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Higher Order Linear Equations General Theory of n-th Order Linear Equations

n-th Order Linear Differential Equations

An n-th order linear differential equation is one of the form

P0(t)
dny

dtn
+ P1(t)

dn−1y

dtn−1
+ · · ·+ Pn−1(t)

dy

dt
+ Pn(t)y = G (t);

P0, . . . ,Pn, and G are continuous real-valued functions on some
interval I : α < t < β, and P0 is nowhere zero in this interval;

By dividing by P0(t), we obtain

L[y ] = dny
dtn

+ p1(t)
dn−1y

dtn−1 + · · ·+ pn−1(t)
dy
dt

+ pn(t)y = g(t);

The mathematical theory associated with this equation is completely
analogous to that for the second order linear equation;

Given n conditions y(t0) = y0, y
′(t0) = y ′0, . . ., y

(n−1)(t0) = y
(n−1)
0 ;

Theorem (Existence and Uniqueness of Solutions)

If the functions p1, p2, . . . , pn, and g are continuous on the open interval I ,
then there exists exactly one solution y = φ(t) of the differential equation
satisfying the given initial conditions; This solution exists throughout I .
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The Homogeneous Equation

Consider the homogeneous equation
L[y ] = y (n) + p1(t)y

(n−1) + · · ·+ pn−1(t)y
′ + pn(t)y = 0;

If y1, y2, . . . , yn are solutions, then
y = c1y1(t) + c2y2(t) + · · ·+ cnyn(t) is also a solution;

Is every solution a linear combination of y1, . . . , yn?

This happens if, regardless of initial conditions, we can choose
c1, . . . , cn so that the linear combination satisfies those conditions;

That is, for any t0 in I , and for any y0, y
′
0, . . . , y

(n−1)
0 , we can

determine c1, . . . , cn so that

c1y1(t0) + · · ·+ cnyn(t0) = y0
c1y

′
1(t0) + · · ·+ cny

′
n(t0) = y ′0
. . .

c1y
(n−1)
1 (t0) + · · ·+ cny

(n−1)
n (t0) = y

(n−1)
0

The system can be solved uniquely provided that the determinant of
coefficients is not zero and conversely;
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The Homogeneous Equation (Cont’d)

Hence, a necessary and sufficient condition for the existence of a

solution for arbitrary values of y0, y
′
0, . . . , y

(n−1)
0 is that the Wronskian

W (y1, . . . , yn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1 y2 · · · yn
y ′1 y ′2 · · · y ′n
...

...
...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

is not zero at t = t0;
Theorem

If the functions p1, p2, . . . , pn are continuous on the open I , if the
functions y1, y2, . . . , yn are solutions, and if W (y1, y2, . . . , yn)(t) 6= 0 for at
least one point t in I , then every solution can be expressed as a linear
combination of the solutions y1, y2, . . . , yn.

A set of solutions y1, . . . , yn whose Wronskian is nonzero is called a
fundamental set of solutions; A linear combination of such a set is
called a general solution;
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Linear Dependence and Independence

There is a close relationship between a fundamental set of solutions
and the concept of linear independence studied in linear algebra;

The functions f1, f2, . . ., fn are said to be linearly dependent on an
interval I if there exists a set of constants k1, k2, . . . , kn, not all zero,
such that

k1f1(t) + k2f2(t) + · · ·+ knfn(t) = 0,

for all t in I ;

The functions f1, . . . , fn are said to be linearly independent on I if
they are not linearly dependent there;
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Linear Dependence: An Example

Are the functions f1(t) = 1, f2(t) = t, and f3(t) = t2 linearly
independent or dependent on the interval I : −∞ < t < ∞?

Form the linear combination
k1f1(t) + k2f2(t) + k3f3(t) = k1 + k2t + k3t

2;
Set it equal to zero to obtain k1 + k2t + k3t

2 = 0; If the equation is
to hold for all t in I , then it must certainly be true at any three
distinct points in I ; Let us choose t = 0, t = 1, and t = −1; We
obtain the system of equations







k1 = 0
k1 + k2 + k3 = 0
k1 − k2 + k3 = 0







From the first, k1 = 0; From the other two equations it follows that
k2 = k3 = 0 as well; Therefore there is no set of constants k1, k2, k3,
not all zero, for which the equation holds; Thus, the given functions
are not linearly dependent on I , so they must be linearly independent;
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Linear Dependence: Another Example

Are the functions f1(t) = 1, f2(t) = 2 + t, f3(t) = 3− t2, and
f4(t) = 4t + t2 linearly independent or dependent on any interval I?

Form the linear combination

k1f1(t) + k2f2(t) + k3f3(t) + k4f4(t)
= k1 + k2(2 + t) + k3(3− t2) + k4(4t + t2)
= (k1 + 2k2 + 3k3) + (k2 + 4k4)t + (−k3 + k4)t

2;

This expression is zero throughout an interval provided that
k1 + 2k2 + 3k3 = 0, k2 + 4k4 = 0, −k3 + k4 = 0; These three
equations, with four unknowns, have many solutions; For instance, if
k4 = 1, then k3 = 1, k2 = −4 and k1 = 5; Thus the given functions
are linearly dependent on every interval;
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Fundamental Set of Solutions and Linear Independence

Suppose that the functions y1, . . . , yn are solutions of
y (n) + p1(t)y

(n−1) + · · · + pn−1(t)y
′ + pn(t)y = 0 on an interval I ;

Consider the equation k1y1(t) + · · ·+ knyn(t) = 0;

By differentiating repeatedly, we obtain the equations

k1y
′
1(t) + · · · + kny

′
n(t) = 0
· · ·

k1y
(n−1)
1 (t) + · · · + kny

(n−1)
n (t) = 0

The determinant of coefficients for the resulting system is the
Wronskian W (y1, . . . , yn)(t) of y1, . . . , yn;

Theorem

If y1(t), . . . , yn(t) is a fundamental set of solutions of
L[y ] = y (n) + p1(t)y

(n−1) + · · · + pn−1(t)y
′ + pn(t)y = 0

on an interval I , then y1(t), . . . , yn(t) are linearly independent on I ;
Conversely, if y1(t), . . . , yn(t) are linearly independent solutions, then they
form a fundamental set of solutions on I .
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The Nonhomogeneous Equation

Consider L[y ] = y (n) + p1(t)y
(n−1) + · · ·+ pn(t)y = g(t);

The difference of any two solutions of the nonhomogeneous is a
solution of the homogeneous;

So, if y1, . . . , yn is a fundamental set of solutions of the
homogeneous, then any solution of the nonhomogeneous can be
written as y = c1y1(t) + c2y2(t) + · · ·+ cnyn(t) + Y (t), where Y is
some particular solution of the nonhomogeneous;

This is called the general solution of the nonhomogeneous;

Thus, the primary problem is to determine a fundamental set of
solutions y1, . . . , yn of the homogeneous;

If the coefficients are constants, this is fairly simple;

If the coefficients are not constants, it is usually necessary to use
numerical methods;

George Voutsadakis (LSSU) Differential Equations January 2014 11 / 43



Higher Order Linear Equations Homogeneous Equations with Constant Coefficients
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Homogeneous Equations with Constant Coefficients
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Characteristic Polynomial and Roots

Consider L[y ] = a0y
(n) + a1y

(n−1) + · · ·+ an−1y
′ + any = 0, where

a0, a1, . . . , an are real constants;

We anticipate that y = ert is a solution for all r , for which
Z (r) = a0r

n + a1r
n−1 + · · ·+ an−1r + an = 0;

The polynomial Z (r) is called the characteristic polynomial and
Z (r) = 0 the characteristic equation of the differential equation;

A polynomial of degree n has n zeros, say, r1, r2, . . . , rn, some of
which may be equal;

Thus, it can be written as Z (r) = a0(r − r1)(r − r2) · · · (r − rn);

If the roots of the characteristic equation are real and no two are
equal, then we have n distinct solutions er1t , er2t , . . . , ernt ;

If these functions are linearly independent, then the general solution is
y = c1e

r1t + c2e
r2t + · · ·+ cne

rnt ;

One way to establish the linear independence of er1t , er2t , . . . , ernt is
to evaluate their Wronskian determinant;
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Real and Unequal Roots: Example

Find the general solution of y (4) + y ′′′ − 7y ′′ − y ′ + 6y = 0; Also find
the solution that satisfies the initial conditions y(0) = 1, y ′(0) = 0,
y ′′(0) = −2, y ′′′(0) = −1;

Let y = ert ; To determine r we solve r4 + r3 − 7r2 − r + 6 = 0;

r4 + r3 − 7r2 − r + 6 = 0
⇒ r4 + r3 − 7r2 − 7r + 6r + 6 = 0
⇒ r3(r + 1)− 7r(r + 1) + 6(r + 1) = 0
⇒ (r + 1)(r3 − 7r + 6) = 0
⇒ (r + 1)(r3 − r − 6r + 6) = 0
⇒ (r + 1)[(r − 1)r(r + 1)− 6(r − 1)] = 0
⇒ (r + 1)(r − 1)(r2 + r − 6) = 0
⇒ (r + 1)(r − 1)(r − 2)(r + 3) = 0.

The roots of this equation are r1 = 1, r2 = −1, r3 = 2, and r4 = −3;
Therefore the general solution of is y = c1e

t + c2e
−t + c3e

2t + c4e
−3t ;
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Higher Order Linear Equations Homogeneous Equations with Constant Coefficients

Example (Cont’d)

The general solution of is y = c1e
t + c2e

−t + c3e
2t + c4e

−3t ;

Recall the initial conditions y(0) = 1, y ′(0) = 0, y ′′(0) = −2,
y ′′′(0) = −1;

These give















c1 + c2 + c3 + c4 = 1
c1 − c2 + 2c3 − 3c4 = 0
c1 + c2 + 4c3 + 9c4 = −2
c1 − c2 + 8c3 − 27c4 = −1















next⇒















c1 = 11
8

c2 = 5
12

c3 = −2
3

c4 = −1
8

Therefore the solution of the initial value problem is
y = 11

8 e
t + 5

12e
−t − 2

3e
2t − 1

8e
−3t ;
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Example (Cont’d)

To solve the preceding system for c1, c2, c3 and c4 we reduce the
augmented matrix in echelon form:








1 1 1 1 1
1 −1 2 −3 0
1 1 4 9 −2
1 −1 8 −27 −1









−→









1 1 1 1 1
0 −2 1 −4 −1
0 0 3 8 −3
0 −2 7 −28 −2









−→









1 0 3
2 −1 1

2
0 −2 1 −4 −1
0 0 3 8 −3
0 0 6 −24 −1









−→









1 0 3
2 −1 1

2
0 −2 1 −4 −1
0 0 3 8 −3
0 0 0 −40 5









.

Now we solve bottom-up: c4 = − 1
8 ;

3c3 = − 3− 8c4 = − 3− 8(−1
8 ) = − 2; So c3 = −2

3 ;
−2c2 = − 1− c3 + 4c4 = − 1 + 2

3 −
1
2 −

5
6 ; So c2 =

5
12 ;

c1 =
1
2 −

3
2c3 + c4 =

1
2 − 3

2(−
2
3)−

1
8 = 11

8 ;
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A Tip for Finding the Roots of the Characteristic Equation

To factor the characteristic polynomial by hand, the following result is
sometimes helpful:

Suppose that the polynomial a0r
n + a1r

n−1 + · · · + an−1r + an = 0
has integer coefficients; If r = p

q
is a rational root, where p and q

have no common factors, then p must be a factor of an, and q must
be a factor of a0;

Example: In r4+ r3− 7r2− r +6 = 0 the factors of a0 are ±1 and the
factors of an are ±1,±2,±3 and ±6; Thus the only possible rational
roots of this equation are ±1,±2,±3 and ±6; By testing these
possible roots, we find that 1,−1, 2, and −3 are actual roots; In this
case there are no other roots, since the polynomial is of fourth degree;

If some of the roots are irrational or complex, as is usually the case,
then this process will not find them, but at least the degree of the
polynomial can be reduced by dividing the polynomial by the factors
corresponding to the rational roots;
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Complex Roots

If the characteristic equation has complex roots, they must occur in
conjugate pairs, λ± iµ, since the coefficients a0, . . . , an are real
numbers;

Provided that none of the roots is repeated, the general solution of
L[y ] = a0y

(n) + a1y
(n−1) + · · ·+ an−1y

′ + any = 0 is still of the form
y = c1e

r1t + c2e
r2t + · · ·+ cne

rnt ;

However, just as for the second order equation, we can replace the
complex-valued solutions e(λ+iµ)t and e(λ−iµ)t by the real-valued
solutions eλt cosµt, eλt sinµt;

Thus, even though some of the roots of the characteristic equation
are complex, it is still possible to express the general solution of the
differential equation as a linear combination of real-valued solutions;
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Complex Roots: An Example

Find the general solution of y (4) − y = 0; Also find the solution that
satisfies the initial conditions y(0) = 7

2 , y
′(0) = −4, y ′′(0) = 5

2 ,
y ′′′(0) = −2;

Substituting ert for y , we get r4 − 1 = (r2 − 1)(r2 + 1) = 0;
Therefore the roots are r = 1,−1, i ,−i and the general solution is
y = c1e

t + c2e
−t + c3 cos t + c4 sin t;

If we impose the given initial conditions, we find














c1 + c2 + c3 =
7
2

c1 − c2 + c4 = −4
c1 + c2 − c3 =

5
2

c1 − c2 − c4 = −2















⇒















c1 + c2 + c3 =
7
2

c1 − c2 + c4 = −4
c1 + c2 = 3
c1 − c2 = −3















⇒















c1 = 0
c2 = 3
c3 = 1

2
c4 = − 1

Thus the solution of the given initial value problem is
y = 3e−t + 1

2 cos t − sin t;
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Repeated Roots

If the roots of the characteristic equation
a0r

n + a1r
n−1 + · · ·+ an−1r + an = 0 are not distinct, then the

solution y = c1e
r1t + c2e

r2t + · · ·+ cne
rnt is not general;

Recall that if r1 is a repeated root for a0y
′′ + a1y

′ + a2y = 0, then
two linearly independent solutions are er1t and ter1t ;

For an equation of order n, if a root of Z (r) = 0, say r = r1, has
multiplicity s (where s ≤ n), then er1t , ter1t , t2er1t , . . . , ts−1er1t are
corresponding solutions;

If a complex root λ+ iµ is repeated s times, the complex conjugate
λ− iµ is also repeated s times; Corresponding to these 2s solutions,
we can find 2s real solutions by noting that the real and imaginary
parts of e(λ+iµ)t , te(λ+iµ)t , . . . , ts−1e(λ+iµ)t are also linearly
independent solutions: eλt cosµt, eλt sinµt, teλt cosµt, teλt sinµt,
. . ., ts−1eλt cosµt, ts−1eλt sinµt; Hence the general solution can
always be expressed as a linear combination of n real-valued solutions;
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Repeated Roots: An Example

Find the general solution of y (4) + 2y ′′ + y = 0;

The characteristic equation is r4 + 2r2 + 1 = (r2 + 1)(r2 + 1) = 0;
The roots are r = i , i ,−i ,−i , and the general solution is

y = c1 cos t + c2 sin t + c3t cos t + c4t sin t.
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Computing n-th Roots Using De Moivre’s Formula

Find the general solution of y (4) + y = 0;

The characteristic equation is r4 + 1 = 0; To solve the equation, we
must compute the fourth roots of −1 = −1 + 0i = cos π + i sinπ;
Thus, according to De Moivre’s formula, its four complex fourth roots
are

wm = cos (
π

4
+

2mπ

4
) + i sin (

π

4
+

2mπ

4
), m = 0, 1, 2, 3;

So we have as roots 1+i√
2
, −1+i√

2
, −1−i√

2
, 1−i√

2
; The general solution of

the differential equation, therefore, is

y = et/
√
2(c1 cos

t√
2
+ c2 sin

t√
2
) + e−t/

√
2(c3 cos

t√
2
+ c4 sin

t√
2
);
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Subsection 3

The Method of Undetermined Coefficients
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The Method of Undetermined Coefficients

A particular solution Y of

L[y ] = a0y
(n) + a1y

(n−1) + · · · + an−1y
′ + any = g(t)

can be obtained by the method of undetermined coefficients if
g(t) is of an appropriate form;

When L is applied to a polynomial, an exponential, a sine or a cosine
function, the result is a polynomial, an exponential or a linear
combination of sine and cosine functions, respectively;

Hence, if g(t) is a sum of such functions, we can find Y (t) by
choosing a suitable combination of such functions, multiplied by a
number of undetermined constants;

The constants are then determined by substituting the assumed
expression into the differential equation;

Some terms may need to be multiplied by powers of t to make them
different from terms in the solution of the homogeneous;
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Undetermined Coefficients: An Example

Find the general solution of y ′′′ − 3y ′′ + 3y ′ − y = 4et ;

The characteristic polynomial for the homogeneous is
r3 − 3r2 + 3r − 1 = (r − 1)3, so the general solution of the
homogeneous equation is yc(t) = c1e

t + c2te
t + c3t

2et ;
To find a particular solution Y (t) of the nonhomogeneous, we start
by Y (t) = Aet ; Since et , tet , t2et are all solutions of the
homogeneous, we must multiply by t3; Assume Y (t) = At3et , where
A is an undetermined coefficient; Differentiate Y (t) three times:

Y (t) = At3et ;
Y ′(t) = 3At2et + At3et ;
Y ′′(t) = 6Atet + 3At2et + 3At2et + At3et

= 6Atet + 6At2et + At3et ;
Y ′′′(t) = 6Aet + 6Atet + 12Atet + 6At2et + 3At2et + At3et

= 6Aet + 18Atet + 9At2et + At3et .
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Undetermined Coefficients: An Example (Cont’d)

Substitute for y and its derivatives in the original equation
y ′′′ − 3y ′′ + 3y ′ − y = 4et :

(6Aet + 18Atet + 9At2et + At3et)
− 3(6Atet + 6At2et + At3et)
+ 3(3At2et + At3et)− At3et = 4et ;

6Aet + (18− 18)Atet + (9− 18 + 9)At2et

+ (1− 3 + 3− 1)At3et = 4et ;

So 6Aet = 4et ; Thus, A = 2
3 and the particular solution is

Y (t) = 2
3 t

3et ;
The general solution of the original equation is the sum of yc(t) and
Y (t), i.e., y = c1e

t + c2te
t + c3t

2et + 2
3t

3et ;
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Undetermined Coefficients: Another Example

Find a particular solution of the equation

y (4) + 2y ′′ + y = 3 sin t − 5 cos t;

The characteristic equation of the homogeneous is
r4 + 2r2 + 1 = (r2 + 1)2 = 0 and has roots r = i , i ,−i ,−i ; The
general solution of the homogeneous equation is
yc(t) = c1 cos t + c2 sin t + c3t cos t + c4t sin t;
The particular solution would be Y (t) = A sin t + B cos t, but we
must multiply it by t2 to make it different from the solutions of the
homogeneous; Thus, Y (t) = At2 sin t + Bt2 cos t; Differentiate Y (t)
four times and substitute into the equation.
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Undetermined Coefficients: Example (Cont’d)

We get

Y (t) = At2 sin t + Bt2 cos t;
Y ′(t) = 2At sin t + At2 cos t + 2Bt cos t − Bt2 sin t;
Y ′′(t) = 2A sin t + 2At cos t + 2At cos t − At2 sin t

2B cos t − 2Bt sin t − 2Bt sin t − Bt2 cos t
= 2A sin t + 4At cos t − At2 sin t

+ 2B cos t − 4Bt sin t − Bt2 cos t;
Y ′′′(t) = 2A cos t + 4A cos t − 4At sin t − 2At sin t − At2 cos t

− 2B sin t − 4B sin t − 4Bt cos t − 2Bt cos t + Bt2 sin t
= 6A cos t − 6At sin t − At2 cos t

− 6B sin t − 6Bt cos t + Bt2 sin t;

Y (4)(t) = − 6A sin t − 6A sin t − 6At cos t − 2At cos t + At2 sin t
− 6B cos t − 6B cos t + 6Bt sin t + 2Bt sin t + Bt2 cos t

= − 12A sin t − 8At cos t + At2 sin t
− 12B cos t + 8Bt sin t + Bt2 cos t;
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Undetermined Coefficients: Example (Cont’d)

Plugging into y (4) + 2y ′′ + y = 3 sin t − 5 cos t, we get

(−12A sin t − 8At cos t + At2 sin t − 12B cos t + 8Bt sin t + Bt2 cos t)
+2(2A sin t + 4At cos t − At2 sin t + 2B cos t − 4Bt sin t − Bt2 cos t)
+At2 sin t + Bt2 cos t = 3 sin t − 5 cos t

Therefore,

(−12A + 4A) sin t + (−12B + 4B) cos t
(−8A+ 8A)t cos t + (8B − 8B)t sin t
(A− 2A+ A)t2 sin t + (B − 2B + B)t2 cos t = 3 sin t − 5 cos t.

No we have −8A sin t − 8B cos t = 3 sin t − 5 cos t; Thus,
A = − 3

8 ,B = 5
8 , and the particular solution is

Y (t) = − 3

8
t2 sin t +

5

8
t2 cos t;
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Undetermined Coefficients: Separating Terms in g(t)

Find a particular solution of

y ′′′ − 4y ′ = t + 3cos t + e−2t ;

The characteristic equation of the homogeneous is
r3 − 4r = r(r + 2)(r − 2) = 0, and the roots are r = 0,±2; So
yc(t) = c1 + c2e

2t + c3e
−2t ; The particular solution is the sum of the

particular solutions of

y ′′′ − 4y ′ = t, y ′′′ − 4y ′ = 3cos t, y ′′′ − 4y ′ = e−2t ;

For Y1(t) we would have A0t + A1, but a constant is a solution of the
homogeneous, so we multiply by t: Y1(t) = t(A0t + A1);
For the second equation we choose Y2(t) = B cos t +C sin t, and there
is no need to modify this;
For the third equation, since e−2t is a solution of the homogeneous
equation, we assume that Y3(t) = Ete−2t ;

The constants are determined by substituting into the individual
differential equations;
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Undetermined Coefficients (First Equation)

We look at y ′′′ − 4y ′ = t, with Y1(t) = A0t
2 + A1t;

We have
Y1(t) = A0t

2 + A1t;
Y ′
1(t) = 2A0t + A1;

Y ′′
1 (t) = 2A0;

Y ′′′
1 (t) = 0;

Therefore, we get
0− 4(2A0t + A1) = t;
− 8A0t − 4A1 = t

A0 = −1
8 , A1 = 0.
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Undetermined Coefficients (Second Equation)

We look at y ′′′ − 4y ′ = 3cos t, with Y2(t) = B cos t + C sin t;

We have
Y2(t) = B cos t + C sin t;
Y ′
2(t) = − B sin t + C cos t;

Y ′′
2 (t) = − B cos t − C sin t;

Y ′′′
2 (t) = B sin t − C cos t;

Therefore, we get

(B sin t − C cos t)− 4(−B sin t + C cos t) = 3 cos t;
5B sin t − 5C cos t = 3cos t;
B = 0, C = −3

5 .
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Undetermined Coefficients (Third Equation)

We look at y ′′′ − 4y ′ = e−2t , with Y3(t) = Ete−2t ;

We have

Y3(t) = Ete−2t ;
Y ′
3(t) = Ee−2t − 2Ete−2t ;

Y ′′
3 (t) = − 2Ee−2t − 2Ee−2t + 4Ete−2t

= − 4Ee−2t + 4Ete−2t ;
Y ′′′
3 (t) = 8Ee−2t + 4Ee−2t − 8Ete−2t

= 12Ee−2t − 8Ete−2t ;

Therefore, we get

(12Ee−2t − 8Ete−2t)− 4(Ee−2t − 2Ete−2t) = e−2t ;
8Ee−2t = e−2t ;
E = 1

8
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Undetermined Coefficients (Conclusion)

We had

Y1(t) = A0t
2 + A1t, Y2(t) = B cos t + C sin t, Y3(t) = Ee−2t

and we found

A0 = −1

8
, A1 = 0, B = 0, C = −3

5
, E =

1

8
.

We conclude that A particular solution of

y ′′′ − 4y ′ = t + 3cos t + e−2t

is

Y (t) = −1

8
t2 − 3

5
sin t +

1

8
te−2t ;
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Subsection 4

The Method of Variation of Parameters
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The Method of Variation of Parameters I

The method of variation of parameters for determining a particular
solution of the nonhomogeneous n-th order linear differential equation

L[y ] = y (n) + p1(t)y
(n−1) + · · ·+ pn−1(t)y

′ + pn(t)y = g(t)

is a direct extension of the method for the second order case;

Suppose then that we know a fundamental set of solutions y1, y2, . . .,
yn of the homogeneous;

Then, the general solution of the homogeneous equation is
yc(t) = c1y1(t) + c2y2(t) + · · ·+ cnyn(t);

The method of variation of parameters for determining a particular
solution of the nonhomogeneous rests on the possibility of
determining n functions u1, u2, . . . , un such that Y (t) is of the form

Y (t) = u1(t)y1(t) + u2(t)y2(t) + · · ·+ un(t)yn(t);
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The Method of Variation of Parameters II

We specify n conditions;
One is that Y satisfy
L[y ] = y (n) + p1(t)y

(n−1) + · · ·+ pn−1(t)y
′ + pn(t)y = g(t);

The other n − 1 conditions are chosen so as to make the calculations
as simple as possible;
From Y (t) = u1(t)y1(t) + u2(t)y2(t) + · · ·+ un(t)yn(t) we get
Y ′ = (u1y

′
1 + u2y

′
2 + · · ·+ uny

′
n) + (u′1y1 + u′2y2 + · · ·+ u′nyn);

We impose
u′1y1 + u′2y2 + · · ·+ u′nyn = 0;

Therefore, Y ′ = u1y
′
1 + u2y

′
2 + · · ·+ uny

′
n;

Now we get
Y ′′ = (u1y

′′
1 + u2y

′′
2 + · · · + uny

′′
n ) + (u′1y

′
1 + u′2y

′
2 + · · ·+ u′ny

′
n);

We impose
u′1y

′
1 + u′2y

′
2 + · · ·+ u′ny

′
n = 0;

Therefore, Y ′′ = u1y
′′
1 + u2y

′′
2 + · · ·+ uny

′′
n ;
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The Method of Variation of Parameters III

Similarly, going through n − 1 derivatives of Y , we impose the
conditions

u′1y
(m)
1 + u′2y

(m)
2 + · · ·+ u′ny

(m)
n = 0, m = 1, . . . , n − 2;

And we obtain

Y (m) = u1y
(m)
1 + u2y

(m)
2 + · · ·+ uny

(m)
n , m = 0, 1, . . . , n − 1;

The n-th derivative of Y is

Y (n) = (u1y
(n)
1 + · · ·+ uny

(n)
n ) + (u′1y

(n−1)
1 + · · ·+ u′ny

(n−1)
n );
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The Method of Variation of Parameters IV

On substituting for the derivatives of Y , we get

(u1y
(n)
1 + · · · + uny

(n)
n ) + (u′1y

(n−1)
1 + · · · + u′ny

(n−1)
n )

+p1(u1y
(n−1)
1 + · · ·+ uny

(n−1)
n )

+ · · ·
+pn−1(u1y

′
1 + · · ·+ uny

′
n)

+pn(u1y1 + · · ·+ unyn) = g(t).

Rearranging and collecting terms, we get

u′1y
(n−1)
1 + · · ·+ u′ny

(n−1)
n

+u1(y
(n)
1 + p1y

(n−1)
1 + · · · + pn−1y

′
1 + pny1)

+ · · ·
+un(y

(n)
n + p1y

(n−1)
n + · · ·+ pn−1y

′
n + pnyn) = g(t).

Since L[yi ] = 0, i = 1, 2, . . . , n, all parentheses vanish:

u′1y
(n−1)
1 + u′2y

(n−1)
2 + . . .+ u′ny

(n−1)
n = g ;
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The Method of Variation of Parameters V

Thus, we obtain the following system for u′1, u
′
2, . . . , u

′
n:

y1u
′
1 + y2u

′
2 + · · · + ynu

′
n = 0

y ′1u
′
1 + y ′2u

′
2 + · · · + y ′nu

′
n = 0

...

y
(n−1)
1 u′1 + y

(n−1)
2 u′2 + · · ·+ y

(n−1)
n u′n = g

By solving this system and integrating the resulting expressions, we
can obtain the coefficients u1, . . . , un;

The determinant of coefficients is W (y1, y2, . . . , yn) 6= 0, so it is
possible to determine u′1, . . . , u

′
n;
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The Method of Variation of Parameters VI

By Cramers rule,

u′m(t) =
g(t)Wm(t)

W (t)
, m = 1, 2, . . . , n,

were W (t) = W (y1, y2, . . . , yn)(t), and Wm is the determinant
obtained from W by replacing the m-th column by the column
(0, 0, ..., 0, 1);

So, a particular solution is given by

Y (t) =
n

∑

m=1

ym(t)

t
∫

t0

g(s)Wm(s)

W (s)
ds, where t0 is arbitrary;

Determining Y (t) may involve very difficult algebraic computations as
n increases;

In some cases the calculations may be simplified to some extent by
using Abels identity W (t) = W (y1, . . . , yn)(t) = ce−

∫
p1(t)dt ;
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Example

If y1(t) = et , y2(t) = tet , y3(t) = e−t are solutions of the
homogeneous corresponding to y ′′′ − y ′′ − y ′ + y = g(t), determine a
particular solution of the nonhomogeneous in terms of an integral;

W (t) = W (et , tet , e−t)(t) =

∣

∣

∣

∣

∣

∣

et tet e−t

et (t + 1)et −e−t

et (t + 2)et e−t

∣

∣

∣

∣

∣

∣

=

et

∣

∣

∣

∣

∣

∣

1 t 1
1 t + 1 −1
1 t + 2 1

∣

∣

∣

∣

∣

∣

= et

∣

∣

∣

∣

∣

∣

1 t 1
0 1 −2
0 2 0

∣

∣

∣

∣

∣

∣

= 4et ;

W1(t) =

∣

∣

∣

∣

∣

∣

0 tet e−t

0 (t + 1)et −e−t

1 (t + 2)et e−t

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

tet e−t

(t + 1)et −e−t

∣

∣

∣

∣

= −2t−1;
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Example (Cont’d)

W2(t) =

∣

∣

∣

∣

∣

∣

et 0 e−t

et 0 −e−t

et 1 e−t

∣

∣

∣

∣

∣

∣

= −
∣

∣

∣

∣

et e−t

et −e−t

∣

∣

∣

∣

= 2;

W3(t) =

∣

∣

∣

∣

∣

∣

et tet 0
et (t + 1)et 0
et (t + 2)et 1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

et tet

et (t + 1)et

∣

∣

∣

∣

= e2t ;

Substituting these results in Y (t) =

n
∑

m=1

ym(t)

∫ t

t0

g(s)Wm(s)

W (s)
ds, we get

Y (t) = et
∫ t

t0

g(s)(−1− 2s)

4es
ds + tet

∫ t

t0

g(s)(2)

4es
ds + e−t

∫ t

t0

g(s)e2s

4es
ds

=
1

4

∫ t

t0

[et−s [−1 + 2(t − s)] + e−(t−s)]g(s)ds ;
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