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Differentiation on Riemannian Manifolds Differentiation of Vector Fields along Curves in Rn

Vector Fields Along Curves in Rn

Let C be a curve in Rn given by

x(t) = (x1(t), . . . , xn(t)), a < t < b.

Suppose that Z (t) = Zx(t) is a vector field defined along C .

Thus, to each t ∈ (a, b), is assigned a vector

Z (t) =
∑

ai(t)

(
∂

∂x i

)

x(t)

∈ Tx(t)(R
n).
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Differentiation on Riemannian Manifolds Differentiation of Vector Fields along Curves in Rn

Vector Fields Along Curves in Rn (Cont’d)

We will suppose Z to be of class C 1 at least.

This means that the components ai(t) are continuously differentiable
functions of t on the interval (a, b).

The velocity vector of the (parametrized) curve itself is an example.

In this case, we have
ai (t) = ẋ i (t).
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Differentiation on Riemannian Manifolds Differentiation of Vector Fields along Curves in Rn

Difference of Two Vectors

We define a derivative, or rate of change, of Z (t) with respect to t.

It will be denoted Ż (t) or dZ
dt
.

It will again be a vector field along the curve.

In general, neither Z (t) nor its derivative are tangent to the curve.

In Rn we have a natural parallelism (or natural isomorphism) of
Tp(R

n) and Tq(R
n), for any distinct p, q ∈ Rn.

So we are able to give meaning to

Z (t0 +∆t)− Z (t0),

the difference of a vector in Tx(t0+∆t)(R
n) and a vector in Tx(t0)(R

n).
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Differentiation on Riemannian Manifolds Differentiation of Vector Fields along Curves in Rn

Difference of Two Vectors (Cont’d)

The difference Z (t0 +∆t)− Z (t0) of a vector in Tx(t0+∆t)(R
n) and a

vector in Tx(t0)(R
n).

For definiteness we suppose Z (t0 +∆t) moved to or identified with
the corresponding vector in Tx(t0)(R

n).

Further, we suppose that the subtraction is performed there.
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Differentiation on Riemannian Manifolds Differentiation of Vector Fields along Curves in Rn

Definition of the Derivative

This identification allows us to define the differential quotient

1

∆t
[Z (t0 +∆t)− Z (t0)] =

n∑

i=1

ai(t0 +∆t)− ai(t0)

∆t

(
∂

∂x i

)

x(t0)

.

We have to justify this equality.

Suppose we write vectors in terms of the basis

∂

∂x1
, . . . ,

∂

∂xn
.

This is a field of parallel frames on Rn.

Thus, vectors at distinct points, say Z (t0 +∆t) and Z (t0), are
parallel if and only if they have the same components.

George Voutsadakis (LSSU) Differential Geometry December 2024 8 / 279



Differentiation on Riemannian Manifolds Differentiation of Vector Fields along Curves in Rn

Definition of the Derivative (Cont’d)

Passing to the limit as ∆t → 0 gives the definition

Ż (t0) =

(
dZ

dt

)

t0

=
∑

ȧi(t0)

(
∂

∂x i

)

x(t0)

∈ Tx(t0)(R
n).

Remark: We look at a useful consequence of this formula.

Suppose we introduce a new parameter on the curve, say s, by

t = f (s), with t0 = f (s0).

Then (
dZ

ds

)

s0

=

(
dt

ds

)

s0

(
dZ

dt

)

t0

.

Here (dt
ds
)s0 is a scalar, whereas the other terms are vectors.
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Differentiation on Riemannian Manifolds Differentiation of Vector Fields along Curves in Rn

Example

Consider the curve x(t) = (cos t, sin t), a unit circle in R2.

Suppose

Z (t) = − sin t

(
∂

∂x

)
+ cos t

(
∂

∂y

)
.

This is the velocity vector of the point which traces out the circle.

Then

dZ

dt
= − cos t

(
∂

∂x

)
− sin t

(
∂

∂y

)
.

This is a vector at x(t) = (cos t, sin t)
which has constant length +1 and
points toward the origin.
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Differentiation on Riemannian Manifolds Differentiation of Vector Fields along Curves in Rn

Constant or Parallel Vector Fields

Definition

A vector field Z (t) is constant or parallel along the curve x(t) if and only
if dZ

dt
= 0 for all t.

Suppose that Z1(t) and Z2(t) are vector fields of the above type
defined along the same curve C .

Let f (t) be a differentiable function of t on a < t < b.

Then f (t)Z (t) and Z1(t) + Z2(t) are vector fields along C .

George Voutsadakis (LSSU) Differential Geometry December 2024 11 / 279



Differentiation on Riemannian Manifolds Differentiation of Vector Fields along Curves in Rn

Properties of Derivatives

We have the following easy consequences of the definition.

For sums
d

dt
(Z1(t) + Z2(t)) =

dZ1

dt
+

dZ2

dt
.

For products by a differentiable function,

d

dt
(f (t)Z (t)) =

df

dt
Z (t) + f (t)

dZ

dt
.

For inner products,

d

dt
(Z1(t),Z2(t)) =

(
dZ1

dt
,Z2(t)

)
+

(
Z1(t),

dZ2

dt

)
,

where (Z1,Z2) is the standard inner product in Rn.
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Differentiation on Riemannian Manifolds Differentiation of Vector Fields along Curves in Rn

Using Other Field Frames

We sometimes find it convenient to use a field of frames, other than
the natural one, say

F1(t), . . . ,Fn(t),

defined and of class C 1 at least along x(t).

Then Z (t) has a unique expression as a linear combination of these
vectors at each x(t),

Z (t) = b1(t)F1(t) + · · ·+ bn(t)Fn(t).

Differentiating this expression we obtain

dZ

dt
=

n∑

j=1

(
dbj

dt
Fj(t) + bj(t)

dFj

dt

)
.
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Differentiation on Riemannian Manifolds Differentiation of Vector Fields along Curves in Rn

Using Other Field Frames (Cont’d)

Now
dFj

dt
are vectors along x(t).

So they too are linear combinations of Fk(t),

dFj

dt
=

n∑

k=1

akj (t)Fk(t).

This gives the formula

dZ

dt
=
∑

k


dbk

dt
+
∑

j

bj(t)akj (t)


Fk(t).

Note that, when the frames F1(t), . . . ,Fn(t) are parallel, akj (t) ≡ 0.

So the last formula includes the original formula as a special case.
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Differentiation on Riemannian Manifolds Differentiation of Vector Fields along Curves in Rn

Parametrization by Arc Length

The length of the curve from a fixed point x0 = x(t0) is given by

s =

∫ t

t0

(ẋ(t), ẋ(t))1/2dt.

So
ds

dt
= (ẋ(t), ẋ(t)).

If s is used as parameter, then ds
dt

≡ ds
ds

≡ 1.

So ẋ(s) is a unit vector tangent to the curve.

Let
T (s) = ẋ(s)

denote this unit tangent vector.
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Differentiation on Riemannian Manifolds Differentiation of Vector Fields along Curves in Rn

Invariance of the Parametrization by Arc Length

Arc length, the parameter s (to within an additive constant), and
T (s) are determined by the (induced) Riemannian metric on x(s).

They do not depend on the particular rectangular Cartesian
coordinates or origin used.

So they and the derivatives of T (s) are geometric invariants of the
curve.

This means that they are the same at corresponding points for
congruent curves.
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Differentiation on Riemannian Manifolds Differentiation of Vector Fields along Curves in Rn

Curvature

We have
(T (s),T (s)) = (ẋ(s), ẋ(s)) = 1.

So, differentiating, we get

d

ds
(T (s),T (s)) = 0.

Using the inner product rule, we obtain

2

(
T (s),

dT

ds

)
≡ 0.

Therefore, one of the following holds:
dT
ds

is zero;
dT
ds

is a nonzero vector orthogonal to T (s) at each point of the curve.

We define the curvature k(s) by

k(s) =

∥∥∥∥
dT

ds

∥∥∥∥ .
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Differentiation on Riemannian Manifolds Differentiation of Vector Fields along Curves in Rn

Curvature (Cont’d)

Suppose k(s) 6= 0.

Then, we let N(s) be the unique unit vector defined by

dT

ds
= k(s)N(s).

We also let B(s) be the uniquely determined
unit vector, such that

T (s), N(s), B(s)

define an orthonormal frame with the
orientation of ∂

∂x1
, ∂
∂x2

, ∂
∂x3

.
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Differentiation on Riemannian Manifolds Differentiation of Vector Fields along Curves in Rn

Non-Zero Curvature

We assume that k(s) 6= 0 at all points of a curve under consideration.

This assumption is justified, since it is the generic or typical situation
for a space curve.

Theorem

If k(s) ≡ 0 on the interval of definition, then x(s) is a straight line
segment on that interval.
Conversely, for a straight line x(s), k(s) ≡ 0.

Suppose the curve x(s) is a straight line.

Then it is given, in terms of arclength, by

x i (s) = ai + bis, i = 1, 2, 3,

where
∑3

i=1(b
i)2 = 1.

George Voutsadakis (LSSU) Differential Geometry December 2024 19 / 279



Differentiation on Riemannian Manifolds Differentiation of Vector Fields along Curves in Rn

Non-Zero Curvature (Cont’d)

Thus

T =

3∑

i=1

bi
∂

∂x i
.

So dT
ds

≡ 0.

Conversely, suppose k(s) ≡ 0.

Then
dT

ds
≡ 0.

But

T =
∑ dx i

ds

∂

∂x i
,

where s is arclength.
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Differentiation on Riemannian Manifolds Differentiation of Vector Fields along Curves in Rn

Non-Zero Curvature (Cont’d)

This implies
d2x i

ds2
= 0, i = 1, 2, 3.

Thus
x i (s) = ai + bis, i = 1, 2, 3,

with ai and bi constants.

So the curve is a straight line.

Note that T (s) and k(s) are defined for a curve in Rn, for any n (not
just n = 3), and the proposition just proved is still valid.
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Differentiation on Riemannian Manifolds Differentiation of Vector Fields along Curves in Rn

The Matrix of the Derivation

For convenience of notation, we let F1(s), F2(s), F3(s) denote T (s),
N(s), B(s), respectively.

Since this is a field of orthonormal frames, we have

(Fi (s),Fj (s)) ≡ δij .

Differentiation of these equations gives the relations
(
dFi

ds
,Fj(s)

)
+

(
Fi(s),

dFj

ds

)
≡ 0, i , j = 1, 2, 3.

As we pointed out in the derivation,
dFj

ds
must be a linear combination

of the Fk(s), for every s.

So we may write

dFj

ds
=
∑

k

akj Fk(s), j = 1, 2, 3.
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Differentiation on Riemannian Manifolds Differentiation of Vector Fields along Curves in Rn

The Matrix of the Derivation (Cont’d)

Combining, we get
(
∑

k

aki Fk ,Fj

)
+

(
Fi ,
∑

k

akj Fk

)
≡ 0.

Equivalently
a
j
i (s) + aij(s) ≡ 0, 1 ≤ i , j ≤ 3.

This means that the matrix (aij(s)) is skew-symmetric.

By definition dT
ds

= k(s)N.

This gives
a21(s) = k(s).

So a13(s) ≡ 0 ≡ a31(s).

Finally, we use the notation

a32(s) = τ(s).
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Differentiation on Riemannian Manifolds Differentiation of Vector Fields along Curves in Rn

The Matrix of the Derivation (Cont’d)

Rewriting in terms of T ,N,B , we have the Frenet-Serret formulas

dT
ds

= k(s)N,
dN
ds

= −k(s)T +τ(s)B ,
dB
ds

= −τ(s)N.

They, express the derivatives with respect to s of T ,N and B , which
are called the tangent, normal and binormal vectors, respectively,
of x(s), in terms of these vectors themselves.

Definition

k(s) is called the curvature and τ(s) the torsion of the curve C at x(s).

Curvature measures deviation of C from a straight line.

Torsion measures “twisting” or deviation from being a plane curve.
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Differentiation on Riemannian Manifolds Differentiation of Vector Fields along Curves in Rn

Characterization of Plane Curves

Theorem

A curve in E
3 lies in a plane if and only if τ(s) ≡ 0.

Suppose the curve lies in a plane.

By the definition of T (s) and dT
ds

, we see that these vectors lie in the
plane of the curve for each point x(s) of the curve.

Thus, B(s) has a fixed direction, orthogonal to the plane.

So it is always parallel to a fixed unit vector, orthogonal to the plane.

Therefore, dB
ds

≡ 0.

This gives τ(s) ≡ 0.
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Differentiation on Riemannian Manifolds Differentiation of Vector Fields along Curves in Rn

Characterization of Plane Curves (Converse)

Suppose that τ(s) ≡ 0.

Then dB
ds

≡ 0 and B is a constant vector along the curve.

We choose the coordinate axes so that:
The curve passes through the origin 0 at s = 0;
B(s) is parallel to ∂

∂x3
, the unit vector in the direction of the x3-axis.

Then x(s) = (x1(s), x2(s), x3(s)) determines the vector x(s) from the
origin 0 to the point x(s) on the curve.

Differentiating (x(s),B(s)), we have

d

ds
(x(s),B(s)) ≡ (T (s),B(s)) +

(
x(s),

dB

ds

)
= (T (s),B(s)) ≡ 0.

So (x(s),B(s)) is constant.

Now x(s0) = 0, that is, x(s0) = 0.

So the vector x(s) [or line 0x(s)] is always perpendicular to B = ∂
∂x3

.

Thus, the curve lies in the x1x2-plane.
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Dynamics of a Moving Particle

We consider briefly the dynamics of a moving particle in space.

Suppose its position p(t) is given as a function of time t.

Let s(t) be the length of path traversed from time t = 0 to time t,

s(t) =

∫ t

0

((
dp

dt
,
dp

dt

))1/2

dt.

Then the speed with which the particle moves along the curve is

ds

dt
=

((
dp

dt
,
dp

dt

))1/2

=

∥∥∥∥
dp

dt

∥∥∥∥ .
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Differentiation on Riemannian Manifolds Differentiation of Vector Fields along Curves in Rn

Dynamics of a Moving Particle (Cont’d)

Its velocity vector is given by

v(t) =
dp

dt
=

dp

ds

ds

dt
= T

ds

dt
,

where T is the unit tangent vector.

Differentiating, we get the acceleration

a(t) =
d2p

dt2
=

dT

ds

(
ds

dt

)2

+ T
d2s

dt2
.

We have dT
ds

= kN.

So we obtain

a(t) =
d2s

dt2
T + k

(
ds

dt

)2

N.
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Differentiation on Riemannian Manifolds Differentiation of Vector Fields along Curves in Rn

Dynamics of a Moving Particle (Cont’d)

The acceleration decomposes into the sum of two vectors:

One in the direction of the curve, whose magnitude is the time rate of

change of the speed d2s
dt2

;
The other normal to the curve and directly proportional to both the
square of the speed and to the curvature.
The curvature depends only on the curve.

If the motion is a straight line motion, then k = 0.

In this case, a has the direction of the line.

If the particle moves at constant speed, then d2s
dt2

= 0.

In that case the acceleration depends only on the shape of the path.

The same remarks also apply to the force F acting on the particle,
which by Newton’s Second Law, F = ma, is proportional to a with
the mass m as constant of proportionality.
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Curvature of Plane Curves

We consider the case of a curve C lying on an oriented plane.

Suppose a curve, parametrized by arclength, is given by

s → (x(s), y(s)).

Then the unit tangent vector is

T = ẋ(s)
∂

∂x
+ ẏ(s)

∂

∂y
.

If dT
ds

6= 0, then we may as before define

k(s) =

∥∥∥∥
dT

ds

∥∥∥∥ .

That is:
We consider the curve as a space curve (x(s), y(s), 0), whose
z-coordinate z(s) = 0;
We use the same definitions as before.
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Curvature of Plane Curves (Cont’d)

However, for plane curves a more refined definition of curvature is
possible.

At each point of C choose N so
that

T , N

have the same orientation as ∂
∂x ,

∂
∂y (this uniquely determines T ,
N).

Then define the curvature k̃(s) so that

k̃(s)N =
dT

ds
.

This allows k̃(s) to be negative, zero or positive.
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Curvature of Plane Curves (Cont’d)

The curvature thus defined for a plane curve has the previously
defined curvature of C (considered as a space curve) as its absolute
value, k(s) = |k̃(s)|.
To carry our interpretation somewhat further, let θ(s) be the angle of
T with the positive x-axis

Then we have

T (s) = cos θ(s)
∂

∂x
+ sin θ(s)

∂

∂y
.

Differentiating with respect to s,

dT

ds
= −θ̇(s) sin θ(s) ∂

∂x
+ θ̇(s) cos θ(s)

∂

∂y
.
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Curvature of Plane Curves (Cont’d)

The unit vector N(s) chosen so that T (s),N(s) is an oriented
orthonormal basis is

N(s) = − sin θ
∂

∂x
+ cos θ

∂

∂y
.

This is because the determinant of the coefficients of T ,N as
combinations of ∂

∂x ,
∂
∂y , is

det

(
cos θ sin θ

− sin θ cos θ

)
= +1.

Thus,

k̃(s) = θ̇(s) =
dθ

ds
,

the rate of turning of the tangent vector T with respect to arclength.
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Curvature of Plane Curves (Cont’d)

We got
k̃(s) = θ̇(s).

Moving along C in the direction of increasing s, the curvature is:

Positive, when the tangent is turning counterclockwise;
Negative, otherwise.

Its sign depends on the sense of the curve (direction of increasing s)
and the orientation of the plane, but not on the coordinates.
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Example

Suppose C is a circle of radius r .

The curve parametrized by arclength is

s →
(
r cos

s

r
, r sin

s

r

)
.

So we have

T = − sin
(s
r

) ∂
∂x

+ cos
(s
r

) ∂
∂y
.

Then we get

k̃N =
dT

ds
= −1

r
cos
( s
r

) ∂
∂x

− 1

r
sin
(s
r

) ∂
∂y
.
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Example (Cont’d)

We got T = − sin
(
s
r

)
∂
∂x + cos

(
s
r

)
∂
∂y .

So

N = − cos
( s
r

) ∂
∂x

− sin
(s
r

) ∂
∂y

is the unique unit vector such that T ,N has the orientation of ∂
∂x ,

∂
∂y .

Thus, we have

k̃(s) =
1

r
.

So the curvature is a constant.

If, as we have assumed by our parametrization, the circle is traversed
in the counterclockwise sense, it is a positive number.

In any case, its magnitude is inversely proportional to the radius.
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Dynamics of Moving Particle (Revisited)

We return momentarily to the dynamics of a moving particle.

Suppose a particle moves on a circle in such a way that its speed is
constant v0.

Then the force F acting on the particle is

F = ma =
mv20
r

N.

Now N is the unit normal vector.

So F is directed toward the center of the circle.

Moreover, its magnitude is
mv2

0
r
.

This gives the usual formula for the centripetal force necessary to
keep the particle in a circular orbit.
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Subsection 2

Differentiation of Vector Fields on Submanifolds of Rn
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Vector Fields on Submanifolds of Rn

We are concerned with a vector field
Z defined at each point of a manifold
M ⊆ Rn but not necessarily tangent
to M.

That is, to each p ∈ M, we assign

Zp ∈ Tp(R
n).

When Z is such that Zp is tangent to M, Zp ∈ Tp(M) ⊆ Tp(R
n).

In that case, we shall say that Z is a vector field on M or a tangent

vector field.

Only in this case does Z have meaning for M as an abstract manifold,
independent of any imbedding or immersion in Rn.
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Class of a Vector Field

In any case differentiability of Z may be given meaning.

The components of Z , relative to the canonical frames of Rn at
points of M, will be functions on M,

Zp =

n∑

α=1

aα(p)

(
∂

∂xα

)

p

.

By definition, we say that Z is of class C r if aα(p), α = 1, . . . , n, are
of class C r on M.

In particular, the vector fields

∂

∂x1
, . . . ,

∂

∂xn

of Rn, restricted to M, are C∞-vector fields along M (but rarely on

M).
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Decomposition Into Tangent and Normal Space

If p ∈ M, then Tp(R
n) and its subspace Tp(M) carry the standard

inner product of Rn.

So M has the induced Riemannian metric.

This allows us to decompose any vector Zp, p ∈ M, in a unique way
into

Zp = Z ′
p + Z ′′

p ,

with:

Z ′
p ∈ Tp(M);

Z ′′
p ∈ T⊥

p (M), the orthogonal complement of Tp(M).
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Decomposition and Projections (Cont’d)

This reflects the direct sum decomposition of Tp(R
n) into mutually

orthogonal subspaces,

Tp(R
n) = Tp(M)⊕ T⊥

p (M),

where:

Tp(M) is called the tangent space to M at p;
T⊥
p (M) is called the normal space to M at p.

Let π′, π′′ denote the projections,

π′(Zp) = Z ′
p and π′′(Zp) = Z ′′

p .

They are linear mappings of Tp(R
n) onto the subspaces tangent and

normal to M.
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Illustration of the Decomposition
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Decomposition Lemma

Suppose that Z is a vector field along M of class C r .

Then π′(Z ) and π′′(Z ) are also vector fields, which are tangent and
normal to M, provided that they are differentiable.

Lemma

Let Z be a vector field along M of class C r .
Then π′(Z ) and π′′(Z ) define mutually orthogonal C r -vector fields Z ′,Z ′′

along M, such that
Z = Z ′ + Z ′′.

That is, at each p ∈ M:

Z ′
p ∈ Tp(M);

(Z ′
p,Z

′′
p ) = 0.
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Decomposition Lemma (Cont’d)

Lemma (Cont’d)

If f is a function of class C r on M, then

π′(fZ ) = f π′(Z ) and π′′(fZ ) = f π′′(Z ).

Further, given two such vector fields Z1,Z2, then:

π′(Z1 + Z2) = π′(Z1) + π′(Z2);

π′′(Z1 + Z2) = π′′(Z1) + π′′(Z2).
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Example

A vector field Z along a curve decomposes uniquely into the sum of:

A tangent vector field π′(Z ) = (Z ,T )T ;
A vector field in the normal plane π′′(Z ) = (Z ,N)N + (Z ,B)B.
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Example (Cont’d)

Consider the case of an arbitrary C∞ imbedded manifold M.

We see that

π′
(

∂

∂xα

)
, α = 1, . . . , n,

applied at each p ∈ M, gives a C∞ tangent vector field to M.
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The Covariant Derivative

Let Y be a tangent vector field to M ⊆ Rn.

That is, for each p ∈ M, Yp ∈ Tp(M), or, equivalently, π′(Y ) ≡ Y .

Let p(t) be a curve on M of class C 1 or higher, defined on some
t-interval.

Then Y (t) = Yp(t) is a vector field along the curve.

As such, we can ignore M and differentiate Y (t) as a vector field
along a curve in Rn.

In this way, we obtain dY
dt

, another
vector field along the curve.

In general, of course, dY
dt

will not be
tangent to M.

At each point p(t) we may project
dY
dt

to a tangent vector π′(dY
dt

).
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The Covariant Derivative (Cont’d)

Definition

The projection π′(dY
dt
) is denoted DY

dt
and is called the covariant

derivative of the tangent vector field Y on M along the curve p(t).

It is important to note that Y (t) need not be the restriction to a
curve p(t) of a vector field Y on M for DY

dt
to be defined.

It suffices that Y (t) be a vector field along p(t), so defined that it is
always tangent to M, i.e., such that Y (t) ∈ Tp(t)(M).

Then, as above, DY
dt

= π′(dY
dt
), where dY

dt
is the derivative of the

vector field along a curve, as defined in the previous section.
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Properties of the Covariant Derivative

Suppose that we have vector fields Y1(t) and Y2(t) along p(t) on M

and tangent to M.

Theorem

Let Y (t),Y1(t),Y2(t) be as above and f (t) a C 1 function of t.
Then we have:

D
dt
(Y1 + Y2) =

DY1

dt
+ DY2

dt
;

D
dt
(f (t)Y (t)) = df

dt
Y (t) + f (t)DY

dt
;

d
dt
(Y1,Y2) =

(
DY1

dt
,Y2

)
+
(
Y1,

DY2

dt

)
.

The last equation concerns the induced Riemannian metric on M.

This is the inner product on Tp(M), at each p ∈ M, induced by the
inner product in Tp(R

n).
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Properties of the Covariant Derivative (Cont’d)

These properties are immediate consequences of:
The definitions;
The properties of π′;
The corresponding statements for ordinary derivatives.

For the fist property, start with

d

dt
(Y1(t) + Y2(t)) =

dY1

dt
+

dY2

dt
.

Apply π′ to both sides to get

D

dt
(Y1(t) + Y2(t)) = π′

(
dZ1

dt
+

dZ2

dt

)
.

Then use linearity to obtain

D

dt
(Y1 + Y2) =

DY1

dt
+

DY2

dt
.
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Properties of the Covariant Derivative (Cont’d)

For the second property, start with

d

dt
(f (t)Y (t)) =

df

dt
Y (t) + f (t)

dY

dt
.

Then we get

D

dt
(fY ) = π′

d

dt
(fY )

= π′
(
df

dt
Y + f

dY

dt

)

=
df

dt
Y + f

DY

dt
.
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Properties of the Covariant Derivative (Cont’d)

The last property follows from

d

dt
(Y1(t),Y2(t)) =

(
dY1

dt
,Y2(t)

)
+

(
Y1(t),

dY2

dt

)
.

Note that, for i = 1, 2,

dYi

dt
= π′

(
dYi

dt

)
+ π′′

(
dYi

dt

)
=

DYi

dt
+ π′′

(
dYi

dt

)
.

Note, also, that π′′
(
dYi

dt

)
is orthogonal to Tp(t)(M).

So we have
(
DY1
dt

+ π′′
(
dY1
dt

)
,Y2

)
+
(
Y1,

DY2
dt

+ π′′
(
dY2
dt

))

=
(
DY1
dt
,Y2

)
+
(
Y1,

DY2
dt

)
.
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Remark

Suppose we change to a new parameter, say s, using t = f (s).

Then, since dt
ds

= f ′(s) is a scalar,

DY

ds
=

DY

dt

dt

ds
.

Alternatively, we may apply π′ to the relation

dY

ds
=

dY

dt

dt

ds

of the previous section.
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Constant or Parallel Vector Fields

Definition

Given M ⊆ Rn as above, let Yp(t) be a vector field, such that:

Yp(t) is defined at each point of a curve p(t) on M;

Yp(t) at each point is tangent to M.

That is, Yp(t) is a vector field along p(t) tangent to M.
Then we shall say that Yp(t) is a constant or parallel vector field if

DY

dt
= 0.

More generally if Y is a tangent vector field on all of M, then it is
constant or parallel if it has this property along every curve on M.
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Remarks

It is very important to note that DY
dt

may be identically zero even

though dY
dt

is not.

Thus, a vector field along a curve may be:

Constant considered as a vector field on a submanifold M of Rn;
Non constant considered as a vector field along the same curve in Rn.
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Example

Let M = S1, the unit circle in R2.

Its parametric representation is

t → (cos t, sin t).

It may be considered as defining a curve on M.

Let Y (t) be the unit tangent vector to this curve.

As we have seen dY
dt

is orthogonal to Y (t), that is, normal to M.

Hence,
DY

dt
= π′

(
dY

dt

)
= 0.

On the other hand, dY
dt

is never zero.

In fact has constant length +1.
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Example (Cont’d)

Now any great circle on the unit sphere Sn−1 ⊆ Rn is congruent to
the great circle

t → p(t) = (cos t, sin t, 0, . . . , 0)

on the intersection of Sn−1 and the 2-plane x3 = . . . = xn = 0 of Rn.

So the unit tangent vector to any great circle arc p(t), parametrized
by arclength, has the same property,

DY

dt
=

D

dt

(
dp

dt

)
≡ 0.
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Geodesics

In general the derivative of a tangent vector field to M along a curve
p(t) in M has both normal and tangential components nonzero.

If a curve on M is such that

D

dt

dp

dt
= 0,

that is, the (covariant) derivative of the unit tangent vector to the
curve is zero along the curve, then we shall say the curve is a
geodesic of M.

So the great circles on the unit sphere in Rn are geodesics.
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The Case of Rn

In the case in which M is an open subset of Rn or all of Rn, then
dY
dt

= DY
dt

, that is, in Rn itself, as might be expected, covariant
differentiation is just the usual differentiation.

In this special case, according to a previous theorem, the only curves
p(t) for which D

dt
dp
dt

= d
dt

dp
dt

vanishes identically are straight lines
parametrized by arclength - or with t proportional to arclength.

Thus geodesics on an imbedded manifold M are those curves which in
some sense generalize the concept of straight line - even though they
may not look “straight” when viewed from the ambient space Rn.
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Parametrization of a Manifold

Suppose dimM = m and that U, ϕ is a local coordinate system on M

with ϕ(U) = W , an open subset of Rm.

We denote the local coordinates by u1, . . . , um.

ϕ−1 : W → Rn is an imbedding of W whose image is U, an open
subset of M.

We have previously referred to ϕ−1 as a parametrization of M.

Let u = (u1, . . . , um).

Then
ϕ−1(u) = (g1(u), . . . , gn(u)), u ∈ W ,

gives ϕ−1 in terms of its coordinate mappings gα(u).

We let α, β, γ, and so on, denote indices that range from 1 to n.

We let i , j , k , and so on, denote indices ranging from 1 to m.
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The Coordinate Frames

The coordinate frames will be denoted F1, . . . ,Fm.

They span the tangent space to M at each point.

This tangent space Tp(M) at p ∈ M is a subspace of Tp(R
n).

So these vectors are linear combinations of ∂
∂x1

, . . . , ∂
∂xn .

In fact, generalizing earlier formulas for m = 2 and n = 3 we have:

Fip = ϕ−1
∗

(
∂

∂ui

)
=

n∑

α=1

(
∂gα

∂ui

)

ϕ(p)

∂

∂xα
.
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Covariant Derivative and Local Coordinates

Suppose that p(t) is a curve on M of class C 1.

Let Y (t) = Yp(t) be a vector field along the curve which is always
tangent to M.

Then Y (t) may be written as a linear combination of F1, . . . ,Fm,

Y (t) =

m∑

k=1

bk(t)Fk .

The derivative
dY

dt
=
∑(

dbk

dt
Fk + bk

dFk

dt

)

is not tangent to M in general.
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Covariant Derivative and Local Coordinates (Cont’d)

Take
dY

dt
=
∑(

dbk

dt
Fk + bk

dFk

dt

)
.

By projecting, we obtain

DY

dt
= π′

(
dY

dt

)
=

m∑

k=1

(
dbk

dt
Fk + bkπ′

(
dFk

dt

))
.

Equivalently,

DY

dt
=

m∑

k=1

(
dbk

dt
Fk + bk

DFk

dt

)
.

We know that DFi

dt
, i = 1, . . . ,m, are vectors tangent to M.

So they may be expressed as linear combinations of F1, . . . ,Fm.
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Covariant Derivative and Local Coordinates (Cont’d)

Suppose that the curve p(t) is given in local coordinates by

ϕ(p(t)) = (u1(t), . . . , um(t)).

Then in the expression for Fip the components are (composite)

functions (∂g
α

∂ui
)ϕ(p(t)) of t through u1(t), . . . , um(t).

Further, at each p(t), by the ordinary chain rule of differentiation,
and the properties of π′,

DFi

dt
= π′

(
dFi

dt

)
=

n∑

α=1

m∑

j=1

∂2gα

∂ui∂uj
duj

dt
π′
(

∂

∂xα

)
.

The derivatives ∂2gα

∂uj∂ui
are functions of u1, . . . , um and are evaluated

at u(t) = (u1(t), . . . , um(t)) in this formula.

George Voutsadakis (LSSU) Differential Geometry December 2024 65 / 279



Differentiation on Riemannian Manifolds Differentiation of Vector Fields on Submanifolds of Rn

Covariant Derivative and Local Coordinates (Cont’d)

We assume M is imbedded in Rn by a C∞ imbedding.

We know that then ∂
∂xα , restricted to M, is a C∞ vector field along

M.

By a previous lemma,

π′
(

∂

∂xα

)

defines a C∞ tangent vector field on M.

This must have a unique expression on U of the form

π′
(

∂

∂xα

)
=

m∑

k=1

akα(u)Fk .

The akα(u) are C∞ functions on M which we do not compute.
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Covariant Derivative and Local Coordinates (Cont’d)

We have

π′
(

∂

∂xα

)
=

m∑

k=1

akα(u)Fk .

Using the akα(u) and the coordinate functions gα(u) of the
parametrization ϕ−1, we define the C∞ functions Γkij(u) as

Γkij =
∑

α

∂2gα

∂ui∂uj
akα = Γkji , 1 ≤ i , j , k ≤ m.

Symmetry in i , j is due to interchangeability of the order of
differentiation.
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Covariant Derivative and Local Coordinates (Cont’d)

We do not explicitly compute the Γkij , but we use them to write new

formulas for DFi

dt
:

DFi

dt
=

m∑

j ,k=1

Γkij
duj

dt
Fk , i = 1, . . . ,m

at each p = p(t), the Γkij being evaluated at (u1(t), . . . , um(t)).

Consider the particular case of the curve given by

ui =

{
constant, if i 6= j

t, if i = j .

This gives the formula for the covariant derivative of the vector field
Fi along the jth coordinate curve, conveniently denoted DFi

∂uj
,

DFi

∂uj
=
∑

k

ΓkijFk .
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Covariant Derivative and Local Coordinates (Cont’d)

We get an interpretation of the meaning of Γkij(u).

It is the kth component (relative to the coordinate frames) of the
covariant derivative of Fi along that curve in which only the jth
coordinate is allowed to vary, that is, along a coordinate curve.

We look again at

DY

dt
=

m∑

k=1

(
dbk

dt
Fk + bk

DFk

dt

)
.

Using the formulas above, we may write those as

DY

dt
=

m∑

k=1


dbk

dt
+

m∑

i ,j=1

Γkij(u(t))b
i (t)

duj

dt


Fk .
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Covariant Derivative and Local Coordinates (Cont’d)

The formula

DY

dt
=

m∑

k=1


dbk

dt
+

m∑

i ,j=1

Γkij(u(t))b
i (t)

duj

dt


Fk

expresses DY
dt

in terms of the field of frames F1, . . . ,Fs on U ⊆ M,
frames defined independently of either p(t) or Y .

The components of the covariant derivative are the terms in brackets.

The functions Γkij(u) are defined over all of U and in the formula are
evaluated at points of the curve.

Indeed for every coordinate neighborhood on M we have frames Fi ,
i = 1, . . . ,m, and functions Γkij which give DFi

∂uj
.

From these data DY
dt

can then be computed according by ordinary
differentiation of the components of Y and coordinates of p(t).
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Directional Derivative of a Vector Field

Let Y be a tangent vector field on M which is defined everywhere -
not just along some curve.

On the coordinate neighborhood U we write

Y =

m∑

k=1

bk(u)Fk .

Let p be a point of U, such that ϕ(p) = (u10 , . . . , u
m
0 ).

Let Xp be a tangent vector at p,

Xp =
∑

ajFjp,

where aj is constant for j = 1, . . . ,m.
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Directional Derivative of a Vector Field (Cont’d)

Now choose any differentiable curve p(t) whatsoever with:

p(t0) = p;
( dp
dt
)t0 = Xp.

So, in local coordinates, it is defined by

u(t) = (u1(t), . . . , um(t)),

with:

ui (t0) = ui0;

( du
i

dt
)t0 = ai .

Then we may compute
(
DY
dt

)
t=t0

as above with a surprising result.
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Directional Derivative of a Vector Field (Cont’d)

First, we observe that Y (t) =
∑

bk(u(t))Fk implies that

(
dbk

dt

)

t0

=

m∑

j=1

(
∂bk

∂uj

)

u0

aj = Xpb
k .

Taking this into consideration, the formula for the covariant derivative
gives

(
DY

dt

)

t0

=
∑

k


Xpb

k +
∑

i ,j

Γkij(u0)b
i(u0)a

j


Fk .

A careful examination of this formula discloses the remarkable fact
that the right-hand side does not depend on p(t) but only on its
tangent vector Xp at p.

We know that (DY
dt

)t0 is a vector in Tp(M).

So this formula defines a mapping of Tp(M) to itself Xp → (DY
dt

)t0 .
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Directional Derivative of a Vector Field (Cont’d)

We introduce the notation ∇Xp
Y for the image of Xp,

∇Xp
Y =

(
DY

dt

)

t0

,

along any curve p(t) with p(t0) = p and (dp
dt
)t0 = Xp.

We have defined previously a “directional derivative” Xpf of a
function f with respect to a vector Xp.

What we have just now done is define in similar fashion a rate of
change of the vector field Y at p in the direction Xp.

It is worth commenting that, as a consequence of our notation, along
the curve p(t), we have at each point

∇ dp
dt

Y =
DY

dt
.
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Properties of ∇Xp
Y

Theorem

Let M ⊆ Rn be a submanifold. For any tangent vector field Y of class C r ,
r > 1, on M, we have at each point p ∈ M a linear mapping

Tp(M) → Tp(M);
Xp 7→ ∇Xp

Y .

Then ∇Xp
Y , being defined as above, has the following properties:

(1) If X ,Y are vector fields of class C r (of class C∞) on M, then ∇XY ,
defined by

(∇XY )p = ∇Xp
Y ,

is a C r−1 (respectively, C∞) vector field on M.
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Properties of ∇Xp
Y (Cont’d)

Theorem (Cont’d)

(2) The map Tp(M)× X(M) → Tp(M) given by

(Xp,Y ) → ∇Xp
Y

is R-linear in Xp and Y .
For a function f , differentiable on a neighborhood of p,

∇Xp
(fY ) = (Xpf )Yp + f (p)∇Xp

Y .
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Properties of ∇Xp
Y (Cont’d)

Theorem (Cont’d)

(3) If X ,Y ∈ X(M), then

[X ,Y ] = ∇XY −∇YX .

(4) If Y1 and Y2 are vector fields and (Y1,Y2) their inner product, then

Xp(Y1,Y2) = (∇Xp
Y1,Y2p) + (Y1p,∇Xp

Y2).
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Proof of the Properties

Let Y =
∑

bkFk and X =
∑

akFk in the notation just used.

The bk are functions of the local coordinates (u1, . . . , um).

So are the ak when X is a vector field.

We have

Xpb
k =

m∑

j=1

∂bk

∂uj
aj .

So the definition ∇Xp
Y = DY

dt
and the formula obtained previously for

(DY
dt

)t0 imply that

∇Xp
Y =

∑

k

∑

j

(
∂bk

∂uj
aj +

∑

i

Γkijb
iaj

)
Fk .

This formula, valid for each p ∈ U, yields Properties (1) and (2).
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Proof of the Properties (Cont’d)

Property (4) expresses an earlier property of DY
dt

.

To see this, note that

Xpf =
df

dt
,

the derivative of f (p(t)), when we assume Xp = dp
dt
.

In particular this holds for f = (Y1,Y2).

Only Property (3) requires more careful verification.

We will verify Property (3) by direct computation in a coordinate
neighborhood U, ϕ using our previous notation.
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Proof of the Properties (Cont’d)

With X and Y given on U as above we compute [X ,Y ],

[X ,Y ] =
∑

k,j

(
∂bk

∂uj
aj − ∂ak

∂uj
bj
)
Fk .

Using the formula for
(
DY
dt

)
t0
we compute ∇Xp

Y −∇Yp
X .

We have

∇Xp
Y −∇Yp

X =
∑

k





(
∂bk

∂x j
aj −

∑ ∂ak

∂x j
bj
)
+
∑

i ,j

Γkij(b
iaj − aibj)



 Fk .

Since Γkij = Γkji , the second sum is zero.

So the expression reduces to the first term in the parentheses.
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Directional and Covariant Derivatives

A careful reexamination of what we have done will show that ∇Xp
Y

depends for its definition only on the Euclidean structure of Rn.

That is ∇Xp
Y depends on E

n and on the imbedding of M in E
n.

It is independent of local coordinates, although we use them in its
definition and in the proof above.

However, dY
dt

and DY
dt

= π′
(
dY
dt

)
are geometric in nature.

The same holds for ∇Xp
Y .

If ∇Xp
Y is axiomatized and defined first, then DY

dt
could be

introduced by
DY

dt
= ∇ dp

dt

Y .

This would allow us to reverse our definitions and steps above.
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Roles of X and Y in ∇

Recall that the symbol ∇XY defines an R-bilinear mapping

X(M)× X(M) → X(M);
(X ,Y ) → ∇XY .

There is a partial duality of roles of X and Y .

But there is also an important difference.

Namely, ∇XY is C∞-linear in the first variable but not the second.
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Directional and Lie Derivatives

Suppose X and Y are vector fields on M.

Then the Lie derivative

LXY = [X ,Y ]

gives a rate of change, or derivative, of Y in the direction of X .

However, this derivative requires a vector field X , not just a vector Xp

at a single point, as does ∇Xp
Y .

Thus, the two concepts of differentiation are essentially different.

Property (3) gives the precise relationship between the two.

George Voutsadakis (LSSU) Differential Geometry December 2024 83 / 279



Differentiation on Riemannian Manifolds Differentiation on Riemannian Manifolds

Subsection 3

Differentiation on Riemannian Manifolds
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Connections

Definition

A C∞ connection ∇ on a manifold M is a mapping

∇ : X(M)× X(M) → X(M);
(X ,Y ) → ∇XY ,

which has the following linearity properties.
For all f , g ∈ C∞(M) and X ,X ′,Y ,Y ′ ∈ X(M):

(1) ∇fX+gX ′Y = f (∇XY ) + g(∇X ′Y );

(2) ∇X (fY + gY ′) = f∇XY + g∇XY
′ + (Xf )Y + (Xg)Y ′.

Note the asymmetry in the roles of X and Y .

V is C∞(M) linear in X but not in Y .

In the special case f is a constant function, we have Xf = 0.

Then ∇ is R-linear in both variables.
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Special Properties for Imbedded Manifolds

By a previous theorem, connections exist for M imbedded in
Euclidean space.

In addition, in this special case, we also have:

(3) The symmetry property

[X ,Y ] = ∇XY −∇YX ;

(4) The inner product rule

∇X (Y ,Y
′) = (∇XY ,Y

′) + (Y ,∇XY
′).
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Riemannian Connections

Definition

A C∞ connection which also has the Symmetry and Inner Product
Properties (3) and (4) is called a Riemannian connection.

Note that, in these definitions, it is only Property (4) that involves
the Riemannian metric.

Thus, on arbitrary differentiable manifolds, one may study:

C∞ connections [Properties (1) and (2)];
Symmetric C∞ connections [properties (1)-(3)].
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Fundamental Theorem of Riemannian Geometry

Theorem (Fundamental Theorem of Riemannian Geometry)

Let M be a Riemannian manifold. Then there exists a uniquely determined
Riemannian connection on M.

We will prove this theorem in several steps.

The method is somewhat similar to that of the existence proof for the
operator d on

∧
(M).
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Relation With Manifolds Imbedded in Rn

In the discussion of differentiation on manifolds imbedded in Rn, we
defined the map

Tp(M) → Tp(M);
Xp 7→ ∇Xp

Y .

We used the vector field Y , but without any assumption that Xp was
the value at p of a vector field X .

However, given vector fields X and Y , a vector field ∇XY was then
defined by

(∇XY )p = ∇Xp
Y , p ∈ M.

We thus obtained a map ∇ of pairs (X ,Y ) of vector fields to a vector
field ∇XY , as in our present definition.
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Relation With Manifolds Imbedded in Rn

We have now taken this map on pairs of vector fields as the primary
notion.

We wish to see that, conversely, Y defines a linear map of

Tp(M) → Tp(M),

for each p ∈ M.

That is, we wish to see that (∇XY )p depends not on the vector field
X but only on its value Xp at p.
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Vanishing Property

Lemma

Let X ,Y ∈ X(M) and suppose that, on an open set U ⊆ M,

X = 0 or Y = 0.

If ∇ is a connection [satisfying Properties (1) and (2) of the definition],
then the vector field ∇XY = 0 on U.

Suppose that Y = 0 on U and q ∈ U.

Then there are:

A relatively compact neighborhood V of q, with V ⊆ U ;
A C∞ function f , such that f = 1 on V and f = 0 outside U .

Since Y = 0 on U, fY ≡ 0 on M.
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Vanishing Property (Cont’d)

Property (2) implies that ∇X takes the 0-vector field to 0.

Therefore ∇X (fY ) ≡ 0 on M.

But then, using Property (2) again, we have

0 = (∇X (fY ))q = (Xqf )Yq + f (q)(∇XY )q = (∇XY )q .

q is an arbitrary point of U.

So this completes the proof when Y = 0 on U.

A parallel proof using Property (1) applies when X = 0 on U.
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Equivalence With Earlier Definitions

Corollary

Let p be any point of M. If X ,X ′ ∈ X(M) such that Xp = X ′
p, then for

every vector field Y ,
(∇XY )p = (∇X ′Y )p .

Denote this uniquely determined vector by ∇Xp
Y .

Then the mapping from Tp(M) → Tp(M) defined by

Xp → ∇Xp
Y

is linear.

Let U, ϕ be a coordinate neighborhood of the point p.

Let V be a relatively compact neighborhood of p, with V ⊆ U.

Let f a C∞ function on M which is 1 on V and 0 outside U, as in
the proof of the lemma.
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Equivalence With Earlier Definitions (Cont’d)

Let X ∈ X(M).

Then, on U, we have

X =

n∑

i=1

aiEi ,

with:
ai ∈ C∞(U);
E1, . . . ,En the vectors of the coordinate frames.

We define X̃ , Ẽ1, . . . , Ẽn ∈ X(M) and ã1, . . . , ãm ∈ C∞(M), by

X̃ =

{
fX , on U,
0, else,

Ẽi =

{
fEi , on U,
0, else,

ãi =

{
fai , on U,
0, else.

Then we have, on all of M,

X̃ = ã1Ẽ1 + · · ·+ ãnẼn.

But on V , we have X̃ = X , Ẽi = Ei and ãi = ai .

So this reduces to the equation above.
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Equivalence With Earlier Definitions (Cont’d)

Applying the preceding lemma and Property (1) of ∇ gives that on V ,

∇XY = ∇
X̃
Y =

n∑

i=1

ãi∇Ẽi
Y .

Hence

(∇XY )p =
∑

ãi (p)(∇Ẽi
Y )p =

∑
ai(p)(∇Ẽi

Y )p .

The right side depends only on the value Yp of the vector field X at p.

This proves the first statement.

Note ∇Xp
Y = (∇XY )p depends linearly on the components

a1(p), . . . , an(p) of Xp relative to the basis E1p , . . . ,Enp of Tp(M).

This shows that Xp → ∇Xp
Y = (∇XY )p is a linear mapping of

Tp(M) into itself.
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Restriction of a Connection to Open Subsets

An important consequence of the lemma is that it allows us to define
(unambiguously) the restriction ∇U of a connection ∇ defined on M

to any open subset U ⊆ M.

Let X ,Y be C∞-vector fields on U and let p ∈ U.

We again choose a neighborhood V of p with V ⊆ U.

Take a C∞ function f which is +1 on V and vanishes outside U.

Then X̃ = fX and Ỹ = fY may be extended to vector fields on all of
M which vanish outside U.

We then set
(∇U

XY )p = (∇
X̃
Ỹ )p .

The left hand side is defined at every point of V by this equation.

By the lemma this definition is independent of the choices.

It can be verified that ∇U is a connection and is Riemannian, if ∇ is,
using the induced Riemannian metric on U.
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On Uniqueness

Lemma

Suppose that a Riemannian connection ∇ exists for every Riemannian
manifold. Suppose ∇ is unique for manifolds covered by a single
coordinate neighborhood U. Then it is unique for all manifolds.
Conversely, suppose there exists a uniquely determined (Riemannian)
connection ∇U , for every Riemannian manifold covered by a single
coordinate neighborhood U. Then there exists a uniquely determined
Riemannian connection ∇ on every Riemannian manifold.

We suppose that ∇ is a Riemannian connection on M.

By hypothesis there is a uniquely determined Riemannian connection
∇U on each coordinate neighborhood U, ϕ of M (with the induced
Riemannian metric).
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On Uniqueness (Cont’d)

Let X ,Y be vector fields on M.

Denote by XU , YU their restrictions to U.

By the definition of ∇U , the restriction of ∇ to U, we get

∇U
XU

YU = (∇XY )U .

By the uniqueness assumption, on each coordinate neighborhood,

∇̃U = ∇U .

Thus, we have
(∇XY )U = ∇̃U

XU
YU .

But M is covered by coordinate neighborhoods.

So this proves the first statement.
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On Uniqueness (Cont’d)

Now suppose that ∇U is uniquely determined on every coordinate
neighborhood U, ϕ of M.

If there is defined on M a ∇ satisfying Properties (1)-(4), it must be
unique by the above.

We define ∇ on M as follows.

Let X ,Y ∈ X(M) and let p ∈ M.

Choose a coordinate neighborhood U, ϕ containing p.

Define
(∇XY )U = ∇U

XU
YU .

This defines ∇XY not only at p but on the neighborhood U.
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On Uniqueness (Cont’d)

We may verify Properties (1)-(4), since they hold for ∇U .

Suppose V , ψ is a coordinate neighborhood overlapping U.

Let W = U ∩ V .

Then W is a coordinate neighborhood using either coordinate map ϕ
or ψ.

Thus, ∇W is uniquely defined.

So we have at every point q of W

(∇U
XU

YU)q = (∇W
XW

YW )q = (∇V
XV

YV )q.
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Proof of the Fundamental Theorem

The proof of the existence and uniqueness of a Riemannian symmetric
connection is now reduced to the case of a manifold covered by a
single coordinate neighborhood.

Let U, ϕ cover the manifold M.

Let x1, . . . , xn denote the local coordinates.

Let E1, . . . ,En be the coordinate frames.

Denote the inner product by (X ,Y ).

We have as components of the metric tensor the C∞ functions on
U = M

gij(q) = (Eiq ,Ejq).

The matrix (gij (q)) is symmetric and positive definite.

Hence, it has a uniquely determined inverse (g ij (q)).

The entries of (g ij (q)) are C∞ functions on U also.

We show there exists a unique Riemannian connection ∇ on M.
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Proof of the Fundamental Theorem (Cont’d)

First we note that if ∇ can be defined at all, then, by Properties (1)
and (2), it is determined by the C∞ functions Γkij on U,
1 ≤ i , j , k ≤ n, defined by

∇Ei
Ej =

n∑

k=1

ΓkijEk .

In fact, suppose that, on U,

X =
∑

bi(x)Ei and Y =
∑

aj(x)Ej .

Then by Properties (1) and (2) and the definition of Γkij ,

∇XY =
∑

k


Xak +

∑

i ,j

Γkija
jbi


Ek .

Conversely, given functions Γkij on U, this formula defines a C∞

connection satisfying Properties (1) and (2).
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Proof of the Fundamental Theorem (Cont’d)

A Riemannian connection also satisfies Properties (3) and (4).

Consequently, the Γkij are not arbitrary C∞ functions.

For the coordinate frames, [Ei ,Ej ] = 0.

So Property (3) is equivalent to

0 = [Ei ,Ej ] = ∇Ei
Ej −∇Ej

Ei =
∑

k

(Γkij − Γkji)Ek .

This is equivalent to the symmetry of Γkij in the lower indices:

Γkij = Γkji .
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Proof of the Fundamental Theorem (Cont’d)

Property (4) is equivalent to

Ekgij = Ek(Ei ,Ej ) = (∇Ek
Ei ,Ej ) + (Ei ,∇Ek

Ej).

Equivalently,

Ekgij =
∑

s

(Γskigsj + Γskjgsi ), 1 ≤ i , j , k ≤ n.

Finally, we define

Γijk =
∑

s

Γsijgsk .

Using the matrix (g ij) inverse to (gij ), we get

Γkij =
∑

Γijsg
sk .

Thus, the n3 C∞ functions Γkij determine the n3 C∞ functions Γijk
and conversely.
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Proof of the Fundamental Theorem (Cont’d)

If we write Ekgij =
∂gij
∂xk

, i.e., if we consider gij as functions of the
local coordinates, the properties obtained above become:

(3’) Γijk = Γjik ;

(4’)
∂gij
∂xk

= Γkij + Γkji .

In summary, suppose we are given a Riemannian connection on M,
covered by a single coordinate neighborhood.

If a Riemannian connection ∇ exists, it determines n3 functions Γijk
of class C∞ which satisfy Properties (3’) and (4’).

Conversely, we may check, by reversing these steps, that any such
functions determine a C∞ Riemannian connection on M.

Thus, the theorem is completely established by the following lemma.
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Final Step in Proving Existence

Lemma

Let W be an open subset of Rn. Let (gij ) be a symmetric, positive
definite matrix whose entries are C∞ functions on W . Then, on W , there
exists a unique family of C∞ functions

Γijk(x), 1 ≤ i , j , k ≤ n,

satisfying the two sets of equations:

(3’) Γijk = Γjik ;

(4’)
∂gij
∂xk

= Γkij + Γkji .

Write Equation (4’) twice more, each time permuting i , j , k cyclically,

∂gij
∂xk

= Γkij + Γkji ;
∂gjk
∂x i

= Γijk + Γikj ;
∂gki
∂x j

= Γjki + Γjik .
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Final Step in Proving Existence (Cont’d)

Then subtract the second of these equations from the sum of the first
and third,

∂gij
∂xk

− ∂gjk
∂x i

+
∂gki
∂x j

= Γkij + Γkji − Γijk − Γikj + Γjki + Γjik .

Using Equation (3’), Γijk = Γjik , we get

∂gij
∂xk

− ∂gjk
∂x i

+
∂gki
∂x j

= 2Γjki .

So we get the unique solutions

Γjki =
1

2

(
∂gij
∂xk

− ∂gjk
∂x i

+
∂gki
∂x j

)
.

This completes the last step in the proof of the fundamental theorem.
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Formula for (∇XY )p

Suppose that U, ϕ is a local coordinate system.

Let x1, . . . , xn be local coordinates.

Let E1, . . . ,En be the coordinate frames.

Let
Y =

∑
akEk

be the expression on U of the vector field Y .

Let p ∈ U and

Xp =
∑

bkEkp .

The following corollary supplies a formula for ∇XY on U.
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Formula for (∇XY )p (Cont’d)

Corollary

For each p ∈ U, using the above notation, we have

(∇XY )p = ∇Xp
Y =

∑

k



∑

j

bj
∂ak

∂x j
+
∑

i ,j

Γkija
ibj


Ek ,

with

Γkij =
1

2
gks

(
∂gsi
∂x j

− ∂gij
∂xs

+
∂gjs
∂x i

)
.

As we have seen in the proof, (∇XY )U is the same as ∇U
XU

YU .

The latter is ∇U on X , Y , restricted to U.

For this reason we use the same symbol ∇ for all cases.

The formula of the corollary follows at once from applying Properties
(1) and (2) defining a connection to ∇∑

bjEj
(
∑

akEk).
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Formula for (∇XY )p (Cont’d)

The preceding formula is the same formula we obtained earlier for a
manifold M in Euclidean space.

In fact we have an obvious corollary of the uniqueness of ∇.

Corollary

In the case of an imbedded (or immersed) manifold in Euclidean space, the
differentiation defined in a previous theorem depends only on the
Riemannian metric induced by the imbedding (but is otherwise
independent of the imbedding).
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Remark

In the preceding sections we used the concept of differentiation of
vector fields along curves dY

dt
to define DY

dt
and then ∇XY on

submanifolds of Rn.

In this section we showed quite independently of the earlier discussion
that there is a uniquely determined Riemannian connection ∇ on
every Riemannian manifold M.

Using this result we come full circle.

We define, for a vector field Y and curve p(t) on M, the covariant
derivative DY

dt
of Y (t) = Yp(t) by

DY

dt
= ∇ dp

dt

Y .

Let Y be given locally by

Y =
∑

bk(x)Ek .
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Remark (Cont’d)

If p(t) is given by x(t) = (x1(t), . . . , xn(t)), we have

Xp(t) =
∑

ẋ j(t)Ej =
dp

dt
.

By the corollary, we can rederive formula

DY

dt
=

n∑

k=1


dbk

dt
+

n∑

i ,j=1

Γkij(x(t))b
i (x(t))

dx j

dt


Ek .

dbk

dt
depend only on the values of the components b1, . . . , bn of Y

along the curve.

So the formula is valid when Y is defined only at points of the curve.

Of course on any interval of the curve, Y may be extended to a
vector field on M.

But DY
dt

is independent of the extension by the displayed formula.
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Constant Vector Fields

A vector field Y on M is said to be constant if, for all p ∈ M and
Xp ∈ Tp(M),

∇XY = 0.

In general there do not exist such vector fields, even on small open
subsets of M.

On the other hand, consider a differentiable curve

p(t), 0 ≤ t ≤ T .

Then, there is be a vector field

X (t) = Xp(t)

constant or parallel along p(t) (by which we mean DX
dt

≡ 0).
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Constant Vector Fields

Theorem

Let p = p(0), the initial point of the curve p(t), 0 ≤ t ≤ T .
Let Xp ∈ Tp(0)(M) be given arbitrarily.
Then there exists a unique constant vector field Xp(t) along p(t), such
that Xp(0) has the given value.
Suppose E1p , . . . ,Enp is an orthonormal frame at p(0).
Then there is a unique, parallel field of orthonormal frames on p(t) which
coincide with the given one at p = p(0).

The proof depends on a previous existence theorem which was not
fully proved.

Moreover, we need a special fact about systems which are linear in
the unknown functions.

George Voutsadakis (LSSU) Differential Geometry December 2024 114 / 279



Differentiation on Riemannian Manifolds Differentiation on Riemannian Manifolds

Partial Proof

To prove the existence and uniqueness of X (t) = Xp(t), it is enough
to demonstrate it for arcs of p(t) lying in single coordinate
neighborhoods.

This is because:

The curve can be partitioned into a finite number of such arcs;
X (t) can then be defined on each in turn beginning with t = 0..

Now suppose that U, ϕ is such a coordinate neighborhood.

Suppose U, ϕ contains p(t), for c ≤ t ≤ d , and that Xp(c) is given.

We wish to determine Xp(t) =
∑

ak(t)Ek so that it is parallel.

By virtue of the formula in the preceding remark, this occurs if and
only if

dak

dt
= −

∑

i ,j

Γkija
k dx

j

dt
, k = 1, . . . , n.
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Partial Proof (Cont’d)

In this system of ordinary differential equations:

The ak(t) are unknown except at t = c ;
The Γkij depend on t through x(t).

Thus, ak(t) satisfy a system of first-order equations.

We know the system has a unique solution satisfying arbitrarily given
initial conditions Xp(c) =

∑
ak(c)Ek .

So ak(t) are defined and unique for some interval of values of t.

Moreover, they are necessarily C r if the curve is C r .

We need to know that the solutions ak(t) are defined for all values of
t in the given interval c ≤ t ≤ d .

This is so (as mentioned above) because the equations are linear.

That is, the right-hand sides are linear in the unknown functions ai(t).

George Voutsadakis (LSSU) Differential Geometry December 2024 116 / 279



Differentiation on Riemannian Manifolds Differentiation on Riemannian Manifolds

Partial Proof (Cont’d)

The second part of the proposition is a consequence of the first and
of the inner product rule for differentiation.

We extend each of the Eip(0) to a parallel vector field Eip(t).

Then, by definition,

DEi

dt
≡ 0, 1 ≤ i ≤ n.

Differentiating (Ei ,Ej), we find that

D

dt
(Ei ,Ej ) =

(
DEi

dt
,Ej

)
+

(
Ei ,

DEj

dt

)
= 0.

Thus (Ei ,Ej ) is for each i , j a constant function along p(t).

At p(0), we have

(Ei ,Ej ) =

{
0, if i 6= j ,
1, if i = j .

So the same is true everywhere on p(t).
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Remark

We remark that it is sufficient for the curve to be piecewise
differentiable, for then we can move Xp along each piece separately.

Therefore, it follows from this theorem that, given a piecewise
differentiable curve p(t), there exists an isomorphism, in fact isometry,

τt : Tp(0)(M) → Tp(t)(M)

determined by the condition that τt(Xp(0)) be a parallel (constant)
vector field along p(t).

It is clear from our initial discussion of dX
dt

along a curve p(t) in
Euclidean space that this would enable us to define the derivative of
vector fields along curves on a Riemannian manifold M by comparing
vectors at different points of the curve.

The notion of parallel displacement along curves is sometimes taken
as the starting point in studying differentiation on manifolds.
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Subsection 4

Addenda to the Theory of Differentiation on a Manifold

George Voutsadakis (LSSU) Differential Geometry December 2024 119 / 279



Differentiation on Riemannian Manifolds Addenda to the Theory of Differentiation on a Manifold

Order of Differentiation

It is a standard theorem of Advanced Calculus that second-order
partial derivatives are independent of the order of differentiation,

∂

∂x i

(
∂f

∂x j

)
=

∂

∂x j

(
∂f

∂x i

)
.

For functions on manifolds the analogous property X (Yf ) = Y (Xf )
does not hold in general.

Indeed [X ,Y ] measures the extent by which it fails,

[X ,Y ]f = X (Yf )− Y (Xf ).

The property still holds if X = Ei and Y = Ej

Allowing f̃ to denote the expression for the function on M in local

coordinates x1, . . . , xn, Ek f may be identified with ∂ f̃
∂xk

.
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Generalization to an Arbitrary Manifold

So, in the case of functions, interchangeability of order of
differentiation is measured by an interesting object [X ,Y ].

It is natural to study the same question for ∇X and ∇Y derivatives of
a vector field Z on M with respect to vector fields X ,Y .

We may show by example that, in general,

∇X (∇YZ )−∇Y (∇XZ ) 6= 0.

Hence, it determines a vector field on M.

∇X (∇YZ )−∇Y (∇XZ ) may be thought of as analogous to [X ,Y ].

An even more important expression, which involves also the measure
of noninterchangeability of derivatives of functions [X ,Y ], is the
following related vector field, denoted by R(X ,Y )Z or R(X ,Y ) · Z ,

R(X ,Y ) · Z = ∇X (∇YZ )−∇Y (∇XZ )−∇[X ,Y ]Z .
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Properties of R(X ,Y ) · Z
It is readily verified that the formula

R(X ,Y ) · Z = ∇X (∇YZ )−∇Y (∇XZ )−∇[X ,Y ]Z

defines a multilinear mapping of X(M)× X(M)× X(M) → X(M).

That is, R(X ,Y ) · Z is R-linear in each variable.

From another point of view, in this expression, R(X ,Y ) is an
operator, determined by the vector fields X and Y , and assigning to
each vector field Z a new C∞-vector field R(X ,Y ) · Z .
Note that if [X ,Y ] = 0, as is the case when X = Ei , Y = Ej are
vectors of a coordinate frame, then

R(X ,Y ) · Z = ∇X (∇YZ )−∇Y (∇XZ ).

It follows that, if R(X ,Y ) = 0 on M, then ∇Ei
and ∇Ej

are
interchangeable for all Z .
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Properties of R(X ,Y ) · Z

Theorem

At any point p, the vector (R(X ,Y ) · Z )p depends only on Xp,Yp ,Zp, the
values of the three vector fields at p, and not their values in a
neighborhood or on M. Thus,

R(X ,Y ) · Z = ∇X (∇YZ )−∇Y (∇XZ )−∇[X ,Y ]Z

assigns to each pair of vectors Xp,Yp ∈ Tp(M) a linear transformation

R(Xp,Yp) : Tp(M) → Tp(M).

In fact, (Xp,Yp) → R(Xp,Yp) is a linear mapping of Tp(M)× Tp(M)
into the space of operators on Tp(M).
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Properties of R(X ,Y ) · Z (Cont’d)

By definition, R(X ,Y ) · Z depends R-linearly on each of the three
arguments X ,Y ,Z .

Let f be a C∞ function on M (not necessarily constant).

Then, by direct computation, we have

R(fX ,Y ) · Z = R(X , fY ) · Z = R(X ,Y ) · fZ = fR(X ,Y ) · Z .

Let U, ϕ is a coordinate neighborhood.

Let (x1, . . . , xn) denote the local coordinates.

Let E1, . . . ,En be the coordinate frames.
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Properties of R(X ,Y ) · Z (Cont’d)

Suppose that

X =
∑

αiEi , Y =
∑

βjEj , Z =
∑

γkEk .

By the remarks above,

R(X ,Y ) · Z =
∑

i ,j ,k

αiβjγkR(Ei ,Ej ) · Ek .

So at a given point p of U, the right-hand side involves:

R(Ei ,Ej) · Ek , which is independent of the vector fields;
The values of αi , βi , γ i only at the point p itself, not at nearby points.

This proves the theorem.

Note that we used only Properties (1) and (2) of the connection ∇.

The next fact, on the other hand, uses the Riemannian metric.
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A Covariant Tensor of Order Four

Corollary

The formula R(X ,Y ,Z ,W ) = (R(X ,Y ) · Z ,W ) defines a C∞-covariant
tensor of order 4. This tensor depends only on the Riemannian metric on
M. That is, if M1,M2 are Riemannian manifolds and F : M1 → M2 is an
isometry, then

F ∗R2 = R1.

R(Xp,Yp) · Zp is defined as an element of Tp(M), for any p ∈ M.

So its inner product

(R(Xp,Yp) · Zp,Wp)

with any Wp ∈ Tp(M) is a well-defined real number.
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A Covariant Tensor of Order Four (Cont’d)

Thus, for each p,

Rp(Xp ,Yp,Zp,Wp) = (R(Xp,Yp) · Zp,Wp)

defines a multilinear function of four variables on Tp(M).

That is, Rp(Xp ,Yp,Zp,Wp) ∈ T 4(Tp(M)).

Both inner product and R(X ,Y ) · Z are C∞ for X ,Y ,Z ,W ∈ X(M).

Consequently,

Rp(Xp ,Yp,Zp,Wp) = (R(Xp,Yp) · Zp,Wp)

defines a C∞-tensor field.

We have defined an isometry of Riemannian manifolds to be a
diffeomorphism which preserves the Riemannian metric.

That is,
F∗ : Tp(M1) → TF (p)(M2)

preserves inner products (and is an isomorphism onto).
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A Covariant Tensor of Order Four (Cont’d)

Parenthetically, if we do not suppose that the C∞ mapping F is
one-to-one onto, but only that F∗ is onto and preserves inner
products, then it is called a local isometry.

This is an isometry on some neighborhood of each point (for example,
covering spaces).

The last statement is valid for local isometries also.

Now ∇ is uniquely determined by the Riemannian metric.

So F∗ preserves the connection.

More precisely
F∗(∇1

XY ) = ∇2
F∗(X )F∗(Y ).

From this we deduce that

R2(F∗X ,F∗Y ) · F∗Z = R1(X ,Y ) · Z .

Since inner products are preserved, this implies F ∗R2 = R1.
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Curvature Operator and Riemann Curvature Tensor

Definition

The operator R(X ,Y ) is called the curvature operator.
The tensor R(X ,Y ,Z ,W ) is called the Riemann curvature tensor.

It is not difficult to see that each one determines the other.

Let E1, . . . ,En be a field of frames on U, an open set of M.

Then the Riemann curvature tensor is uniquely determined on U by
either of the n4 sets of functions R j

ikℓ or Rijkℓ defined by the equations

R(Ek ,Eℓ) · Ei =
∑

j

R
j
ikℓEj ;

R(Ek ,Eℓ,Ei ,Ej) = Rijkℓ =
∑

s

gjsR
s
ikℓ, gjs = (Ej ,Es).
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Setup for Connection Forms

Let U be an open subset of a manifold M.

Suppose U has defined over it a field of C∞ frames E1, . . . ,En.

The most usual case is when these are the coordinate frames of a
coordinate neighborhood U, ϕ.

However, in the case of a Riemannian manifold, which is our present
interest, we might find it convenient to consider a neighborhood with
orthonormal frames.

Corresponding to E1, . . . ,En, we have at each p ∈ U the dual basis
θ1, . . . , θn of T ∗

p (M), characterized by

θi(Ej ) = δij .

It is a field of dual coframes on U and is clearly C∞.

Conversely, if θ1, . . . , θn are given, then E1, . . . ,En are determined.
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Connection Forms

In defining ∇XY on a manifold so as to satisfy properties (1) and (2),
we saw that it is enough to know ∇Ei

Ej .

Then ∇XY may be computed.

We obtained
∇Ei

Ej =
∑

k

ΓkijEk ,

where the Γkij were determined above.

If a connection is given, so that Γkij are known on U, then we may

define n2 one-forms θkj by

θkj =
∑

ℓ

Γkℓjθ
ℓ.
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Connection Forms (Cont’d)

Conversely, given these one-forms, we have

Γkij = θkj (Ei ).

Hence the ∇Ei
Ej are determined.

This determines also the connection.

Indeed one checks at once that

∇XEj =
∑

k

θkj (X )Ek .

That is, the values of the forms θ1j , . . . , θ
n
j on X are the components

of ∇XEj relative to the given frames.

Therefore, given U and θ1, . . . , θn, a field of coframes on U, then the
connection is determined on U by the n2 forms θkj .

The forms θkj are called the connection forms.
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Fundamental Theorem: Neighborhoods with Frame Fields

We have the following restatement of the Fundamental Theorem of
Riemannian Geometry in terms of forms.

However, we restrict ourselves only to the case in which the manifold
is covered by a neighborhood on which is defined a frame field.

Theorem

Let M be a Riemannian manifold such that it has a covering by a C∞ field
of coframes θ1, . . . , θn. Then there exists a uniquely determined set of n2

C∞ one-forms
θkj , 1 ≤ j , k ≤ n,

on M satisfying the two equations:

(i) dθi −∑j θ
j ∧ θij = 0;

(ii) dgij =
∑

k(θ
k
i gkj + θkj gki ), where gij = (Ei ,Ej), with E1, . . . ,En the uniquely

determined field of frames dual to θ1, . . . , θn.
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Fundamental Theorem (Cont’d)

Theorem (Cont’d)

The forms θkj so determined define the Riemannian connection satisfying
Properties (1)-(4) of the Fundamental Theorem by the formulas:

(iii) ∇XEj =
∑
θkj (X )Ek ;

(iv) ∇X (fY ) = (Xf )Y + f∇XY , for f ∈ C∞(U).

Conversely, the Riemannian connection determines θkj , as explained above,

and these θkj satisfy Properties (i) and (ii).
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Case of Orthonormal Frame Fields

If we recall that a Riemannian manifold M of the type described may
be covered by an orthonormal frame field E1, . . . ,En with
gij = (Ei ,Ej ) = δij , then we have a nicer version of the above.

In this case we denote θi by ωi and θkj by ωk
j .

Using gij ≡ δij (hence dgij = 0), we obtain

Corollary

Let M be a Riemannian manifold which has a covering by a field
ω1, . . . , ωn of coframes whose dual frames E1, . . . ,En are orthonormal.
Then there exists a unique set of n2 one-forms ωk

j , 1 ≤ j , k ≤ n, on M

satisfying:

(i) dωi −∑j ω
j ∧ ωi

j = 0;

(ii) ωk
j + ωj

k = 0.

These ωk
j determine the Riemannian connection (as above) and conversely.
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Remark and Preview

θkj are uniquely determined by θ1, . . . , θn and the Riemannian metric,
that is by the coframe field and the metric.

Thus, the exterior derivatives dθkj are also uniquely determined.

The same holds for their expressions as linear combinations of the
basis

θi ∧ θj , 1 ≤ i < j ≤ n,

of two-forms on the domain U of θ1, . . . , θn.

We shall see in the next chapter that the coefficients in these linear
combinations determine the components of the curvature tensor.
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Subsection 5

Geodesic Curves on Riemannian Manifolds
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Geodesics

Consider a curve on M,

p(t), a < t < b.

Let dp
dt

be its velocity vector, defined for a < t < b.

We assume p(t) is of class C 2 at least.

Definition

The (parametrized) curve p(t) is said to be a geodesic if its velocity
vector is constant (parallel). That is, if it satisfies the condition

D

dt

(
dp

dt

)
= 0, a < t < b.

D
dt

(
dp
dt

)
= 0 is called the equation of a geodesic.
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Examples

As we saw previously, when M = Rn, with its usual metric, this
implies that the curve is a straight line.

But for a submanifold of Rn this can mean something quite different.

An example is the great circles on Sn−1 ⊆ Rn.
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The Parameter on a Geodesic

The fact that a curve is a geodesic depends both on its shape and its
parametrization.

Consider a (geometric) straight line in R2 given parametrically by

x1 = t3, x2 = t3.

We write p(t) = (t3, t3).

Then
dp

dt
= 3t2

∂

∂x1
+ 3t2

∂

∂x2
.

Now D
dt

= d
dt

in R2.

So we have

D

dt

(
dp

dt

)
=

D

dt

(
3t2

∂

∂x1
+ 3t2

∂

∂x2

)
= 6t

∂

∂x1
+ 6t

∂

∂x2
6= 0.

Therefore, this curve is not a geodesic, although the path traversed is
the line x1 = x2.
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Permissible Parametrizations for Geodesics

Lemma

Let p(t), a < t < b, be a nontrivial geodesic. Let t ′ be a new parameter.
With respect to t ′ the curve will be a geodesic if and only if

t = ct ′ + d , c 6= 0, d constant.

In particular, the arclength is always such a parameter.

Introduce a new parameter t ′ by t = ct ′ + d , c 6= 0.

Then dp
dt′

= c dp
dt
.

So we get
D

dt ′

(
dp

dt ′

)
= c2

D

dt

(
dp

dt

)
= 0.

So the curve remains a geodesic relative to t ′.
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Permissible Parametrizations for Geodesics (Cont’d)

Now let s be arclength measured from a point p(t0) on the curve.

Then
ds

dt
=

∥∥∥∥
dp

dt

∥∥∥∥ .

Now dp
dt

is constant along the curve.

By the inner product rule for derivatives, its length ‖dp
dt
‖ is constant.

If ‖dp
dt
‖ is identically zero, then p(t) is a single point and s = 0.

Otherwise, ds
dt

= ‖dp
dt
‖ = c , a nonzero constant.

So s = ct + d .

This means that the curve is a geodesic when parametrized by
arclength.

Since any other permissible parameter is related to arclength by a
similar (linear) relation, any two parameters are linearly related.
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Observations

The equation of a geodesic imposes only a local condition on the
curve.

If each point of a curve C has a neighborhood in which it may be
written in the form

p(t), a < t < b,

with D
dt
(dp
dt
) = 0, then it is a geodesic.

Use arclength from some fixed point as parameter on all of C .

It must satisfy the equation D
ds
(dp
ds
) = 0 over its entire length.

The property of being a geodesic is preserved by isometries.

This is because covariant differentiation is preserved.

As a result, so is parallelism of a vector field (for example, dp
dt
) along a

curve.

George Voutsadakis (LSSU) Differential Geometry December 2024 143 / 279



Differentiation on Riemannian Manifolds Geodesic Curves on Riemannian Manifolds

Example

Let π : R2 → T 2 be the standard covering.

We take R2 with its usual Riemannian metric.

Since the covering transformations are translations, they are
isometries of R2.

It follows that we may define on T 2 a Riemannian metric which
makes the projection π a local isometry, meaning that π∗ is an
isometry of each tangent space Tp(R

2) onto Tπ(p)(T
2).

With this metric the geometry of T 2 is locally equivalent to that of
Euclidean space.

This Riemannian metric should not be confused with the metric
induced on a torus imbedded in R3 by the standard Riemannian
metric of R3.

Combining the two preceding observations, it follows that even a local
isometry, as, e.g., this map π, carries geodesics onto geodesics.
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Example (Cont’d)

Thus, the images of straight lines of R2 on T 2 are geodesics of T 2.

Lines of rational slope map to closed geodesics on T 2;
Lines of irrational slope do not - they are dense on T 2.

By contrast, in R2, geodesics can be neither closed curves nor dense.

Thus “straight lines”, even on spaces locally isometric to Euclidean
space, present some fascinating variations from what we might expect.
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Geodesics and Local Coordinates

Let M be a Riemannian manifold.

Let U, ϕ be a connected coordinate neighborhood.

Let (x1, . . . , xn) be local coordinates.

Then the equation of a geodesic D
dt
(dp
dt
) = 0 is equivalent to the

system of second-order differential equations

d2xk

dt2
+

n∑

i ,j=1

Γkij(x)
dx i

dt

dx j

dt
= 0, k = 1, . . . , n.

A solution is a curve given in local coordinates by n functions
(x1(t), . . . , xn(t)) which satisfy the system.

As usual let E1, . . . ,En denote the coordinate frames.

Using the Existence Theorem, we prove the existence and uniqueness
of a geodesic through each p ∈ U with given tangent direction at p.

Then we study its dependence on p and the tangent direction.
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Existence and Uniqueness of Solution

Lemma

Let q ∈ U. Consider the system of second-order differential equations

d2xk

dt2
+

n∑

i ,j=1

Γkij(x)
dx i

dt

dx j

dt
= 0, k = 1, . . . , n.

We can find a neighborhood V of q, with V ⊆ U, and positive numbers
r , δ, such that, for each p ∈ V and each tangent vector

Xp =
∑

biEi , with ‖Xp‖ < r ,

there exists a unique solution (x1(t), . . . , xn(t)) of the system, defined for
−δ < t < δ, which satisfies

x i(0) = x i (p), ẋ i (0) = bi , i = 1, . . . , n.
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Existence and Uniqueness of Solution (Cont’d)

Lemma (Cont’d)

Let p(t) = ϕ−1(x1(t), . . . , xn(t)), as just defined.
Then p(t) ∈ U for |t| < δ.

Consider the system of 2n first-order ordinary differential equations

dxk

dt
= yk , k = 1, . . . , n,

dyk

dt
= −∑n

i ,j=1 Γ
k
ij(x)y

jyk , k = 1, . . . , n,

defined on the open subset

W = ϕ(U)×R
n ⊆ R

n ×R
n = R

2n.

The right sides are C∞ functions of (x , y) = (x1, . . . , xn; y1, . . . , yn)
on W .
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Existence and Uniqueness of Solution (Cont’d)

By the Existence Theorem for Ordinary Differential Equations, for
each point in W , there exists a δ > 0 and a neighborhood V of the
point, such that, given

(a; b) = (a1, . . . , an; b1, . . . , bn) ∈ V ,

there are 2n unique functions

xk = f k(t, a; b), yk = gk(t, a; b), k = 1, . . . , n,

and |t| < δ, satisfying the system of equations and the initial
conditions

f k(0, a; b) = ak , gk(0, a; b) = bk , k = 1, . . . , n.

These functions are C∞ in all variables and have values in W .
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Existence and Uniqueness of Solution (Cont’d)

If p ∈ U, we consider

(ϕ(p); 0) = (x1(p), . . . , xn(p); 0, . . . , 0) ∈ W .

Then there is a δ > 0 and a neighborhood Ṽ of (ϕ(p), 0) as described.

This neighborhood may be chosen to be of the form

ϕ(V )× Bn
r ′(0),

for some V , with:
V ⊆ U compact;
r ′ > 0.

Since V is compact, we may find a number r > 0, such that

(∑
gij(x)bibj

)1/2
= ‖Xp‖ < r and p ∈ V imply

(∑
(bi )2

)1/2
< r ′.

This follows from inequalities used in the proof of a previous theorem.
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Existence and Uniqueness of Solution (Cont’d)

By the special nature of the preceding system,

df k

dt
= gk .

Hence,
d2f k

dt2
= −

∑

i ,j

Γkij
df i

dt

df j

dt
.

I.e., xk(t) = f k(t, a; b) are solutions of the system of equations.

Therefore, they are the equations in local coordinates of geodesics
satisfying

xk(0) = ak ,
dxk

dt

∣∣∣∣
t=0

= bk , k = 1, . . . , n.
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Existence and Uniqueness of Solution (Cont’d)

Finally, according to the Existence Theorem cited, the image of
Iδ × Ṽ under the map

(t, a, b) → (f 1(t, a; b), . . . , f n(t, a; b); g1(t, a; b), . . . , gn(t, a; b))

is in W .

This proves that
p(t) = ϕ−1(f (t, a; b)) ∈ U.
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Existence and Uniqueness of Open Geodesic Arcs

Corollary

Let M is a Riemannian manifold and p ∈ M.
Let Yp a nonzero tangent vector at p.
Then there is a λ > 0 and a geodesic curve p(t) on M, defined on some
interval −δ < t < δ, δ > 0, such that

p(0) = p,
dp

dt

∣∣∣∣
t=0

= λYp.

Any two geodesic curves satisfying these two initial conditions coincide in
a neighborhood of p.

Take a neighborhood U, ϕ of p.

Choose λ > 0 so that ‖λYp‖ < r , as in the first lemma.

Then apply the preceding (second) lemma.
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Maximal Geodesics

Recall the remark that “being a geodesic” is a local property of
parametrized curves.

So, if two geodesic curves C1 and C2 coincide (as sets) over some
interval, then their union, suitably parametrized, is a geodesic.

Further, we now see that, if two geodesics have a single point in
common and are tangent at that point, then their union is a geodesic.

So each geodesic is contained in a unique maximal geodesic.

A maximal geodesic is one that is not a proper subset of any
geodesic.

If it is parametrized by a parameter t, with a < t < b, then a and b

(which can be −∞ and/or +∞) are determined by the curve and the
choice of parameter.
It is not possible to extend the definition of p(t) (with the given
parameter) so as to include either of these values and so that it will
still be a geodesic.
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Extending Geodesics

We shall be interested in determining conditions on M which ensure
that a = −∞ and b = +∞ for every geodesic, or that every geodesic
can be extended indefinitely in either direction.

By a previous lemma this property would be independent of
parameter.

It is easy to see that this is not always possible.

Let M be R2 with the origin removed.

Then radial straight lines cannot be extended to the origin.

However, given a geodesic through a point p, clearly we can always
reparametrize it so that p = p(0) and p(t) is defined for |t| < 2, say.

Making use of this fact, we modify a previous lemma slightly to
obtain our basic existence and uniqueness theorem for geodesics.

George Voutsadakis (LSSU) Differential Geometry December 2024 155 / 279



Differentiation on Riemannian Manifolds Geodesic Curves on Riemannian Manifolds

Existence and Uniqueness of Geodesics

Theorem

Let M be a Riemannian manifold. Let U, ϕ be a coordinate neighborhood
of M. Let q ∈ U. Then there exists a neighborhood V of q and an ε > 0,
such that, if p ∈ V and Xp ∈ Tp(M), with ‖Xp‖ < ε, then there is a
unique geodesic

p(t) = p(t, p,Xp), −2 < t < +2,

with

p(0) = p,
dp

dt

∣∣∣∣
t=0

= Xp.

The mapping into M defined by

(t, p,Xp) → p(t, p,Xp)

is C∞ on the open set |t| < 2, p ∈ V , ‖Xp‖ < ε and has its values in U.
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Existence and Uniqueness of Geodesics (Cont’d)

By a previous lemma, we may find a neighborhood V of q and
numbers r , δ > 0, such that, given any p ∈ V and vector
Xp ∈ Tp(M), with ‖Xp‖ < r , then there is a geodesic

p(t), |t| < δ,

satisfying the initial conditions

p(0) = p,
dp

dt

∣∣∣∣
0

= Xp.

If we change to a parameter t = ct ′, c 6= 0 a constant, then

p̃(t ′) = p(ct ′)

is again a geodesic, with:
p̃(0) = p;
dp̃
dt′

= dp
dt

dt
dt′

= c dp
dt

⇒ dp̃
dt′

∣∣∣
0
= cXp.
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Existence and Uniqueness of Geodesics (Cont’d)

If δ > 2, we may use ε = r , and we have no more to prove.

Suppose δ < 2. Let ε = δr
2 .

Let p ∈ V and Xp a tangent vector at p, with ‖Xp‖ < ε.

We know from the choice of ε that ‖2Xp

δ ‖ < r .

Thus, there is a geodesic p(t) with:

p(0) = p;
dp
dt
|0 = 2Xp

δ
, defined for |t| < δ at least.

Consider the curve p̃(t ′) = p δt′

2 .

It is again a geodesic and satisfies:

p̃(0) = p;
dp̃
dt′

|0 = δ

2 × dp
dt
|0 = Xp.

Moreover it is defined for | δt′2 | < δ, that is, for −2 < t ′ < +2.

This completes the proof, since the last statement is already
contained in the previous lemma.
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Subsection 6

The Tangent Bundle, Exponential Mapping. Normal Coordinates
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Summary of the Process

We started with a second-order system of equations

d2xk

dt2
+

n∑

i ,j=1

Γkij(x)
dx i

dt

dx j

dt
= 0, k = 1, . . . , n.

We passed to a first-order system

dxk

dt
= yk , k = 1, . . . , n,

dyk

dt
= −∑n

i ,j=1 Γ
k
ijy

iyk , k = 1, . . . , n,

The method involved introducing new variables which corresponded
to the components of tangent vectors at points of a coordinate
neighborhood U, ϕ.
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Summary of the Process (Cont’d)

The vectors Xp, p ∈ U, are in one-to-one correspondence with points
(x ; y) of the open set W = ϕ(U)×Rn ⊆ Rn ×Rn.

The correspondence ϕ̃ is given by

ϕ̃(Xp) = (ϕ(p); y1, . . . , yn),

where:

ϕ(p) = (x1, . . . , xn) are the coordinates of p;
Xp =

∑
y iEip, with E1, . . . ,En the coordinate frames.

The differential equations of geodesics were interpreted as a system of
first-order differential equations on W .

Like all such systems, they correspond to a vector field on W .
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Freeing From Local Coordinates

We would like to avoid working exclusively with local coordinates.

So we think of W as the image under ϕ̃ of a coordinate neighborhood
Ũ, ϕ̃ on a manifold.

This is possible and requires that we define a manifold structure on
the set of all tangent vectors at all points of M.

We shall denote this structure by T (M).

When this is done,

T (M) = {Xp ∈ Tp(M) : p ∈ M} =
⋃

p∈M
Tp(M)

becomes a space.

It is in fact a C∞ manifold, whose points are tangent vectors to M.
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Freeing From Local Coordinates

In view of the preceding remarks, we require the subset Ũ, consisting
of all Xp, such that p ∈ U, to be a coordinate neighborhood, with:

ϕ̃ as coordinate map;
W as image.

That is,
ϕ̃ : Ũ → W .

This virtually dictates the choice of topology and differentiable
structure.

We denote by π : T (M) → M the natural mapping taking each vector
to its initial point

π(Xp) = p.

Then we have π−1(p) = Tp(M).
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The Space T (M)

Lemma

Let M be a C∞-manifold of dimension n. There is a unique topology on
T (M), such that, for each coordinate neighborhood U, ϕ of M:

The set Ũ = π−1(U) is an open set of T (M);

ϕ̃ : Ũ → ϕ(U)×Rn, defined as above, is a homeomorphism.

With this topology T (M) is a topological manifold of dimension 2n.
Moreover, the neighborhoods Ũ, ϕ̃ determine a C∞-structure relative to
which π is an (open) C∞-mapping of T (M) onto M.

Let U, ϕ and U ′, ϕ′ be coordinate neighborhoods on M, such that

U ∩ U ′ 6= ∅.

Then Ũ ∩ Ũ ′ 6= ∅.
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The Space T (M) (Cont’d)

We compare:
The coordinates of p ∈ U ∩ U ′;
The components of any Xp ∈ Tp(M) relative to the two coordinate
systems.

Suppose
x ′i = f i (x1, . . . , xn), i = 1, . . . , n,

are the formulas for change of coordinates ϕ′ ◦ ϕ−1 on U ∩ U ′.

By a previous corollary, the change of components are

y ′i =
n∑

i=1

y i
∂f n

∂x i
, i = 1, . . . , n.

Thus, we obtain the formulas for change of coordinates in Ũ ∩ Ũ ′,

ϕ̃′ ◦ ϕ̃−1(x1, . . . , xn; y1, . . . , yn)

= (f 1(x), . . . , f n(x);
∑n

i=1 y
i ∂f 1

∂x i
, . . . ,

∑n
i=1 y

i ∂f n

∂x i
).
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The Space T (M) (Cont’d)

The maps
ϕ̃′ ◦ ϕ̃−1 : ϕ̃(Ũ ∩ Ũ ′) → ϕ̃′(Ũ ∩ Ũ ′)

are diffeomorphisms.

Skipping some steps, we turn to the dimension.

In local coordinates, π corresponds to projection of Rn ×Rn onto its
first factor.

Further, locally, on the domain Ũ of each coordinate neighborhood of
the type above, T (M) is a product manifold.

That is, as an open submanifold of T (M), Ũ is diffeomorphic to
ϕ(U)×Rn.

In the case of Euclidean space, U, ϕ may be taken to be all of
M = Rn so that T (Rn) is diffeomorphic to Rn ×Rn.

It is clear that for every manifold M, dimT (M) = 2dimM.

George Voutsadakis (LSSU) Differential Geometry December 2024 166 / 279



Differentiation on Riemannian Manifolds The Tangent Bundle, Exponential Mapping. Normal Coordinates

The Tangent Bundle

Definition

The space
T (M)

with the topology and C∞ structure just defined is called the tangent

bundle of M.
The mappng

π : T (M) → M,

is the natural projection.
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The Function Exp

We define Exp, the exponential mapping.

Its domain D is some subset of T (M).

The range of Exp is M itself.

Thus Exp : D → M maps a vector Xp to a point of M.

Let U, ϕ be a coordinate neighborhood of M and q ∈ U.

Choose a neighborhood V of q and ε > 0 are chosen as in a previous
theorem.

Then, for each Xp, with p ∈ V , and ‖Xp‖ < ε, or equivalently, in the
open subset

{Xp : p ∈ V , ‖Xp‖ < ε} ⊆ T (M),

the geodesic p(t), with p(0) = p and dp
dt
|0 = Xp, is defined for |t| < 2.

On this open set of T (M) we define Exp as follows.
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The Function Exp (Cont’d)

Definition

ExpXp = p(1), that is, the image of Xp under the exponential mapping is
defined to be that point on the unique geodesic determined by Xp at
which the parameter takes the value +1.

Thus each q ∈ M has a neighborhood V , such that Exp is defined on
the open subset

{Xp : p ∈ V , ‖Xp‖ < ε} ⊆ π−1(V ),

where ε depends on q and its neighborhood V .

George Voutsadakis (LSSU) Differential Geometry December 2024 169 / 279



Differentiation on Riemannian Manifolds The Tangent Bundle, Exponential Mapping. Normal Coordinates

The Domain of Definition

We restate the information on D .

Let M0 be the submanifold of T (M) consisting of all zero vectors

0p , p ∈ M.

Then p → 0p maps M onto M0 diffeomorphically.

Moreover, π : M0 → M is its inverse.

The application of the same theorem then guarantees that the
domain D of Exp contains an open neighborhood of M0 in T (M).
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Geometric Interpretation of ExpXp

We know ‖dp
dt
‖ is constant along a geodesic p(t).

So its length L from p(0) to p(1) is

L =

∫ 1

0

∥∥∥∥
dp

dt

∥∥∥∥ dt =
∫ 1

0
‖Xp‖dt = ‖Xp‖.

Thus ExpXp is the point on the unique
geodesic p(t) determined by Xp whose
distance from p along the geodesic is
the length of Xp.
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A Property of Exp

Lemma

Assume that q ∈ M and that Xq ∈ Tq(M) for which ExpXq is defined.
Then ExptXq is defined at least for each t with |t| < 1.
Moreover,

q(t) = ExptXq

is the geodesic through q at t = 0, with dq
dt
|0 = Xq.

Let q(t) be the unique geodesic with q(0) = q and dq
dt
|0 = Xq.

Then, by definition, ExpXq = q(1).

Given c , with |c | < 1, consider the geodesic q̃(t) = q(ct).

We have q̃(0) = q and dq̃
dt
|t=0 = cXq.

This means that
ExpcXq = q̃(1) = q(c).

Replacing c by t in this equality, we get the statement above.
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Normal Neighborhood Theorem

Normal Neighborhood Theorem

Every point q of a Riemannian manifold M has a neighborhood N which is
the diffeomorphic image under Expq of a star-shaped neighborhood Ñ of
the zero vector 0q of the vector space Tq(M).

We revert to local coordinates U, ϕ around q ∈ M.

Let V ⊆ U and ε > 0 be as in a previous theorem.

So, for p ∈ V and ‖Xp‖ < ε, ExpXp is defined.

As in the proof of a previous lemma, the geodesic determined by p

and Xp is given in local coordinates by

t → (f 1(t, a; b), . . . , f n(t, a; b)),

with:
ϕ(p) = a = (a1, . . . , an);
Xp = b1E1p + · · ·+ bnEnp.
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Normal Neighborhood Theorem (Cont’d)

This means that

ϕ(ExpXp) = (f 1(1, a; b), . . . , f n(1, a; b));

ϕ(ExptXp) = (f 1(1, a; tb), . . . , f n(1, a; tb)), |t| < 1.

The preceding lemma and the meaning of the functions f i(t, a; b)
then give us the following identities, valid for |t| < 1,

f i (1, a1, . . . , an; tb1, . . . , tbn) = f i (t, a1, . . . , an; b1, . . . , bn).

First, note that the f i are C∞ on their domain.

Hence, Xp → ExpXp is C∞ on

{Xp : p ∈ V , ‖Xp‖ < ε}.

For brevity, we denote by Expq the restriction of Exp to Tq(M) ∩ D .

We may compute the Jacobian of Expq at Xq = 0q .
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Normal Neighborhood Theorem (Cont’d)

Now q is fixed.

(a1, . . . , an) are constants.

The Jacobian matrix at this point has as entries ∂f i

∂bj
evaluated at

(1, a1, . . . , an, 0, . . . , 0),

∂f i

∂bj
= lim

h→0

1

h
(f i (1, a; 0, . . . , h, . . . , 0)− f i(1, a; 0, . . . , 0)).

We use the previously obtained identities, with bj = 1, bk = 0, for
k 6= j , first with t = h, then with t = 0.

Then, we get

∂f i

∂bj
= lim

h→0

1
h
(f i (h, a; 0, . . . , 1, . . . , 0)− f i(0, a; 0, . . . , 1, . . . , 0))

= ḟ i (0, a1, . . . , an; 0, . . . , 1, . . . , 0).
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Normal Neighborhood Theorem (Cont’d)

Now

x i = f i (t, a1, . . . , an; 0, . . . , 1, . . . , 0), i = 1, . . . , n,

(with bj = 1 and bk = 0, if k 6= j), considered as functions of t, are
the equations of the geodesic through q with Ejq as initial vector.

So the Jacobian matrix reduces to the identity at Xq = 0q .

That is, we have
∂f i

∂bj
= δij .

So, for q fixed and for some ε′ < ε, the mapping Xq → ExpXq is a

diffeomorphism of the open set Ñ = {Xq : ‖Xq‖ < ε′} of Tq(M) onto
an open set N containing q = Exp0q .

Retaining the notation Expq for Exp restricted to that part of its
domain in Tq(M), we obtain the result.
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Normal Coordinate Neighborhoods

We have defined Ñ by ‖Xq‖ < ε′.

The norm in Tq(M) is given by the Riemannian metric.

So we may choose an orthonormal basis of Tq(M),

F1, . . . ,Fn.

Write

Xq =

n∑

i=1

y iFi .

Then we have

‖Xq‖ =

n∑

i=1

(y i )2.
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Normal Coordinate Neighborhoods

With these choices, the mapping

ψ : Expq

(
n∑

i=1

y iFi

)
7→ (y1, . . . , yn)

takes the open neighborhood N of q diffeomorphically onto
Bn
ε′(0) ⊆ Rn.

Definition

The coordinate neighborhood N, ψ of q defined in this way is called a
normal coordinate neighborhood.
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Properties of Normal Coordinates

Normal coordinates have special features that make them useful in
the study of the geometry of the manifold.

Of these the most important are the following.

(i) For all i , j ,
gij(0) = δij ;

(ii) The equations of the geodesics through q take the form

y i = ai t, i = 1, . . . , n,

where ai constants;

(iii) The coefficients of the connection vanish at q,

Γkij(0) = 0, i , j , k = 1, . . . , n.
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Properties of Normal Coordinates (Cont’d)

Statements (i) and (ii) are immediate consequences of the definition
and a previous lemma.

The third follows from the second.

Consider a1, . . . , an close to zero.

Substitute the solutions
y i = ai t

in the equations of the geodesics.

We get ∑

ij

Γkij(0)a
iaj = 0, k = 1, . . . , n.
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A Strengthening

Let U, ϕ be a coordinate neighborhood of q ∈ M.

Let E1, . . . ,En denote the coordinate frames.

Let Xp =
∑

biEip be the tangent vectors to p ∈ U.

Let ϕ(p) = (x1, . . . , xn) be the local coordinates.

We have shown that there exists a relatively compact neighborhood
V of q, V ⊆ U, and an ε > 0, such that ExpXp is defined and in U,
for each Xp, with p ∈ V and with ‖Xp‖ < ε.

Then in local coordinates

ϕ(ExpXp) = (f 1(1, x1, . . . , xn; b1, . . . , bn), . . . ,
f n(1; x1, . . . , xn, b1, . . . , bn)),

with f i (t, x , b) being C∞ in all variables.

We held p fixed at q to study the map Expq from Tq(M) to M.
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A Strengthening (Cont’d)

Now, however, we consider the mapping F of the open set

ϕ̃({Xp : p ∈ V , ‖Xp‖ < ε}) ⊆ R
n ×R

n

to
ϕ(U) × ϕ(U) ⊆ R

n ×R
n

which is defined by

F : (x1, . . . , xn; b1, . . . , bn) → (x1, . . . , xn; f 1(1, x , b), . . . , f n(1, x , b)).

This map corresponds to the map

Xp =
∑

biEip → (p,ExpXp),

with domain in T (M).
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A Strengthening (Cont’d)

We have already seen that, when b1 = · · · = bn = 0,

∂f i

∂bj
= δij .

So the Jacobian matrix of F is nonsingular at any point (x1, . . . , xn;
0, . . . , 0) of Rn × {0} for which (x1, . . . , xn) = ϕ(p), with p ∈ V .

Therefore, by the Inverse Function Theorem, for each pair (p, 0p), 0p
the zero vector at p ∈ V , there is a neighborhood which is mapped
diffeomorphically onto an open subset of U × U ⊆ M ×M by this
mapping.

The mapping takes the pair “p and vector Xp at p” to a pair of
points of U,

(p,Xp) → (p,ExpXp).
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A Strengthening (Cont’d)

Now V was originally chosen as a relatively compact neighborhood of
q lying in a coordinate neighborhood U, ϕ.

It was used to obtain an ε > 0 for which the open set
{Xp : p ∈ V and ‖Xp‖ < ε} of T (M) was in the domain D of Exp.

This is also a set on which the mapping (p,Xp) → (p,ExpXp) is given
in local coordinates by F .

From what we have just said we may restrict V and ε further
(without changing notation) so that the resulting neighborhood
N(V , ε) = {(p,Xp) : p ∈ V and ‖Xp‖ < ε} of q, 0q is mapped
diffeomorphically onto an open set W ⊆ U × U.

Although W is not of the form B × B , it does contain the diagonal
set {(p, p) : p ∈ V }.
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A Strengthening (Cont’d)

We now let B ⊆ V be a neighborhood of q such that B × B ⊆ W .

Then B × B is the diffeomorphic image of some open subset of
N(V , ε) which can be described by

NB = {(p,Xp) : p ∈ B ,ExpXp ∈ B}.

Putting these facts together gives the following result.

Theorem

Let U, ϕ be a coordinate neighborhood of M and q ∈ U. Then there exists
a neighborhood B ⊆ U of q and an ε > 0, such that any two points p, p′

of B can be joined by a unique geodesic of length less than ε. This
geodesic is of the form ExptXp, 0 ≤ t ≤ 1, and lies entirely in U. It follows
that for each p ∈ B , Expp maps {Xp : ‖Xp‖ < ε} diffeomorphically into an
open set Np , such that B ⊆ Np ⊆ U.
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Remarks

Our choice of the neighborhood NB does not allow us to conclude
that whenever (p,Xp) ∈ NB , then (p, tXp) ∈ NB , for all 0 < t < 1.

Thus, in general, B does not necessarily have the property that
p, p′ ∈ B are joined by a geodesic lying entirely in B .

We have made our choices so that for each p ∈ V , Expp maps the ε
ball {Xp : ‖Xp‖ < ε} into U diffeomorphically and clearly has B in its
image.

Thus, each p ∈ B has a normal neighborhood Np, with B ⊆ Np ⊆ U.

With somewhat more effort one can show that it is, in fact, possible
to select a neighborhood B of each point q on a Riemannian manifold
with the property that each pair of points p, p′ ∈ B may be joined by
a unique (minimizing) geodesic segment lying entirely in B .

Such neighborhoods are called geodesically convex.
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Subsection 7

Some Further Properties of Geodesics
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Properties of D and Exp

Theorem

D is an open subset of T (M) and Exp : D → M is a C∞ mapping.

We keep the same notation.

Recall that to each coordinate neighborhood U, ϕ of M corresponds a
coordinate neighborhood Ũ, ϕ̃ of T (M).

We have

Ũ = π−1(U) and ϕ̃(Ũ) = ϕ(U)×R
n ⊆ R

n ×R
n.

In fact, let:
ϕ(p) = (x1, . . . , xn);
E1, . . . ,En be the coordinate frames.

Then
ϕ̃(Xp) = ϕ̃

(∑
y iEi

)
= (x1, . . . , xn; y1, . . . , yn).
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Properties of D and ExP (Cont’d)

The natural mapping π : T (M) → M is given in local coordinates by

ϕ(π(Xp)) = (x1, . . . , xn).

It is an open C∞ mapping and has rank n at every point.

Suppose that p(t) is a geodesic on M.

Then its velocity vector Xp(t) =
dp
dt

defines a curve t → Xp(t) on
T (M) with

π(Xp(t)) = p(t).

An examination of the method by which we passed from the
equations of geodesics to first-order equations reveals that on ϕ̃(Ũ)
we considered the first-order system corresponding to the vector field

Z ′ =
∑

i

y i
∂

∂x i
+
∑

k



∑

i ,j

Γkij(x)y
iy j


 ∂

∂yk
.
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Properties of D and ExP (Cont’d)

Now we define a vector field Z on Ũ ⊆ T (M) so that

ϕ̃∗(Z ) = Z ′.

Suppose, as in a previous lemma, the solutions of the first-order
equations are given by

x i (t) = f i (t, a, b) and y i (t) =
dx i

dt
, i = 1, . . . , n.

Then on Ũ the integral curves (solutions) of the system of equations
defined by Z are of the form

ϕ̃−1

(
x1(t), . . . , xn(t);

dx1

dt
, . . . ,

dxn

dt

)
,

where ϕ−1(x1(t), . . . , xn(t)) = p(t) is a geodesic in U = π(Ũ).

In brief, Xp(t) =
dp
dt

is a solution curve of Z on π−1(U) ⊆ T (M) if
and only if p(t) is a geodesic on U.
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Properties of D and ExP (Cont’d)

From its geometric meaning, or by a tedious computation for change
of coordinates, we see that Z is a vector field defined intrinsically on
all of T (M), independent of the particular expression in a coordinate
system.

That is, the components

x1, . . . , xn,

∑

i ,j

Γ1ijy
iy j , . . . ,

∑

i ,j

Γnijy
iy j




transform as they should for a vector field when we pass to other
coordinates.

So Z is globally defined and depends only on the Riemannian
connection and metric.

The geodesics on M are therefore exactly the projections by
π : T (M) → M of the integral curves of Z .

Thus, the conclusion follows from a previous theorem.
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Comparison With Rn

We have seen that geodesics on Riemannian manifolds generalize
straight lines in Rn in the following sense.

Their unit tangent vector as we move along the curve is constant.

But another basic property which characterizes straight lines in Rn is
the famous minimizing property of being the shortest curve joining
any two of its points.

We now examine in some detail the extent to which this property
generalizes.
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Example

Consider the right circular cylinder M with the Riemannian metric
obtained by considering the plane R2, with its usual metric, as
universal covering.

Then the geodesics on the cylinder
are exactly those curves which go
into straight lines if we roll the
cylinder along the plane.

That is, vertical generators and
helices.

Thus, two points not on a circle whose plane is orthogonal to the axis
will be joined by an infinite number of distinct geodesics of different
lengths.
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Examples

Consider the sphere S2.

On S2 consider the larger of the two arcs of a great circle which join
two points p and q (which are not at opposite ends of a diameter).

Such a path is not of minimal length, even among nearby circular arcs.

Finally, consider the plane with the origin removed.

The points (−1, 0) and (+1, 0) cannot be joined by a shortest curve
at all.
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Conclusions

In view of the preceding examples, it is remarkable that we are able to
salvage something, in fact almost everything, if we limit ourselves to
points close together and short geodesics.

Let us recall that we have defined the length of a piecewise
differentiable curve p(t) (of class D1), over a ≤ t ≤ b, by

L =

∫ b

a

∥∥∥∥
dp

dt

∥∥∥∥ dt.

This is the Riemann integral of a piecewise continuous function.

It is, by definition, equal to the sum of the integrals over the intervals
of continuity [on each of which p(t) is of class C 1].
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Geodesic Spheres

According to a previous theorem, given q ∈ M, there exist B and
ε > 0, such that each pair of points p, p′ of B can be joined by a
unique geodesic of length L < ε.

In fact, the equation p(t) of the geodesic is given by

p(t) = ExptXp, 0 ≤ t ≤ 1,

and ‖Xp‖ = L.

The open set B lies in a coordinate neighborhood U, ϕ which
contains this geodesic.

Expp is a diffeomorphism of the open ball of vectors Xp of Tp(M) of
length ‖Xp‖ < ε onto an open set Np of U containing B .

This means that any sphere

{Xp : ‖Xp‖ = r < ε}
maps diffeomorphically to a submanifold of U, denoted by Sr (and
called a geodesic sphere).
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Uniqueness of Geodesics: Lemma 1

Lemma

Let p ∈ B and suppose Expp maps the open ε-ball of Tp(M)
diffeomorphically onto Np ⊇ B . Then the geodesics through p are
orthogonal to the geodesic spheres Sr , determined by

ExppXp and ‖Xp‖ = r , r < ε.

Let X (t) be a curve in Tp(M) with ‖X (t)‖ ≡ 1, a ≤ t ≤ b.
Any geodesic from the point p may be written

r → ExpprX , 0 ≤ r ≤ ε,

with ‖X‖ = 1.
Any curve on Sr may be written in the form

t → ExpprX (t).
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Uniqueness of Geodesics: Lemma 1 (Cont’d)

The mapping
(r , t) → p(r , t) = ExpprX (t)

maps the rectangle [0, ε] × [a, b] differentiably into M.

We will show that the inner product

(
∂p

∂r
,
∂p

∂t

)
= 0, for each r0, t0.

∂p
∂r is the tangent vector to p(r , t0), the geodesic curve.
∂p
∂t is the tangent vector to p(r0, t) a curve on the geodesic sphere Sr .

They intersect at p(r0, t0).

It suffices to show this inner product vanishes for every (r0, t0).
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Uniqueness of Geodesics: Lemma 1 (Cont’d)

We first show that (∂p∂r ,
∂p
∂t ) is independent of r .

By a basic property of differentiation,

D

∂r

(
∂p

∂r
,
∂p

∂t

)
=

(
D

∂r

∂p

∂r
,
∂p

∂t

)
+

(
∂p

∂r
,
D

∂r

∂p

∂t

)
.

Of these, D
∂r

∂p
∂r = 0, since holding t fixed and allowing r to vary gives

a geodesic through q with ∂p
∂r as its unit tangent vector.

In the second term, if we interchange the order of differentiation, we
obtain (

∂p

∂r
,
D

∂t

∂p

∂r

)
=

1

2

∂D

∂t

(
∂p

∂r
,
∂p

∂r

)
.
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Uniqueness of Geodesics: Lemma 1 (Cont’d)

Now, we have ∥∥∥∥
∂p

∂r

∥∥∥∥ = ‖X (t)‖ ≡ 1.

So we get
∂D

∂t

(
∂p

∂r
,
∂p

∂r

)
= 0.

Therefore, (∂p∂r ,
∂p
∂t ) is independent of r .

But p(0, t) ≡ q. So ∂p
∂t = 0 at r = 0.

Thus, (
∂p

∂r
,
∂p

∂t

)
= 0, for all r .

Hence, for each (r0, t0), the inner product
(
∂p

∂r
,
∂p

∂t

)
= 0.
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Uniqueness of Geodesics: Lemma 2

We consider a (piecewise) differentiable curve in Np − {p},

p̃(t), a ≤ t ≤ b.

It has a unique expression of the form

p̃(t) = Exppr(t)X (t), ‖X (t)‖ ≡ 1.vspace−0.15in

Lemma

We have ∫ b

a

∥∥∥∥
dp̃

dt

∥∥∥∥ dt ≥ |r(b)− r(a)|.

Equality holds if and only if r(t) is monotone and X (t) is constant.
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Uniqueness of Geodesics: Lemma 2 (Cont’d)

Again we consider the map

[0, ε] × [a, b] → U;
(r , t) → p(r , t) = ExpprX (t).

The curve p̃(t) connects the spherical shells Sr in Uq of radius

r = r(a) and r = r(b).

We have
p̃(t) = p(r(t), t).

Moreover,
dp̃

dt
=
∂p

∂r
r ′(t) +

∂p

∂t
.
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Uniqueness of Geodesics: Lemma 2 (Cont’d)

Now ‖∂p
∂r ‖ = ‖X (t)‖ = 1 and (∂p∂r ,

∂p
∂t ) = 0.

So we have

∥∥∥∥
∂p̃

dt

∥∥∥∥
2

= |r ′(t)|2 +
∥∥∥∥
∂p

∂t

∥∥∥∥
2

≥ |r ′(t)|2.

Equality holds if and only if ∂p
∂t ≡ 0, that is, X (t) = constant.

Consequently,

∫ b

a

∥∥∥∥
dp̃

dt

∥∥∥∥ dt ≥
∫ b

a

|r ′(t)|dt ≥
∣∣∣∣
∫ b

a

r ′(t)dt

∣∣∣∣ = |r(b)− r(a)|.

In the last inequality, we have equality only if r(t) is monotone.

Thus,
∫ b

a
‖dp̃
dt
‖dt = |r(b)− r(a)| if and only if r(t) is monotone and

X (t) = constant.
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Proof of Uniqueness of Geodesics

We continue the notation of the lemmas.

Suppose
p̃(t), 0 ≤ t ≤ 1,

is a piecewise smooth curve joining:
p = p̃(0).
p′ = p̃(1) = ExpprXp ∈ Np, 0 < r < ε and ‖Xp‖ = 1.

Let δ satisfy 0 < δ < ε, and consider the segment of the curve joining
the shell of radius δ around p to that of radius r .

According to the preceding lemma:
The length of this segment is ≥ r − δ;
Equality holds only if the curve coincides as a point set with segment of
the radial geodesic from p cut off by these shells, its length being r − δ.

Thus, the portion of the curve between these shells has length
> r − δ, unless it coincides as a point set with a radial geodesic.

Letting δ approach zero gives the result of the theorem.
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Comments

The statement of the theorem is bound up with the notion of distance
on M, that is, the metric d(p, p′) which we considered previously.

Recall that d(p, p′) is the infimum of the lengths of all piecewise
differentiable curves from p to p′.

Moreover, we showed that the metric topology and the usual topology
coincided.

The theorem just proved guarantees that, for each point q ∈ M, there
is an ε > 0 and a neighborhood B of diameter less than ε (in terms of
d), such that, for every pair of points p, p′ ∈ B , there is a unique
geodesic segment from p to p′ whose length is the distance d(p, p′).
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Minimal Geodesics

Corollary

If a piecewise differentiable path (of class D1) from p to q on M has length
equal to d(p, q), then it is a geodesic when parametrized by arclength.

Note that it follows that the path is C∞!

Of course the hypothesis and the definition of d(p, q) imply that the
path has minimum length among all such curves.

For the proof, note that any segment of the path lying in a sufficiently
small neighborhood (as above) must also have as length the distance
between its endpoints (or it could be replaced by a shorter path).

So the path must be a geodesic.

It follows that the curve is a geodesic locally.

So it is a geodesic.
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Minimal Geodesics and Indefinite Extendibility

Definition

A geodesic segment whose length is the distance between its endpoints is
called a minimal geodesic.

We recall that each geodesic and geodesic segment is contained in a
maximal geodesic, that is, a geodesic p(t) such that p(t) is defined
for a < t < b and not for any larger interval of values.

If a = −∞ and b = +∞, we say that the geodesic can be extended

indefinitely.

This is always true of a closed geodesic (a geodesic which is the
image of a circle, for example, a great circle on S2).

If every geodesic from p ∈ M can be extended indefinitely, then the
domain D of Exp contains all of Tp(M) and conversely.
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The Hopf and Rinow Theorem

Theorem (Hopf and Rinow)

Let M be a connected Riemannian manifold. Then the following two
properties are equivalent:

(i) Any geodesic segment can be extended indefinitely.

(ii) With the metric d(p, q), M is a complete metric space.

The proof will be based on a lemma.

Assume any geodesic segment t → p(t), a ≤ t ≤ b, can be extended
to a maximal geodesic curve t → p(t), defined for −∞ < t < +∞.

To see that M is complete (every Cauchy sequence converges), it is
sufficient to show that every closed and bounded set is compact.

To prove this we need the following lemma, of interest in itself.
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The Hopf and Rinow Theorem (Lemma)

Lemma

Suppose M has the property that every geodesic from some point p ∈ M

can be extended indefinitely. Then any point q of M can be joined to p by
a minimal geodesic [whose length is necessarily d(p, q)].

Let q be an arbitrary point of M and let a = d(p, q).

Any geodesic from p may be written p(s) = ExpsXp with:

Xp a unit tangent vector at p;
s arclength measured from p = p(0).

We must show that, for some Xp, with ‖Xp‖ = 1,

p(a) = ExpaXp = q.

Then s 7→ ExpsX , 0 ≤ s ≤ a, would be the minimal geodesic segment.

We will use the following fact, which is also of some interest.
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The Hopf and Rinow Theorem (Fact)

Fact

Suppose that p0, p1, . . . , pn are points of M and that

d(p0, p1) + d(p1, p2) + · · · + d(pn−1, pn) = d(p0, pn)

If a piecewise differentiable curve contains pi , pi+1, . . . , pi+r and has
length equal to d(pi , pi+1) + · · ·+ d(pi+r−1, pi+r ), then it is a geodesic
segment from pi to pi+r . Conversely, if p0, . . . , pn lie on a minimal
geodesic segment, in that order, then the equation holds for them.

It is easily seen that it is enough to verify this for r = 2.

The curve C from pi to pi+1 to pi+2 has length

L = d(pi , pi+1) + d(pi+1, pi+2).

By the triangle inequality L ≥ d(pi , pi+2).

If equality holds, C is a geodesic segment from pi to pi+2.
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The Hopf and Rinow Theorem (Fact Cont’d)

We show that L ≥ d(pi , pi+2).

Otherwise, by the triangle inequality, we have

d(pi , pi+1) + d(pi+1, pi+2) > d(pi , pi+2).

Then, substituting in the statement, we get

d(p0, p1) + · · ·+ d(pi , pi+2) + · · · + d(pn−1, pn) < d(p0, pn).

This contradicts the triangle inequality.

Finally, the last statement follows immediately from the fact that any
subsegment of a minimal geodesic segment is also minimal.
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The Hopf and Rinow Theorem (Lemma Cont’d)

Using a previous theorem, let δ > 0 be chosen so that

Sδ = {p′ : d(p, p′) = δ}

is a geodesic sphere in some normal neighborhood of p, sufficiently
small to ensure that each radial geodesic from p to Sδ is minimal.

Now Sδ is compact.

So, there exists a p0 ∈ Sδ, satisfying

d(p0, q) = inf
p′∈Sδ

d(p′, q).

Let Xp be the unit vector at p, such that

p0 = ExpδXp.
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The Hopf and Rinow Theorem (Lemma Cont’d)

We must have
d(p, p0) + d(p0, q) = d(p, q).

Otherwise, there is a piecewise differentiable curve joining p to q

whose length is less than

d(p, p0) + d(p0, q) = δ + d(p0, q).

It must intersect Sδ at some point p′ and its length from p to p′ can
be no less than δ.

So we have d(p′, q) < d(p0, q).

This contradicts our choice of p0.
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The Hopf and Rinow Theorem (Lemma Cont’d)

We now consider all s ′, 0 ≤ s ′ ≤ a, such that:

The geodesic segment s 7→ ExpsXp, 0 ≤ s ≤ s ′, is minimizing;
d(p,Exps ′Xp) + d(Exps ′Xp , q) = d(p, q).

Both conditions are continuous.

So the collection of all such s ′ forms a closed interval 0 ≤ s ′ ≤ b.

If b = a, then ExpaXp = q, which proves the lemma..

Suppose, on the other hand, that b < a.

Let p1 = ExpbXp.

Then
d(p, p1) + d(p1, q) = d(p, q).

We may obtain a contradiction by repeating the arguments above as
follows.
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The Hopf and Rinow Theorem (Lemma Cont’d)

Let Sη, η > 0, be a small geodesic sphere (with radial geodesics
minimizing) in a normal neighborhood of p1 = ExpbXp.

Choose a point p2 on Sη, such that

d(p2, q) = inf
p′′∈Sη

d(p′′, q).

Then, as before

d(p1, p2) + d(p2, q) = d(p1, q).

Therefore,

d(p, p1) + d(p1, p2) + d(p2, q) = d(p, p1) + d(p1, q) = d(p, q).

By the Fact, the geodesic p(s) = ExpsXp from p to p1 together with
the (radial) geodesic in Sη from p1 to p2 is a single (minimizing)
geodesic segment from p to p2 of length d(p, p2) > b.

This contradicts the definition of b.

Therefore, b = a and the lemma follows.
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The Hopf and Rinow Theorem ((i)⇒(ii))

We show first that (i) implies (ii).

Let K be a closed and bounded subset of M.

We show that K is compact.

Suppose p ∈ K and let

a = sup
q∈K

d(p, q).

a is finite, since K is bounded.

By the lemma, for any q ∈ K , there is a minimizing geodesic from p

to q.

Its length is d(p, q), which must be no greater than a.
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The Hopf and Rinow Theorem ((i)⇒(ii) Cont’d)

It follows that K ⊆ ExppBa, where Ba is the closed ball of radius a in
Tp,

Ba = {Yp : ‖Yp‖ ≤ a}.
Now Ba is compact and Exp is continuous.

So ExppBa is compact.

K is a closed subset of ExppBa.

So it must be compact.

However, a metric space in which every bounded set is relatively
compact (has compact closure) is complete.

So M is a complete metric space.
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Remark

Any manifold M having Property (i) has the property that the domain
D of the exponential function is all of T (M).

That is, that the vector field Z of a previous theorem is complete.

Actually, in proving that (i) implies (ii), we used only the weaker
hypothesis of the lemma.

I.e., that every geodesic from some point p ∈ M can be extended
indefinitely, that is, D ⊇ Tp(M) for some p ∈ M.

It was not necessary to assume p ∈ K , for if K is bounded, then for
any p ∈ M the distances d(p, q) are bounded for all q ∈ K .
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The Hopf and Rinow Theorem ((ii)⇒(i))

For (ii) implies (i), we suppose that every Cauchy sequence on M

converges and show that this implies the extendability of geodesics.
Suppose to the contrary that there is a geodesic ray,

p(t), 0 ≤ t < t0,

which cannot be extended to t = t0.
We may assume, changing parameter if necessary, that t is arclength.

Let {tn} be an increasing sequence of values with limn→∞ tn = t0.
Denote by pn the points p(tn).
The expression |tn − tm| is the length of a curve from pn to pm.
So we have

d(pn, pm) ≤ |tn − tm|.
Thus, {pn} is a Cauchy sequence.
We let

q = lim
n→∞

pn = lim
tn→t0

p(tn).
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The Hopf and Rinow Theorem ((ii)⇒(i) Cont’d)

Let B be a neighborhood of q.

Let ε > 0 be so chosen that each pair of points p, p′ of B are joined
by a unique geodesic of length less than ε.

This geodesic is minimizing, or equivalently its length is d(p, p′).

Let N be an integer large enough so that, for n,m ≥ N,

d(pn, pm) < ε, d(pn, q) < ε and pn, pm ∈ B .

Consider n ≥ N fixed and suppose m > n.

Then we have

d(pn, pm) + d(pm, q) = (tm − tn) + d(pm, q).

tm − tn is the length of our geodesic from pn to pm.

Moreover, it is less than ε.

So this segment of the geodesic is minimal.
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The Hopf and Rinow Theorem ((ii)⇒(i) Cont’d)

Now let m → ∞.

By continuity, we have

d(pn, q) = t0 − tn, for n > N.

Applying this to m > n, we have, for all m > n > N,

d(pn, pm) + d(pm, q) = tm − tn + t0 − tm = t0 − tn = d(pn, q).

Choose a fixed m > n.

We see that the unique geodesic segment from pn to pm of length
d(pn, pm) together with the unique geodesic segment from pn to q of
length d(pn, q) has length equal to the distance d(pn, q).

Therefore, it is a single (unbroken) geodesic from pn to q.
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The Hopf and Rinow Theorem ((ii)⇒(i) Cont’d)

However, it coincides with the given geodesic

p(t), tn ≤ t ≤ tm.

That is, from pn to pm.

Thus, it is an extension of this to a geodesic segment from p to q.

This shows that p(t) can be extended to t = t0.

We note that it is immediate that a geodesic segment p(t),
0 ≤ t ≤ t0, can be extended beyond its endpoints.

This follows at once from the fundamental existence theorems.

So any geodesic on a complete manifold can be extended indefinitely.

This implies that Expp is defined on all of Tp(M), for every p.

Hence, Exp has the entire tangent bundle T (M) as its domain, that
is, D = T (M).
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Consequences

The following corollary depends on the fact that a compact metric
space is complete.

Corollary

Let M be a compact connected Riemannian manifold.
Then any pair of points p, q ∈ M may be joined by a geodesic whose
length is d(p, q).
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Consequences (Cont’d)

Corollary

Let F1,F2 : M → M be isometries of a complete, connected Riemannian
manifold. Suppose that, for some p ∈ M:

F1(p) = F2(p);

F1∗ = F2∗ on Tp(M).

Then F1 = F2.

Let q ∈ M and let
p(s), 0 ≤ s ≤ ℓ,

be a geodesic from p = p(0) to q = p(ℓ).

Then, for i = 1, 2,
Fi(p(s))

is a geodesic from Fi(p) to Fi (q).
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Consequences (Cont’d)

But, by hypothesis,

F1(p) = F2(p) and F1∗(ṗ(0)) = F2∗(ṗ(0)).

So these geodesics coincide.

So we have

F1(q) = F1(p(ℓ)) = F2(p(ℓ)) = F2(q).
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Subsection 8

Symmetric Riemannian Manifolds
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Symmetric Connected Riemannian Manifolds

Definition

A connected Riemannian manifold M is said to be symmetric if, to each
p ∈ M, there is associated an isometry

σp : M → M,

which:

(i) Is involutive (σ2p is the identity);

(ii) Has p as an isolated fixed point, that is, there is a neighborhood U of
p in which p is the only fixed point of σp.

An example is Euclidean n-space.

In that case σp is reflection in p.
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Example of a Symmetric Manifold

Consider Sn, the unit sphere in Rn+1,
with the metric induced by Rn+1.

In the case of the sphere, σp is again
reflection in p.

For each q, σp(q) = q′, where q and q′

are equidistant from p on a geodesic
(great circle) through p.

In the case of Sn we note that σp(p) = p and σp(p
∗) = p∗, where p∗

denotes the point antipodal to p.

Thus, in general, σp may have other fixed points than p.

Note also that the previous example is a noncompact manifold
whereas this is compact.

A symmetric space, as we will see, is always complete.
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Properties of the Isometry

Lemma

Let M be a Riemannian manifold. Let p ∈ M and σp an involutive
isometry, with p as isolated fixed point. Then, for all Xp ∈ Tp(M),

σp∗(Xp) = −Xp and σp(ExpXp) = Exp(−Xp).

We know that σ2p is the identity.

So the same holds for (σp∗)
2 on Tp(M).

This means that the eigenvalues of σp∗ on Tp(M) are ±1.

Suppose +1 is an eigenvalue.

Then, there exists a vector Xp 6= 0 such that σp∗(Xp) = Xp.

Isometries preserve geodesics.

So, for any isometry F : M → M, F ◦ Exp = Exp ◦ F∗.
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Properties of the Isometry (Cont’d)

For any isometry F : M → M, F ◦ Exp = Exp ◦ F∗.
This means that σp(ExptX ) = ExptX .

So the geodesic through p with initial direction Xp is pointwise fixed.

This means that p is not an isolated fixed point of a p.

Thus +1 is not an eigenvalue and σp∗ = −I , I being the identity.

Now σ is an isometry.

So
σp(ExpXp) = Expσp∗(Xp) = Exp(−Xp).

This means that σp takes each geodesic through p onto itself with
direction reversed, exactly as in the two examples.
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Uniqueness of the Isometry for Complete Manifolds

By the preceding lemma and a previous corollary, we get

Corollary

Given any complete Riemannian manifold M and point p ∈ M, there can
be at most one involutive isometry σp with p as isolated fixed point.
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Completeness of Symmetric Manifolds

Theorem

A symmetric Riemannian manifold M is necessarily complete. Moreover, if
p, q ∈ M, then there is an isometry σr , corresponding to some r ∈ M,
such that

σr (p) = q.

First we show that M is complete.

We prove that every geodesic can be extended to infinite length.

Suppose p(s), 0 ≤ s < b, is a geodesic ray, with s as arclength.

We will show that it can be extended to a length ℓ > b.

Let s0 =
3
4b, and let σp(s0) be the symmetry in p(s0).

It takes the geodesic p(s) to another geodesic through p(s0) whose:

Tangent vector at p(s0) is − dp
ds
|s0 ;

Length is the same as that of p(s).
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Completeness of Symmetric Manifolds (Cont’d)

Since it has a common tangent with p(s) at p(s0), it coincides with
p(s) on the interval 1

2 < s < b.

Thus it extends it to a length > 3
2b, which proves the statement.

Using this it follows easily that given any p, q ∈ M there is an
isometry of M taking p to q.

In fact, let r be the midpoint of a geodesic from p to q.

Then the isometry σr takes this geodesic onto itself and carries p to q.
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Group of Isometries

It is easy to verify that the isometries of a Riemannian manifold M

form a group I (M).

It is a subgroup of the group of all diffeomorphisms of M.

A classical theorem due to Myers and Steenrod asserts that:

It is a Lie group
Acts differentiably on M .

By the theorem, it is also transitive when M is a symmetric space.
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Symmetry of Compact Connected Lie Groups

Theorem

Every compact connected Lie group G is a symmetric space with respect
to the bi-invariant metric.

Let ψ : G → G denote the diffeomorphism which takes each element
to its inverse, ψ(x) = x−1.

This map is clearly involutive.

It is an isometry of G with e, the identity, as isolated fixed point.

To see this, recall that, to each Xe ∈ Te(G ), corresponds a uniquely
determined one-parameter subgroup t 7→ g(t), with ġ(0) = Xe .

Since ψ(g(t)) = g(−t), by the chain rule, we obtain

ψ∗(Xe) = ψ∗(ġ(0)) =
d

dt
ψ(g(t))|t=0 = − ġ(0) = − Xe .

This means that ψ∗e = −I , which is an orthogonal linear
transformation (or isometry) of any inner product on Te(G ).
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Symmetry of Compact Connected Lie Groups (Cont’d)

Let a ∈ G be arbitrary.
Given any g ∈ G , denote by:

Lg left translation by g ;
Rg right translation by g .

We may write

ψ(x) = x−1 = (a−1x)−1a−1 = Ra−1 ◦ ψ ◦ La−1(x).

Hence ψ∗a : Ta(G ) → Ta−1(G ) may be written

ψ∗a = (Ra−1∗)◦ψ∗e ◦ (La−1∗)a.

This is a composition of three linear mappings each of which is an
isometry of the inner product determined by the bi-invariant metric
(Ra−1 and La−1 induce isometries on every tangent space and ψ∗e is
an isometry as shown above).

It follows that ψ : G → G is an isometry.
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Symmetry of Compact Connected Lie Groups (Cont’d)

Now consider a normal neighborhood of e.

Then, by a previous lemma, ψ is given in local coordinates by
reflection in the origin.

Hence, e is an isolated fixed point.

Now let g ∈ G .

We define the isometry σg : G → G which has g as an isolated fixed
point by

σg = Lg ◦ Rg ◦ ψ.
That is,

σg (x) = gx−1g .

It is an isometry since Rg , Lg and ψ are isometries.

We can check that it is involutive and has g as isolated fixed point.
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Example

Let G = SO(n) be the group of n× n orthogonal matrices of
determinant +1.

According to a previous example, the tangent space Te(G ), e = I ,
the n × n identity matrix, may be identified with the skew symmetric
matrices A = (aij) = −A′.

The identification means that

Xe =
∑

i ,j

aij
∂

∂xij

is tangent at I to SO(n) considered as a submanifold of
Gl(n,R) ⊆ Rn2 .

The one-parameter subgroups are of the form

Z (t) = etA.
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Example (Cont’d)

In this case we may compute

AdB : Te(G ) → Te(G )

as follows.

First one verifies, from the definition of etA, that

BetAB−1 = etBAB
−1
.

But Ad(B) acting on Te(G ) is just the linear map of the tangent
space induced by the mapping Z → BZB−1 on SO(n).

It follows that Ad(B) takes the component matrix A = (aij) of Xe to
BAB−1.
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Example (Cont’d)

Now define on Te(G ) an inner product (Xe ,Ye).

For Xe =
∑

aij
∂

∂xij
and Ye =

∑
cij

∂
∂xij

, define

(Xe ,Ye) = trA′C =
n∑

i ,j=1

aijcij .

This product is clearly bilinear and symmetric.

Moreover, we have

(Xe ,Xe) = trA′A =
∑

i ,j

aijaij =
∑

a2ij .

So the product is also positive definite.
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Example (Cont’d)

Finally for B ∈ SO(n), we have

(Ad(B)Xe ,Ad(B)Ye) = tr((BAB−1)′BCB−1)

= tr(BACB−1)

= trAC

= (Xe ,Ye).

This means that this inner product determines a bi-invariant
Riemannian metric on G .

By a previous theorem, G is a symmetric space with this Riemannian
metric.

A similar procedure may be employed to obtain the bi-invariant
Riemannian metric for other compact matrix groups.
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Isometry Associated to a Geodesic

Let M be any symmetric Riemannian manifold.

Let p(t), −∞ < t <∞, be any geodesic on M.

The symmetry σp(t) associated with any point of this geodesic maps
the geodesic onto itself and reverses its sense.

Let c be a fixed real number.

We denote by τc the following composition of two such isometries

τc = σp(c) ◦ σp(c/2).
τc maps the geodesic onto itself and preserves its sense.

So its restriction to the geodesic must be of the form

τc(p(t)) = p(t + constant).

But we have

τc(p(0)) = σp(c) ◦ σp(c/2)(p(0)) = σp(c)p(c) = p(c).

So we see that the constant is c and τc(p(t)) = p(t + c).
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Action on the Tangent Space at a Point

We consider how τc acts on the tangent space at a point of p(t).

Suppose that Xp(0) ∈ Tp(0)(M).

Define a vector field Xp(t) along p(t) by the formula

Xp(t) = τt∗Xp(0).

Let X ′
p(t) be the unique vector field satisfying

X ′
p(0) = Xp(0)

which is constant along the geodesic p(t).

We wish to show that these two vector fields coincide.
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Action on the Tangent Space at a Point (Cont’d)

For any real number t0, σp(t0) is an isometry.

Therefore, σp(t0)∗X
′
p(t) is a parallel vector field along p(t).

On the other hand, p(t0) is the fixed point of the symmetry.

So
σp(t0)∗X

′
p(t0)

= −X ′
p(t0)

.

But −X ′
p(t) is also a constant vector field along p(t) and agrees with

the field σp(t0)∗X
′
p(t) at one point.

So it must agree with σp(t0)∗X
′
p(t) everywhere.

Applying this argument twice we see that, for all t and each constant
c ,

τc∗X
′
p(t) = X ′

p(t+c).

Letting t = 0 and c = t proves our assertion.

George Voutsadakis (LSSU) Differential Geometry December 2024 244 / 279



Differentiation on Riemannian Manifolds Symmetric Riemannian Manifolds

Summarizing in a Theorem

Theorem

Let M be a symmetric manifold. Let p(t), −∞ < t <∞, be a geodesic of
M. Let τc be the associated isometry, for each real number c . Then

τc(p(t)) = p(t + c).

If Xp(0) is any element of Tp(0)(M), then

Xp(t) = τt∗Xp(0)

is the associated parallel (constant) vector field along p(t). That is, as t
varies,

τt∗ : Tp(0)(M) → Tp(t)(M)

is the parallel translation along the geodesic.
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Remark

Let p1 = p(c1) and p2 = p(c2) be any two points of a geodesic

p(t), −∞ < t <∞.

Then, by the same argument,

σp2 ◦ σp1(p(t)) = p(t + 2(c2 − c1)).

Moreover,
(σp2 ◦ σp1)∗

maps any parallel vector field along p(t) to a parallel vector field.
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Geodesics and One-Parameter Groups

Theorem

Let M = G , a compact, connected Lie group with the biinvariant metric.
Let X ∈ Te(G ). Then the unique geodesic p(t) with p(0) = e and
ṗ(0) = Xe is precisely the one-parameter subgroup determined by Xe . All
other geodesics are left (or right) cosets of these one-parameter subgroups.

Given a geodesic p(t) with p(0) = e, we consider the isometry of G

σp(s)σp(0).

By the remark above, this maps the geodesic onto itself with

p(t) 7→ p(t + 2s).

Using our formula for σp on G together with p(0) = e, we have

σp(s)σp(0)p(t) = p(s)p(t)p(s),

the right-hand side being the group product of p(s), p(t) and p(s).
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Geodesics and One-Parameter Groups (Cont’d)

Thus for all t, s,
p(s)p(t)p(s) = p(t + 2s).

Using various t and mathematical induction, this gives, for arbitrary s

and any integer n,
(p(s))n = p(ns).

In particular, if a, b, c , d are integers with bd 6= 0, we have

p
(a
b
+

c

d

)
= p

(
1

bd

)ad+bc

= p

(
1

bd

)ad

p

(
1

bd

)bc

= p
(a
b

)
· p
( c
d

)
.

Thus, for any rational numbers, we have

p(r1 + r2) = p(r1)p(r2).
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Geodesics and One-Parameter Groups (Cont’d)

Now p(t) depends continuously on t.

So, for all real numbers,

p(r1 + r2) = p(r1)p(r2).

Thus, any geodesic with p(0) = e is a one-parameter subgroup.

However, there is exactly one geodesic and one such subgroup with
given ṗ(0) = Xe .

So the first sentence of the theorem is true.

The second follows at once if we use the following facts:

Either left or right translations are isometries, and hence preserve
geodesics;
A geodesic through any g ∈ G is uniquely determined (with its
parametrization) by its tangent vector at g .
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Lie Groups and One-Parameter Subgroups

Corollary

Let G be a compact Lie group. Then any g ∈ G lies on a one-parameter
subgroup.

With the bi-invariant Riemannian metric G is a symmetric
Riemannian manifold.

Moreover, it is complete.

Hence, any pair of points can be joined by a geodesic.

If g ∈ G , then, by the theorem, the geodesic segment from e to g is
on a one-parameter subgroup.
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Example (Cont’d)

Consider again G = SO(n).

Then the geodesics, relative to the bi-invariant metric of a previous
example are the curves

p(t) = etA,

where A any skew symmetric matrix, and their cosets.
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Lie Derivative and Riemannian Differentiation

Theorem

Let G be a group with a bi-invariant metric.
Let X and Y are left-invariant vector fields on G .
Let ∇ be the Riemannian differentiation operator of vector fields.
Then we have

∇XY =
1

2
[X ,Y ] =

1

2
LXY .

Suppose that Z is any left-invariant vector field.

Then we will compute ∇Ze
Z .

Let g(t) is the uniquely determined one-parameter group with

g(0) = e and ġ(0) = Ze .
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Lie Derivative and Riemannian Differentiation (Cont’d)

Then for any vector field Y we have

∇Ze
Y =

DYg(t)

dt
|t=0.

On the other hand,

Zg(t) =
dg

dt

and g(t) is a geodesic.

Thus,
DZg(t)

dt
=

D

dt

dg

dt
= 0.

So ∇Ze
Z = 0.

Now Z and the metric are left-invariant.
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Lie Derivative and Riemannian Differentiation (Cont’d)

So we get
∇ZZ = 0

everywhere on G .

Thus,
∇X+Y (X + Y ) = 0.

We conclude that
∇XY +∇YX = 0.

On the other hand, we know that for any pair of vector fields a
Riemannian connection satisfies the identity

∇XY −∇YX = [X ,Y ].

Combining these two identities gives the conclusion.
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Subsection 9

Some Examples
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Lie Groups, Manifolds and Riemannian Metrics

Theorem

Let G be a Lie group acting transitively on a manifold M.
Then M has a Riemannian metric such that the transformation determined
by each element of G is an isometry if the isotropy group H of a point
p ∈ M is a connected compact (Lie) subgroup of G .

Let θ : G ×M → M denote the action.

For each g ∈ G , θg : M → M denotes the diffeomorphic
transformation of M onto itself determined by g ,

θg (q) = θ(g , q).

If g ∈ H, then θg (p) = p.

So θg induces a linear mapping θg∗ : Tp(M) → Tp(M).
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Lie Groups, Manifolds and Riemannian Metrics (Cont’d)

We have θg1 ◦ θg2 = θg1g2 .

So we have
θg1∗ ◦ θg2∗ = θg1g2∗.

So g → θg∗ is a homomorphism of H into the group of linear
transformations on Tp(M).

By hypothesis, θ is C∞.

So g → θg∗ is a C∞ homomorphism.

Thus, it is a representation of H on Tp(M).

Now H is compact and connected.

So, by previous results, there must be an invariant inner product,
which we shall denote by Φp(Xp,Yp) on Tp(M).
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Lie Groups, Manifolds and Riemannian Metrics (Cont’d)

If q ∈ M, there is a g ∈ G such that θg (q) = p.

We define Φq(Xq,Yq) by

Φq(Xq,Yq) = θ∗gΦp(Xq,Yq) = Φp(θg∗Xq, θg∗Yq).

If θg1(q) = p also, then gg−1
1 ∈ H.

Hence θ∗
gg−1

1

Φp = Φp and

θ∗g1Φp = θ∗g1θ
∗
gg−1

1
Φp = θ∗g1 ◦ θ∗g−1

1
◦ θ∗gΦp = θ∗gΦp.

It follows that Φq is well defined.

It is positive definite, since θg is a diffeomorphism.

It is easily verified that Φ is C∞ and G -invariant on M.

Thus Φ defines a Riemannian metric on M with respect to which
each θg is an isometry of M.
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Lie Groups, Manifolds and Symmetry

Theorem

Let G be a Lie group acting transitively and effectively on a manifold M.
Let p ∈ M, with its isotropy group H a connected compact subgroup.
Let α : G → G be an involutive automorphism of G whose fixed set is H.
Then the correspondence

α̃(θ(g , p)) = θ(α(g), p)

defines an involutive isometry of M onto M with p as an isolated fixed
point.

First we check that α̃ actually defines a mapping of M onto itself.

Let q be an arbitrary point of M.

By transitivity, there is at least one g ∈ G , such that θ(g , p) = q.
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Lie Groups, Manifolds and Symmetry (Cont’d)

If g ′ is a second such element, then g ′ = gh and

α(g ′) = α(g)α(h) = α(g)h.

Hence
α̃(θ(g ′, p)) = θ(α(g ′), p)

= θ(α(g)h, p)

= θ(α(g), θ(h, p))

= θ(α(g), p).

Therefore α̃ is defined independently of any choices.

Since α̃2 is the identity, α̃ is onto.
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Lie Groups, Manifolds and Symmetry (Cont’d)

Let us assume for the moment that we have proved that:

α̃ is C∞;
α̃ has p as an isolated fixed point;
α̃∗ : Tp(M) → Tp(M) is −I , that is, α̃∗(Xp) = −Xp .

Then, clearly, α̃∗ preserves the inner product Φp on Tp(M).

If q ∈ M, q 6= p, then choose g ∈ G , such that θg (p) = q.

Then
α̃(q) = θ(α(g), p) = θα(g)(θg−1(q)).

Hence α̃∗q : Tq(M) → Tα̃(q)(M) is given by

α̃∗q = θα(g)∗ ◦ θg−1∗.

Both θα(g)∗ and θg−1∗ are isometries on the tangent spaces.

Thus, subject to checking the other properties, α̃ is an isometry.
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We aim to verify the remaining properties.

For this, we need to use the fact that the natural identification of M
with G/H, given by the mapping F : G/H → M,

F (gH) = θ(g , p),

is C∞ and commutes with left translation on G/H.

Thus, we use a previous application of Frobenius’ Theorem.

First we recall that, if gH ∈ G/H, then there is a C∞ section S

defined on a neighborhood V of gH,S : V → G , with π ◦ S = id
(π : G → G/H is the natural projection and id the identity on V ).

Using the diffeomorphism F , obtain a C∞ section

S̃ = S ◦ F−1

on Ṽ = F (V ) into G .
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This means a C∞ mapping such that

θ(S̃(q), p) = q, for all q ∈ Ṽ .

Every point of M is contained in the domain Ṽ of such a section.

Moreover, α̃|
Ṽ

is given by

α̃(q) = α̃(θ(S̃(q), p)) = θ(α(S̃(q)), p).

This is a composition of C∞ mappings.

It follows that α̃ is C∞.
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Finally we wish to show that α̃ has p as an isolated fixed point and
that α̃∗p = −I .

We use facts demonstrated previously concerning the exponential
mapping exp : Te(G ) → G (not to be confused with the exponential
mapping Exp of Riemannian manifolds).

Given any Xp ∈ Te(G ), then

exptXp = g(t)

is the one-parameter subgroup of G with ġ(0) = Xe .

Further, expXp = g(1).

By a previous theorem, there is an ε > 0 such that an ε-ball
Bn
ε (0) ⊆ Te(M) is mapped diffeomorphically onto a neighborhood U

of e, the identity of G .
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Now α : G → G is a Lie group automorphism with α2 the identity.

So α∗ : Te(G ) → Te(G ) splits Te(G ) into the direct sum of two
subspaces V± of characteristic vectors belonging to the characteristic
values ±1 of α∗.

We have α(exptXe) = exptα∗(Xe).

So α∗(Xe) = Xe if and only if Xe ∈ Te(H).

Thus
Te(G ) = V+ ⊕ V−, V+ = Te(H).

π : G → G/H defines π∗ : Te(G ) → Tπ(e)(G/H), with:

kerπ∗ = Te(H);
π∗|V− an isomorphism onto.

So π ◦ exp maps a neighborhood W of V− ∩ Bn
ε (0) ⊆ Te(G )

diffeomorphically onto a neighborhood of H in G/H.
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Composing with F : G/H → M gives a diffeomorphism onto an open
set around p.

Thus, for Xe ∈ W , the mapping

Xe → θ(expXe , p)

is a diffeomorphism.

Moreover,

α̃(θ(expXe , p)) = θ(α(expXe), p) = θ(exp(−Xe), p).

It follows that:

p is the only fixed point of α̃ in this neighborhood;
α̃∗ : Tp(M) → Tp(M) is −I , that is, each vector is taken to its
negative.

This, taken with preceding work, completes the proof.
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Corollary

The following corollary is immediate, since each θg : M → M is an
isometry.

Corollary

Let G be a Lie group acting transitively and effectively on a manifold M.
Let p ∈ M, with its isotropy group H a connected compact subgroup.
Let α : G → G be an involutive automorphism of G whose fixed set is H.
Consider the correspondence

α̃(θ(g , p)) = θ(α(g), p).

The manifold M is a symmetric space, with involutive isometries

σp = α̃ and σq = θg ◦ α̃ ◦ θg−1 , q = θ(g , p).
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Example

Let M be the collection of all n × n, symmetric, positive definite, real
matrices of determinant +1.

Let G = Sl(n,R) be the n × n matrices of determinant +1.

Then G acts on M by
θ(g , s) = gsg ′,

where g ′ denotes the transpose of g ∈ Sl(n,R).

Let p, the base point of the theorems be I , the n × n identity.

We then note that

H = {g ∈ Sl(n,R) : θ(g , I ) = I}

is given by the equivalent condition gg ′ = I .

That is, g ∈ SO(n), the group of orthogonal n × n matrices.

Hence, H = SO(n).

So M is canonically identified with Sl(n,R)/SO(n).
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The automorphism α which we consider is defined by

α(g) = (g−1)′,

the transpose of the inverse of g ∈ Sl(n,R).

Note that α(g) = g if and only if g ∈ SO(n).

Thus all of the conditions of the theorem are met if Sl(n,R) is
transitive on M.

However, any positive definite, symmetric matrix q may be written in
the form

q = gg ′ = gIg ′,

where g ∈ Sl(n,R), by standard theorems of linear algebra.

From the corollary above M is a symmetric space relative to an
Sl(n,R) invariant metric.
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Note that α̃ : M → M can be seen, quite directly, to be C∞ and to
have the identity p = I as its only fixed point on M.

In fact, using q = sIs ′, we see that

α̃(q) = α̃θ(s, I ) = θ(s ′−1, I ) = s ′−1s−1 = (ss ′)−1 = q−1.

Thus α̃ : M → M simply takes each positive definite symmetric
matrix to its inverse.

The only such matrix which is equal to its inverse is the identity I .
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Example

We look at a variant on the above which is a particularly important
case.

Consider the upper half-plane

M = {(x , y) ∈ R
2 : y > 0}.

We define an action of Sl(2,R) on M as follows.

We identify R2 with C, the complex numbers in the usual way.

Let z = x + iy and let w = u + iv , i =
√
−1.

Let g ∈ Sl(2,R), that is, g =

(
a b

c d

)
, ad − bc = +1.

We then define

w = θ(g , z) =
az + b

cz + d
.
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It is not difficult to verify directly that:

If y = Im(z) > 0, then v = Im(w) > 0;
θ(g1, θ(g2, z)) = θ(g1g2, z).

Moreover the Riemannian metric defined (in the local coordinates
(x , y) - or z = x + iy - which cover M) by the matrix of components

(gij) =

(
1
y2 0

0 1
y2

)
=

(
1

(Im(z))2
0

0 1
(Im(z))2

)

is invariant under the action of Sl(2,R).

Thus this group acts on M as a group of isometries of this metric.

Let the complex number i which corresponds to (0, 1) in R2, play the
role of p in the general discussion above.
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Example (Cont’d)

The action of Sl(2,R) is transitive.

Consider any z0 = u + vi with v > 0.

Then an element of G = Sl(2,R) taking i to z0 is

g =

( √
v u√

v

0 1√
v

)
.

This gives, in general,

θ(g , z) =

√
vz + u√

v

0z + 1√
v

= vz + u.

When z = i ,
θ(g , i) = u + iv .
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The isotropy group of i consists of all g =

(
a b

c d

)
, such that

i =
ai + b

ci + d
.

We get ai + b = −c + di .

Equivalently, a = d and b = −c .

Since in addition ad − bc = +1, we have also

a2 + b2 = 1.

Hence

g =

(
cos θ sin θ

− sin θ cos θ

)
.

This gives H = SO(2).
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Example (Cont’d)

It follows from our general theory that the upper half-plane with this
geometry and the 2× 2 positive definite matrices are equivalent, both
as manifolds and as homogeneous spaces, with

Sl(2,R)/SO(2).

This shows that the identification of a homogeneous space with a
coset space of a Lie group as a prototype is a deeper and more
interesting result than it might appear to be.
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Non-Euclidean Geometries

The example of the upper half-plane is a realization (due to Poincaré)
of the space of non-Euclidean geometry of Bolyai, Lobachevskii and
Gauss.

We can use our results to check that the lines x = constant are
geodesics in this geometry.

Another problem consists of showing that the upper halves of circles
with centers on the x-axis are - when suitably parametrized - also
geodesics.

This is done by showing that each such circle is an image by one of
the isometries of G of a vertical line.

Through a point z there is such a circle tangent to any direction.

Hence, these must be all of the geodesics.

Using this fact it is easy to see that Euclid’s postulate of parallels
does not hold in this geometry.

George Voutsadakis (LSSU) Differential Geometry December 2024 276 / 279



Differentiation on Riemannian Manifolds Some Examples

Non-Euclidean Geometries (Illustration)

There are more than one, in fact an infinite number of lines through a
point z not on the line L which are parallel to L, that is, do not
intersect L at any point of the upper half-plane M.

The possibilities are shown in the figure.

L′1 and L′2 indicate parallel lines (geodesics) which bound the infinite
collection (faint lines) of lines L′ parallel to L through z .
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Example

As a last example of a symmetric space, we mention the Grassmann
manifold G (k , n) of k-planes through the origin of En.

We have noted that this is a homogeneous manifold.

Moreover, it is acted on in a natural way by Gl(n,R).

It is easy to see that the subgroup SO(n,R) also acts transitively on
the k-planes in Rn.

In fact, a k-plane contains an orthonormal basis f 1, . . . , f k which can
be completed to an orthonormal, oriented basis f 1, . . . , f n of Rn.

Then there exists an orthogonal transformation of determinant +1
taking the standard basis e1, . . . , en to this one.

Hence the k-plane P0 spanned by e1, . . . , ek is carried onto any
k-plane P by at least one element of SO(n,R) acting in the natural
way.
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The isotropy group H of P0 is S(O(k)× O(n − k)).

That is, it consists of the matrices in SO(n) of the form

(
A 0
0 B

)
, A ∈ O(k), B ∈ O(n − k),

with
detA detB = +1.

One can show that, in this case, α is the automorphism

α : x 7→ gxg−1,

determined by the element g =

(
−Ik 0

0 In−k

)
of Gl(n,R).

Moreover, α(x) = x if and only if x ∈ H.
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