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Second Order Linear Equations Homogeneous Equations with Constant Coefficients

Subsection 1

Homogeneous Equations with Constant Coefficients
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Second Order Linear Equations Homogeneous Equations with Constant Coefficients

Linear and Nonlinear Second Order Equations

A second order ordinary differential equation has the form
d2y

dt2
= f (t, y , dy

dt
), where f is a given function;

The equation is called linear if the function f has the form
f (t, y , dy

dt
) = g(t)− p(t)dy

dt
− q(t)y , i.e., if f is linear in y and dy

dt
;

g , p,and q are specified functions of the independent variable t, but
do not depend on y ;

In this case the equation can be rewritten as

y ′′ + p(t)y ′ + q(t)y = g(t),

where the primes denote differentiation with respect to t;

One sometimes sees the form P(t)y ′′ + Q(t)y ′ + R(t)y = G (t); If
P(t) 6= 0, we can divide by P(t) to obtain the previous form;

We operate under the hypothesis that p, q, and g are continuous
functions in an interval of interest;

Equations that are not linear are called nonlinear;
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Homogeneous and Non-homogeneous Equations

An initial value problem has the form

d2y

dt2
= f (t, y ,

dy

dt
), y(t0) = y0, y ′(t0) = y ′0,

where y0 and y ′0 are given numbers;

A second order linear equation is said to be homogeneous if the
term G (t) in P(t)y ′′ +Q(t)y ′ + R(t)y = G (t) is zero for all t;

Otherwise, the equation is called nonhomogeneous; As a result, the
term G (t) is sometimes called the nonhomogeneous term;

We write homogeneous equations in the form
P(t)y ′′ + Q(t)y ′ + R(t)y = 0;

Once the homogeneous equation has been solved, it is always possible
to solve the corresponding nonhomogeneous equation; Thus, solving
the homogeneous equation is fundamental;
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Homogeneous Equations With Constant Coefficients

General Form P(t)y ′′ + Q(t)y ′ + R(t)y = G (t);

Homogeneous Form P(t)y ′′ + Q(t)y ′ + R(t)y = 0;

We now focus on equations in which the functions P ,Q, and R are
constants. In this case we deal with

ay ′′ + by ′ + cy = 0,

where a, b, and c are given constants;

These are the (second-order linear) homogeneous equations with
constant coefficients;

It turns out that the equation with constant coefficients can always
be solved easily in terms of the elementary functions of calculus;
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Example I

Solve the equation y ′′ − y = 0 and also find the solution that satisfies
the initial conditions y(0) = 2, y ′(0) = −1;

This is a linear homogeneous equation with a = 1, b = 0, c = − 1;
We seek a function with the property that the second derivative of
the function is the same as the function itself; We know of some such
examples from calculus: y1(t) = et , y2(t) = e−t ; Note that constant
multiples of these two solutions are also solutions, i.e., c1y1(t) = c1e

t

and c2y2(t) = c2e
−t are solutions; Note, also, that the sum of any

two solutions is also a solution; Thus,
y = c1y1(t) + c2y2(t) = c1e

t + c2e
−t is a solution; This can be

verified by calculating the second derivative;
To pick out a particular solution satisfying our initial conditions, we
first compute y ′ = c1e

t − c2e
−t and then

{

y(0) = 2
y ′(0) = −1

}

⇒

{

c1 + c2 = 2
c1 − c2 = −1

}

⇒

{

c1 =
1
2

c2 =
3
2

}

;

Thus, the particular solution is y = 1
2e

t + 3
2e

−t ;
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The Characteristic Equation

How can we solve ay ′′ + by ′ + cy = 0, where a, b, and c are arbitrary
(real) constants?

Seek exponential solutions of the form y = ert , where r is a
parameter to be determined;

Then, y ′ = rert and y ′′ = r2ert ;

So, we have (ar2 + br + c)ert = 0, i.e., ar2 + br + c = 0;

This equation is called the characteristic equation;

Suppose that it has two real and different roots r1 and r2;

Then y1(t) = er1t and y2(t) = er2t are two solutions and it follows
y = c1e

r1t + c2e
r2t is also a solution;

To find the particular member of the family of these solutions that
satisfy y(t0) = y0 and y ′(t0) = y ′0,

Compute the derivative;
Substitute t = t0 in the equations for y and y ′;
Solve the resulting system for c1 and c2;
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Example I

Find the general solution of y ′′ + 5y ′ + 6y = 0;

We assume that y = ert ;
Then r must be a root of r2 + 5r + 6 = 0 or (r + 2)(r + 3) = 0;
The roots are r1 = −2 and r2 = −3;
The general solution is y = c1e

−2t + c2e
−3t ;

Find the solution of the initial value problem y ′′ + 5y ′ + 6y = 0,
y(0) = 2, y ′(0) = 3;

We found y = c1e
−2t + c2e

−3t ;
Since y(0) = 2, we get c1 + c2 = 2;
Moreover, y ′ = − 2c1e

−2t − 3c2e
−3t ; Since y ′(0) = 3

−2c1 − 3c2 = 3;
By solving those, we find that c1 = 9 and c2 = −7;
Thus, the particular solution is y = 9e−2t − 7e−3t ;
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Example II

Find the solution of the initial value problem

4y ′′ − 8y ′ + 3y = 0, y(0) = 2, y ′(0) =
1

2
;

If y = ert , then the characteristic equation is 4r2 − 8r + 3 = 0, i.e.,
(2r − 3)(2r − 1) = 0;
Its roots are r = 3

2 and r = 1
2 ;

Therefore the general solution of the differential equation is
y = c1e

3t/2 + c2e
t/2;

Applying the initial conditions, we obtain the following two equations
for c1 and c2: c1 + c2 = 2, 32c1 +

1
2c2 =

1
2 ;

Thus, we get

{

c1 + c2 = 2
3c1 + c2 = 1

}

⇒

{

c1 = − 1
2

c2 =
5
2

}

So the solution of the initial value problem is y = −1
2e

3t/2 + 5
2e

t/2;
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Subsection 2

Solutions of Linear Homogeneous Equations; the Wronskian
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Differential Operators

Let p and q be continuous functions on an open interval I = (α, β);
The cases α = −∞, or β = ∞, or both, are included;

Then, for any function φ that is twice differentiable on I , we define

L[φ] = φ′′ + pφ′ + qφ;

L[φ] is a function on I ; The value of L[φ] at a point t is

L[φ](t) = φ′′(t) + p(t)φ′(t) + q(t)φ(t);

The operator L is sometimes written L = D2 + pD + q, where D is
the derivative operator;

Goal: Study second order linear homogeneous equation L[φ](t) = 0;
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Example

Compute L[φ](t) for

p(t) = t2, q(t) = 1 + t, φ(t) = sin 3t;

Since φ′(t) = 3 cos 3t and φ′′(t) = − 9 sin 3t, we get

L[φ](t) = φ′′(t) + p(t)φ′(t) + q(t)φ(t)

= −9 sin 3t + 3t2 cos 3t + (1 + t) sin 3t

= (t − 8) sin 3t + 3t2 cos 3t;
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Existence and Uniqueness Theorem

Existence and Uniqueness Theorem

Consider the initial value problem y ′′ + p(t)y ′ + q(t)y = g(t), with
y(t0) = y0, y

′(t0) = y ′0, where p, q, and g are continuous on an open
interval I that contains the point t0; Then there is exactly one solution
y = φ(t) of this problem, and the solution exists throughout the interval I .

The theorem says actually three things:
1 The initial value problem has a solution, i.e., a solution exists;
2 The initial value problem has only one solution, i.e., the solution is

unique;
3 The solution φ is defined throughout the interval I where the

coefficients are continuous and is at least twice differentiable there;
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Example

Find the longest interval in which the solution of the initial value
problem

(t2 − 3t)y ′′ + ty ′ − (t + 3)y = 0, y(1) = 2, y ′(1) = 1,

is guaranteed to exist;

In the standard form

p(t) =
1

t − 3
, q(t) = −

t + 3

t(t − 3)
, g(t) = 0;

The only points of discontinuity of the coefficients are t = 0 and
t = 3; Therefore, the longest open interval, containing the initial
point t = 1, in which all the coefficients are continuous is 0 < t < 3;
Thus, this is the longest interval in which the theorem guarantees
that the solution exists;
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Example

Find the unique solution of the initial value problem

y ′′ + p(t)y ′ + q(t)y = 0, y(t0) = 0, y ′(t0) = 0,

where p and q are continuous in an open interval I containing t0;

The function y = φ(t) = 0, for all t in I certainly satisfies the
differential equation and initial conditions;

By the uniqueness part, it is the only solution of the given problem;
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The Superposition Principle

Assume that y1 and y2 are two solutions of y ′′ + p(t)y ′ + q(t)y = 0;

Then, we can generate more solutions by forming linear combinations
of y1 and y2;

Theorem (Principle of Superposition)

If y1 and y2 are two solutions of the differential equation
L[y ] = y ′′ + p(t)y ′ + q(t)y = 0, then the linear combination c1y1 + c2y2 is
also a solution for any values of the constants c1 and c2.

Can the constants be chosen so as to satisfy the initial conditions
y(t0) = y0 and y ′(t0) = y ′0?
This requires solving for c1, c2 the system

{

c1y1(t0) + c2y2(t0) = y0
c1y

′

1(t0) + c2y
′

2(t0) = y ′0

}

;
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The Wronskian

The system

{

c1y1(t0) + c2y2(t0) = y0
c1y

′

1(t0) + c2y
′

2(t0) = y ′0

}

;

By linear algebra, if

W =

∣

∣

∣

∣

y1(t0) y2(t0)
y ′1(t0) y ′2(t0)

∣

∣

∣

∣

= y1(t0)y
′

2(t0)− y ′1(t0)y2(t0) 6= 0, there

exists a unique solution, given by

c1 =
1

W

∣

∣

∣

∣

y0 y2(t0)
y ′0 y ′2(t0)

∣

∣

∣

∣

and c2 =
1

W

∣

∣

∣

∣

y1(t0) y0
y ′1(t0) y ′0

∣

∣

∣

∣

;

The determinant W is called the Wronskian determinant, or simply
the Wronskian, of the solutions y1 and y2;

Theorem

Let y1 and y2 be two solutions of L[y ] = y ′′ + p(t)y ′ + q(t)y = 0 and that
the initial conditions y(t0) = y0, y

′(t0) = y ′0 are assigned; Then it is
always possible to choose the constants c1, c2 so that
y = c1y1(t) + c2y2(t) satisfies the differential equation and the initial
conditions if and only if the Wronskian W is not zero at t0.
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Example of Application of the Wronskian

The functions y1(t) = e−2t and y2(t) = e−3t are solutions of the
differential equation y ′′ + 5y ′ + 6y = 0;

The Wronskian of y1 and y2 is

W =

∣

∣

∣

∣

y1(t) y2(t)
y ′1(t) y ′2(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

e−2t e−3t

−2e−2t −3e−3t

∣

∣

∣

∣

= − e−5t ;

Since W is nonzero for all values of t, the functions y1 and y2 can be
used to construct solutions of the given differential equation, together
with initial conditions prescribed at any value of t;

We already solved one of these in a previous problem;
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Generality of Solutions

Theorem (Generality of Solutions for Nonzero Wronskian)

Suppose that y1 and y2 are two solutions of the differential equation
L[y ] = y ′′ + p(t)y ′ + q(t)y = 0; The family of solutions
y = c1y1(t) + c2y2(t) with arbitrary coefficients c1 and c2 includes every
solution of the equation if and only if there is a point t0 where the
Wronskian of y1 and y2 is not zero.

The theorem states that, if and only if the Wronskian of y1 and y2 is
not everywhere zero, then the linear combination c1y1 + c2y2 contains
all solutions of the differential equation; It is therefore natural to call
the expression y = c1y1(t) + c2y2(t) with arbitrary constant
coefficients the general solution of the differential equation;

The solutions y1 and y2 are said to form a fundamental set of
solutions of the differential equation if and only if their Wronskian is
nonzero;

George Voutsadakis (LSSU) Differential Equations January 2014 20 / 74



Second Order Linear Equations Solutions of Linear Homogeneous Equations; the Wronskian

Example I

Suppose that y1(t) = er1t and y2(t) = er2t are two solutions of an
equation y ′′ + p(t)y ′ + q(t)y = 0; Show that they form a
fundamental set of solutions if r1 6= r2;

Calculate the Wronskian of y1 and y2:

W =

∣

∣

∣

∣

y1(t) y2(t)
y ′1(t) y ′2(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

er1t er2t

r1e
r1t r2e

r2t

∣

∣

∣

∣

= (r2 − r1)e
(r1+r2)t ;

Since e(r1+r2)t 6= 0, and, by hypothesis r1 6= r2, it follows that W 6= 0,
for all t; Consequently, y1 and y2 form a fundamental set of solutions;
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Example II

Show that y1(t) = t1/2 and y2(t) = t−1 form a fundamental set of
solutions of 2t2y ′′ + 3ty ′ − y = 0, t > 0;

First, verify that y1 and y2 are solutions of the differential equation:

y1(t) = t1/2 y ′1(t) =
1
2t

−1/2 y ′′1 (t) = − 1
4 t

−3/2

y2(t) = t−1 y ′2(t) = − t−2 y ′′2 (t) = 2t−3;

2t2y ′′ + 3ty ′ − y = 2t2(−1
4t

−3/2) + 3t(12t
−1/2)− t1/2 =

− 1
2t

1/2 + 3
2t

1/2 − t1/2 = 0;
2t2y ′′ + 3ty ′ − y = 2t2(2t−3) + 3t(−t−2)− t−1 =
4t−1 − 3t−1 − t−1 = 0;

Now, calculate the Wronskian W of y1 and y2:

W =

∣

∣

∣

∣

y1(t) y2(t)
y ′1(y) y ′2(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

t1/2 t−1

1
2t

−1/2 −t−2

∣

∣

∣

∣

= −
3

2
t−3/2;

Since W 6= 0 for t > 0, y1 and y2 form a fundamental set of
solutions in (0,∞);
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Existence of Fundamental Solutions

Theorem (Existence of Fundamental Solutions)

Consider the differential equation L[y ] = y ′′ + p(t)y ′ + q(t)y = 0, whose
coefficients p and q are continuous on some open interval I ; Choose some
point t0 in I ; Let y1 be the solution that also satisfies the initial conditions
y(t0) = 1, y ′(t0) = 0, and let y2 be the solution that satisfies the initial
conditions y(t0) = 0, y ′(t0) = 1; Then y1 and y2 form a fundamental set
of solutions of the differential equation.

The existence of y1 and y2 is ensured by the Existence Theorem;
To see that they form a fundamental set of solutions, we need only
calculate their Wronskian at t0:

W (y1, y2)(t0) =

∣

∣

∣

∣

y1(t0) y2(t0)
y ′1(t0) y ′2(t0)

∣

∣

∣

∣

=

∣

∣

∣

∣

1 0
0 1

∣

∣

∣

∣

= 1;

Since the Wronskian is not zero at t0, the functions y1 and y2 form a
fundamental set of solutions;
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Example

Use the theorem to find the fundamental set of solutions for the
differential equation y ′′ − y = 0 using the initial point t0 = 0;

The two solutions of are y1(t) = et and y2(t) = e−t ; The Wronskian
of these solutions is

W (y1, y2)(t) =

∣

∣

∣

∣

y1(t) y2(t)
y ′1(t) y ′2(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

et e−t

et −e−t

∣

∣

∣

∣

= − 2 6= 0,

so they form a fundamental set of solutions;

These are not the fundamental solutions of the Theorem because they
do not satisfy the initial conditions mentioned in the theorem at
t = 0;
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Example (Cont’d)

Let y(t) = c1e
t + c2e

−t .

Let y3(t) be the solution that satisfies y(0) = 1 and y ′(0) = 0. To
find it, we solve the system:

{

c1 + c2 = 1
c1 − c2 = 0

}

⇒

{

c1 =
1
2

c2 =
1
2

Let y4(t) be the solution that satisfies y(0) = 0 and y ′(0) = 1; To
find it, we solve the system:

{

c1 + c2 = 0
c1 − c2 = 1

}

⇒

{

c1 =
1
2

c2 = −1
2

Thus, y3(t) =
1
2e

t + 1
2e

−t and y4(t) =
1
2e

t − 1
2e

−t ;
Since the Wronskian of y3 and y4 is

W (y3, y4)(t) =

∣

∣

∣

∣

1
2e

t + 1
2e

−t 1
2e

t − 1
2e

−t

1
2e

t − 1
2e

−t 1
2e

t + 1
2e

−t

∣

∣

∣

∣

= 1,

these functions also form a fundamental set of solutions;
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Abel’s Theorem

Abel’s Theorem

If y1 and y2 are solutions of L[y ] = y ′′ + p(t)y ′ + q(t)y = 0 where p and q

are continuous on an open interval I , then the Wronskian W (y1, y2)(t) is
given by W (y1, y2)(t) = ce−

∫
p(t)dt , where c is a certain constant that

depends on y1 and y2, but not on t; Further, W (y1, y2)(t) either is zero
for all t in I (if c = 0) or else is never zero in I (if c 6= 0).

Note that y1 and y2 satisfy

y ′′1 + p(t)y ′1 + q(t)y1 = 0;
y ′′2 + p(t)y ′2 + q(t)y2 = 0.

Multiply the first by −y2, the second by y1, and add:

− y ′′1 y2 − p(t)y ′1y2 − q(t)y1y2 = 0;
y1y

′′

2 + p(t)y1y
′

2 + q(t)y1y2 = 0;
(y1y

′′

2 − y ′′1 y2) + p(t)(y1y
′

2 − y ′1y2) = 0;
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Abel’s Theorem (Cont’d)

We got (y1y
′′

2 − y ′′1 y2) + p(t)(y1y
′

2 − y ′1y2) = 0;

Next, we let W (t) = W (y1, y2)(t);

We have
W ′ = (y1y

′

2 − y ′1y2)
′

= y ′1y
′

2 + y1y
′′

2 − (y ′′1 y2 + y ′1y
′

2)
= y1y

′′

2 − y ′′1 y2;

Thus, we get

W ′ + p(t)W = 0 ⇒
1

W
dW = −p(t)dt ⇒ ln |W | = −

∫

p(t)dt;

Thus W (t) = ce−
∫
p(t)dt , for a constant c ; W (t) is not zero unless

c = 0, in which case W (t) is zero for all t;
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Example

Recall that y1(t) = t1/2 and y2(t) = t−1 were shown to be solutions
of 2t2y ′′ + 3ty ′ − y = 0, t > 0; Verify that the Wronskian of y1 and
y2 is given by the formula in Abel’s Theorem;

We have already computed W (y1, y2)(t) = −3
2t

−3/2;
To use Abel’s Theorem, we must write the differential equation
2t2y ′′ + 3ty ′ − y = 0 in the standard form: y ′′ + 3

2t y
′ − 1

2t2
y = 0;

Thus, p(t) = 3
2t ; This yields

W (y1, y2)(t) = ce−
∫
p(t)dt = ce−

∫
3
2t
dt = ce−

3
2
ln t = ct−3/2;

For the particular solutions given in the example c = − 3
2 , which

yields the Wronskian, as computed before;
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Subsection 3

Complex Roots of the Characteristic Equation
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Characteristic Equations with Complex Roots

Consider ay ′′ + by ′ + cy = 0, where a, b, and c are real constants;

Solutions of the form y = ert are obtained for r a root of the
characteristic equation ar2 + br + c = 0;

If the roots r1 and r2 are real and different, which occurs when
b2 − 4ac > 0, then the general solution is y = c1e

r1t + c2e
r2t ;

If b2 − 4ac < 0, then the quadratic has two complex conjugate roots,
say r1 = λ+ iµ, r2 = λ− iµ, with λ, µ real;

Then, the solutions are y1(t) = e(λ+iµ)t , y2(t) = e(λ−iµ)t ;

What is the meaning of an exponential with a complex exponent?

For example, if λ = −1, µ = 2, and t = 3, then y1(3) = e−3+6i ;

What does it mean to raise the number e to a complex power? The
answer is provided by an important relation known as Eulers formula;
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Euler’s Formula

The MacLaurin series for et , cos t and sin t are (for t in R):

et =

∞
∑

n=0

tn

n!
, cos t =

∞
∑

n=0

(−1)nt2n

(2n)!
, sin t =

∞
∑

n=1

(−1)n−1t2n−1

(2n − 1)!
;

If we can substitute it for t, then

e it =

∞
∑

n=0

(it)n

n!
=

∞
∑

n=0

(−1)nt2n

(2n)!
+ i

∞
∑

n=1

(−1)n−1t2n−1

(2n − 1)!

= cos t + i sin t;

The equation e it = cos t + i sin t is known as Euler’s formula;

We adopt this equation as the definition of e it :

e it = cos t + i sin t.
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Some Variations of Euler’s Formula

If we replace t by −t and recall that cos (−t) = cos t and
sin (−t) = − sin t, then we have e−it = cos t − i sin t;

If t is replaced by µt, then we obtain a generalized version of Euler’s
formula: e iµt = cosµt + i sinµt;

For arbitrary complex exponents (λ+ iµ)t, we get

e(λ+iµ)t = eλte iµt = eλt(cosµt + i sinµt);

We adopt this as the definition of e(λ+iµ)t ;

With these definitions, one can show that all the usual laws of
exponents are valid for the complex exponential function;

Moreover, the differentiation formula d
dt
(ert) = rert holds for complex

values of r as well;
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Example

Find the general solution of y ′′ + y ′ + 37
4 y = 0; Also find the solution

that satisfies the initial conditions y(0) = 2, y ′(0) = 8;

The characteristic equation is r2 + r + 37
4 = 0; Its roots are

r1 = − 1
2 + 3i and r2 = − 1

2 − 3i ; Therefore two solutions of the
differential equation are

y1(t) = e(−
1
2
+3i)t = e−t/2(cos 3t + i sin 3t)

y2(t) = e(−
1
2
−3i)t = e−t/2(cos 3t − i sin 3t);

The Wronskian

W (y1, y2)(t) =

∣

∣

∣

∣

∣

e(−
1
2
+3i)t e(−

1
2
−3i)t

(−1
2 + 3i)e(−

1
2
+3i)t (−1

2 − 3i)e(−
1
2
−3i)t

∣

∣

∣

∣

∣

= (−1
2 − 3i)e−t − (−1

2 + 3i)e−t = − 6ie−t 6= 0;

So the general solution can be expressed as a linear combination of
y1(t) and y2(t) with arbitrary coefficients.
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Example (Cont’d)

Rather than using the complex-valued solutions

y1(t) = e−t/2(cos 3t + i sin 3t),

y2(t) = e−t/2(cos 3t − i sin 3t),

we find a fundamental set of solutions that are real-valued;

Any linear combination of two solutions is also a solution;

So, form the linear combinations y1(t) + y2(t) and y1(t)− y2(t):

y1(t) + y2(t) = 2e−t/2 cos 3t,

y1(t)− y2(t) = 2ie−t/2 sin 3t;

Dropping the constants 2 and 2i , we obtain

u(t) = e−t/2 cos 3t and v(t) = e−t/2 sin 3t;
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Example (Cont’d)

We came up with the solutions

u(t) = e−t/2 cos 3t and v(t) = e−t/2 sin 3t;

The Wronskian is

W (u, v)(t) =
∣

∣

∣

∣

e−t/2 cos 3t e−t/2 sin 3t

−1
2e

−t/2 cos 3t − 3e−t/2 sin 3t −1
2e

−t/2 sin 3t + 3e−t/2 cos 3t

∣

∣

∣

∣

= e−t/2 cos 3t(−1
2e

−t/2 sin 3t + 3e−t/2 cos 3t)

− e−t/2 sin 3t(−1
2e

−t/2 cos 3t − 3e−t/2 sin 3t)

= 3e−t(cos2 3t + sin2 3t) = 3e−t 6= 0.

So u(t) and v(t) form a fundamental set of solutions; The general
solution can be written as

y = c1u(t) + c2v(t) = e−t/2(c1 cos 3t + c2 sin 3t);
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Example (Cont’d)

So we have

y(t) = e−t/2(c1 cos 3t + c2 sin 3t);

y ′(t) = − 1
2c1e

−t/2 cos 3t − 3c1e
−t/2 sin 3t

− 1
2c2e

−t/2 sin 3t + 3c2e
−t/2 cos 3t

= − 1
2e

−t/2(c1 cos 3t + c2 sin 3t)

+ e−t/2(3c2 cos 3t − 3c1 sin 3t).

To satisfy the initial conditions, we set

{

y(0) = 2
y ′(0) = 8

}

⇒

{

c1 = 2
−1

2c1 + 3c2 = 8

}

⇒

{

c1 = 2
c2 = 3

}

;

Therefore y = e−t/2(2 cos 3t + 3 sin 3t);
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Complex Roots: The General Case

The functions y1(t) = e(λ+iµ)t and y2(t) = e(λ−iµ)t are solutions of
ay ′′ + by ′ + cy = 0 when the roots of the characteristic equation
ar2 + br + c = 0 are the complex numbers λ± iµ;

To find real-valued solutions, we proceed just as in the preceding
example: We form the sum and then the difference of y1 and y2; We
have

y1(t) + y2(t) = eλt(cos µt + i sinµt) + eλt(cosµt − i sinµt)
= 2eλt cosµt;

y1(t)− y2(t) = eλt(cos µt + i sinµt)− eλt(cosµt − i sinµt)
= 2ieλt sinµt;

Neglecting constants, we get

u(t) = eλt cosµt and v(t) = eλt sinµt;
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Complex Roots: The General Case (Cont’d)

We found

u(t) = eλt cosµt and v(t) = eλt sinµt;

The Wronskian of u and v is

W (u, v)(t)

=

∣

∣

∣

∣

eλt cosµt eλt sinµt
λeλt cosµt − µeλt sinµt λeλt sinµt + µeλt cosµt

∣

∣

∣

∣

= e2λt cosµt(λ sinµt + µ cosµt)
− e2λt sinµt(λ cos µt − µ sinµt)

= µe2λt(cos2 µt + sin2 µt) = µe2λt .

If µ 6= 0, u and v form a fundamental set of solutions;

If the roots of the characteristic equation are λ± iµ, with µ 6= 0, then
the general solution is

y = c1e
λt cosµt + c2e

λt sinµt;
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Example I

Find the solution of the initial value problem

16y ′′ − 8y ′ + 145y = 0, y(0) = −2, y ′(0) = 1;

The characteristic equation is 16r2 − 8r + 145 = 0 and its roots are
r = 1

4 ± 3i ;
General solution of the differential equation is
y = c1e

t/4 cos 3t + c2e
t/4 sin 3t;

To apply the first initial condition, we set t = 0; this gives
y(0) = c1 = −2; For the second initial condition we first differentiate
and then set t = 0; In this way we find that y ′(0) = 1

4c1 + 3c2 = 1;
So, c2 =

1
2 ;

Thus, the solution of the initial value problem is
y = − 2et/4 cos 3t + 1

2e
t/4 sin 3t;
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Example II

Find the general solution of y ′′ + 9y = 0;

The characteristic equation is r2 + 9 = 0 with the roots r = ± 3i ;
Thus, λ = 0 and µ = 3;
The general solution is y = c1 cos 3t + c2 sin 3t;
Note that if the real part of the roots is zero, then there is no
exponential factor in the solution.
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Subsection 4

Repeated Roots; Reduction of Order
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The Case of a Repeated Root

We saw how to solve ay ′′ + by ′ + cy = 0, when the roots of
ar2 + br + c = 0 are

real and different or
complex conjugates;

What if the two roots r1 and r2 are equal?

Recall that this occurs when the discriminant b2 − 4ac = 0 and the
roots are r1 = r2 = − b

2a ;

In this case both roots yield the same solution: y1(t) = e−bt/2a;

How do we find a second solution?
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Example

Solve the differential equation y ′′ + 4y ′ + 4y = 0;

The characteristic equation is r2 + 4r + 4 = (r + 2)2 = 0, whence
r1 = r2 = − 2; Therefore one solution is y1(t) = e−2t ; We know that
cy1(t) is also a solution;

We replace c by a function v(t) and try to determine v(t) so that the
v(t)y1(t) is also a solution:

y = v(t)y1(t) = v(t)e−2t ;

Then
y ′ = v ′(t)e−2t − 2v(t)e−2t

y ′′ = v ′′(t)e−2t − 4v ′(t)e−2t + 4v(t)e−2t ;

Therefore, since y ′′ + 4y ′ + 4y = 0, we get

[v ′′(t)− 4v ′(t) + 4v(t) + 4v ′(t)− 8v(t) + 4v(t)]e−2t = 0,

i.e., v ′′(t) = 0;
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Example (Cont’d)

We set y(t) = v(t)y1(t) and discovered that v ′′(t) = 0. This yields
v ′(t) = c1 and v(t) = c1t + c2; Thus

y = c1te
−2t + c2e

−2t ;

The second term corresponds to the original solution y1(t) = e−2t ;
The first hints at a second solution

y2(t) = te−2t ;

These two solutions form a fundamental set: W (y1, y2)(t) =
∣

∣

∣

∣

e−2t te−2t

−2e−2t (1− 2t)e−2t

∣

∣

∣

∣

= e−4t − 2te−4t + 2te−4t = e−4t 6= 0;

Thus,
y1(t) = e−2t , y2(t) = te−2t

form a fundamental set of solutions;

George Voutsadakis (LSSU) Differential Equations January 2014 44 / 74



Second Order Linear Equations Repeated Roots; Reduction of Order

The General Case

Suppose the coefficients in ay ′′ + by ′ + cy = 0 satisfy b2 − 4ac = 0;
Then y1(t) = e−bt/2a is a solution; Assume that

y = v(t)y1(t) = v(t)e−bt/2a

is also a solution; We then get

y ′ = v ′(t)e−bt/2a − b
2av(t)e

−bt/2a;

y ′′ = v ′′(t)e−bt/2a − b
a
v ′(t)e−bt/2a + b2

4a2
v(t)e−bt/2a;

Therefore, since ay ′′ + by ′ + cy = 0,

[

a[v ′′(t)− b
a
v ′(t) + b2

4a2
v(t)]

+b[v ′(t)− b
2av(t)] + cv(t)

]

e−bt/2a = 0;
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The General Case (Cont’d)

Canceling the factor e−bt/2a, we obtain

av ′′(t) + (−b + b)v ′(t) + (
b2

4a
−

b2

2a
+ c)v(t) = 0;

The term involving v ′(t) is zero; The coefficient of v(t) is c − b2

4a ,
which is also zero because b2 − 4ac = 0; Thus, v ′′(t) = 0; So
v(t) = c1 + c2t; and, therefore,

y = c1e
−bt/2a + c2te

−bt/2a;

Thus, y is a linear combination of the two solutions

y1(t) = e−bt/2a, y2(t) = te−bt/2a;

The Wronskian of these two solutions is

W (y1, y2)(t) =

∣

∣

∣

∣

e−bt/2a te−bt/2a

− b
2ae

−bt/2a (1− bt
2a )e

−bt/2a

∣

∣

∣

∣

= e−bt/a 6= 0,

whence the solutions y1 and y2 are a fundamental set of solutions.
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Example

Find the solution of the initial value problem

y ′′ − y ′ +
1

4
y = 0, y(0) = 2, y ′(0) =

1

3
;

The characteristic equation is r2 − r + 1
4 = 0, So the roots are

r1 = r2 =
1
2 ; Thus the general solution of the differential equation is

y = c1e
t/2 + c2te

t/2; The first initial condition requires that
y(0) = c1 = 2; To satisfy the second initial condition, we first
differentiate and then set t = 0; y ′(0) = 1

2c1 + c2 =
1
3 , so c2 = − 2

3 ;
Thus the solution of the initial value problem is

y = 2et/2 −
2

3
tet/2;
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Reduction of Order

Suppose that we know one solution y1(t) of y
′′ + p(t)y ′ + q(t)y = 0;

To find a second solution, let y = v(t)y1(t);

Then,

y ′ = v ′(t)y1(t) + v(t)y ′1(t);
y ′′ = v ′′(t)y1(t) + v ′(t)y ′1(t) + v ′(t)y ′1(t) + v(t)y ′′1 (t)

= v ′′(t)y1(t) + 2v ′(t)y ′1(t) + v(t)y ′′1 (t);

Thus, since y ′′ + py ′ + qy = 0,

[v ′′y1 + 2v ′y ′1 + vy ′′1 ] + p[v ′y1 + vy ′1] + qvy1 = 0;
y1v

′′ + (2y ′1 + py1)v
′ + (y ′′1 + py ′1 + qy1)v = 0;

Since y1 is a solution, the coefficient of v is zero, so
y1v

′′ + (2y ′1 + py1)v
′ = 0;
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Reduction of Order (Cont’d)

We set y = v(t)y1(t) and found

y1v
′′ + (2y ′1 + py1)v

′ = 0;

This is actually a first order equation for the function v ′ and can be
solved either as a first order linear equation or as a separable equation;

Once v ′ has been found, then v is obtained by an integration;

Then, we can determine y ;

The procedure outlined here is called the method of reduction of
order, because we solve a first order differential equation for v ′ rather
than the second order equation for y ;
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Example

Given that y1(t) = t−1 is a solution of 2t2y ′′ + 3ty ′ − y = 0, t > 0,
find a fundamental set of solutions;

We set y = v(t)t−1; Then

y ′ = v ′t−1 − vt−2;
y ′′ = v ′′t−1 − v ′t−2 − v ′t−2 + 2vt−3

= v ′′t−1 − 2v ′t−2 + 2vt−3;

Substituting in the original equation and collecting terms, we obtain:

2t2(v ′′t−1 − 2v ′t−2 + 2vt−3) + 3t(v ′t−1 − vt−2)− vt−1

= 2tv ′′ + (−4 + 3)v ′ + (4t−1 − 3t−1 − t−1)v
= 2tv ′′ − v ′ = 0;
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Example (Cont’d)

We set y = v(t)t−1 and found

2tv ′′ − v ′ = 0;

Separating the variables and solving for v ′(t), we find that
v ′(t) = ct1/2; Thus, v(t) = 2

3ct
3/2 + k ; It follows that

y =
2

3
ct1/2 + kt−1;

The second term on the right side is a multiple of y1(t) and can be
dropped, but the first term provides a new solution y2(t) = t1/2; The
Wronskian of y1 and y2 is

W (y1, y2)(t) =

∣

∣

∣

∣

t−1 t1/2

−t−2 1
2 t

−1/2

∣

∣

∣

∣

=
1

2
t−3/2 + t−3/2 =

3

2
t−3/2;

Since t > 0, y1 and y2 form a fundamental set of solutions;
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Subsection 5

Nonhomogeneous Equations; Undetermined Coefficients
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The Nonhomogeneous Second Order Differential Equation

We now return to the nonhomogeneous equation
L[y ] = y ′′ + p(t)y ′ + q(t)y = g(t), where p, q, and g are given
(continuous) functions on the open interval I ;

The equation L[y ] = y ′′ + p(t)y ′ + q(t)y = 0 is called the
homogeneous equation corresponding to the original equation;

Theorem

If Y1 and Y2 are two solutions of the nonhomogeneous, then their
difference Y1 − Y2 is a solution of the corresponding homogeneous; If, in
addition, y1 and y2 are a fundamental set of solutions of the homogeneous,
then Y1(t)− Y2(t) = c1y1(t) + c2y2(t) with c1, c2 constants.

Theorem

The general solution of the nonhomogeneous can be written in the form
y = φ(t) = c1y1(t) + c2y2(t) + Y (t), where y1 and y2 are a fundamental
set of solutions of the corresponding homogeneous, c1 and c2 are arbitrary
constants, and Y is some specific solution of the nonhomogeneous.
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Steps for Solving the Nonhomogeneous Equation

In somewhat different words, the last theorem states that to solve the
nonhomogeneous equation y ′′ + p(t)y ′ + q(t)y = g(t), we must do
three things:

1 Find the general solution c1y1(t) + c2y2(t) of the corresponding
homogeneous equation; This solution is called the complementary
solution and denoted by yc(t);

2 Find some solution Y (t) of the nonhomogeneous equation; This
solution is referred to as a particular solution;

3 Add together the functions found in the two preceding steps;

We have already discussed how to find yc(t), at least when the
homogeneous equation has constant coefficients;

We focus, now, on finding a particular solution Y (t) of the
nonhomogeneous equation;

We study two methods:
The method of undetermined coefficients;
The method of variation of parameters;
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Method of Undetermined Coefficients

Method of undetermined coefficients:
Make an initial assumption about the form of the particular solution
Y (t), but with the coefficients left unspecified;
Substitute the assumed expression into the equation and attempt to
determine the coefficients so as to obtain a solution;
If we are successful, then we have found a particular solution Y (t) of
the differential equation; If we cannot determine the coefficients, then
there is no solution of the form assumed; In this case we may modify
the initial assumption and try again;

The technique is straightforward to execute once the assumption is
made as to the form of Y (t);

Its major limitation is that it is useful primarily for equations for
which we can easily write down the correct form of the particular
solution in advance;

We consider only nonhomogeneous terms that consist of polynomials,
exponential functions, sines, and cosines;
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Example I

Find a particular solution of y ′′ − 3y ′ − 4y = 3e2t ;

We seek a function Y such that Y ′′(t)− 3Y ′(t)− 4Y (t) = 3e2t ;
The exponential function reproduces itself through differentiation; So,
we assume that Y(t) is some multiple of e2t , i.e., Y (t) = Ae2t , where
the coefficient A is to be determined;
To find A, we calculate Y ′(t) = 2Ae2t , Y ′′(t) = 4Ae2t ; Then

4Ae2t − 3 · 2Ae2t − 4 · Ae2t = 3e2t

⇒ (4A − 6A− 4A)e2t = 3e2t

⇒ −6Ae2t = 3e2t

⇒ A = −1
2 ;

Thus, a particular solution is Y (t) = −1
2e

2t ;
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Example II

Find a particular solution of y ′′ − 3y ′ − 4y = 2 sin t;

Assume that Y (t) = A sin t, where A is a constant to be determined;
We obtain Y ′(t) = A cos t, Y ′′(t) = − A sin t, whence
−A sin t − 3A cos t − 4A sin t = 2 sin t ⇒ −5A sin t − 3A cos t =
2 sin t ⇒ (2 + 5A) sin t + 3A cos t = 0; We want this hold for all t;
Thus, it must hold for t = 0 and t = π

2 ; We get 3A = 0 and
2 + 5A = 0; There is no choice of the constant A that makes the
assumed expression a solution of the differential equation;
Let us include a cosine term in Y (t) and give it another try, i.e.,
Y (t) = A sin t + B cos t, where A and B are to be determined; Then
Y ′(t) = A cos t − B sin t, Y ′′(t) = − A sin t − B cos t; Therefore, we
get (−A+ 3B − 4A) sin t + (−B − 3A− 4B) cos t = 2 sin t; Matching
the coefficients of sin t and cos t on each side of the equation, we get
−5A+ 3B = 2,−3A − 5B = 0, obtaining A = − 5

17 and B = 3
17 ;

Thus, Y (t) = − 5
17 sin t +

3
17 cos t;
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Short Summary

To summarize our conclusions up to this point:

If the nonhomogeneous term g(t) is an exponential function eαt , then
assume that Y (t) is proportional to the same exponential function;
If g(t) is sinβt or cosβt , then assume that Y (t) is a linear
combination of sinβt and cosβt;
If g(t) is a polynomial, then assume that Y (t) is a polynomial of like
degree.
Thus, to find a particular solution of y ′′ − 3y ′ − 4y = 4t2 − 1 we
initially assume that Y (t) is a polynomial of the same degree as the
nonhomogeneous term, that is, Y (t) = At2 + Bt + C ;
The same principle extends to the case where g(t) is a product of any
two, or all three, of these types of functions;
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Example III

Find a particular solution of y ′′ − 3y ′ − 4y = −8et cos 2t;

We assume that Y (t) is the product of et and a linear combination of
cos 2t and sin 2t, that is, Y (t) = Aet cos 2t + Bet sin 2t; We get

Y ′(t) = Aet cos 2t − 2Aet sin 2t + Bet sin 2t + 2Bet cos 2t
= (A+ 2B)et cos 2t + (−2A+ B)et sin 2t;

Y ′′(t) = (A+ 2B)et cos 2t − 2(A + 2B)et sin 2t
+ (−2A + B)et sin 2t + 2(−2A+ B) cos 2t

= (−3A+ 4B)et cos 2t + (−4A− 3B)et sin 2t;

Thus, A and B must satisfy the equation
(−3A+ 4B)et cos 2t + (−4A− 3B)et sin 2t − 3[(A + 2B)et cos 2t +
(−2A+ B)et sin 2t]− 4[Aet cos 2t + Bet sin 2t] = −8et cos 2t, or
(−3A+ 4B − 3A− 6B − 4A)et cos 2t + (−4A− 3B + 6A− 3B −
4B)et sin 2t = −8et cos 2t; So 10A + 2B = 8 and 2A − 10B = 0;
These yield A = 10

13 and B = 2
13 ; Therefore, a particular solution is

Y (t) = 10
13e

t cos 2t + 2
13e

t sin 2t;
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Second Order Linear Equations Nonhomogeneous Equations; Undetermined Coefficients

Decomposition Into a Sum of Differential Equations

Now suppose that g(t) is the sum of two terms, g(t) = g1(t) + g2(t);

Suppose that

Y1 is a solution of ay ′′ + by ′ + cy = g1(t);
Y2 is a solution of ay ′′ + by ′ + cy = g2(t).

Then Y1 + Y2 is a solution of the equation

ay ′′ + by ′ + cy = g(t).

Therefore, for an equation whose nonhomogeneous function g(t) can
be expressed as a sum, one can consider instead several simpler
equations and then add the results together;
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Second Order Linear Equations Nonhomogeneous Equations; Undetermined Coefficients

Example IV

Find a particular solution of

y ′′ − 3y ′ − 4y = 3e2t + 2 sin t − 8et cos 2t;

By splitting up the right side, we obtain the three equations

y ′′ − 3y ′ − 4y = 3e2t ,
y ′′ − 3y ′ − 4y = 2 sin t,
y ′′ − 3y ′ − 4y = −8et cos 2t;

We have already solved all these three equations; The respective
solutions were

Y1(t) = −1
2e

2t ,

Y2(t) = 3
17 cos t −

5
17 sin t,

Y3(t) = 10
13e

t cos 2t + 2
13e

t sin 2t;

Therefore a particular solution of the given equation is their sum:

Y (t) = −
1

2
e2t +

3

17
cos t −

5

17
sin t +

10

13
et cos 2t +

2

13
et sin 2t;
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Second Order Linear Equations Nonhomogeneous Equations; Undetermined Coefficients

Example V

Find a particular solution of y ′′ − 3y ′ − 4y = 2e−t ;

Assume that Y (t) = Ae−t ; Then Y ′(t) = − Ae−t and
Y ′′(t) = Ae−t ; Thus, we get

Ae−t − 3(−Ae−t)− 4Ae−t = 2e−t ⇒ 0 = 2e−t ;

No choice of A satisfies this equation;

The homogeneous equation y ′′ − 3y ′ − 4y = 0, has characteristic

r2 − 3r − 4 = 0 ⇒ (r − 4)(r + 1) = 0 ⇒ r = 4 or r = −1.

So we get a fundamental set of solutions y1(t) = e−t and
y2(t) = e4t ; Thus the chosen particular solution is actually a solution
of the homogeneous equation and it cannot be a solution of the
nonhomogeneous equation;
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Second Order Linear Equations Nonhomogeneous Equations; Undetermined Coefficients

Example V (Cont’d)

To find a particular solution of y ′′ − 3y ′ − 4y = 2e−t consider the
form Y (t) = Ate−t ;

Then
Y ′(t) = Ae−t − Ate−t ;
Y ′′(t) = − Ae−t − Ae−t + Ate−t

= − 2Ae−t + Ate−t ;

Therefore,

(−2Ae−t + Ate−t)− 3(Ae−t − Ate−t)− 4Ate−t = 2e−t

(−2A− 3A)e−t + (A+ 3A− 4A)te−t = 2e−t

− 5Ae−t = 2e−t ⇒ A = −2
5 ;

Thus a particular solution of the given equation is

Y (t) = −
2

5
te−t ;
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Second Order Linear Equations Nonhomogeneous Equations; Undetermined Coefficients

Summary

Steps for finding the solution of ay ′′ + by ′ + cy = g(t);

1 Find the general solution of the corresponding homogeneous equation;
2 Assume the function g(t) involves only exponential functions, sines,

cosines, polynomials, or sums or products of such functions; (If this is
not the case, use the method of variation of parameters (next section))

3 If g(t) = g1(t) + · · ·+ gn(t), form n subproblems, each containing only
one of g1(t), . . . , gn(t); The i-th subproblem consists of the equation
ay ′′ + by ′ + cy = gi(t);

4 For the i-th subproblem assume an appropriate particular solution
Yi (t); If there is any duplication in the assumed form of Yi (t) with the
solutions of the homogeneous equation (of Step 1), then multiply Yi (t)
by t, or (if necessary) by t2;

5 Find a particular solution Yi (t) for each of the subproblems. Then the
sum Y1(t) + . . .+ Yn(t) is a particular solution of original equation;

6 Form the sum of the general solution of the homogeneous equation and
the particular solution of the nonhomogeneous equation; This is the
general solution of the nonhomogeneous equation;
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Subsection 6

Variation of Parameters
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Second Order Linear Equations Variation of Parameters

Discussion of Variation of Parameters

The method of variation of parameters complements the method of
undetermined coefficients;

Its main advantage is that it is very general; In principle, it can be
applied to any equation, and it requires no detailed assumptions
about the form of the solution;

It can be used to derive a formula for a particular solution of an
arbitrary second order linear nonhomogeneous differential equation;

It eventually requires the evaluation of certain integrals involving the
nonhomogeneous term in the differential equation, and this may
present difficulties.
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Example I

Find a particular solution of y ′′ + 4y = 3csc t;

The corresponding homogeneous equation is y ′′ + 4y = 0; Its
characteristic equation is r2 + 4 = 0; It has solutions r = ±2i ; The
general solution of homogeneous is yc(t) = c1 cos 2t + c2 sin 2t;
Replace the constants c1 and c2 by functions u1(t) and u2(t),
respectively, and try to determine these functions so that
y = u1(t) cos 2t + u2(t) sin 2t is a solution of the nonhomogeneous;
Differentiate y :

y ′ = − 2u1(t) sin 2t + 2u2(t) cos 2t + u′1(t) cos 2t + u′2(t) sin 2t;

Suppose, additionally, that we require the sum of the last two terms
on the right to be zero: u′1(t) cos 2t + u′2(t) sin 2t = 0; Then
y ′ = −2u1(t) sin 2t + 2u2(t) cos 2t; By differentiating y ′, we obtain

y ′′ = − 4u1(t) cos 2t − 4u2(t) sin 2t − 2u′1(t) sin 2t + 2u′2(t) cos 2t;
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Second Order Linear Equations Variation of Parameters

Example I (Cont’d)

We have, under u′1(t) cos 2t + u′2(t) sin 2t = 0,

y ′ = −2u1(t) sin 2t + 2u2(t) cos 2t + u′1(t) cos 2t + u′2(t) sin 2t;
y ′′ = −4u1(t) cos 2t − 4u2(t) sin 2t − 2u′1(t) sin 2t + 2u′2(t) cos 2t;

Then, substituting for y and y ′′ in y ′′ + 4y = 3csc t, we find

−4u1(t) cos 2t − 4u2(t) sin 2t − 2u′1(t) sin 2t + 2u′2(t) cos 2t
+4u1(t) cos 2t + 4u2(t) sin 2t = 3csc t.

Thus, u1(t) and u2(t) must satisfy
−2u′1(t) sin 2t + 2u′2(t) cos 2t = 3csc t;
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Second Order Linear Equations Variation of Parameters

Example I (Cont’d)

We want to choose u1 and u2 so that

u′1(t) cos 2t + u′2(t) sin 2t = 0,
−2u′1(t) sin 2t + 2u′2(t) cos 2t = 3csc t;

Solve the first for u′2(t) = − u′1(t)
cos 2t
sin 2t ;

Substitute for u′2(t) in the second and simplify:

− 2u′1(t) sin 2t + 2(−u′1(t)
cos 2t
sin 2t ) cos 2t = 3csc t

−2u′1(t) sin
2 2t−2u′1(t) cos

2 2t
sin 2t = 3csc t

− 2u′1(t)(sin
2 2t + cos2 2t) = 3 csc t sin 2t

u′1(t) =
3 csc t2 sin t cos t

−2 = − 3 cos t;

Back-substituting in the first equation, we get

u′2(t) =
3 cos t cos 2t

sin 2t
=

3(1− 2 sin2 t)

2 sin t
=

3

2
csc t − 3 sin t;
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Second Order Linear Equations Variation of Parameters

Example I (Cont’d)

We found u′1(t) = −3 cos t, u′2(t) =
3
2 csc t − 3 sin t.

By integration

u1(t) = − 3 sin t + c1;
u2(t) =

3
2 ln | csc t − cot t|+ 3cos t + c2;

Therefore, we obtain

y = − 3 sin t cos 2t + 3
2 ln | csc t − cot t| sin 2t

+ 3cos t sin 2t + c1 cos 2t + c2 sin 2t
= − 3 sin t(2 cos2 t − 1) + 3

2 ln | csc t − cot t| sin 2t
+ 3cos t2 sin t cos t + c1 cos 2t + c2 sin 2t

= 3 sin t + 3
2 ln | csc t − cot t| sin 2t

+ c1 cos 2t + c2 sin 2t;

The terms involving c1 and c2 are the general solution of the
homogeneous; The other terms are a particular solution of the
nonhomogeneous; Thus, the last expression gives the general solution
of the original equation;
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Second Order Linear Equations Variation of Parameters

Description of Variation of Parameters I

Consider y ′′ + p(t)y ′ + q(t)y = g(t) where p, q, and g are
continuous on an open interval I ;

Assume that we know the general solution yc(t) = c1y1(t) + c2y2(t)
of the homogeneous y ′′ + p(t)y ′ + q(t)y = 0;

We replace the constants c1 and c2 by functions u1(t) and u2(t) to
get y = u1(t)y1(t) + u2(t)y2(t);

Then we try to determine u1(t) and u2(t) so as to get a solution of
the nonhomogeneous;

Differentiate to obtain
y ′ = u′1(t)y1(t) + u1(t)y

′

1(t) + u′2(t)y2(t) + u2(t)y
′

2(t);

Set the terms involving u′1(t) and u′2(t) equal to zero, i.e., require
that u′1(t)y1(t) + u′2(t)y2(t) = 0;

Thus, y ′ = u1(t)y
′

1(t) + u2(t)y
′

2(t);

By differentiating again, we get
y ′′ = u′1(t)y

′

1(t) + u1(t)y
′′

1 (t) + u′2(t)y
′

2(t) + u2(t)y
′′

2 (t);
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Description of Variation of Parameters II

Under u′1(t)y1(t) + u′2(t)y2(t) = 0, we found

y ′ = u1(t)y
′

1(t) + u2(t)y
′

2(t),
y ′′ = u′1(t)y

′

1(t) + u1(t)y
′′

1 (t) + u′2(t)y
′

2(t) + u2(t)y
′′

2 (t);

Substituting into y ′′ + p(t)y ′ + q(t)y = g(t), we get

(u′1(t)y
′

1(t) + u1(t)y
′′

1 (t) + u′2(t)y
′

2(t) + u2(t)y
′′

2 (t))
+ p(t)(u1(t)y

′

1(t) + u2(t)y
′

2(t))
+ q(t)(u1(t)y1(t) + u2(t)y2(t)) = g(t)

u1(t)[y
′′

1 (t) + p(t)y ′1(t) + q(t)y1(t)]
+ u2(t)[y

′′

2 (t) + p(t)y ′2(t) + q(t)y2(t)]
+ u′1(t)y

′

1(t) + u′2(t)y
′

2(t) = g(t);

Each of the expressions in square brackets is zero because y1 and y2
are solutions of the homogeneous, so we get
u′1(t)y

′

1(t) + u′2(t)y
′

2(t) = g(t);
So we get a system of two linear algebraic equations for the
derivatives u′1(t) and u′2(t) of the unknown functions;
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Description of Variation of Parameters III

By solving it, we obtain

u′1(t) = − y2(t)g(t)
W (y1,y2)(t)

,

u′2(t) = y1(t)g(t)
W (y1,y2)(t)

,

where W (y1, y2) is the Wronskian of y1 and y2;

By integrating, we find the desired functions u1(t) and u2(t):

u1(t) = −

∫

y2(t)g(t)

W (y1, y2)(t)
dt + c1, u2(t) =

∫

y1(t)g(t)

W (y1, y2)(t)
dt + c2;

If the integrals can be evaluated in terms of elementary functions,
then we substitute back the results to obtain the general solution;
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Main Theorem

Theorem

If the functions p, q, and g are continuous on an open interval I , and if
the functions y1 and y2 are a fundamental set of solutions of the
homogeneous y ′′ + p(t)y ′ + q(t)y = 0, then a particular solution of
y ′′ + p(t)y ′ + q(t)y = g(t) is

Y (t) = −y1(t)

∫ t

t0

y2(s)g(s)

W (y1, y2)(s)
ds + y2(t)

∫ t

t0

y1(s)g(s)

W (y1, y2)(s)
ds,

where t0 is any conveniently chosen point in I ; The general solution is
y = c1y1(t) + c2y2(t) + Y (t).

Difficulties in using the method of variation of parameters:
Determination of y1(t) and y2(t), a fundamental set of solutions of the
homogeneous equation, when the coefficients in that equation are not
constants;
Evaluation of the integrals appearing in the theorem;

The advantage: Expression for Y (t) in terms of an arbitrary g(t);
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