=8$;
The characteristic equation is $r^{2}+r+\frac{37}{4}=0$; Its roots are $r_{1}=-\frac{1}{2}+3 i$ and $r_{2}=-\frac{1}{2}-3 i$; Therefore two solutions of the differential equation are

$$
\begin{gathered}
y_{1}(t)=e^{\left(-\frac{1}{2}+3 i\right) t}=e^{-t / 2}(\cos 3 t+i \sin 3 t) \\
y_{2}(t)=e^{\left(-\frac{1}{2}-3 i\right) t}=e^{-t / 2}(\cos 3 t-i \sin 3 t)
\end{gathered}
$$

The Wronskian

$$
\begin{aligned}
& W\left(y_{1}, y_{2}\right)(t)=\left|\begin{array}{cc}
e^{\left(-\frac{1}{2}+3 i\right) t} & e^{\left(-\frac{1}{2}-3 i\right) t} \\
\left(-\frac{1}{2}+3 i\right) e^{\left(-\frac{1}{2}+3 i\right) t} & \left(-\frac{1}{2}-3 i\right) e^{\left(-\frac{1}{2}-3 i\right) t}
\end{array}\right| \\
& =\left(-\frac{1}{2}-3 i\right) e^{-t}-\left(-\frac{1}{2}+3 i\right) e^{-t}=-6 i e^{-t} \neq 0
\end{aligned}
$$

So the general solution can be expressed as a linear combination of $y_{1}(t)$ and $y_{2}(t)$ with arbitrary coefficients.

Example (Cont'd)

- Rather than using the complex-valued solutions

$$
\begin{aligned}
& y_{1}(t)=e^{-t / 2}(\cos 3 t+i \sin 3 t) \\
& y_{2}(t)=e^{-t / 2}(\cos 3 t-i \sin 3 t)
\end{aligned}
$$

we find a fundamental set of solutions that are real-valued;

- Any linear combination of two solutions is also a solution;
- So, form the linear combinations $y_{1}(t)+y_{2}(t)$ and $y_{1}(t)-y_{2}(t)$:

$$
\begin{aligned}
y_{1}(t)+y_{2}(t) & =2 e^{-t / 2} \cos 3 t \\
y_{1}(t)-y_{2}(t) & =2 i e^{-t / 2} \sin 3 t
\end{aligned}
$$

- Dropping the constants 2 and $2 i$, we obtain

$$
u(t)=e^{-t / 2} \cos 3 t \quad \text { and } \quad v(t)=e^{-t / 2} \sin 3 t
$$

Example (Cont'd)

- We came up with the solutions

$$
u(t)=e^{-t / 2} \cos 3 t \quad \text { and } \quad v(t)=e^{-t / 2} \sin 3 t
$$

- The Wronskian is

$$
\begin{aligned}
& W(u, v)(t)= \\
& \begin{array}{c}
e^{-t / 2} \cos 3 t \\
-\frac{1}{2} e^{-t / 2} \cos 3 t-3 e^{-t / 2} \sin 3 t \\
=\frac{1}{2} e^{-t / 2} \sin 3 t+3 e^{-t / 2} \cos 3 t \\
=e^{-t / 2} \cos 3 t\left(-\frac{1}{2} e^{-t / 2} \sin 3 t+3 e^{-t / 2} \cos 3 t\right) \\
-e^{-t / 2} \sin 3 t\left(-\frac{1}{2} e^{-t / 2} \cos 3 t-3 e^{-t / 2} \sin 3 t\right)
\end{array} \\
& =3 e^{-t}\left(\cos ^{2} 3 t+\sin ^{2} 3 t\right)=3 e^{-t} \neq 0 .
\end{aligned}
$$

So $u(t)$ and $v(t)$ form a fundamental set of solutions; The general solution can be written as

$$
y=c_{1} u(t)+c_{2} v(t)=e^{-t / 2}\left(c_{1} \cos 3 t+c_{2} \sin 3 t\right)
$$

Example (Cont'd)

- So we have

$$
\begin{aligned}
y(t)= & e^{-t / 2}\left(c_{1} \cos 3 t+c_{2} \sin 3 t\right) ; \\
y^{\prime}(t)= & -\frac{1}{2} c_{1} e^{-t / 2} \cos 3 t-3 c_{1} e^{-t / 2} \sin 3 t \\
& \quad-\frac{1}{2} c_{2} e^{-t / 2} \sin 3 t+3 c_{2} e^{-t / 2} \cos 3 t \\
= & -\frac{1}{2} e^{-t / 2}\left(c_{1} \cos 3 t+c_{2} \sin 3 t\right) \\
& \quad+e^{-t / 2}\left(3 c_{2} \cos 3 t-3 c_{1} \sin 3 t\right) .
\end{aligned}
$$

- To satisfy the initial conditions, we set

$$
\left\{\begin{array}{l}
y(0)=2 \\
y^{\prime}(0)=8
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
c_{1}=2 \\
-\frac{1}{2} c_{1}+3 c_{2}=8
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
c_{1}=2 \\
c_{2}=3
\end{array}\right\}
$$

- Therefore $y=e^{-t / 2}(2 \cos 3 t+3 \sin 3 t)$;

Complex Roots: The General Case

- The functions $y_{1}(t)=e^{(\lambda+i \mu) t}$ and $y_{2}(t)=e^{(\lambda-i \mu) t}$ are solutions of $a y^{\prime \prime}+b y^{\prime}+c y=0$ when the roots of the characteristic equation $a r^{2}+b r+c=0$ are the complex numbers $\lambda \pm i \mu$;
- To find real-valued solutions, we proceed just as in the preceding example: We form the sum and then the difference of y_{1} and y_{2}; We have

$$
\begin{aligned}
y_{1}(t)+y_{2}(t) & =e^{\lambda t}(\cos \mu t+i \sin \mu t)+e^{\lambda t}(\cos \mu t-i \sin \mu t) \\
& =2 e^{\lambda t} \cos \mu t ; \\
y_{1}(t)-y_{2}(t) & =e^{\lambda t}(\cos \mu t+i \sin \mu t)-e^{\lambda t}(\cos \mu t-i \sin \mu t) \\
& =2 i e^{\lambda t} \sin \mu t
\end{aligned}
$$

Neglecting constants, we get

$$
u(t)=e^{\lambda t} \cos \mu t \quad \text { and } \quad v(t)=e^{\lambda t} \sin \mu t
$$

Complex Roots: The General Case (Cont'd)

- We found

$$
u(t)=e^{\lambda t} \cos \mu t \quad \text { and } \quad v(t)=e^{\lambda t} \sin \mu t
$$

- The Wronskian of u and v is

$$
\begin{aligned}
& W(u, v)(t) \\
& =\left\lvert\, \begin{array}{c}
e^{\lambda t} \cos \mu t \\
\lambda e^{\lambda t} \cos \mu t-\mu e^{\lambda t} \sin \mu t \quad \lambda e^{\lambda t} \sin \mu t+\mu e^{\lambda t} \cos \mu t \\
=e^{2 \lambda t} \cos \mu t(\lambda \sin \mu t+\mu \cos \mu t) \\
-e^{2 \lambda t} \sin \mu t(\lambda \cos \mu t-\mu \sin \mu t) \\
=\mu e^{2 \lambda t}\left(\cos ^{2} \mu t+\sin ^{2} \mu t\right)=\mu e^{2 \lambda t} .
\end{array} .\right.
\end{aligned}
$$

- If $\mu \neq 0, u$ and v form a fundamental set of solutions;
- If the roots of the characteristic equation are $\lambda \pm i \mu$, with $\mu \neq 0$, then the general solution is

$$
y=c_{1} e^{\lambda t} \cos \mu t+c_{2} e^{\lambda t} \sin \mu t
$$

Example I

- Find the solution of the initial value problem

$$
16 y^{\prime \prime}-8 y^{\prime}+145 y=0, \quad y(0)=-2, y^{\prime}(0)=1
$$

The characteristic equation is $16 r^{2}-8 r+145=0$ and its roots are $r=\frac{1}{4} \pm 3 i$;
General solution of the differential equation is
$y=c_{1} e^{t / 4} \cos 3 t+c_{2} e^{t / 4} \sin 3 t$;
To apply the first initial condition, we set $t=0$; this gives $y(0)=c_{1}=-2$; For the second initial condition we first differentiate and then set $t=0 ;$ In this way we find that $y^{\prime}(0)=\frac{1}{4} c_{1}+3 c_{2}=1$; So, $c_{2}=\frac{1}{2}$;
Thus, the solution of the initial value problem is $y=-2 e^{t / 4} \cos 3 t+\frac{1}{2} e^{t / 4} \sin 3 t ;$

Example II

- Find the general solution of $y^{\prime \prime}+9 y=0$;

The characteristic equation is $r^{2}+9=0$ with the roots $r= \pm 3 i$; Thus, $\lambda=0$ and $\mu=3$;
The general solution is $y=c_{1} \cos 3 t+c_{2} \sin 3 t$; Note that if the real part of the roots is zero, then there is no exponential factor in the solution.

Subsection 4

Repeated Roots; Reduction of Order

The Case of a Repeated Root

- We saw how to solve $a y^{\prime \prime}+b y^{\prime}+c y=0$, when the roots of $a r^{2}+b r+c=0$ are
- real and different or
- complex conjugates;
- What if the two roots r_{1} and r_{2} are equal?
- Recall that this occurs when the discriminant $b^{2}-4 a c=0$ and the roots are $r_{1}=r_{2}=-\frac{b}{2 a}$;
- In this case both roots yield the same solution: $y_{1}(t)=e^{-b t / 2 a}$;
- How do we find a second solution?

Example

- Solve the differential equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$;

The characteristic equation is $r^{2}+4 r+4=(r+2)^{2}=0$, whence $r_{1}=r_{2}=-2$; Therefore one solution is $y_{1}(t)=e^{-2 t}$; We know that $c y_{1}(t)$ is also a solution;
We replace c by a function $v(t)$ and try to determine $v(t)$ so that the $v(t) y_{1}(t)$ is also a solution:

$$
y=v(t) y_{1}(t)=v(t) e^{-2 t}
$$

Then

$$
\begin{aligned}
y^{\prime} & =v^{\prime}(t) e^{-2 t}-2 v(t) e^{-2 t} \\
y^{\prime \prime} & =v^{\prime \prime}(t) e^{-2 t}-4 v^{\prime}(t) e^{-2 t}+4 v(t) e^{-2 t}
\end{aligned}
$$

Therefore, since $y^{\prime \prime}+4 y^{\prime}+4 y=0$, we get

$$
\begin{aligned}
& \quad\left[v^{\prime \prime}(t)-4 v^{\prime}(t)+4 v(t)+4 v^{\prime}(t)-8 v(t)+4 v(t)\right] e^{-2 t}=0 \\
& \text { i.e., } v^{\prime \prime}(t)=0
\end{aligned}
$$

Example (Cont'd)

- We set $y(t)=v(t) y_{1}(t)$ and discovered that $v^{\prime \prime}(t)=0$. This yields $v^{\prime}(t)=c_{1}$ and $v(t)=c_{1} t+c_{2}$; Thus

$$
y=c_{1} t e^{-2 t}+c_{2} e^{-2 t}
$$

The second term corresponds to the original solution $y_{1}(t)=e^{-2 t}$; The first hints at a second solution

$$
y_{2}(t)=t e^{-2 t}
$$

These two solutions form a fundamental set: $W\left(y_{1}, y_{2}\right)(t)=$

$$
\begin{aligned}
& \left|\begin{array}{cc}
e^{-2 t} & t e^{-2 t} \\
-2 e^{-2 t} & (1-2 t) e^{-2 t}
\end{array}\right|=e^{-4 t}-2 t e^{-4 t}+2 t e^{-4 t}=e^{-4 t} \neq 0 \\
& \text { Thus, }
\end{aligned}
$$

$$
y_{1}(t)=e^{-2 t}, \quad y_{2}(t)=t e^{-2 t}
$$

form a fundamental set of solutions;

The General Case

- Suppose the coefficients in $a y^{\prime \prime}+b y^{\prime}+c y=0$ satisfy $b^{2}-4 a c=0$; Then $y_{1}(t)=e^{-b t / 2 a}$ is a solution; Assume that

$$
y=v(t) y_{1}(t)=v(t) e^{-b t / 2 a}
$$

is also a solution; We then get

$$
\begin{aligned}
y^{\prime} & =v^{\prime}(t) e^{-b t / 2 a}-\frac{b}{2 a} v(t) e^{-b t / 2 a} ; \\
y^{\prime \prime} & =v^{\prime \prime}(t) e^{-b t / 2 a}-\frac{b}{a} v^{\prime}(t) e^{-b t / 2 a}+\frac{b^{2}}{4 a^{2}} v(t) e^{-b t / 2 a}
\end{aligned}
$$

Therefore, since $a y^{\prime \prime}+b y^{\prime}+c y=0$,

$$
\begin{aligned}
& {\left[a\left[v^{\prime \prime}(t)-\frac{b}{a} v^{\prime}(t)+\frac{b^{2}}{4 a^{2}} v(t)\right]\right.} \\
& \left.\quad+b\left[v^{\prime}(t)-\frac{b}{2 a} v(t)\right]+c v(t)\right] e^{-b t / 2 a}=0 ;
\end{aligned}
$$

The General Case (Cont'd)

- Canceling the factor $e^{-b t / 2 a}$, we obtain

$$
a v^{\prime \prime}(t)+(-b+b) v^{\prime}(t)+\left(\frac{b^{2}}{4 a}-\frac{b^{2}}{2 a}+c\right) v(t)=0
$$

The term involving $v^{\prime}(t)$ is zero; The coefficient of $v(t)$ is $c-\frac{b^{2}}{4 a}$, which is also zero because $b^{2}-4 a c=0$; Thus, $v^{\prime \prime}(t)=0$; So $v(t)=c_{1}+c_{2} t$; and, therefore,

$$
y=c_{1} e^{-b t / 2 a}+c_{2} t e^{-b t / 2 a}
$$

Thus, y is a linear combination of the two solutions

$$
y_{1}(t)=e^{-b t / 2 a}, y_{2}(t)=t e^{-b t / 2 a}
$$

The Wronskian of these two solutions is

$$
W\left(y_{1}, y_{2}\right)(t)=\left|\begin{array}{cc}
e^{-b t / 2 a} & t e^{-b t / 2 a} \\
-\frac{b}{2 a} e^{-b t / 2 a} & \left(1-\frac{b t}{2 a}\right) e^{-b t / 2 a}
\end{array}\right|=e^{-b t / a} \neq 0
$$

whence the solutions y_{1} and y_{2} are a fundamental set of solutions.

Example

- Find the solution of the initial value problem

$$
y^{\prime \prime}-y^{\prime}+\frac{1}{4} y=0, y(0)=2, y^{\prime}(0)=\frac{1}{3}
$$

The characteristic equation is $r^{2}-r+\frac{1}{4}=0$, So the roots are $r_{1}=r_{2}=\frac{1}{2}$; Thus the general solution of the differential equation is $y=c_{1} e^{t / 2}+c_{2} t e^{t / 2}$; The first initial condition requires that $y(0)=c_{1}=2$; To satisfy the second initial condition, we first differentiate and then set $t=0 ; y^{\prime}(0)=\frac{1}{2} c_{1}+c_{2}=\frac{1}{3}$, so $c_{2}=-\frac{2}{3}$;
Thus the solution of the initial value problem is

$$
y=2 e^{t / 2}-\frac{2}{3} t e^{t / 2}
$$

Reduction of Order

- Suppose that we know one solution $y_{1}(t)$ of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$;
- To find a second solution, let $y=v(t) y_{1}(t)$;
- Then,

$$
\begin{aligned}
y^{\prime} & =v^{\prime}(t) y_{1}(t)+v(t) y_{1}^{\prime}(t) \\
y^{\prime \prime} & =v^{\prime \prime}(t) y_{1}(t)+v^{\prime}(t) y_{1}^{\prime}(t)+v^{\prime}(t) y_{1}^{\prime}(t)+v(t) y_{1}^{\prime \prime}(t) \\
& =v^{\prime \prime}(t) y_{1}(t)+2 v^{\prime}(t) y_{1}^{\prime}(t)+v(t) y_{1}^{\prime \prime}(t)
\end{aligned}
$$

- Thus, since $y^{\prime \prime}+p y^{\prime}+q y=0$,

$$
\begin{gathered}
{\left[v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime}\right]+p\left[v^{\prime} y_{1}+v y_{1}^{\prime}\right]+q v y_{1}=0} \\
y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}+\left(y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}\right) v=0
\end{gathered}
$$

- Since y_{1} is a solution, the coefficient of v is zero, so

$$
y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0 ;
$$

Reduction of Order (Cont'd)

- We set $y=v(t) y_{1}(t)$ and found

$$
y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0
$$

- This is actually a first order equation for the function v^{\prime} and can be solved either as a first order linear equation or as a separable equation;
- Once v^{\prime} has been found, then v is obtained by an integration;
- Then, we can determine y;
- The procedure outlined here is called the method of reduction of order, because we solve a first order differential equation for v^{\prime} rather than the second order equation for y;

Example

- Given that $y_{1}(t)=t^{-1}$ is a solution of $2 t^{2} y^{\prime \prime}+3 t y^{\prime}-y=0, t>0$, find a fundamental set of solutions;
We set $y=v(t) t^{-1}$; Then

$$
\begin{aligned}
y^{\prime} & =v^{\prime} t^{-1}-v t^{-2} \\
y^{\prime \prime} & =v^{\prime \prime} t^{-1}-v^{\prime} t^{-2}-v^{\prime} t^{-2}+2 v t^{-3} \\
& =v^{\prime \prime} t^{-1}-2 v^{\prime} t^{-2}+2 v t^{-3}
\end{aligned}
$$

Substituting in the original equation and collecting terms, we obtain:

$$
\begin{aligned}
& 2 t^{2}\left(v^{\prime \prime} t^{-1}-2 v^{\prime} t^{-2}+2 v t^{-3}\right)+3 t\left(v^{\prime} t^{-1}-v t^{-2}\right)-v t^{-1} \\
& =2 t v^{\prime \prime}+(-4+3) v^{\prime}+\left(4 t^{-1}-3 t^{-1}-t^{-1}\right) v \\
& =2 t v^{\prime \prime}-v^{\prime}=0
\end{aligned}
$$

Example (Cont'd)

- We set $y=v(t) t^{-1}$ and found

$$
2 t v^{\prime \prime}-v^{\prime}=0 ;
$$

Separating the variables and solving for $v^{\prime}(t)$, we find that $v^{\prime}(t)=c t^{1 / 2}$; Thus, $v(t)=\frac{2}{3} c t^{3 / 2}+k$; It follows that

$$
y=\frac{2}{3} c t^{1 / 2}+k t^{-1}
$$

The second term on the right side is a multiple of $y_{1}(t)$ and can be dropped, but the first term provides a new solution $y_{2}(t)=t^{1 / 2}$; The Wronskian of y_{1} and y_{2} is

$$
W\left(y_{1}, y_{2}\right)(t)=\left|\begin{array}{cc}
t^{-1} & t^{1 / 2} \\
-t^{-2} & \frac{1}{2} t^{-1 / 2}
\end{array}\right|=\frac{1}{2} t^{-3 / 2}+t^{-3 / 2}=\frac{3}{2} t^{-3 / 2}
$$

Since $t>0, y_{1}$ and y_{2} form a fundamental set of solutions;

Subsection 5

Nonhomogeneous Equations; Undetermined Coefficients

The Nonhomogeneous Second Order Differential Equation

- We now return to the nonhomogeneous equation $L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$, where p, q, and g are given (continuous) functions on the open interval I;
- The equation $L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ is called the homogeneous equation corresponding to the original equation;

Theorem

If Y_{1} and Y_{2} are two solutions of the nonhomogeneous, then their difference $Y_{1}-Y_{2}$ is a solution of the corresponding homogeneous; If, in addition, y_{1} and y_{2} are a fundamental set of solutions of the homogeneous, then $Y_{1}(t)-Y_{2}(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ with c_{1}, c_{2} constants.

Theorem

The general solution of the nonhomogeneous can be written in the form $y=\phi(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+Y(t)$, where y_{1} and y_{2} are a fundamental set of solutions of the corresponding homogeneous, c_{1} and c_{2} are arbitrary constants, and Y is some specific solution of the nonhomogeneous.

Steps for Solving the Nonhomogeneous Equation

- In somewhat different words, the last theorem states that to solve the nonhomogeneous equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$, we must do three things:
(1) Find the general solution $c_{1} y_{1}(t)+c_{2} y_{2}(t)$ of the corresponding homogeneous equation; This solution is called the complementary solution and denoted by $y_{c}(t)$;
(2) Find some solution $Y(t)$ of the nonhomogeneous equation; This solution is referred to as a particular solution;
(3) Add together the functions found in the two preceding steps;
- We have already discussed how to find $y_{c}(t)$, at least when the homogeneous equation has constant coefficients;
- We focus, now, on finding a particular solution $Y(t)$ of the nonhomogeneous equation;
- We study two methods:
- The method of undetermined coefficients;
- The method of variation of parameters;

Method of Undetermined Coefficients

- Method of undetermined coefficients:
- Make an initial assumption about the form of the particular solution $Y(t)$, but with the coefficients left unspecified;
- Substitute the assumed expression into the equation and attempt to determine the coefficients so as to obtain a solution;
- If we are successful, then we have found a particular solution $Y(t)$ of the differential equation; If we cannot determine the coefficients, then there is no solution of the form assumed; In this case we may modify the initial assumption and try again;
- The technique is straightforward to execute once the assumption is made as to the form of $Y(t)$;
- Its major limitation is that it is useful primarily for equations for which we can easily write down the correct form of the particular solution in advance;
- We consider only nonhomogeneous terms that consist of polynomials, exponential functions, sines, and cosines;

Example I

- Find a particular solution of $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}$;

We seek a function Y such that $Y^{\prime \prime}(t)-3 Y^{\prime}(t)-4 Y(t)=3 e^{2 t}$; The exponential function reproduces itself through differentiation; So, we assume that $Y(t)$ is some multiple of $e^{2 t}$, i.e., $Y(t)=A e^{2 t}$, where the coefficient A is to be determined;
To find A, we calculate $Y^{\prime}(t)=2 A e^{2 t}, Y^{\prime \prime}(t)=4 A e^{2 t}$; Then

$$
\begin{aligned}
& 4 A e^{2 t}-3 \cdot 2 A e^{2 t}-4 \cdot A e^{2 t}=3 e^{2 t} \\
& \Rightarrow(4 A-6 A-4 A) e^{2 t}=3 e^{2 t} \\
& \Rightarrow-6 A e^{2 t}=3 e^{2 t} \\
& \Rightarrow A=-\frac{1}{2}
\end{aligned}
$$

Thus, a particular solution is $Y(t)=-\frac{1}{2} e^{2 t}$;

Example II

- Find a particular solution of $y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin t$;

Assume that $Y(t)=A \sin t$, where A is a constant to be determined;
We obtain $Y^{\prime}(t)=A \cos t, Y^{\prime \prime}(t)=-A \sin t$, whence
$-A \sin t-3 A \cos t-4 A \sin t=2 \sin t \Rightarrow-5 A \sin t-3 A \cos t=$ $2 \sin t \Rightarrow(2+5 A) \sin t+3 A \cos t=0$; We want this hold for all t; Thus, it must hold for $t=0$ and $t=\frac{\pi}{2}$; We get $3 A=0$ and $2+5 A=0$; There is no choice of the constant A that makes the assumed expression a solution of the differential equation; Let us include a cosine term in $Y(t)$ and give it another try, i.e., $Y(t)=A \sin t+B \cos t$, where A and B are to be determined; Then $Y^{\prime}(t)=A \cos t-B \sin t, Y^{\prime \prime}(t)=-A \sin t-B \cos t$; Therefore, we get $(-A+3 B-4 A) \sin t+(-B-3 A-4 B) \cos t=2 \sin t$; Matching the coefficients of $\sin t$ and $\cos t$ on each side of the equation, we get $-5 A+3 B=2,-3 A-5 B=0$, obtaining $A=-\frac{5}{17}$ and $B=\frac{3}{17}$; Thus, $Y(t)=-\frac{5}{17} \sin t+\frac{3}{17} \cos t$;

Short Summary

- To summarize our conclusions up to this point:
- If the nonhomogeneous term $g(t)$ is an exponential function $e^{\alpha t}$, then assume that $Y(t)$ is proportional to the same exponential function;
- If $g(t)$ is $\sin \beta t$ or $\cos \beta t$, then assume that $Y(t)$ is a linear combination of $\sin \beta t$ and $\cos \beta t$;
- If $g(t)$ is a polynomial, then assume that $Y(t)$ is a polynomial of like degree.
Thus, to find a particular solution of $y^{\prime \prime}-3 y^{\prime}-4 y=4 t^{2}-1$ we initially assume that $Y(t)$ is a polynomial of the same degree as the nonhomogeneous term, that is, $Y(t)=A t^{2}+B t+C$;
- The same principle extends to the case where $g(t)$ is a product of any two, or all three, of these types of functions;

Example III

- Find a particular solution of $y^{\prime \prime}-3 y^{\prime}-4 y=-8 e^{t} \cos 2 t$; We assume that $Y(t)$ is the product of e^{t} and a linear combination of $\cos 2 t$ and $\sin 2 t$, that is, $Y(t)=A e^{t} \cos 2 t+B e^{t} \sin 2 t$; We get

$$
\begin{aligned}
Y^{\prime}(t)= & A e^{t} \cos 2 t-2 A e^{t} \sin 2 t+B e^{t} \sin 2 t+2 B e^{t} \cos 2 t \\
= & (A+2 B) e^{t} \cos 2 t+(-2 A+B) e^{t} \sin 2 t \\
Y^{\prime \prime}(t)= & (A+2 B) e^{t} \cos 2 t-2(A+2 B) e^{t} \sin 2 t \\
& +(-2 A+B) e^{t} \sin 2 t+2(-2 A+B) \cos 2 t \\
= & (-3 A+4 B) e^{t} \cos 2 t+(-4 A-3 B) e^{t} \sin 2 t
\end{aligned}
$$

Thus, A and B must satisfy the equation
$(-3 A+4 B) e^{t} \cos 2 t+(-4 A-3 B) e^{t} \sin 2 t-3\left[(A+2 B) e^{t} \cos 2 t+\right.$
$\left.(-2 A+B) e^{t} \sin 2 t\right]-4\left[A e^{t} \cos 2 t+B e^{t} \sin 2 t\right]=-8 e^{t} \cos 2 t$, or $(-3 A+4 B-3 A-6 B-4 A) e^{t} \cos 2 t+(-4 A-3 B+6 A-3 B-$ $4 B) e^{t} \sin 2 t=-8 e^{t} \cos 2 t$; So $10 A+2 B=8$ and $2 A-10 B=0$; These yield $A=\frac{10}{13}$ and $B=\frac{2}{13}$; Therefore, a particular solution is $Y(t)=\frac{10}{13} e^{t} \cos 2 t+\frac{2}{13} e^{t} \sin 2 t ;$

Decomposition Into a Sum of Differential Equations

- Now suppose that $g(t)$ is the sum of two terms, $g(t)=g_{1}(t)+g_{2}(t)$;
- Suppose that

$$
\begin{aligned}
& Y_{1} \text { is a solution of } a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t) ; \\
& Y_{2} \text { is a solution of } a y^{\prime \prime}+b y^{\prime}+c y=g_{2}(t) .
\end{aligned}
$$

- Then $Y_{1}+Y_{2}$ is a solution of the equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t)
$$

- Therefore, for an equation whose nonhomogeneous function $\mathrm{g}(\mathrm{t})$ can be expressed as a sum, one can consider instead several simpler equations and then add the results together;

Example IV

- Find a particular solution of

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}+2 \sin t-8 e^{t} \cos 2 t
$$

By splitting up the right side, we obtain the three equations

$$
\begin{aligned}
y^{\prime \prime}-3 y^{\prime}-4 y & =3 e^{2 t} \\
y^{\prime \prime}-3 y^{\prime}-4 y & =2 \sin t \\
y^{\prime \prime}-3 y^{\prime}-4 y & =-8 e^{t} \cos 2 t
\end{aligned}
$$

We have already solved all these three equations; The respective solutions were

$$
\begin{aligned}
& Y_{1}(t)=-\frac{1}{2} e^{2 t} \\
& Y_{2}(t)=\frac{3}{17} \cos t-\frac{5}{17} \sin t \\
& Y_{3}(t)=\frac{10}{13} e^{t} \cos 2 t+\frac{2}{13} e^{t} \sin 2 t
\end{aligned}
$$

Therefore a particular solution of the given equation is their sum:

$$
Y(t)=-\frac{1}{2} e^{2 t}+\frac{3}{17} \cos t-\frac{5}{17} \sin t+\frac{10}{13} e^{t} \cos 2 t+\frac{2}{13} e^{t} \sin 2 t
$$

Example V

- Find a particular solution of $y^{\prime \prime}-3 y^{\prime}-4 y=2 e^{-t}$;

Assume that $Y(t)=A e^{-t}$; Then $Y^{\prime}(t)=-A e^{-t}$ and $Y^{\prime \prime}(t)=A e^{-t}$; Thus, we get

$$
A e^{-t}-3\left(-A e^{-t}\right)-4 A e^{-t}=2 e^{-t} \Rightarrow 0=2 e^{-t}
$$

No choice of A satisfies this equation;
The homogeneous equation $y^{\prime \prime}-3 y^{\prime}-4 y=0$, has characteristic

$$
r^{2}-3 r-4=0 \Rightarrow(r-4)(r+1)=0 \Rightarrow r=4 \text { or } r=-1 .
$$

So we get a fundamental set of solutions $y_{1}(t)=e^{-t}$ and $y_{2}(t)=e^{4 t}$; Thus the chosen particular solution is actually a solution of the homogeneous equation and it cannot be a solution of the nonhomogeneous equation;

Example V (Cont'd)

- To find a particular solution of $y^{\prime \prime}-3 y^{\prime}-4 y=2 e^{-t}$ consider the form $Y(t)=A t e^{-t}$;
Then

$$
\begin{aligned}
Y^{\prime}(t) & =A e^{-t}-A t e^{-t} \\
Y^{\prime \prime}(t) & =-A e^{-t}-A e^{-t}+A t e^{-t} \\
& =-2 A e^{-t}+A t e^{-t}
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
\left(-2 A e^{-t}+A t e^{-t}\right)-3\left(A e^{-t}-A t e^{-t}\right)-4 A t e^{-t}=2 e^{-t} \\
(-2 A-3 A) e^{-t}+(A+3 A-4 A) t e^{-t}=2 e^{-t} \\
-5 A e^{-t}=2 e^{-t} \Rightarrow A=-\frac{2}{5}
\end{gathered}
$$

Thus a particular solution of the given equation is

$$
Y(t)=-\frac{2}{5} t e^{-t}
$$

Summary

- Steps for finding the solution of $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$;
(3) Find the general solution of the corresponding homogeneous equation;
(2) Assume the function $g(t)$ involves only exponential functions, sines, cosines, polynomials, or sums or products of such functions; (If this is not the case, use the method of variation of parameters (next section))
(3) If $g(t)=g_{1}(t)+\cdots+g_{n}(t)$, form n subproblems, each containing only one of $g_{1}(t), \ldots, g_{n}(t)$; The i-th subproblem consists of the equation $a y^{\prime \prime}+b y^{\prime}+c y=g_{i}(t)$;
- For the i-th subproblem assume an appropriate particular solution $Y_{i}(t)$; If there is any duplication in the assumed form of $Y_{i}(t)$ with the solutions of the homogeneous equation (of Step 1), then multiply $Y_{i}(t)$ by t, or (if necessary) by t^{2};
(3) Find a particular solution $Y_{i}(t)$ for each of the subproblems. Then the sum $Y_{1}(t)+\ldots+Y_{n}(t)$ is a particular solution of original equation;
(0) Form the sum of the general solution of the homogeneous equation and the particular solution of the nonhomogeneous equation; This is the general solution of the nonhomogeneous equation;

Subsection 6

Variation of Parameters

Discussion of Variation of Parameters

- The method of variation of parameters complements the method of undetermined coefficients;
- Its main advantage is that it is very general; In principle, it can be applied to any equation, and it requires no detailed assumptions about the form of the solution;
- It can be used to derive a formula for a particular solution of an arbitrary second order linear nonhomogeneous differential equation;
- It eventually requires the evaluation of certain integrals involving the nonhomogeneous term in the differential equation, and this may present difficulties.

Example I

- Find a particular solution of $y^{\prime \prime}+4 y=3 \csc t$;

The corresponding homogeneous equation is $y^{\prime \prime}+4 y=0$; Its characteristic equation is $r^{2}+4=0$; It has solutions $r= \pm 2$; The general solution of homogeneous is $y_{c}(t)=c_{1} \cos 2 t+c_{2} \sin 2 t$; Replace the constants c_{1} and c_{2} by functions $u_{1}(t)$ and $u_{2}(t)$, respectively, and try to determine these functions so that $y=u_{1}(t) \cos 2 t+u_{2}(t) \sin 2 t$ is a solution of the nonhomogeneous; Differentiate y :

$$
y^{\prime}=-2 u_{1}(t) \sin 2 t+2 u_{2}(t) \cos 2 t+u_{1}^{\prime}(t) \cos 2 t+u_{2}^{\prime}(t) \sin 2 t
$$

Suppose, additionally, that we require the sum of the last two terms on the right to be zero: $u_{1}^{\prime}(t) \cos 2 t+u_{2}^{\prime}(t) \sin 2 t=0$; Then $y^{\prime}=-2 u_{1}(t) \sin 2 t+2 u_{2}(t) \cos 2 t$; By differentiating y^{\prime}, we obtain

$$
y^{\prime \prime}=-4 u_{1}(t) \cos 2 t-4 u_{2}(t) \sin 2 t-2 u_{1}^{\prime}(t) \sin 2 t+2 u_{2}^{\prime}(t) \cos 2 t
$$

Example I (Cont'd)

- We have, under $u_{1}^{\prime}(t) \cos 2 t+u_{2}^{\prime}(t) \sin 2 t=0$,

$$
\begin{aligned}
& y^{\prime}=-2 u_{1}(t) \sin 2 t+2 u_{2}(t) \cos 2 t+u_{1}^{\prime}(t) \cos 2 t+u_{2}^{\prime}(t) \sin 2 t \\
& y^{\prime \prime}=-4 u_{1}(t) \cos 2 t-4 u_{2}(t) \sin 2 t-2 u_{1}^{\prime}(t) \sin 2 t+2 u_{2}^{\prime}(t) \cos 2 t
\end{aligned}
$$

Then, substituting for y and $y^{\prime \prime}$ in $y^{\prime \prime}+4 y=3 \csc t$, we find

$$
\begin{aligned}
& -4 u_{1}(t) \cos 2 t-4 u_{2}(t) \sin 2 t-2 u_{1}^{\prime}(t) \sin 2 t+2 u_{2}^{\prime}(t) \cos 2 t \\
& +4 u_{1}(t) \cos 2 t+4 u_{2}(t) \sin 2 t=3 \csc t
\end{aligned}
$$

Thus, $u_{1}(t)$ and $u_{2}(t)$ must satisfy
$-2 u_{1}^{\prime}(t) \sin 2 t+2 u_{2}^{\prime}(t) \cos 2 t=3 \csc t ;$

Example I (Cont'd)

- We want to choose u_{1} and u_{2} so that

$$
\begin{aligned}
u_{1}^{\prime}(t) \cos 2 t+u_{2}^{\prime}(t) \sin 2 t & =0 \\
-2 u_{1}^{\prime}(t) \sin 2 t+2 u_{2}^{\prime}(t) \cos 2 t & =3 \csc t
\end{aligned}
$$

Solve the first for $u_{2}^{\prime}(t)=-u_{1}^{\prime}(t) \frac{\cos 2 t}{\sin 2 t}$;
Substitute for $u_{2}^{\prime}(t)$ in the second and simplify:

$$
\begin{aligned}
& -2 u_{1}^{\prime}(t) \sin 2 t+2\left(-u_{1}^{\prime}(t) \frac{\cos 2 t}{\sin 2 t}\right) \cos 2 t=3 \csc t \\
& \frac{-2 u_{1}^{\prime}(t) \sin ^{2} 2 t-2 u_{1}^{\prime}(t) \cos ^{2} 2 t}{\sin 2 t}=3 \csc t \\
& -2 u_{1}^{\prime}(t)\left(\sin ^{2} 2 t+\cos ^{2} 2 t\right)=3 \csc t \sin 2 t \\
& u_{1}^{\prime}(t)=\frac{3 \csc t 2 \sin t \cos t}{-2}=-3 \cos t
\end{aligned}
$$

Back-substituting in the first equation, we get

$$
u_{2}^{\prime}(t)=\frac{3 \cos t \cos 2 t}{\sin 2 t}=\frac{3\left(1-2 \sin ^{2} t\right)}{2 \sin t}=\frac{3}{2} \csc t-3 \sin t
$$

Example I (Cont'd)

- We found $u_{1}^{\prime}(t)=-3 \cos t, u_{2}^{\prime}(t)=\frac{3}{2} \csc t-3 \sin t$.

By integration

$$
\begin{aligned}
& u_{1}(t)=-3 \sin t+c_{1} \\
& u_{2}(t)=\frac{3}{2} \ln |\csc t-\cot t|+3 \cos t+c_{2}
\end{aligned}
$$

Therefore, we obtain

$$
\begin{aligned}
y= & -3 \sin t \cos 2 t+\frac{3}{2} \ln |\csc t-\cot t| \sin 2 t \\
& +3 \cos t \sin 2 t+c_{1} \cos 2 t+c_{2} \sin 2 t \\
= & -3 \sin t\left(2 \cos ^{2} t-1\right)+\frac{3}{2} \ln |\csc t-\cot t| \sin 2 t \\
= & +3 \cos t 2 \sin t \cos t+c_{1} \cos 2 t+c_{2} \sin 2 t \\
= & +c_{1} \cos 2 t+c_{2} \ln |\csc t-\cot t| \sin 2 t
\end{aligned}
$$

The terms involving c_{1} and c_{2} are the general solution of the homogeneous; The other terms are a particular solution of the nonhomogeneous; Thus, the last expression gives the general solution of the original equation;

Description of Variation of Parameters I

- Consider $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$ where p, q, and g are continuous on an open interval l;
- Assume that we know the general solution $y_{c}(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ of the homogeneous $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$;
- We replace the constants c_{1} and c_{2} by functions $u_{1}(t)$ and $u_{2}(t)$ to get $y=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)$;
- Then we try to determine $u_{1}(t)$ and $u_{2}(t)$ so as to get a solution of the nonhomogeneous;
- Differentiate to obtain $y^{\prime}=u_{1}^{\prime}(t) y_{1}(t)+u_{1}(t) y_{1}^{\prime}(t)+u_{2}^{\prime}(t) y_{2}(t)+u_{2}(t) y_{2}^{\prime}(t)$;
- Set the terms involving $u_{1}^{\prime}(t)$ and $u_{2}^{\prime}(t)$ equal to zero, i.e., require that $u_{1}^{\prime}(t) y_{1}(t)+u_{2}^{\prime}(t) y_{2}(t)=0$;
- Thus, $y^{\prime}=u_{1}(t) y_{1}^{\prime}(t)+u_{2}(t) y_{2}^{\prime}(t)$;
- By differentiating again, we get

$$
y^{\prime \prime}=u_{1}^{\prime}(t) y_{1}^{\prime}(t)+u_{1}(t) y_{1}^{\prime \prime}(t)+u_{2}^{\prime}(t) y_{2}^{\prime}(t)+u_{2}(t) y_{2}^{\prime \prime}(t)
$$

Description of Variation of Parameters ||

- Under $u_{1}^{\prime}(t) y_{1}(t)+u_{2}^{\prime}(t) y_{2}(t)=0$, we found

$$
\begin{aligned}
y^{\prime} & =u_{1}(t) y_{1}^{\prime}(t)+u_{2}(t) y_{2}^{\prime}(t) \\
y^{\prime \prime} & =u_{1}^{\prime}(t) y_{1}^{\prime}(t)+u_{1}(t) y_{1}^{\prime \prime}(t)+u_{2}^{\prime}(t) y_{2}^{\prime}(t)+u_{2}(t) y_{2}^{\prime \prime}(t)
\end{aligned}
$$

Substituting into $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$, we get

$$
\begin{gathered}
\left(u_{1}^{\prime}(t) y_{1}^{\prime}(t)+u_{1}(t) y_{1}^{\prime \prime}(t)+u_{2}^{\prime}(t) y_{2}^{\prime}(t)+u_{2}(t) y_{2}^{\prime \prime}(t)\right) \\
+p(t)\left(u_{1}(t) y_{1}^{\prime}(t)+u_{2}(t) y_{2}^{\prime}(t)\right) \\
+q(t)\left(u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)\right)=g(t) \\
u_{1}(t)\left[y_{1}^{\prime \prime}(t)+p(t) y_{1}^{\prime}(t)+q(t) y_{1}(t)\right] \\
+u_{2}(t)\left[y_{2}^{\prime \prime}(t)+p(t) y_{2}^{\prime}(t)+q(t) y_{2}(t)\right] \\
\quad+u_{1}^{\prime}(t) y_{1}^{\prime}(t)+u_{2}^{\prime}(t) y_{2}^{\prime}(t)=g(t)
\end{gathered}
$$

- Each of the expressions in square brackets is zero because y_{1} and y_{2} are solutions of the homogeneous, so we get

$$
u_{1}^{\prime}(t) y_{1}^{\prime}(t)+u_{2}^{\prime}(t) y_{2}^{\prime}(t)=g(t)
$$

- So we get a system of two linear algebraic equations for the derivatives $u_{1}^{\prime}(t)$ and $u_{2}^{\prime}(t)$ of the unknown functions;

Description of Variation of Parameters |||

- By solving it, we obtain

$$
\begin{aligned}
u_{1}^{\prime}(t) & =-\frac{y_{2}(t) g(t)}{W\left(y_{1} y_{2}\right)(t)}, \\
u_{2}^{\prime}(t) & =\frac{y_{1}(t) g(t)}{W\left(y_{1}, y_{2}\right)(t)}
\end{aligned}
$$

where $W\left(y_{1}, y_{2}\right)$ is the Wronskian of y_{1} and y_{2};

- By integrating, we find the desired functions $u_{1}(t)$ and $u_{2}(t)$:

$$
u_{1}(t)=-\int \frac{y_{2}(t) g(t)}{W\left(y_{1}, y_{2}\right)(t)} d t+c_{1}, u_{2}(t)=\int \frac{y_{1}(t) g(t)}{W\left(y_{1}, y_{2}\right)(t)} d t+c_{2}
$$

- If the integrals can be evaluated in terms of elementary functions, then we substitute back the results to obtain the general solution;

Main Theorem

Theorem

If the functions p, q, and g are continuous on an open interval I, and if the functions y_{1} and y_{2} are a fundamental set of solutions of the homogeneous $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, then a particular solution of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$ is

$$
Y(t)=-y_{1}(t) \int_{t_{0}}^{t} \frac{y_{2}(s) g(s)}{W\left(y_{1}, y_{2}\right)(s)} d s+y_{2}(t) \int_{t_{0}}^{t} \frac{y_{1}(s) g(s)}{W\left(y_{1}, y_{2}\right)(s)} d s
$$

where t_{0} is any conveniently chosen point in I; The general solution is $y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+Y(t)$.

- Difficulties in using the method of variation of parameters:
- Determination of $y_{1}(t)$ and $y_{2}(t)$, a fundamental set of solutions of the homogeneous equation, when the coefficients in that equation are not constants;
- Evaluation of the integrals appearing in the theorem;
- The advantage: Expression for $Y(t)$ in terms of an arbitrary $g(t)$;

