Elementary Differential Equations

George Voutsadakis (LSSU)

George Voutsadakis?

IMathematics and Computer Science
Lake Superior State University

LSSU Math 310

Differential Equations January 2014 1/74



@ Homogeneous Equations with Constant Coefficients

o Solutions of Linear Homogeneous Equations; the Wronskian
@ Complex Roots of the Characteristic Equation

o Repeated Roots; Reduction of Order

o Nonhomogeneous Equations; Undetermined Coefficients

o Variation of Parameters
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Second Order Linear Equations Homogeneous Equations with Constant Coefficients

Subsection 1

Homogeneous Equations with Constant Coefficients
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Second Order Linear Equations

o A second order ordinary differential equation has the form
Py _
drz

@ The equation is called linear if the function f has the form

f(t,y, %) =g(t) — p(t)% —q(t)y, i.e., if f is linear in y and %;
o g,p,and g are specified functions of the independent variable t, but
do not depend on y;
o In this case the equation can be rewritten as

y'+p(t)y" + q(t)y = g(t),
where the primes denote differentiation with respect to t;
o One sometimes sees the form P(t)y” + Q(t)y’ + R(t)y = G(t); If
P(t) # 0, we can divide by P(t) to obtain the previous form;

o We operate under the hypothesis that p, g, and g are continuous
functions in an interval of interest;

f(t,y, %), where f is a given function;

o Equations that are not linear are called nonlinear;
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Second Order Linear Equations

@ An initial value problem has the form

2
&Y = ey, D). ylto) = yo, ¥ () = .

where yo and y; are given numbers;
@ A second order linear equation is said to be homogeneous if the

term G(t) in P(t)y” + Q(t)y’ + R(t)y = G(t) is zero for all t;
o Otherwise, the equation is called nonhomogeneous; As a result, the

term G(t) is sometimes called the nonhomogeneous term:;
o We write homogeneous equations in the form

P(t)y" + Q(t)y’ + R(t)y = 0;

@ Once the homogeneous equation has been solved, it is always possible

to solve the corresponding nonhomogeneous equation; Thus, solving

the homogeneous equation is fundamental,
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Second Order Linear Equations Homogeneous Equations with Constant Coefficients

Homogeneous Equations With Constant Coefficients

o General Form P(t)y” + Q(t)y’ + R(t)y = G(t);
o Homogeneous Form P(t)y” + Q(t)y’ + R(t)y = 0;

@ We now focus on equations in which the functions P, @, and R are
constants. In this case we deal with

ay” +by' +cy =0,

where a, b, and c are given constants;

o These are the (second-order linear) homogeneous equations with
constant coefficients;

o It turns out that the equation with constant coefficients can always
be solved easily in terms of the elementary functions of calculus;
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Second Order Linear Equations

o Solve the equation y” — y = 0 and also find the solution that satisfies
the initial conditions y(0) = 2,y’(0) = —1;
This is a linear homogeneous equation with a=1, b=0, c= — 1;
We seek a function with the property that the second derivative of
the function is the same as the function itself; We know of some such
examples from calculus: y1(t) = e, y»(t) = e~ *; Note that constant
multiples of these two solutions are also solutions, i.e., c1y1(t) = ciet
and cy»(t) = cpe™ ! are solutions; Note, also, that the sum of any
two solutions is also a solution; Thus,
y = ayi(t) + aya(t) = ciet + cpe™ ! is a solution; This can be
verified by calculating the second derivative;
To pick out a particular solution satisfying our initial conditions, we
first compute y' = cief — cpe™*t and then
FENREEERRE)
y'(0) = -1 aq—c=-1 =
Thus, the particular solution is y = Sef + 3e~;
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Second Order Linear Equations

o How can we solve ay” + by’ + cy = 0, where a, b, and c are arbitrary
(real) constants?

o Seek exponential solutions of the form y = e, where r is a
parameter to be determined,;

Then, y' = re' and y" = r?e't;

So, we have (ar? + br + c)e™ =0, i.e., ar®> 4 br 4+ c = 0;
This equation is called the characteristic equation;
Suppose that it has two real and different roots r; and r;

¢ ¢ ¢ ¢ ¢

Then y;(t) = et and y,(t) = e™* are two solutions and it follows
y = et + et is also a solution;
@ To find the particular member of the family of these solutions that
satisfy y(to) = yo and y'(t0) = g,

o Compute the derivative;

o Substitute t = tg in the equations for y and y’;

o Solve the resulting system for ¢; and ¢;
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Second Order Linear Equations Homogeneous Equations with Constant Coefficients

Example |

o Find the general solution of y” + 5y’ + 6y = 0;

We assume that y = e't;
Then r must be a root of r> +5r +6 =0 or (r +2)(r +3) =0;
The roots are r; = —2 and rp, = —3;

The general solution is y = cje ™2t 4+ ce3¢;

o Find the solution of the initial value problem y” + 5y’ + 6y = 0,
y(0) =2, y'(0) = 3;
We found y = cie %t 4+ ce™3t;
Since y(0) =2, we get c1 + &2 = 2;
Moreover, y' = —2cie™2t — 3ce73; Since y/(0) = 3
—2c¢1 — 3¢ =3;
By solving those, we find that ¢ =9 and ¢ = —7;
Thus, the particular solution is y = 9e~2f — 7e73¢;
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Second Order Linear Equations

o Find the solution of the initial value problem

ay" -8y’ +3y =0, y(0) =2, y'(0) = %:
If y = e, then the characteristic equation is 4r> —8r +3 =0, i.e.,
(2r—3)(2r—1)=0;

Its roots are r = % and r = %;

Therefore the general solution of the differential equation is

y = ae’’? 4 get/?;

Applying the initial conditions, we obtain the following two equations
for ¢; and ¢: ¢ + ¢ = 2, %cl + %cz = %;

at+co=2 a=-1
Thus,weget{ 3¢, + 65 = 1 } :>{ C2:g

So the solution of the initial value problem is y = —%e3t/2 + %et/2;
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Second Order Linear Equations Solutions of Linear Homogeneous Equations; the Wronskian

Subsection 2

Solutions of Linear Homogeneous Equations; the Wronskian
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Second Order Linear Equations Solutions of Linear Homogeneous Equations; the Wronskian

Differential Operators

o Let p and g be continuous functions on an open interval | = («a, 8);
The cases & = —o0, or 3 = 0o, or both, are included;

o Then, for any function ¢ that is twice differentiable on /, we define

L[¢] = ¢" + p¢’ + q¢;

o L[@] is a function on /; The value of L[¢] at a point t is
L[g](t) = ¢"(t) + p(t)¢'(t) + q(t)e(t);

o The operator L is sometimes written L = D? 4+ pD + g, where D is
the derivative operator;

o Goal: Study second order linear homogeneous equation L[¢](t) = 0;
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Second Order Linear Equations Solutions of Linear Homogeneous Equations; the Wronskian

Example

o Compute L[¢](t) for
p(t) =12, q(t)=1+t, ¢(t)=sin3t;
Since ¢/(t) = 3cos3t and ¢"(t) = — 9sin3t, we get

Lig)(t) = ¢"(t) + p(t)¢'(t) + a(t)é(t)
= —9sin3t + 3t?cos3t + (1 + t)sin 3t
= (t—8)sin3t+ 3t%cos3t;
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Second Order Linear Equations Solutions of Linear Homogeneous Equations; the Wronskian

Existence and Uniqueness Theorem

Existence and Uniqueness Theorem

Consider the initial value problem y” + p(t)y’ 4+ q(t)y = g(t), with

y(to) = y0,y'(to) = y§, where p, g, and g are continuous on an open
interval / that contains the point ty; Then there is exactly one solution

y = ¢(t) of this problem, and the solution exists throughout the interval /.

@ The theorem says actually three things:

@ The initial value problem has a solution, i.e., a solution exists;

Q The initial value problem has only one solution, i.e., the solution is
unique;

@ The solution ¢ is defined throughout the interval / where the
coefficients are continuous and is at least twice differentiable there;
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Second Order Linear Equations

o Find the longest interval in which the solution of the initial value
problem

(2 =3ty " +ty — (t+3)y =0, y(1)=2, y'(1)=1,

is guaranteed to exist;

In the standard form

PO= =5 )= — g £ =0
The only points of discontinuity of the coefficients are t = 0 and
t = 3; Therefore, the longest open interval, containing the initial
point t = 1, in which all the coefficients are continuous is 0 < t < 3;
Thus, this is the longest interval in which the theorem guarantees
that the solution exists;
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Second Order Linear Equations Solutions of Linear Homogeneous Equations; the Wronskian

Example

o Find the unique solution of the initial value problem

Y'+p(t)y' +4q(t)y =0, y(to) =0, y'(to)=0,
where p and g are continuous in an open interval | containing ty;

The function y = ¢(t) =0, for all t in [ certainly satisfies the
differential equation and initial conditions;

By the uniqueness part, it is the only solution of the given problem;
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Second Order Linear Equations Solutions of Linear Homogeneous Equations; the Wronskian

The Superposition Principle

o Assume that y; and y» are two solutions of y” + p(t)y’ + q(t)y = 0;

@ Then, we can generate more solutions by forming linear combinations
of y1 and y»;

Theorem (Principle of Superposition)

If y1 and y» are two solutions of the differential equation

Lly] = y" + p(t)y’ + q(t)y = 0, then the linear combination c1y1 + oy is
also a solution for any values of the constants ¢; and c;.

o Can the constants be chosen so as to satisfy the initial conditions
y(to) = yo and y'(to) = yg?
This requires solving for ¢, ¢, the system

{ ayi(to) + cay2(to) = yo }
ayi(to) + cays(to) = yg |
George Voutsadakis (LSSU)
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Second Order Linear Equations

o The system { Cly}(to) N CQy%(tO) — y(} } ;
a1 (to) + cays(to) = yg
o By linear algebra, if
yi(to) y2(to) / /
W= = y1(to to) — to)y2(to 0, there
)/{(to) Yé(to) y ( )Y2( ) )/1( )y ( ) 7&
exists a unique solution, given by
L |y yolto) yi(to) yo
= — and o = —
Wy ya(to) W yi(to) o
o The determinant W is called the Wronskian determinant, or simply
the Wronskian, of the solutions y; and y»;

1

Let y1 and y» be two solutions of L[y] = y” + p(t)y’ + q(t)y = 0 and that
the initial conditions y(to) = yo, ¥'(to) = y{ are assigned; Then it is
always possible to choose the constants cj, ¢ so that

y = ayi(t) + cys(t) satisfies the differential equation and the initial
conditions if and only if the Wronskian W is not zero at ty.
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Second Order Linear Equations Solutions of Linear Homogeneous Equations; the Wronskian

Example of Application of the Wronskian

o The functions y1(t) = e~ and y»(t) = e3¢ are solutions of the
differential equation y” + 5y’ + 6y = 0;
@ The Wronskian of y; and y» is

_ | () ye(t) | _ e 2t e | -5t
W_‘y{(t) T | 2e 2t 373t | T T €

o Since W is nonzero for all values of t, the functions y; and y» can be
used to construct solutions of the given differential equation, together
with initial conditions prescribed at any value of t;

o We already solved one of these in a previous problem;
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Second Order Linear Equations

Suppose that y; and y» are two solutions of the differential equation
Lly] = y" + p(t)y’ + q(t)y = 0; The family of solutions

y = ayi(t) + cys(t) with arbitrary coefficients ¢; and ¢, includes every
solution of the equation if and only if there is a point ty where the
Wronskian of y; and y» is not zero.

o The theorem states that, if and only if the Wronskian of y; and y» is
not everywhere zero, then the linear combination ¢;y; + ¢ y» contains
all solutions of the differential equation; It is therefore natural to call
the expression y = c1y1(t) + coy2(t) with arbitrary constant
coefficients the general solution of the differential equation;

@ The solutions y; and y» are said to form a fundamental set of
solutions of the differential equation if and only if their Wronskian is
nonzero;
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Second Order Linear Equations Solutions of Linear Homogeneous Equations; the Wronskian

Example |

o Suppose that y;(t) = e™* and y»(t) = e™" are two solutions of an
equation y” + p(t)y’ + q(t)y = 0; Show that they form a
fundamental set of solutions if r; # r;

Calculate the Wronskian of y; and y»:
I R

. o (r1+r2)t.
= = \r nje )
Vit va(o) (r2 =)

nt nt

ne ne

Since elntn2)t £ 0, and, by hypothesis r; # r, it follows that W = 0,
for all t; Consequently, y; and y» form a fundamental set of solutions;
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Second Order Linear Equations

o Show that y;(t) = t¥/2 and y»(t) = t~! form a fundamental set of
solutions of 2t%y” +3ty’ —y =0,t > 0;

First, verify that y; and y» are solutions of the differential equation:
() =172 y(t) =112 (e = — 132
va(t) =t y(t)= —t2 y(t) =2t

2t2y" + 3ty — y = 2t2(—3t73/2) 4 3(3t7/2) — 12 =
_ %t1/2 + %t1/2 _ /2 =

2t2y" 4 3ty’ — y = 2t2(2t73) 4+ 3t(—t7?) -t =

471 -3t -1 =0

Now, calculate the Wronskian W of y; and y»:

n(t) () S DU

n(y) ya(t) st 2 2

Since W # 0 for t > 0, y1 and y» form a fundamental set of
solutions in (0, c0);

_ 3 3.




Second Order Linear Equations

Consider the differential equation L[y] = y” + p(t)y’ + q(t)y = 0, whose
coefficients p and g are continuous on some open interval /; Choose some
point tg in I; Let y1 be the solution that also satisfies the initial conditions
y(to) =1, y'(to) = 0, and let y» be the solution that satisfies the initial
conditions y(tp) =0, y'(tp) = 1; Then y; and y» form a fundamental set
of solutions of the differential equation.

o The existence of y; and y» is ensured by the Existence Theorem;
@ To see that they form a fundamental set of solutions, we need only
calculate their Wronskian at ty:

y1(to)  y2(to) ' ‘ 10 '
W(y1, ty) = = =1,
DLyl 0) = | i) i) | = [0 1
Since the Wronskian is not zero at tg, the functions y; and y» form a
fundamental set of solutions;
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Second Order Linear Equations Solutions of Linear Homogeneous Equations; the Wronskian

Example

@ Use the theorem to find the fundamental set of solutions for the
differential equation y” — y = 0 using the initial point ty = 0;
The two solutions of are y1(t) = e' and y»(t) = e~ *; The Wronskian
of these solutions is

t =iz

e
e

e
—€

yi(t) ya(t) | _
y1(t)  ya(t)

so they form a fundamental set of solutions;

= _2750,

=@

Wiy, ys)(t) = \

These are not the fundamental solutions of the Theorem because they
do not satisfy the initial conditions mentioned in the theorem at
t=0;
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Second Order Linear Equations Solutions of Linear Homogeneous Equations; the Wronskian

Example (Cont'd)

o Let y(t) = cret + cpet.

Let y3(t) be the solution that satisfies y(0) = 1 and y’(0) = 0. To
find it, we solve the system:

{ a+o =1 } :>{ cL =
Cl —C = 0 C =
Let ya(t) be the solution that satisfies y(0) = 0 and y’(0) = 1; To
find it, we solve the system:

1
a+e = 0 c=s
1 D) = 1 2
a—c =1 Q=-3

1.t 1, —t

Thus, y3(t) = 2ef + Jet and ya(t) = Jef — Le7t;
Since the Wronskian of y3 and y, is

N[N =

Lot | 1—t 1.t 1.t
e 56 5e —se
W (ys, ya)(t) = zef—ge‘f %et-l-%e_t o

these functions also form a fundamental set of solutions;
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Second Order Linear Equations Solutions of Linear Homogeneous Equations; the Wronskian

Abel’s Theorem

Abel's Theorem

If y; and y» are solutions of L[y] = y” + p(t)y’ + q(t)y = 0 where p and ¢
are continuous on an open interval /, then the Wronskian W (y1, y2)(t) is
given by W(y1,y2)(t) = ce=/ P(1)9t \yhere c is a certain constant that
depends on y; and y», but not on t; Further, W(yi, y2)(t) either is zero
for all t in I (if ¢ = 0) or else is never zero in [ (if ¢ # 0).

o Note that y; and y» satisfy
vitp(thyi+a(thys = 0
y2 +p(t)ys+q(t)y2 = 0.
Multiply the first by —y», the second by y;, and add:
—yiy2 = pP(t)yiy2 —q(t)yiy. = 0
vz +p(tyys +a(t)yy = O;
(s —yi'y2) +p(t)v1ys —yiy2) = 0
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Second Order Linear Equations Solutions of Linear Homogeneous Equations; the Wronskian

Abel’'s Theorem (Cont'd)

o We got (y1y5 — yi'y2) + p(t)(y1ys — yiy2) = 0;
Next, we let W(t) = W (y1, y2)(t);

We have
W' = (yiys — y1y2)
= sty — iy +yivs)
= s — ¥y
Thus, we get

1
W/t p()W =0 = ~LdW = —p(t)dt = In|W| = —/p(t)dt;

Thus W(t) = ce=J P(D9t for a constant ¢; W(t) is not zero unless
¢ =0, in which case W(t) is zero for all t;
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Second Order Linear Equations

o Recall that y;(t) = t1/2 and y»(t) = t~! were shown to be solutions
of 2t?y” + 3ty’ — y =0, t > 0; Verify that the Wronskian of y; and
yo is given by the formula in Abel’s Theorem;
We have already computed W (y1,y2)(t) = —3t=3/2;

To use Abel's Theorem, we must write the differential equation

2t%y" + 3ty’ — y = 0 in the standard form: y” + %y' - 2t2y 0;

Thus, p(t) = 2; This yields
W(yl’yz)(t) = Ce_fp(t)dt = Ceff%dt = Cefg lfe Ct_3/2;

For the particular solutions given in the example ¢ = , which
yields the Wronskian, as computed before;
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Second Order Linear Equations Complex Roots of the Characteristic Equation

Subsection 3

Complex Roots of the Characteristic Equation
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Second Order Linear Equations

o Consider ay” + by’ + cy = 0, where a, b, and c are real constants;

o Solutions of the form y = e are obtained for r a root of the
characteristic equation ar® + br + ¢ = 0;

o If the roots r; and r» are real and different, which occurs when

b?> — 4ac > 0, then the general solution is y = c;e"t + cye™t;
o If b> — 4ac < 0, then the quadratic has two complex conjugate roots,
say n = A+ iu, n=X\—iu, with \, i real;
Then, the solutions are y;(t) = et vy (1) = eP—imt,
What is the meaning of an exponential with a complex exponent?
For example, if A = —1,1 = 2, and t = 3, then y;(3) = e~3+0/;

What does it mean to raise the number e to a complex power? The
answer is provided by an important relation known as Eulers formula;

¢ © ¢ ¢
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Second Order Linear Equations

o The MacLaurin series for e', cost and sint are (for t in R):

o0 t o0
Zon—, cost = Z

n=0

-1 nt2n
T ne=3

(2n)!

o If we can substitute it for t, then

eitzz

(it)"

( 1)"t2"
Z (2n)!

= cost+lsm t,

[e.9]

n=1

Z(

(_l)n—l t2n—1 .

(2n—1)!

1)n 1t2" 1
(2n —1)!

o The equation e® = cost + isint is known as Euler's formula;

o We adopt this equation as the definition of e't:

elt

=cost+ isint.
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Second Order Linear Equations

o If we replace t by —t and recall that cos (—t) = cost and
sin(—t) = —sint, then we have e™"f = cost — isint;

o If tis replaced by ut, then we obtain a generalized version of Euler's
formula: €'t = cos ut + isin ut;

o For arbitrary complex exponents (A + iu)t, we get

eOHImt — Ateint — oAt(cos it + fsin pt);

o We adopt this as the definition of e(A+ikt.

o With these definitions, one can show that all the usual laws of
exponents are valid for the complex exponential function;

o Moreover, the differentiation formula & (e™) = re™ holds for complex
values of r as well;
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Second Order Linear Equations

o Find the general solution of y” + y’ + 3Ly = 0; Also find the solution
that satisfies the initial conditions y(0) = 2, y’(0) = §;

The characteristic equation is r24r+ 34—7 = 0; Its roots are
n= — % +3iand n = — % — 3i; Therefore two solutions of the

differential equation are
yi(t) = (=23t = e~ t/2(cos 3t + i sin 3t)
ya(t) = (230t = e~ /2(cos 3t — isin3t);
The Wronskian
(—3+30)t (—3-3i)¢
e\ 2 e\ 2
w t) = . .
(Y1a}/2)( ) (7% +3i)e(7%+31)t (7% 73,’)6(7%731)1‘
= (-3 -3i)e7t — (-3 +3i)et = —6ie7t £0;
So the general solution can be expressed as a linear combination of
y1(t) and y»(t) with arbitrary coefficients.
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Second Order Linear Equations Complex Roots of the Characteristic Equation

Example (Cont'd)

o Rather than using the complex-valued solutions

yi(t) = e t/?(cos3t + isin3t),
ya(t) = e t/?(cos3t — isin3t),

we find a fundamental set of solutions that are real-valued;
@ Any linear combination of two solutions is also a solution;
o So, form the linear combinations y;(t) + y2(t) and y1(t) — y2(t):

yi(t)+ya(t) = 2e72cos3t,
yi(t) —yo(t) = 2ie"t/?sin3t;

o Dropping the constants 2 and 2/, we obtain

u(t) = e t?cos3t and v(t) = e ¥?sin3t;
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Second Order Linear Equations Complex Roots of the Characteristic Equation

Example (Cont'd)

o We came up with the solutions
u(t) = e 2cos3t and v(t)=e %sin3t;
o The Wronskian is
W(u,v)(t) =
e~ t/2 cos 3t e t/2sin3t
—%e‘t/z cos 3t — 3e~t/2sin 3t —% ~t/2gin 3t + 3e~ /2 cos 3t

= e /2 cos3t(—Le /2 sin 3t + 3e~ /2 cos 3t)
— e t/2sin3t(—1e /2 cos 3t — 3e7/2sin 3t)

= 3e f(cos? 3t +sin?3t) = 3et # 0.

So u(t) and v(t) form a fundamental set of solutions; The general
solution can be written as

y = au(t) + av(t) = e t?(c; cos 3t + ¢y sin 3t);
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Second Order Linear Equations Complex Roots of the Characteristic Equation

Example (Cont'd)

o So we have

y(t) = e t?(cycos3t + cysin3t);
y'(t) = —iciet/?cos3t—3cie /?sin3t
— %cze_t/2 sin3t + 3ce /2 cos 3t
= = %e‘t/z(q cos 3t + ¢ sin 3t)
+ e7/2(3¢y cos 3t — 3¢y sin 3t).

o To satisfy the initial conditions, we set
y(0) =2 =2 a=2).
{ y'(0) =8 = —%614-362:8 = =3[

o Therefore y = e /?(2cos 3t + 3sin 3t);
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Second Order Linear Equations

o The functions y;(t) = e? 1)t and yy(t) = e =11 are solutions of
ay” + by’ + cy = 0 when the roots of the characteristic equation
ar? 4+ br + ¢ = 0 are the complex numbers \ + iy;

o To find real-valued solutions, we proceed just as in the preceding
example: We form the sum and then the difference of y; and y»; We

have
yi(t) +ya(t) = e M(cosut + isinput) + e (cos ut — isin put)
= 2eMcos ut;
yi(t) — ya(t) = e M(cosut + isinput) — e (cos ut — isin put)
= 2ieMsinpt;

Neglecting constants, we get

u(t) = eMcosput and v(t) = e sinput;
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Second Order Linear Equations Complex Roots of the Characteristic Equation

Complex Roots: The General Case (Cont'd)

o We found
u(t) = eMcosput and v(t) = e sin put;

o The Wronskian of u and v is
W (u,v)(t)
B e’ cos ut e Msin put
T | XeMcosput — persinput  AeMsin ut + pett cos pt
= e cos pt(Asin pt 4 p1 cos put)
— e sin pt(\cos ut — pusin put)
= et (cos? ut + sin? ut) = pet.

A

o If u#0, uand v form a fundamental set of solutions;
o If the roots of the characteristic equation are A & iy, with p # 0, then
the general solution is

y = creM cos pt + cretsin pt;
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Second Order Linear Equations

o Find the solution of the initial value problem
16y” — 8y’ + 145y = 0, y(0) = -2, y'(0) = 1;

The characteristic equation is 16r> — 8r + 145 = 0 and its roots are
r=3+3i;

General solution of the differential equation is

y = cret’* cos 3t + cpet/*sin 3t;

To apply the first initial condition, we set t = 0; this gives

y(0) = c1 = —2; For the second initial condition we first differentiate
and then set t = 0; In this way we find that y’(0) = z¢1 + 3¢ = I
So, ¢ = %;

Thus, the solution of the initial value problem is

y = — 2et/* cos 3t + %et/“ sin 3t;
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Second Order Linear Equations Complex Roots of the Characteristic Equation

Example Il

o Find the general solution of y” + 9y = 0;
The characteristic equation is r? +9 = 0 with the roots r = + 3i;
Thus, A=0and p = 3;
The general solution is y = ¢ cos 3t + ¢ sin 3t;
Note that if the real part of the roots is zero, then there is no
exponential factor in the solution.
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Second Order Linear Equations Repeated Roots; Reduction of Order

Subsection 4

Repeated Roots; Reduction of Order
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Second Order Linear Equations Repeated Roots; Reduction of Order

The Case of a Repeated Root

o We saw how to solve ay” + by’ + cy = 0, when the roots of
ar’ 4+ br+c=0 are

o real and different or
o complex conjugates;
@ What if the two roots r; and ry are equal?

o Recall that this occurs when the discriminant b2 — 4ac = 0 and the
roots are n = = — 53
o In this case both roots yield the same solution: y;(t) = e~b/22;

@ How do we find a second solution?

George Voutsadakis (LSSU) Differential Equations January 2014 42 /74



Second Order Linear Equations Repeated Roots; Reduction of Order

Example

o Solve the differential equation y” + 4y’ + 4y = 0;

The characteristic equation is r? + 4r +4 = (r +2)?> = 0, whence

rn = r; = —2; Therefore one solution is y;(t) = e~2f; We know that
cy1(t) is also a solution;

We replace ¢ by a function v(t) and try to determine v(t) so that the
v(t)y1(t) is also a solution:

y = v(t)(t) = v(t)e
Then

y V/(t)e 2t — 2v(t)e 2t
y// — V”(t)e_Zt _ 4V’(t)e_2t + 4V(t)e_2t;
Therefore, since y” + 4y’ + 4y = 0, we get
[v'(t) — 4V/(t) + 4v(t) + 4V'(t) — 8v(t) + 4v(t)]e " =0,
ie, vV'(t) =0;
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Second Order Linear Equations Repeated Roots; Reduction of Order

Example (Cont'd)

o We set y(t) = v(t)y1(t) and discovered that v”(t) = 0. This yields
V/(t) = ¢ and v(t) = at + ¢; Thus

y =cte ? + e

The second term corresponds to the original solution y;(t) = e~2¢;

The first hints at a second solution

yo(t) = te™?";
These two solutions form a fundamental set: W(y1,y2)(t) =
—2t —2t
€ te _ -4t —4t —4t _ —4t :
et (1—2t)e=2t | e 2te™ " + 2te™ " = 7 £
Thus,
n(t)=e?, yft) = te

form a fundamental set of solutions;
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Second Order Linear Equations Repeated Roots; Reduction of Order

The General Case

o Suppose the coefficients in ay” + by’ + cy = 0 satisfy b> — 4ac = 0;
Then yi(t) = e~b/22 is a solution; Assume that

y = v(thn(t) = v(t)e P2
is also a solution; We then get

y/ _ v/(t)e—bt/2a . z_iv(t)e—bt/2a; 2
y// _ v//(t)e—bt/2a_ gv'(t)e_bt/za—l—%v(t)e‘btﬁa;

Therefore, since ay” + by’ + cy = 0,

[alv"(£) = 8v/(8) + & v(2)]
+b[V'(t) — 2 v(t)] + cv(t)] e b/22 = 0;
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Second Order Linear Equations

o Canceling the factor e ?t/22 we obtain
7 / b2 b2
av'(t)+ (—=b+ b)V'(t) + (E 5.t c)v(t) = 0;
The term involving v/(t) is zero; The coefficient of v(t) is ¢ — f—z,

which is also zero because b?> — 4ac = 0; Thus, v”(t) = 0; So
v(t) = c1 + cot; and, therefore,

—bt/2a —bt/2a,

y =ce + oo te

Thus, y is a linear combination of the two solutions
yi(e) = e, yy(t) = 1=,
The Wronskian of these two solutions is
—bt/2a te—bt/2a bt/
— — — a
W (y1,y2)(t) = _bebt/2a (1 _ btye—bt/2a | =€ 70,
. 2a 2a .
whence the solutions y; and y» are a fundamental set of solutions.
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Second Order Linear Equations Repeated Roots; Reduction of Order

Example

o Find the solution of the initial value problem

1 1
y'—y' + V=0 y(0) =2, y'(0) = 3

The characteristic equation is r?> — r + % =0, So the roots are
n=rmrn= %; Thus the general solution of the differential equation is
y = c1et/2 + cptet/2; The first initial condition requires that

y(0) = a1 = 2; To satisfy the second initial condition, we first
differentiate and then set t = 0; y'(0) = %cl + o= %, SO Cp = — %;
Thus the solution of the initial value problem is

y =2et/? — gtet/z;
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Second Order Linear Equations Repeated Roots; Reduction of Order

Reduction of Order

o Suppose that we know one solution yi(t) of y” + p(t)y’ + q(t)y = 0;
o To find a second solution, let y = v(t)y1(t);
o Then,

! VI(t)ya(t) + v(t)yi(t):
y' o= V(L) + VI(t)yi(t) + V(t )yl(t)+ v(t)yy'(t)

= V(O)ya(t) +2v/(2)y1(t) + v(t)y1 (2);

o Thus, since y"’ + py’ +qy =0,

LS
I

V'y1 + 2vy{ + vyl + p[v/y1 + V}’1] +qvy1 =0;
nv” + (2y1 +pyi)v' + (v{ + py1 + gy1)v =0;

@ Since y; is a solution, the coefficient of v is zero, so
v +(2y] + py)v' = 0;
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Second Order Linear Equations

o We set y = v(t)y1(t) and found
yiv’ + (2y1 + py1)v' = 0;

o This is actually a first order equation for the function v/ and can be
solved either as a first order linear equation or as a separable equation;

@ Once v/ has been found, then v is obtained by an integration;
@ Then, we can determine y;

@ The procedure outlined here is called the method of reduction of
order, because we solve a first order differential equation for v/ rather
than the second order equation for y;
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Second Order Linear Equations Repeated Roots; Reduction of Order

Example

o Given that y;(t) = t~1 is a solution of 2t?y” 4+ 3ty’ —y = 0,t > 0,
find a fundamental set of solutions;

We set y = v(t)t™L; Then
y/ = Vit 1 vt_2;
" v”t_l o v/t—2 o V/t—2 4 2vt_3
= Vvt 2v/t72 4 2ut73;

Substituting in the original equation and collecting terms, we obtain:
2:2(Vt7 = 20/t 2 4+ 2ut3) + 3t (ViE T — vt 2) — vt

=2tv + (=4 +3)V + (4t71 -3t —t7 )y
=2tV — v/ =0;
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Second Order Linear Equations Repeated Roots; Reduction of Order

Example (Cont'd)

o We set y = v(t)t~! and found
2tV — v/ =0;

Separating the variables and solving for v/(t), we find that
V/(t) = ct'/2; Thus, v(t) = 3ct3/2 + k; It follows that

2
y = §ctl/2 + kt71;

The second term on the right side is a multiple of y;(t) and can be
dropped, but the first term provides a new solution y»(t) = t'/2; The
Wronskian of y; and ys is

1 £1/2

— 1 3
W(YI,YZ)(t) ‘ _ _ = —t_3/2 -+ t_3/2 — _t_3/2;

Since t > 0, y; and y» form a fundamental set of solutions;
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Second Order Linear Equations Nonhomogeneous Equations; Undetermined Coefficients

Subsection 5

Nonhomogeneous Equations; Undetermined Coefficients
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@ We now return to the nonhomogeneous equation
Lly] = y" + p(t)y’ + q(t)y = g(t), where p, g, and g are given
(continuous) functions on the open interval /;

o The equation L[y] = y” + p(t)y’ + q(t)y = 0 is called the
homogeneous equation corresponding to the original equation;

If Y1 and Y5 are two solutions of the nonhomogeneous, then their
difference Y1 — Y5 is a solution of the corresponding homogeneous; If, in
addition, y; and y» are a fundamental set of solutions of the homogeneous,
then Yi(t) — Ya(t) = ayi(t) + cya(t) with ¢, ¢, constants.

The general solution of the nonhomogeneous can be written in the form
y = ¢(t) = ayi(t) + cya(t) + Y(t), where y; and y» are a fundamental
set of solutions of the corresponding homogeneous, ¢; and ¢, are arbitrary
constants, and Y is some specific solution of the nonhomogeneous.



Second Order Linear Equations

@ In somewhat different words, the last theorem states that to solve the
nonhomogeneous equation y” + p(t)y’ + q(t)y = g(t), we must do
three things:

@ Find the general solution c1y1(t) + coy»(t) of the corresponding
homogeneous equation; This solution is called the complementary
solution and denoted by y.(t);

Q Find some solution Y(t) of the nonhomogeneous equation; This
solution is referred to as a particular solution;

@ Add together the functions found in the two preceding steps;

o We have already discussed how to find y.(t), at least when the
homogeneous equation has constant coefficients;

o We focus, now, on finding a particular solution Y(t) of the
nonhomogeneous equation;
o We study two methods:

o The method of undetermined coefficients;
o The method of variation of parameters;
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Second Order Linear Equations

o Method of undetermined coefficients:

o Make an initial assumption about the form of the particular solution
Y (t), but with the coefficients left unspecified;

o Substitute the assumed expression into the equation and attempt to
determine the coefficients so as to obtain a solution;

o If we are successful, then we have found a particular solution Y(t) of
the differential equation; If we cannot determine the coefficients, then
there is no solution of the form assumed; In this case we may modify
the initial assumption and try again;

@ The technique is straightforward to execute once the assumption is
made as to the form of Y(t);

o Its major limitation is that it is useful primarily for equations for
which we can easily write down the correct form of the particular
solution in advance;

@ We consider only nonhomogeneous terms that consist of polynomials,
exponential functions, sines, and cosines;
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Second Order Linear Equations Nonhomogeneous Equations; Undetermined Coefficients

Example |

o Find a particular solution of y” — 3y’ — 4y = 3e°t;
We seek a function Y such that Y”(t) — 3Y/(t) — 4Y(t) = 3e?;
The exponential function reproduces itself through differentiation; So,
we assume that Y(t) is some multiple of €%, i.e., Y(t) = Ae®!, where
the coefficient A is to be determined;
To find A, we calculate Y'(t) = 2Ae%t, Y'(t) = 4Ae?t; Then

4Ae* — 3. 2Ae’ — 4. Ae®t = 3e?t
= (4A — 6A — 4A)e?t = 3e?t

= —6Ae%t = 3e%

= A= —%;

Thus, a particular solution is Y(t) = —3e?;

George Voutsadakis (LSSU) Differential Equations January 2014 56 / 74



Second Order Linear Equations

o Find a particular solution of y” — 3y’ — 4y = 2sin t;

Assume that Y(t) = Asint, where A is a constant to be determined;
We obtain Y’(t) = Acost, Y”(t) = — Asint, whence

—Asint —3Acost — 4Asint = 2sint = —5Asint — 3Acost =
2sint = (24 5A)sint + 3Acos t = 0; We want this hold for all t;
Thus, it must hold for t =0 and t = 5; We get 3A =0 and

2+ 5A = 0; There is no choice of the constant A that makes the
assumed expression a solution of the differential equation;

Let us include a cosine term in Y(t) and give it another try, i.e.,
Y(t) = Asint + Bcost, where A and B are to be determined; Then
Y'(t) = Acost — Bsint, Y"(t) = — Asint — Bcost; Therefore, we
get (—A+3B —4A)sint + (—B —3A —4B)cost = 2sin t; Matching
the coefficients of sint and cos t on each side of the equation, we get
—5A+3B =2, 3A 58 =0, obtaining A= — =< and B= 17,
Thus, Y(t) = —2sint+ 2 cost;
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Second Order Linear Equations

o To summarize our conclusions up to this point:

o If the nonhomogeneous term g(t) is an exponential function e**, then
assume that Y(t) is proportional to the same exponential function;

o If g(t) is sin Bt or cos St, then assume that Y(t) is a linear
combination of sin 3t and cos St;

o If g(t) is a polynomial, then assume that Y(t) is a polynomial of like
degree.
Thus, to find a particular solution of y” — 3y’ — 4y = 4t> — 1 we
initially assume that Y(t) is a polynomial of the same degree as the
nonhomogeneous term, that is, Y(t) = At?> + Bt + C;

@ The same principle extends to the case where g(t) is a product of any
two, or all three, of these types of functions;
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Second Order Linear Equations

o Find a particular solution of y” — 3y’ — 4y = —8e! cos 2t;
We assume that Y(t) is the product of e’ and a linear combination of
cos 2t and sin2t, that is, Y(t) = Ae’ cos2t 4+ Be'sin 2t; We get

Y'(t) = Ae'cos2t — 2Aesin2t + Be'sin 2t + 2Be’ cos 2t
= (A+2B)etcos2t + (—2A+ B)etsin2t;
Y'(t) = (A+2B)e'cos2t—2(A+2B)etsin2t

+ (—2A+ B)etsin 2t + 2(—2A + B) cos 2t

= (-3A+4B)e'cos2t + (—4A —3B)etsin2t;
Thus, A and B must satisfy the equation
(—3A+4B)et cos2t + (—4A — 3B)et sin2t — 3[(A + 2B)e! cos 2t +
(—2A + B)e'sin 2t] — 4[Ae! cos 2t + Be'sin 2t] = —8e’ cos 2t, or
(—3A+4B —3A— 6B — 4A)et cos2t + (—4A — 3B + 6A—3B —
4B)etsin2t = —8e' cos 2t; So 10A+2B =8 and 2A — 10B = 0;
These yield A= 1—g and B = 13, Therefore, a particular solution is

Y(t) = Jefcos2t + Zelsin2t;
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Second Order Linear Equations Nonhomogeneous Equations; Undetermined Coefficients

Decomposition Into a Sum of Differential Equations

o Now suppose that g(t) is the sum of two terms, g(t) = g1(t) + g2(t);
o Suppose that

Y1 is a solution of ay” + by’ + cy = g1(t);
Y5 is a solution of ay” + by’ + cy = g(t).

@ Then Y7 + Y5 is a solution of the equation
ay” + by' + cy = g(1).

o Therefore, for an equation whose nonhomogeneous function g(t) can
be expressed as a sum, one can consider instead several simpler
equations and then add the results together;
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Second Order Linear Equations Nonhomogeneous Equations; Undetermined Coefficients

Example IV

o Find a particular solution of
" _ 3y — 4y = 3e?* + 2sint — 8et cos 2t;

By splitting up the right side, we obtain the three equations

" 3}// o 4y — 3e2t,

" -3y’ —4y = 2sint,

" -3y’ —4y = —8e'cos2t;
We have already solved all these three equations; The respective
solutions were

Yl(t) = %ezt
Yo(t) = Scost— Zsint,
Y3(t) = I3efcos2t+ Ze'sin2t;

Therefore a particular solution of the given equation is their sum:

1 1 2
Y(t)=— 2e2t+1—37cost—%smt+ l—ge c052t+1—3e sin 2t;
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Second Order Linear Equations

o Find a particular solution of y” — 3y’ — 4y = 2e7t;
Assume that Y(t) = Aet; Then Y'(t) = — Ae™ ! and
Y"(t) = Ae™t; Thus, we get
Ae ! —3(—Ae ) —4Ae T =2e" = 0=2eF;

No choice of A satisfies this equation;

The homogeneous equation y” — 3y’ — 4y = 0, has characteristic

rP—3r—4=0 = (r—4)(r+1)=0 =r=40rr=-1.
So we get a fundamental set of solutions y;(t) = e~ and
yo(t) = e*; Thus the chosen particular solution is actually a solution
of the homogeneous equation and it cannot be a solution of the
nonhomogeneous equation;
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Second Order Linear Equations Nonhomogeneous Equations; Undetermined Coefficients

Example V (Cont'd)

o To find a particular solution of y” — 3y’ — 4y = 2e™* consider the
form Y(t) = Ate™?;

Then
Y'(t) = Aet—Ate
Y'(t) = —Aet—Ae '+ Atet
= —2Aet 4+ Ate t;
Therefore,

(—2Ae™t + Ate™t) — 3(Ae™t — Ate™!) — 4Ate t = 2¢e7!
(—2A—-3A)e "+ (A+3A—4A)te t =2et
—BAe t=2e"t = A=-%

Thus a particular solution of the given equation is

2
Y(t) = —gte_t;
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Second Order Linear Equations

o Steps for finding the solution of ay” + by’ + cy = g(t);

Q
Qo

o

Find the general solution of the corresponding homogeneous equation;
Assume the function g(t) involves only exponential functions, sines,
cosines, polynomials, or sums or products of such functions; (If this is
not the case, use the method of variation of parameters (next section))
If g(t) = g1(t) + - - - + gn(t), form n subproblems, each containing only
one of gi(t),...,gn(t); The i-th subproblem consists of the equation
ay” + by’ + cy = gi(t);

For the i-th subproblem assume an appropriate particular solution
Yi(t); If there is any duplication in the assumed form of Y;j(t) with the
solutions of the homogeneous equation (of Step 1), then multiply Y;(t)
by t, or (if necessary) by t?;

Find a particular solution Y;(t) for each of the subproblems. Then the
sum Y1(t) + ... + Ya(t) is a particular solution of original equation;
Form the sum of the general solution of the homogeneous equation and
the particular solution of the nonhomogeneous equation; This is the
general solution of the nonhomogeneous equation;
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Second Order Linear Equations Variation of Parameters

Subsection 6

Variation of Parameters
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Second Order Linear Equations Variation of Parameters

Discussion of Variation of Parameters

o The method of variation of parameters complements the method of
undetermined coefficients;

o Its main advantage is that it is very general; In principle, it can be
applied to any equation, and it requires no detailed assumptions
about the form of the solution;

o It can be used to derive a formula for a particular solution of an
arbitrary second order linear nonhomogeneous differential equation;

o It eventually requires the evaluation of certain integrals involving the
nonhomogeneous term in the differential equation, and this may
present difficulties.
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Second Order Linear Equations

o Find a particular solution of y” + 4y = 3csct;
The corresponding homogeneous equation is y” + 4y = 0; Its
characteristic equation is r? + 4 = 0; It has solutions r = +2i; The
general solution of homogeneous is y.(t) = ¢ cos 2t + ¢, sin 2t;
Replace the constants ¢; and ¢, by functions vy (t) and wx(t),
respectively, and try to determine these functions so that
y = u1(t) cos 2t + up(t)sin 2t is a solution of the nonhomogeneous;
Differentiate y:

y' = —2uy(t)sin 2t + 2up(t) cos 2t + uy(t) cos 2t + us(t) sin 2t;

Suppose, additionally, that we require the sum of the last two terms
on the right to be zero: v/ (t)cos2t + u5(t)sin2t = 0; Then
y' = —2uy(t)sin 2t + 2uy(t) cos 2t; By differentiating y’, we obtain

y" = — 4uy(t) cos 2t — 4uo(t)sin 2t — 2uj(t) sin 2t + 2u5(t) cos 2t;
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Second Order Linear Equations Variation of Parameters

Example | (Cont'd)

o We have, under uj(t) cos 2t + u5(t)sin2t = 0,

y' = —2u1(t)sin 2t 4 2up(t) cos 2t + uy(t) cos 2t + uh(t)sin 2t;
y" = —4uyi(t) cos 2t — 4up(t) sin 2t — 2uf(t) sin 2t + 2u)(t) cos 2t;

Then, substituting for y and y” in y” + 4y = 3csc t, we find

—4uy(t) cos 2t — 4up(t) sin 2t — 2uj(t) sin 2t + 2u)(t) cos 2t
+4uy(t) cos 2t + 4up(t)sin2t = 3csc t.

Thus, u1(t) and uy(t) must satisfy
—2u}(t)sin 2t + 2u5(t) cos 2t = 3csc t;
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Second Order Linear Equations Variation of Parameters

Example | (Cont'd)

@ We want to choose u; and u> so that

uj(t)cos2t + uh(t)sin2t = 0,
—2uj(t)sin 2t + 2u5(t) cos2t = 3csct;
Solve the first for uj(t) = — uj(t)=2,

Substitute for uj(t) in the second and simplify:

— 20 (t)sin 2t + 2(—u} ()2 ) cos 2t = 3esc t
—2u] (t) sin? 2t—2uj (t) cos? 2t
sin 2t
— 20} (t)(sin® 2t + cos? 2t) = 3csc tsin 2t

ui(t) —_ 3csct2_5|2ntcost = —3cost;

= 3csct

Back-substituting in the first equation, we get

, 3costcos2t  3(1—2sin’t) 3 .
up(t) = sin 2t - 2sint - 5csct—3sm b
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Second Order Linear Equations

o We found uj(t) = —3cost, uh(t) = 3csct —3sint.
By integration
ui(t) = —3sint + ci;
wp(t) =3 In|csct — cott| +3cost + o;
Therefore, we obtain

y = —3sintcos2t+ % In|csct — cot t|sin 2t
+ 3 cos tsin 2t + ¢; cos 2t + ¢ sin 2t
—3sint(2cos? t — 1) + 3 In|csc t — cot t|sin 2t
+ 3cos t2sintcost + ¢y cos 2t + ¢ sin 2t

= 3sint+ 3In|csct — cot t[sin 2t

+ ¢1 cos 2t + ¢ sin 2t;

The terms involving ¢; and ¢ are the general solution of the
homogeneous; The other terms are a particular solution of the
nonhomogeneous; Thus, the last expression gives the general solution
of the original equation;
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Second Order Linear Equations

o Consider y” + p(t)y’ + q(t)y = g(t) where p,q, and g are
continuous on an open interval /;

o Assume that we know the general solution y.(t) = c1y1(t) + cay2(t)
of the homogeneous y” + p(t)y’ + q(t)y = 0;

o We replace the constants ¢; and ¢, by functions ui(t) and up(t) to
get y = u1(t)yr(t) + wa(t)y2(t);

o Then we try to determine u1(t) and up(t) so as to get a solution of
the nonhomogeneous;

o Differentiate to obtain
y = u(t)ya(t) + un(t)yg (1) + up(t)y2(t) + ua(t)ys(2);

o Set the terms involving uj(t) and u)(t) equal to zero, i.e., require
that uj (t)y1(t) + uh(t)y2(t) = 0;

o Thus, y" = u1(t)y1(t) + u2(t)yy(t);

o By differentiating again, we get
y" = up()y1(8) + un(t)yy (t) + up(t)ys(t) + u2(t)y; (2);



Second Order Linear Equations

o Under uj(t)yi(t) + uh(t)y2(t) = 0, we found
u (

y' o= t)y(t) + u2(t)ys(t),
y" = i ()yi(t) + un(t)yy () + ua(t)ys(t) + ua(t)ys (1);
Substituting into y” + p(t)y’ + q(t)y = g(t), we get

(un(B)y1(2) + wa(t)y1 (2) + up(t)ys(t) + wa(t)y; (1))
+ p(t)(un(t ) 1(t) + wa(t)ys(t))
+ q(t)(ua()ya(t) + wa(t)ya(t)) = &(2)
ur (8)[y7'(t) + p(t)y1(t) + q(t)y1(t)]
+ ua(t)[y2 (1) + p(2)ys(t) + q(t)y2(t)]
+ up(t)yg(t) + ua(t)ys(t) = g(t);
o Each of the expressions in square brackets is zero because y; and y»
are solutions of the homogeneous, so we get
0 (E)yi(t) + uh(t)yh(t) = g(t);
@ So we get a system of two linear algebraic equations for the
derivatives uj(t) and uy(t) of the unknown functions;

George Voutsadakis (LSSU)



Second Order Linear Equations Variation of Parameters

Description of Variation of Parameters Il|

o By solving it, we obtain

40 = i
t t
u(t) = Vﬁn,}i)(t)’

where W (y1, y2) is the Wronskian of y; and y»;
o By integrating, we find the desired functions u;(t) and uy(t):

y2(t)g(t) yi(t)g(t)
W (y1, y2)(t) W1, y2)(t)

o If the integrals can be evaluated in terms of elementary functions,
then we substitute back the results to obtain the general solution;

ul(t) == dt + ¢, Uz(t) = dt + o;
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Second Order Linear Equations

If the functions p, g, and g are continuous on an open interval /, and if
the functions y; and y» are a fundamental set of solutions of the
homogeneous y” + p(t)y’ + g(t)y = 0, then a particular solution of
y"+p(t)y’ +q(t)y = g(t) is
y2(s)g(s) n(s)g(s)

YO=0 | Wonn@® 20 f, W)@
where ty is any conveniently chosen point in /; The general solution is
y = ayi(t) + cya(t) + Y(t).

o Difficulties in using the method of variation of parameters:
o Determination of y1(t) and y»(t), a fundamental set of solutions of the
homogeneous equation, when the coefficients in that equation are not

constants;
o Evaluation of the integrals appearing in the theorem;

o The advantage: Expression for Y(t) in terms of an arbitrary g(t);

George Voutsadakis (LSSU)
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