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Series Solutions of Second Order Linear Equations

@ Finding the general solution of a linear differential equation depends
on determining a fundamental set of solutions of the corresponding
homogeneous equation;

@ We have given a systematic procedure for constructing fundamental
solutions if the equation has constant coefficients;

o To deal with equations that have variable coefficients, it is necessary
to extend our search for solutions beyond the familiar elementary
functions of calculus;

@ The principal tool is the representation of a given function by a power
series;

o The basic idea is similar to that in the method of undetermined
coefficients: We assume that the solutions of a given differential

equation have power series expansions, and then we attempt to
determine the coefficients so as to satisfy the differential equation;
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Series Solutions of Second Order Linear Equations Review of Power Series

Subsection 1

Review of Power Series
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Series Solutions of Second Order Linear Equations Review of Power Series

Convergence and Absolute Convergence of Power Series

(e}
o A power series Zan(x — xp)" is said to converge at a point x if
n=0
m
lim Zan(x — xp)" exists for that x; The series certainly converges
m—00
n=0

for x = xp; It may converge for all x, or it may converge for some
values of x and not for others;

o0
@ The series Za,,(x — xp)" is said to converge absolutely at a point
n=0 o o0
x if the series Z|a,,(x —xp)"| = Z|a,,||x — xp|™ converges;

n=0 n=0
@ It can be shown that if the series converges absolutely, then the series
also converges;

@ The converse is not necessarily true;
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Series Solutions of Second Order Linear Equations Review of Power Series

The Ratio Test for Absolute Convergence

The Ratio Test

Tl
. . . lans1(x —x0)"
If a, # 0, and if, for a fixed x, lim 1 0) =
n—oo| ap(x —xp)"
|x — xo| lim agj:l‘ = |x — xo|L, then the power series converges absolutely
n—o00

at x if [x — xo|L < 1 and diverges if [x — xp|L > 1; If |[x — xo|L = 1, then
the test is inconclusive.

o Example: For which values of x does Z(—l)"“‘ln(x —2)" converge?

n=1

n+1

lim =|x—-2|;

-1 n+2 1 -2 n+1 .
V RN R ) IR
n—o00 n—00

(D lx =2y
The series converges absolutely for [x —2| <1, or 1 < x < 3, and
diverges for |[x — 2| > 1; The values of x corresponding to [x —2| =1
are x = 1 and x = 3; The series diverges for each of these values of x
since the n-th term of the series does not approach zero as n — oo;
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Series Solutions of Second Order Linear Equations

(o.0]
o If the power series E an(x — xp)" converges at x = xi, it converges

n=0
absolutely for |x — xp| < |x1 — xo|; and if it diverges at x = xq, it

diverges for |x — xg| > |x1 — xol;

o There is a nonnegative number p, called the radius of convergence,

oo
such that Zan(x — xp)" converges absolutely for [x — x| < p and

n=0
diverges for |[x — xp| > p; For a series that converges only at xp, we

define p to be zero; For a series that converges for all x, we say that p
is infinite; If p > 0, then the interval |x — xp| < p is called the
interval of convergence; The series may either converge or diverge
when |x — xo| = p;
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Series Solutions of Second Order Linear Equations

D bz s ot £ e P
o Determine the radius of convergence o Z?
n=1
im (x + 1)1 p2n _ b+ fm " _x+1]
n— o0 ( 1)2"+1 (X -+ 1) 2 n—ocon -+ 1 2 '

Thus the series converges absolutely for [x + 1| < 2, or —3 < x < 1,
and diverges for |x + 1| > 2; The radius of convergence of the power
series is p = 2;

Finally, we check the endpoints of the interval of convergence.

o0

1
@ At x = 1 the series becomes the harmonic series E —, which diverges;
n
n=1
-3 + 1) ZOO (—1)"

o At x = —3 we have Z ———, the alternating
n

n=1 n=1
harmonic series, which converges but does not converge absolutely;

The series is said to converge conditionally at x = —3;
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Series Solutions of Second Order Linear Equations

o0 o0
o Suppose that Zan X — xp)" and Zb (x — x0)" converge to f(x)
n=0
and g(x), respectlvely, for |x — xg| < p, with p > 0;

o The series can be added or subtracted termwise, and
(0.9]
f(x) £ g(x) = Z(an =+ bp)(x — x0)"; The resulting series converges

n=0
at least for |x — xp| < p;

@ The series can be formally multiplied, and

f(x)g [Zan(xxo ][Zb (x — xo0) ] Zc,,x—xo ,

where ¢, = agb, + aibp—1 + - - -+ anbp; The resultlng serles converges
at least for |x — xp| < p;
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Series Solutions of Second Order Linear Equations

o0 oo
o Suppose that Zan (x — x0)" and Zb (x — xo)" converge to f(x)

n=0
and g(x), respectlvely, for [x — xo| < p, with p > 0;

o If g(x0) 75 0, the series can be formally divided, and

g();)) = Zd (x — x0)"; The coefficients d, can be most easily

o0
obtained by equating coefficients in Za,,(x —x)" =

n=0
[Zd,,(x - XO)"] [an(x - xo)"] = Z(deb,,,k)(x —x0)"™;
n=0 n=

n=0 k=0
In the case of division, the radius of convergence of the resulting

power series may be less than p;
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Series Solutions of Second Order Linear Equations Review of Power Series

Differentiation and Coefficients

o The function f is continuous and has derivatives of all orders for
|x — xo| < p; Further, f',f” ... can be computed by differentiating
the series termwise; That is,

fi(x) = a1+2a(x—x0)+ -+ nan(x —x)" L+ -
= inan(x —x0)" L,
f'(x) = 53; +6a3(x — x0) + -+ n(n—1)ap(x — x0)" 2+ -+
= Yortn el
n=2

Each of the series converges absolutely for |x — xp| < p;

@ The value of a, is given by a, = A% )(XO) The series is called the

Taylor series for the function fabout X = Xp;
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Series Solutions of Second Order Linear Equations

o o
o If Zan(x —x)" = an(x — xp)", for x in some open interval with

n=0
(o.0]
center xg, then a, = b, for all n; Thus, if Zan(x —xp)" =0, for
n=0
each such x, thenagg=a1=---=a,= ---=0;

o A function f that has a Taylor series expansion about x = xg
() . . s
f(x) = Zf (XO) — xp)", with a radius of convergence p > 0, is

said to be analytlc at x = xg;

o All of the familiar functions of calculus are analytic except perhaps at
certain easily recognized points;

o For example, sinx and €* are analytic everywhere, % is analytic
except at x = 0, and tan x is analytic except at odd multiples of Z;

o If f and g are analytic at xp, then f £ g, f - g, and éfr (provided that
g(x0) # 0) are also analytic at x = xo;
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Series Solutions of Second Order Linear Equations

oo
o Write E apx" as a series whose first term corresponds to n = 0

n=2
rather than n = 2;

Let m—n—2 Then n=m+ 2, and n—2corresponds to m=0;

Hence E apx" Zam+2x Za,,+2x

The mdex was shlfted upward by 2 and 0 compensate counting starts
at a level 2 lower than originally;

oo

o Write the series Z(n +2)(n + 1)ap(x — xp)" 2 as a series whose
n=2

generic term involves (x — xg)" rather than (x — xp)"~2;

Again, we shift the index by 2 so that n is replaced by n+ 2 and start
o

counting 2 lower; We obtain Z(n +4)(n+ 3)ap+2(x — x0)";
n=0
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Series Solutions of Second Order Linear Equations Review of Power Series

Further Manipulation of the Index of Summation

o0

o Write the expression x? E (r + n)a,x"T"~1 as a series whose generic
n=0
term involves x'7;

First, take the x2 inside the summation, obtaining
o0

Z(r + n)a,,Xr+"+1;

n=0

Next, shift the index down by 1 and start counting 1 higher;
o0 o0

Thus, Z(r + n)ax = Z(r +n—1)a,_1x"t
n=0 n=1
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Series Solutions of Second Order Linear Equations

o0
@ Assume that Z:na,,x"*1 = Za,,x", for all x, and determine what
n=1 n=0

this implies about the coefficients ap;
We equate corresponding coefficients in the two series; To do this,

first rewrite the equation so that the series dlsplay the same power of

X in their generic terms: Z + 1apt1x" = Za,,x . Therefore,
n=0 n=0
(n+ 1)ap11 = ap, for all n, or ap41 = n+1, for all n; This yields

an—1 an—2 __ an—3

an = n  n(n=1) _ n(n—1)(n=2)
= G4 _ .. =2
n(n—1)(n—2)(n—3) — — nb»

for all n; Thus all the coefficients may be determined in terms of ag;
o0 (e o)

Using this relationship, we obtain Za,,x" = aoz);—!" = gp€*;
n=0 n=0

George Voutsadakis (LSSU)



Series Solutions of Second Order Linear Equations Series Solutions Near an Ordinary Point, Part |

Subsection 2

Series Solutions Near an Ordinary Point, Part |
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Series Solutions of Second Order Linear Equations

o Consider the homogeneous equation P(x)% + Q(X)% + R(x)y =0;

o Examples from physics include the Bessel equation
x?y" +xy' + (x?> —1?)y = 0, where v is a constant, and the Legendre
equation (1 — x?)y” — 2xy’ + a(a + 1)y = 0, where « is a constant;

o We primarily consider the case in which the functions P, @, and R are
polynomials, having no common factors;

o If we wish to solve the equation in the neighborhood of a point xg, its
solution is closely associated with the behavior of P in that interval;

o A point xp such that P(xg) # 0 is called an ordinary point; Since P is
continuous, there is an interval about xg in which P(x) is never zero;

o In that interval, dividing by P(x), we get y" + p(x)y’ + g(x)y =0,
where p(x) = g((;(; and g(x) = % are continuous functions;

o According to the Existence and Uniqueness Theorem, there exists in
that interval a unique solution of the differential equation that also
satisfies any given initial conditions y(xo) = o, ¥'(x0) = yg;
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Series Solutions of Second Order Linear Equations

o We handle, first, solutions in the neighborhood of an ordinary point;

o If P(xp) =0, then xp is called a singular point; In this case at least
one of Q(xp) and R(xp) is not zero; Thus, at least one of the
coefficients p = g and g =5 R becomes unbounded as x — xg, and,
therefore, the Existence and Uniqueness does not apply in this case;
In the latter sections, we will deal with finding solutions in the
neighborhood of a singular point;

@ In the neighborhood of an ordinary point xg, we look for solutions of
the form

y=ao+ai(x —x0)+ -+ an(x — x0)" Za,,x—xo ,

assuming the series converges in |x — xp| < p, for some p>0;

o The most practical way to determine the coefficients a, is to
substitute the series and its derivatives in the equation;
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Series Solutions of Second Order Linear Equations

o Find a series solution of the equation y” +y =0, —0co < x < o0;
Since P(x) =1, Q(x) =0 and R(x) = 1, every point is ordinary; We
o

look for a solution y = ag + a1x +aox?>+ - - -+ apx"+ --- = ZanX",
n=0

assuming the series converges for some |x| < p; Differentiating, we
get y) = a1 +2ax + -+ nagx"L 4 =370 napx™ L
y'=2a+ -4 n(n—1)ax"2+ - =3, n(n—1)ax""2
Substituting in the differential equation:

(o] (o]

Zn(n —1)apx"2 + Zanx" = 0; Shifting the index in first sum:

n=2 n=0

oo oo

Z(n +2)(n+ 1)apy2x" + Zanx” =0;
n=0 n=0
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Series Solutions of Second Order Linear Equations

o
We got Z[(n +2)(n+1)apt2 + an]x™ = 0; Setting the coefficient of each
n=0
power of x equal to zero, we get (n+ 2)(n+ 1)ay12 + a, = 0, for all n;
The even-numbered coefficients (ag, az, as, .. .) and the odd-numbered
ones (a1, a3, as, . . .) are determined separately;

o For the even-numbered coefficients we have a = — 3% = — 3,
ag= —33=+23, a%= — ¢ = — ¢, etc. In general, if n = 2k,
—1)k
then a, = ayx = %ao;
o For the odd-numbered coefficients a3 = — 74 = — 3,
as = — ;34 = +%, ag = — % = — %, etc. In general, if

1)k
n=2k+1, then a, = ark+1 = %31;
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Series Solutions of Second Order Linear Equations

Substituting into the equation

y = ao+ax—8x?—5x3+8x+ Ax°

1 1
4 g ((2n)ao x2n 4 E%lsllxznﬂ_i_m

x2 X 1
= al-F+g+-+ G+

a5+ et it

_ E:fl" 2 2: (=1)" _2n+1
= Qg "—i—al 2n+)1 Zeg's

@ We can test the series solutions for convergence;

o The ratio test shows that each of the series converges for all x;

o We recognize that the first series is exactly the Taylor series for cos x
about x = 0 and the second is the Taylor series for sin x about x = 0;

o So, the solution is y = ag cos x + ay sin x;

o No conditions are imposed on ag and a;, whence they are arbitrary;
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Series Solutions of Second Order Linear Equations

o Find a series solution in powers of x of Airy’s equation y” — xy = 0,
—00 < X < 00;

For this equation P(x) =1, Q(x) = 0,and R(x) = —x, whence every

point is an ordinary point; Let y = Zanx”, convergent in some

n=0
oo
Ix| < p; We get y” = Z(n +2)(n+ 1)ap2x"; Substituting, we
o n=0 o o
obtain Z(n +2)(n+ 1)aptox" = xZanx” = Za,,x”“; Rewrite
= - n=0
the right side 2 - 1a, + Z(n +2)(n+ 1)apy2x" Za,, 1x™: Thus,
n=1

we get ap = 0, and we obtain the recurrence relatlon
(n+2)(n+ 1)ap2 = ap—1, for all n; Since ap42 is given in terms of
an_1, the a's are determined in steps of three;
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Series Solutions of Second Order Linear Equations Series Solutions Near an Ordinary Point, Part |

Example Il (Cont'd)

o Recall ap =0 and (n+2)(n+ 1)api2 = ap—1, for all n;
o Since a, =0, weget as =ag=a;; = ---=0;
o For ag, as, ae, ag, . .., we set n=1,4,7,10, ... in the recurrence
Ao — &8 _ __d = iﬁ_ — 40
relation: a3 = 230 36 = 56 = 2356 % = 56 = 235689 etc. The
general formula is a3, = 53 —a—E 356 (3037 n>4;
o For the sequence aj, ag, a7, a1g, ... we set n =2,5,8,11,... in the
Reyme S = L — A _ _a
recurrence reIatlon ay = 3%, a1 = 5 = 37,
a = 35 = m, etc. In general, we have
Bt = 3757 GnEr) 124
Thus the general solution of Airy’s equation is

3n

y = all+ 53+ 535+ “+2.3...(371W+'“]
% 3n+1
+alx + 5 Tt 3a G ]
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Series Solutions of Second Order Linear Equations

9

9

9

We can now investigate the convergence;

Use the ratio test to show that both these series converge for all x;
Let y; and y» denote the functions defined by the expressions in the
first and second sets of brackets, respectively;

By choosing first ag = 1,a; = 0 and then ag = 0, a; = 1, it follows
that y; and y» are individually solutions;

y1 satisfies the initial conditions y;(0) = 1,y;(0) = 0 and y» satisfies
the initial conditions y»(0) = 0, y5(0) = 1;

Thus, W(y1,y2)(0) =1 # 0, and consequently y; and y, are a
fundamental set of solutions;

Hence, the general solution of Airy's equation is

y = agyi(x) + aryo(x), —oo < x < o0;
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Series Solutions of Second Order Linear Equations Series Solutions Near an Ordinary Point, Part Il

Subsection 3

Series Solutions Near an Ordinary Point, Part Il
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Series Solutions of Second Order Linear Equations

o We looked at P(x)y” + Q(x)y’ + R(x)y = 0 where P, Q, and R are
polynomials, in the neighborhood of an ordinary point xp;
o If we have a solution y = ¢(x) with a Taylor series

(0.9]

y =¢(x) = Zan(x — xp)" converging for |x — xo| < p, where p > 0,
n=0

we can find it by substituting in the differential equation;

@ How is the statement that, if xp is an ordinary point of the equation,
then there exist solutions of this form justified?

o Moreover, what is the radius of convergence of such a series?

o To investigate these questions, assume that there is a power series
solution of the differential equation;

o By differentiating m times and setting x equal to xg, we obtain
mlam = (™ (x);

o To compute a,, we must show that we can determine ¢(")(xg) from
the differential equation;
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Series Solutions of Second Order Linear Equations

Qo

9

Suppose that y = ¢(x) is a solution satisfying the initial conditions
y(x0) = y0. ¥'(x0) = 4 Then ag = yo and a; = yg;

To find qb(")(xo) and a,, n > 2, we turn to the original equation; Since
¢ is a solution, P(x)¢"(x) + Q(x)¢'(x) + R(x)é(x) = 0; We can
rewrite ¢ (x) = —p(x)¢'(x) — q(x)d(x), where p(x) = % and

_ RO,
q(x) P(x)’
For, x = xo, ¢"(x0) = — p(x0)¢'(x0) — q(x0)d(x0); Hence a2 is given

by 212, = ¢"(x0) = —p(x0)a1 — q(x0)ao;

To determine a3, we differentiate and then set x = xp, obtaining

3123 = ¢"(x0) = — [¢" + (P + @)’ + 4], =

—2lp(xp)az — [P (x0) + g(x0)]a1 — ¢'(x0)a0; Substituting for a, gives
az in terms of a; and ag;

Since all the derivatives of p and g exist at xp, we can continue to
differentiate indefinitely, determining after each differentiation the
successive coefficients aq, as, ... by setting x = xg;
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Series Solutions of Second Order Linear Equations

o If the functions p = % and g = % are analytic at xg, then xq is said

to be an ordinary point; Otherwise, it is a singular point;
o The question concerning the interval of convergence of the series
solution can be answered at once for a wide class of problems:

oo

If xo is an ordinary point of P(x)y” + Q(x)y’ + R(x)y =0, i.e., if p=
and g = % are analytic at xp, then the general solution is

oo
y = Za,,(x — x0)" = agy1(x) + a1y2(x), where ag and a; are arbitrary,

n=0
and y; and y» are two power series solutions that are analytic at xp; The

solutions y; and y» form a fundamental set of solutions; Further, the radius
of convergence for each of the series solutions y; and y» is at least as large
as the minimum of the radii of convergence of the series for p and q.
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Series Solutions of Second Order Linear Equations Series Solutions Near an Ordinary Point, Part Il

Example |

o What is the radius of convergence of the Taylor series for (1 + x2)~1
about x = 07

o Method 1: Find the Taylor series in question, namely,

1

T2 =124+ x*—xC 4+ +(-1)"x* ...

Then apply the ratio test to show that p = 1;

o Method 2: The zeros of 1 + x? are x = = i; Since the distance from
0 to i/ or to —i is 1, the radius of convergence of the power series about
x=0is1;
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Series Solutions of Second Order Linear Equations

@ What is the radius of convergence of the Taylor series for
(x? — 2x +2)~1 about x = 0?7 How about x = 17

First notice that x> — 2x + 2 = 0 has solutions x = 14 i; The
distance in the complex plane from x = 0 to either x =1+ / or

x =1 —iis v/2; Hence, the radius of convergence of the Taylor series
o0

expansion Zanx” about x = 0 is v/2:
n=0

The distance in the complex plane from x = 1 to either x =1+ / or
x =1—iis 1; Hence the radius of convergence of the Taylor series

o0
expansion an(x —1)" about x =1 is 1;
n=0
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Series Solutions of Second Order Linear Equations

o Determine a lower bound for the radius of convergence of series
solutions about x = 0 for the Legendre equation
(1 —x?)y” —2xy’ + a(a + 1)y = 0, where « is a constant;
Note that P(x) =1 — x?, Q(x) = —2x, and R(x) = a(a + 1) are
polynomials, and that the zeros of P, namely, x = £+ 1, are a

o0
distance 1 from x = 0; Hence a series solution of the form Za,,x”

n—
converges at least for |x| < 1, and possibly for larger values o?x;
Indeed, it can be shown that if « is a positive integer, one of the
series solutions terminates after a finite number of terms and hence
converges not just for |x| < 1 but for all x;
For example, if a = 1, the polynomial solution is y = x;
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Series Solutions of Second Order Linear Equations

o Determine a lower bound for the radius of convergence of series
solutions of the differential equation (1 + x?)y” + 2xy’ + 4x%y =0
about the point x = 0; Also, about the point x = —3;

Again P, @ and R are polynomials, and P has zeros at x = £ i; The

distance in the complex plane from 0 to £/ is 1, and from —1 to +i

is /14 1 7= \f Hence, in the first case the series Y 7 ; apx”
converges at Ieast for x| < 1, and in the second case the series
S5 o bn(x + 3)" converges at least for |x + 1| < ?;

If initial conditions y(0) = yp and y’(0) = y; are given, since

1+ x% # 0, for all x, there exists a unique solution of the initial value
problem on —0o < x < 0o; On the other hand, a series solution of the
form >"07 5 anx" (with ap = yp, a1 = yg) is only guaranteed for

—1 < x < 1; The unique solution on the interval —co < x < co may
not have a power series about x = 0 that converges for all x;
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Series Solutions of Second Order Linear Equations

o Can we determine a series solution about x = 0 for the differential
equation y” 4 (sinx)y’ + (1 + x?)y = 0, and if so, what is the radius
of convergence?

For this differential equation, p(x) = sinx and g(x) = 1 + x?;
Recall from calculus that sin x has a Taylor series expansion about
x = 0 that converges for all x;

Further, g also has a Taylor series expansion about x = 0, namely,

q(x) = 1+ x?, that converges for all x;
o

Thus there is a series solution of the form y = Za,,x" with ag and

ay arbitrary, and the series converges for all x;
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Series Solutions of Second Order Linear Equations Euler Equations; Regular Singular Points

Subsection 4

Euler Equations; Regular Singular Points
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Series Solutions of Second Order Linear Equations

o Consider equations of the form P(x)y” + Q(x)y’ + R(x)y = 0 in the
neighborhood of a singular point xp;
o If P, @ and R are polynomials having no common factors, then the
singular points are those for which P(x) = 0;
o A relatively simple differential equation that has a singular point is
the Euler equation L[y] = x%y" 4+ axy’ + By =0, a, 3 real;
In this case P(x) = x?, so x = 0 is the only singular point;
Consider, first, the interval x > 0;
Observe that (x") = <"~ and (x")" = r(r — 1)x"~2;
So, if the equation has a solution of the form y = x", then
L[x"] = x®(x")" + ax(x") + Bx" = x"[r(r — 1) + ar + 8] = 0;
o If ris a root of the quadratic equation F(r) =r(r—1)+ar+ 3 =0,
then L[x"] is zero, and y = x" is a solution of the differential equation;
o The roots of the quadratic are r;, rn = ~(o-D)E V2(a71)2745, and
F(r) = (r — n)(r - o)

¢ © ¢ ¢




Series Solutions of Second Order Linear Equations

o We consider separately the cases in which the roots are real and
different, real but equal, and complex conjugates;

o Real, Distinct Roots: If F(r) =0 has real roots r; and rp, with
r # ry, then y1(x) = x™ and y»(x) = x™ are solutions;

o Since W(x",x?) = (rp — r)x"t2"1 £ 0, forn # r, and x > 0, it
follows that the general solution is y = ¢1x* + cpx"2, x > 0;

o If r is not a rational number, then x" is defined by x" = e'"%;

o Example: Solve 2x2y" + 3xy —y=0,x>0;
Substituting y = x" gives 2x?r(r — 1)x" 72 + 3xrx"! — x" =
xX2r(r—=1)+3r—1]=x"(2r2 +r—-1)=x"2r = 1)(r+1) =0;
Hence n = % and n» = — 1, so the general solution is
y = c;lxl/2 + c2x*1,x > 0;
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¢ ¢ ¢ ¢ ¢

If the roots r; and ry are equal, then we obtain only y;(x) = x";
Since r; = r, it follows that F(r) = (r — r)?;

Thus, in this case not only does F(r;) = 0 but also F'(r;) =0;

We differentiate the equation with respect to r and set r = ry;
Differentiating with respect to r givesL[x" In x] = L[a(axrr)] = %L[xr] =
%[xrl-_(r) = %[xr(r —n)? = (r—n)*’x"Inx+2(r — rn)x";

The right side is zero for r = r1, whence, y»(x) = x"Inx, x >0, is a
second solution;

By evaluating the Wronskian, we find that W(x", x In x) = x
so x™ and x" In x are a fundamental set of solutions for x > 0;
The general solution is y = (¢ + 2 In x)x™, for x > 0;
Example: Solve x2y” +5xy’ +4y =0, x > 0;

Substituting y = x", we get x[r(r — 1) +5r +4] = x"(r? + 4r +4) =
0; Hence, n == —2, and y = x2(c; + &2 Inx), x > 0 is the
general solution;

2n—1
7
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o
(%]
(%]

Suppose 1 = A+ ipand rp = XA — ip, with g # 0;

If x > 0, r real, then x” = e"'"X; Define x" = e""% complex;
Then, since e/*!"X = cos (uuInx) + isin (Inx), we obtain x# =
e(A—i—iu)lnx _ e)\lnxeiulnx _ X)\eiulnx — x’\[cos(,ulnx) +isin (,ulnx)];
Using algebra, it can be checked that x and x" are indeed solutions
and the general solution is y = c;x™* 4 oox?

The real and imaginary parts of x**#, namely, x* cos (1 In x) and
x*sin (i In x) are also solutions;

Since W[x* cos (11 1n x), x* sin (i In x)] = pux® =1, the solutions form
a fundamental set for x > 0, and the general solution is

y = ax*cos (uInx) + cox*sin (uIn x), x > 0;

Example: Solve x?y” + xy’ +y = 0;

Substituting y = x”, we get x"[r(r — 1) +r +1] = x"(r? +1) = 0;
Hence r = 4+ (A = 0 gives x* = 1), and the general solution is

y = ccos(Inx) + ¢ sin(Inx), x > 0;
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o Consider again L[y] = x2y" + axy’ + By = 0 with x < 0;

@ One issue is the meaning of x" for x negative and r not an integer;
Similarly, In x has not been defined for x < 0;

o The solutions given for x > 0 can be shown to be valid for x < 0, but
in general they are complex valued;

o It is always possible to obtain real valued solutions of the Euler
equation for x < 0 by setting x = —& , where & > 0, and y = u(§);

= Tlhan dy _ dudf _ du d2y_ d( )df 2y.

dx dé dx — dg’ﬁ d_£ dé ng'

o Thus, for x <0, weget{zd —|—a§ +B8u=0,&>0;
al + c€"
o Sou(¢)=4¢ (a+cln)en depending on
a1t cos (pIn€) 4 o€ sin (uIn )
whether the zeros of F(r) = r(r — 1) + ar + [ are real and different,
real and equal, or complex conjugates;
o To obtain v in terms of x, we replace £ by —x in the &-solutions;
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o We combine the cases x > 0 and x < 0 using |x/|;

o The general solution of the Euler equation x?y” + axy’ + By =0 in
any interval not containing the origin is determined by the roots r
and ry of the equation F(r) = r(r — 1) + ar+ 5 =0 as follows:

o If the roots are real and different, then y = c1|x|" + o |x|";
o If the roots are real and equal, then y = (1 + & In |x])|x|";
o If the roots are complex conjugates, then
y = |x|Me1cos (pIn |x|) + casin (uIn |x])], where ri, r» = A+ iy;

@ The solutions of an Euler equation of the form
(x — x0)%y" + a(x — x0)y’ + By = 0 are similar;

o If we look for solutions of the form y = (x — xp)", then the general
solution is given by the equation above with x replaced by x — xp;

o Alternatively, we can reduce this form to the original by performing a
change of variable t = x — x;
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o Consider P(x)y” + Q(x)y’ + R(x)y = 0 where xp is singular, i.e.,
P(xp) = 0 and at least one of @ and R is not zero at xg;

o Since those points are few in number, can we simply ignore them and
just consider solutions about ordinary points?

o This is not feasible because the singular points determine to a large
extent the principal features of the solution; In the neighborhood of a
singular point the solution often becomes large in magnitude or
experiences rapid changes in magnitude;

o Some information on the behavior of % and % in the neighborhood of
the singular point is needed to understand the behavior of the
solutions near x = xp;

o It may be that there are two distinct solutions that remain bounded
as x — xg or only one, with the other becoming unbounded, or they
may both become unbounded as x — xp;

o If there are solutions that become unbounded as x — xg, it is often
important to determine how these solutions behave as x — xp;
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o To extend the method used for ordinary points to a singular point xg,
it is necessary to restrict to singularities that are not too severe;
o We might call these “weak singularities”; The conditions needed are

that lim (x - Xo)Q((;(; is finite and  lim (x - xo)2% is finite;

o This means that the singularity in % can be no worse than (x — xg)~*
and the singularity in £ can be no worse than (x — x9)~2; Such a
point is called a regular singular point;

o For equations with more general coefficients than polynomials Xp IS a

regular singular point if it is a singular point and (x — xp) ((;(; and

(x — x0)? E g have convergent Taylor series about xp;

@ Any singular point that is not a regular singular point is called an
irregular singular point;

o The singularity in an Euler equation is a regular singular point;
Indeed, we will see that all general equations behave very much like
Euler equations near a regular singular point;
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o Determine the singular points of the Legendre equation
(1 — x?)y” —2xy’ + a(a + 1)y = 0 and determine whether they are
regular or irregular;

P(x) = 1 — x2, so the singular points are x = 1 and x = —1; Divide
2 P ! . 2X
by 1 — x* to get the coefficients of y" and y: They are —1=5 and
a(at1) .
1— X2 1
(x=1)(=2x) __ _ 1.
) >|(['l;]1(X — 1) 2 = ||m m )!lnl Tox 1,
. 2a(a+1) _ (x=1)%a(a+1) (x=1)(—a)(a+l) _ A.
Jimx -1 55 = ImSsgane = im0
Since these limits are finite, the point x = 1 is a regular singular point;
o It can be shown in a similar manner that x = —1 is also a regular

singular point;
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o Determine the singular points of the differential equation
2x(x — 2)%y" 4+ 3xy’ + (x — 2)y = 0 and classify them as regular or
irregular;
Dividing the differential equation by 2x(x — 2)?, we have
3 1 _ Rx) _ 3
y'+ 2(x—2)2y/ + =y = 0, 50 p(x) = Pl) = 202y and

q(x) = I’Egg m The singular points are x =0 and x = 2;

. _ 1 _ Q.

o Xlﬂwoxp( x) = I|mx2( o7 = =0; ITOX q(x) _ll_rpox D) = 0;
Since these limits are finite, x = 0 is a regular singular point;
. . . 3

° )I(ﬂg(x —2)p(x) = )![g(x - 2)2(X 7 = I|m 2(X %
Thus, the limit does not exist; Hence x = 2 is an irregular singular
point;
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o Determine the singular points of (x — )2y + (cos x)y’ + (sinx)y = 0
and classify them as regular or irregular.

The only singular point is x = 7; T study it, we consider the
functions (x — 5)p(x) = (x %) — XC_o7sT>/<2 and

(= 5)a(x) = (x = 5)°5g = sinx;
Starting from the Taylor series for cos x about x = 7, we find that
X°_°75T’/‘2 = —1+ (X7§!/2)2 - (ng!/2)4 + .- which converges for all x;
Similarly, sin x is analytic at x = 7;

Therefore, we conclude that 7 is a regular singular point for this

equation;
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Series Solutions of Second Order Linear Equations

o How do we solve the general second order linear equation
P(x)y"” + Q(x)y’ + R(x)y = 0 in the neighborhood of a regular
singular point x = xp?

@ Suppose xg = 0; Otherwise, we can apply t = x — xp;

i - Qx) _ 2R(x) _ 2

o Regular singularity means that XBG) = xp(x) and x Pl = X q(x)
have finite limits as x — 0 and are analytic at x = 0;

o Thus, they have convergent power series expansions of the form

xp(x) = Zp,,x x2q(x Zq,,x for [x| < p, p > 0;
n=0
o Divide by P(x) and multiply by x?:
2y xlxp(Ol 4 a(c)ly =0 or <2y 4 x(po + pux-+ -
+pnx + o )Y+ (Qo+qux+ e gex" )y = 0;
o If all of the coefficients p, and g, are zero, except possibly
po = I|mxo( X) and gy = | 2R09 4y t the Eul ti
0 = 26 qgo = |mx P(x): then we get the Euler equation

x? "+P0Xy + qoy = 0;
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Series Solutions of Second Order Linear Equations

0 Xy" +x(po + prx+ -+ )y 4+ (qo+ qux+ - )y =0;

o In general, some of the p, and g, are not zero; Still, the character of
solutions is identical to those of the Euler equation;

o Again, let us look at x > 0;

o Since the coefficients are “Euler coefficients” times power series, we
seek solutions in the form of “Euler solutions” times power series;

o Assume y = x"(ap+aix+ -+ apx"+---) =

(o] (o]
X’Zanx” = Z:a,,x’*"7 with ag # 0;
n=0 n=0

@ We would like to determine:
Q The values of r for which we get a solution of this form;
Q The recurrence relation for the coefficients ap;
@ The radius of convergence of the series Z:io anx™;
o To simplify matters, we assume that there exists a solution of the
stated form and we show how to determine the coefficients;
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Series Solutions of Second Order Linear Equations

o Solve the differential equation 2x%y” — xy’ 4 (1 + x)y = 0;

It is easy to show that x = 0 is a regular singular point; Further,
xp(x) = — 3 and x?q(x) = 15%; Thuspo= — 3, go=13, 1 =3
and all other p's and ¢'s are zero Then, the corresponding Euler
equation is 2x%y” — xy’ + y = 0; We assume that there is a solution
y =000 anx"t"; Then y' = 3% Ja,(r + n)x" 1 and
Y = 32 g an(r + n)(r + n— D)xrn-2

o

Therefore, 2x2y" — xy' + (1 + x)y = Z2a,,(r +n)(r+n—1)x"t"—
n=0

Za" X0 4 Za X0 4 Za x™F1+1: The last term can be

n=0 n=0
wrltten as > 021 an—1x"t", so we obtain

2x2y" — xy' + (1 + x)y = ao[2r(r — 1) — r + 1]x"
+ 3002 [12(r + a)(r + n— 1) = (r+ n) + 1]a, + ap-1]x™*" = 0;
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Series Solutions of Second Order Linear Equations

o We had 2x2y" — xy’ + (1 + x)y = ao[2r(r — 1) — r + 1]x"

+ 2 mall2(r + n)(r +n—1) = (r+n) + 1]an + ap-1]x" = 0;

o The coefficient of each power of x must be zero;

@ Since ag # 0, the coefficient of x" yields
2r(r—1)—r+1=2r>-3r+1=(r—1)(2r — 1) = 0; This is called
the indicial equation; It is exactly the polynomial equation obtained
for the associated Euler equation;

o The roots of the indicial equation are p =1, rn = %; These values
are called the exponents at the singularity for x = 0; They
determine the qualitative behavior of the solution close to x = 0;

o Now we set the coefficient of x " equal to zero:
2(r+n)(r+n—1)—(r+n)+1]a, +a—1 =0or

an—1 an—1

9= T 2 =3(rm+l [ —1R2(rtn)-17° " > 1;

o For each root r; and rp of the indicial equation, we use this recurrence
relation to determine a set of coefficients ay, ap, .. .;

)
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Series Solutions of Second Order Linear Equations

oForr=n=1a,= — 7(2‘2’:11),1;
— _ & — _ a2 — 2 _
o Thusay = — 3%, 2= — &5 = @5)(12) and a3 = —2% =

_ ag :
(357)(12:3)"
o In general, we have a, = %am n > 4;
o Multiplying the numerator and denominator of the right side by
—1)non

2-4-6---2n=2"n!, we get an:%ao;

o Hence, if we omit the constant multiplier ag, we get the solution
(0.9]
—1)m2n
yi(x) = x[1 + Z%X"],X > 0;
n=1

o To determine the radius of convergence of the series we use the ratio

= lim 21 = 0; Thus the series

3n+1Xn+1
n—oo (2n+2)(2n+3)

n
n

test: lim
n—o00

converges for all x;
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Series Solutions of Second Order Linear Equations

o Corresponding to the second root r = rn, = % we proceed similarly;

P apn—1 _ an—1 .
n 2n(n—%) n(2n—1) "'

_ _ a = — 2L — 3

o Hence a1 = — 7%, &2 = — 55 = 12)(13)°
ga= — 2 — _ ___d ___.
3= T 35— (1-2:3)(1-3:5)

—1)7
o In general, dn = mao, n 2 4,

o Multiply the numerator and denominator by 2-4-6---2n = 2"n!:
an = ((2—,,)!30, n>1,

(0.9]
o Thus, yo(x) = x/2[1 + 2(7(21,)7),2 x", x > 0;
n=1
@ As before, we can show that the series converges for all x;

o Since y; and y» behave like x and x!/2, respectively, near x = 0, they
form a fundamental set of solutions, whence the general solution is

y = ayi(x) + ay(x), x > 0;



Series Solutions of Second Order Linear Equations

o If x =0 is a regular singular point, then sometimes there are two
solutions of the form y = >"7° ; a,x"" in the neighborhood of x = 0;

o If there is a regular singular point at x = xp, then there may be two
solutions of form y = (x — x0)" Y oo an(x — xo)" near x = xo;

o However, a general equation with a regular singular point may not
have two solutions of this form;

@ In particular, if the roots r; and r, of the indicial equation are equal,
or differ by an integer, then the second solution normally has a more
complicated structure; In all cases, though, it is possible to find at
least one solution of this form:

o If r; and ry differ by an integer, this solution corresponds to the larger
value of r; If there is only one such solution, then the second solution
involves a logarithmic term;

o If the roots are complex, then they cannot be equal or differ by an
integer, so there are always two solutions of this form;
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Series Solutions of Second Order Linear Equations

o Consider the equation L[y] = x2y” + x[xp(x)]y’ + [x®q(x)]y = 0,
where xp(x) = 0% o pax", x2q(x) = >_52 ; gax" and both series
converge in an interval |x| < p for some p > 0;

o The point x = 0 is a regular singular point, and the corresponding
Euler equation is x2y” + poxy’ + qoy = 0;

@ We seek a solution for x > 0 and assume that it has the form
y=¢(r,x) =x">02 ganx" =302 5 apx" ", where ag # 0, and

y = ¢(r,x) indicates that ¢ depends on r as well as on x;

o0 o0
0y = Z(r + n)apx Tyt = Z(r + n)(r + n—1)a,x T2
n=0 n=0

o Substituting, we get
aor(r—1)x" +ai(r+ 1) 4+ - ap(r+n)(r+n—1)x"""+ -+ (po+ prx +
cood pax" 4 ) X [aorx” +ar(r+ x4 o an(r+n)x ™+ 14 (qo +
gix+ -+ gax"+ ) X (aox" +axt 4 o ax™ ) =0;
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Series Solutions of Second Order Linear Equations

@ Multiplying and collecting terms, we obtain
aoF(r)x" + [aF(r + 1) + ao(pir + qu)]x ™ + [a2F (r + 2) + ao(par + q2) +
alpi(r+1) + qu]]Ix™ + -+ [anF(r + n) + ao(par + qn) + a[pa-1(r + 1) +

gn-1] + -+ ana[pr(r+n = 1) + q]]x™*" + .- =0,
o In a more compact form, L[¢](r,x) =
0 n—1
aoF(r)x" +> | F(r+n)an+ > akl(r + k)pa—k + gn_i] | x+" =0,
n=1 k=0

where F(r) =r(r — 1)+ por + qo;
o The term involving x" yields the equation F(r) = 0; This equation is
called the indicial equation;

o Denote the roots of the indicial equation by r; and r, with r; > r if
the roots are real; If the roots are complex, the designation of the
roots is immaterial;

o The roots r; and ry are called the exponents at the singularity;

George Voutsadakis (LSSU)



Series Solutions of Second Order Linear Equations

o Setting the coefficient of x"™" equal to zero gives the recurrence

n—1
F(r+n)an+ Y al(r + k)pn—k + nt] = 0;
k=0
@ So a, depends on the value of r and all the preceding coefficients
40,491, --,4dn-1,
o We can successively compute ai, as,...,an,... in terms of ag and the

coefficients in the series for xp(x) and x?q(x), provided that
F(r+1),F(r+2),...,F(r+n),... are not zero;

o The only values of r for which F(r) =0 are r = r; and r = ry; Since
ri > ry, it follows that r; + n is not equal to r; or r, for n > 1;
Consequently, F(r; + n) # 0 for n > 1, Hence we can always
determine one solution of the differential equation, namely,

y1(x) = X1+ 3 an(n)x"], x > 0;

n=1
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o If n # r, and 1 — rp is not a positive integer, then rn + n # nr, for
any n > 1; Hence, F(r» 4+ n) # 0, and we can also obtain a second
o0

solution y»(x) = x"2[1 + Zan(rg)x”], x > 0;
n=1

o The series converge at least in the interval x| < p, where the series
for both xp(x) and x2q(x) converge;

@ Within their radii of convergence, the power series define functions
that are analytic at x = 0;

@ Thus, the singular behavior, if there is any, of the solutions y; and y»
is due to the factors x and x™ that multiply these two analytic
functions;

o To obtain real-valued solutions for x < 0, we can make the
substitution x = —& with & > 0;

o It turns out that we need only replace x"* and x" by |x|" and |x|"2,
respectively;
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Qo

9

If n and rp, are complex numbers, then they are necessarily complex

conjugates and r» # r; + N for any positive integer N,

In this case we can always find two series solutions; However, they are

complex-valued functions of x; Real-valued solutions can be obtained

by taking the real and imaginary parts of the complex solutions;

We consider 1 = or rp — b = N later;

To calculate r; and rp, we only have to solve r(r — 1) + por + qo = 0,

with pg = limxp(x), qo = limx?q(x); These are exactly the limits
x—0 x—0

that must be evaluated in order to classify the singularity;

If x =0 is a regular singular point of the equation

P(x)y” + Q(x)y’ + R(x)y = 0, where P, Q and R are polynomials,

then xp(x) = xg((xg and x2q(x) = x? Rgxg Thus, pp = I|me(( ;
qo = I|mx2 Rgxg

The radu of convergence for the series are at least equal to the
distance from the origin to the nearest zero of P other than x = 0;
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o Discuss the nature of the solutions of the equation
2x(1+ x)y” + (3 + x)y’ — xy = 0 near the singular points;
P(x) =2x(1+ x), Q(x) =3+ x, and R(x) = — x; The points

x =0 and x = — 1 are the singular points;
o The point x = 0 is a regular singular point, since lim x 2 —
x—0 P(x)
3+x 3 o 2R(x) _ ] _§
X|T>10X2X(1+X) =3, Ilmox PG = Xlﬂwox 2X(1+X) = 0; Further, pp = 5 and
go = 0; Thus the |nd|C|aI equation is r(r — 1) + 3r = 0, and the roots
aren =0, n= ; Since these roots are not equal and do not differ

by an integer, there are two solutions of the form
o0

yi(x) =1+ Zan(O)x” and y»(x) = |x|7Y/?[1 + Zan(—%)x”]; for
n=1 n=1

0 < |x] < p; A lower bound for the radius of convergence of each series

is 1, the distance from x = 0 to x = —1, the other zero of P(x); y; is

bounded as x — 0, indeed is analytic there, and y» is unbounded as

x — 0;
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o Discuss the nature of the solutions of the equation
2x(1+ x)y” 4+ (3 + x)y’ — xy = 0 near the singular points;
P(x) = 2x(1 4 x), Q(x) =3+ x, and R(x) = —x; The points x =0

and x = —1 are the singular points;
@ The point x = —1 is also a regular singular point, since
. Qx) _ (x+1)(3+x) : 2R(x) _
X|_|>m (X+ 1) ( ) Ilmlm —1, XI_I>nll(X+ 1) ( ) ES
lim (12X 0; In this case pp = — 1, go = 0, so the indicial is

Mareid | 2x(1+4x)
r(r—1)—r=0; The roots are n =2 and r, = 0; Corresponding to
the larger root there is a solution of the form

yi(x) = (x +1)?[1 + Zan (x +1)"]; The series converges at least

for [x+1| <1, and y1 is an analytic function there; Since the two roots
differ by a positive mteger there may or may not be a second solution

of the form y»(x) =1+ Za,, (x 4+ 1)"; Further analysis needed,;
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Equal Roots

@ Suppose the roots of the indicial equation are equal to ry;
o Then L[¢](r,x) = aoF(r)x" = ao(r — n)>x"

o0
o Setting r =1, L[¢](r1,x) = 0; So y1(x) =x"[1+ > an(r)x"] is
n=1
one solution;

o It also follows that L[ ](rl,x) =ao 5 9 [x"(r — r1)2]|r_r1 =
ao [(r — n)®x"Inx +2(r — rl)x’]|r:rl =0;
o Hence, a second solution is
o¢(r,
yab) = S5 = Gllao+ Do an (x|, =

o0 o0
(x" Inx)[ao + Zan(rl)x"] + x’lzaf,(rl)x" =
n=1 n=1

o0
y1(x) Inx+x’IZa§,(r1)x", x > 0, where a/,(r1) is value of % at

n=1
r=nr,
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o It may turn out that it is difficult to determine a,(r) as a function of
r from the recurrence relation and then to differentiate the resulting
expression with respect to r;

@ An alternative is simply to assume that y has the form
o
y=yi(x)Inx+ xrlzb,,x", x > 0, where yi(x) has already been

n=1
found; The coefficients b,, are calculated, as usual, by substituting
into the differential equation, collecting terms, and setting the
coefficient of each power of x equal to zero;
@ A third possibility is to use the method of reduction of order to find
y2(x) once y1(x) is known;
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o If the roots r; and ry differ by an integer N, the derivation of the
second solution is considerably more complicated;

o The form of this solution is stated in the following slide;

o The coefficients cn(r2) in the solution are given by
cn(n) = dr (r —r)an(r) ]‘ , where a,(r) is determined from the

recurrence F(r + n)a, + Zak[(r + K)pn—k + gn—k] = 0, with ag = 1;
k=0
o The coefficient a in the solution is a = lim (r — r2)an(r);
r—nr

o If an(r2) is finite, then a = 0 and there is no logarithmic term in y»;

o In practice, the best way to determine whether a is zero in the second
solution is simply to try to compute the a, corresponding to the root
ry and to see whether it is possible to determine ay(r2); If so, there is
no further problem; If not, we must use the formula with a # 0;

@ When r; — rn = N, there are again three similar ways to find a second
solution, as before;
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Series Solutions of Second Order Linear Equations

o Consider x2y” + x[xp(x)]y’ + [x2q(x)]y =0, with x = 0 a regular

singular point; Then xp(x) and x q(x) are analytic at x = 0 with
oo

convergent series expansions xp(x anx x?q(x) = anx”, for

|x| < p, where p > 0 is the minimum of the radii of convergence of
the power series for xp(x) and x?q(x); Let r; and r» be the roots of
the indicial equation F(r) = r(r — 1) + por + qo = 0, with 1 > rp if
ri and rp are real; Then in either the interval —p < x < 0 or the
interval 0 < x < p, there exists a solution of the form

oo

yi(x) = |x|"[1 + Za,,(rl)x"], where the a,(r1) are given by the

n=1

o
recurrence relation F(ry + n)a, + Zak[(rl + K)pn—k + gn—k] =0,

k=0
with ag = 1,
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Series Solutions of Second Order Linear Equations

@ The following cases may arise:
o If n — rp is not zero or a positive integer, then in either the interval
—p < x < 0 or the interval 0 < x < p, there exists a second solution of
o0

the form y»(x) = |x|?[1 + Zan(rz)x”]; The ap(r2) are also determined
n=1

by the same recurrence relation with ag = 1 and r = r»; The power

series in converge at least for |x| < p;

o If i =y, then yo(x) = y1(x)In|x| + x| 3252 by(r)x";

n=1

o I —r =N, ya(x) = ay1(x) In x| + [x|Z[1+ > ca(r2)x"T;
n=1

o ap(n), ba(r), ca(r2), and a can be determined by substituting the
form of the series solutions for y; a may turn out to be zero;

o Each of the series converges at least for |x| < p and defines a
function that is analytic in some neighborhood of x = 0;

o In all three cases the two solutions y;(x) and y»(x) form a
fundamental set of solutions of the given differential equation;
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