Elementary Differential Equations

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 310

George Voutsadakis (LSSU)

Series Solutions of Second Order Linear Equations

- Review of Power Series
- Series Solutions Near an Ordinary Point, Part I
- Series Solutions Near an Ordinary Point, Part II
- Euler Equations; Regular Singular Points
- Series Solutions Near a Regular Singular Point, Part I
- Series Solutions Near a Regular Singular Point, Part II

Introduction

- Finding the general solution of a linear differential equation depends on determining a fundamental set of solutions of the corresponding homogeneous equation;
- We have given a systematic procedure for constructing fundamental solutions if the equation has constant coefficients;
- To deal with equations that have variable coefficients, it is necessary to extend our search for solutions beyond the familiar elementary functions of calculus;
- The principal tool is the representation of a given function by a power series;
- The basic idea is similar to that in the method of undetermined coefficients: We assume that the solutions of a given differential equation have power series expansions, and then we attempt to determine the coefficients so as to satisfy the differential equation;

Subsection 1

Review of Power Series

Convergence and Absolute Convergence of Power Series

- It can be shown that if the series converges absolutely, then the series also converges;
- The converse is not necessarily true;

The Ratio Test for Absolute Convergence

The Ratio Test

If
$$a_n \neq 0$$
, and if, for a fixed x, $\lim_{n \to \infty} \left| \frac{a_{n+1}(x-x_0)^{n+1}}{a_n(x-x_0)^n} \right| =$

 $|x - x_0| \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = |x - x_0|L$, then the power series converges absolutely at x if $|x - x_0|L < 1$ and diverges if $|x - x_0|L > 1$; If $|x - x_0|L = 1$, then the test is inconclusive.

• Example: For which values of x does $\sum_{n=1}^{\infty} (-1)^{n+1} n(x-2)^n$ converge?

$$\lim_{n \to \infty} \left| \frac{(-1)^{n+2} (n+1)(x-2)^{n+1}}{(-1)^{n+1} n(x-2)^n} \right| = |x-2| \lim_{n \to \infty} \frac{n+1}{n} = |x-2|;$$

The series converges absolutely for |x - 2| < 1, or 1 < x < 3, and diverges for |x - 2| > 1; The values of x corresponding to |x - 2| = 1 are x = 1 and x = 3; The series diverges for each of these values of x since the *n*-th term of the series does not approach zero as $n \to \infty$;

George Voutsadakis (LSSU)

Radius of Convergence

- If the power series $\sum_{n=0}^{\infty} a_n (x x_0)^n$ converges at $x = x_1$, it converges absolutely for $|x x_0| < |x_1 x_0|$; and if it diverges at $x = x_1$, it diverges for $|x x_0| > |x_1 x_0|$;
- There is a nonnegative number ρ , called the **radius of convergence**, such that $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ converges absolutely for $|x-x_0| < \rho$ and diverges for $|x-x_0| > \rho$; For a series that converges only at x_0 , we define ρ to be zero; For a series that converges for all x, we say that ρ is infinite; If $\rho > 0$, then the interval $|x-x_0| < \rho$ is called the **interval of convergence**; The series may either converge or diverge when $|x-x_0| = \rho$;

Example

• Determine the radius of convergence of $\sum_{n=1}^{\infty} \frac{(x+1)^n}{n2^n}$;

$$\lim_{n \to \infty} \left| \frac{(x+1)^{n+1}}{(n+1)2^{n+1}} \frac{n2^n}{(x+1)^n} \right| = \frac{|x+1|}{2} \lim_{n \to \infty} \frac{n}{n+1} = \frac{|x+1|}{2};$$

Thus the series converges absolutely for |x + 1| < 2, or -3 < x < 1, and diverges for |x + 1| > 2; The radius of convergence of the power series is $\rho = 2$;

Finally, we check the endpoints of the interval of convergence.

George Voutsadakis (LSSU)

Operations on Power Series: Addition and Multiplication

Operations on Power Series: Division

Differentiation and Coefficients

 The function f is continuous and has derivatives of all orders for |x - x₀| < ρ; Further, f', f",... can be computed by differentiating the series termwise; That is,

$$f'(x) = a_1 + 2a_2(x - x_0) + \dots + na_n(x - x_0)^{n-1} + \dots$$

= $\sum_{n=1}^{\infty} na_n(x - x_0)^{n-1}$,
$$f''(x) = 2a_2 + 6a_3(x - x_0) + \dots + n(n-1)a_n(x - x_0)^{n-2} + \dots$$

= $\sum_{n=2}^{\infty} n(n-1)a_n(x - x_0)^{n-2}$,
 \dots

Each of the series converges absolutely for $|x - x_0| < \rho$;

• The value of a_n is given by $a_n = \frac{f^{(n)}(x_0)}{n!}$; The series is called the **Taylor series** for the function f **about** $x = x_0$;

Equality and Analyticity

• If $\sum_{n=0}^{\infty} a_n (x - x_0)^n = \sum_{n=0}^{\infty} b_n (x - x_0)^n$, for x in some open interval with

center x_0 , then $a_n = b_n$, for all n; Thus, if $\sum_{n=0}^{\infty} a_n (x - x_0)^n = 0$, for each such x, then $a_n = 2$, $a_n = 2$, $a_n = 2$, $a_n = 0$;

each such x, then $a_0 = a_1 = \cdots = a_n = \cdots = 0$;

• A function f that has a Taylor series expansion about $x = x_0$ $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$, with a radius of convergence $\rho > 0$, is said to be **analytic at** $x = x_0$;

 All of the familiar functions of calculus are analytic except perhaps at certain easily recognized points;

- For example, sin x and e^x are analytic everywhere, ¹/_x is analytic except at x = 0, and tan x is analytic except at odd multiples of ^π/₂;
- If f and g are analytic at x_0 , then $f \pm g$, $f \cdot g$, and $\frac{f}{g}$ (provided that $g(x_0) \neq 0$) are also analytic at $x = x_0$;

Shifting the Index of Summation: Two Examples

• Write $\sum a_n x^n$ as a series whose first term corresponds to n = 0rather than n = 2; Let m = n - 2; Then n = m + 2, and n = 2 corresponds to m = 0; Hence $\sum_{n=0}^{\infty} a_n x^n = \sum_{m=0}^{\infty} a_{m+2} x^{m+2} = \sum_{n=0}^{\infty} a_{n+2} x^{n+2};$ The index was shifted upward by 2 and o compensate counting starts at a level 2 lower than originally; • Write the series $\sum (n+2)(n+1)a_n(x-x_0)^{n-2}$ as a series whose generic term involves $(x - x_0)^n$ rather than $(x - x_0)^{n-2}$; Again, we shift the index by 2 so that n is replaced by n + 2 and start counting 2 lower; We obtain $\sum (n+4)(n+3)a_{n+2}(x-x_0)^n$;

Further Manipulation of the Index of Summation

• Write the expression
$$x^2 \sum_{n=0}^{\infty} (r+n)a_n x^{r+n-1}$$
 as a series whose generic term involves x^{r+n} ;

First, take the x^2 inside the summation, obtaining $\sum_{n=0}^{\infty} (r+n)a_n x^{r+n+1};$ Next, shift the index down by 1 and start counting 1 higher; Thus, $\sum_{n=0}^{\infty} (r+n)a_n x^{r+n+1} = \sum_{n=1}^{\infty} (r+n-1)a_{n-1} x^{r+n};$

Rewriting a Series

• Assume that $\sum_{n=1}^{\infty} na_n x^{n-1} = \sum_{n=0}^{\infty} a_n x^n$, for all x, and determine what this implies about the coefficients a_n ;

We equate corresponding coefficients in the two series; To do this, first rewrite the equation so that the series display the same power of x in their generic terms: $\sum_{n=1}^{\infty} (n+1)a_{n+1}x^n = \sum_{n=1}^{\infty} a_n x^n$; Therefore,

x in their generic terms: $\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n = \sum_{n=0}^{\infty} a_n x^n$; Therefore, $(n+1)a_{n+1} = a_n$, for all *n*, or $a_{n+1} = \frac{a_n}{n+1}$, for all *n*; This yields

$$a_n = \frac{a_{n-1}}{n} = \frac{a_{n-2}}{n(n-1)} = \frac{a_{n-3}}{n(n-1)(n-2)}$$
$$= \frac{a_{n-4}}{n(n-1)(n-2)(n-3)} = \cdots = \frac{a_0}{n!},$$

for all *n*; Thus all the coefficients may be determined in terms of a_0 ; Using this relationship, we obtain $\sum_{n=0}^{\infty} a_n x^n = a_0 \sum_{n=0}^{\infty} \frac{x^n}{n!} = a_0 e^x$;

Subsection 2

Series Solutions Near an Ordinary Point, Part I

The Framework: Ordinary Points

- Consider the homogeneous equation $P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x)y = 0;$
- Examples from physics include the **Bessel equation** $x^2y'' + xy' + (x^2 - \nu^2)y = 0$, where ν is a constant, and the **Legendre** equation $(1 - x^2)y'' - 2xy' + \alpha(\alpha + 1)y = 0$, where α is a constant;
- We primarily consider the case in which the functions *P*, *Q*, and *R* are polynomials, having no common factors;
- If we wish to solve the equation in the neighborhood of a point x₀, its solution is closely associated with the behavior of P in that interval;
- A point x₀ such that P(x₀) ≠ 0 is called an ordinary point; Since P is continuous, there is an interval about x₀ in which P(x) is never zero;
- In that interval, dividing by P(x), we get y'' + p(x)y' + q(x)y = 0, where $p(x) = \frac{Q(x)}{P(x)}$ and $q(x) = \frac{R(x)}{P(x)}$ are continuous functions;
- According to the Existence and Uniqueness Theorem, there exists in that interval a unique solution of the differential equation that also satisfies any given initial conditions $y(x_0) = y_0$, $y'(x_0) = y'_0$;

Singular Points; Power Series Solutions

- We handle, first, solutions in the neighborhood of an ordinary point;
- If P(x₀) = 0, then x₀ is called a singular point; In this case at least one of Q(x₀) and R(x₀) is not zero; Thus, at least one of the coefficients p = Q/P and q = R/P becomes unbounded as x → x₀, and, therefore, the Existence and Uniqueness does not apply in this case; In the latter sections, we will deal with finding solutions in the neighborhood of a singular point;
- In the neighborhood of an ordinary point x₀, we look for solutions of the form

$$y = a_0 + a_1(x - x_0) + \cdots + a_n(x - x_0)^n + \cdots = \sum_{n=0}^{\infty} a_n(x - x_0)^n$$

assuming the series converges in $|x - x_0| < \rho$, for some $\rho > 0$;

• The most practical way to determine the coefficients *a_n* is to substitute the series and its derivatives in the equation;

Example I

Find a series solution of the equation y'' + y = 0, $-\infty < x < \infty$; Since P(x) = 1, Q(x) = 0 and R(x) = 1, every point is ordinary; We look for a solution $y = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n + \cdots = \sum_{n=1}^{\infty} a_nx^n$, assuming the series converges for some $|x| < \rho$; Differentiating, we get $y' = a_1 + 2a_2x + \cdots + na_nx^{n-1} + \cdots = \sum_{n=1}^{\infty} na_nx^{n-1}$, $y'' = 2a_2 + \cdots + n(n-1)a_n x^{n-2} + \cdots = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2};$ Substituting in the differential equation: $\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} + \sum_{n=0}^{\infty} a_n x^n = 0$; Shifting the index in first sum: $\sum_{n=2}^{\infty} (n+2)(n+1)a_{n+2}x^n + \sum_{n=0}^{\infty} a_n x^n = 0$; n=0

Example I (Cont'd)

We got $\sum_{n=0}^{\infty} [(n+2)(n+1)a_{n+2} + a_n]x^n = 0$; Setting the coefficient of each power of x equal to zero, we get $(n+2)(n+1)a_{n+2} + a_n = 0$, for all n; The even-numbered coefficients $(a_0, a_2, a_4, ...)$ and the odd-numbered ones $(a_1, a_3, a_5, ...)$ are determined separately;

- For the even-numbered coefficients we have $a_2 = -\frac{a_0}{2 \cdot 1} = -\frac{a_0}{2!}$, $a_4 = -\frac{a_2}{4 \cdot 3} = +\frac{a_0}{4!}$, $a_6 = -\frac{a_4}{6 \cdot 5} = -\frac{a_0}{6!}$, etc. In general, if n = 2k, then $a_n = a_{2k} = \frac{(-1)^k}{(2k)!} a_0$;
- For the odd-numbered coefficients $a_3 = -\frac{a_1}{2 \cdot 3} = -\frac{a_1}{3!}$, $a_5 = -\frac{a_3}{5 \cdot 4} = +\frac{a_1}{5!}$, $a_7 = -\frac{a_5}{7 \cdot 6} = -\frac{a_1}{7!}$, etc. In general, if n = 2k + 1, then $a_n = a_{2k+1} = \frac{(-1)^k}{(2k+1)!}a_1$;

Example I (Cont'd)

Substituting into the equation

$$y = a_0 + a_1 x - \frac{a_0}{2!} x^2 - \frac{a_1}{3!} x^3 + \frac{a_0}{4!} x^4 + \frac{a_1}{5!} x^5 + \dots + \frac{(-1)^n a_0}{(2n)!} x^{2n} + \frac{(-1)^n a_1}{(2n+1)!} x^{2n+1} + \dots = a_0 [1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{(-1)^n}{(2n)!} x^{2n} + \dots] + a_1 [x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{(-1)^n}{(2n+1)!} x^{2n+1} + \dots] = a_0 \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} + a_1 \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}.$$

- We can test the series solutions for convergence;
- The ratio test shows that each of the series converges for all x;
- We recognize that the first series is exactly the Taylor series for cos x about x = 0 and the second is the Taylor series for sin x about x = 0;
- So, the solution is $y = a_0 \cos x + a_1 \sin x$;
- No conditions are imposed on a₀ and a₁, whence they are arbitrary;

Example II

 Find a series solution in powers of x of Airy's equation y" − xy = 0, −∞ < x < ∞;

For this equation P(x) = 1, Q(x) = 0, and R(x) = -x, whence every point is an ordinary point; Let $y = \sum_{n=0}^{\infty} a_n x^n$, convergent in some $|x| < \rho$; We get $y'' = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n$; Substituting, we

obtain
$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n = x \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n x^{n+1}$$
; Rewrite
the right side $2 \cdot 1a_2 + \sum_{n=1}^{\infty} (n+2)(n+1)a_{n+2}x^n = \sum_{n=1}^{\infty} a_{n-1}x^n$; Thus, we get $a_2 = 0$, and we obtain the recurrence relation

 $(n+2)(n+1)a_{n+2} = a_{n-1}$, for all *n*; Since a_{n+2} is given in terms of a_{n-1} , the *a*'s are determined in steps of three;

Example II (Cont'd)

• Recall $a_2 = 0$ and $(n+2)(n+1)a_{n+2} = a_{n-1}$, for all *n*;

- Since $a_2 = 0$, we get $a_5 = a_8 = a_{11} = \cdots = 0$;
- For $a_0, a_3, a_6, a_9, \ldots$, we set $n = 1, 4, 7, 10, \ldots$ in the recurrence relation: $a_3 = \frac{a_0}{2 \cdot 3}$, $a_6 = \frac{a_3}{5 \cdot 6} = \frac{a_0}{2 \cdot 3 \cdot 5 \cdot 6}$, $a_9 = \frac{a_6}{8 \cdot 9} = \frac{a_0}{2 \cdot 3 \cdot 5 \cdot 6 \cdot 8 \cdot 9}$, etc. The general formula is $a_{3n} = \frac{a_0}{2 \cdot 3 \cdot 5 \cdot 6 \cdots (3n-1)(3n)}$, $n \ge 4$;
- For the sequence $a_1, a_4, a_7, a_{10}, \ldots$ we set $n = 2, 5, 8, 11, \ldots$ in the recurrence relation: $a_4 = \frac{a_1}{3.4}, a_7 = \frac{a_4}{6.7} = \frac{a_1}{3.4.6.7}, a_{10} = \frac{a_7}{9.10} = \frac{a_1}{3.4.6.7.9.10}$, etc. In general, we have $a_{3n+1} = \frac{a_1}{3.4.6.7\cdots(3n)(3n+1)}, n \ge 4$;

Thus the general solution of Airy's equation is

$$y = a_0 [1 + \frac{x^3}{2 \cdot 3} + \frac{x^6}{2 \cdot 3 \cdot 5 \cdot 6} + \dots + \frac{x^{3n}}{2 \cdot 3 \dots (3n-1)(3n)} + \dots] \\ + a_1 [x + \frac{x^4}{3 \cdot 4} + \frac{x^7}{3 \cdot 4 \cdot 6 \cdot 7} + \dots + \frac{x^{3n+1}}{3 \cdot 4 \dots (3n)(3n+1)} + \dots]$$

Example II (Cont'd)

- We can now investigate the convergence;
- Use the ratio test to show that both these series converge for all x;
- Let y₁ and y₂ denote the functions defined by the expressions in the first and second sets of brackets, respectively;
- By choosing first a₀ = 1, a₁ = 0 and then a₀ = 0, a₁ = 1, it follows that y₁ and y₂ are individually solutions;
- y1 satisfies the initial conditions y1(0) = 1, y1'(0) = 0 and y2 satisfies the initial conditions y2(0) = 0, y2'(0) = 1;
- Thus, $W(y_1, y_2)(0) = 1 \neq 0$, and consequently y_1 and y_2 are a fundamental set of solutions;
- Hence, the general solution of Airy's equation is $y = a_0y_1(x) + a_1y_2(x), -\infty < x < \infty;$

Subsection 3

Series Solutions Near an Ordinary Point, Part II

Justifying the Power Series Solution Process I

- We looked at P(x)y" + Q(x)y' + R(x)y = 0 where P, Q, and R are polynomials, in the neighborhood of an ordinary point x₀;
- If we have a solution $y = \phi(x)$ with a Taylor series

$$y = \phi(x) = \sum_{n=0}^{n=0} a_n (x - x_0)^n$$
 converging for $|x - x_0| < \rho$, where $\rho > 0$,

we can find it by substituting in the differential equation;

- How is the statement that, if x₀ is an ordinary point of the equation, then there exist solutions of this form justified?
- Moreover, what is the radius of convergence of such a series?
- To investigate these questions, assume that there is a power series solution of the differential equation;
- By differentiating m times and setting x equal to x₀, we obtain m!a_m = φ^(m)(x₀);
- To compute a_n , we must show that we can determine $\phi^{(n)}(x_0)$ from the differential equation;

Justifying the Power Series Solution Process II

- Suppose that $y = \phi(x)$ is a solution satisfying the initial conditions $y(x_0) = y_0$, $y'(x_0) = y'_0$; Then $a_0 = y_0$ and $a_1 = y'_0$;
- To find $\phi^{(n)}(x_0)$ and a_n , $n \ge 2$, we turn to the original equation; Since ϕ is a solution, $P(x)\phi''(x) + Q(x)\phi'(x) + R(x)\phi(x) = 0$; We can rewrite $\phi''(x) = -p(x)\phi'(x) q(x)\phi(x)$, where $p(x) = \frac{Q(x)}{P(x)}$ and $q(x) = \frac{R(x)}{P(x)}$;
- For, $x = x_0$, $\phi''(x_0) = -p(x_0)\phi'(x_0) q(x_0)\phi(x_0)$; Hence a_2 is given by $2!a_2 = \phi''(x_0) = -p(x_0)a_1 - q(x_0)a_0$;
- To determine a_3 , we differentiate and then set $x = x_0$, obtaining $3!a_3 = \phi'''(x_0) = -[\phi'' + (p' + q)\phi' + q'\phi]|_{x=x_0} =$ $-2!p(x_0)a_2 - [p'(x_0) + q(x_0)]a_1 - q'(x_0)a_0$; Substituting for a_2 gives a_3 in terms of a_1 and a_0 ;
- Since all the derivatives of p and q exist at x₀, we can continue to differentiate indefinitely, determining after each differentiation the successive coefficients a₄, a₅,... by setting x = x₀;

George Voutsadakis (LSSU)

Power Series Solutions and Radius of Convergence

- If the functions p = Q/P and q = R/P are analytic at x₀, then x₀ is said to be an ordinary point; Otherwise, it is a singular point;
- The question concerning the interval of convergence of the series solution can be answered at once for a wide class of problems:

Theorem

If x_0 is an ordinary point of P(x)y'' + Q(x)y' + R(x)y = 0, i.e., if $p = \frac{Q}{P}$ and $q = \frac{R}{P}$ are analytic at x_0 , then the general solution is $y = \sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 y_1(x) + a_1 y_2(x)$, where a_0 and a_1 are arbitrary, and y_1 and y_2 are two power series solutions that are analytic at x_0 ; The solutions y_1 and y_2 form a fundamental set of solutions; Further, the radius of convergence for each of the series solutions y_1 and y_2 is at least as large as the minimum of the radii of convergence of the series for p and q.

George Voutsadakis (LSSU)

Example I

- What is the radius of convergence of the Taylor series for (1 + x²)⁻¹ about x = 0?
 - Method 1: Find the Taylor series in question, namely,

$$\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + + (-1)^n x^{2n} + \cdots$$

Then apply the ratio test to show that $\rho = 1$;

• **Method 2**: The zeros of $1 + x^2$ are $x = \pm i$; Since the distance from 0 to *i* or to -i is 1, the radius of convergence of the power series about x = 0 is 1;

Example II

• What is the radius of convergence of the Taylor series for $(x^2 - 2x + 2)^{-1}$ about x = 0? How about x = 1? First notice that $x^2 - 2x + 2 = 0$ has solutions $x = 1 \pm i$; The distance in the complex plane from x = 0 to either x = 1 + i or x = 1 - i is $\sqrt{2}$; Hence, the radius of convergence of the Taylor series expansion $\sum_{n=0}^{\infty} a_n x^n$ about x = 0 is $\sqrt{2}$;

The distance in the complex plane from x = 1 to either x = 1 + i or x = 1 - i is 1; Hence the radius of convergence of the Taylor series expansion $\sum_{n=0}^{\infty} b_n (x-1)^n$ about x = 1 is 1;

Example III

 Determine a lower bound for the radius of convergence of series solutions about x = 0 for the Legendre equation $(1-x^2)y''-2xy'+\alpha(\alpha+1)y=0$, where α is a constant; Note that $P(x) = 1 - x^2$, Q(x) = -2x, and $R(x) = \alpha(\alpha + 1)$ are polynomials, and that the zeros of P, namely, $x = \pm 1$, are a distance 1 from x = 0; Hence a series solution of the form $\sum a_n x^n$ converges at least for |x| < 1, and possibly for larger values of x; Indeed, it can be shown that if α is a positive integer, one of the series solutions terminates after a finite number of terms and hence converges not just for |x| < 1 but for all x; For example, if $\alpha = 1$, the polynomial solution is y = x;

Example IV

• Determine a lower bound for the radius of convergence of series solutions of the differential equation $(1 + x^2)y'' + 2xy' + 4x^2y = 0$ about the point x = 0; Also, about the point $x = -\frac{1}{2}$;

Again *P*, *Q* and *R* are polynomials, and *P* has zeros at $x = \pm i$; The distance in the complex plane from 0 to $\pm i$ is 1, and from $-\frac{1}{2}$ to $\pm i$ is $\sqrt{1 + \frac{1}{4}} = \frac{\sqrt{5}}{2}$; Hence, in the first case the series $\sum_{n=0}^{\infty} a_n x^n$ converges at least for |x| < 1, and in the second case the series $\sum_{n=0}^{\infty} b_n (x + \frac{1}{2})^n$ converges at least for $|x + \frac{1}{2}| < \frac{\sqrt{5}}{2}$;

If initial conditions $y(0) = y_0$ and $y'(0) = y'_0$ are given, since $1 + x^2 \neq 0$, for all x, there exists a unique solution of the initial value problem on $-\infty < x < \infty$; On the other hand, a series solution of the form $\sum_{n=0}^{\infty} a_n x^n$ (with $a_0 = y_0, a_1 = y'_0$) is only guaranteed for -1 < x < 1; The unique solution on the interval $-\infty < x < \infty$ may not have a power series about x = 0 that converges for all x;

Example V

• Can we determine a series solution about x = 0 for the differential equation $y'' + (\sin x)y' + (1 + x^2)y = 0$, and if so, what is the radius of convergence?

For this differential equation, $p(x) = \sin x$ and $q(x) = 1 + x^2$; Recall from calculus that $\sin x$ has a Taylor series expansion about x = 0 that converges for all x; Further, q also has a Taylor series expansion about x = 0, namely, $q(x) = 1 + x^2$, that converges for all x;

Thus there is a series solution of the form $y = \sum a_n x^n$ with a_0 and

 a_1 arbitrary, and the series converges for all x;

Subsection 4

Euler Equations; Regular Singular Points

Euler Equations

- Consider equations of the form P(x)y" + Q(x)y' + R(x)y = 0 in the neighborhood of a singular point x₀;
- If P, Q and R are polynomials having no common factors, then the singular points are those for which P(x) = 0;
- A relatively simple differential equation that has a singular point is the Euler equation L[y] = x²y" + αxy' + βy = 0, α, β real;
- In this case $P(x) = x^2$, so x = 0 is the only singular point;
- Consider, first, the interval x > 0;
- Observe that $(x^{r})' = rx^{r-1}$ and $(x^{r})'' = r(r-1)x^{r-2}$;
- So, if the equation has a solution of the form $y = x^r$, then $L[x^r] = x^2(x^r)'' + \alpha x(x^r)' + \beta x^r = x^r[r(r-1) + \alpha r + \beta] = 0;$
- If r is a root of the quadratic equation $F(r) = r(r-1) + \alpha r + \beta = 0$, then $L[x^r]$ is zero, and $y = x^r$ is a solution of the differential equation;
- The roots of the quadratic are $r_1, r_2 = \frac{-(\alpha-1)\pm\sqrt{(\alpha-1)^2-4\beta}}{2}$, and $F(r) = (r r_1)(r r_2)$;

Case I: Real Distinct Roots

- We consider separately the cases in which the roots are real and different, real but equal, and complex conjugates;
- **Real, Distinct Roots**: If F(r) = 0 has real roots r_1 and r_2 , with $r_1 \neq r_2$, then $y_1(x) = x^{r_1}$ and $y_2(x) = x^{r_2}$ are solutions;
- Since $W(x^{r_1}, x^{r_2}) = (r_2 r_1)x^{r_1+r_2-1} \neq 0$, for $r_1 \neq r_2$ and x > 0, it follows that the general solution is $y = c_1x^{r_1} + c_2x^{r_2}, x > 0$;
- If r is not a rational number, then x^r is defined by $x^r = e^{r \ln x}$;
- Example: Solve $2x^2y'' + 3xy' y = 0$, x > 0; Substituting $y = x^r$ gives $2x^2r(r-1)x^{r-2} + 3xrx^{r-1} - x^r = x^r[2r(r-1) + 3r - 1] = x^r(2r^2 + r - 1) = x^r(2r - 1)(r + 1) = 0$; Hence $r_1 = \frac{1}{2}$ and $r_2 = -1$, so the general solution is $y = c_1x^{1/2} + c_2x^{-1}, x > 0$;

Case II: Equal Roots

- If the roots r_1 and r_2 are equal, then we obtain only $y_1(x) = x^{r_1}$;
- Since $r_1 = r_2$, it follows that $F(r) = (r r_1)^2$;
- Thus, in this case not only does $F(r_1) = 0$ but also $F'(r_1) = 0$;
- We differentiate the equation with respect to r and set $r = r_1$;
- Differentiating with respect to r gives $L[x^r \ln x] = L[\frac{\partial(x^r)}{\partial r}] = \frac{\partial}{\partial r}L[x^r] = \frac{\partial}{\partial r}[x^r F(r)] = \frac{\partial}{\partial r}[x^r(r-r_1)^2] = (r-r_1)^2 x^r \ln x + 2(r-r_1)x^r;$
- The right side is zero for $r = r_1$, whence, $y_2(x) = x^{r_1} \ln x$, x > 0, is a second solution;
- By evaluating the Wronskian, we find that $W(x^{r_1}, x^{r_1} \ln x) = x^{2r_1-1}$, so x^{r_1} and $x^{r_1} \ln x$ are a fundamental set of solutions for x > 0;
- The general solution is $y = (c_1 + c_2 \ln x)x^{r_1}$, for x > 0;
- Example: Solve $x^2y'' + 5xy' + 4y = 0$, x > 0; Substituting $y = x^r$, we get $x^r[r(r-1) + 5r + 4] = x^r(r^2 + 4r + 4) = 0$; Hence, $r_1 = r_2 = -2$, and $y = x^{-2}(c_1 + c_2 \ln x)$, x > 0 is the general solution;

Case III: Complex Conjugate Roots

- Suppose $r_1 = \lambda + i\mu$ and $r_2 = \lambda i\mu$, with $\mu \neq 0$;
- If x > 0, r real, then $x^r = e^{r \ln x}$; Define $x^r = e^{r \ln x}$, r complex;
- Then, since $e^{i\mu \ln x} = \cos(\mu \ln x) + i\sin(\mu \ln x)$, we obtain $x^{\lambda+i\mu} = e^{(\lambda+i\mu)\ln x} = e^{\lambda \ln x} e^{i\mu \ln x} = x^{\lambda} e^{i\mu \ln x} = x^{\lambda} [\cos(\mu \ln x) + i\sin(\mu \ln x)]$;
- Using algebra, it can be checked that x^{r_1} and x^{r_2} are indeed solutions and the general solution is $y = c_1 x^{\lambda + i\mu} + c_2 x^{\lambda i\mu}$;
- The real and imaginary parts of $x^{\lambda+i\mu}$, namely, $x^{\lambda} \cos(\mu \ln x)$ and $x^{\lambda} \sin(\mu \ln x)$ are also solutions;
- Since $W[x^{\lambda} \cos(\mu \ln x), x^{\lambda} \sin(\mu \ln x)] = \mu x^{2\lambda-1}$, the solutions form a fundamental set for x > 0, and the general solution is $y = c_1 x^{\lambda} \cos(\mu \ln x) + c_2 x^{\lambda} \sin(\mu \ln x), x > 0$;
- Example: Solve $x^2y'' + xy' + y = 0$; Substituting $y = x^r$, we get $x^r[r(r-1) + r + 1] = x^r(r^2 + 1) = 0$; Hence $r = \pm i$ ($\lambda = 0$ gives $x^{\lambda} = 1$), and the general solution is $y = c_1 \cos(\ln x) + c_2 \sin(\ln x), x > 0$;

Solving the Euler Equation for x < 0

- Consider again $L[y] = x^2y'' + \alpha xy' + \beta y = 0$ with x < 0;
- One issue is the meaning of x^r for x negative and r not an integer;
 Similarly, ln x has not been defined for x < 0;
- The solutions given for x > 0 can be shown to be valid for x < 0, but in general they are complex valued;
- It is always possible to obtain real valued solutions of the Euler equation for x < 0 by setting $x = -\xi$, where $\xi > 0$, and $y = u(\xi)$;

• Then
$$\frac{dy}{dx} = \frac{du}{d\xi}\frac{d\xi}{dx} = -\frac{du}{d\xi}, \ \frac{d^2y}{dx^2} = \frac{d}{d\xi}(-\frac{du}{d\xi})\frac{d\xi}{dx} = \frac{d^2u}{d\xi^2};$$

• Thus, for
$$x < 0$$
, we get $\xi^2 \frac{d^2 u}{d\xi^2} + \alpha \xi \frac{du}{d\xi} + \beta u = 0$, $\xi > 0$;

• So
$$u(\xi) = \begin{cases} c_1 \zeta + c_2 \zeta \\ (c_1 + c_2 \ln \xi) \xi^{r_1} \\ c_1 \xi^{\lambda} \cos(\mu \ln \xi) + c_2 \xi^{\lambda} \sin(\mu \ln \xi) \end{cases}$$
 depending on

whether the zeros of $F(r) = r(r-1) + \alpha r + \beta$ are real and different, real and equal, or complex conjugates;

• To obtain u in terms of x, we replace ξ by -x in the ξ -solutions;

Unifying the Solutions for x < 0 and x > 0

- We combine the cases x > 0 and x < 0 using |x|;
- The general solution of the Euler equation $x^2y'' + \alpha xy' + \beta y = 0$ in any interval not containing the origin is determined by the roots r_1 and r_2 of the equation $F(r) = r(r-1) + \alpha r + \beta = 0$ as follows:
 - If the roots are real and different, then $y = c_1 |x|^{r_1} + c_2 |x|^{r_2}$;
 - If the roots are real and equal, then $y = (c_1 + c_2 \ln |x|)|x|^{r_1}$;
 - If the roots are complex conjugates, then
 - $y = |x|^{\lambda} [c_1 \cos (\mu \ln |x|) + c_2 \sin (\mu \ln |x|)], \text{ where } r_1, r_2 = \lambda \pm i\mu;$
- The solutions of an Euler equation of the form $(x x_0)^2 y'' + \alpha (x x_0)y' + \beta y = 0$ are similar;
- If we look for solutions of the form y = (x x₀)^r, then the general solution is given by the equation above with x replaced by x x₀;
- Alternatively, we can reduce this form to the original by performing a change of variable $t = x x_0$;

Discussion of Solutions for Singular Points

- Consider P(x)y'' + Q(x)y' + R(x)y = 0 where x_0 is singular, i.e., $P(x_0) = 0$ and at least one of Q and R is not zero at x_0 ;
- Since those points are few in number, can we simply ignore them and just consider solutions about ordinary points?
- This is not feasible because the singular points determine to a large extent the principal features of the solution; In the neighborhood of a singular point the solution often becomes large in magnitude or experiences rapid changes in magnitude;
- Some information on the behavior of Q/P and R/P in the neighborhood of the singular point is needed to understand the behavior of the solutions near x = x₀;
- It may be that there are two distinct solutions that remain bounded as x → x₀ or only one, with the other becoming unbounded, or they may both become unbounded as x → x₀;
- If there are solutions that become unbounded as x → x₀, it is often important to determine how these solutions behave as x → x₀;

Extending the Method to Cover Singular Points

- To extend the method used for ordinary points to a singular point x₀, it is necessary to restrict to singularities that are not too severe;
- We might call these "weak singularities"; The conditions needed are that $\lim_{x\to x_0} (x x_0) \frac{Q(x)}{P(x)}$ is finite and $\lim_{x\to x_0} (x x_0)^2 \frac{R(x)}{P(x)}$ is finite;
- This means that the singularity in $\frac{Q}{P}$ can be no worse than $(x x_0)^{-1}$ and the singularity in $\frac{R}{P}$ can be no worse than $(x x_0)^{-2}$; Such a point is called a **regular singular point**;
- For equations with more general coefficients than polynomials, x_0 is a **regular singular point** if it is a singular point and $(x x_0)\frac{Q(x)}{P(x)}$ and $(x x_0)^2 \frac{R(x)}{P(x)}$ have convergent Taylor series about x_0 ;
- Any singular point that is not a regular singular point is called an
 - irregular singular point;
- The singularity in an Euler equation is a regular singular point; Indeed, we will see that all general equations behave very much like Euler equations near a regular singular point;

Example I

- Determine the singular points of the Legendre equation $(1 x^2)y'' 2xy' + \alpha(\alpha + 1)y = 0$ and determine whether they are regular or irregular;
 - $P(x) = 1 x^2$, so the singular points are x = 1 and x = -1; Divide by $1 - x^2$ to get the coefficients of y' and y: They are $-\frac{2x}{1-x^2}$ and $\frac{\alpha(\alpha+1)}{1-x^2}$;
 - $\lim_{x \to 1} (x-1) \frac{-2x}{1-x^2} = \lim_{x \to 1} \frac{(x-1)(-2x)}{(1-x)(1+x)} = \lim_{x \to 1} \frac{2x}{1+x} = 1;$ $\lim_{x \to 1} (x-1)^2 \frac{\alpha(\alpha+1)}{1-x^2} = \lim_{x \to 1} \frac{(x-1)^2 \alpha(\alpha+1)}{(1-x)(1+x)} = \lim_{x \to 1} \frac{(x-1)(-\alpha)(\alpha+1)}{1+x} = 0;$ Since these limits are finite, the point x = 1 is a regular singular point;
 - It can be shown in a similar manner that x = -1 is also a regular singular point;

Example II

• Determine the singular points of the differential equation $2x(x-2)^2y'' + 3xy' + (x-2)y = 0$ and classify them as regular or irregular;

Dividing the differential equation by $2x(x-2)^2$, we have $y'' + \frac{3}{2(x-2)^2}y' + \frac{1}{2x(x-2)}y = 0$, so $p(x) = \frac{Q(x)}{P(x)} = \frac{3}{2(x-2)^2}$ and $q(x) = \frac{R(x)}{P(x)} = \frac{1}{2x(x-2)}$; The singular points are x = 0 and x = 2; • $\lim_{x \to 0} xp(x) = \lim_{x \to 0} x \frac{3}{2(x-2)^2} = 0$; $\lim_{x \to 0} x^2q(x) = \lim_{x \to 0} x^2 \frac{1}{2x(x-2)} = 0$; Since these limits are finite, x = 0 is a regular singular point; • $\lim_{x \to 2} (x-2)p(x) = \lim_{x \to 2} (x-2) \frac{3}{2(x-2)^2} = \lim_{x \to 2} \frac{3}{2(x-2)}$; Thus, the limit does not exist; Hence x = 2 is an irregular singular point;

Example III

• Determine the singular points of $(x - \frac{\pi}{2})^2 y'' + (\cos x)y' + (\sin x)y = 0$ and classify them as regular or irregular.

The only singular point is $x = \frac{\pi}{2}$; To study it, we consider the functions $(x - \frac{\pi}{2})p(x) = (x - \frac{\pi}{2})\frac{Q(x)}{P(x)} = \frac{\cos x}{x - \pi/2}$ and $(x - \frac{\pi}{2})^2q(x) = (x - \frac{\pi}{2})^2\frac{R(x)}{P(x)} = \sin x$; Starting from the Taylor series for $\cos x$ about $x = \frac{\pi}{2}$, we find that $\frac{\cos x}{x - \pi/2} = -1 + \frac{(x - \pi/2)^2}{3!} - \frac{(x - \pi/2)^4}{5!} + \cdots$ which converges for all x; Similarly, $\sin x$ is analytic at $x = \frac{\pi}{2}$; Therefore, we conclude that $\frac{\pi}{2}$ is a regular singular point for this equation;

Subsection 5

Series Solutions Near a Regular Singular Point, Part I

The General Equation at Regular Singular Points

- How do we solve the general second order linear equation
 P(x)y'' + Q(x)y' + R(x)y = 0 in the neighborhood of a regular singular point x = x₀?
- Suppose $x_0 = 0$; Otherwise, we can apply $t = x x_0$;
- Regular singularity means that $x \frac{Q(x)}{P(x)} = xp(x)$ and $x^2 \frac{R(x)}{P(x)} = x^2q(x)$ have finite limits as $x \to 0$ and are analytic at x = 0;
- Thus, they have convergent power series expansions of the form xp(x) = ∑_{n=0}[∞] p_nxⁿ, x²q(x) = ∑_{n=0}[∞] q_nxⁿ, for |x| < ρ, ρ > 0;
 Divide by P(x) and multiply by x²: x²y'' + x[xp(x)]y' + [x²q(x)]y = 0, or x²y'' + x(p₀ + p₁x + ··· + p_nxⁿ + ···)y' + (q₀ + q₁x + ··· + q_nxⁿ + ···)y = 0;
 If all of the coefficients p_n and q_n are zero, except possibly p_n = lim x^{Q(x)} and q_n = lim x²R(x) then we get the Euler equation

$$p_0 = \lim_{x \to 0} x \frac{q(x)}{P(x)}$$
 and $q_0 = \lim_{x \to 0} x^2 \frac{R(x)}{P(x)}$, then we get the Euler equation $x^2 y'' + p_0 x y' + q_0 y = 0;$

The General Equation: The General Case

•
$$x^2y'' + x(p_0 + p_1x + \cdots)y' + (q_0 + q_1x + \cdots)y = 0;$$

- In general, some of the p_n and q_n are not zero; Still, the character of solutions is identical to those of the Euler equation;
- Again, let us look at x > 0;
- Since the coefficients are "Euler coefficients" times power series, we seek solutions in the form of "Euler solutions" times power series;

• Assume
$$y = x^{r}(a_{0} + a_{1}x + \dots + a_{n}x^{n} + \dots) = x^{r}\sum_{n=0}^{\infty}a_{n}x^{n} = \sum_{n=0}^{\infty}a_{n}x^{r+n}$$
, with $a_{0} \neq 0$;

- We would like to determine:
 - The values of r for which we get a solution of this form;
 - **2** The recurrence relation for the coefficients a_n ;
 - **)** The radius of convergence of the series $\sum_{n=0}^{\infty} a_n x^n$;
- To simplify matters, we assume that there exists a solution of the stated form and we show how to determine the coefficients;

Example

• Solve the differential equation $2x^2y'' - xy' + (1+x)y = 0$; It is easy to show that x = 0 is a regular singular point; Further, $xp(x) = -\frac{1}{2}$ and $x^2q(x) = \frac{1+x}{2}$; Thus $p_0 = -\frac{1}{2}$, $q_0 = \frac{1}{2}$, $q_1 = \frac{1}{2}$ and all other p's and q's are zero; Then, the corresponding Euler equation is $2x^2y'' - xy' + y = 0$; We assume that there is a solution $y = \sum_{n=0}^{\infty} a_n x^{n+r}$; Then $y' = \sum_{n=0}^{\infty} a_n (r+n) x^{r+n-1}$ and $y'' = \sum_{n=0}^{\infty} a_n (r+n)(r+n-1)x^{r+n-2};$ Therefore, $2x^2y'' - xy' + (1+x)y = \sum 2a_n(r+n)(r+n-1)x^{r+n} - 2a_n(r+n)(r+n-1)x^{r+n}$ $\sum_{n=1}^{\infty}a_n(r+n)x^{r+n} + \sum_{n=1}^{\infty}a_nx^{r+n} + \sum_{n=1}^{\infty}a_nx^{r+n+1}$; The last term can be written as $\sum_{n=1}^{\infty} a_{n-1} x^{r+n}$, so we obtain n=0 $2x^{2}y'' - xy' + (1+x)y = a_{0}[2r(r-1) - r + 1]x^{r}$ $+\sum_{n=1}^{\infty} [[2(r+n)(r+n-1)-(r+n)+1]a_n+a_{n-1}]x^{r+n}=0;$

Example (Cont'd)

- We had $2x^2y'' xy' + (1+x)y = a_0[2r(r-1) r + 1]x^r + \sum_{n=1}^{\infty} [[2(r+n)(r+n-1) (r+n) + 1]a_n + a_{n-1}]x^{r+n} = 0;$
- The coefficient of each power of x must be zero;
- Since a₀ ≠ 0, the coefficient of x^r yields 2r(r-1) - r + 1 = 2r² - 3r + 1 = (r - 1)(2r - 1) = 0; This is called the **indicial equation**; It is exactly the polynomial equation obtained for the associated Euler equation;
- The roots of the indicial equation are r₁ = 1, r₂ = ¹/₂; These values are called the exponents at the singularity for x = 0; They determine the qualitative behavior of the solution close to x = 0;
- Now we set the coefficient of x^{r+n} equal to zero: $[2(r+n)(r+n-1) - (r+n) + 1]a_n + a_{n-1} = 0 \text{ or}$ $a_n = -\frac{a_{n-1}}{2(r+n)^2 - 3(r+n) + 1} = -\frac{a_{n-1}}{[(r+n)-1][2(r+n)-1]}, n \ge 1;$
- For each root r_1 and r_2 of the indicial equation, we use this recurrence relation to determine a set of coefficients a_1, a_2, \ldots ;

Example (Cont'd): The Root $r_1 = 1$

• For
$$r = r_1 = 1$$
, $a_n = -\frac{a_{n-1}}{(2n+1)n}$;

• Thus
$$a_1 = -\frac{a_0}{3 \cdot 1}$$
, $a_2 = -\frac{a_1}{5 \cdot 2} = \frac{a_0}{(3 \cdot 5)(1 \cdot 2)}$, and $a_3 = -\frac{a_2}{7 \cdot 3} = -\frac{a_0}{(3 \cdot 5 \cdot 7)(1 \cdot 2 \cdot 3)}$;

- In general, we have $a_n = \frac{(-1)^n}{[3 \cdot 5 \cdot 7 \cdots (2n+1)]n!} a_0, \ n \ge 4;$
- Multiplying the numerator and denominator of the right side by $2 \cdot 4 \cdot 6 \cdots 2n = 2^n n!$, we get $a_n = \frac{(-1)^n 2^n}{(2n+1)!} a_0$;
- Hence, if we omit the constant multiplier a_0 , we get the solution $y_1(x) = x[1 + \sum_{n=1}^{\infty} \frac{(-1)^n 2^n}{(2n+1)!} x^n], x > 0;$
- To determine the radius of convergence of the series we use the ratio test: $\lim_{n \to \infty} \left| \frac{a_{n+1}x^{n+1}}{a_n x^n} \right| = \lim_{n \to \infty} \frac{2|x|}{(2n+2)(2n+3)} = 0$; Thus the series converges for all x;

Example (Cont'd): The Root $r_2 = 1/2$

- Corresponding to the second root $r = r_2 = \frac{1}{2}$, we proceed similarly; $a_n = -\frac{a_{n-1}}{2n(n-\frac{1}{2})} = -\frac{a_{n-1}}{n(2n-1)};$ • Hence $a_1 = -\frac{a_0}{1 \cdot 1}$, $a_2 = -\frac{a_1}{2 \cdot 3} = \frac{a_0}{(1 \cdot 2)(1 \cdot 3)}$, $a_3 = -\frac{a_2}{3\cdot 5} = -\frac{a_0}{(1\cdot 2\cdot 3)(1\cdot 3\cdot 5)};$ • In general, $a_n = \frac{(-1)^n}{n! [1:3:5\cdots(2n-1)]} a_0, n \ge 4;$ • Multiply the numerator and denominator by $2 \cdot 4 \cdot 6 \cdots 2n = 2^n n!$: $a_n = \frac{(-1)^n 2^n}{(2n)!} a_0, \ n \ge 1;$ • Thus, $y_2(x) = x^{1/2} [1 + \sum_{(2n)!}^{\infty} \frac{(-1)^n 2^n}{(2n)!} x^n], x > 0;$ As before, we can show that the series converges for all x; • Since y_1 and y_2 behave like x and $x^{1/2}$, respectively, near x = 0, they
 - form a fundamental set of solutions, whence the general solution is $y = c_1y_1(x) + c_2y_2(x), x > 0;$

Arbitrary Regular Singular Points

- If x = 0 is a regular singular point, then sometimes there are two solutions of the form y = ∑_{n=0}[∞] a_nx^{r+n} in the neighborhood of x = 0;
- If there is a regular singular point at $x = x_0$, then there may be two solutions of form $y = (x x_0)^r \sum_{n=0}^{\infty} a_n (x x_0)^n$ near $x = x_0$;
- However, a general equation with a regular singular point may not have two solutions of this form;
- In particular, if the roots r₁ and r₂ of the indicial equation are equal, or differ by an integer, then the second solution normally has a more complicated structure; In all cases, though, it is possible to find at least one solution of this form;
- If r₁ and r₂ differ by an integer, this solution corresponds to the larger value of r; If there is only one such solution, then the second solution involves a logarithmic term;
- If the roots are complex, then they cannot be equal or differ by an integer, so there are always two solutions of this form;

Subsection 6

Series Solutions Near a Regular Singular Point, Part II

The General Equation

- Consider the equation $L[y] = x^2 y'' + x[xp(x)]y' + [x^2q(x)]y = 0$, where $xp(x) = \sum_{n=0}^{\infty} p_n x^n$, $x^2q(x) = \sum_{n=0}^{\infty} q_n x^n$ and both series converge in an interval $|x| < \rho$ for some $\rho > 0$;
- The point x = 0 is a regular singular point, and the corresponding Euler equation is $x^2y'' + p_0xy' + q_0y = 0$;
- We seek a solution for x > 0 and assume that it has the form $y = \phi(r, x) = x^r \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n x^{r+n}$, where $a_0 \neq 0$, and $y = \phi(r, x)$ indicates that ϕ depends on r as well as on x; • $y' = \sum_{n=0}^{\infty} (r+n)a_n x^{r+n-1}$, $y'' = \sum_{n=0}^{\infty} (r+n)(r+n-1)a_n x^{r+n-2}$;
- Substituting, we get $a_0r(r-1)x^r + a_1(r+1)rx^{r+1} + \dots + a_n(r+n)(r+n-1)x^{r+n} + \dots + (p_0 + p_1x + \dots + p_nx^n + \dots) \times [a_0rx^r + a_1(r+1)x^{r+1} + \dots + a_n(r+n)x^{r+n} + \dots] + (q_0 + q_1x + \dots + q_nx^n + \dots) \times (a_0x^r + a_1x^{r+1} + \dots + a_nx^{r+n} + \dots) = 0;$

The Indicial Equation

- Multiplying and collecting terms, we obtain $a_0F(r)x^r + [a_1F(r+1) + a_0(p_1r+q_1)]x^{r+1} + [a_2F(r+2) + a_0(p_2r+q_2) + a_1[p_1(r+1) + q_1]]x^{r+2} + \dots + [a_nF(r+n) + a_0(p_nr+q_n) + a_1[p_{n-1}(r+1) + q_{n-1}] + \dots + a_{n-1}[p_1(r+n-1) + q_1]]x^{r+n} + \dots = 0,$
- In a more compact form, $L[\phi](r, x) =$ $a_0 F(r)x^r + \sum_{n=1}^{\infty} \left[F(r+n)a_n + \sum_{k=0}^{n-1} a_k [(r+k)p_{n-k} + q_{n-k}] \right] x^{r+n} = 0,$ where $F(r) = r(r-1) + p_0 r + q_0;$
- The term involving x^r yields the equation F(r) = 0; This equation is called the indicial equation;
- Denote the roots of the indicial equation by r_1 and r_2 with $r_1 \ge r_2$ if the roots are real; If the roots are complex, the designation of the roots is immaterial;
- The roots r₁ and r₂ are called the **exponents at the singularity**;

The Roots and the Solutions

- Setting the coefficient of x^{r+n} equal to zero gives the recurrence $F(r+n)a_n + \sum_{k=0}^{n-1} a_k[(r+k)p_{n-k} + q_{n-k}] = 0;$
- So a_n depends on the value of r and all the preceding coefficients a₀, a₁,..., a_{n-1};
- We can successively compute a₁, a₂,..., a_n,... in terms of a₀ and the coefficients in the series for xp(x) and x²q(x), provided that F(r+1), F(r+2),..., F(r+n),... are not zero;
- The only values of r for which F(r) = 0 are $r = r_1$ and $r = r_2$; Since $r_1 \ge r_2$, it follows that $r_1 + n$ is not equal to r_1 or r_2 for $n \ge 1$; Consequently, $F(r_1 + n) \ne 0$ for $n \ge 1$; Hence we can always determine one solution of the differential equation, namely,

$$y_1(x) = x^{r_1}[1 + \sum_{n=1}^{\infty} a_n(r_1)x^n], x > 0;$$

The Solution Series

- If $r_2 \neq r_1$, and $r_1 r_2$ is not a positive integer, then $r_2 + n \neq r_1$ for any $n \ge 1$; Hence, $F(r_2 + n) \neq 0$, and we can also obtain a second solution $y_2(x) = x^{r_2}[1 + \sum_{n=1}^{\infty} a_n(r_2)x^n], x > 0$;
- The series converge at least in the interval |x| < ρ, where the series for both xp(x) and x²q(x) converge;
- Within their radii of convergence, the power series define functions that are analytic at x = 0;
- Thus, the singular behavior, if there is any, of the solutions y_1 and y_2 is due to the factors x^{r_1} and x^{r_2} that multiply these two analytic functions;
- To obtain real-valued solutions for x < 0, we can make the substitution x = -ξ with ξ > 0;
- It turns out that we need only replace x^{r_1} and x^{r_2} by $|x|^{r_1}$ and $|x|^{r_2}$, respectively;

The Solution for x > 0 and the Complex Root Case

- If r_1 and r_2 are complex numbers, then they are necessarily complex conjugates and $r_2 \neq r_1 + N$ for any positive integer N;
- In this case we can always find two series solutions; However, they are complex-valued functions of x; Real-valued solutions can be obtained by taking the real and imaginary parts of the complex solutions;
- We consider $r_1 = r_2$ or $r_1 r_2 = N$ later;
- To calculate r₁ and r₂, we only have to solve r(r − 1) + p₀r + q₀ = 0, with p₀ = lim xp(x), q₀ = lim x²q(x); These are exactly the limits that must be evaluated in order to classify the singularity;
- If x = 0 is a regular singular point of the equation P(x)y'' + Q(x)y' + R(x)y = 0, where P, Q and R are polynomials, then $xp(x) = x\frac{Q(x)}{P(x)}$ and $x^2q(x) = x^2\frac{R(x)}{P(x)}$; Thus, $p_0 = \lim_{x \to 0} x\frac{Q(x)}{P(x)}$, $q_0 = \lim_{x \to 0} x^2\frac{R(x)}{P(x)}$;
- The radii of convergence for the series are at least equal to the distance from the origin to the nearest zero of P other than x = 0;

Example

- Discuss the nature of the solutions of the equation 2x(1+x)y'' + (3+x)y' - xy = 0 near the singular points; P(x) = 2x(1+x), Q(x) = 3 + x, and R(x) = -x; The points x = 0 and x = -1 are the singular points;
 - The point x = 0 is a regular singular point, since $\lim_{x \to \frac{Q(x)}{P(x)}} =$

 $\lim_{x\to 0} x \frac{3+x}{2x(1+x)} = \frac{3}{2}, \lim_{x\to 0} x^2 \frac{R(x)}{P(x)} = \lim_{x\to 0} x^2 \frac{-x}{2x(1+x)} = 0; \text{ Further, } p_0 = \frac{3}{2} \text{ and } q_0 = 0; \text{ Thus the indicial equation is } r(r-1) + \frac{3}{2}r = 0, \text{ and the roots are } r_1 = 0, r_2 = -\frac{1}{2}; \text{ Since these roots are not equal and do not differ by an integer, there are two solutions of the form}$

$$y_1(x) = 1 + \sum_{n=1}^{\infty} a_n(0)x^n$$
 and $y_2(x) = |x|^{-1/2} [1 + \sum_{n=1}^{\infty} a_n(-\frac{1}{2})x^n]$; for $0 < |x| < \rho$; A lower bound for the radius of convergence of each series is 1, the distance from $x = 0$ to $x = -1$, the other zero of P(x); y_1 is bounded as $x \to 0$, indeed is analytic there, and y_2 is unbounded as $x \to 0$;

Example (Cont'd)

- Discuss the nature of the solutions of the equation 2x(1+x)y" + (3+x)y' - xy = 0 near the singular points; P(x) = 2x(1+x), Q(x) = 3 + x, and R(x) = -x; The points x = 0 and x = -1 are the singular points;
 - The point x = -1 is also a regular singular point, since $\lim_{x \to -1} (x+1) \frac{Q(x)}{P(x)} = \lim_{x \to -1} \frac{(x+1)(3+x)}{2x(1+x)} = -1, \lim_{x \to -1} (x+1)^2 \frac{R(x)}{P(x)} = \lim_{x \to -1} \frac{(x+1)2(-x)}{2x(1+x)} = 0; \text{ In this case } p_0 = -1, q_0 = 0, \text{ so the indicial is } r(r-1) - r = 0; \text{ The roots are } r_1 = 2 \text{ and } r_2 = 0; \text{ Corresponding to the larger root there is a solution of the form}$ $y_1(x) = (x+1)^2 [1 + \sum_{n=0}^{\infty} a_n(2)(x+1)^n]; \text{ The series converges at least}$

for |x + 1| < 1, and y_1 is an analytic function there; Since the two roots differ by a positive integer, there may or may not be a second solution

of the form
$$y_2(x) = 1 + \sum_{n=1}^{\infty} a_n(0)(x+1)^n$$
; Further analysis needed;

Equal Roots

- Suppose the roots of the indicial equation are equal to r₁;
- Then $L[\phi](r,x) = a_0 F(r) x^r = a_0 (r r_1)^2 x^r$;
- Setting $r = r_1$, $L[\phi](r_1, x) = 0$; So $y_1(x) = x^{r_1}[1 + \sum_{n=1}^{n} a_n(r_1)x^n]$ is

one solution;

• It also follows that $L[\frac{\partial \phi}{\partial r}](r_1, x) = a_0 \frac{\partial}{\partial r} [x^r(r-r_1)^2]\Big|_{r=r_1} = a_0 [(r-r_1)^2 x^r \ln x + 2(r-r_1)x^r]\Big|_{r=r_1} = 0;$ • Hence, a second solution is

Hence, a second solution is

$$y_{2}(x) = \left. \frac{\partial \phi(r,x)}{\partial r} \right|_{r=r_{1}} = \left. \frac{\partial}{\partial r} \left[x^{r} \left[a_{0} + \sum_{n=1}^{\infty} a_{n}(r) x^{n} \right] \right]_{r=r_{1}} = \left. (x^{r_{1}} \ln x) \left[a_{0} + \sum_{n=1}^{\infty} a_{n}(r_{1}) x^{n} \right] + x^{r_{1}} \sum_{n=1}^{\infty} a'_{n}(r_{1}) x^{n} = \right.$$

$$y_{1}(x) \ln x + x^{r_{1}} \sum_{n=1}^{\infty} a'_{n}(r_{1}) x^{n}, \quad x > 0, \text{ where } a'_{n}(r_{1}) \text{ is value of } \frac{da_{n}}{dr} \text{ at } r = r_{1};$$

Equal Roots: Remarks

- It may turn out that it is difficult to determine a_n(r) as a function of r from the recurrence relation and then to differentiate the resulting expression with respect to r;
- An alternative is simply to assume that y has the form $y = y_1(x) \ln x + x^{r_1} \sum_{n=1}^{\infty} b_n x^n$, x > 0, where $y_1(x)$ has already been found; The coefficients b_n are calculated, as usual, by substituting into the differential equation, collecting terms, and setting the coefficient of each power of x equal to zero;
- A third possibility is to use the method of reduction of order to find y₂(x) once y₁(x) is known;

Roots Differing by an Integer

- If the roots r₁ and r₂ differ by an integer N, the derivation of the second solution is considerably more complicated;
- The form of this solution is stated in the following slide;
- The coefficients $c_n(r_2)$ in the solution are given by $c_n(r_2) = \frac{d}{dr}[(r-r_2)a_n(r)]|_{r=r_2}$, where $a_n(r)$ is determined from the recurrence $F(r+n)a_n + \sum_{k=0}^{\infty} a_k[(r+k)p_{n-k} + q_{n-k}] = 0$, with $a_0 = 1$;
- The coefficient *a* in the solution is $a = \lim_{r \to r_0} (r r_2)a_N(r)$;
- If $a_N(r_2)$ is finite, then a = 0 and there is no logarithmic term in y_2 ;
- In practice, the best way to determine whether *a* is zero in the second solution is simply to try to compute the a_n corresponding to the root r_2 and to see whether it is possible to determine $a_N(r_2)$; If so, there is no further problem; If not, we must use the formula with $a \neq 0$;
- When $r_1 r_2 = N$, there are again three similar ways to find a second solution, as before;

The Main Theorem: Summary of the Results I

- Consider $x^2y'' + x[xp(x)]y' + [x^2q(x)]y = 0$, with x = 0 a regular singular point; Then xp(x) and $x^2q(x)$ are analytic at x = 0 with convergent series expansions $xp(x) = \sum p_n x^n$, $x^2q(x) = \sum q_n x^n$, for $|x| < \rho$, where $\rho > 0$ is the minimum of the radii of convergence of the power series for xp(x) and $x^2q(x)$; Let r_1 and r_2 be the roots of the indicial equation $F(r) = r(r-1) + p_0 r + q_0 = 0$, with $r_1 \ge r_2$ if r_1 and r_2 are real; Then in either the interval $-\rho < x < 0$ or the interval $0 < x < \rho$, there exists a solution of the form $y_1(x) = |x|^{r_1} [1 + \sum a_n(r_1) x^n]$, where the $a_n(r_1)$ are given by the n=1recurrence relation $F(r_1 + n)a_n + \sum a_k[(r_1 + k)p_{n-k} + q_{n-k}] = 0$,
 - with $a_0 = 1$;

The Main Theorem: Summary of the Results II

• The following cases may arise:

- If r₁ r₂ is not zero or a positive integer, then in either the interval -ρ < x < 0 or the interval 0 < x < ρ, there exists a second solution of the form y₂(x) = |x|^{r₂}[1 + ∑_{n=1}[∞]a_n(r₂)xⁿ]; The a_n(r₂) are also determined by the same recurrence relation with a₀ = 1 and r = r₂; The power series in converge at least for |x| < ρ;
 If r₁ = r₂, then y₂(x) = y₁(x) ln |x| + |x|^{r₁}∑_{n=1}[∞]b_n(r₁)xⁿ;
 If r₁ r₂ = N, y₂(x) = ay₁(x) ln |x| + |x|^{r₂}[1 + ∑_{n=1}[∞]c_n(r₂)xⁿ];
- a_n(r₁), b_n(r₁), c_n(r₂), and a can be determined by substituting the form of the series solutions for y; a may turn out to be zero;
- Each of the series converges at least for |x| < ρ and defines a function that is analytic in some neighborhood of x = 0;
- In all three cases the two solutions y₁(x) and y₂(x) form a fundamental set of solutions of the given differential equation;