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The Laplace Transform Definition of the Laplace Transform

Subsection 1

Definition of the Laplace Transform
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The Laplace Transform Definition of the Laplace Transform

Improper Integrals

The Laplace transform involves an integral from zero to infinity, i.e.,
an improper integral;

An improper integral over an unbounded interval is defined as a
limit of integrals over finite intervals:

∫ ∞

a

f (t)dt = lim
A→∞

∫ A

a

f (t)dt,

where A is a positive real number;

If the integral from a to A exists for each A > a, and if the limit as
A → ∞ exists, then the improper integral is said to converge to that
limiting value; Otherwise the integral is said to diverge, or to fail to

exist;
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The Laplace Transform Definition of the Laplace Transform

Example

Let f (t) = ect , t ≥ 0, where c is a real nonzero constant;

∫ ∞

0
ectdt = lim

A→∞

∫ A

0
ectdt

= lim
A→∞

ect

c

∣

∣

∣

∣

A

0

= lim
A→∞

1

c
(ecA − 1);

We draw the following conclusions:

If c < 0, it converges to the value − 1
c
;

If c > 0, it diverges;
If c = 0, f (t) = 1, and the integral again diverges;
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The Laplace Transform Definition of the Laplace Transform

Example

Let f (t) = 1
t
, t ≥ 1;

∫ ∞

1

dt

t
= lim

A→∞

∫ A

1

dt

t
= lim

A→∞
lnA;

Since lim
A→∞

lnA = ∞, the improper integral diverges;

Let f (t) = t−p, t ≥ 1, where p is a real constant and p 6= 1;

∫ ∞

1

t−pdt = lim
A→∞

∫ A

1

t−pdt = lim
A→∞

1

1− p
(A1−p − 1);

If p > 1, A1−p → 0;
If p < 1, A1−p → ∞;

Hence

∫ ∞

1
t−pdt converges to 1

p−1 for p > 1 and diverges for p ≤ 1;
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The Laplace Transform Definition of the Laplace Transform

Piece-wise Continuity

A function f is said to be piecewise continuous on an interval
α ≤ t ≤ β if the interval can be partitioned by a finite number of
points α = t0 < t1 < · · · < tn = β so that

1 f is continuous on each open subinterval ti−1 < t < ti ;
2 f approaches a finite limit as the endpoints of each subinterval are

approached from within the subinterval;

Equivalently, f is piecewise
continuous on α < t < β if it
is continuous there except for
a finite number of jump
discontinuities;

If f is piecewise continuous on α < t < β, for every β > α, then f is
said to be piecewise continuous on t ≥ α;
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The Laplace Transform Definition of the Laplace Transform

Integrals of Piece-wise Continuous Functions

The integral of a piecewise continuous function on a finite interval is
just the sum of the integrals on the subintervals created by the
partition points;

For instance, for the function
∫ β

α
f (t)dt =

∫ t1

α
f (t)dt +

∫ t2

t1

f (t)dt +

∫ β

t2

f (t)dt;

If f is piecewise continuous on a ≤ t ≤ A, then
∫ A

a
f (t)dt exists;

Hence, if f is piecewise continuous for t ≥ a, then
∫ A

a
f (t)dt exists

for each A > a;

However, piecewise continuity is not enough to ensure convergence of

the improper integral

∫ ∞

a

f (t)dt, as the preceding examples show;
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The Laplace Transform Definition of the Laplace Transform

The Comparison Theorem

If f cannot be integrated easily in terms of elementary functions, the
definition of convergence of

∫∞
a

f (t)dt may be difficult to apply;

Frequently, the most convenient way to test the convergence or
divergence of an improper integral is by the following comparison
theorem (similar to the one for infinite series);

Comparison Theorem

If f is piecewise continuous for t ≥ a, if |f (t)| ≤ g(t) when t ≥ M for

some positive constant M, and if

∫ ∞

M

g(t)dt converges, then

∫ ∞

a

f (t)dt

also converges; On the other hand, if f (t) ≥ g(t) ≥ 0 for t ≥ M, and if
∫ ∞

M

g(t)dt diverges, then

∫ ∞

a

f (t)dt also diverges;

The functions most useful for comparison purposes are ect and t−p,
whose improper integrals we already computed;
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The Laplace Transform Definition of the Laplace Transform

The Laplace Transform

An integral transform is a relation F (s) =

∫ β

α
K (s, t)f (t)dt, where

K (s, t) is a given function, called the kernel of the transformation,
and the limits of integration α and β are also given;

It is possible that α = −∞ or β = +∞, or both;

The relation transforms f into another function F , which is called the
transform of f ;

Let f (t) be given for t ≥ 0, and suppose that f satisfies certain
conditions to be stated later; The Laplace transform of f , denoted
L{f (t)} or F (s), is defined by the equation

L{f (t)} = F (s) =

∫ ∞

0

e−st f (t)dt,

whenever this improper integral converges;

The Laplace transform makes use of the kernel K (s, t) = e−st ;
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The Laplace Transform Definition of the Laplace Transform

Laplace Transform: Solving Differential Equations

Since the solutions of linear differential equations with constant
coefficients are based on the exponential function, the Laplace
transform is particularly useful for such equations;

The general idea in using the Laplace transform to solve a differential
equation is

1 Transform an initial value problem for an unknown function f in the
t-domain into a simpler algebraic problem for F in the s-domain;

2 Solve this algebraic problem to find F ;
3 Recover the desired function f from its transform F . This last step is

known as “inverting the transform”.

In general, s may be complex, and the full power of the Laplace
transform becomes available only when we regard F (s) as a function
of a complex variable;

However, for the problems discussed here, it is sufficient to consider
only real values of s;
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The Laplace Transform Definition of the Laplace Transform

Existence of Laplace Transform for Special Functions

Theorem (Existence of Laplace Transform)

Suppose that

1 f is piecewise continuous on the interval 0 ≤ t ≤ A for any positive A;

2 |f (t)| ≤ Keat when t ≥ M; In this inequality, K , a and M are real
constants, K and M necessarily positive;

Then the Laplace transform L{f (t)} = F (s) exists for s > a.

We deal almost exclusively with functions that satisfy the conditions
of the theorem;

Such functions are described as piecewise continuous and of
exponential order as t → ∞;

There do exist functions that are not of exponential order as t → ∞;
One such function is f (t) = et

2
; As t → ∞, this function increases

faster than Keat regardless of how large K and a may be;
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The Laplace Transform Definition of the Laplace Transform

Examples

Let f (t) = 1, t ≥ 0;

L{1} =

∫ ∞

0
e−stdt = lim

A→∞

∫ A

0
e−stdt

= − lim
A→∞

1

s
e−st

∣

∣

∣

∣

A

0

= − 1

s
lim

A→∞
(e−sA − 1) =

1

s
, s > 0;

Let f (t) = eat , t ≥ 0;

L{eat} =

∫ ∞

0

e−steatdt =

∫ ∞

0

e−(s−a)tdt =
1

s − a
, s > a;
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The Laplace Transform Definition of the Laplace Transform

Example

Let f (t) =







1, if 0 ≤ t < 1,
k , if t = 1,
0, if t > 1,

, where k is a constant;

In engineering contexts f (t) often represents a unit pulse, perhaps of
force or voltage;

Note that f is a piecewise continuous function;

L{f (t)} =

∫ ∞

0

e−st f (t)dt =

∫ 1

0

e−stdt = −e−st

s

∣

∣

∣

∣

1

0

=
1− e−s

s
;

L{f (t)} does not depend on k ;
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The Laplace Transform Definition of the Laplace Transform

Example: Applying Double Integration By-Parts

Let f (t) = sin at, t ≥ 0;

L{sin at} = F (s) =

∫ ∞

0

e−st sin atdt, s > 0;

Since F (s) = lim
A→∞

∫ A

0
e−st sin atdt, upon integrating by parts, we

obtain F (s) = lim
A→∞

[

−e−st cos at

a

∣

∣

∣

∣

A

0

− s

a

∫ A

0
e−st cos atdt

]

=

1

a
− s

a

∫ ∞

0
e−st cos atdt;

A second integration by parts then yields

F (s) =
1

a
− s2

a2

∫ ∞

0
e−st sin atdt =

1

a
− s2

a2
F (s);

Hence, solving for F (s), we have F (s) =
a

s2 + a2
, s > 0;
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The Laplace Transform Definition of the Laplace Transform

Linearity of the Laplace Transform

Now let us suppose that f1 and f2 are two functions whose Laplace
transforms exist for s > a1 and s > a2, respectively;

Then, for s greater than the maximum of a1 and a2,

L{c1f1(t) + c2f2(t)} =

∫ ∞

0
e−st [c1f1(t) + c2f2(t)]dt

= c1

∫ ∞

0
e−st f1(t)dt + c2

∫ ∞

0
e−st f2(t)dt

= c1L{f1(t)}+ c2L{f2(t)};

Hence

L{c1f1(t) + c2f2(t)} = c1L{f1(t)}+ c2L{f2(t)};

Thus, the Laplace transform is a linear operator;
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The Laplace Transform Definition of the Laplace Transform

Example

Find the Laplace transform of

f (t) = 5e−2t − 3 sin 4t, t ≥ 0;

Then for s > 0,

L{f (t)} = L{5e−2t − 3 sin 4t}

= 5L{e−2t} − 3L{sin 4t}

= 5
1

s + 2
− 3

4

s2 + 16

=
5

s + 2
− 12

s2 + 16
;
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The Laplace Transform Solution of Initial Value Problems

Subsection 2

Solution of Initial Value Problems
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The Laplace Transform Solution of Initial Value Problems

Laplace Transforms of Derivatives

Theorem (Laplace Transform of Derivative)

Suppose that f is continuous and f ′ is piecewise continuous on any
interval 0 ≤ t ≤ A; Suppose, further, that there exist constants K , a and
M, such that |f (t)| ≤ Keat for t ≥ M; Then L{f ′(t)} exists for s > a,
and, moreover,

L{f ′(t)} = sL{f (t)} − f (0).

Corollary (Laplace Transform of Higher Derivatives)

Suppose that the functions f , f ′, . . . , f (n−1) are continuous and that f (n) is
piecewise continuous on any interval 0 ≤ t ≤ A; Suppose, further, that
there exist constants K , a and M such that |f (t)| ≤ Keat , |f ′(t)| ≤ Keat ,
. . . , |f (n−1)(t)| ≤ Keat , for t ≥ M; Then L{f (n)(t)} exists for s > a and

L{f (n)(t)} = snL{f (t)} − sn−1f (0)− . . .− sf (n−2)(0) − f (n−1)(0).
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The Laplace Transform Solution of Initial Value Problems

Example (Via Characteristic)

Consider y ′′ − y ′ − 2y = 0, with y(0) = 1, y ′(0) = 0;

The characteristic equation is r2 − r − 2 = (r − 2)(r + 1) = 0; So the
general solution is

y = c1e
−t + c2e

2t ;

The initial conditions give c1 + c2 = 1 and −c1 + 2c2 = 0;

Therefore, we get c1 = 2
3 and c2 =

1
3 ;

So we get

y = φ(t) =
2

3
e−t +

1

3
e2t ;
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The Laplace Transform Solution of Initial Value Problems

Example (Via Laplace)

Assume y = φ(t) satisfies y ′′ − y ′ − 2y = 0, with y(0) = 1,
y ′(0) = 0; Then, L{y ′′} − L{y ′} − 2L{y} = 0; So by the corollary,

s2L{y} − sy(0)− y ′(0)− [sL{y} − y(0)]− 2L{y} = 0,

or, writing Y (s) = L{y}, (s2 − s − 2)Y (s)+ (1− s)y(0)− y ′(0) = 0;
Substituting for y(0) and y ′(0) and then solving for Y (s), we obtain
Y (s) = s−1

s2−s−2
= s−1

(s−2)(s+1) ; We expand into partial fractions:

Y (s) =
s − 1

(s − 2)(s + 1)
=

a

s − 2
+

b

s + 1
=

a(s + 1) + b(s − 2)

(s − 2)(s + 1)
,

whence s − 1 = a(s + 1) + b(s − 2), giving a + b = 1 and

a − 2b = −1; So a = 1
3 and b = 2

3 ; Thus, Y (s) = 1/3
s−2 + 2/3

s+1 ; Since
1
3e

2t has the transform 1
3

1
s−2 and 2

3e
−t has the transform 2

3
1

s+1 , the

linearity of the Laplace transform gives y = φ(t) = 1
3e

2t + 2
3e

−t ;
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The Laplace Transform Solution of Initial Value Problems

The Method for Solving the General Equation

Consider ay ′′ + by ′ + cy = f (t);

Assuming that the solution y = φ(t) satisfies the conditions of the
corollary for n = 2, we can take the transform

a[s2Y (s)− sy(0)− y ′(0)] + b[sY (s)− y(0)] + cY (s) = F (s),

where F (s) is the transform of f (t);

By solving for Y (s), we find that

Y (s) =
(as + b)y(0) + ay ′(0)

as2 + bs + c
+

F (s)

as2 + bs + c
;

The problem is then solved, provided that we can find the function
y = φ(t) whose transform is Y (s);
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The Laplace Transform Solution of Initial Value Problems

Advantages of the Method

The transform Y (s) of the unknown function y = φ(t) is found by
solving an algebraic equation rather than a differential equation;

The solution satisfying given initial conditions is automatically found,
so that the task of determining appropriate values for the arbitrary
constants in the general solution does not arise;

Nonhomogeneous equations are handled in exactly the same way as
homogeneous ones; it is not necessary to solve the corresponding
homogeneous equation first;

The method can be applied in the same way to higher order
equations, as long as we assume that the solution satisfies the
conditions of the corollary for the appropriate value of n;
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The Laplace Transform Solution of Initial Value Problems

Potential Disadvantages

The use of partial fractions in determining φ(t) requires us to factor
the polynomial in the denominator of Y (s), whence finding roots of
the characteristic equation is not avoided; For equations of higher
than second order this may require a numerical approximation;

The main difficulty lies in determining the function y = φ(t)
corresponding to the transform Y (s); This problem is known as the
inversion problem for the Laplace transform;

φ(t) is called the inverse transform corresponding to Y (s), and the
process of finding φ(t) from Y (s) is known as inverting the

transform; We use L−1{Y (s)} for the inverse transform of Y (s);

If f and g are continuous functions with the same Laplace transform,
then f and g must be identical; Thus, there is essentially a one-to-one
correspondence between functions and their Laplace transforms;
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The Laplace Transform Solution of Initial Value Problems

Table of Transforms

f (t) F (s) f (t) F (s)

1 1
s

tneat n!
(s−a)n+1

eat 1
s−a

uc(t)
e−cs

s

tn n!
sn+1 uc(t)f (t − c) e−csF (s)

tp
Γ(p+1)
sp+1 ect f (t) F (s − c)

sin at a
s2+a2

f (ct) 1
c
F ( s

c
)

cos at s
s2+a2

∫ t

0 f (t − τ)g(τ)dτ F (s)G (s)

sinh at a
s2−a2

δ(t − c) e−cs

cosh at s
s2−a2

f (n)(t) snF (s)− sn−1f (0)−
· · · − f (n−1)(0)

eat sin bt b
(s−a)2+b2

(−1)nf (t) F (n)(s)

eat cos bt s−a
(s−a)2+b2
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The Laplace Transform Solution of Initial Value Problems

Example

Find the solution of y ′′ + y = sin 2t, with y(0) = 2, y ′(0) = 1;

Suppose y = φ(t), satisfying all conditions of the corollary; Then,
L{y ′′}+ L{y} = L{sin 2t}, whence

s2Y (s)− sy(0)− y ′(0) + Y (s) =
2

s2 + 4
;

Thus, we obtain

(s2 + 1)Y (s) = sy(0) + y ′(0) + 2
s2+4

(s2 + 1)Y (s) = (2s+1)(s2+4)+2
s2+4

Y (s) = 2s3+s2+8s+6
(s2+1)(s2+4)

;

By partial fractions

Y (s) = as+b
s2+1

+ cs+d
s2+4

= (as+b)(s2+4)+(cs+d)(s2+1)
(s2+1)(s2+4)

= as3+bs2+4as+4b+cs3+ds2+cs+d
(s2+1)(s2+4)

;
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The Laplace Transform Solution of Initial Value Problems

Example (Cont’d)

This yields
2s3 + s2 +8s +6 = (a+ c)s3 + (b+ d)s2 + (4a+ c)s + (4b+ d); So,















a + c = 2
b + d = 1
4a + c = 8
4b + d = 6















⇒















a = 2

b = 5
3

c = 0
d = − 2

3















.

Therefore,

Y (s) =
2s

s2 + 1
+

5/3

s2 + 1
− 2/3

s2 + 4
;

With the help of the table:

y = φ(t) = 2 cos t +
5

3
sin t − 1

3
sin 2t;
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The Laplace Transform Solution of Initial Value Problems

Example

Find the solution of y (4) − y = 0, y(0) = 0, y ′(0) = 1, y ′′(0) = 0,
y ′′′(0) = 0;

In this problem we need to assume that the solution y = φ(t) satisfies
the conditions of the corollary for n = 4; Taking Laplace transforms
we get L{y (4)} − L{y} = L{0}, whence

s4Y (s)− s3y(0)− s2y ′(0)− sy ′′(0)− y ′′′(0)− Y (s) = 0;

Thus, s4Y (s)− s2 − Y (s) = 0, giving Y (s) = s2

s4−1
; A partial

fraction expansion of Y (s) is

Y (s) =
as + b

s2 − 1
+

cs + d

s2 + 1
=

(as + b)(s2 + 1) + (cs + d)(s2 − 1)

(s2 − 1)(s2 + 1)
;

It follows that (as + b)(s2 + 1) + (cs + d)(s2 − 1) = s2;
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The Laplace Transform Solution of Initial Value Problems

Example (Cont’d)

We set Y (s) = s2

s4−1
= as+b

s2−1
+ cs+d

s2+1
and found

(as + b)(s2 + 1) + (cs + d)(s2 − 1) = s2;

For s = 1 and s = −1, we obtain 2(a + b) = 1, 2(−a + b) = 1,
whence a = 0 and b = 1

2 ; If we set s = 0, then b − d = 0, so d = 1
2 ;

Finally, equating the coefficients of the cubic terms, a + c = 0, so
c = 0; Thus,

Y (s) =
1/2

s2 − 1
+

1/2

s2 + 1

and, therefore

y = φ(t) =
1

2
sinh t +

1

2
sin t;
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The Laplace Transform Step Functions

Subsection 3

Step Functions
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The Laplace Transform Step Functions

Unit Step (Heavyside) Function

All functions appearing below will be assumed to be piecewise
continuous and of exponential order, so that their Laplace transforms
exist, at least for s sufficiently large;

The unit step function or Heaviside function is denoted by uc and

is defined by uc(t) =

{

0, if t < c ,
1, if t ≥ c .

The graph of y = uc(t) and that of y = 1− uc(t) are shown below:

George Voutsadakis (LSSU) Differential Equations January 2014 31 / 56



The Laplace Transform Step Functions

Example (A Rectangular Pulse)

Sketch the graph of y = h(t), where h(t) = uπ(t)− u2π(t), t ≥ 0;

From the definition of uc(t), we get

h(t) =







0− 0 = 0, if 0 ≤ t < π,
1− 0 = 1, if π ≤ t < 2π,
1− 1 = 0, if 2π ≤ t <∞.

Thus the equation y = h(t)

has the graph shown here:

This function can be thought of as a rectangular pulse.
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The Laplace Transform Step Functions

Expressing Step Functions Using uc(t)

Consider the function

f (t) =















2, if 0 ≤ t < 4,
5, if 4 ≤ t < 7,

−1, if 7 ≤ t < 9,
1, if t ≥ 9,

whose graph is shown here: Ex-
press f (t) in terms of uc(t);

We start with the function f1(t) = 2, which agrees with f (t) on [0, 4);
To produce the jump of three units at t = 4, we add 3u4(t) to f1(t),
obtaining f2(t) = 2 + 3u4(t), which agrees with f (t) on [0, 7); The
negative jump of six units at t = 7 corresponds to adding −6u7(t),
which gives f3(t) = 2 + 3u4(t)− 6u7(t); Finally, we must add 2u9(t)
to match the jump of two units at t = 9; Thus we obtain
f (t) = 2 + 3u4(t)− 6u7(t) + 2u9(t).
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The Laplace Transform Step Functions

The Laplace Transform of uc and of Shifts

The Laplace transform of uc is easily determined:

L{uc(t)} =

∫ ∞

0
e−stuc(t)dt =

∫ ∞

c

e−stdt = e−cs

s
, s > 0;

For f defined for t ≥ 0, we define
y = g(t) =
{

0, if t < c ,
f (t − c), if t ≥ c ,

Using uc we can write g(t) = uc(t)f (t − c);

Then, the transform of f (t) and that of its translation uc(t)f (t − c)
are related as follows:

Theorem (Transform of a Shift)

If F (s) = L{f (t)} exists for s > a ≥ 0, and if c is a positive constant,
then L{uc (t)f (t − c)} = e−csL{f (t)} = e−csF (s), s > a; Conversely, if
f (t) = L−1{F (s)}, then uc(t)f (t − c) = L−1{e−csF (s)}.
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The Laplace Transform Step Functions

Example (Laplace Transform)

If the function f is defined by

f (t) =
{

sin t, if 0 ≤ t < π
4 ,

sin t + cos (t − π
4 ), if t ≥ π

4 ,

find L{f (t)};

Note that f (t) = sin t + g(t), where

g(t) =

{

0, if t < π
4 ,

cos (t − π
4 ), if t ≥ π

4 .
Thus, g(t) = uπ/4(t) cos (t − π

4 ),

and L{f (t)} = L{sin t}+ L{uπ/4(t) cos (t − π
4 )} =

L{sin t}+ e−πs/4L{cos t}; Introducing the transforms of sin t and
cos t, we obtain

L{f (t)} =
1

s2 + 1
+ e−πs/4 s

s2 + 1
=

1 + se−πs/4

s2 + 1
;
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The Laplace Transform Step Functions

Example (Inverse Laplace Transform)

Find the inverse transform of F (s) = 1−e−2s

s2
;

From the linearity of the inverse transform we have

f (t) = L−1{F (s)}
= L−1{ 1

s2
} − L−1{ e−2s

s2
}

= t − u2(t)(t − 2);

The function f may also be written as

f (t) =

{

t, if 0 ≤ t < 2,
2, if t ≥ 2.
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The Laplace Transform Step Functions

Another Property of the Laplace Transform

Theorem

If F (s) = L{f (t)} exists for s > a ≥ 0, and if c is a constant, then

L{ect f (t)} = F (s − c), s > a + c ;

Conversely, if f (t) = L−1{F (s)}, then

ect f (t) = L−1{F (s − c)}.

Example: Find the inverse transform of G (s) = 1
s2−4s+5

;

By completing the square in the denominator, we can write
G (s) = 1

(s−2)2+1
= F (s − 2), where F (s) = 1

s2+1
; Since

L−1{F (s)} = sin t, it follows that

g(t) = L−1{G (s)} = L−1{F (s − 2)} Theorem
= e2t sin t.
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The Laplace Transform Differential Equations with Discontinuous Forcing Functions

Subsection 4

Differential Equations with Discontinuous Forcing Functions
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The Laplace Transform Differential Equations with Discontinuous Forcing Functions

Example I

Find the solution of the differential equation 2y ′′ + y ′ + 2y = g(t),

where g(t) = u5(t)− u20(t) =

{

1, if 5 ≤ t < 20,
0, if 0 ≤ t < 5 and t ≥ 20.

Assume that the initial conditions are y(0) = 0, y ′(0) = 0;

The Laplace transform is

2s2Y (s)− 2sy(0) − 2y ′(0) + sY (s)− y(0) + 2Y (s)

= L{u5(t)} − L{u20(t)} = e−5s−e−20s

s
;

Thus, 2s2Y (s) + sY (s) + 2Y (s) = e−5s−e−20s

s
, giving

Y (s) =
e−5s − e−20s

s(2s2 + s + 2)
;

So

Y (s) = (e−5s − e−20s )H(s), where H(s) =
1

s(2s2 + s + 2)
;
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The Laplace Transform Differential Equations with Discontinuous Forcing Functions

Example I (Cont’d)

We found Y (s) = (e−5s − e−20s)H(s), where H(s) = 1
s(2s2+s+2)

;

We conclude that, for h(t) = L−1{H(s)},
y = φ(t) = u5(t)h(t − 5)− u20(t)h(t − 20);

To determine h(t), we use the partial fraction expansion of

H(s) =
a

s
+

bs + c

2s2 + s + 2
;

We obtain
H(s) = a(2s2+s+2)+(bs+c)s

s(2s2+s+2)
;

(2a + b)s2 + (a + c)s + 2a = 1;

a = 1
2 ; b = − 1; c = − 1

2 ;

Thus,

H(s) =
1/2

s
− s + 1

2

2s2 + s + 2
;
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The Laplace Transform Differential Equations with Discontinuous Forcing Functions

Example I (Cont’d)

We obtained

H(s) =
1/2

s
− s + 1

2

2s2 + s + 2

=
1/2

s
− 1

2

(s + 1
4) +

1
4

(s + 1
4)

2 + 15
16

=
1/2

s
− 1

2

[

s + 1
4

(s + 1
4)

2 + (
√
15
4 )2

+
1√
15

√
15/4

(s + 1
4 )

2 + (
√
15
4 )2

]

;

h(t) =
1

2
− 1

2

[

e−t/4 cos (
√
15t/4) + (

√
15/15)e−t/4 sin (

√
15t/4)

]

;
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The Laplace Transform Differential Equations with Discontinuous Forcing Functions

Example II

Find a solution of the initial value problem y ′′ + 4y = g(t), y(0) = 0,

y ′(0) = 0, where g(t) =







0, if 0 ≤ t < 5,
t−5
5 , if 5 ≤ t < 10,

1, if t ≥ 10,
.

We write

g(t) = u5(t)
t − 5

5
+u10(t)(1−

t − 5

5
) =

u5(t)(t − 5)− u10(t)(t − 10)

5
;

Taking Laplace transforms

L{y ′′}+ 4L{y} = L{g(t)};
s2Y (s)− sy(0)− y ′(0) + 4Y (s) = e−5s−e−10s

5s2
;

(s2 + 4)Y (s) = e−5s−e−10s

5s2
;

Y (s) = (e−5s−e−10s )H(s)
5 , H(s) = 1

s2(s2+4)
;

Thus, since e−csH(s) has inverse Laplace transform uc(t)h(t − c),

y = φ(t) = u5(t)h(t−5)−u10(t)h(t−10)
5 , where h(t) = L−1{H(s)};
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The Laplace Transform Differential Equations with Discontinuous Forcing Functions

Example II (Cont’d)

We look at the partial fraction expansion of H(s) = 1
s2(s+4)

.

H(s) = as+b
s2

+ cs+d
s2+4

;

H(s) = (as+b)(s2+4)+(cs+d)s2

s2(s2+4)
;

H(s) = (a+c)s3+(b+d)s2+4as+4b
s2(s2+4)

;

a + c = 0, b + d = 0, 4a = 0, 4b = 1;
a = 0, b = 1

4 , c = 0, d = −1
4 ;

So we get H(s) = 1/4
s2

− 1/4
s2+4

; This gives h(t) = 1
4 t − 1

8 sin 2t;
Therefore,

y(t) =
u5(t)[

1
4
(t−5)− 1

8
sin 2(t−5)]−u10(t)[

1
4
(t−10)− 1

8
sin 2(t−10)]

5

= 1
20u5(t)(t − 5)− 1

20u10(t)(t − 10)
− 1

40u5(t) sin (2(t − 5)) + 1
40u10(t) sin (2(t − 10)).
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The Laplace Transform Impulse Functions

Subsection 5

Impulse Functions
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The Laplace Transform Impulse Functions

Impulse Functions

g(t) = dτ (t) =
{

1
2τ , if − τ < t < τ,
0, if t ≤ −τ or t ≥ τ,

,

where τ is a small positive con-
stant;

Then I (τ) =

∫ ∞

−∞
g(t)dt =

∫ τ

−τ

1
2τ dt = 1 independent of the value of

τ as long as τ 6= 0;

Next, we require that τ → 0: As
a result of this limiting operation,
we obtain
lim

τ→0+
dτ (t) = 0, for all t 6= 0,

lim
τ→0+

I (τ) = 1;
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The Laplace Transform Impulse Functions

Unit Impulse Function δ

We define a unit impulse “function” δ by the properties

δ(t) = 0, t 6= 0;

∫ ∞

−∞
δ(t)dt = 1;

There is no ordinary function of the kind studied in elementary
calculus that satisfies these equations; The “function” δ is an example
of what are known as generalized functions; It is usually called the
Dirac delta function;

A unit impulse at an arbitrary point t = t0 is given by δ(t − t0); It
then follows that

δ(t − t0) = 0, t 6= t0;

∫ ∞

−∞
δ(t − t0)dt = 1;

Since δ(t) = lim
τ→0+

dτ (t), the Laplace transform of δ is defined as a

similar limit of the transform of dτ (t);
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The Laplace Transform Impulse Functions

The Laplace Transform of dτ (t − t0)

Let t0 > 0 and define L{δ(t − t0)} = lim
τ→0+

L{dτ (t − t0)};

If τ < t0, which will be the case as τ → 0+, then t0 − τ > 0; Since
dτ (t − t0) is nonzero only in the interval from t0 − τ to t0 + τ , we
have

L{dτ (t − t0)} =

∫ ∞

0

e−stdτ (t − t0)dt =

∫ t0+τ

t0−τ

e−stdτ (t − t0)dt;

Thus,
L{dτ (t − t0)} = 1

2τ

∫ t0+τ

t0−τ
e−stdt

= − 1
2sτ e−st |t=t0+τ

t=t0−τ

= 1
2sτ e

−st0(esτ − e−sτ )

= sinh sτ
sτ e−st0 ;
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The Laplace Transform Impulse Functions

Laplace Transform and Integrals Involving δ

We have found L{dτ (t − t0)} = sinh sτ
sτ e−st0 ; Using L’Hospital’s rule:

lim
τ→0+

sinh sτ
sτ = lim

τ→0+
s cosh sτ

s
= 1; So, we get L{δ(t − t0)} = e−st0 ;

By letting t0 → 0+, L{δ(t)} = lim
t0→0+

e−st0 = 1;

To define the integral of the product of the delta function and any
continuous function f :

∫ ∞

−∞
δ(t − t0)f (t)dt = lim

τ→0+

∫ ∞

−∞
dτ (t − t0)f (t)dt;

Using the definition of dτ (t) and the mean value theorem for integrals,
∫ ∞

−∞
dτ (t − t0)f (t)dt =

1
2τ

∫ t0+τ

t0−τ
f (t)dt = 1

2τ · 2τ · f (t∗) = f (t∗),

where t0 − τ < t∗ < t0 + τ ; Hence t∗ → t0 as τ → 0+, and it follows

that

∫ ∞

−∞
δ(t − t0)f (t)dt = f (t0);
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The Laplace Transform Impulse Functions

An Initial Value Problem

Find the solution of the initial value problem

2y ′′ + y ′ + 2y = δ(t − 5). y(0) = 0, y ′(0) = 0;

Take the Laplace transform

2L{y ′′}+ L{y ′}+ 2L{y} = L{δ(t − 5)};
2(s2Y (s)− sy(0)− y ′(0)) + (sY (s)− y(0)) + 2Y (s) = e−5s ;

(2s2 + s + 2)Y (s) = e−5s ;

So we get

Y (s) =
e−5s

2s2 + s + 2
=

e−5s

2

1

s2 + 1
2s + 1

=
e−5s

2

1

(s + 1
4 )

2 + 15
16

;

Since

L−1

{

1
(s+ 1

4
)2+ 15

16

}

= L−1

{

4√
15

√

15
4

(s+ 1
4
)2+(

√

15
4

)2

}

= 4√
15
e−t/4 sin

√
15
4 t,

we have y = L−1{Y (s)} = 2√
15
u5(t)e

−(t−5)/4 sin
√
15
4 (t − 5);
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The Laplace Transform The Convolution Integral

Subsection 6

The Convolution Integral
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The Laplace Transform The Convolution Integral

Convolution Theorem

The Convolution Theorem

If F (s) = L{f (t)} and G (s) = L{g(t)} both exist for s > a ≥ 0, then
H(s) = F (s)G (s) = L{h(t)}, s > a, where

h(t) =

∫ t

0

f (t − τ)g(τ)dτ =

∫ t

0

f (τ)g(t − τ)dτ .

The function h is known as the convolution of f and g and the integrals
above are known as convolution integrals.

The equality of the two integrals follows by making the change of
variable t − τ = ξ in the first integral;

According to this theorem, the transform of the convolution of two
functions is given by the product of the separate transforms;

It is conventional to emphasize that the convolution integral can be
thought of as a “generalized product” by writing h(t) = (f ∗ g)(t); In
particular, we write (f ∗ g)(t) :=

∫ t

0 f (t − τ)g(τ)dτ ;
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The Laplace Transform The Convolution Integral

Properties of Convolution

The convolution f ∗ g has many of the properties of ordinary
multiplication:

f ∗ g = g ∗ f (commutative law)
f ∗ (g1 + g2) = f ∗ g1 + f ∗ g2 (distributive law)
(f ∗ g) ∗ h = f ∗ (g ∗ h) (associative law)
f ∗ 0 = 0 ∗ f = 0 (absorption law)

In the last equation the zeros denote not the number 0 but the
function that has the value 0 for each value of t;

There are other properties of ordinary multiplication that the
convolution integral does not have;

For example, it is not true in general that f ∗ 1 is equal to f :

(f ∗ 1)(t) =
∫ t

0

f (t − τ) · 1dτ =

∫ t

0

f (t − τ)dτ ; If, for example,

f (t) = cos t, then (f ∗ 1)(t) =
∫ t

0

cos (t − τ)dτ = − sin (t − τ)|t0 =
− sin 0 + sin t = sin t; Clearly, (f ∗ 1)(t) 6= f (t) in this case;
Similarly, it may not be true that f ∗ f is nonnegative;
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The Laplace Transform The Convolution Integral

Example I

Find the inverse transform of H(s) =
a

s2(s2 + a2)
= s−2 · a

s2 + a2
;

Since
L{t} = s−2 and L{ sin at} =

a

s2 + a2
,

the inverse transform of H(s) is

h(t) =

∫ t

0
(t − τ) sin aτdτ =

at − sin at

a2
;

The same result is obtained if h(t) is written

h(t) =

∫ t

0
τ sin a(t − τ)dτ ;

h(t) can also be found by expanding H(s) into partial fractions
a

s2(s2 + a2)
=

1

a

1

s2
− 1

a

1

s2 + a2
;
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The Laplace Transform The Convolution Integral

Example II

Find the solution of the initial value problem y ′′ + 4y = g(t),
y(0) = 3, y ′(0) = −1;

By taking the Laplace transform,

s2Y (s)− 3s + 1 + 4Y (s) = G (s)

Y (s) =
3s − 1

s2 + 4
+

G (s)

s2 + 4
;

Observe that the first and second terms on the right contain the
dependence of Y (s) on the initial conditions and forcing function,
respectively;
Write

Y (s) = 3
s

s2 + 4
− 1

2

2

s2 + 4
+

1

2

2

s2 + 4
G (s);

Then we obtain

y = 3cos 2t − 1

2
sin 2t +

1

2

∫ t

0

sin [2(t − τ)]g(τ)dτ ;
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The Laplace Transform The Convolution Integral

The General Case

Consider ay ′′ + by ′ + cy = g(t), where a, b and c are real constants
and g is a given function, together with the initial conditions
y(0) = y0, y

′(0) = y ′0;
By taking the Laplace transform
a[s2Y (s)− sy(0)− y ′(0)] + b[sY (s)− y(0)] + cY (s) = G (s)

(as2 + bs + c)Y (s)− (as + b)y0 − ay ′0 = G (s);

If we let Φ(s) =
(as + b)y0 + ay ′0
as2 + bs + c

, Ψ(s) =
G (s)

as2 + bs + c
, we can

write Y (s) = Φ(s) + Ψ(s);
Consequently, if φ(t) = L−1{Φ(s)} and ψ(t) = L−1{Ψ(s)},
y = φ(t) + ψ(t);

φ(t) is the solution of the initial value problem ay ′′ + by ′ + cy = 0,
y(0) = y0, y

′(0) = y ′

0, obtained by setting g(t) equal to zero;
ψ(t) is the solution of ay ′′ + by ′ + cy = g(t), y(0) = 0, y ′(0) = 0, in
which the initial values y0 and y ′

0 are each replaced by zero;
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The Laplace Transform The Convolution Integral

The General Case (Cont’d)

We are considering ay ′′ + by ′ + cy = g(t), where a, b and c are real
constants and g is a given function, together with the initial
conditions y(0) = y0, y

′(0) = y ′0;

Once specific values of a, b and c are given, we can find
φ(t) = L−1{Φ(s)} by using the table of transforms, possibly in
conjunction with a translation or a partial fraction expansion;
To find ψ(t) = L−1{Ψ(s)}, it is convenient to write Ψ(s) as
Ψ(s) = H(s)G(s), where H(s) = 1

as2+bs+c
; The function H is known as

the transfer function; H depends only on the properties of the system
under consideration whereas G(s) depends only on the external
excitation g(t) that is applied to the system;
By the convolution theorem we can write

ψ(t) = L−1{H(s)G(s)} =

∫ t

0

h(t − τ)g(τ)dτ , where

h(t) = L−1{H(s)}, and g(t) is the given forcing function;
Thus, ψ(t) is the convolution of the impulse response h(t) and the
forcing function g(t);
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