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Vector Fields on a Manifold
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Vector Fields on a Manifold

o Let M denote a C*° manifold of dimension n.
o We have defined for M the concepts of:

o C® function on an open subset U;
o C° mapping to another manifold.

o This allows us to consider C*°(U), the collection of all C* functions
on the open subset U (including the special case U = M).

o We can verify, as we did for U € R", that C*°(U) is a commutative
algebra over the real numbers R.

o As before, R may be identified in a natural way with the constant
functions and the constant 1 with the unit.
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Vector Fields on a Manifold

o Let M denote a C°° manifold of dimension n.
o Let p € M be a given point.

o We define C°°(p) as the algebra of C* functions whose domain of
definition includes some open neighborhood of p.

o In C*(p), functions are identified if they agree on any neighborhood
of p.
o The objects so obtained are called “germs” of C* functions.
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Vector Fields on a Manifold

o Choose an arbitrary coordinate neighborhood U, ¢ of p.
o Consider the mapping ¢* : C*(¢(p)) — C>°(p) given by

©*(f)="foop.

o It can be verified that ¢* is an isomorphism of the algebra of “germs”
of C* functions at ¢(p) € R" onto the algebra C*°(p).

o This is to be expected since locally M is C*°-equivalent to R" by the
diffeomorphism ¢.

o Our main purpose is to attach to each p € M a tangent vector space
To(M), as was done for R" and E".

o Our first definitions in the latter case giving T,(IR") as directed line
segments do not generalize.

o But the identification of T,(IR") with directional derivatives
generalizes.
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Vector Fields on a Manifold
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Vector Fields on a Manifold

Definition

We define the tangent space T,(M) to M at p to be the set of all
mappings X, : C*°(p) — R satisfying for all o, € R and f,g € C*(p)
the two conditions:

Xp(af + Bg) = a(Xpf) + B(Xpg) (linearity);
X,(%2) = (X,F)g(p) + F(p)(Xpg) (Leibniz Rule),
with the vector space operations in T,(M) defined by

(Xp+ Yo)f = Xof + Y,f;
(@) = ofX,f).

A tangent vector to M at p is any X, € T,(M).
o One can check that this defines a vector space T,(M) at each p € M.
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Vector Fields on a Manifold

o The definition of T,(M) uses only C*°(p), not all of M.

o Thus, if U is any open set of M containing p, then T,(U) and T,(M)
are naturally identified.

o The proof that T,(M) is a vector space includes the case of R".

o The difference is that we no longer have the alternative “geometric”
way of defining T,(M) as pairs of points px as we did in R".

o That method used special features of R"”, namely the existence of a
natural one-to-one correspondence with the vector space V.

o For manifolds in general, any such correspondence entails a choice of
a coordinate neighborhood and depends on the particular choice.

o So, for manifolds, it is not natural in the preceding sense.

o However, for each choice of coordinate neighborhood U, ¢ containing
p € M we obtain an isomorphism to V", as we shall see.

o Using this method, we can establish that dimT,(M) = dimM.



Vector Fields on a Manifold

Theorem
Let F: M — N be a C* map of manifolds. Then, for p € M, the map
F*: C*(F(p)) — C>(p) defined by

F*(f)=foF

is a homomorphism of algebras. Moreover, it induces a dual vector space
homomorphism F, : T,(M) — Tg(,)(N), defined by

F*(Xp)f = XP(F*f)v

which gives F,(X,) as a map of C*(F(p)) to R.
When F : M — M is the identity, both F* and F, are the identity
isomorphism.
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Vector Fields on a Manifold

Theorem (Cont'd)

Finally, if H = G o F is a composition of C* maps, then

H*=F*oG* and H,= G,oF,.

o The proof consists of checking the statements against definitions.
We omit the verification that F* is a homomorphism.
We only consider F, only.
Let X, € To(M) and f,g € C*(F(p)).
We must prove that the map

F.(Xp) : C=(F(p)) = R

is a vector at F(p).
That is, we must show it is a linear map satisfying the Leibniz rule.
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Vector Fields on a Manifold

o We have
Fi(Xp)(fg) = XpF*(fg)
= Xp[(foF)(goF)]
Xo(f o F)g(F(p)) + f(F(p))Xp(g o F).

So we obtain

Fo(Xp)(fg) = (F(Xp))g(F(p)) + f(F(p))Fs(Xp)e-

Linearity is even simpler.

Thus, F.: Tp(M) = Trp)(N).

Further, F, is a homomorphism:

Fi(aXp +BYp)f = (aXp +BYp)(Fof)

= aXp(Fof)+pYp(Fof)
=  aF(Xp)f + BF(Y,p)f
= [aF(Xp) + BFR(YR)IT.
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Vector Fields on a Manifold

o The homomorphism F, : T,(M) — Tg(,)(M) is often called the
differential of F.

o One frequently sees other notations for F,.
o Other notations include dF, DF, F’, and so on.

o The . is a subscript since the mapping is in the same “direction” as
F, that is, from M to N.

o In contrast, F* : C>°(F(p)) — C>°(p) goes opposite to the direction
of F.

o This notational convention can be quite important and reflects a
similar situation in linear algebra related to linear mappings of vector
spaces and their duals.
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Vector Fields on a Manifold

Corollary

Let F: M — N be a diffeomorphism of M onto an open set U C N.
For p € M, Fi: T,(M) — Tg(p)(N) is an isomorphism onto.

o This follows at once from:

o The last statement of the theorem:;
o The remark after the definition of tangent space.

Taking G to be the inverse to F, we get that each of

G, o F,: To(M) = To(M),
FioG,: TF(p)(N) — TF(p)(N)

is the identity isomorphism on the corresponding vector space.
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Vector Fields on a Manifold

o Recall that any open subset of a manifold M is a (sub)manifold of the
same dimension.

o Let U, ¢ be a coordinate neighborhood on M.

o Then the coordinate map ¢ induces an isomorphism
@it Tp(M) = Ty (R")

of the tangent space at each point p € U onto T,(R"), a = ¢(p).

1 maps T,(R") isomorphically onto T,(M).

o Consider, now, the natural basis -2; ...,% at each a € p(U) C R".

aXl,

Eip:@*1<ai,->, i:]-""’na

determine at p = ¢~1(a) € M a basis Eip, ..., E,p of T,(M).
o We call these bases the coordinate frames.
George Voutsadakis (LSSU)

o Similarly, the map ¢~

o The images




Vector Fields on a Manifold

Corollary

To each coordinate neighborhood U on M there corresponds a natural
basis Eip, ..., Esp of To(M), for every p € U. In particular,

dimT,(M) = dimM.
Let f be a C° function defined in a neighborhood of p, and
f=fo (,0_1

its expression in local coordinates relative to U, . Then

of
E,‘pf = <W) .
©(p)
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Vector Fields on a Manifold

Corollary (Cont'd)

In particular, if x'(q) is the ith coordinate function, X,x' is the ith
component of X, in this basis, that is,

n
Xp = (Xpx')Epp.
i=1

o The last statement of the corollary is a restatement of the definition

of , for Ej, = o7t (%).

1[0 0 _
Einz (90*1 (W)) f= %(fo(p 1)‘x:4p(p)'
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Vector Fields on a Manifold

o Take f to be the ith coordinate function, f(q) = x(q).
o Moreover, let

Xp=> o/Ep.

=) J(E w( ) =o'
; (JPX Z OxI (p) )

o We may use this to derive a standard formula which gives the matrix
of the linear map F, relative to local coordinate systems.

o Then
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Vector Fields on a Manifold

o Let F: M — N be a smooth map.
o Let U,p and V, ¥ be coordinate neighborhoods on M and N, with

F(U)C V.

o Suppose that, in these local coordinates, F is given by

o Let pis a point with coordinates a = (al,...,a").

o Then F(p ) has y coordinates determined by these functions.

o Further Iet denote 8—)’3.

1
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Vector Fields on a Manifold

Theorem

Let Ejp = 5 (ax,) and EF(p) zzlJ*_l(a%), i=1,...,nandj=1,...,m,
be the basis of T,(M) and Tg(,)(N), respectively, determined by the given
coordinate neighborhoods. Then

/Oy = .
F*(E,‘p) =Z (W) EjF(p)7 I = 1,...,”.
j=1 C
In terms of components, if X = Za’E,p maps to F,(X,) = Zﬁf

then we have
) n Dyl )
f:E =1,...,m.
/8 <8X) ./ ) ’m

i=1

The partial derivatives in these formulas are evaluated at the coordinates
of p: a=(al,...,a") = ¢(p).
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Vector Fields on a Manifold

o We have F.(Ejp) = F.op;! (%)w(p).

According to the preceding corollary, to compute its components
relative to Ejr(,), we must apply this vector as an operator on
C>°(F(p)) to the coordinate functions y;,

0 0 of'!
. — -1 — = —V; -1 =
F*(Elp).yj = (F* O Py <3Xi>) Yj 8X’.yJ(F o )(x) Ox’

the derivatives being evaluated at the coordinates of p, i.e., at ¢(p).
8yf:>
%'/ o(p)

They could also be written <
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Vector Fields on a Manifold

o In the following F, M, and N are as in the preceding theorem.

Corollary

The rank of F at p is exactly the dimension of the image of F.(T,(M)).
F, is an isomorphism into if and only if this rank is the dimension of M.
It is onto if and only if the rank equals dim/V.

o Note that (%) is exactly the Jacobian of ¢ o F oL,
This matrix was used to define the rank.

It is also the matrix of the linear transformation F, : Tp,(M) — T,(N)
in the given bases.

So we obtain the conclusion from linear algebra.

o This corollary gives a characterization of the rank which is
independent of any coordinate systems.
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Vector Fields on a Manifold

o We apply the theorem to the maps

1 ~—1

F=3op™! and Fl=pop

o These maps give the change of coordinates between U, ¢ and U, @ in
UnuUon M.

o We obtain formulas for:

o Change of basis in T,(M);
o Corresponding change of components relative to these bases.
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Vector Fields on a Manifold

Corollary

Let pe UN U and let Ejp = @5t (%) and Ej, = 3, ! (%) be the bases
of T,(M) corresponding to the two coordinate systems. Then with indices

running from 1 to n, we have

Oxk ~ ~ oxt
= Z (8Xi )so(P) B Z (%)fﬁ(m 4

k 4

If X, =Y o/Ej = 3 BEjp, then

i '8Xi g ,37(1
(e :Z,BJ% and ﬂj:za(‘)xi'
J i
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Vector Fields on a Manifold

o The second set of formulas in the preceding corollary is often used to
define tangent vector at a point p of a manifold.

o A tangent vector Xj, is an equivalence class of the collection of all
n-tuples

{(at,... ;") (U, o € R, U, ¢ a coordinate neighborhood of p}.
o Two such n-tuples
(al,...,a")uﬂ, and (ﬁl"“’ﬁn)ﬂ,{é

are equivalent if they are related as in the last formula of the corollary.
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Vector Fields on a Manifold

o Let M be a submanifold of N.
o Let F: M — N be the immersion or inclusion map of M into N.

o In either case, the mapping F from M (with its C°° manifold
structure) into N (with its C* structure) is a C* mapping, and

rankF = dimM.

o This means that F, : T,(M) — T,(N) is an injective isomorphism.

o So T,(M) can be identified with a subspace of T,(N).

o Under this identification, we can think of T,(M), the tangent space
to M, as a subspace in T,(N) for each p € M.

o Applying this principle to our examples of submanifolds of R",
especially when n =2 or 3, will enable us to recapture some of the
intuitive meaning of tangent vector which was lost in the transition
from Euclidean space to general manifolds.
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Vector Fields on a Manifold

o Let M = (a, b) be an open interval of R.

o Consider the case of a C* curve F : M — N in a manifold.

o For the moment we drop the requirement that F is an immersion.

o Given tg € M, a < tg < b, then % taken at tg is a basis for T, (M).
o Suppose p = F(ty) and f € C*=(p).

o Then F*(%) is determined by its value on all such f:

(&) - (em)

o We call this vector the (tangent) velocity vector to the curve at p.

o In this interpretation we use the parameter t € R as time, and we
think of F(t) as a point moving in N.
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Vector Fields on a Manifold
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Vector Fields on a Manifold

o Let U, ¢ be coordinates around p.
o Then, in the local coordinates, F is given by

~

F(t)=poF(t) = (xl(t), oo x(2)).

o The ith coordinate x’ is a function on U.
o Using somewhat sloppy notation, we write x'(t) = (x' o F)(t);

o Thus, Fu(&)x' = (£0),, which we denote
X(tg), i=1,...,n.

o So by the theorem (with Ej, = % and E's replacing Es)
d N
F. (E) = ;)'(’(to)E,'p.
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Vector Fields on a Manifold

o As a special case let N =R".
o Take the usual (canonical) coordinates of R"
o The formula means that the image of % is just the velocity vector at
the point p = (x!(to),...,x"(to)) of the curve.
o Its components relative to the natural basis at the point p are
Xl(to), R ,X”(to);
o It is the vector of T,(IR") whose:
o Initial point is p = x(tp);
o Terminal point is (x!(to) + x*(to), - - ., x"(to) + x"(to)).
o If the rank of F at tg is 1, then F, is an isomorphism.
o Then, we may identify the tangent space to the image curve at p with
the subspace of T,(IR") spanned by this vector.
o Thus, we obtain the usual tangent line at the point p of the curve.
o If the rank of F at tg is O, then F*(%) =0.
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Vector Fields on a Manifold

o Let M be a two-dimensional submanifold of R3, that is, a surface.

o Let W be an open subset, say a rectangle in the (u, v)-plane R2.

o Let #: W — R3 be a parametrization of a portion of M, that is, 6 is
an imbedding whose image is an open subset V of M.

o V.67 1is a coordinate neighborhood on M.

o Suppose 0(ug, vo) = (X0, Yo, Z0), where we now use (x,y, z) as the
natural coordinates in R3.

o We may assume that @ is given by coordinate functions

x = f(u,v), y=g(u,v), z=h(uv).

o Since 6 is an imbedding, the Jacobian matrix % has rank 2 at

u,v
each point of W.
o We consider the image of the basis vectors % and % at (uo, vo)-
o We denote these by (X,)o and (X, )o.
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Vector Fields on a Manifold
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Vector Fields on a Manifold

o According to the first formula of the theorem,

_ 9\ _

(XU)O - (%)_Buax—i_auay—i_auaz’
_ J\ _ Ox 0 dy 0O

(Xv)o = (m)—a_ieraiaeravap

where we have written gfl, gi for gz, %, and so on, these derivatives
being evaluated at wug, vp.

o Since 6, has rank 2, these are linearly independent vectors.

o So they span a two-dimensional subspace of T(XWO,ZO)(]R3).

o This subspace is what we have, by our identification, agreed to call
the tangent space of M at the point (x, Yo, 20)-
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Vector Fields on a Manifold

o The tangent space T(Xo7yo720)(IR3) of M at the point (xo, yo, 20)
consists of all the vectors of the form

ab, <%> + 0. <%) = a(Xy)o +B(Xv)o, @, €R.

o Their initial point, of course, is always at (xo, yo, Zo)-

o It can be seen that this subspace is the usual tangent plane to a
surface, as we would naturally expect it to be.

o We next use one of the standard descriptions of the tangent plane at
a point p of a surface M in R3 as the collection of all tangent vectors
at p to curves through p which lie on M.
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Vector Fields on a Manifold

o Let / be an open interval about t = tg.
o Let us consider a curve on N through (xo, yo, 20)-
o It is no loss of generality to suppose the curve is given by F : | — W
composed with 6 : W — R3.
o Thus, u, v are functions of t with:
o u(ty) = up, v(to) = vo;

o O(F(t)) = (x(u(t), v(t)), y(u(t), v(t)), z(u(t), v(1))).

o The tangent to the curve at (xo, yo, Z0) is given by

60 ). (5) =2 + A} + (10}

) dx _ Oxdu  Oxadv
*(w) = (& + 22

where

dt T dudt  Ovdt

evaluated at (xp, yo,20) and t = to.
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Vector Fields on a Manifold

© 06 © o

Substituting and collecting terms, we have

X 8 V4
T )
+ % (Gox tovay + o092)
= 2. )+ 20.(5)
= 0(to)(Xu)o + v(to)(Xv)o-

If we let u=t, v = vy, we obtain just (X,)o = 6*(%).

Similarly, (X, )o is tangent to the parameter curve u = up, v = t.
The coordinate frame vectors are tangent to the coordinate curves.
This means that the (tangent) velocity to every curve in M through
p = (x0, Y0, 20) lies in the subspace T,(M) C T,(R3) spanned by
(Xu)O and (XV)O-

Conversely, by suitable choice of the curve, every vector of T,(M)
may be so represented.
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Vector Fields on a Manifold

Subsection 2
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Vector Fields on a Manifold

o We defined the notion of a tangent vector to a manifold at a point
p € M, that is, of an element X, of T,(M).

o Now we define and give examples of a C"-vector field on M, r > 0.

o A vector field X on M is a “function” assigning
to each point p of M an element X, of T,(M).

o We place the word “function” in quotation
marks since we have not really defined its range,
only its domain M.

o The range is, in fact, the set T(M) consisting of
all tangent vectors at all points of M,

T(M) = | To(M).

peEM

George Voutsadakis (LSSU)



Vector Fields on a Manifold

o The set T(M) is partitioned into disjoint subsets { T,(M)} which are
indexed by the points of M.

o Thatis, to p € M corresponds its tangent space T,(M).

o It follows that there is a natural projection

T T(M) — M,
Xp = p.

o The vector field X as a function X : M — T(M), must satisfy the
condition
moX =iy,

the identity on M.
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Vector Fields on a Manifold

o A vector field X is also required to satisfy some condition of
regularity, that is, of continuity or differentiability.

o For p e M, let U, ¢ be any coordinate neighborhood of p.

o Let Eyp, ..., Epp be the corresponding basis (coordinate frames) of
Tp(M).

o Then X,, the value of X at p, may be written uniquely as

Xo=> o'Ep.
i=1
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Vector Fields on a Manifold

o Suppose p varies in U.

o Then the components al,...,a" are well-defined functions of p.

o They must, then, be given by functions of the local coordinates
(denoted by the same letters)

al=a/(xt,...,x"), i=1,...,n, ono(U)CR"

o We say that X is of class C", r > 0, if these functions are of class C"
on U, for every local coordinate system U, .

o The expressions, given in a previous corollary, for changing coordinate
systems are linear, with C*° coefficients.

o We see that this definition is independent of the coordinates used.
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Vector Fields on a Manifold

Definition
A vector field X of class C" on M is a function assigning, to each point
p of M, a vector

Xp € Tp(M)
whose components in the frames of any local coordinates U, ¢ are

functions of class C" on the domain U of the coordinates.
Unless otherwise noted, we will use vector field to mean C°-vector field.
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Vector Fields on a Manifold

o One way to avoid reliance on local coordinates is to define X to be
C’ if, for every C* function f whose domain Ws is an open subset of
U, the function Xf, defined by

(XF)(p) = Xof,

is of class C".
o Another very elegant approach is to:

o Give T(M) the structure of a C° manifold;
o Then X becomes a mapping

X: M= T(M)

of one C* manifold to another.

In this case we have already defined the meaning of C".

George Voutsadakis (LSSU) Differential Geometry



Vector Fields on a Manifold

o Let M =TR3 - {0}.

o Consider the gravitational field of an object of unit mass at 0.
o It is a C*-vector field.
Qo

Consider the basis

0 0 0
A B2 go

B = E;.

2

The components al, a2, a3 relative to this basis are

©

i

. X .
O/:ﬁ’ i=1,2,3,

where

P \/(Xl (x2)2 + (x3)2.
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Vector Fields on a Manifold

Let M be a manifold.

Let U, ¢ be a coordinate neighborhood on M.

Then U is an open set of M.

So it is itself a manifold of the same dimension, say n.

© 06 0 o

Consider the vector fields

0
E,'=<p*_1 (—), i=1,...,n.

©

ox!

o They have components o/ = 5{

o These are constants.

o Hence, they are C*° functions on U.
o So each E; is a C*®-vector field on U.

o Theset E,...,E, is a basis of T,(M) at
each p € U, the coordinate frames.
George Voutsadakis (LSSU) Differential Geometry




Vector Fields on a Manifold

o Consider a manifold M, with dimM = n.

o A set of k vector fields on M which is linearly independent at each
point is called a field of k-frames on M.

o If k = n, then the frames form a basis at each point.

o It would be convenient if on a manifold one could always find such a
field of n-frames.

o Then the components of any vector field would be globally defined.

o That is, they would be functions whose domain is all of M.
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Vector Fields on a Manifold

o This would relieve us of the necessity of using local coordinate
neighborhoods and the associated frames E, ..., E,.

o However, it is known that this is not possible in general.

o For example, on the sphere S? it is not possible to define even one
continuous vector field X which is linearly independent (nonzero) at
each point of S2.

o This a classical theorem of algebraic topology discovered by Brouwer
that will be proved later.
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Vector Fields on a Manifold

Lemma
Let M be a manifold. Let N be a regular submanifold of M. Let X be a
C>°-vector field on M, such that, for each p € N, X, € T,(N). Then X
restricted to N is a C*°-vector field on N.

o By hypothesis, X assigns to each p € N the tangent vector X, in the
subspace T,(N) of T,(M).
We must prove that X restricted to N is of class C*.
Let U, ¢ be a preferred coordinate neighborhood in M relative to N.

So V=UNN,y = ¢|y is a coordinate neighborhood on N, such
that p € V if and only if its last m — n coordinates are zero,

x"(p)=---=xM(p) =0, dimN =n, dimM = m.
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Vector Fields on a Manifold

o Suppose on U we have X = > o'E;.
By a previous corollary, Eqp, ..., Emp span T(N) for p € V.
So, on V = UN N, we must have

The o' are the same functions as in the case of U but with the last
m — n variables equated to zero when we restrict to V.

Thus, X restricted to NN has C°°-components relative to the frames
Ei, ..., E, of preferred coordinate systems.

However, by a previous corollary, it is clearly sufficient to check that
X is C*° for a covering by coordinate neighborhoods.

It must then be C*° relative to any coordinates.
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Vector Fields on a Manifold

o On the 2-sphere 52, there do not exist any nonvanishing continuous
vector fields.

o However, there are three mutually perpendicular unit vector fields on
S3 C R?, that is, a frame field.

o Let .
S3 =< (x1,x2, X3, X4) Z(x’ v =

o Let the vector fields be given by

- _ 2i 1.0 4 0 _ 3. 0
X = & + X 8X2+X 3x3 8x4’
_ 5 8 A 0
Y = 8x1 X 8x2 +X 8x3 +X 8x4’

Z = 3X1+XW_X8X3+X 8x4’

at the point x = (x/,x?, x3, x%) of S3.
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Vector Fields on a Manifold

o At each point these are mutually orthogonal unit vectors in R*.
o So they are independent.

o It can be seen that they are orthogonal to the radius vector from the
origin 0 to the point x of S3.

o This shows that they are tangent to S3.

o Finally, by the preceding lemma with N = S3 and M = R*%, they are
C™>-vector fields.
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o It is possible to show that all odd-dimensional spheres have at least
one nonvanishing C°°-vector field.

o Moreover, like S?, no even-dimensional sphere has any continuous
nonvanishing field of tangent vectors.

o It has been proved that only the spheres S, 3. S7 have a C* field of
bases, as we have just seen to be the case for S3.

o Manifolds with this very special property are called parallelizable.

o As already mentioned, coordinate neighborhoods are parallelizable.
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o We have established the concept of vector field on a manifold.

o We must now consider what happens when we map a manifold N on
which a vector field is defined into another manifold M.

o We saw that if F: N — M is a C* map, then to each point p € M
there is associated a homomorphism

Fy : TP(N) — TF(p)(M).

o If X is a vector field on N, then F,(X,) is a vector at F(p).
o But this process does not, in general, induce a vector field on M:
o F(N) may not be all of M, that is, given g € M it may well happen
that for no p € N is F(p) = q.
o Even if F~1(q) is not empty, it may contain more than one element,
say pi, p2, with p1 # po. Then it may happen that F.(Xp,) # Fi(Xp,)-
So that there would be no uniquely determined vector Y, at g which is
the image of vectors of the field X on N.
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o It is easy to construct examples of these mishaps.

o Let N be the half-space x! > 0 in R3.

o Let F: N — M be projection to the coordinate plane x3 = 0.
o Let X be the gravitational field restricted to N.

o The image vectors do not determine a vector field on M.
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Definition

Let N and M be manifolds.
Let F: N — M be a C*° map.
Let X be a vector field on N.
Suppose we have a vector field Y on M, such that, for each g € M and
peF g CN,

Fu(Xp) = Yo

Then we say that the vector fields X and Y are F-related and we write,

briefly,
Y = F.(X).

We do not require F to be onto. If F~1(q) is empty, then the condition is
vacuously satisfied.
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If F: N — M is a diffeomorphism, then each vector field X on N is
F-related to a uniquely determined vector field Y on M.

o Since F is a diffeomorphism, it has an inverse G : M — N.
Moreover, at each point p we have

F* : TP(N) — TF(p)(M)

is an isomorphism onto, with G, as inverse.
Let X be a C®-vector field on N.
Then, at each point g of M, the vector

Yq = F(Xs(9))

is uniquely determined.
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o It then remains to check that Y is a C®-vector field.
This is immediate if we:

o Introduce local coordinates;
o Apply a previous theorem to the component functions.

: Under the hypotheses of the lemma we have a second
example of F-related vector fields.

Let F: N — M be the inclusion map.
Let X’ be X restricted to N.
Then X’ and X are F-related by the lemma.
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Definition
Let F: M — M be a diffeomorphism. Let X be a C* vector field on M,
such that

F(X) = X,

that is, X is F-related to itself. Then X is said to be invariant with
respect to F or F-invariant.
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Theorem

Let G be a Lie group and T.(G) the tangent space at the identity. Then
each X, € T.(G) determines uniquely a C*-vector field X on G which is
invariant under left translations. In particular, G is parallelizable.

o Let g € G.
Consider the unique left translation L, taking e to g.
Therefore, if it exists, X is uniquely determined by the formula

Xg = Lgu(Xe).

Except for differentiability, this formula does define a left invariant
vector field, since for a € G, we have

La*(Xg) =Lao Lg*(Xe) = Lag*(Xe) = Xag-
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o We must show that X, so determined, is C°°.

Let U, p be a coordinate neighborhood of e, such that

o(e) = (0,....0).
Let V be a neighborhood of e satisfying VV C U.
Let g, h € V have coordinates

x=(%...,x") and y=(yl...,y").

Let the coordinates of the product gh be
z=(z4...,2z").

Then . .
z'="f'(x,y), i=1...,n,

are C* functions on ¢(V) x ¢(V).
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o Write

n

Xe = Z’YiEie, At ..., 4" real numbers.
i=1

In local coordinates L, is given by
Z'="fi(x,y), i=1,...,n,

with the coordinates x of g fixed.
So, by a previous theorem, the formula above for X, becomes

. (Of
X=te =57 (55) &

It follows that, on V/, the components of Xg in the coordinate frames
are C°° functions of the local coordinates.
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o However, for any a € G, the open set aV is the diffeomorphic image
by L, of V.
Moreover, X, as noted above, is Lj-invariant.

So, for every g = ah € aV/, we have
Xg = Lax(Xn).

It follows that X on aV is L,-related to X on V.
Therefore, X is C* on aV by the previous theorem.
But X is C* in a neighborhood of each element of G.
So X is C* on G.
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Corollary
Let G; and G, be Lie groups and F : G; — Go a homomorphism. Then to
each left-invariant vector field X on Gy, there is a uniquely determined
left-invariant vector field Y on G, which is F-related to X.

o By the theorem, X is determined by X, where e; is the identity of
Gi.
Let e; = F(e1) be the identity of Gp.
Let Y be the uniquely determined left-invariant vector field on Gy,
such that

Ye, = Fi(Xe,).

This is certainly a necessary condition for Y to be F-related to X.
It remains to see whether Y satisfies

Fi(Xg) = Yr(g), forevery g € Gi.
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o We must show that the vector field Y satisfies
F.(Xg) = YF(g), for every g € Gi.

If so, Y is indeed F-related (and uniquely determined).
We have F(x) = F(g)F(g~1x).
Using this, we write F as a composition

F=LpgoFolg

Now both X and Y are left-invariant by assumption.

So this gives
F*(Xg) = LF(g)* oF,o0 Lg ( )
F*(Xg) = LF(g)* © F*(X ) L g)*
Fi(Xg) = Y,:(g).

Therefore, Y meets all conditions and the corollary is true.
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Subsection 3
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o We study the case of a connected Lie group of dimension 1 acting on
a manifold M.

o When we looked at the case of a Lie group of dimension 0 we focused
in the space of orbits.

o Here we are mainly concerned with the relation to vector fields on M.

o For this reason we shall limit ourselves to the action of R, by which
we denote the additive (Lie) group of real numbers R, acting on M.

o This will illustrate all the relevant facts.

o We note that R and S? are the only connected Lie groups of
dimension 1.

o These two cases, discrete Lie groups and the one-dimensional Lie
group R acting on M, will give some idea of the depth and diversity
of the whole subject of group action on manifolds.
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o Consider the general definition of action specialized to an action 6 of
R on M.
o Let
0:RxM—M

be a C°° mapping which satisfies the two conditions:
6o(p) = p, for all p € M;
0t 0 0s(p) = Or1+s(p) = 05 0 0:(p), for all p € M and s,t € R.

o We will often write 6(t, p) as 6:(p) or 6,(t), depending on which
variable is to be emphasized.
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Qo

Qo

Qo

Suppose that M = R3.
Let a = (a',a%, a%) be fixed and different from 0.
Consider the mapping

0:(x) = (x* 4 a't, x* + a°t, x> + a’t).

o It defines a C*° action of R on M.

©

© 0 o o

To each t € R, it assigns the translation 6; : R® — R3, taking the
point x to the point x + ta.

This is a free action.
The orbits consist of straight lines parallel to the vector a.
A particularly simple special case is given by a = (1,0, 0).
Then

0:(x) = (x* + t,x%,x%).
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o Suppose that 6 : R x M — M is any such C* action.

o It defines on M a C*-vector field X, which we shall call the
infinitesimal generator of 0, according to the following prescription.

o For each p e M, X, : C*°(p) — R is given by

Xof = Jim [ (0nlp)) ~ F(p)]

o We may check directly that X, is a vector at p.
o We may then verify that p — X, defines a vector field.
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o Alternatively, we may proceed as follows

o Let U, ¢ be a coordinate neighborhood of p € M.
o Let Is x V be an open subset of (0,p) in R x M, where:

o l={teR:-d<t<d}
o V and 6 > 0 are so chosen that

o(ls x V) C U.

o In particular, V = 6p(V) is contained in U and contains p.
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o Restricted to the open set Is x V, we may write 6 in local coordinates
1 1 1 1
y =h(t,x,...,x"),...,y"=h"(t,x",...,x")

or y = h(t, x), where:
o x = (x1,...,x") are the coordinates of q € V;
o y=(y!,...,y") are the coordinates of 0;(q), its image.
o The h; are defined and C* on Is x (V).
o The range of h(t,x) isin (V).
o The fact that 6 is the identity and 0,1+, = 0, 0 0y, is reflected in
having, for all i =1,...,n,
o h’:(O,x):x"; .
o h'(t1 + to,x) = h'(t1, h(t2, x)).
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o Let f(x!,...,x") be the local expression for f € C*°(p)
o Then 1 1

[F(0a(p)) — ()] = 1< [F(h(AE X)) = F)].
o Let dot indicate differentiation with respect to t.

o Then, we also have

At—0 At

Xof = lim ——[F(h(At,x)) — F(x)] = Zhi(o’x)@:’) '
i=1 »(p)

o This formula is valid for every p € V.
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o We obtained, for all p € V,

LI of
X,f = Z R (0, x) (W) :
i=1 ¢(p)
o The formula implies that on V/;

Xp = h(0,x)Ep,

where:
o Ei =9 ()
o x = ¢(p).

This shows that X is a C*°-vector field over V.

But every point of M lies in such a neighborhood.

So X is C*° on M.

Definition of X at p € M involves only the values of § on Is x V.
That is, like derivatives in general, it is defined locally and involves
only values of t near t = 0.
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Let 0 : G x M — M be the action of a group G on a manifold M.

Let X be a vector field on M.

X is said to be invariant under the action of G or G-invariant if X is
invariant under each of the diffeomorphisms

Og : M — M.

In brief if
g (X) = X.
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Let #: R x M — M be a C* action of R on M.
Then the infinitesimal generator X is invariant under this action, that is,

Ot(Xp) = Xo,(p), forall t € R.
o Let f € C*°(0+(p)), for some (t,p) € R x M.
Compute 61.(Xp)f,
: 1
Ot (Xp)f = Xp(f 0 0¢) = A';“_W)O A_t[f 0 0¢(0at(p)) — f o 0:(p)].

But R is Abelian and we have 0; 0 Oar = 0:1nt = Oa¢ 0 0.
So
0Xp)f = Tim[(F 0 040)(01(p)) — F(O(PI)] = Xy

Since this holds for all f, the result follows.
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Corollary

If X, =0, then for each g in the orbit of p we have X; = 0.
That is, at the points of an orbit the associated vector field vanishes
identically or is never zero.

o The orbit of p consists of all g such that g = 6:(p) for some t € R.
Thus, by the theorem,
Xy = 00X,
Now 6; is a diffeomorphism.
So 04 is an isomorphism of T,(M) onto T4(M).
So X, = 0 if and only if X, = 0.
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The orbit of p is either a single point or an immersion of R in M by the
map t — 0:(p), depending on whether or not X, = 0.

o The orbit of p is the image of R under the C* map

F: R — M;

Let tp € R and % denote the standard basis of T (R).

F is an immersion if and only if

F. (%) #0, forevery tg € R.
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o Let f € C®(F(tg)) = C*(b4(p)).
Observe that

d d
F* (E)f = d_t(fOF)to

= [ i[foF(tﬁAt)— f o F(to)]
At—0

= AILrEOA—t[f(9t0+At( p)) — f(0(p))]

= Xefo(P)f'

This formula and the preceding corollary show that either X, # 0 and
F is an immersion or else Xp(;) = F*(%) =0.
In the latter case F is a constant map with F(R) = p.
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o Consider again the formula just obtained,

d
F. (E) = Xoy(p) = XF(to)-

o It shows that, at each point p € M, the vector X, is tangent to its
orbit.

o ltis, in fact, the (tangent) velocity vector of the curve t — F(t) in
M, in the sense in which we have previously defined the velocity
vector to a parameterized curve.

o Recall that, for a differentiable map of an open interval J of R into
M, this was defined by F.(Z).
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o The notation F*(%) does not indicate that:

o % (S Tto(R)r

o F, is a homomorphism of T, (R) into Tr(,)(M).
o For this reason we often write either

F(ty) or (Z—f)m

to denote the velocity vector.
o Sometimes we use t — p(t) to denote the mapping rather than F.
o Then its velocity vector is written

d
d_I; or p(t).

o In the notation of the theorem, the formula above can be written

0(t, p) = Xo(t.p)-
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o Suppose we change parameter by a function t = f(s).
o Then s — G(s) = F(f(s)) represents the curve.
o So for ty = f(sp),

dG d d dt d
(ds)so G <ds) ° (ds) (ds dt)

o These give the formula

(%).-(&).~(&)

ds ) ds /) dt/

o Thus the velocity vector with respect to s is a scalar multiple by
(%)50 of the velocity vector with respect to t.

o This may be conveniently written
. dt\ - dp dpdt
G=|—)F(f(s)) or —=——.
(ds) (f(s)) ds dtds
o This vector equation is, of course, just a special case of the chain rule.
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Definition
Let M be a manifold. Let X be a vector field on M.
We say that a curve

t— F(t)
defined on an open interval J of R is an integral curve of X if

dfF

E = XF(t) on J.

o We have just shown that each orbit of the action 6 is an integral
curve of the infinitesimal generator X of 6.

o That is, for each fixed p € M,

0(t, p) = Xo(t.p)-
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o Some natural questions arise concerning vector fields and
one-parameter group actions.
o Is every C*°-vector field the infinitesimal generator of some group
action?
o Can two different actions of R on M give rise to the same vector field
X as infinitesimal generator?

o These questions will be answered next.

o First we use a simple, but instructive, example to:

o lllustrate the difficulties involved;
o Show the necessity for a less restrictive concept of one-parameter group
action.
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o Let M =TR?and let #: R x M — M be defined by

0(t,(x,y)) = (x+ t,y).
o Then the infinitesimal generator is

0

o This action is given by translation of each point (x,y) to a point t
units to the right.

o Suppose now that we remove the origin (0,0) from R? and let
Mo = R? — {(0,0)}.
o For most points 6; is defined as before.
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o However, we cannot obtain an action of R on My by restriction of 0
to R x M.

o This is because points of the closed set
F={(t,(x,0)) : t + x =0} = 67%(0,0)

of R x M are mapped by 6 to the origin.
o On the other hand, let W C R x My be the open set defined by

W =R x My — F (R x M).

o Then 6 = 6|y, maps W onto M.

o Moreover, it preserves many of the features of 6 which we have used.
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o For example, let p = (x,y) € Mp.

o Then, if all terms are defined we get:
(0,p) € W and 6o(p) = p;
Os 0 0:(p) = Os++(p) = 0+ 0 O5(p).

o The infinitesimal generator X is defined, as before, by
_ 1
Xp = lim —=[f(0ac(p)) - f(p)]

o It is again X = %.
o Finally we have orbits t — 6:(p), which are:

o The lines y = constant when p = (x,y), y # 0;
o The portion of the x-axis minus the origin which contains p, for

p = (x,0).
o This curve is not defined for all values of t in the case of the orbit of
a point on the x-axis.
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o Let M be a C* manifold.
o Let W C R x M be an open set which satisfies:
For every p € M, there exist real numbers a(p) < 0 < 3(p), such that

W (Rx{p})={(t,p) : a(p) < t < B(p)}-

o Denote by /(p) the interval ap) < t < B(p).
o Denote by /5 the interval defined by |t| < 6.
o The displayed condition simply states that

w = i(p) x {p}-

peEM
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o We use the preceding notation and consider W as above.

Definition
A local one-parameter group action or flow on a manifold M is a C*

map
0:-wW—-M

which satisfies the following two conditions:
6o(p) = p, for all p € M;
If (s,p) € W, then
a(bs(p)) = ap) —s and  B(0s(p)) = B(p) —s.

Moreover, for any t, such that a(p) —s < t < B(p) — s, O¢+s(p) is defined

and
0 o as(p) = 0t+s(p)'
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o It is easy to check that the preceding example has these properties.

o This example also shows that, to obtain a correspondence between
one-parameter group actions and vector fields, we must abandon the
requirement that W is all of R x M.

o Such actions are called global actions.
o The set W is open and contains (0, p), for each p € M.

o So it also contains /5 x U, U a neighborhood of p, for sufficiently
small § > 0.

o Therefore, the definition of the vector field X (infinitesimal generator)
associated with 6 is valid in the case of local action also.

o Moreover, it associates a C*°-vector field to each flow 6.
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Let R act on M, as in the case of any group acting on M.
For each t, 6; : M — M is a diffeomorphism, with 9,_?1 = 0_;.
Something like this is also true for the local case.

The difference is that 0; is not defined on all of M in general.
Let V; C M be the domain of definition of 6;,

Vi={peM:(t,p) e W}

V4 is an open set for every t € R and 6; : V; — V_, is a diffeomorphism
with 6,1 =6_,.

© ©6 06 0 o

o Let pyp € V4, so that (to, po) € W.
Since W is open, there is a § > 0 and a neighborhood V of pg, such
that
{t:|t—t| <o} xVCW.
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o In particular, {tp} x V C W.
So V C V.
Next, note that if p € V4, then a(p) < t < B(p).
By definition t + (—t) lies in the same interval.
It follows that 6:(p) € V_; and

010 0:(p) = p.
Similarly, 6_(V_;) C V; and
O:00_+(q) =q, foranyqe V_;.

Combining these statements with the fact that 8¢, 6_; are C* on any
open subsets of M on which they are defined completes the proof.
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o For local one-parameter actions we may show as in the global case
that:
Gt*(Xp) = th(p), |f P € Vt-

o As before,
F(t) = 0:(p), olp) <t <p(p)
is a C*>-integral curve of X.
o It is an immersion of /(p) in M, provided that X, # 0.
o It is a single point if X, = 0.
o We shall continue to refer to these curves as orbits of the local
one-parameter group, just as in the global case.

o It is a consequence of our definitions that these curves (and points)
partition M into a union of mutually disjoint sets.

o The proofs are the same, essentially, as in the global case.
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Theorem

Let # : W — M be as in the definition of local one-parameter group
actions. Let X be the associated infinitesimal generator.

Suppose p € M such that X, # 0. Then there exist:

o A coordinate neighborhood V/, % around p;
o Av>0;
o A corresponding neighborhood V'’ of p, V' C V,
such that, in local coordinates, 6 restricted to /, x V' is given by

(t7.y17"'7yn)_>(y1+t7y27“‘7yn)'

In these coordinates
(0 . )
X=9, | =— at every point of V’.
oy!
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o In W introduce coordinates U, ¢ around p.
Express 6 in the local coordinates by

x — h(t; x),
where x = (x!,...,x") and h(t; x) stands for an n-tuple of functions
satisfying:
h(0; x) = x;

h(t; h(t'; x)) = h(t + t; x).
We will assume coordinates so chosen that:
) gp(p) = (0,...,0);
o p(U) = C2(0);
° XPZW;I(%):EW- _
Recall the expression for X,, X, = > h’(0;0,...,0)E.
It implies that

T 1, fori=1,
h’(O;O,...,O)={ 0, fori> 1.
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o Choose § > 0 small enough so that:
o V"= }(CP(0)) C U;
o O(ls x V") C U.

Then map the cube C7(0) C /s x R" ! into C/(0) C ¢(U) by a map
F, given in local coordinates by

Fo(yl ey = (Rrh0,p% oy, (0,02, ")),
From the expression for X,, we see that (ﬂ) = Y.

From y' = hi(0;0,y2,...,y"), we see that (2% )o = o, for j > 1.
Thus, the Jacobian of F at y = (0,...,0) is the |dent|ty matrix.
Hence, there is a p > 0, with p < ¢, such that F is a diffeomorphism
of C//(0) onto an open set of C'(0) = ¢(U).

Let V=0p"1o F(C/(0)) and ¢ = F~loo.

They form a coordinate neighborhood of p with V C U.
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o The relations satisfied by hi(t,x), i =1,...,n, give:
¥(p) = F(e(p)) = F71(0,...,0).
For (y*,...,y") € G,(0) and |t| < v with v = &, they give:
hi(t+y%0,y2 ..., y") = hi(t,h(y*;0,y%, ...,y"), i=1,...,n.
Formula (ii) may be interpreted as follows.
In the coordinate system (V, ), if ¥(q) = (y!,...,y"), then

¢(9t(q)) = (t+y1a"'7yn)a

provided only that |t| < v and g € ¥~1(C/(0)), so that all functions
are defined.
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o In other words, in the y-coordinates of V1, the mapping 6; is
expressed by functions h'(t, y), defined on /, x CJ(0) by

R (t,yt .. y") = t+yl

hi(t,yt,...,y") = ', fori>1.

We also have 5 5
bu(Xq) =D h (07}/)8—)/,- = 9T

From these formulas, we get that, on V' = ¢ ~1(C"(0)),
d
_ -1
%= (51).
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Subsection 4
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Theorem (Existence Theorem for Ordinary Differential Equations)

Let U C R" be an open set. For € > 0, let . = (—¢,¢). Let
fi(t,xt,...,x"), i=1,...,n,

be functions of class C", r > 1, on I. x U.
Then, for each x € U, there exists § > 0 and a neighborhood V of x,

V C U, such that:
For each a = (a',...,a") € V there exists an n-tuple of C" functions

x(t) = (x}(t),...,x"(t)), defined on I5 and mapping I5 into U, which
satisfy the system of first-order differential equations

dx
P fi(t,x), i=1,....n,

dt
and the initial conditions x'(0) = a', i=1,...,n.
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Theorem (Existence Theorem Cont'd)

For each a, the functions x(t) = (x(t),...,x"(t)) are uniquely
determined, in the sense that any other functions X*(t),...,x"(t)
satisfying the same condition must agree with x(t) on their common
domain, which includes /5.

These functions being uniquely determined by a = (al,...,a") for
every a € V, we write them

xi(t,al,...,a”), i=1,...,n.

They are of class C" in all variables and, thus, determine a C" map of
Is x V— U.
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o If fi(t,x), i =1,...,n, is independent of t, then the system of
differential equations is called autonomous.

o Throughout the remainder of this chapter we shall deal only with
autonomous systems.

o In this case it is possible to restate the hypotheses and conclusions of
the fundamental existence theorem in coordinate-free form using the
concepts of vector field and integral curve.

o This will allow us to derive various global theorems useful in both
geometry and analysis from a purely local existence theorem about
open subsets of R".
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In the autonomous case, the f' depend on x = (x!,...,x") alone.

(]

©

For simplicity we shall also assume hereafter that all data are C*°.
Define on U C R" a C*-vector field X by

0 N
ad T g

©

X = fl(x)

©

Recall that an integral curve of X is a C° mapping F of an open
interval (o, 8) of R into U such that

F(t) = XF(t): a<t<p.
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o Write F in terms of its coordinate functions

F(t) = (x'(2),...,x"(t)).
o Then the vector equation F(t) = XF(¢) is satisfied if and only if

i .
% = Fi(x(t),...,x"(t)), i=1,...,n.

o This states precisely that the functions

x(t) = (xl(t), . x"(1))

are a solution of the system of the theorem.
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o Given x € U, Part () states that, for
each a in a neighborhood V of x, there
is a unique integral curve F(t)
satisfying F(0) = a.

o F(t) is defined at least for —0 < t < 4,
with same § > 0, for every a € V.

o Use a notation for these integral curves through points of V/,
indicating dependence on a, say F(t,a) = (x!(t,a),...,x"(t,a)).

o Use an overdot for differentiation with respect to t.

o Then these equations become

X'(t,a) = fi(x(t,a)), x'(0,a)=a', i=1,...,n.

o Part (I) states that these functions x/(t,a) are C* - in all variables -
on Is x V, an open subset of R x U.
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o As an aid to intuition we may interpret the mapping F : Is x V — U
as a “flow”, that is, a motion within U of the points of V so that the
point at position a at time t = 0 moves to F(t,a) at time t.

o The path of a moving point is the integral curve.

o Moreover, its velocity at any of its positions is given by the vector X
assigned to that point of U.

George Voutsadakis (LSSU) Differential Geometry



Vector Fields on a Manifold

Theorem

Let X be a C*°-vector field on a manifold M.

Then, for each p € M, there exists a neighborhood V and real number
8 > 0, such that there corresponds a C> mapping 8" : Is x V — M, with

0Y(t,q) = Xpv(t.q)

and
0V(0,q) =g, forallge V.

If F(t) is an integral curve of X, with F(0) = g € V, then
F(t)=6Y(t,q), for|t| <.

In particular, this mapping is unique in the sense that if V4, d; is another
such pair for p € M, then 8¥ = 61 on the common part of their domains.
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o This is basically a restatement of the existence theorem as follows.
For p € M, we choose:

o A coordinate neighborhood U, ¢; _ B
o A map X to the p-related vector field X = ¢, (X) on U = ¢(U) C R".

Apply the local existence theorem to obtain F : I5 X V — U defined by
F(t,a) = (x'(t,a),...,x"(t,a))

on a neighborhood V C U of ¢(p).
Set V = ¢ 1(V) and define 6V : Is x V — U by

6Y(t,q) = o~ (F(t,¢(q)))-

1 are diffeomorphisms.

Now ¢ and ¢~
So 0V satisfies the required conditions.
The final assertion is a consequence of the uniqueness of solutions.
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Theorem

Let X be a C*°-vector field on a manifold M and suppose p € M.
Then there is a uniquely determined open interval of R,

I(p) = {a(p) < t < B(p)},

containing t = 0, and having the properties:
There exists a C*-integral curve F(t) defined on /(p) and such that
F(0) = p;
Given any other integral curve G(t) with G(0) = p, then the interval

of definition of G is contained in /(p) and F(t) = G(t) on this
interval.
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o Let F(t) and G(t) be two integral curves such that F(0) = p = G(0).
Suppose Ir, Ic to be the open intervals on which they are defined.
Let /* the set on which they agree.

I* is not empty since it contains t = 0.

F(t) and G(t) are C* mappings (hence continuous).
So I* is closed.

Suppose s € [*.

Now s € Ir N Ilg, an open set.

So there is some interval —§ < t < § on which

F(t)= F(t+s) and G(t)= G(t+s)

are both defined.
They are both integral curves, satisfying the same initial condition,

F(0) = F(s) = G(s) = G(0).
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o From the existence theorem they agree on some open interval |t| < §
around t = 0.

Thus, F(t) = G(t) on an open set around s and /* is open.
It follows that I* = Ir N I¢.
Therefore /(p) is defined.
It is the union of the domains of all integral curves which pass
through p at t = 0.
The asserted properties are immediate.
Note that it is possible for a(p) = —oo and/or 5(p) = +oo.
If both occur, then /(p) = R.
o We shall use the notation F(t) = 6(t, p) for the unique integral curve
F(t) such that F(0) = p.
o When we wish to emphasize dependence on t, we may write 6,(t) for
0(t, p)-

George Voutsadakis (LSSU)



Vector Fields on a Manifold

o Let the subset W C R x M be defined by

W ={(t,p) € Rx M:a(p) <t <pB(p)}

o According to what has been shown thus far:

o Both W and 6 are uniquely determined by X;
o W is the domainof 6 : W — M.

o Moreover we have the following properties of 8 and W:

{0} x M € W and 6(0, p) = p for all p e M.
For each (fixed) p € M, let ,(t) = 6(t, p).
Then 0, : I(p) = M is a C>-integral curve, that is,

ép(t) = Xep(t)~

For each p € M, there is a neighborhood V and a 6 > 0, such that
Is x VC W and 6 is C>® on Is x V.
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Corollary

Let s € I(p) and q = 6,(s) = 6(s, p) be the corresponding point of the
integral curve determined by p. Then

a(q) =a(p)—s and B(q)=B(p) —s

so that
I(q) = 1(0p(s)) = {a(p) —s < t < B(p) — s}.
Thus t € I(q) if and only if t +s € I(p), and then we have

0(t,0(s, p)) = 0(t + s, p).
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o Suppose that s € I(p) and let
F(t) = 0p(s + t).
Then F(t) is defined on the open interval a(p) < s+t < B(p) and
F(0) = 0,(5) = a.

By hypothesis, F(t) is an integral curve.

So, by uniqueness, we have
F(t) = 6(t,0(s)) = 6(t, q)-

So its domain must be I(q) = {a(q) < t < 8(q)}.
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Consider a C®-vector field X.
o The domain W of §(t, p) is open in R x M.

o fisa C* map onto M.

o Let (t/,pg) € W,
We must show that there is a neighborhood V of pg and § > 0, such
that:
o The open set (t' —d,t' +d) x Visin W;
o fis C* on it.
This is already known to be the case for (0, pp).
Suppose, to the contrary, that the theorem fails.
There exists (tg, pp) € W, such that, for each 0 < t’ < ty there exists
(t' — 4, t' +9) x V with the above properties, but not for (g, po)-
We have assumed, without loss of generality, that tp > 0.
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o We shall show by contradiction that there can be no (tg, po)-
Using a previous theorem, we find dp > 0 and a neighborhood V{ of
qo = O(to, po), such that:
o Isy x Vo C W;
o fis C* on it.
By continuity of 6(t, pp) in t we may find t; < tp, with:
° |t0 = t1| < %60;
° 9(t1,po) € W.
Since t; < tp, by our assumption on (g, pp), there is a 6; > 0 and a
neighborhood V; of py such that:
° (t1—51,t1+51) x Vi CW;
o #is C* on this open set.

In particular, 0(t1, po) is in Vo and 6, : Vi — M is defined and C*°.
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o We may suppose by continuity (restricting V; if necessary) that
04 (V1) € Vo.

We now have:

o O(s+ t1, q) defined and C> on the open set |s| < d; and g € V;;
o O(s+ t1,q)'s values for s = 0 are in V.

By a previous corollary, for a(0(t1,q)) < s < B(0(t1,q)),
(s + t1,q) = 6(s,6(t1,q)).

Since 6(t1,q) is in Vo, by the definition of dp and Vp, the interval
1(0(t1,q)) contains all s for which |s| < Jp.

Thus, 0(s + t1,q) is defined and C* for |s| < dp and any g € V4.
This is an open set and, since |ty — t1| < %60, it contains (to, po)-
This shows that our assumption on (tp, po) leads to a contradiction.
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o Recall that a (local) one-parameter group 6 acting on M was defined
in terms of a C° mapping 0 of an open set W C R x M into M.

o Suppose
9,’, VVI'? = 1,25
are two such local group actions.
o We say that 61 = 6, if they are equal (as mappings) on Wj N Ws.
o Recall, also, the expression

Xpf = Alltgo—[f(%t(p)) f(p)]-

o So, if 81 = 05, then they have the same infinitesimal generator X.

o We note once again that if W = R x M, then 6 defines an action of
R on M, that is, a global one-parameter group action.
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o Collecting the preceding results, we have the following

o To each local one-parameter group action # on M is associated a
unique maximal domain of definition W.

o If 61, Wy is equal to 6, W, then

ngW and 91=9|W1.

o Two local one-parameter groups are equal if and only if they have the
same infinitesimal generator X.

o Each vector field X on M determines a local one-parameter group
0, W of which it is the infinitesimal generator.
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o This theorem summarizes the results of the last two sections.

o We saw those for the autonomous case, in which the vector field X
does not depend on t (time), but only on the point of the manifold.

o |t follows from the Existence Theorem.

o But, conversely, it implies the Existence Theorem as a special case
when M is assumed to be an open set of R".
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o A general nth order ordinary differential equation in the independent
variable t and dependent variable x and its derivatives is given by a

relation ; e
X X
Fltx,—,....— | =0
< 7X7 dt? 7 dtn>

o We suppose that this is a function of class C" defined on some
neighborhood in R"*2 of the point (0, ag, a1, a2, - - . , an)-

o Also, in a neighborhood U of this point we can write it in the form

n n—1
dX:G(tx% d X).

e et

o This can be done if the derivative of F with respect to its last variable
is not zero at the point.
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o Let )
dx d"*x
_J1 22 . on
X =X, dt—x,...,—dtn_l—x

o Consider the first-order system of ordinary differential equations

dx! 2

dar = X

dx> 3

g = X

dx" =

L = G(t,xh X3, X"

with initial conditions
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o The original nth order equation has a solution x(t) satisfying initial
conditions (at t = 0):

dx d"1x
x(0) = at, (—) :a2,...,< — > =a"
dt ), dtn=t

if and only if the first-order system above has a solution satisfying the
indicated initial conditions.

o Hence, the existence theorem gives the existence and uniqueness of
solutions of ordinary differential equations of nth order.

o This can be extended also to systems of ordinary differential
equations of higher order than one.
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o Suppose the functions % = f’ depend on parameters z1, ..., z".
o So the system becomes

dx’ ; .

e fi(e,xt,....x" 24, ...,z™), i=1,....n.

Assume that the functions f' are of class C" in the z's also, on some
open set V/ C R™.
That is, f' is a function of class C" on

©

©

LxUxU CRxR"xR™.
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o Then the solutions will depend on the z's as well as on the initial
conditions,
i i 1 n _1 m
x'=x'(t,a%,...,;a" z",...,z").

o It is a further consequence of the theorem that these functions are of
class C" in all variables on an open set

LxVxV CRxR"xR™.
o This is very easily proved by introducing new equations of the form

dz/

— =0, j=1,...,m.
dt ) J ’ , M

o In this way, we are dealing with a system of n + m ordinary equations
to which we apply the theorem.
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o Choose a basis
Ei,...,E,

of the tangent space at the identity e of a Lie group G.

o Consider the uniquely determined left-invariant vector field X whose

value X, at e has components z!,..., 2",

Xo = zn:ziE;.
i=1

o Let Xg(z1,...,2") denote the value at g € G of X.
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o With the choice of basis fixed, the left-invariant vector fields on G
are, thus, parameterized by R".

o The dependence on g and on the parameters is C°.

o So the solutions of the system of equations corresponding to each of
the vector fields X(z!,...,2z") is C* in all variables.

o Thus, we have (t; g; z%,...,z"), which gives a C* mapping
f:Rx GxR"— G.

o For g,z fixed, 6 determines the integral curve through g.
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Subsection 5
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o We consider a local one-parameter group 6 with (maximal) domain
W and infinitesimal generator X acting on a manifold M.

o For p € M, we denote by /(p) the set a(p) < t < B(p) of all real
numbers t such that (¢, p) is in W.

o The integral curve of X through p is given by

0, 1(p) — M, 0,(t) = 6(t, p).

o If X, =0, the curve is a single point p.
o Otherwise 6, is an immersion, as was shown earlier.

o In the latter case, we consider the nature of the integral curves on M.
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Lemma

Suppose that 3(p) < co and that {t,} C /(p) is an increasing sequence
converging to 3(p). Then {6(t,, p)} cannot lie in any compact set.

In particular, the sequence {60(t,, p)} cannot approach a limit on M.

A similar statement holds for a decreasing sequence approaching «(p) if
a(p) is finite.

o Let K be a compact subset of M.
Let X be a C*-vector field on M.

By the Existence Theorem, to each g € M corresponds a 6 > 0 and a
neighborhood V of g, such that 6 is defined on /5 x V.

A finite number of such neighborhoods cover K.
We let dg be the minimum ¢ for these neighborhoods.
Then for each g € K, 0(t, q) is defined for |t| < do.
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o Suppose {0(t,,p)} C K.
Take N is so large that 5(p) — ty < %50.
Then we see that

O(tn + t, p) = 0(t,0(tn, p))-

The right side is defined for all t with |t| < dg, since §(tn, p) € K.
The left side is also defined for such t, e.g., for ty + %50 > B(p).
This contradicts a previous corollary and proves the first statement.
For the second, suppose lim,_o 0(tn, p) = g.

Then there is a neighborhood of g whose closure K is compact and
contains all but a finite number of terms of the sequence {6(t,, p)}.

We discard the terms not in K and obtain the same contradiction.

Obviously the same arguments apply to decreasing sequences
approaching a(p), if a(p) is finite.
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Corollary

If I(p) is a bounded interval, then the integral curve is a closed subset of
M.

Corollary

If X, =0, then /(p) = R.

o We skip the proofs.
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o A point p of M at which X, = 0 is called a singular point of the
vector field.

o Any other point is referred to as regular.

o We have seen that in the neighborhood of a regular point the integral
curves are - to within diffeomorphism - the family of parallel lines

in R".
o On the other hand the pattern of integral curves at an isolated
singularity can take many forms, even in the two-dimensional case.
o These patterns have been extensively studied.

o At least in the two-dimensional case singularities can be visualized in
terms of the integral curves of the vector field X near p.
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A vector field X on a manifold M is said to be complete if it generates a
(global) action of R on M, thatis, if W = R x M.

o This is clearly the most desirable case.

o So it is very convenient to have sufficient conditions for completeness.

Corollary

If M is a compact manifold, then every vector field X on M is complete.

o To see that this is so, we take K = M in the lemma.
Note that, in this case, a(p) = —oo and SB(p) = +c.
That is I(p) = R, for every p € M.
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Theorem

Let X be a C*°-vector field on a manifold M.

Let F: M — M be a diffeomorphism.

Let O(¢, p) denote the C*° map 6 : W — M defined by X.
Then X is invariant under F if and only if

F(6(t, p)) = 0(t, F(p)),

whenever both sides are defined.

o Suppose that X is invariant under F.
Let 6, : I(p) — M be the integral curve of X with 6,(0) = p.
F takes it to an integral curve F(6,(t)) of the vector field F.(X).
Now F,(X) = X and F(6,(0)) = F(p).
By uniqueness of integral curves, we get F(6,(t)) = 6(t, F(p)).
This proves the “only if" part of the theorem.
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o Suppose, conversely, that F(6(t, p)) = 0(t, F(p)).
We must show that Fi(X,) = Xg(p)-

This could be done directly from the expression for the infinitesimal
generator X, but we proceed in a slightly different way.

Let

ep(t) = 9(t7p)‘
Let % be the natural basis of To(R), the tangent space to R at t = 0.
Then, by definition,

Xy = 0,(0) = ). (%) :
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o Applying the isomorphism F, : T,(M) — Tg(,)(M) to this definition,

Fi(Xp) = Fiolp (%)

= (Fobp). (%)
(chain rule applied to fg and F)

= OF(p) (%)
(by hypothesis, F o 0,(t) = 0rp)(t))

= Xy
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Corollary

A left-invariant vector field on a Lie group G is complete.

o Let X be such a vector field. Then, there is a neighborhood V of e
and a § > 0 such that 6(t, g) is defined on I5 x V.

For h € G, let L, denote the left translation by h.
By the theorem, with F = L, we get 6(t, Lpg) = Lp0(t, g).
So 6 is defined on Is x Ly(V), a neighborhood of (0, h) in R x G.

Thus, for every h € G, there is a neighborhood U = L(V/), such that
Is x U C W, the domain of 8 with the same ¢ > 0 as obtained for V.

Hence, J is fixed and independent of h.

As in the compact case, we obtain a contradiction if we assume for
any g € M that either a(g) or 5(g) is finite.

Therefore, W = R x M and X is complete.
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Definition
Let R be the additive group of real numbers, considered as a Lie group.

Let G be an arbitrary Lie group.
A one-parameter subgroup H of G is the homomorphic image

H = F(R)

of a homomorphism F : R — G.

George Voutsadakis (LSSU) Differential Geometry



Vector Fields on a Manifold

o Let G be a Lie group which acts on a manifold M by
0:GxM— M.

o Let F: R — G be a homomorphism.
o Then 0 : R x M — M defined by

o(t, p) = 0(F(t), p)

defines an action of R on M.

o Applying our theory, we have an associated infinitesimal generator X,
integral curves as orbits of the action, and so on.

o The same G may act on different manifolds, or in different ways on
the same manifold.

o Consequently, a fixed one-parameter subgroup of G will give many
examples of a one-parameter group of transformations of a manifold.
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o Let G be the group G/(3,R).

o We consider two one-parameter subgroups, that is, two
homomorphisms F1, F; of R into G, defined as follows (a,b,c € R
are constants):

et 0 0 1 at bt+ %act2
Fi(t)=| 0 et 0 |, R(t)=]0 1 ct
0 0 et 0 O 1

o We can check that these are indeed homomorphisms.
o Now GI(3,R) acts naturally on R3.
o Hence each F; defines an action on R3.
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o In the case of F1, we have
H(t,Xl,X2,X3) — ( atX17 eatX2’ eatX3).
o Therefore the infinitesimal generator X is given at x € R3 by

: 0 0 0
_ | 2 3
Xy = 0(0, x) = ax Bl + ax 2 + ax Mt

o The integral curves, or orbits, are the lines through the origin.

o The group GI(n,R) also acts on P"™"1(RR), since it preserves the
equivalence relation (proportionality) of n-tuples which defines it.

o Therefore GI(3,R) acts on two-dimensional projective space P?(RR).

o In this case F; defines a trivial action 0(t, p) = p.
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o Let G be the Lie group SO(3) of orthogonal matrices with
determinant +1.

o Define F: R — SO(3) and, thus, a one-parameter subgroup by

cosat sinat 0
F(t)=| —sinat cosat 0
0 0 1

o It can be checked that this is in fact a homomorphism.

o Thus, SO(3) acts on the unit sphere S2 in a standard manner.
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o The action is just the usual rotation of the sphere.

o F defines a one-parameter group of rotations holding the x3 axis fixed:

1

(t,x', x?, x3) = (x! cos at 4 x? sin at, —x! sin at + x? cos at, x*).

o The orbits are the lines of latitude.
o The generator X is tangent to them and orthogonal to the x3-axis.
o X =0 at the north and south poles (0,0, +1).
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o We recall also that a Lie group G acts on itself (on the right) by right
translations.

o Thus if we are given a homomorphism F : R — G, we may define an
action 6 of R on M = G by

0(t, &) = Rr(t)(g) = gF(t).

o We have used R, to denote right translation: R,(g) = ga.
o As previously noted, this is a composition of the C* maps F and
right translation.

o It is an action, since F is a homomorphism and multiplication is
associative:

0(0,8) = gF(0) = g;
0(t +s,8) = gF(t +s) = g(F(t)F(s)) = (gF(1))F(s) = 0(¢,0(s, g))-

George Voutsadakis (LSSU)



Vector Fields on a Manifold

o Recall that a left-invariant vector field on G is uniquely determined by
its value at the identity e.

Theorem

Let F: R — G be a one-parameter subgroup of the Lie group G.
Let X be the left-invariant vector field on G defined by X, = F(0).
Then

0(t,g) = Rr(t)(8)

defines an action 6 : R x G — G of R on G (as a manifold) having X as
infinitesimal generator.

Conversely, let X be a left-invariant vector field.

Let 6 : R x G — G the corresponding action.

Then F(t) = 6(t, e) is a one- parameter subgroup of G and

0(t,g) = Re(r)(g)-
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o Consider the C* homomorphism F : R — G.
0:Rx G — G, defined by

0(t,g) = Rr(r)(g) = gF (1)

is an action of R on G.
If a € G, then

L.0(t,g) = a(gF(t)) = (ag)F(t) = 0(t, La(g))-

By a previous theorem, the generator X of # is L,-invariant, for any
acG.

However, 6(t,e) = F(t).
So
X. = 6(0,e) = F(0).

George Voutsadakis (LSSU) Differential Geometry



Vector Fields on a Manifold

o For the converse X, being left-invariant, is both C* and complete
and it generates an action 6 of R on G.
By a previous theorem, for any left translation Ly,

Lh‘g(tag) = e(ta Lh(g))
Equivalently, h0(t,g) = 6(t, hg).
Let F(t) = 6(t,e) and h = F(s).
Then this relation implies
F(s)F(t) = F(s)0(t,e) = 0(t,0(s,e)) =0(t+s,e) = F(s+ t).
Thus, t — F(t) is a C°° homomorphism.
But F(0) = 6(0,e) = X.. Moreover, X is left-invariant.
So, by uniqueness of the action generated by X,
0(t, g) = RF(t)(g)7

the action defined just previously.
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Corollary

There is a one-to-one correspondence between the elements of T¢(G) and
one-parameter subgroups of G. For Z € T¢(G), let

t— F(t,2)

denote the (unique) corresponding one-parameter subgroup.
Then F: R x T¢(G) — G is C* and satisfies

F(t,sZ) = F(st,2).
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o According to the theorem, each Z € T,(G) determines a unique
homomorphism t — F(t,Z) of R into G, such that

F(0,2)=Z.

Identify T¢(G) with R” via some choice of basis.

By our extension of the Existence Theorem, F is C*° simultaneously
int and Z.

Using the rule for change of parameter in a curve on a manifold,

[%F(ts,Z)] :s[%F(t,Z)] _ sz

t=0 t=0

On the other hand, t — F(ts, Z) is a homomorphism.
Therefore, by uniqueness,

F(st,Z) = F(t,sZ).
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o We have seen that one-parameter subgroups of a Lie group G are in
one-to-one correspondence with the elements of T.(G).

o We shall use this to help determine all one-parameter subgroups of
various matrix groups.

o We first consider G = GI/(n,R).

o The matrix entries x;;, 1 < i,j < n, for any X = (x;;) € GI(n,R) are
coordinates on a single neighborhood covering the group, which is an
open subset of M,(RR), the n x n matrices over R.

o Therefore %, 1<i,j <n,is a field of frames on G.
ij

o Relative to these frames as a basis at e = / (the identity n x n
matrix), there an isomorphism of M,(IR) as a vector space onto

T(G) given by
0
i A
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Definition
The exponential eX of a matrix X € M,(R) is defined to be the matrix
given by

1

3
3!)( 4.

1
eX=I+X+§X2+

if the series converges.
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Theorem

The exponential series converges absolutely, for all X € M,(RR), and
uniformly on compact subsets.
The mapping M,(R) — M,(RR) defined by

X — X

is C.

Its has nonsingular Jacobian at X = 0.

Its image lies in G/(n,R).

If A, B € M,(R) such that AB = BA, then

AHB — AB.
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o Denote by X,-(jk) the entries of the matrix X, with
X'=X=(x;) and X°=1=(5).
Let
p= sup |xjl.
1<ij<n
By induction on k, we have the inequality

1 < (np)*.

This is true for k = 0. Suppose it holds for k.

Then
k
Z Xi(é )XZJ'
y4

k+1

b = < n(np)*p = (np)

X

So the sequence e converges absolutely for every X.
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o It also converges uniformly on every compact subset of M,(R).
Indeed each compact set is contained in a set K, = {X : |x;| < p}.
Consider the mapping X — eX.

The entries of the partial sums are polynomials in x;;.

So, by uniformity of convergence, the mapping is C*° (even analytic)
in the x;j;.
Denote by f;;(X) the coordinate functions of the mapping.

Then the terms of degree less than 2 in the variables x;; are
ﬁj(X):5u+XU, 1<i,j<n.

Hence the Jacobian at X = 0 reduces to the n? x n? identity matrix.
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o We know the convergence is absolute.
So we may rearrange terms.

Moreover, an analog of Cauchy’s Theorem for multiplication of series
also holds for matrices.

So, when AB = BA, we obtain the equality

1 1
(22020 FAk)(ZEiO BK) = Zm 0 Zp 0 (m— p)lAm P BP
From this we may deduce e?ef = eAt5B.
In particular, this implies efe™* = €% = /.
Hence, e” is nonsingular.

It follows that e € GI(n,R), for any A € M,(R).
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Corollary

t — e is the one-parameter subgroup of G/(n,R) whose corresponding
left-invariant vector field has the value 3, ; a,-j(a%j)e. Moreover, all

one-parameter subgroups of G/(n,R) are of this form.

o For every t € R, t1A and tobA commute. Thus

e(t1—|—t2)A — etlAet2A.
So t — e™ is a group homomorphism.

It is C° since it is a restriction of a C*°-map on M,(R) to the
submanifold {tA: t € R}.

Write x;;(t) for the ij-th entry of et
Letting A = (a;;), we have x;(t) = §; + ta; + O(t?).
So ;(0) = ay, 1 < i,j < n. Equivalently (£2),_o = A
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o Consider
0 a b
A= 0 0 c S M3(R)
0 0O
o We have

etA:I+tA+%t2A2+---.
o However, AK =0 if k > 2.

o So we obtain once again

1 ta tbh+ %tzac
et=10 1 tc
0 0 1
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Theorem

Let H be a Lie subgroup of G. Then the one-parameter subgroups of H
are exactly those one-parameter subgroups t — F(t) of G, such that

F(0) € Te(H),
considered as a subspace of T.(G).

o Let F: R — H be any one-parameter subgroup of H.
The inclusion H C G is an immersion, and so C®°.
So F, followed by inclusion, is a one-parameter subgroup of G.
Its tangent vector at any point is tangent to H.
In particular, F(0) € To(H) a subspace of T.(G).
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o Conversely, let F : R — G is a one-parameter subgroup, such that
F(0) € To(H).

Then F(O) determines a one-parameter subgroup of H, F; : R — H,
with

F1(0) = F(0).
As just seen, F; can be considered a one-parameter subgroup of G.
But F and F; have the same tangent vector at e.
So they must agree.

Therefore, the correspondence is one-to-one, as claimed.
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o Suppose that G = GI(n,R) in the preceding discussion.

Then we have the following application.

Corollary

The one-parameter subgroups of a subgroup H C G/(n, R) are all of the
form t — e, where A = (a;;) are the components of a vector

0
Te(G
Z(axij )e € Te(G),
i
which is tangent to H at e, that is, is in Te(H) C T.(G).

o This is an immediate consequence of the theorem and the fact that
every one-parameter subgroup of G = G/(n,R) is of the form
F(t) = e
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© 06 06 06 ©6 06 o o

©

Let H= O(n) and G = GI(n, R).

We determine the one-parameter subgroups of H.

Suppose et € H for all t.

Then (e?*)(e") = I, where the prime indicates the transpose.
By the definition, (e®A) = e

By a previous theorem, (ef4)™! = e~

We conclude that et € H implies e’ = e~

Now, X — eX maps the (linear) submanifold of M,(R) of skew
symmetric matrices to the submanifold O(n) of G.

Both manifolds have the same dimension.

o The Jacobian is nonsingular at X = 0, by a previous theorem.

Qo

Qo

X isa

Hence, on some neighborhood of the 0 matrix, X — e
diffeomorphism.
Therefore, there is a ¢ such that if [t| < 4, then tA' = —tA.

It follows that A is skew symmetric.
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(]

Conversely, suppose A’ = —A.

o Then
/
e,tA(etA)/ _ e,tAetA _ e,1:Ae—tA — /.

©

This means that e is an orthogonal matrix.
We have, therefore, proven the following:

The homomorphism t — e is a one-parameter subgroup of O(n) if
and only if

©

A =—A
This is the necessary and sufficient condition on A = (aj;) in order that

the tangent vector
oxij ) .

ij

to G/(n,R) at the identity be tangent to the subgroup O(n).
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o Recall that, if G is a Lie group and Z € T(G), then Z determines
uniquely a one-parameter subgroup, denoted earlier by F(t,Z).

o We now define an exponential mapping on an arbitrary Lie group.

The exponential mapping exp : T.(G) — G is defined by the formula

expZ = F(1,2).
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o According to a previous theorem, we have the following properties.

Theorem
For any Lie group G the mapping exp : T¢(G) — G is C* and

F(t) =exptZ

is the unique one-parameter subgroup such that F(O) =Z.

The Jacobian matrix at 0 of exp is the identity.

That is, at e, exp, is the identity.

Finally, if G is a subgroup of G/(n,R), then for each Z € T.(G), there is
an A = (a;) € M,(R) such that

0
2= (55)

For this Z, exp tZ = e®A.

e
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©

Qo

Qo

We denote by X(M) the set of all C*°-vector fields defined on the
C* manifold M.

Suppose X and Y are C*°-vector fields on M.
Then so is any linear combination of them with constant coefficients.
So X(M) is itself a vector space over R.

More generally, any linear combination with coefficients which are
C functions on M is again a C*°-vector field.

Let X, Y € X(M) and f,g € C>®(M).
The vector field Z = fX + gY, with the obvious definition

Z, = f(p)X, + g(p)Yp, foreach pe M,

is a C>°-vector field.
Hence, X(M) is a vector space over R and a module over C*°(M).
As a vector space X(M) is not finite-dimensional over R.
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Definition

We shall say that a vector space £ over R is a (real) Lie algebra if, in
addition to its vector space structure, it possesses a product, that is, a
map £ x L — L, taking the pair (X, Y) to the element [X, Y] of £, which
has the following properties:

It is bilinear over R:

[a1X1 + ap Xy, Y] = al[Xl, Y] + az[X2, Y],
[X,Oq Yl + 042Y2] = Oq[X, Yl] + OQ[X, Y2];

It is skew commutative: [Y,X] = —[X,Y];
It satisfies the Jacobi identity:

[X,[Y, Z]] + [Y,[Z,X]] + [Z,[X, Y]] = 0.
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o A vector space V3, of dimension 3 over R, with the usual vector
product of vector calculus, is a Lie algebra.

o Let M,(RR) denote the algebra of n x n matrices over R, with XY
denoting the usual matrix product of X and Y.

Let the product [X, Y] be defined as the “commutator” of X and Y,
[X,Y] = XY — YX.

This defines a Lie algebra structure on M,(R).
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o Now suppose that X and Y denote C*°-vector fields on a manifold
M, that is, X, Y € X(M).

o Let f be a C* function on a neighborhood of p.
o Let f — X,(Yf) be the operator defined on C*°(p).
o In general, f — X,(Yf) does not define a vector at p.

o Thus XY, considered as an operator on C functions on M, does not
in general determine a C*°-vector field.

o However, XY — YX defines a vector field Z € X(M) according to the
prescription

Z,f = (XY — YX)of = X,(YF) — Yo(XF), fe C®(p).

o If f € C*°(p), then Xf and Yf are C* on a neighborhood of p.

o So the formula determines a linear map Z, : C*(p) — R.
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o It follows that, if the Leibniz rule holds for Z,, then Z, is an element
of T,(M) at each p € M.

Consider f,g € C*(p).
Then f,g € C*°(U), for some open set U containing p.

We have the relations
(XY = YX)p(fg) = Xp(Yfg) — Yp(Xfg)
= Xp(fYg — g¥f) — Y,(fXg — gXf)
= (Xpf)(Yg)p + f(p)Xp(Ye) — (Xo8)(YF)p
— &8(p)Xp(YF) = (Yof)(Xg)p — f(p) Yp(Xg)
+ (Yp8)(XF)p + &(P) Yn(XF).
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o So we get

Zp(fg) = (XY = YX),(fg)
= f(p)Xp(Ye) — f(p)Yp(Xeg)
— g(p)Xp(YF) + g(p) Yn(XF)
= f(p)(XY = YX)pg — g(p)(XY — YX),f

= f(p)Zpg + &(p)Zpf.

Finally, if f is C° on any open set U C M, then so is (XY — YX)f.

Therefore, Z is a C*-vector field on M as claimed.
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o We may now define on X(M) the product of X and Y by
[X,Y] = XY — YX.

X(M) with the product [X, Y] is a Lie algebra.

o Let a, 8 € R and X1, X5, Y be C*-vector fields.
Then we can verify that

[aXl + BX1, Y]f = a[Xl, Y]f aF ﬂ[X2, Y]f.

Thus, [X, Y] is linear in the first variable.

Skew commutativity is immediate from the definition.

So linearity in the first variable implies linearity in the second.
Therefore, [X, Y] is bilinear and skew-commutative.
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o There remains the Jacobi identity which follows immediately if we
evaluate [X,[Y, Z]] + [Y,[Z, X]] + [Z,[X, Y]] applied to a
C®°-function f.

Using the definition, we obtain
Xy, 2llf = XU(TY, 2DfF) = [V, Z]1(Xf)
= X(Y(zf)) - X(2(Yr))
— Y(Z(Xf))+ Z(Y(XF)).

Permuting cyclically, we get

[Y, [z, X]If = Y(Z(Xf)) - Y(X(Zf))
— Z(X(YfF)) + X(Z(Yr));
[Z,1X, YIIf = Z(X(YF)) = Z(Y(XF))

— X(Y(Zf)) + Y(X(Zf)).

Adding these establishes the identity.
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o Let X be a vector field on M.

o There is an associated one-parameter group 6 : W — M generated by
X.

o By a previous theorem, for each t € R, 0; : V; — V_; is a
diffeomorphism (with inverse 6_;) of the open set V4, provided V; is
not empty.

o In particular, for each p € M, there is a neighborhood V and a § > 0,

such that
V CV, for|t] <.

o The isomorphism
Ori © Tp(M) — To,(p)(M)

and its inverse allow us to compare the values of vector fields at these
two points.
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o Indeed, suppose Y is a second C*-vector field on M.

o We may use this idea to compute for each p the rate of change of Y
in the direction of X.

o This is the rate of change of Y along the integral curve of the vector
field X passing through p.
o We denote this rate of change by Lx Y.

o It is itself a C*°-vector field.
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The vector field Lx Y, called the Lie derivative of X with respect to Y
is defined at each p € M by either of the following limits:

o1

(Lx Y)p = l%?[e—t*(YQ(t,p)) - Yp]
o1

— i =Y, = O (Yo ep)]

o The second definition is obtained from the first by replacing t by —t.
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o We interpret the first expression as follows.

o Apply to Yp(¢,p) € T@(t7p)(M) the isomorphism 0_,, taking
TG(t,p)(M) to TP(M)
o Then in Ty(M):
o Take the difference of this vector and Y;
o Multiply by the scalar %
o Pass to the limit as t — 0.

o This limit is a vector (LxY), € Tp(M), if it exists at all.

o The existence and the fact that the vector field so defined is C>° may
be verified by writing the formula above in local coordinates.
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Lemma

Let X be a C*°-vector field on M.

Let 0 be the corresponding map of W C R x M onto M.

Let p € M and f € C*°(U), where U an open set containing p.
Choose § > 0 and a neighborhood V of p in U, such that (/s x V) C U.
Then there is a C* function g(q, t) defined on V x Is, such that, for
g€ Vand t € l5, we have

f(0:(q)) = f(q) + tg(q,t) and Xgf = g(q,0).

o By a previous theorem, there is a neighborhood V of p and a § > 0,
such that:
o 0:(p) = 6(t, p) is defined and C*> on I5 x V;
o 6 maps Is x V into U.
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o The function
r(t,q) = f(0:(q)) — f(q)
is C* on Is x V and r(0,q) = 0.
We denote by f(t, q) its derivative with respect to t.
We define g(g, t) - for each fixed g - by the formula

1
g(q,t) = /O F(ts, q)ds.
This function is also C* on Is x V.

This can be verified by use of local coordinates and properties of the
integral.
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By the Fundamental Theorem of Calculus,

1
te(0.0) = [ Hts.q)tds = r(t.0) = (0.0) = (t.q)
Using the definition of r, this becomes
f(0:(q)) = f(q) + tg(q, t).
Now, by the definition of the infinitesimal generator of 6,

g(q,0) = limts0g(q,t)
= limeso Lr(t, q)
= limeo 2[f(0:(q)) — f(q)]
= X, f.
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If X and Y are C*-vector fields on M, then LxY = [X, Y].

o By definition

(Lx¥)of = (fim 1Yo = 0 Yo )] ) £

This differential quotient and that of the following expression, whose
limit is the derivative of a C* function of t, are equal for all
0 < |t| < 0, and, hence, are equal in the limit

1
(LX Y)Pf = t|l_% ;[Ypf — Ygit(p)(f O Gt)]
Using the lemma and denoting g(q, t) by g: we have

.1
(LxY)pf = tll_% ?[Ypf — Yo_.(p)(f + tgr)]-

George Voutsadakis (LSSU) Differential Geometry



Vector Fields on a Manifold

o Then, replacing t by —t and rearranging terms, we get

(LxY)p = lim ~[(YF)(6e(p)) — (YF)(p)] ~ lim Yo, (o8-

Now, using both the formula of the definition of the infinitesimal
generator, with f replaced by Yf and At by t, and the fact that
go = g(q,0) = Xf(q), we obtain in the limit

(Lx Y)of = Xp(YF) — Y,o(XF) = [X, Y],f.

This completes the proof of the theorem.
It also shows that Lx Y is C*°.
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Let F: N — M be a C* mapping and suppose that X1, X> and Yi, Y5 are
vector fields on N, M, respectively, which are F-related, that is,

F.(X)=Y, i=1,.2
Then [X1, X2] and [Yi, Y2| are F-related, i.e.,

F.[X1, Xo] = [Fu(X1), Fu(X2)].
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o Before proving the theorem we note the following necessary and
sufficient condition for X on N and Y on M to be F-related.
For any g which is C°° on some open set V C M,

(Yg)oF =X(goF)

on F~1(V).
We show this is a restatement of the definition of F-related.
Suppose g € F71(V). Then, we have:
o On the one hand,
Fi(Xq)g = Xq(g o F) = X(g © F)(q);

o On the other, Yg(q)g is the value of the C* function Yg at F(q).
Therefore, Yr(qg = ((Yg) o F)(q).
Thus, the condition holds if and only if

Fi(Xq) = YF(q), forallge M.
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o Returning to the proof, consider f € C*°(V), V C M, so that Yif
and Yaf € C*°(V) also.

Apply the formula above, first with g = Y>f and then with g = f.
We get

[Yi(Yaf)] o F = X1((Yaf) o F) = X1[Xa(f o F)].

Interchange the roles of Y7, Y5 and X1, X5 to get
[Ya(Y1f)] o F = Xo[X1(f o F)].
Subtract to obtain
([Y1, Y2]f) o F = [ X1, Xo|(f o F).

By the formula above, [X1, X3] and [Y1, Y2| are F-related.
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Corollary

If G is a Lie group, then the left-invariant vector fields on G form a Lie
algebra g with the product [X, Y] and dimg =dimG. If F: G; — Gy is a
homomorphism of Lie groups, F : g1 — g2 is a homomorphism of Lie
algebras.

o Let a€ G, and let X and Y be left-invariant vector fields.
L, (left translation) is a diffeomorphism and L., X = X, L, Y =Y.
Therefore, by the theorem, L,.[X, Y] = [X, Y].
So [X, Y] is L-invariant, for any a.
Hence, the subspace g is closed with respect to [X, Y.
Now each X € g is uniquely determined by X..
So X — X, is an isomorphism of g and T.(G) as vector spaces.
The last statement follows from a previous corollary and the
preceding theorem.
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o Let H C G be a Lie subgroup.
o Then, by the corollary, i.(h) is a subalgebra of g.

o It consists of the elements of g tangent to H and its cosets gH.
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Theorem

Let X and Y be complete C°-vector fields on a manifold M.

Let 0,0 denote the corresponding actions of R on M.
Then

Or00s =000, forall s,t € R, ifandonlyif [X,Y]=0.

o We first suppose that §; o 05 = g5 0 0, for all s, t € R.

Applying a previous theorem to the diffeomorphism 6; : M — M, we
see that Y is ;-invariant.

In particular, 0:.Y =Y.
This implies that

[X,Y]=LxY = lim [Y—-6_.Y]=0.
At—0
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o Next assume [X, Y] = 0.

By the previous theorem,

0= 00 [X, Y] = [06:X, 00 Y] = [X, 02, Y].
So, for any p € M and any f € C*(p), we have

0= (Lx(0ex Y))pf = lim Ait[(ot*v)pf — (Be—pex Y)pf].

At—0

So
d(0Y)pf

=0, for every t.
dt s y
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o We got, for every t,
d(0:Y)pf

=0.
dt

That is, (04 Y)pf is constant.
When t = 0, this constant function has the value Y,f.

Therefore
(0 Y)pf = Ypf.

Since p and f € C*°(p) were arbitrary, it follows that
0: Y =Y.
By a previous theorem, we conclude that, for each t € R,

0005 =050 06;.
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Subsection 8
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o Let
Fo(xt, x%,x3 vt v, pf) =0, a=1,...,6,
be a system of six partial differential equations involving:
o Two unknown functions y! and y? of three variables x!, x
o Their first derivatives pf = g—};z, k=1,2¢=1,23.
o To simplify matters, we assume that these equations can be solved for
pf and written equivalently

2,X3;

dyk

W:ng(x;y), k=12, £=1,23,

in some neighborhood U of a point (a; b) = (a', 2%, a%; b!, b?).
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o Consider again

dyk
W:Gfk(x;y)v k:1527€:172a37
in some neighborhood U of a point (a; b) = (a', 2%, a%; b', b?).
o A solution of the system consists of functions
yE= 033, k=12,

such that they satisfy:
o The system of equations

x

f

Xt

o)

= G/ (x: f1(x), F2(x))

o

in a neighborhood of x = 3;
o f(a) = b, this last being “initial conditions”.
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o This is equivalent to defining a three-dimensional submanifold of
R5 = R3 x R? given by

(3%, x%) = (3,3 (%), F3(x)).

o The tangent plane at the point (x; y) is spanned by three vectors
X1, X2, X3, with components given by

Xl = (1a070a Gll(x7y)’Gl2(X7y))7
X2 = (0,1,0,G3(x.y), G3(x,y)),
X3 = (Oa071aG3:}l(X7y)ﬂG§(X7y))‘
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o Any such surface gives a solution.
o The initial conditions add the requirement that it pass through (a; b).
o Such solutions may not exist.

o The equations must satisfy certain necessary conditions on the
functions G£.

o They reflect the fact that if there is a solution, then one can
interchange the order of differentiation of ! and f2.

o These conditions can be written as relations among X; and [X;, Xj],
i,j=1,2,3.
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o The vector fields X7, X5, X3 are determined by the system.

o They define, at each point g of U, a three-dimensional subspace
A, C T4(R?), at least if they are linearly independent, which we will
assume.

o Thus, such a system of equations determines in some domain of R>
three linearly independent vector fields X3, X5, X3 at each point.

o A solution is a three-dimensional submanifold whose tangent space at
each of its points g is spanned by X7, X3, X3.
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o Two systems of differential equations will be equivalent if they
determine, at each g of this domain, the same three-dimensional
subspace A4 of T4(R?).

o In that case, they would - if some sort of uniqueness prevailed -have
the same solutions.
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o A system of equations is completely integrable, roughly speaking, if
there is a single such solution manifold through each point of some
domain of R>.

o That is, if the domain, up to diffeomorphism, is like an open subspace
of R®, presented as a union of disjoint “surfaces”, like the surfaces
obtained by holding two coordinates fixed and letting the other three
vary.
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o Let M be a manifold of dimension m = n + k.

o Suppose that to each p € M is assigned an n-dimensional subspace

Ap of Tp(M).
o Suppose, also, that, in a neighborhood U of each p € M, there are n
linearly independent C*°-vector fields Xi, ..., X, which form a basis

of Ag, for every g € U.
o In this case we shall say that:

o A is a C* distribution of dimension n on M;
o Xi,...,X,is a local basis of A.
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o We shall say that the distribution A is involutive if, there exists a
local basis Xi, ..., X, in a neighborhood of each point, such that

n
[Xi, X1 = ciXe, 1<ij<n.
k=1

o The céf will not in general be constants, but will be C* functions on
the neighborhood.
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o Suppose A is a C* distribution on M.
o Let N be a connected C*> manifold.

o Suppose F : N — M is a one-to-one immersion, such that, for each
g € N, we have
F(Tq(N)) € AF(q)-

o Then we say that the immersed submanifold is an integral manifold
of A.

o Note that an integral manifold may be of lower dimension than A.
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o Consider M = R" x RX.

o Suppose

0 .
XIZW, /:1,...,n.
o Then the distribution is the subspace of dimension n consisting of all
those vectors parallel to R" at each point g of M.
o We will see that this apparently rather special example is actually

typical, locally, of involutive distributions.
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o Let M be a manifold of dimension m = n + k.
o Let A be a C* distribution on M of dimension n.

o We shall say that A is completely integrable if each point p € M
has a coordinate neighborhood U, ¢, such that if x*,...,x™ denote
the local coordinates, then the n vectors

(0 ,
Ei:¢*1<W)7 i=1,...,n

are a local basis on U for A.
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o Note that, if A is completely integral, there is an n-dimensional
integral manifold N through each point g of U, such that

To(N) = A,

o That is, the tangent space to N is exactly A.
o In fact, let (a',...,a™) denote the coordinates of g.

o Then an integral manifold through g is the set of all points whose
coordinates satisfy

o In other words, N is the slice of U

N=yp Hxepl):¥=2aj=n+1,...,m}.
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o In the completely integrable case the distribution is involutive, since

1[8 o)

[Ei7Ej]:(P* axiaﬁ] =0, ]‘SILan'

o Thus any completely integrable distribution is involutive.
o However, most distributions are not involutive.

o For example, on R3 the distribution

0 0 0 0
Xi=x3—— 4=, Xo=75+—-—=
L= %0 Tax3 72T ox2 ' ox3
is not involutive since [X1, X3] = —%, which is not a linear

combination of X7 and X5.
o This means, in particular, that X7, X5 could not be tangent vectors to
a surface x3 = f(x}, x2).
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o An important and instructive example of an involutive distribution is
furnished by the Lie algebra h of a subgroup H of a Lie group G.

o b consists of left-invariant vector fields on G which are tangent to H
at the identity.

o We saw that this determines a subalgebra, the image of the Lie
algebra of H under the inclusion mapping.

o These give a (left-invariant) distribution A on G, such that
Ap = Typ(H), forevery he H.

o The cosets gH are the integral manifolds of this distribution.

o A is evidently involutive since h is a subalgebra of g.
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o A distribution A of dimension 1 is just a field of line elements.
o That is, A consists of one-dimensional subspaces.

o A local basis is given by any nonvanishing vector field X which
belongs to A at each point.

o An integral curve of X is an integral manifold.

o We know from the existence theorem that such integral manifolds,
passing through any given point, exist and are unique.

o In fact, a previous theorem says precisely that any such distribution is
completely integrable.

o It is also involutive since [X, X] = 0.
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o The following theorem may be considered a generalization of the
existence theorem to certain types of partial differential equations.

o In the general case, however, there is a necessary condition which is
not automatic, as it is in the case of a one-dimensional distribution.

o This condition is the involutivity of A.

Theorem (Frobenius)

A distribution A on a manifold M is completely integrable if and only if it
is involutive.
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o We showed that a completely integrable distribution is involutive.
This is an easy consequence of the definitions.

We shall prove that involutive distributions are completely integrable
by induction on their dimensions, which we denote by n.

We let m = dimM.

When n =1, we have seen that we may introduce local coordinates
V.1, such that E; = ¢*_1(aiy1) is a local basis for A.

This establishes complete integrability when n = 1.

Suppose that the theorem is true for involutive distributions of
dimensions 1,2,...,n— 1.

Let A be of dimension n and in involution.
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o Around any p € M, we may find local coordinates V/, 1) and a local
basis Xi,..., X, of A on V, such that X; = E;.

By assumption,

n
X0, X =Y ciXe
(=1

Let y',...,y™ denote the local coordinates.

We may suppose that ¢(p) = 0.
We know that the components of X; relative to the coordinate frames
Ei,..., Ey are ijl, ..., Xjy™, which are C* functions on V.
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o Define a new basis of A on V by

Yi = Xi (= E1)7
Y, = Xo— (Xoyl)Xi,

Yo = Xo— (Xayb)Xi.

By involutivity [Y;, Yj] = Y27, df;Ye.

But we have arranged that Y3, ..., Y, are linear combinations of
Es,...,Em at each point and do not involve £1 (= Y3).
Therefore, they are tangent to the manifolds y! = constant.

So [Yi, Y], 2 <i,j < n, must be tangent to the submanifolds y! =
constant.

Hence, dl-Jl- =0,2<i,j<n.
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o The distribution on V defined by Y>,...,Y, is in involution on V.

Moreover, on each submanifold y! = constant of V, including
Ng C U, it is defined by y! = 0.

The functions (y?,...,y™), restricted to Np, give coordinates on
VN Ny.

By the induction hypothesis, we may change coordinates on Ny in a
neighborhood of p by, say, functions

yi=Ff(x%...,xM), i=2....m,

defined on a neighborhood of the origin of R, so that:

o The image on Ny of %, e % is a basis at each point of the

subspace spanned by Ya,...,Y,;
o We have f/(0,...,0)=0,i=2,...,m.
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o We extend this to a change of coordinates in a neighborhood U C V
of p by adding the function f!(x) = x!, giving

b

yl=xt yi=F(x% ..., x™), i=2,...,m

Note that the Jacobian matrix is nonsingular at the origin.

So this is a valid change of coordinates.

We may suppose, with no loss of generality, that the image of U in
the (x!,...,x™) space is the cube C(0).

Let ¢ denote the coordinate map.
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o We have ¢ =1 o F~1 with
F(x', ..o x™) = (F(x),..., F™(x)).
Also ¢(p) = (0,...,0).
Moreover, in terms of the new coordinates, we have the following

three facts:
Y1 = o7 (r);
No N U consists of those points for which x! = 0, so (x2, ...

coordinates on this submanifold;
at each point of Np N U, Ya,...,Y, are linear combinations of

0 0
E2:QO* (W>,,En:g&* (w)

Equivalently, when x* =0,
Yox! ==Y x*'=0, forl=n+1,...,m,

,x™) are

that is, the last m — n components vanish.

George Voutsadakis (LSSU) Differential Geometry



Vector Fields on a Manifold

o We now prove that (iii) holds throughout U, without restriction on x'.
We consider Y1(Yix%), for j =2,...,n and each ¢ > n.
Using the definition of brackets, we get

Y1(Yjx") = Yj(Yaxh) + 1, YIx-.

We have iy
¢ _ OxX
Y1X = ﬁ =0.
Moreover,
[Y1, YJ] = Zdlsjys-
s=1
So

n
Yi(Yix) =D di(Yex").
s=2
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o We found .
YY) = 3 dfi(Yex’).
s=2

Now write df; and YJ-xi as functions of (x!,...,x™), passing from
functions on U to the corresponding functions in local coordinates.

Then we see that Yox1, ..., Y,x!, for fixed ¢ > n and fixed
x2,...,x™M are solutions of the system of ordinary differential

equations

dz; “ i
dTideszs, Jj=2,...,n,
s=2

satisfying initial conditions

z;=0,j=2,...,n, when x!=0.
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o However, the functions z; = 0 also satisfy the system and these same
initial conditions.

So, by the uniqueness of solutions, whenever £ > n,

Yoxt = = Yixt = 0, for all values of x*.
This shows that the vectors Yb,..., Y, are linear combinations of the
vectors Ep, ..., E, (of the coordinate frames) throughout U.

We also have E; = Y;.
It follows that

is a local basis for A.
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Corollary
Let U, ¢ be a cubical coordinate neighborhood of p € M, relative to the
involutive distribution A, whose slices - corresponding to x"*1, ... x™
fixed - are integral manifolds in U. Then any connected integral manifold
V C U lies on such a slice. That is, there are constants a"*1,... a™ such
that

VC{qgeU:x"(q)=a""",...,x"(q) = a™}.

o By hypothesis, V is an integral manifold.

So its tangent space at each point lies in the space spanned by the
first n vectors Ei, ..., E, of the coordinate frames.
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o Let x/ be a coordinate function of U, with j > n.
Let p be any point of V.
Let X, be any vector at p tangent to V.

Then )
Xo=> ajEp.
i=1

So we get

axf

But x/ is defined on all of V and V is connected.

It follows that x) = &/, a constant, on V.
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Let N C M be an integral manifold of an involutive distribution A, with

dimN = dimA.

Suppose F : A — M is a C*° mapping of a manifold A into M.
If F(A) C N, then F is C* as a mapping into N.

o Let p€ Aand let g = F(p) be its image.

Choose a cubical coordinate neighborhood U, ¢ of g, such that:
o ¢(q) =(0,...,0);
o p(U) = C(0);
o Its slices x"* = a™1 .. x™ = a™ are integral manifolds, where

n=dimA and m = dimM.

Now the inclusion i : N — M is an immersion.

So i"}(U) = NN U is an open set in N.

Therefore, it is an open submanifold.
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o Manifolds are locally connected.

So the components of NN U are open sets of N and countable in
number.

Each component is itself a (connected) integral manifold.
Thus, by the preceding corollary, it lies on a slice.

It follows that, if x/, j > n, is a coordinate function on U, it can have
only a countable number of values on NN U.

The function x/ maps any connected set C C N N U continuously into
this countable subset of IR.

Hence, it must be constant on C [the only connected, countable
subset of R is a single point].
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o Using the continuity of F : A — M, choose a connected coordinate
neighborhood W, 1) of p such that F(W) C U.

F(W) is a connected subset of U and lies in NN U.

Therefore, it lies on a single slice.

Because g € F(W), this is the slice x™1 = ... = x™ = 0.

Let U be the subset of N which lies on this slice.

We know it must be a union of components of i~1(U) = NN U.

So it is an open subset of N in the topology of N.
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o The coordinate functions x!, ..., x" restricted to U are coordinates

on U. That is, they define a mapping
$:U—>R",
such that U,(ﬁ is a coordinate neighborhood of g on N.

Let y',...,y" be the local coordinates on W, ).
Suppose F : A — M is given on W by C* functions

X =Fft .y, j=1,...,m.
Then .
fly)=0, j=n+1,...,m

Moreover, as a mapping into N, F is given (in local coordinates) on
W by the same functions f/(y), 1 <j < m.

So it must be C*, as claimed.
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Definition

A maximal integral manifold N of an involutive distribution A is a
connected integral manifold which contains every connected integral
manifold which has a point in common with it.

o It is immediate from the preceding corollary that a maximal integral
manifold has the same dimension as A.

o It is also clear that at most one maximal integral manifold can pass
through a point p of M.
o It is true, but more difficult to prove, that there is a maximal integral
manifold through every point of M.
o The idea is to piece together local slices using the corollary and build
up an immersed submanifold.
o The difficulty is in showing that there are not too many such slices,
that is, in proving that we have a countable basis of open sets.
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Let G be a Lie group, g its Lie algebra, and b a subalgebra of g.
Then there is a connected subgroup H of G whose Lie algebra is h.

o Let the left-invariant vector fields Xi,..., X, on g be a basis of .
They define a distribution A which is invariant under left translations.

Hence, each integral manifold N is carried by any left translation L,
diffeomorphically to an integral manifold Lg(N).

Let H be the maximal integral manifold through the identity e.
If he H, then L,-1(h) = e.

So both H and L,-1(H) have e in common.

Since H is maximal, L,-1(H) = H.

It follows that, if hy, hy € H, then hy*hy € H.

Thus, H is a subgroup as well as an immersed submanifold.
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o The product mapping
HxH—H

is a composition of:

o Inclusion i: Hx H— G x G;
o The product mapping 0 : G x G — G.

Both are C*.
So foiis C* as a mapping into G.
Its image is in H because H is a subgroup.

By the preceding theorem, we see that the product mapping

Hx H — H is also C*.

A similar argument shows that the mapping taking each h € H to its
inverse h~1 is also C°°.

This completes the proof, subject to the unproved assertion
concerning integral manifolds.
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Subsection 9
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o Suppose G is a Lie group and M a manifold.
o Let#: G x M — M be an action of G on M.
o We recall that @ is transitive if, for every pair p, g € M, there is a
g € G, such that
0¢(p) = q.
o This means that, as far as properties preserved by G are concerned,
any two points of the manifold are alike.

A manifold M is said to be a homogeneous space of the Lie group G if
there is a transitive C* action of G on M.
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o Many examples of group actions have this property.

o O(n) acts transitively on S"~1;
o GI(n,R) acts transitively on R" — {0};
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o Let G be a group.

o Let H be a subgroup of G.

o Consider the set G/H of left cosets of H in G.
o We define a left action A: G x G/H — G/H by

Mg, xH) = gxH.
o This defines a left action, since:

A e, xH) = xH;
g1, Mgz, xH)) = Mg1, &2xH) = (g182)xH = \(g182, xH).
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o Suppose 7 : G — G/H is the natural mapping of each g € G to the
coset which contains it,

m(g) = gH.
o Let Ly : G — G denote left translation.

o Then, for all g € G,
molg = Agom.

o The transitivity is apparent, since, for all x,y € G,

Ayx-1(xH) = yH.
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o We would like to assert that:

o When G is a Lie group, then G/H is a manifold;
o The mappings A and 7, defined by G and H as above, are C°.

o We saw that, if H is closed in G (a Lie group), then the quotient
topology on G/H makes it a Hausdorff space and 7 an open - as well
as continuous - mapping.

o Moreover, we asserted that, with this topology on G/H, X is a
continuous group action.

o In this section we show that G/H is a manifold and \ is a C> action.
o This will give us many new examples of manifolds and group action.

o More importantly, the manifolds G/H, with G acting by left
translation, form a universal model for all transitive actions, that is,
for all homogeneous spaces.
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o Consider universality from the set-theoretic viewpoint, without
topology or differentiable structure.

o Let X be a set on which a group G acts transitively by the rule
f:GxX— X.

o Choose, arbitrarily, a point a € X.
o Let the isotropy subgroup (or stability group) of a be

H={g € G:6,(a) = a}.
o We then define a mapping F:G—X by
F(g) = bg(a).

o Since @ is transitive, F is onto.
o Moreover for any x € X, F~1(x) = gH, where g is any element of G
such that F(g) = x.
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o It is then easily verified that F induces a one-to-one onto mapping
F:G/H— X by B
F(gh) = F(g).

o For these mappings we have the relation
Form=F.

o Finally F carries the natural action of G on G/H, which we denoted
by A, to the action 0, that is,

Folg=0s0F, gecg.

o Thus, from the set-theoretic and abstract group viewpoint,
A: G x G/H — G/H is equivalent as an action to 6 : G x X — X.
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o Recall that a Lie subgroup H of a Lie group G is an immersed
submanifold which is a Lie group with respect to the group operations
of G.

o We intend to use the quotient topology on G/H.
o Moreover, we wish G/H to be a Hausdorff space.

o So we must restrict our attention to those Lie subgroups that are
closed subsets.

o Therefore, H will be assumed to be a closed Lie subgroup.
o We show later that this implies that H is a submanifold of G.

o A section V,0 on G/H is a continuous mapping o of an open subset
V of G/H into G, o : V — G, satisfying

m oo = iy, the identity on V.
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Theorem

Let G be a Lie group and H a closed Lie subgroup.
Then there exists a unique C*°-manifold structure on the space G/H,
satisfying the following properties:

mis C°;
Each g € G is in the image o(V) of a C* section V,o on G/H.
The natural action
A:GxG/H— G/H,

described above, is a C* action of G on G/H with this structure.
Moreover, we have

dim(G/H) = dimG — dimH.

o The proof will be given shortly.
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o Now suppose that a Lie group G acts transitively on a manifold M,
the action being given by the C*°-mapping

0:GxM— M.

o We use the notation above, with X replaced by M.
o Suppose a € M is fixed.
o Let H be the isotropy subgroup of a.

o We then have a closely related theorem that completes the picture.
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The mapping F: G — M, defined by

F(g) = 0(g,a),

is C* and has rank equal to dimM everywhere on G. The isotropy group
H is a closed Lie subgroup. So G/H is a C* manifold. The mapping
F: G/H — M defined by

F(gH) = F(g)
is a diffeomorphism. Moreover, for every g € G,

Folg=0s0F.

George Voutsadakis (LSSU) Differential Geometry



Vector Fields on a Manifold

o Consider briefly some of the spaces associated with classical
geometries:

o E", Euclidean space;
o P"(R), the space of real projective geometry;
o H?, the space of plane non-Euclidean geometry.
o All of these were discovered and studied before Lie groups (or groups
of any kind) were invented.

o However, in each case there is an underlying group, the group of
automorphisms of the geometry.

o It is the group by which we can bring congruent figures into
congruence.

o In fact each geometry studies precisely the objects and properties
which are invariant under the transformations expressed by the
actions of this group on the space.
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o For E", or R", the group consists of all isometries (rigid motions),
that is, translations, rotations and reflections.

o For P"(R) it consists of the projective transformations.

o For H? it is the group whose actions leave non-Euclidean distances
unchanged (“rigid” motions again!).

o In each case the group is a Lie group and in each case it is transitive.

o This means that the theorems above can be used as a sort of
underlying unifying principle of all these geometries.

o Thus the study of any of these classical geometries can be reduced to
a study of Lie groups G and their subgroups H.
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o Consider the space E", identified with R".

o We have seen that the group of its rigid motions is a group G which
is O(n) x V" as a manifold.

o However, its group product was defined by
(A, v)(B,w) = (AB,Aw + v).
o Moreover, the action on R" is given by

(A, v) - x = Ax + v.
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o Another approach is the following.

o We identify G with the (n+ 1) x (n+ 1) matrices of the form

air - an | W
_ air - ain
g=| = s A= .| € O(n).
dnl " dmpm | Vn am - a
0 ... 0 ‘ 1 n nm
o We identify points x = (x%,...,x") of R” with the column vector
!
~ : 1 T
X = = (x*,...,x"1)
X
1
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o Then the action
e(ga X) = gia
the product of the matrices g and X.

o The subgroup H leaving the origin x = (0,...,0) fixed is the set of all
of these matrices for which

vi=---=v,=0.

o Hence, it is a closed Lie subgroup isomorphic to O(n).
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o The group G = SI(n+ 1,R) acts transitively on P"(RR) as follows.
o Let [x] € P"(R).

o Then [x] is an equivalence class of nonzero elements
x = (xt, ..., x") € R
o Given any g € S/(n+ 1,R), we define 6(g,[x]) by

0(g, [x]) = [&x],

where gx is the matrix product of g with x, an (n+ 1) x 1 matrix.
o Thisis a C* action and is transitive.

o The isotropy subgroup H of [(1,0,...,0)] is the set of elements (aj;)
of SI(n+ 1,R) with a1; # 0 and all other entries of the first column
equal to zero.

o It can be shown that H is a closed Lie subgroup of G.
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o These ideas and the preceding theorem give a relatively simple method
for establishing that certain sets are C°° manifolds in a natural way.

o The best illustrations are the Grassman manifolds G(k, n) of k-planes
through the origin in R".

o It was proved that these were manifolds, but the proof was quite
complicated and only sketched at some points.

o We revisit the same result to illustrate the new approach.
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o The group GI(n,R) acting in the natural manner on R” is transitive
on k-planes through the origin.

o Let {vi,...,v,} be a linearly independent set of vectors.

o There is a uniquely determined, nonsingular, linear transformation
taking it to any second linearly independent set

{wi,...,wp}.

o Recall that each set of k linearly independent vectors can be
completed to a basis.

o So, if GI(n,R) is transitive on n-frames, it is also transitive on
k-frames.

o So Gl/(n,R) acts transitively on the set M = G(k, n) of k-planes
through 0.
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o Suppose the isotropy subgroup H of some point of M, that is, a
k-plane through 0, is a closed Lie subgroup.

o Then, by the theorem, G/(n,R)/H is a C*° manifold.
o Moreover, it is in natural one-to-one correspondence with M.

o Thus, we may take on M the topology and C* structure which
makes this correspondence a diffeomorphism.

o So it suffices to show that H is in fact a closed Lie subgroup.
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o Recall H is the isotropy group of some point of M = G(k,n), i.e., a k
plane through 0.

o Consider such a k-plane of R" spanned by the vectors
e; =(1,0,...,0),...,e,=(0,...,1,0,...,0).

o It is carried onto itself by the subgroup H C G/(n,R) consisting of

matrices of the form
b Al C
~\0|B )’

where:
o A€ Gl(k,R);
o Be Gl(n—k,R);
o C is an arbitrary k x (n — k) matrix.

o Therefore, the Grassmann manifold G(k, n) is indeed a C* manifold.
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o This method is frequently used in practice to show that some rather
complicated objects can be endowed with the structure of a
differentiable manifold (uniquely, according to the theorem).

o It may be summarized as follows:

Suppose G is a Lie group and G acts on a set X transitively in such a
way that the isotropy subgroup of some point a of X is a closed Lie
subgroup. Then there exists a (unique) C>° structure on X such that
the action is C*°.

o This principle as well as other results of this section are susceptible to
further refinements and weakening of hypotheses.
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Theorem

Let G be a Lie group and H a closed Lie subgroup.
Then there exists a unique C*°-manifold structure on the space G/H,
satisfying the following properties:

mis C°;
Each g € G is in the image o(V) of a C* section V,o on G/H.
The natural action
A:GxG/H— G/H,

described above, is a C* action of G on G/H with this structure.
Moreover, we have

dim(G/H) = dimG — dimH.

o We now give the proof.
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o The topology on G/H is uniquely determined by the requirement that
7 : G — G/H be open and continuous.

We show A : G x G/H — G/H is a continuous action.
Let U be an open set of G/H.
We show that A=1(U) is open.

Let W be the subset of G x G, such that every pair (g1,42) € W has
its product gig» in 7~1(U), an open subset of G.

W is the inverse image of 7~%(U) under the continuous mapping
(81,82) = &182.

So W is open.

The natural mapping of G x G — G x G/H given by

(g1,82) — (g1,7(g2)) is open.

So it carries W onto an open set, which is exactly A=}(U).
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o We now need to use Frobenius’ theorem, which we apply to the
left-invariant distribution A, determined by A, = T¢(H).

Denote by b the the Lie algebra of H, viewed as a subalgebra of g.
A has as a basis any basis of left-invariant vector fields in b.

Moreover, the integral manifolds of A are exactly the left cosets gH,
as remarked previously.

It follows that there is a cubical neighborhood of e whose
intersections with the cosets gH are a union of slices.

To complete the proof we need a sharper result given by the following
lemma.
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Lemma
If H is a Lie subgroup of G which is closed as a subset, then each coset
gH is a submanifold. Moreover, there is a cubical neighborhood U, ¢ of
any g € G, such that, for each coset xH, either xH N U is empty or a
single (connected) slice.

o That H and each of its cosets is a submanifold is an immediate
consequence of the second part of the statement, which asserts, in
particular, that H and its cosets have the submanifold property.

We know each coset is an integral manifold of the distribution A.

So every g € G has a cubical coordinate neighborhood with

©(g) = C"(0), m = dimG, whose slices, determined by fixing the last
m — n coordinates (n = dimH = dimA), are integral manifolds, each
an open set of a coset xH of H.
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o We must now verify that U may be taken sufficiently small that each
coset xH N U is empty or is a single slice.

A\, integral manifolds, and so on, are invariant under left translation
by elements of G.

So it is enough to check this for the special case g = e.
Let U, ¢ be a cubical neighborhood of e, whose slices are cosets of
H, and such that U’ N H consists of a single slice.
It suffices to choose U C U’ small enough that:
o UTtU C U
o U, |y is also a cube.

Assume x,y € U are on distinct slices of U but xH = yH.

L,-1 is a diffeomorphism and carries slices into slices.

1

So y~'x and e are elements of U’ N H but lie on distinct slices.

This contradicts our assumption about U’, so it cannot happen.
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o Let V, 1) be a cubical neighborhood of e, (V) = C"(0), whose slices
S@,...,a") ={qeV:xX(q) =, j=n+1,...,m}

are integral manifolds.

We saw in the proof of a previous theorem that the collection of
distinct slices on H, that is, V N H, is countable.

Hence, it corresponds to a countable set of points {(a"*1,...,a™)}
of the cube C;"7"(0).
Restricting slightly to a closed cube V' = ¢~1(CZ(0)), § > &' > 0,

we may suppose this countable set is closed, for H is closed and
V' N H is closed.
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o A closed countable subset of R™~" must contain an isolated point.
It follows that H N V'’ contains an isolated slice.
By translation invariance, we may assume this is the slice through e.

Then it is possible to choose ¢/, &' > & > 0, so that

vHCT0) = U, ¢ =d|u

have exactly the property needed.
That is, HN U’ is a single slice and contains the identity e.

This U', ¢/, as we have seen, enables us to complete the proof of the
lemma.
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o We restrict our discussion entirely to cubical neighborhoods U, ¢ of
the type described above, with p(U) = C(0).

We also suppose that, in the local coordinates

Xl’ ’Xn’XnJ’_l’ ’Xm’
the slices obtained by holding x™1, ..., x™ fixed are the intersections
of cosets gH with V.
Let
A={qgeU:x'(q)=---=x"(q) =0}

Let ¢ : A— C™="(0) C R™" be defined by

¥'(q) = (x""H(q), ..., x™(q)).
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o Ais a C* submanifold of G, contained in U.
In addition, v’ is a diffeomorphism.
By our choice of U, ¢, we see that A meets each coset of H which
intersects U in exactly one point.
Therefore, m maps A homeomorphically onto an open subset V' of
G/H.
We denote the inverse by o.
Thus o : V — G is a continuous section with o(V) = A.
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o Suppose that U, ¢ and U, @, as just chosen, are such that V= 77(;)
and V = m(A) have common points.

Theset VNV is open.

Moreover, it can be verified that the corresponding subsets
W=0c(VNV) and W=35(VNV)

are diffeomorphic with respect to the natural correspondences
Gom:W W and com: W — W.

We consider:
o The collection of open sets V = 7w(A), over all U, ¢ of the type above;
o The homeomorphisms ¢ = ¢’ oo : V — C"~"(0).
It follows that they determine a C°° structure of the type required by
the conclusions of the theorem.
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o The uniqueness follows from Requirements (i) and (ii).
Suppose we have two differentiable structures on G/H.

We show that the identity is a diffeomorphism.
Factor it locally into:
o A section o : V — G of the first structure;
o A projection 7, which is C°, onto the second structure.

Thus, the identity is a C°° mapping of G/H with structure one to
G /H with structure two, since this holds on each domain V.

The converse is also true.
So the structures agree.

Finally A : G x G/H — G/H is C*, since it may be written on the
domain V of a section as

g, xH) = m(go(x)).
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Theorem

The mapping F: G — M, defined by

F(g) = 0(g,a),

is C* and has rank equal to dimM everywhere on G.
The isotropy group H is a closed Lie subgroup. So G/H is a C* manifold.
The mapping F : G/H — M defined by

F(gH) = F(g)
is a diffeomorphism. Moreover, for every g € G,

Folg=0s0F.
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o By hypothesis, 0 is C*.
By definition, F(g) = 4(g, a).
So F:G— Mis C™.
Note that B B B
Folg(x) = F(gx) =0z 0 F(x).
Moreover, both L and 6, are diffeomorphisms.
By the chain rule, the rank of F is the same at every g € G.

By a previous theorem, that F~1(a) = H is a closed submanifold and
satisfies the hypotheses of the preceding theorem.
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o At e we have F, : To(G) — T,(M).
But each X, € T.(G) is the tangent vector at t = 0 to the curve

g(t) = exptX.
So the vector F,(Xe) is the tangent vector to
F(exp tX) = 6(exp tX, a)

at a (which corresponds to t = 0).
0 restricted to g(t) = exp tX is an action of R on M.

By a previous theorem, F.(X.) is zero if and only if

O(exp tX,a) = a, for all t.
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o That is, F*(Xe) is zero iff exp tX C H.
Equivalently, X € T¢(H), the subspace of T.(G) corresponding to the
subgroup H.
Hence,
kerFre = To(H) = kerme.
As noted, dimkeri:v* is constant on G, as is dimkerm,.
Since F is onto, it follows from a previous theorem that

dimM = dimG — dimH = dimG/H.

Now consider F : G/H — M.

Let g € G/H.

Let V, o be a section defined on a neighborhood V of gq.
cis C®and Fly =Foo

So F is C° in a neighborhood of every point.
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o Hence Fis C*° on G/H.
F is one-to-one and onto from set-theoretic considerations.

If kerF, = {0}, that is, rankF = dimG/H = dimM everywhere, then
F must be a diffeomorphism.

Let g be any point of G/H and suppose g = 7(g).
Using F = F o and the chain rule, we see that

Fi: Tg(G) = Tﬁ(g)(l\/l) is given also by F, o m,.

But dimkerl-:* = dimkerm,.

So we must have dimkerF, = 0, as we wished to prove.
The fact that F o \g = 0, o F was already noted.

By a previous theorem, ), is a diffeomorphism.

Finally, by hypothesis, 0, is also a diffeomorphism.
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Subsection 10
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Theorem (Existence Theorem for Ordinary Differential Equations)

Let U C R" be an open set. For € > 0, let . = (—¢,¢). Let
fi(t,xt,...,x"), i=1,...,n,

be functions of class C", r > 1, on I. x U.
Then, for each x € U, there exists § > 0 and a neighborhood V of x,

V C U, such that:
For each a = (a',...,a") € V there exists an n-tuple of C" functions

x(t) = (x}(t),...,x"(t)), defined on I5 and mapping I5 into U, which
satisfy the system of first-order differential equations

dx
P fi(t,x), i=1,....n,

dt
and the initial conditions x'(0) = a', i=1,...,n.
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Theorem (Existence Theorem Cont'd)

For each a, the functions x(t) = (x(t),...,x"(t)) are uniquely
determined, in the sense that any other functions X*(t),...,x"(t)
satisfying the same condition must agree with x(t) on their common
domain, which includes /5.

These functions being uniquely determined by a = (al,...,a") for
every a € V, we write them

xi(t,al,...,a”), i=1,...,n.

They are of class C" in all variables and, thus, determine a C" map of
Is x V— U.
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o We are given n functions f/(t, x) defined and of class C" on an open
subset I. x U C R x R", with . = {—e <t <e,e > 0}.

o We must show that, for each x € U, there is a neighborhood V' and a
§ > 0, such that, for each a € V, there exist unique functions x'(t),
—0 < t < 4, satisfying

dx’ . . .
d—’; = fi(t,x(t)) and x(0)=a', i=1,...,n.
o Suppose x/(t), i =1,...,n, are continuous functions defined for

|t| < & and they satisfy

Xi(t) =2 -|—/0 fi(T, x(1))dT.
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o By the Fundamental Theorem of Calculus, they are of class C! at
least and satisfy the required conditions.

o By the first condition above, it follows that they must be of class
C1 at least, since their derivatives are of class C”.

o We may write this set of integral equations for x(t),...,x"(t) as an
equation in n-tuples

x(t)=a +/0 f(r,x(7))dt.

o For a given xg € U, we choose:
o r, 0 < r<1,such that Bz, (x) C U;
o An ¢/, satisfying e > ¢/ > 0, so that I/ C ..
o Thus, the functions f/(t,x) are of class C’, r > 1, on the compact
set 1./ x B3.(xp).
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o Therefore, both the given functions f’ and their derivatives are
bounded on /.. x B3, (xo).
o It follows that we may choose M > 1 such that:
o M > sup||f(t,x)|; ~ .
o M||x =yl > |If(t,x) — f(t,y)|, for all t € I, and x,y € Bs,(x0)-
o The last inequality results from the Mean Value Theorem and the
continuity of the derivatives.
o Choose a positive d, such that § < 777.
o We shall prove the theorem with this § and with V = B,(xg), which
we denote by B, here.
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o Letac B,.
o Let F be the collection of all continuous maps

o(t) = (1), ., 9"(1))

of I5 into By, (a) satisfying ¢(0) = a.
o By virtue of the preceding comments, it is enough to show that, there
is a unique member of this collection satisfying

o= L(p) —a—i—/ f(r,o(7))dT.

o This will be done by:

o Proving that L : 7 — F is a contracting mapping on a complete
metric space;
o Applying the Contracting Mapping Theorem.
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F is a complete metric space with

d(p,¥) = sup [lp(t) — ¥(1)]].

tels
Indeed, this is the topology of uniform convergence of continuous
functions on a compact space.
If ¢ € F, then L(¢) € F so that L maps F to F.
It is clear that L(y) is continuous. In fact, it is at least C1.
When t = 0, the function L(p) has the value a.
It is only necessary to check that if |t| < J, then ||L(¢)(t) — a| < 2r.
This results from

[1L(p)(t) — all I fy £(7, e(7))d7]l
Jo I (7, o(7))lldT
Mé < 57 <r.

IA A
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Finally, L is contracting.
Let p, v € F:

IL(0) = L()]] Jo IE(r, (7)) = £, ()l dT
OM supy, [le(t) — P(t)]]

IMd(p,v) = d(w, ).

INIAIA

Butr<1and M > 1.

So we have
L(¢) — L()|| < kd(p,v), where 0 < k < 1.

o By the contracting mapping theorem there is a unique ¢(t) satisfying
the conditions.
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