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Differentiation on Riemannian Manifolds

Subsection 1
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Differentiation on Riemannian Manifolds

o Let C be a curve in R" given by
x(t) = (xL(t),...,x"(t)), a<t<b.

o Suppose that Z(t) = Z,(y) is a vector field defined along C.

]

o Thus, to each t € (a, b), is assigned a vector

200= 3250 (5] < Tua®)
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Differentiation on Riemannian Manifolds

o We will suppose Z to be of class C! at least.

o This means that the components a/(t) are continuously differentiable
functions of t on the interval (a, b).

o The velocity vector of the (parametrized) curve itself is an example.

o In this case, we have

a'(t) = x'(t).
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Differentiation on Riemannian Manifolds

o We define a derivative, or rate of change, of Z(t) with respect to t.
: ' dz

o It will be denoted Z(t) or .

o It will again be a vector field along the curve.

o In general, neither Z(t) nor its derivative are tangent to the curve.

o In R" we have a natural parallelism (or natural isomorphism) of
To(R") and T4(R"), for any distinct p,q € R".

o So we are able to give meaning to
Z(to + At) — Z(to),

the difference of a vector in T, (¢ 1 a¢)(IR") and a vector in Ty ;) (IR").
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Differentiation on Riemannian Manifolds

o The difference Z(to + At) — Z(to) of a vector in T4 an(R") and a

vector in T, (¢)(R").

Z (1)
Zito+ A1),

P TA)

o For definiteness we suppose Z(ty + At) moved to or identified with

x(tg+ 1)

ZUg+DN=2Z1h)

the corresponding vector in T, (4)(R").

o Further, we suppose that the subtraction is performed there.
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Differentiation on Riemannian Manifolds

o This identification allows us to define the differential quotient

Ait[z(to A8 = Z(t)] = Z a'(to + AAti — a'(to) (8?<">X(to) :

i=1

o We have to justify this equality.

o Suppose we write vectors in terms of the basis
0 0
Oxt’ T oxn’

©

This is a field of parallel frames on R".

o Thus, vectors at distinct points, say Z(tp + At) and Z(tp), are
parallel if and only if they have the same components.
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Differentiation on Riemannian Manifolds

o Passing to the limit as At — 0 gives the definition
: dZ ; 0
Z(t)=— | = E ' (t) | =— eT R"™).
( 0) ( dt ) 0 a ( 0) (8XI>X(tO) X(tO)( )

Remark: We look at a useful consequence of this formula.

Suppose we introduce a new parameter on the curve, say s, by

t = f(s), with to = f(sp).

dz\ _(ar) (42
ds 50_ ds /) \ dt to.
dt

Here (:)s, is a scalar, whereas the other terms are vectors.

Then
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Differentiation on Riemannian Manifolds

o Consider the curve x(t) = (cost,sint), a unit circle in R?.

Z(t)=—sint (%) +cost <%) .

o This is the velocity vector of the point which traces out the circle.

o Suppose

o Then

g——ot 9 —sint 9
de = >\ ox ! ay )

o This is a vector at x(t) =

(cos t,sint)

which has constant length +1 and

points toward the origin.
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Differentiation on Riemannian Manifolds

A vector field Z(t) is constant or parallel along the curve x(t) if and only
if 2 =0 for all t.

o Suppose that Z;(t) and Zy(t) are vector fields of the above type
defined along the same curve C.

o Let f(t) be a differentiable function of t on a < t < b.
o Then f(t)Z(t) and Z1(t) + Z>(t) are vector fields along C.
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Differentiation on Riemannian Manifolds

o We have the following easy consequences of the definition.
o For sums J 4z 47z
Z1(t) + Zo(1)) = =2 + =2,
g A+ 2) ==+
o For products by a differentiable function,

df dZ

d
SF02(0) = S22+ F(0)

©

For inner products,

%(zl(t),zz(t))z (ddzl Z2(t)> (Zl(t)’ ddztz)

where (Z1, Z>) is the standard inner product in R".
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Differentiation on Riemannian Manifolds

o We sometimes find it convenient to use a field of frames, other than
the natural one, say

Fi(t),. .., Fa(t),
defined and of class C! at least along x(t).

o Then Z(t) has a unique expression as a linear combination of these
vectors at each x(t),

Z(t) = bY(t)Fi(t) + - - - + b"(t)Fa(t).

o Differentiating this expression we obtain
dZ = (db . dF;
— = —Fi(t) + P (t)—2 ).
dt j_zl<dt i(6) + ()dt)
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Differentiation on Riemannian Manifolds

dF;
o Now — are vectors along x(t).

o So they too are linear combinations of Fy(t),
dF N~k
E:ZMMW)
k=1
o This gives the formula

k .
%:Z.%+ZWWW)MA
k J

o Note that, when the frames Fi(t),..., Fn(t) are parallel, aj’-‘(t) =0.

o So the last formula includes the original formula as a special case.
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Differentiation on Riemannian Manifolds

o The length of the curve from a fixed point xp = x(tp) is given by

5= /t(k(t),X(t))1/2dt.

o So 4
s : :

— = (x(t),x(t)).

= = (x(0),%(1)
o If s is used as parameter, then % = % =1.
o So x(s) is a unit vector tangent to the curve.
o Let

T(s) = x(s)

denote this unit tangent vector.

George Voutsadakis (LSSU) Differential Geometry



Differentiation on Riemannian Manifolds

o Arc length, the parameter s (to within an additive constant), and
T(s) are determined by the (induced) Riemannian metric on x(s).

o They do not depend on the particular rectangular Cartesian
coordinates or origin used.

o So they and the derivatives of T(s) are geometric invariants of the
curve.

o This means that they are the same at corresponding points for
congruent curves.
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Differentiation on Riemannian Manifolds

o We have
(T(s), T(s)) = (x(s), x(s)) = 1.
So, differentiating, we get

(7). T(s) =0,

o Using the inner product rule, we obtain

2 (T(s), %) 0.

o Therefore, one of the following holds:
dT - .
o I s zero;
dT

o < is a nonzero vector orthogonal to T(s) at each point of the curve.

o We define the curvature k(s) by

k(s) = ‘

©

ar
ds
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Differentiation on Riemannian Manifolds

o Suppose k(s) # 0.

o Then, we let N(s) be the unique unit vector defined by
dT
i k(s)N(s).

o We also let B(s) be the uniquely determined
unit vector, such that

T(s), N(s), B(s)

define an orthonormal frame with the

i - o 0 9
orientation of 571, 575, 7.3.
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Differentiation on Riemannian Manifolds

o We assume that k(s) # 0 at all points of a curve under consideration.

o This assumption is justified, since it is the generic or typical situation
for a space curve.

Theorem

If k(s) = 0 on the interval of definition, then x(s) is a straight line
segment on that interval.
Conversely, for a straight line x(s), k(s) = 0.

o Suppose the curve x(s) is a straight line.

Then it is given, in terms of arclength, by
xi(s)=a' + b's, i=1,2,3,
where Z?’Zl(b")2 =1.
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Differentiation on Riemannian Manifolds

o Thus s
e
R
dT —
So &% =0.
Conversely, suppose k(s) = 0.
Then T
— =0.
ds
But b i
XI
T="2& %
ds Oxi’

where s is arclength.
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Differentiation on Riemannian Manifolds

o This implies
d?x’ .
F = 0, I = 1,2,3.

Thus

x'(s)=a"+b's, i=1,2,3,
with a’ and b’ constants.
So the curve is a straight line.

o Note that T(s) and k(s) are defined for a curve in R”, for any n (not
just n = 3), and the proposition just proved is still valid.
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Differentiation on Riemannian Manifolds

o For convenience of notation, we let Fi(s), Fa(s), F3(s) denote T(s),
N(s), B(s), respectively.
Since this is a field of orthonormal frames, we have

(Fi(s), Fj(s)) = 0.

Differentiation of these equations gives the relations
dF; dFi\ o
<I"EJ(S)) =+ (F,(S),I) :O, I,_j—].,2,3.

o As we pointed out in the derivation, % must be a linear combination
of the Fk(s), for every s.
o So we may write

©

©

dF; .
L=Y A, j=123
k
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Differentiation on Riemannian Manifolds

o Combining, we get

(Z afka, F_,) =F (Fi, Z aijk> =0.
k K
o Equivalently . '
ai(s)+aj(s) =0, 1<i,j<3.
o This means that the matrix (aj’:(s)) is skew-symmetric.

o By definition % = k(s)N.
o This gives

o So al(s) = 0= ai(s).
o Finally, we use the notation

a3(s) = 7(s)-
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Differentiation on Riemannian Manifolds

o Rewriting in terms of T, N, B, we have the Frenet-Serret formulas

a = k(s)N,
N = —k(s)T +7(s)B,
% = —7(s)N.

o They, express the derivatives with respect to s of T, N and B, which
are called the tangent, normal and binormal vectors, respectively,
of x(s), in terms of these vectors themselves.

k(s) is called the curvature and 7(s) the torsion of the curve C at x(s).

o Curvature measures deviation of C from a straight line.

o Torsion measures “twisting” or deviation from being a plane curve.

George Voutsadakis (LSSU) Differential Geometry



Differentiation on Riemannian Manifolds

A curve in E3 lies in a plane if and only if 7(s) = 0.

o Suppose the curve lies in a plane.
By the definition of T(s) and 2L, we see that these vectors lie in the
plane of the curve for each point x(s) of the curve.
Thus, B(s) has a fixed direction, orthogonal to the plane.
So it is always parallel to a fixed unit vector, orthogonal to the plane.
Therefore, % =

This gives 7(s) = 0.
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Differentiation on Riemannian Manifolds

o Suppose that 7(s) = 0.
Then % = 0 and B is a constant vector along the curve.
We choose the coordinate axes so that:

o The curve passes through the origin 0 at s = 0;

o B(s) is parallel to 6x3, the unit vector in the direction of the x3-axis.

Then x(s) = (x'(s), x?(s), x3(s)) determines the vector x(s) from the
origin 0 to the point x(s) on the curve.

Differentiating (x(s), B(s)), we have

S, B(s) = (T(6).86) + (x(s). 57 ) = (T(s). BLs) =0.
So (x(s), B(s)) is constant.

Now x(sp) = 0, that is, x(sp) = 0.

So the vector x(s) [or line Ox( )] is always perpendicular to B = %.

Thus, the curve lies in the x'x -pIane.
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Differentiation on Riemannian Manifolds

o We consider briefly the dynamics of a moving particle in space.
o Suppose its position p(t) is given as a function of time t.

©

Let s(t) be the length of path traversed from time t = 0 to time t,

- (&2)"

Then the speed with which the particle moves along the curve is

ds_ ((de dp )\ _|db
dt  \\ dt’ dt | dt

©
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Differentiation on Riemannian Manifolds

o Its velocity vector is given by
d dpd d
V()= =22 =T,
dt — ds dt dt
where T is the unit tangent vector.
o Differentiating, we get the acceleration

d’p  dT [ds\>
) - T—
at)= G2 = 5 (dt) "

o We have 4L = kN.

o So we obtain )
d<s ds
t — T+ k N.
at) =Gz T+ (dt)
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Differentiation on Riemannian Manifolds

o The acceleration decomposes into the sum of two vectors:
o One in the direction of the curve, whose magnitude is the time rate of

2
change of the speed %;

o The other normal to the curve and directly proportional to both the
square of the speed and to the curvature.
The curvature depends only on the curve.
o If the motion is a straight line motion, then k = 0.
In this case, a has the direction of the line.
. 2
o If the particle moves at constant speed, then % =
In that case the acceleration depends only on the shape of the path.

o The same remarks also apply to the force F acting on the particle,
which by Newton's Second Law, F = ma, is proportional to a with
the mass m as constant of proportionality.
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Differentiation on Riemannian Manifolds

o We consider the case of a curve C lying on an oriented plane.
o Suppose a curve, parametrized by arclength, is given by
s = (x(s), y(s))-
o Then the unit tangent vector is
0 0
T =x(s)=— +y(s)=—.
X(s) 5+ ()5
o If dT # 0, then we may as before define
dT
k(s) = ||—
©-|%
o That is:

o We consider the curve as a space curve (x(s), y(s),0), whose
z-coordinate z(s) = 0;
o We use the same definitions as before.
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Differentiation on Riemannian Manifolds

o However, for plane curves a more refined definition of curvature is
possible.

kN=dT/ds

o At each point of C choose N so
that
T, N

have the same orientation as %,

a%) (this uniquely determines T,
N).

o Then define the curvature k(s) so that
~ dT
k(s)N = —.
() ds

o This allows k(s) to be negative, zero or positive.
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Differentiation on Riemannian Manifolds

o The curvature thus defined for a plane curve has the previously
defined curvature of C (considered as a space curve) as its absolute

value, k(s) = |k(s)|.
o To carry our interpretation somewhat further, let 6(s) be the angle of
T with the positive x-axis

o Then we have
0 . 0
T(s) = cos 9(5)& + sin 9(5)5.

o Differentiating with respect to s,

dT . . 0 . 0
= —0(s)sin 9(5)5 + 6(s) cos 9(5)@.

George Voutsadakis (LSSU) Differential Geometry



Differentiation on Riemannian Manifolds

o The unit vector N(s) chosen so that T(s), N(s) is an oriented
orthonormal basis is

.0 0
N(s) = —sin 9& + cos 9@.

o This is because the determinant of the coefficients of T, N as

. . o o -
combinations of 3x' Dy 1S

cosf sind
det( —sinf cosf ) =k

o Thus,

Ke)=f(s) = 2,

the rate of turning of the tangent vector T with respect to arclength.
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Differentiation on Riemannian Manifolds

o We got B _
k(s) = 0(s).
o Moving along C in the direction of increasing s, the curvature is:

o Positive, when the tangent is turning counterclockwise;
o Negative, otherwise.

o Its sign depends on the sense of the curve (direction of increasing s)
and the orientation of the plane, but not on the coordinates.
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Differentiation on Riemannian Manifolds

o Suppose C is a circle of radius r.

o The curve parametrized by arclength is

s . s
s — (rcos—,rsin—).
r r

T = —sin (;)% + cos (;)%

o So we have

o Then we get

kN_E_ rcos — — —sin

=G =7 (D

r
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Differentiation on Riemannian Manifolds

o We got T = —sin (£)Z + cos ()3

° % s\ 0 s\ 0
N = — cos (;)g—sin (;>8_y
0

is the unique unit vector such that T, N has the orientation of %, By

o Thus, we have
~ 1
k(s) = —.
(5) =~
o So the curvature is a constant.

o If, as we have assumed by our parametrization, the circle is traversed
in the counterclockwise sense, it is a positive number.

o In any case, its magnitude is inversely proportional to the radius.
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Differentiation on Riemannian Manifolds

o We return momentarily to the dynamics of a moving particle.

o Suppose a particle moves on a circle in such a way that its speed is
constant vp.

o Then the force F acting on the particle is

2
r

F=ma=

o Now N is the unit normal vector.

o So F is directed toward the center of the circle.
2

o Moreover, its magnitude is %

o This gives the usual formula for the centripetal force necessary to
keep the particle in a circular orbit.
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Differentiation on Riemannian Manifolds

Subsection 2
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Differentiation on Riemannian Manifolds

o We are concerned with a vector field
Z defined at each point of a manifold
M C R" but not necessarily tangent
to M.

o That is, to each p € M, we assign

Z, € To(R").

o When Z is such that Z, is tangent to M, Z, € T,(M) C T,(RR").

o In that case, we shall say that Z is a vector field on M or a tangent
vector field.

o Only in this case does Z have meaning for M as an abstract manifold,
independent of any imbedding or immersion in R".
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Differentiation on Riemannian Manifolds

o In any case differentiability of Z may be given meaning.

o The components of Z, relative to the canonical frames of R"” at
points of M, will be functions on M,
n
0
2= 350 (5 -
a=1 P
o By definition, we say that Z is of class C" if a*(p), « =1,...,n, are
of class C" on M.
o In particular, the vector fields
oo
Ox17 7 Oxn

of R", restricted to M, are C*°-vector fields along M (but rarely on
M).
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Differentiation on Riemannian Manifolds

o If pe M, then T,(IR") and its subspace T,(M) carry the standard
inner product of R".
o So M has the induced Riemannian metric.
o This allows us to decompose any vector Z,, p € M, in a unique way
into
7 "
Zp=2,+ Z,,
with:
o Z, € Ty(M);
o Z!! € T-(M), the orthogonal complement of T,(M).
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Differentiation on Riemannian Manifolds

o This reflects the direct sum decomposition of T,(IR") into mutually
orthogonal subspaces,

To(R") = Tp(M) & T, (M),

where:

o Tp(M) is called the tangent space to M at p;
o T,(M) is called the normal space to M at p.

o Let 7/, " denote the projections,
©(Z,) =2, and 7"(Z,)=Z!.

o They are linear mappings of T,(IR") onto the subspaces tangent and
normal to M.
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Differentiation on Riemannian Manifolds
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Differentiation on Riemannian Manifolds

o Suppose that Z is a vector field along M of class C".

o Then 7/(Z) and 7”’(Z) are also vector fields, which are tangent and
normal to M, provided that they are differentiable.

Lemma

Let Z be a vector field along M of class C".
Then 7/(Z) and 7 (Z) define mutually orthogonal C"-vector fields Z’, 2"

along M, such that
Z=7+2"
That is, at each p € M:
o Z, € Tp(M);
o (Z,Z!)=0.

p»<p
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Differentiation on Riemannian Manifolds

Lemma (Cont'd)

If fis a function of class C" on M, then

w'(fZ) = fr'(Z) and ="(fZ) = fr"(2).

Further, given two such vector fields Z;, Z>, then:
(*) ﬂ'/(Zl + Zz) e 7T/(Zl) + ﬂ'/(Zz);
o (21 + Zp) = 7"(Z1) + 7" (22).
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Differentiation on Riemannian Manifolds

o A vector field Z along a curve decomposes uniquely into the sum of:

o A tangent vector field n'(Z2) = (Z, T)T;
o A vector field in the normal plane 7”(Z) = (Z, N)N + (Z, B)B.
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Differentiation on Riemannian Manifolds

o Consider the case of an arbitrary C*° imbedded manifold M.

o We see that

0
/ —_— =
W(@X“)’ a=1,...,n,

applied at each p € M, gives a C* tangent vector field to M.
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Differentiation on Riemannian Manifolds

o Let Y be a tangent vector field to M C R".

o That is, for each p € M, Y, € T,(M), or, equivalently, 7/(Y) = Y.

o Let p(t) be a curve on M of class C! or higher, defined on some
t-interval.

o Then Y(t) = Yy is a vector field along the curve.

o As such, we can ignore M and differentiate Y'(t) as a vector field
along a curve in R".

I0]
o In this way, we obtain %, another / < ]‘a
vector field along the curve.

o In general, of course, % will not be

tangent to M.

o At each point p(t) we may project

dy e dy
& to a tangent vector 7'( ).
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Differentiation on Riemannian Manifolds

The projection 7’ ‘Q:) is denoted DY and is called the covariant

derivative of the tangent vector fleld Y on M along the curve p(t).

o It is important to note that Y(t) need not be the restriction to a
curve p(t) of a vector field Y on M for % to be defined.

o It suffices that Y(t) be a vector field along p(t), so defined that it is
always tangent to M, i.e., such that Y(t ) € Tp(e)(M).

o Then, as above, % =T ( ) where 2 dt is the derivative of the

vector field along a curve, as defined in the previous section.

George Voutsadakis (LSSU) Differential Geometry



Differentiation on Riemannian Manifolds

o Suppose that we have vector fields Y1(t) and Y>(t) along p(t) on M
and tangent to M.

Let Y(t), Y1(t), Yo(t) be as above and f(t) a C! function of t.
Then we have:

2(vi+Yy) =50+ 2%,
o Z(F(D)Y () = EY(t)+1(t)F
4(Y1,Y2) = (B2, Y2) + (Y1, 22).

Qo

(]

o The last equation concerns the induced Riemannian metric on M.

o This is the inner product on T,(M), at each p € M, induced by the
inner product in T,(R").
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Differentiation on Riemannian Manifolds

o These properties are immediate consequences of:
o The definitions;
o The properties of 7’;
o The corresponding statements for ordinary derivatives.

o For the fist property, start with

& () + va(e) = T4 02

dt ' dt’
Apply 7’ to both sides to get
D o dZy dz,
F00+ va(e) = (4 22).
Then use linearity to obtain

D DY; DY>
Z(Vit V)= 2 22
dt( 1+ Y2) dt T ar
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Differentiation on Riemannian Manifolds

o For the second property, start with

d df dy
ZFOY () = Y (O + A
Then we get
D ,d
E(fY) = 7 E(ﬂ/)
df dY
_ o9t G
= (dt Y+ f o )
df DY
= —Y+f—.
g’ T
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Differentiation on Riemannian Manifolds

o The last property follows from

2 onte. va(0) = (S8, va(o)) + (0. 2.

Note that, for i = 1,2,

d\/l dy + " d\/l _ D\/I + 1
dt dt T\at )T Tae T
dY;

Note, also, that 7’ <d—) is orthogonal to T, (M).

So we have

(54 (81 (0 (4

= (28, v2) + (%1, 22).
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Differentiation on Riemannian Manifolds

o Suppose we change to a new parameter, say s, using t = f(s).

o Then, since <& = f/(s) is a scalar,

Dy DY dt
ds  dt ds’

o Alternatively, we may apply 7’ to the relation

dY  dY dt
ds  dt ds

of the previous section.
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Differentiation on Riemannian Manifolds

Definition

Given M C R" as above, let Yp(t) be a vector field, such that:
o Yp(t) is defined at each point of a curve p(t) on M;
o Yj() at each point is tangent to M.

That is, Yj () is a vector field along p(t) tangent to M.
Then we shall say that Y,,;) is a constant or parallel vector field if

DY
F—O.

More generally if Y is a tangent vector field on all of M, then it is
constant or parallel if it has this property along every curve on M.
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Differentiation on Riemannian Manifolds

o It is very important to note that % may be identically zero even
though % is not.
o Thus, a vector field along a curve may be:

o Constant considered as a vector field on a submanifold M of R";
o Non constant considered as a vector field along the same curve in R".
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Differentiation on Riemannian Manifolds

o Let M = S!, the unit circle in R2.

o Its parametric representation is
t — (cos t,sin t).

o It may be considered as defining a curve on M.

o Let Y(t) be the unit tangent vector to this curve.

o As we have seen <X is orthogonal to Y(t), that is, normal to M.

DY _ L (dv _,
a " \dt) ="

o On the other hand, % is never zero.

o In fact has constant length +1.

o Hence,
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o Now any great circle on the unit sphere S"~' C R" is congruent to
the great circle

t — p(t) = (cos t,sint,0,...,0)

on the intersection of S"~! and the 2-plane x3 = ... = x" = 0 of R".

o So the unit tangent vector to any great circle arc p(t), parametrized
by arclength, has the same property,

DY D (db)_,
dt  dt \ dt ’
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o In general the derivative of a tangent vector field to M along a curve
p(t) in M has both normal and tangential components nonzero.

o If a curve on M is such that
Ddp
dtdt
that is, the (covariant) derivative of the unit tangent vector to the

curve is zero along the curve, then we shall say the curve is a
geodesic of M.

o So the great circles on the unit sphere in R” are geodesics.
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o In the case in which M is an open subset of R" or all of R", then
‘Qt/ = dt , that is, in R" itself, as might be expected, covariant
differentiation is just the usual differentiation.

o In this special case, according to a previous theorem, the only curves
p(t) for which 2 Z‘t’ = %% vanishes identically are straight lines
parametrized by arclength - or with t proportional to arclength.

o Thus geodesics on an imbedded manifold M are those curves which in
some sense generalize the concept of straight line - even though they

may not look “straight” when viewed from the ambient space R".
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o Suppose dimM = m and that U, ¢ is a local coordinate system on M
with ¢(U) = W, an open subset of R".

o We denote the local coordinates by u?, ..., u™.
o ¢ 1: W — R"is an imbedding of W whose image is U, an open
subset of M.
o We have previously referred to ¢! as a parametrization of M.
o Let u=(ut,...,um).
o Then
) = (g'(u),-...8"(v), ueW,
gives ! in terms of its coordinate mappings g*(u).

o We let o, 8,7, and so on, denote indices that range from 1 to n.

o We let i,/, k, and so on, denote indices ranging from 1 to m.
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o The coordinate frames will be denoted Fq, ..., Fp,.
o They span the tangent space to M at each point.
o This tangent space T,(M) at p € M is a subspace of T,(RR").
o So these vectors are linear combinations of %, e %.

o In fact, generalizing earlier formulas for m = 2 and n = 3 we have:

_ 0 " [ Og” 0
F,-,,=<P*1< ,-) = <—,) e
ou az_:l ou o(p) Ox
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o Suppose that p(t) is a curve on M of class C*.

o Let Y(t) = Yj() be a vector field along the curve which is always
tangent to M.

o Then Y/(t) may be written as a linear combination of Fy,..., Fp,
Y(t) =) b (t)Fi
k=1

o The derivative .
day db « dFk
dt 2 ( gt TP g )

is not tangent to M in general.
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o Take .
dY db dFy
= = — k=% .
dt 2. ( PR )
o By projecting, we obtain
py ,/dY T [ db¥ o [ dFi
=L = — )= —F,+b — ).
dt ﬂ(dt) ;(w kO g

Equivalently,

©

DY <N [dbk DFy
— = —F+ bk=X).
dt ;;—1 ( pral >

o We know that %, i=1,...,m, are vectors tangent to M.

o So they may be expressed as linear combinations of Fq, ..., Fp,.
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o Suppose that the curve p(t) is given in local coordinates by

w(p(t) = (u' ()., u™(t)).

o Then in the expression for Fj, the components are (composite)
. 9
functions (%), (p(e)) Of t through u'(t), ..., u™(t).
o Further, at each p(t), by the ordinary chain rule of differentiation,
and the properties of 7/,

DF; , (dF; 0% dul , ( 9
dt—”(ﬁ> ;Zauawt )

. . 2 183 .
o The derivatives a% - are functions of u!,...,u™ and are evaluated
at u(t) = (ut(t),...,u™(t)) in this formula.
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o We assume M is imbedded in R” by a C* imbedding.

i)

o We know that then 7=, restricted to M, is a C* vector field along
M.

o By a previous lemma,
,( 0
o ——
ox«

defines a C*° tangent vector field on M.
o This must have a unique expression on U of the form

(axa) Zaa(u

o The a%(u) are C* functions on M which we do not compute.
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o We have
" (52 ) = Zaa(u

o Using the aX(u) and the coordinate functions g®(u) of the
parametrization ¢!, we define the C> functions I'k(u) as

gk _rk 1<ij,k<m.

r.k.:
Y ou'ow da n

o Symmetry in /,j is due to interchangeability of the order of
differentiation.
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o We do not explicitly compute the I'Z but we use them to write new

formulas for DF :

DF; du
! TE—F., i=1,...
dt J;l Y dt T e

at each p = p(t), the I'f-J‘- being evaluated at (u!(t),...,u™(t)).
o Consider the particular case of the curve given by

J— constant, if i #j
]t if i =j.
o This gives the formula for the covariant derivative of the vector field
F; along the jth coordinate curve, conveniently denoted DF,

o’
8uf Z F
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o We get an interpretation of the meaning of I'Z(u)

o It is the kth component (relative to the coordinate frames) of the
covariant derivative of F; along that curve in which only the jth
coordinate is allowed to vary, that is, along a coordinate curve.

DY <N [dbk DFy
- = — F 4+ bF=—X]).
dt ;1 ( Pl >

o We look again at

o Using the formulas above, we may write those as

DY & dbk -
— = > + ) TE(u(t)b (t)— Fy.
k=1 ij=1
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o The formula

DY & db" = du
e =2 | a2 TG | A
k=1 ij=1
expresses % in terms of the field of frames F1,...,Fs on U C M,

frames defined independently of either p(t) or Y.
o The components of the covariant derivative are the terms in brackets.

o The functions Fg-(u) are defined over all of U and in the formula are
evaluated at points of the curve.

o Indeed for every coordinate neighborhood on M we have frames F;,
i=1,...,m, and functions Fk which give DF;

o
o From these data % can then be computed according by ordinary

differentiation of the components of Y and coordinates of p(t).
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o Let Y be a tangent vector field on M which is defined everywhere -
not just along some curve.

o On the coordinate neighborhood U we write
Y = b5 (u)Fy.
k=1

o Let p be a point of U, such that ¢(p) = (v}, ..., ud).
o Let X, be a tangent vector at p,

Xp:Zaijp,

where &/ is constant for j =1,...,m.
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o Now choose any differentiable curve p(t) whatsoever with:

o p(to) = p;
o (o =Xp.

o So, in local coordinates, it is defined by

u(t) = (ul(t), o, u™(t)),

with:
° Ui(?o) =
C (ij_ut)to =a'.
DY

o Then we may compute (T as above with a surprising result.

)t:to
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o First, we observe that Y(t) = 3 b*(u(t))Fx implies that

dbk UYL ;
— ] = — | & =X,b~
(7). -%Gw), 7%
0 j=1 up
o Taking this into consideration, the formula for the covariant derivative
gives

DY J
(W) :§ ka+§jr(uob(uo F.
to k

o A careful examination of this formula discloses the remarkable fact
that the right-hand side does not depend on p(t) but only on its
tangent vector X, at p.

o We know that (Zr)to is a vector in T,(M).

o So this formula defines a mapping of T,(M) to itself X, — (%—)
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o We introduce the notation Vx Y for the image of X,

DY
VxY=[—
X <dt)t0’

along any curve p(t) with p(ty) = p and (%)to = Xp.
o We have defined previously a “directional derivative” X,f of a
function f with respect to a vector X,.

o What we have just now done is define in similar fashion a rate of
change of the vector field Y at p in the direction Xj,.

o It is worth commenting that, as a consequence of our notation, along
the curve p(t), we have at each point

DYy

Vde— dt
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Let M C R” be a submanifold. For any tangent vector field Y of class C",
r > 1, on M, we have at each point p € M a linear mapping

To(M) = Tp(M);
X, ~ Vx,Y.

Then Vx, Y, being defined as above, has the following properties:

If X, Y are vector fields of class C" (of class C*°) on M, then Vx Y/,
defined by
(VxY)p=Vx,Y,

is a C'~1 (respectively, C*) vector field on M.
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Theorem (Cont'd)

The map T,(M) x X(M) — T,(M) given by

(Xp, Y) = Vx, Y

is R-linear in X, and Y.
For a function f, differentiable on a neighborhood of p,

VXp(fY) = (Xpf)Yp + f(P)VX,,Y-
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Theorem (Cont'd)

If X,Y € X(M), then

[X,Y]=VxY —VyX.
If Y1 and Y5 are vector fields and (Y1, Y2) their inner product, then

Xp(Y1, Y2) = (Vx, Y1, Y2p) + (Y1p, Vx, Y2)-
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o Let Y =Y bKF, and X = 3" akF, in the notation just used.
The b* are functions of the local coordinates (u?, ..., u™).
So are the a¥ when X is a vector field.

We have

So the definition Vx Y = DY and the formula obtained previously for
( o )to imply that

x,Y = ZZ( a’+ZI”‘b’>

This formula, valid for each p € U, yields Properties (1) and (2).
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o Property (4) expresses an earlier property of %.
To see this, note that

Xof = =
2 dt’

L d
the derivative of f(p(t)), when we assume X, = 2.
In particular this holds for f = (Y1, Y2).

Only Property (3) requires more careful verification.

We will verify Property (3) by direct computation in a coordinate
neighborhood U, ¢ using our previous notation.
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o With X and Y given on U as above we compute [X, Y],
ob* dak
X, Y] = d———b)F.
X N=3 (557 - 5?)

Using the formula for (%—) we compute Vx, Y — Vy, X.
We have

k
Vx,Y=Vy,X=>_ (gia’ Z )+Zr(b: b
k

Since I'k = I'J’j, the second sum is zero.

So the expression reduces to the first term in the parentheses.
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o A careful reexamination of what we have done will show that Vx Y
depends for its definition only on the Euclidean structure of R".

o Thatis Vx, Y depends on E" and on the imbedding of M in E".

o It is independent of local coordinates, although we use them in its
definition and in the proof above.

dy DY _ _s(dY .
o However, - and T =7 (dt) are geometric in nature.

o The same holds for Vx Y.

o If Vx, Y is axiomatized and defined first, then 2Y could be

introduced by
DY

dt
o This would allow us to reverse our definitions and steps above.

= vdp
dt
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o Recall that the symbol Vx Y defines an R-bilinear mapping

(M) x X(M) —  X(M);
(X,Y) = VxVY.

o There is a partial duality of roles of X and Y.
o But there is also an important difference.

o Namely, VxY is C®-linear in the first variable but not the second.

George Voutsadakis (LSSU) Differential Geometry



Differentiation on Riemannian Manifolds

o Suppose X and Y are vector fields on M.
o Then the Lie derivative

ny:[X, Y]

gives a rate of change, or derivative, of Y in the direction of X.

o However, this derivative requires a vector field X, not just a vector X,
at a single point, as does Vx, Y.

o Thus, the two concepts of differentiation are essentially different.

o Property (3) gives the precise relationship between the two.
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Subsection 3
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Definition

A C* connection V on a manifold M is a mapping

V: XM)xX(M) — X(M),
(X,Y) — VxY,

which has the following linearity properties.
For all f,g € C®°(M) and X, X", Y, Y’ € X(M):
Vixiex'Y = f(VxY)+g(Vx'Y);
Vx(fY +gY')=fVxY +gVxY' + (XA)Y + (Xg)Y'.

o Note the asymmetry in the roles of X and Y.
V is C°°(M) linear in X but not in Y.

o In the special case f is a constant function, we have Xf = 0.
Then V is R-linear in both variables.
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o By a previous theorem, connections exist for M imbedded in
Euclidean space.
o In addition, in this special case, we also have:
The symmetry property

[X, Y] =VxY —-VyX;
The inner product rule

Vx(Y, Y/) = (VXY, Y,) + (Y,VXY,).
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A C® connection which also has the Symmetry and Inner Product
Properties (3) and (4) is called a Riemannian connection.

o Note that, in these definitions, it is only Property (4) that involves
the Riemannian metric.
o Thus, on arbitrary differentiable manifolds, one may study:

o C* connections [Properties (1) and (2)];
o Symmetric C* connections [properties (1)-(3)].
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Theorem (Fundamental Theorem of Riemannian Geometry)

Let M be a Riemannian manifold. Then there exists a uniquely determined
Riemannian connection on M.

o We will prove this theorem in several steps.

o The method is somewhat similar to that of the existence proof for the
operator d on A\(M).
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o In the discussion of differentiation on manifolds imbedded in R", we
defined the map
To(M) = Tp(M);
Xp — pr Y.
o We used the vector field Y, but without any assumption that X, was
the value at p of a vector field X.

o However, given vector fields X and Y, a vector field Vx Y was then
defined by
(VxY), = Vx, Y, peM.

o We thus obtained a map V of pairs (X, Y) of vector fields to a vector
field Vx Y, as in our present definition.
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o We have now taken this map on pairs of vector fields as the primary
notion.

o We wish to see that, conversely, Y defines a linear map of
TP(M) — TP(M)7

for each p € M.

o That is, we wish to see that (VxY'), depends not on the vector field
X but only on its value X, at p.
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Lemma

Let X, Y € X(M) and suppose that, on an open set U C M,

X=0 or Y=0.

If V is a connection [satisfying Properties (1) and (2) of the definition],
then the vector field VxY =0 on U.

o Suppose that Y =0o0n U and g € U.
Then there are:

o A relatively compact neighborhood V' of g, with V C U;
o A C* function f, such that f =1 on V and f = 0 outside U.

Since Y =0o0n U, fY =0on M.
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o Property (2) implies that Vx takes the 0-vector field to 0.
Therefore Vx(fY) =0 on M.
But then, using Property (2) again, we have

0= (VX(fY))q = (qu) Yq + f(q)(Vx Y)q = (Vx Y)q-
g is an arbitrary point of U.

So this completes the proof when Y =0 on U.
A parallel proof using Property (1) applies when X =0 on U.
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Corollary

Let p be any point of M. If X, X" € X(M) such that X, = X}, then for
every vector field Y,
(VX Y)p = (VX’Y);r

Denote this uniquely determined vector by Vx Y.
Then the mapping from T,(M) — T,(M) defined by

Xo = Vx,Y
is linear.

o Let U,y be a coordinate neighborhood of the point p.
Let V be a relatively compact neighborhood of p, with V C U.

Let £ a C* function on M which is 1 on V and 0 outside U, as in
the proof of the lemma.
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o Let X € X(M).

Then, on U, we have

X = Z a,-E,-,

i=1
with:
0 a; € COO(U)
o k..., Ep the vectors of the coordinate frames.

We defineX Ei,...,E, e X(M)and a,..

)~<: fX, on U, E/ _ fE,', on U,
0, else, 0, else,

Then we have, on all of M,

,3m € C®(M), by

X:51E1+---+5,,En.

But on V, we have X = X, E; = E; and 3; = a;.

So this reduces to the equation above.
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o Applying the preceding lemma and Property (1) of V gives that on V,

n
VxY =VgY=> &VgY.
i=1

Hence
(VxY)p =D @(P)(VEY)p = > ai(P)(VEY)p.

The right side depends only on the value Y/, of the vector field X at p.
This proves the first statement.

Note Vx,Y = (VxY), depends linearly on the components
ai(p), ..., an(p) of X relative to the basis Eip, ..., E,p of Tp(M).

This shows that X, — Vx, Y = (VxY), is a linear mapping of
Tp(M) into itself.
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© © o0 o

An important consequence of the lemma is that it allows us to define
(unambiguously) the restriction VY of a connection V defined on M
to any open subset U C M.

Let X, Y be C*-vector fields on U and let p € U.
We again choose a neighborhood V of p with V C U.
Take a C*° function f which is +1 on V and vanishes outside U.

Then X = X and Y = fY may be extended to vector fields on all of
M which vanish outside U.

We then set _

(VXY)o = (VzY)p:
The left hand side is defined at every point of V' by this equation.
By the lemma this definition is independent of the choices.

It can be verified that VY is a connection and is Riemannian, if V is,
using the induced Riemannian metric on U.
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Lemma

Suppose that a Riemannian connection V exists for every Riemannian
manifold. Suppose V is unique for manifolds covered by a single
coordinate neighborhood U. Then it is unique for all manifolds.
Conversely, suppose there exists a uniquely determined (Riemannian)
connection VY, for every Riemannian manifold covered by a single
coordinate neighborhood U. Then there exists a uniquely determined
Riemannian connection V on every Riemannian manifold.

o We suppose that V is a Riemannian connection on M.

By hypothesis there is a uniquely determined Riemannian connection
VY on each coordinate neighborhood U, ¢ of M (with the induced
Riemannian metric).
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o Let X, Y be vector fields on M.
Denote by Xy, Yy their restrictions to U.
By the definition of VY, the restriction of V to U, we get

V%, Yu=(VxY)u.
By the uniqueness assumption, on each coordinate neighborhood,
vY=vY

Thus, we have B
(VxY)u=Vg,Yu.
But M is covered by coordinate neighborhoods.

So this proves the first statement.
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o Now suppose that VY is uniquely determined on every coordinate
neighborhood U, ¢ of M.

If there is defined on M a V satisfying Properties (1)-(4), it must be
unique by the above.

We define V on M as follows.
Let X, Y € X(M) and let p € M.
Choose a coordinate neighborhood U, ¢ containing p.
Define
(VxY)u=Vx,Yu.

This defines Vx Y not only at p but on the neighborhood U.
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o We may verify Properties (1)-(4), since they hold for VY.
Suppose V1) is a coordinate neighborhood overlapping U.

Let W=UnNYV.
Then W is a coordinate neighborhood using either coordinate map ¢
or 1.

Thus, VW is uniquely defined.

So we have at every point g of W

(V&,Yu)g = (VX, Yw)q = (Vx, YV)q-
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o The proof of the existence and uniqueness of a Riemannian symmetric
connection is now reduced to the case of a manifold covered by a
single coordinate neighborhood.

Let U, ¢ cover the manifold M.

Let x1,...,x" denote the local coordinates.
Let E;,..., E, be the coordinate frames.
Denote the inner product by (X, Y).

We have as components of the metric tensor the C* functions on
u=wm

8i(9) = (Eig, Ejq)-
The matrix (gj(q)) is symmetric and positive definite.
Hence, it has a uniquely determined inverse (g¥(q)).
The entries of (g”(q)) are C* functions on U also.
We show there exists a unique Riemannian connection V on M.
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o First we note that if V can be defined at all, then, by Properties (1)
and (2), it is determined by the C* functions I'f-J‘- on U,
1 <, j, k < n, defined by

n
VeE =) THE.
k=1
In fact, suppose that, on U,

X=) b(xE and Y=> d(x)E.

Then by Properties (1) and (2) and the definition of Ffj

VxY = Z Xak + Z rab’ | E.
k ij
Conversely, given functions Ff-j- on U, this formula defines a C*

connection satisfying Properties (1) and (2).
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o A Riemannian connection also satisfies Properties (3) and (4).
Consequently, the Ff} are not arbitrary C functions.
For the coordinate frames, [E;, E;] = 0.

So Property (3) is equivalent to

0=[E,E]=VgE - VgEi= Y (T5—Tf)Ek.
k

This is equivalent to the symmetry of I'f-l‘- in the lower indices:

k _rk
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o Property (4) is equivalent to
Evgij = Ex(Ei, E}) = (Vg Ei, Ej) + (Ei, VEE)).
Equivalently,

Evgj=» (Tigs+Tigs), 1<ij,k<n

S

Finally, we define
Cik =Y _ Tk
s
Using the matrix (g¥) inverse to (gj;), we get

M= Tisg™.

Thus, the n® C* functions rf.;. determine the n® C* functions I iji
and conversely.
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o If we write Eygjj = %, i.e., if we consider gj; as functions of the

local coordinates, the properties obtained above become:

I(;Uk = I gpes
g;
th< - rku + rkjl

In summary, suppose we are given a Riemannian connection on M,
covered by a single coordinate neighborhood.

If a Riemannian connection V exists, it determines n® functions I iji
of class C* which satisfy Properties (3') and (4').

Conversely, we may check, by reversing these steps, that any such
functions determine a C*° Riemannian connection on M.

Thus, the theorem is completely established by the following lemma.
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Lemma

Let W be an open subset of R". Let (gj;) be a symmetric, positive
definite matrix whose entries are C*° functions on W. Then, on W, there
exists a unique family of C* functions

rijk(X)7 1 < iajvk < n,

satisfying the two sets of equations:

Fije = T jiks
9gij
ok = 1 kij + Tigi-

o Write Equation (4') twice more, each time permuting i/, j, k cyclically,

ogjk Ogxi

Ogij .
o kT B

Bk = ljki + [jik.

i + T i
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o Then subtract the second of these equations from the sum of the first
and third,

9gij _ Ogjk 08k
axk — oxi 8ij = Dwij + Ti = Tije — D + Tjii + Tjik-

Using Equation (3'), [k = ik, we get

Jgi  Ogk | 08k
oxk  Ox + oxl 20 ji-
So we get the unique solutions

1 /0g; Og; ;
rjki:§<g'l ng+8gk).

Oxk  Oxi = OxI

This completes the last step in the proof of the fundamental theorem.
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o Suppose that U, ¢ is a local coordinate system.

o Let x1,...,x" be local coordinates.
o Let Eq,..., E, be the coordinate frames.
o Let

Y = ZakEk

be the expression on U of the vector field Y.

o Let pe U and
Xo=> b Epp.

o The following corollary supplies a formula for VxY on U.
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Corollary

For each p € U, using the above notation, we have

(VxY)p=Vx,Y = Z Zzyaxj Zrka:b/ Er,

with

1 dgs Ogi  Ogis
k = ks St ] )
M= 28 (axf O0x* * oxi )’

o As we have seen in the proof, (VxY)y is the same as V%U Yu.
The latter is VY on X, Y, restricted to U.
For this reason we use the same symbol V for all cases.
The formula of the corollary follows at once from applying Properties
(1) and (2) defining a connection to Vs~ i (30 akEy).
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o The preceding formula is the same formula we obtained earlier for a
manifold M in Euclidean space.

o In fact we have an obvious corollary of the uniqueness of V.

Corollary

In the case of an imbedded (or immersed) manifold in Euclidean space, the
differentiation defined in a previous theorem depends only on the
Riemannian metric induced by the imbedding (but is otherwise
independent of the imbedding).
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o In the preceding sections we used the concept of differentiation of
vector fields along curves % to define % and then VxY on
submanifolds of R".

o In this section we showed quite independently of the earlier discussion
that there is a uniquely determined Riemannian connection V on
every Riemannian manifold M.

o Using this result we come full circle.

o We define, for a vector field Y and curve p(t) on M, the covariant
derivative % of Y(t) = Yy) by

DY

= Vel

o Let Y be given locally by

Y =) b5(x)Ek.
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o If p(t) is given by x(t) = (x*(t),...,x"(t)), we have

= J(t)Ej = —.
ZX ( ) dt
o By the corollary, we can rederive formula

n

DY n dbk dx’
- = r )b’ — | E.
dt ; WZ:I )b (x(1)) dt | -

o dd—btk depend only on the values of the components b!, ..., b" of Y
along the curve.

o So the formula is valid when Y is defined only at points of the curve.

o Of course on any interval of the curve, Y may be extended to a
vector field on M.

o But 2Y is independent of the extension by the displayed formula.

dt
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o A vector field Y on M is said to be constant if, for all p € M and
X, € Tp(M),
VxY =0.

In general there do not exist such vector fields, even on small open
subsets of M.

On the other hand, consider a differentiable curve

©

©

p(t), 0<t<T.

Then, there is be a vector field

©

: DX —
constant or parallel along p(t) (by which we mean 7 = 0).
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Theorem

Let p = p(0), the initial point of the curve p(t), 0 <t < T.

Let X, € Tp(0)(M) be given arbitrarily.

Then there exists a unique constant vector field X,;) along p(t), such
that X, (0) has the given value.

Suppose Eip, ..., Epp is an orthonormal frame at p(0).

Then there is a unique, parallel field of orthonormal frames on p(t) which
coincide with the given one at p = p(0).

o The proof depends on a previous existence theorem which was not
fully proved.

o Moreover, we need a special fact about systems which are linear in
the unknown functions.
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o To prove the existence and uniqueness of X(t) = Xy), it is enough
to demonstrate it for arcs of p(t) lying in single coordinate
neighborhoods.

This is because:

o The curve can be partitioned into a finite number of such arcs;
o X(t) can then be defined on each in turn beginning with t = 0..

Now suppose that U, ¢ is such a coordinate neighborhood.
Suppose U, ¢ contains p(t), for c < t < d, and that X, is given.
We wish to determine X,;) = Y a*(t)E so that it is parallel.

By virtue of the formula in the preceding remark, this occurs if and

only if
dak k kdX‘j
I A
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o In this system of ordinary differential equations:

o The a*(t) are unknown except at t = c;
o The I'f depend on t through x(t).

Thus, a*(t) satisfy a system of first-order equations.

We know the system has a unique solution satisfying arbitrarily given
initial conditions Xp(c) = Y a*(c)Ex.

So a¥(t) are defined and unique for some interval of values of t.
Moreover, they are necessarily C" if the curve is C'.

We need to know that the solutions a*(t) are defined for all values of
t in the given interval c <t < d.

This is so (as mentioned above) because the equations are linear.

That is, the right-hand sides are linear in the unknown functions a’(t).
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o The second part of the proposition is a consequence of the first and
of the inner product rule for differentiation.
We extend each of the Ej, ) to a parallel vector field Ej; ).
Then, by definition,

Differentiating (E;, E;), we find that

D DE; DE\
E(EI’EJ) - (FaEJ) + (Elvd—t) = 0.

Thus (E;j, Ej) is for each i, a constant function along p(t).
At p(0), we have
[0, Wit
(E”EJ)_{ 1, ifi=j.
So the same is true everywhere on p(t).
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o We remark that it is sufficient for the curve to be piecewise
differentiable, for then we can move X, along each piece separately.

o Therefore, it follows from this theorem that, given a piecewise
differentiable curve p(t), there exists an isomorphism, in fact isometry,
Tt . Tp(O)(M) — Tp(t)(/\/l)
determined by the condition that 7:(X,(0)) be a parallel (constant)
vector field along p(t).

o It is clear from our initial discussion of %X along a curve p(t) in
Euclidean space that this would enable us to define the derivative of
vector fields along curves on a Riemannian manifold M by comparing
vectors at different points of the curve.

o The notion of parallel displacement along curves is sometimes taken
as the starting point in studying differentiation on manifolds.

George Voutsadakis (LSSU)



Differentiation on Riemannian Manifolds

Subsection 4
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o It is a standard theorem of Advanced Calculus that second-order
partial derivatives are independent of the order of differentiation,

0 (9F\_ 0 (of

oxi \oxi )] 0x \ox' )’

o For functions on manifolds the analogous property X(Yf) = Y (Xf)
does not hold in general.

o Indeed [X, Y] measures the extent by which it fails,
[X, Y]f = X(Yf) = Y(XF).

o The property still holds if X = E; and Y = E;
o Allowing f to denote the expression for the function on M in local
coordinates x, ..., x", E,f may be identified with 2%
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o So, in the case of functions, interchangeability of order of
differentiation is measured by an interesting object [X, Y.

o It is natural to study the same question for Vx and Vy derivatives of
a vector field Z on M with respect to vector fields X, Y.

o We may show by example that, in general,
Vx(VyZ)—-Vy(VxZ)#0.

o Hence, it determines a vector field on M.
o Vx(VyZ) —Vy(VxZ) may be thought of as analogous to [X, Y].
o An even more important expression, which involves also the measure

of noninterchangeability of derivatives of functions [X, Y], is the
following related vector field, denoted by R(X, Y)Z or R(X,Y) - Z,

R(X,Y)-Z=Vx(VyZ) - Vy(VxZ) - Vix,vZ.
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o It is readily verified that the formula
R(X,Y) - Z=Vx(VyZ)-Vy(VxZ) - VxyvZ

defines a multilinear mapping of X(M) x X(M) x X(M) — X(M).
o Thatis, R(X,Y) - Z is R-linear in each variable.

o From another point of view, in this expression, R(X, Y) is an
operator, determined by the vector fields X and Y, and assigning to
each vector field Z a new C*°-vector field R(X,Y) - Z.

o Note that if [X, Y] =0, as is the case when X = Ej, Y = E;j are
vectors of a coordinate frame, then

R(X,Y) - Z=Vx(VyZ) - Vy(VxZ).

o It follows that, if R(X,Y)=0on M, then Vg, and Vg, are
interchangeable for all Z.
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Theorem

At any point p, the vector (R(X,Y) - Z), depends only on X, Y,, Z,, the
values of the three vector fields at p, and not their values in a
neighborhood or on M. Thus,

R(X,Y)-Z=Vx(VyZ)-Vy(VxZ) - VxvZ
assigns to each pair of vectors X, Y, € T,(M) a linear transformation
R(Xp, Yp) : Tp(M) — Tp(M).

In fact, (Xp, Yp) = R(Xp, Yp) is a linear mapping of T,(M) x T,(M)
into the space of operators on T,(M).
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o By definition, R(X,Y) - Z depends R-linearly on each of the three
arguments X, Y, Z.

Let £ be a C* function on M (not necessarily constant).

Then, by direct computation, we have
R(FX,Y)-Z=R(X,fY)-Z=R(X,Y) - fZ=fR(X,Y)- Z.

Let U, ¢ is a coordinate neighborhood.
Let (x!,...,x") denote the local coordinates.

Let Eq,..., E, be the coordinate frames.
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o Suppose that

X=Y dE, Y= pE Z=) yE.
By the remarks above,
R(X,Y)-Z =Y o'By*R(E;, E) - Ex.
ik

So at a given point p of U, the right-hand side involves:

o R(Ei, Ej) - Ex, whic_h is independent of the vector fields;
o The values of &', 5, ' only at the point p itself, not at nearby points.

This proves the theorem.
o Note that we used only Properties (1) and (2) of the connection V.

o The next fact, on the other hand, uses the Riemannian metric.
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Corollary

The formula R(X,Y,Z,W) = (R(X,Y) - Z, W) defines a C*>-covariant
tensor of order 4. This tensor depends only on the Riemannian metric on
M. That is, if My, M, are Riemannian manifolds and F : M; — M, is an
isometry, then

F*R, = Ry.

o R(Xp, Yp) - Z is defined as an element of T,(M), for any p € M.
So its inner product

(R(Xp, Yp) - Zps Wp)

with any W, € T,(M) is a well-defined real number.
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o Thus, for each p,
Rp(Xpa Ypa Zp’ Wp) = (R(Xpa Yp) : Zpa Wp)

defines a multilinear function of four variables on T,(M).

That is, Ry(Xp, Yp, Zp, Wp) € TH(Tp(M)).

Both inner product and R(X,Y) - Z are C™ for X,Y,Z, W € X(M).
Consequently,

Rp(Xm va Zp7 Wp) = (R(Xm Yp) : va Wp)

defines a C°°-tensor field.
We have defined an isometry of Riemannian manifolds to be a
diffeomorphism which preserves the Riemannian metric.
That is,
F, : Tp(Ml) — TF(p)(MQ)
preserves inner products (and is an isomorphism onto).
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o Parenthetically, if we do not suppose that the C* mapping F is
one-to-one onto, but only that F, is onto and preserves inner
products, then it is called a local isometry.

This is an isometry on some neighborhood of each point (for example,
covering spaces).

The last statement is valid for local isometries also.
Now V is uniquely determined by the Riemannian metric.
So F, preserves the connection.
More precisely
F(VXY) = VE ) Fe(Y).

From this we deduce that
Ro(F X, F.Y) - F.Z = Ri(X,Y) - Z.

Since inner products are preserved, this implies F*Ry = Rj.
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The operator R(X, Y) is called the curvature operator.
The tensor R(X, Y, Z, W) is called the Riemann curvature tensor.

o It is not difficult to see that each one determines the other.
o Let Ey,..., E, be a field of frames on U, an open set of M.

o Then the Riemann curvature tensor is uniquely determined on U by
either of the n* sets of functions Rsz or Rjje defined by the equations

R(EwE)-E = > RL,E;
J
R(Ex, E¢, Ei, Ej) = RijkﬂZZgstfkw gjs = (Ej, Es).
S
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o Let U be an open subset of a manifold M.
o Suppose U has defined over it a field of C*° frames E, ..., E,.

o The most usual case is when these are the coordinate frames of a
coordinate neighborhood U, ¢.

o However, in the case of a Riemannian manifold, which is our present
interest, we might find it convenient to consider a neighborhood with
orthonormal frames.

o Corresponding to Ei,..., E,, we have at each p € U the dual basis
0',...,0" of T;(M), characterized by

o It is a field of dual coframes on U and is clearly C*°.
o Conversely, if A1,...,0" are given, then Ei, ..., E, are determined.
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o In defining Vx Y on a manifold so as to satisfy properties (1) and (2),
we saw that it is enough to know Vg E;.

o Then VxY may be computed.

o We obtained
VeE =) THE,
k

where the Ff-j- were determined above.

o If a connection is given, so that I'f-l‘- are known on U, then we may

2

define n* one-forms ij by

k _ k nt
of => 6"
£
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o Conversely, given these one-forms, we have
k k

o Hence the Vg E; are determined.
o This determines also the connection.

o Indeed one checks at once that

VxE =Y 0F(X)Ek.
k

o That is, the values of the forms 9}, e ,9}’ on X are the components
of VxE; relative to the given frames.

o Therefore, given U and #',...,0", a field of coframes on U, then the
connection is determined on U by the n? forms 6}‘.

o The forms 6}‘ are called the connection forms.
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o We have the following restatement of the Fundamental Theorem of
Riemannian Geometry in terms of forms.

o However, we restrict ourselves only to the case in which the manifold
is covered by a neighborhood on which is defined a frame field.

Theorem

Let M be a Riemannian manifold such that it has a covering by a C* field
of coframes #1,...,0". Then there exists a uniquely determined set of n?
C> one-forms

0, 1<jk<n,
on M satisfying the two equations:
do' — ;60 A6l =0;

dgij = 3 (0F g + 0%gui), where gij = (i, Ej), with Ey, ..., E, the uniquely
determined field of frames dual to 6%, ...,0".
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Theorem (Cont'd)

The forms 9}‘ so determined define the Riemannian connection satisfying
Properties (1)-(4) of the Fundamental Theorem by the formulas:

VxEj =Y 05 (X)Ex;

Vx(fY) = (X)Y + fVxY, for f € C>=(U).
Conversely, the Riemannian connection determines 9}‘, as explained above,

and these HJ’-‘ satisfy Properties (i) and (ii).
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o If we recall that a Riemannian manifold M of the type described may
be covered by an orthonormal frame field Eq, ..., E, with
gij = (Ei, Ej) = 6jj, then we have a nicer version of the above.

o In this case we denote 6’ by w' and 9}‘ by wj :
o Using gjj = 0j; (hence dgjj = 0), we obtain

Corollary

Let M be a Riemannian manifold which has a covering by a field

wl, ..., w" of coframes whose dual frames E;, ..., E, are orthonormal.

Then there exists a unique set of n? one-forms wj‘, 1<j,k<n onM
satisfying:

dw' =Y W Awl =0;
k i
wi 4wy = 0.
These wj’-‘ determine the Riemannian connection (as above) and conversely.
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° «9}‘ are uniquely determined by %, ...,6" and the Riemannian metric,
that is by the coframe field and the metric.

o Thus, the exterior derivatives dHJ’-‘ are also uniquely determined.
o The same holds for their expressions as linear combinations of the
basis o
NG, 1<i<j<n,
of two-forms on the domain U of 6%,...,0".

o We shall see in the next chapter that the coefficients in these linear
combinations determine the components of the curvature tensor.
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Subsection 5
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o Consider a curve on M,
p(t), a<t<b.

o Let % be its velocity vector, defined for a < t < b.
o We assume p(t) is of class C? at least.

Definition

The (parametrized) curve p(t) is said to be a geodesic if its velocity
vector is constant (parallel). That is, if it satisfies the condition

D (dp
E(E)—O, a<t<hb.

% (%) = 0 is called the equation of a geodesic.
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o As we saw previously, when M = R", with its usual metric, this
implies that the curve is a straight line.

o But for a submanifold of IR" this can mean something quite different.
o An example is the great circles on S"~1 C R”".
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©

parametrization.

©

Consider a (geometric) straight line in R? given parametrically by

o We write p(t) = (&3, t3).

o Then d 9 9
P _ 342 9 2 9
dt =3t Ox1 s Ox2’

D _ d; 2
oNowdt—dtln]R.
So we have

D(dp\_D (320 300\ _( 0 4 0
2 (2) = 5 (350 + 3255 ) =6ty + 6155 0.

The fact that a curve is a geodesic depends both on its shape and its

o Therefore, this curve is not a geodesic, although the path traversed is

the line x1 = x2.
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Lemma

Let p(t), a < t < b, be a nontrivial geodesic. Let t’ be a new parameter.
With respect to t’ the curve will be a geodesic if and only if

t=ct'+d, c#0, d constant.
In particular, the arclength is always such a parameter.

o Introduce a new parameter t’' by t = ct’ + d, ¢ # 0.

Then & — c4°
D (dp\ _ 2D (dp) _,
dt’ \ dt’ dt \ dt

ar — Cdt-
So we get
So the curve remains a geodesic relative to t'.
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o Now let s be arclength measured from a point p(tp) on the curve.

Then
dp

ds
dt

a:

Now % is constant along the curve.

By the inner product rule for derivatives, its length H%H is constant.

If H%H is identically zero, then p(t) is a single point and s = 0.

Otherwise, & = H%H = ¢, a nonzero constant.
Sos=ct+d.

This means that the curve is a geodesic when parametrized by
arclength.

Since any other permissible parameter is related to arclength by a
similar (linear) relation, any two parameters are linearly related.
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o The equation of a geodesic imposes only a local condition on the
curve.

If each point of a curve C has a neighborhood in which it may be
written in the form
p(t), a<t<b,
with D(dt) =0, then it is a geodesic.
Use arclength from some fixed point as parameter on all of C.
It must satisfy the equation %(%) = 0 over its entire length.
o The property of being a geodesic is preserved by isometries.
This is because covariant differentiation is preserved.

As a result, so is parallelism of a vector field (for example, & ) along a
curve.
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o Let 7 : R? — T2 be the standard covering.
o We take R? with its usual Riemannian metric.

o Since the covering transformations are translations, they are
isometries of R?.

o It follows that we may define on T2 a Riemannian metric which
makes the projection 7 a local isometry, meaning that 7, is an
isometry of each tangent space T,(R?) onto T, (,)(T?).

o With this metric the geometry of T2 is locally equivalent to that of
Euclidean space.

o This Riemannian metric should not be confused with the metric
induced on a torus imbedded in R3 by the standard Riemannian
metric of R3.

o Combining the two preceding observations, it follows that even a local
isometry, as, e.g., this map 7, carries geodesics onto geodesics.
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o Thus, the images of straight lines of R? on T2 are geodesics of T?2.

y L
R? //

// > \
| G L

/ X

o Lines of rational slope map to closed geodesics on T2;
o Lines of irrational slope do not - they are dense on T2.

o By contrast, in R?, geodesics can be neither closed curves nor dense.
o Thus “straight lines”, even on spaces locally isometric to Euclidean
space, present some fascinating variations from what we might expect.
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o Let M be a Riemannian manifold.

o Let U, be a connected coordinate neighborhood.

o Let (x},...,x") be local coordinates.

o Then the equation of a geodesic %(%) = 0 is equivalent to the

system of second-order differential equations

d?xk N
LG =0 ke
ij=1
o A solution is a curve given in local coordinates by n functions
(x1(t),...,x"(t)) which satisfy the system.
o As usual let Eq, ..., E, denote the coordinate frames.

o Using the Existence Theorem, we prove the existence and uniqueness
of a geodesic through each p € U with given tangent direction at p.

o Then we study its dependence on p and the tangent direction.
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Lemma

Let g € U. Consider the system of second-order differential equations

d?xk 1 dx’ dx/
A MK(x)——=0, k=1,...,n.
dt2 u ,;,'2_1 i) dt dt ’ oo fl

We can find a neighborhood V of g, with V C U, and positive numbers
r,d, such that, for each p € V and each tangent vector
X, = bE;, with || X,] < r,

there exists a unique solution (x!(t),...,x"(t)) of the system, defined for
—§ < t < 6, which satisfies

x'(0) = x/(p), Xx'(0)=b', i=1,...,n
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Lemma (Cont'd)

Let p(t) = o~ 1(x*(t),...,x"(t)), as just defined.
Then p(t) € U for |t| <.

o Consider the system of 2n first-order ordinary differential equations

dstk = yk7 k=1,...,n
dk
% = ZI,J lrk() yk7 k:]-v"'vna

defined on the open subset

W =p(U) x R" CR" x R" = R?".

The right sides are C™ functions of (x,y) = (x%,...,x"y1, ..., y")

on W.
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o By the Existence Theorem for Ordinary Differential Equations, for
each point in W, there exists a 6 > 0 and a neighborhood V of the
point, such that, given

(a;b) = (a',...,a" b, ... .b") € V,
there are 2n unique functions
xK = fk(t,a;b), y*=gk(t,a;b), k=1,...,n,

and |t| < 0, satisfying the system of equations and the initial
conditions

fk(0,a;b) = a*, gX(0,a;b) =b*, k=1,....n

These functions are C® in all variables and have values in W.
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o If p € U, we consider
(#(p):0) = (x*(p), ..., x"(p); 0,...,0) € W,

Then there is a § > 0 and a neighborhood V of (¢(p),0) as described.
This neighborhood may be chosen to be of the form

p(V) x Bj(0),

for some V/, with:
o V C U compact;
o r' >0.

Since V is compact, we may find a number r > 0, such that

(ZgU(X)bibj>1/2 = X, < rand p € V imply (Z(b’)2>1/2 <r.

This follows from inequalities used in the proof of a previous theorem.
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o By the special nature of the preceding system,

afk

e
Hence, o
i dr
dt2 — Pdt dt-

l.e., x¥(t) = f¥(t, a; b) are solutions of the system of equations.

Therefore, they are the equations in local coordinates of geodesics
satisfying

dxk

k k
0) = e
x(0) =, =

t=0
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o Finally, according to the Existence Theorem cited, the image of
Is x V under the map

(ta a, b) — (fl(tv a b)v ) f”(t’ a b);gl(ta a b)a cee agn(ta a b))
isin W.

This proves that
p(t) = ¢~ (f(t,a; b)) € U.

George Voutsadakis (LSSU) Differential Geometry



Differentiation on Riemannian Manifolds

Corollary

Let M is a Riemannian manifold and p € M.

Let Y, a nonzero tangent vector at p.

Then there is a A > 0 and a geodesic curve p(t) on M, defined on some
interval —§ <t <4, > 0, such that

dp
pO)=p. i AYp

Any two geodesic curves satisfying these two initial conditions coincide in
a neighborhood of p.

o Take a neighborhood U, ¢ of p.
Choose A > 0 so that [|AY}|| < r, as in the first lemma.
Then apply the preceding (second) lemma.
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o Recall the remark that “being a geodesic” is a local property of
parametrized curves.

o So, if two geodesic curves C; and G, coincide (as sets) over some
interval, then their union, suitably parametrized, is a geodesic.

o Further, we now see that, if two geodesics have a single point in
common and are tangent at that point, then their union is a geodesic.

o So each geodesic is contained in a unique maximal geodesic.

o A maximal geodesic is one that is not a proper subset of any
geodesic.

o If it is parametrized by a parameter t, with a < t < b, then a and b
(which can be —oo and/or +00) are determined by the curve and the
choice of parameter.

o It is not possible to extend the definition of p(t) (with the given
parameter) so as to include either of these values and so that it will
still be a geodesic.
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o We shall be interested in determining conditions on M which ensure
that a = —oo and b = +oo for every geodesic, or that every geodesic
can be extended indefinitely in either direction.

o By a previous lemma this property would be independent of
parameter.

o It is easy to see that this is not always possible.
Let M be R? with the origin removed.
Then radial straight lines cannot be extended to the origin.

o However, given a geodesic through a point p, clearly we can always
reparametrize it so that p = p(0) and p(t) is defined for |t| < 2, say.

o Making use of this fact, we modify a previous lemma slightly to
obtain our basic existence and uniqueness theorem for geodesics.
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Theorem

Let M be a Riemannian manifold. Let U, ¢ be a coordinate neighborhood
of M. Let g € U. Then there exists a neighborhood V of g and an € > 0,
such that, if p € V and X, € T,(M), with || X,| < €, then there is a
unique geodesic

p(t) = p(t,p,Xp), —2<t<+2,

with dp
— =X
p(0) = p, dt|_, =%

The mapping into M defined by
(t,p, Xp) — p(t, p, Xp)

is C* on the open set [t| <2, p € V, || X,| < e and has its values in U.
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o By a previous lemma, we may find a neighborhood V of g and
numbers r,d > 0, such that, given any p € V and vector
Xp € Tp(M), with || Xp|| < r, then there is a geodesic

p(t), |t <9,
satisfying the initial conditions

dp

0) = = X,.
p() P, dt P

0

If we change to a parameter t = ct/, ¢ # 0 a constant, then
p(t') = p(ct’)

is again a geodesic, with:

o p(0) =p;
dp _ dpdt _ .dp 5| _
°© G — dtdr — Cdr = dt’ O_CXP'

George Voutsadakis (LSSU) Differential Geometry



Differentiation on Riemannian Manifolds

o If § > 2, we may use € = r, and we have no more to prove.
Suppose § < 2. Let € = %.
Let p € V and X, a tangent vector at p, with || X,|| < e.

We know from the choice of ¢ that ||%|| <r.
Thus, there is a geodesic p(t) with:

0 p(O) p;
|0 = % defined for |t| < § at least.

Con5|der the curve p(t') = pT.
It is again a geodesic and satisfies:
° 5(0) =P
Flo= 15 x Llo=X,.
Moreover it is defined for |57t/| < 9, thatis, for —2 < t/ < +2.
This completes the proof, since the last statement is already
contained in the previous lemma.
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Subsection 6
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o We started with a second-order system of equations

d?xk N
F+i,jzzlr”(x)7tﬁ—°v k=1,...n

o We passed to a first-order system

dxk k .
dt Yy, k—l,...,n,
dyk n k i k -
G o= iy k=1,...n,

o The method involved introducing new variables which corresponded
to the components of tangent vectors at points of a coordinate
neighborhood U, .
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©

The vectors X, p € U, are in one-to-one correspondence with points
(x; y) of the open set W = ¢(U) x R" C R" x R".

The correspondence ¢ is given by

[P/(XP) = (¢(p)1y1a c oo ’yn)’

©

where:

o o(p) = (x},...,x") are the coordinates of p;
o X, =Y y'Eip, with Eq, ..., E, the coordinate frames.

©

The differential equations of geodesics were interpreted as a system of
first-order differential equations on W.

©

Like all such systems, they correspond to a vector field on W.
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o We would like to avoid working exclusively with local coordinates.

o So we think of W as the image under ¢ of a coordinate neighborhood
U, ¢ on a manifold.

o This is possible and requires that we define a manifold structure on
the set of all tangent vectors at all points of M.

o We shall denote this structure by T(M).
o When this is done,

T(M)={X, € T(M):pe M} = | ] T,(M)
peM

becomes a space.

o It isin fact a C* manifold, whose points are tangent vectors to M.

George Voutsadakis (LSSU)



Differentiation on Riemannian Manifolds

o In view of the preceding remarks, we require the subset U, consisting
of all X,,, such that p € U, to be a coordinate neighborhood, with:

o @ as coordinate map;
o W as image.

o That is, B
p:U—W.
o This virtually dictates the choice of topology and differentiable
structure.

o We denote by 7 : T(M) — M the natural mapping taking each vector
to its initial point
(Xp) = p.

o Then we have 771(p) = Tp(M).
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Lemma

Let M be a C*°-manifold of dimension n. There is a unique topology on
T (M), such that, for each coordinate neighborhood U, ¢ of M:

o The set U = 7~1(U) is an open set of T(M);
o &:U— (U) x R", defined as above, is a homeomorphism.

With this topology T (M) is a topological manifold of dimension 2n.
Moreover, the neighborhoods U, ¢ determine a C®°-structure relative to
which 7 is an (open) C*>°-mapping of T(M) onto M.

o Let U,p and U, ¢’ be coordinate neighborhoods on M, such that
unu #0.

Then UN U’ # 0.
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o We compare:
o The coordinates of p € UN U’;
o The components of any X, € T,(M) relative to the two coordinate
systems.

Suppose ' '
X =fi(xt .. x"), i=1,...,n,

are the formulas for change of coordinates ¢’ o o=t on UN U'.
By a previous corollary, the change of components are

z”: ol i=1 n
'anI’ - PARR *

Thus, we obtain the formulas for change of coordinates in Un U’,

&log_l(xl""7xn;y17"’7.yn)

. ol . acn
= (F1(x),..., F"(x); >0, y’gi,- 005 Do y’gii).
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o The maps

Fogt:pUNU)—=FWUNU)
are diffeomorphisms.
Skipping some steps, we turn to the dimension.

In local coordinates, 7 corresponds to projection of R" x IR" onto its
first factor.

Further, locally, on the domain U of each coordinate neighborhood of
the type above, T(M) is a product manifold.

That is, as an open submanifold of T(M), U is diffeomorphic to
e(U) x R".

In the case of Euclidean space, U, ¢ may be taken to be all of
M = R" so that T(R") is diffeomorphic to R” x R".

It is clear that for every manifold M, dimT (M) = 2dimM.
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Definition
The space
T(M)

with the topology and C° structure just defined is called the tangent
bundle of M.
The mappng

m: T(M)— M,

is the natural projection.
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o We define Exp, the exponential mapping.

o Its domain Z is some subset of T(M).

o The range of Exp is M itself.

o Thus Exp: 2 — M maps a vector X, to a point of M.
o Let U,y be a coordinate neighborhood of M and g € U.

o Choose a neighborhood V of g and € > 0 are chosen as in a previous
theorem.

o Then, for each X, with p € V, and || X,|| < ¢, or equivalently, in the
open subset
{Xp:pe V,||X,|| <e} € T(M),
the geodesic p(t), with p(0) = p and %]0 = Xp, is defined for |t]| < 2.
o On this open set of T(M) we define Exp as follows.
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Definition
ExpXp, = p(1), that is, the image of X, under the exponential mapping is
defined to be that point on the unique geodesic determined by X, at
which the parameter takes the value +1.

o Thus each g € M has a neighborhood V/, such that Exp is defined on
the open subset

Xo:p € V. [IXl| <} C 7 i(V),

where ¢ depends on g and its neighborhood V.
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o We restate the information on 9.
o Let My be the submanifold of T(M) consisting of all zero vectors

0p, peM.

o Then p — 0, maps M onto My diffeomorphically.
o Moreover, m: My — M is its inverse.

o The application of the same theorem then guarantees that the
domain Z of Exp contains an open neighborhood of My in T(M).
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o We know H%H is constant along a geodesic p(t).
o So its length L from p(0) to p(1) is

1
- |
0

o Thus ExpX,, is the point on the unique
geodesic p(t) determined by X, whose
distance from p along the geodesic is
the length of X,,.

1
ot = /0 1Xolldt = X1

dp
dt
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Lemma
Assume that g € M and that X; € T4(M) for which ExpXj is defined.
Then ExptXj is defined at least for each t with [t| < 1.
Moreover,
q(t) = ExptX,
is the geodesic through g at t = 0, with %|o = Xg-

o Let g(t) be the unique geodesic with g(0) = g and %b =G
Then, by definition, ExpXq = q(1).
Given c, with |¢| < 1, consider the geodesic q(t) = g(ct).
We have g(0) = g and %f|t=0 = cXq.
This means that
ExpcXy = q(1) = q(c).
Replacing ¢ by t in this equality, we get the statement above.
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Normal Neighborhood Theorem
Every point g of a Riemannian manifold M has a neighborhood N which is
the diffeomorphic image under Exp, of a star-shaped neighborhood N of
the zero vector 04 of the vector space T4(M).

o We revert to local coordinates U, ¢ around g € M.
Let V C U and € > 0 be as in a previous theorem.
So, for p € V and || Xp|| < €, ExpX, is defined.
As in the proof of a previous lemma, the geodesic determined by p
and X, is given in local coordinates by

t — (FX(t,a;b),...,f"(t,a; b)),

with:

o p(p) =a=(a%,...,a");
o Xp=bErp+ -+ b"Epp.
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o This means that

o(ExpX,) = (f1(1,a;b),...,f"(1,a;b));
o(ExptXp) = (fi(1,a;tb),...,f"(1,a;th)), |t| <1.

The preceding lemma and the meaning of the functions f/(t, a; b)
then give us the following identities, valid for |t| < 1,

fi(1,at,...,a"%tht, ... th") = fi(t,at, ..., a" b, ..., b").
First, note that the  are C on their domain.
Hence, X, — ExpXp is C*° on
{Xp:pe V, [ X]| <e}.

For brevity, we denote by Exp, the restriction of Exp to T4(M) N 2.
We may compute the Jacobian of Exp, at Xy = 04.
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o Now g is fixed.

(al,...,a") are constants.

The Jacobian matrix at this point has as entries g—[’; evaluated at

(1,a,...,a",0,...,0),

of 1o ] a
8bj—flgnoﬁ(f(1,a,0,...,h,...,0)—7‘(1,3,0,...,0)).

We use the previously obtained identities, with b =1, bk =0, for
k # j, first with t = h, then with t = 0.

Then, we get
oft T i . i .
55 = ll7|_r:1oﬁ(f(h,a,O,...,l,...,O)—f(O,a,O,...,l,...,O))

= fi(0,a',...,a"0,...,1,...,0).
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o Now

(with b/ =1 and bX =0, if k # j), considered as functions of t, are
the equations of the geodesic through g with Ej; as initial vector.

So the Jacobian matrix reduces to the identity at X, = 0.

That is, we have '
of' ;
- = §i.
ob J
So, for g fixed and for some ¢’ < ¢, the mapping X; — ExpXj is a
diffeomorphism of the open set N = {X, : || Xy|| < &’} of T4(M) onto
an open set N containing g = Exp0g.

Retaining the notation Exp, for Exp restricted to that part of its
domain in T4(M), we obtain the result.
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©

We have defined N by ||Xg|| < €.

The norm in T4(M) is given by the Riemannian metric.

©

o So we may choose an orthonormal basis of T,(M),
Fi,..., Fn.
o Write .,
Xs=> y'Fi

i=1

o Then we have .
IXall = > (")
i=1
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o With these choices, the mapping
n .
P : Expy (Zy’F;> =ty
i=1

takes the open neighborhood N of g diffeomorphically onto
B’ (0) € R".

Definition
The coordinate neighborhood N, v of g defined in this way is called a
normal coordinate neighborhood.
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o Normal coordinates have special features that make them useful in
the study of the geometry of the manifold.

o Of these the most important are the following.

For all i, ,
gj(0) = dy;
The equations of the geodesics through g take the form

where a' constants;

The coefficients of the connection vanish at g,

S L
r5(0)=0, ijk=1,...,n
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o Statements (i) and (ii) are immediate consequences of the definition
and a previous lemma.

The third follows from the second.
Consider al, ..., a" close to zero.
Substitute the solutions ' '
yl — alt
in the equations of the geodesics.
We get
Zr (0)a'dd =0, k=1,...,n
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o Let U, ¢ be a coordinate neighborhood of g € M.

o Let Eq,..., E, denote the coordinate frames.
o Let X, =) biE;p be the tangent vectors to p € U.
o Let p(p) = (x},...,x") be the local coordinates.

© We have shown that there exists a relatively compact neighborhood
Vof g, V C U, and an € > 0, such that ExpX, is defined and in U,
for each X, with p € V and with || X,| <e.

o Then in local coordinates

O(ExpXy) = (FY(1,xY, ..., x"; b ... b"), ...,
(1, x, ..., x", b, ..., b")),

with f(t, x, b) being C* in all variables.
o We held p fixed at g to study the map Exp, from T,(M) to M.

George Voutsadakis (LSSU)



Differentiation on Riemannian Manifolds

o Now, however, we consider the mapping F of the open set
P({Xp:p e V,[[Xp] <e}) CR" X R”

to
p(U) x p(U) CR" x R"

which is defined by
Fo(xh oo x™ b b™) — (XY, X" FY (1, x, b), ..., F(1, x, b)).
o This map corresponds to the map
X, =Y bEp— (p,ExpXp),
with domain in T(M).
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o We have already seen that, when pl=...=p"=0,
af’: _si
ob/ &
o So the Jacobian matrix of F is nonsingular at any point (x!,...,x";

0,...,0) of R x {0} for which (x},...,x") = ¢(p), with p € V.
o Therefore, by the Inverse Function Theorem, for each pair (p,0,), 0p

the zero vector at p € V, there is a neighborhood which is mapped
diffeomorphically onto an open subset of U x U C M x M by this

mapping.
o The mapping takes the pair “p and vector X, at p" to a pair of
points of U,

(P Xp) — (P, ExpXp).
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o Now V was originally chosen as a relatively compact neighborhood of
g lying in a coordinate neighborhood U, ¢.

o It was used to obtain an € > 0 for which the open set
{Xp:pe€ Vand |[Xp] <e} of T(M) was in the domain Z of Exp.

o This is also a set on which the mapping (p, X,) — (p, ExpXp) is given
in local coordinates by F.

o From what we have just said we may restrict V and e further
(without changing notation) so that the resulting neighborhood
N(V,e) ={(p,Xp) : p€ V and || X,|| < €} of g, 04 is mapped
diffeomorphically onto an open set W C U x U.

o Although W is not of the form B x B, it does contain the diagonal
set {(p,p): p€ V}.

George Voutsadakis (LSSU)



Differentiation on Riemannian Manifolds

o We now let B C V be a neighborhood of g such that B x B C W.

o Then B x B is the diffeomorphic image of some open subset of
N(V,e) which can be described by

Ng = {(p, Xp) : p € B,ExpX, € B}.

o Putting these facts together gives the following result.

Theorem
Let U, ¢ be a coordinate neighborhood of M and g € U. Then there exists
a neighborhood B C U of g and an € > 0, such that any two points p, p’
of B can be joined by a unique geodesic of length less than €. This
geodesic is of the form ExptX,, 0 < t < 1, and lies entirely in U. It follows
that for each p € B, Exp, maps {X,, : || X;|| < e} diffeomorphically into an
open set N, such that B C N, C U.
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o Our choice of the neighborhood Ng does not allow us to conclude
that whenever (p, X,) € Ng, then (p, tX,) € Ng, forall 0 < t < 1.

o Thus, in general, B does not necessarily have the property that
p,p’ € B are joined by a geodesic lying entirely in B.

o We have made our choices so that for each p € V, Exp, maps the €
ball {X, : || X,|| < €} into U diffeomorphically and clearly has B in its
image.

o Thus, each p € B has a normal neighborhood N,, with B C N, C U.

o With somewhat more effort one can show that it is, in fact, possible
to select a neighborhood B of each point g on a Riemannian manifold
with the property that each pair of points p, p’ € B may be joined by
a unique (minimizing) geodesic segment lying entirely in B.

o Such neighborhoods are called geodesically convex.
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Subsection 7
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2 is an open subset of T(M) and Exp: 2 — M is a C* mapping.

o We keep the same notation.
Recall that to each coordinate neighborhood U, ¢ of M corresponds a
coordinate neighborhood U, ¢ of T(M).
We have

U=n"YU) and @U)=p(U)xR"CR" xR".

In fact, let:

o p(p) = (x},...,x");

o Ej,...,E, be the coordinate frames.
Then

o(Xp) = G(ZyIE;> = (xl, Xy ™).
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o The natural mapping 7 : T(M) — M is given in local coordinates by

o(m(Xp)) = (Xl, oo x™).

It is an open C*° mapping and has rank n at every point.
Suppose that p(t) is a geodesic on M.
Then its velocity vector X,,;) = % defines a curve t — X, ;) on
T(M) with

T(Xp(r)) = p(t)-
An examination of the method by which we passed from the
equations of geodesics to first-order equations reveals that on ¢( (7)
we considered the first-order system corresponding to the vector field

) -\ 0
Z/:Zylax" +; ng(x)}”yj 8—yk
I IN]
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o Now we define a vector field Z on U C T(M) so that

Px(2)=Z.

Suppose, as in a previous lemma, the solutions of the first-order
equations are given by

) . . dx’
X(t) = fi(t,a,b) and yi(t)= o, =

— i=1...,n
dt

Then on U the integral curves (solutions) of the system of equations
defined by Z are of the form

dx! dx"
=il 1 n

t),... t),—,...,—
(100 G )
where o 1(x1(t),...,x"(t)) = p(t) is a geodesic in U = m(U).
In brief, X, = % is a solution curve of Z on 7~ 1(U) C T(M) if
and only if p(t) is a geodesic on U.
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o From its geometric meaning, or by a tedious computation for change
of coordinates, we see that Z is a vector field defined intrinsically on
all of T(M), independent of the particular expression in a coordinate
system.

That is, the components

,x" Zruyy,.. Zruyy

transform as they should for a vector field when we pass to other
coordinates.

So Z is globally defined and depends only on the Riemannian
connection and metric.

The geodesics on M are therefore exactly the projections by

7w : T(M) — M of the integral curves of Z.

Thus, the conclusion follows from a previous theorem.
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o We have seen that geodesics on Riemannian manifolds generalize
straight lines in R” in the following sense.

o Their unit tangent vector as we move along the curve is constant.

o But another basic property which characterizes straight lines in R" is
the famous minimizing property of being the shortest curve joining
any two of its points.

o We now examine in some detail the extent to which this property
generalizes.
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o Consider the right circular cylinder M with the Riemannian metric
obtained by considering the plane R?, with its usual metric, as

universal covering.

o Then the geodesics on the cylinder

are exactly those curves which go
into straight lines if we roll the

L2

cylinder along the plane.

o That is, vertical generators and 4
helices.

Ly

7Ly

o Thus, two points not on a circle whose plane is orthogonal to the axis
will be joined by an infinite number of distinct geodesics of different

lengths.
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o Consider the sphere S2.

On S? consider the larger of the two arcs of a great circle which join
two points p and g (which are not at opposite ends of a diameter).

Such a path is not of minimal length, even among nearby circular arcs.
o Finally, consider the plane with the origin removed.

The points (—1,0) and (41, 0) cannot be joined by a shortest curve
at all.

George Voutsadakis (LSSU) Differential Geometry



Differentiation on Riemannian Manifolds

o In view of the preceding examples, it is remarkable that we are able to
salvage something, in fact almost everything, if we limit ourselves to
points close together and short geodesics.

o Let us recall that we have defined the length of a piecewise
differentiable curve p(t) (of class D), over a < t < b, by

b
L[
a

o This is the Riemann integral of a piecewise continuous function.

dp

dt.
dt

o It is, by definition, equal to the sum of the integrals over the intervals
of continuity [on each of which p(t) is of class C!].
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o According to a previous theorem, given g € M, there exist B and
e > 0, such that each pair of points p, p’ of B can be joined by a
unique geodesic of length L < €.

o In fact, the equation p(t) of the geodesic is given by

p(t) = ExptX,, 0<t<1,

and || X,|| = L.

o The open set B lies in a coordinate neighborhood U, ¢ which
contains this geodesic.

o Exp, is a diffeomorphism of the open ball of vectors X, of T,(M) of
length || X,|| < e onto an open set N, of U containing B.

o This means that any sphere

{Xp ([ Xpll = r <&}

maps diffeomorphically to a submanifold of U, denoted by S, (and
called a geodesic sphere).
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Lemma

Let p € B and suppose Exp, maps the open e-ball of T,(M)
diffeomorphically onto N, © B. Then the geodesics through p are
orthogonal to the geodesic spheres S,, determined by

Exp,Xp, and |[IXp|l=r, r<e.

o Let X(t) be a curve in T,(M) with || X(t)[| =1, a<t <b.
Any geodesic from the point p may be written

r— ExpprX, 0<r<eg,

with || X]| = 1.
Any curve on S, may be written in the form

t — Exp,rX(t).
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o The mapping
(rit) = p(r,t) = ExpprX(t)

maps the rectangle [0, ¢] x [a, b] differentiably into M.
We will show that the inner product

dp Op
=0, for each ny, ty.
<8r ot 0: 70
% is the tangent vector to p(r, ty), the geodesic curve.
op

57 is the tangent vector to p(ro, t) a curve on the geodesic sphere S,.
They intersect at p(rp, to).

It suffices to show this inner product vanishes for every (ro, tp).
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o We first show that (@ %) is independent of r.

By a basic property of differentiation,
D (9 9p\ _ (D dp\ , (9 DOp
8 ar ot ) \oror’ ot or’ orot )’
Of these, %% =0, since hoIding t fixed and allowing r to vary gives

a geodesic through g W|th as its unit tangent vector.
In the second term, if we mterchange the order of differentiation, we

obtain
op Ddp\ _ 10D (9p 0p
or’dtor) 20t \or’ or
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o Now, we have

%] - 1xwi=1
So we get

0D (0p 09\ _,

ot \or' or)
Therefore, (g”, g’:) is independent of r.

But p(0,t) = gq. So%antrzO.

Thus,
op Op\ _
(E,E) —0, for all r.

Hence, for each (rp, to), the inner product
% 00 _
or'ot)
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o We consider a (piecewise) differentiable curve in N, — {p},
p(t), a<t<hbh.
o It has a unique expression of the form

p(t) = Exp,r(t)X(t), [ X(¢t)|]| = 1l.vspace—0.15in

Lemma
We have

b

Z_EH dt > |r(b) - r(a)|

a

Equality holds if and only if r(t) is monotone and X(t) is constant.
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o Again we consider the map

[0,e] x [a,b] — U;
(rit) — p(r,t) =Exp,rX(t).

The curve p(t) connects the spherical shells S, in Ug of radius

r=r(a) and r=r(b).

We have
p(t) = p(r(t),t).
Moreover, . 5
b _ 9P sy 1 9P
dt 3rr(t)+ ot’
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op 0
o Now [|22]| = [IX(t)[| = 1 and (%2, 22) = 0.
So we have

2
> |r'(1)]%.

op?

dt
Equality holds if and only if % =0, that is, X(t) = constant.
Consequently,

/_P
5 || dt

In the last inequality, we have equality only if r(t) is monotone.

Thus, [2[198||dt = |r(b) — r(a)] if and only if r(t) is monotone and
X(t) = constant.

—1r(OP + |2

r’(t)dt = |r(b) — r(a)|.

dt>/ |r'(t)|dt >
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o We continue the notation of the lemmas.

Suppose
p(t), 0<t<1,

is a piecewise smooth curve joining:

o p=p(0).

o p'=p(1l) =Exp,rX, € Ny, 0 <r <eand [[X,]| =1.
Let § satisfy 0 < & < ¢, and consider the segment of the curve joining
the shell of radius § around p to that of radius r.
According to the preceding lemma:

o The length of this segment is > r — §;
o Equality holds only if the curve coincides as a point set with segment of
the radial geodesic from p cut off by these shells, its length being r — 4.

Thus, the portion of the curve between these shells has length
> r — 4, unless it coincides as a point set with a radial geodesic.

Letting & approach zero gives the result of the theorem.
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o The statement of the theorem is bound up with the notion of distance
on M, that is, the metric d(p, p') which we considered previously.

o Recall that d(p, p') is the infimum of the lengths of all piecewise
differentiable curves from p to p'.

o Moreover, we showed that the metric topology and the usual topology
coincided.

o The theorem just proved guarantees that, for each point g € M, there
is an € > 0 and a neighborhood B of diameter less than ¢ (in terms of
d), such that, for every pair of points p, p’ € B, there is a unique
geodesic segment from p to p’ whose length is the distance d(p, p’).
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Corollary

If a piecewise differentiable path (of class D!) from p to g on M has length
equal to d(p, q), then it is a geodesic when parametrized by arclength.

o Note that it follows that the path is C*°!

o Of course the hypothesis and the definition of d(p, g) imply that the
path has minimum length among all such curves.

o For the proof, note that any segment of the path lying in a sufficiently
small neighborhood (as above) must also have as length the distance
between its endpoints (or it could be replaced by a shorter path).

So the path must be a geodesic.
It follows that the curve is a geodesic locally.

So it is a geodesic.
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A geodesic segment whose length is the distance between its endpoints is
called a minimal geodesic.

o We recall that each geodesic and geodesic segment is contained in a
maximal geodesic, that is, a geodesic p(t) such that p(t) is defined
for a < t < b and not for any larger interval of values.

o If a= —o00 and b = +o00, we say that the geodesic can be extended
indefinitely.

o This is always true of a closed geodesic (a geodesic which is the
image of a circle, for example, a great circle on S2).

o If every geodesic from p € M can be extended indefinitely, then the
domain Z of Exp contains all of T,(M) and conversely.

George Voutsadakis (LSSU) Differential Geometry



Differentiation on Riemannian Manifolds

Theorem (Hopf and Rinow)

Let M be a connected Riemannian manifold. Then the following two
properties are equivalent:

Any geodesic segment can be extended indefinitely.
With the metric d(p, q), M is a complete metric space.

o The proof will be based on a lemma.

Assume any geodesic segment t — p(t), a < t < b, can be extended
to a maximal geodesic curve t — p(t), defined for —oo < t < +00.

To see that M is complete (every Cauchy sequence converges), it is
sufficient to show that every closed and bounded set is compact.

To prove this we need the following lemma, of interest in itself.
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Lemma
Suppose M has the property that every geodesic from some point p € M
can be extended indefinitely. Then any point g of M can be joined to p by
a minimal geodesic [whose length is necessarily d(p, q)].

o Let g be an arbitrary point of M and let a = d(p, q).
Any geodesic from p may be written p(s) = ExpsX, with:

o X, a unit tangent vector at p;
o s arclength measured from p = p(0).

We must show that, for some X, with || X,| =1,
p(a) = ExpaX, = q.

Then s — ExpsX, 0 < s < a, would be the minimal geodesic segment.

We will use the following fact, which is also of some interest.
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Suppose that pg, p1,- .., pn are points of M and that

d(po, p1) + d(p1,p2) + -+ + d(pn-1,pn) = d(po, pn)

If a piecewise differentiable curve contains p;, pj+1,- .., pi+r and has
length equal to d(pj, pi+1) + - -+ + d(Pitr—1, pi+r), then it is a geodesic
segment from p; to pjy,. Conversely, if pg,...,p, lie on a minimal

geodesic segment, in that order, then the equation holds for them.

o It is easily seen that it is enough to verify this for r = 2.
The curve C from p; to pj+1 to pjyo has length

L = d(pi, pi+1) + d(pit1, Pit2)-

By the triangle inequality L > d(p;, pi+2)-
If equality holds, C is a geodesic segment from p; to p;yo.
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o We show that L > d(pj, pi+2)-

Otherwise, by the triangle inequality, we have
d(pi, pi+1) + d(pis1, pi+2) > d(pi, Piy2)-
Then, substituting in the statement, we get
d(po, p1) + -+ - + d(pi; pi+2) + -+ + d(pn—1, Pn) < d(po, Pn).

This contradicts the triangle inequality.

Finally, the last statement follows immediately from the fact that any
subsegment of a minimal geodesic segment is also minimal.
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o Using a previous theorem, let § > 0 be chosen so that
Ss=1{p" : d(p,p') = ¢}

is a geodesic sphere in some normal neighborhood of p, sufficiently
small to ensure that each radial geodesic from p to S; is minimal.

Now S5 is compact.

So, there exists a pg € Sy, satisfying

d(po,q) = inf d(p,q).
(Po, q) inf )

Let X, be the unit vector at p, such that

po = Expd Xj.
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o We must have
d(p, po) + d(po, q) = d(p, q).

Otherwise, there is a piecewise differentiable curve joining p to g
whose length is less than

d(pv PO) + d(p()v q) =0+ d(p()v q)

It must intersect S5 at some point p’ and its length from p to p’ can
be no less than §.

So we have d(p’, q) < d(po, q).
This contradicts our choice of pg.
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o We now consider all s’, 0 < s’ < a, such that:

o The geodesic segment s — ExpsX,, 0 < s < s’, is minimizing;

o d(p,Exps'X,) + d(Exps' X, q) = d(p, q).
Both conditions are continuous.
So the collection of all such s’ forms a closed interval 0 < s’ < b.
If b= a, then ExpaX, = g, which proves the lemma..
Suppose, on the other hand, that b < a.
Let p1 = ExpbX,.
Then

d(p,p1) +d(p1,q) = d(p, q).

We may obtain a contradiction by repeating the arguments above as
follows.
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o Let 5, n > 0, be a small geodesic sphere (with radial geodesics
minimizing) in a normal neighborhood of p; = ExpbXj.
Choose a point p> on S, such that

d(p2,q) = inf d(p",q).
P”ESn
Then, as before

d(p1, p2) + d(p2,q) = d(p1, q).

Therefore,

d(p, p1) + d(p1, p2) + d(p2, q) = d(p, p1) + d(p1, 9) = d(p, q).

By the Fact, the geodesic p(s) = ExpsX, from p to p; together with
the (radial) geodesic in S, from p; to p; is a single (minimizing)
geodesic segment from p to pp of length d(p, p2) > b.
This contradicts the definition of b.
Therefore, b = a and the lemma follows.
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o We show first that (i) implies (ii).
Let K be a closed and bounded subset of M.
We show that K is compact.
Suppose p € K and let

a=supd(p,q).
qgeK

a is finite, since K is bounded.

By the lemma, for any g € K, there is a minimizing geodesic from p
to q.

Its length is d(p, g), which must be no greater than a.
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o It follows that K C Exppga, where B, is the closed ball of radius a in

T,

Ba={Y,: |Vl <a}.
Now B, is compact and Exp is continuous.
So ExpPEa is compact.
K is a closed subset of Exppga.
So it must be compact.

However, a metric space in which every bounded set is relatively
compact (has compact closure) is complete.

So M is a complete metric space.
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o Any manifold M having Property (i) has the property that the domain
9 of the exponential function is all of T(M).

o That is, that the vector field Z of a previous theorem is complete.

o Actually, in proving that (i) implies (ii), we used only the weaker
hypothesis of the lemma.

o l.e., that every geodesic from some point p € M can be extended
indefinitely, that is, 2 O T,(M) for some p € M.

o It was not necessary to assume p € K, for if K is bounded, then for
any p € M the distances d(p, q) are bounded for all g € K.
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o For (ii) implies (i), we suppose that every Cauchy sequence on M
converges and show that this implies the extendability of geodesics.
Suppose to the contrary that there is a geodesic ray,

p(t)7 0<t< to,

which cannot be extended to t = tg.
We may assume, changing parameter if necessary, that t is arclength.
Let {¢,} be an increasing sequence of values with lim,_, t, = to.
Denote by p, the points p(t,).
The expression |t, — ti] is the length of a curve from p, to pp,.
So we have
d(Pn,Pm) S ’tn - tm‘-

Thus, {p,} is a Cauchy sequence.
We let ) _

g= lim p, = t,!Tto p(tn)'

n—oo
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o Let B be a neighborhood of gq.
Let € > 0 be so chosen that each pair of points p, p’ of B are joined
by a unique geodesic of length less than .

This geodesic is minimizing, or equivalently its length is d(p, p’).
Let NV be an integer large enough so that, for n,m > N,

d(pn, pm) <&, d(pn,q) <e and pp,pm € B.

Consider n > N fixed and suppose m > n.

Then we have

d(pmpm) + d(pma CI) = (tm - tn) + d(Pma q)-

tm — t, is the length of our geodesic from p, to p.,.
Moreover, it is less than e.
So this segment of the geodesic is minimal.
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o Now let m — oo.

By continuity, we have
d(pn,q) =ty — t,, forn>N.
Applying this to m > n, we have, for all m > n > N,

d(Pmpm) + d(Pm,CI) =th—thtto—th=1t —th = d(Pnaq)-

Choose a fixed m > n.

We see that the unique geodesic segment from p, to p,, of length
d(pn, pm) together with the unique geodesic segment from p, to g of
length d(pn, ) has length equal to the distance d(pp, q).

Therefore, it is a single (unbroken) geodesic from p, to g.
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o However, it coincides with the given geodesic
p(t), th<t<tn.

That is, from p, to pp,.
Thus, it is an extension of this to a geodesic segment from p to q.
This shows that p(t) can be extended to t = t.

We note that it is immediate that a geodesic segment p(t),
0 <t < tp, can be extended beyond its endpoints.

This follows at once from the fundamental existence theorems.

So any geodesic on a complete manifold can be extended indefinitely.
This implies that Exp,, is defined on all of T,(M), for every p.
Hence, Exp has the entire tangent bundle T(M) as its domain, that
is, 2 =T(M).
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o The following corollary depends on the fact that a compact metric
space is complete.

Corollary

Let M be a compact connected Riemannian manifold.
Then any pair of points p, g € M may be joined by a geodesic whose
length is d(p, q).
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Corollary

Let F1, F> : M — M be isometries of a complete, connected Riemannian
manifold. Suppose that, for some p € M:

o Fi(p) = Fa(p);
Qo Fl* = F2* on TP(M)
Then Fl = F2.

o Let g € M and let
p(s), 0<s</Y,
be a geodesic from p = p(0) to g = p(¥).
Then, for i = 1,2,
Fi(p(s))
is a geodesic from F;(p) to Fi(q).
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o But, by hypothesis,

Fi(p) = F2(p) and  F1.(p(0)) = F2.(p(0)).

So these geodesics coincide.

So we have

Fi(q) = Fi(p(¢)) = F2(p(£)) = F2(q).
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Subsection 8
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Definition
A connected Riemannian manifold M is said to be symmetric if, to each
p € M, there is associated an isometry

op: M — M,
which:
Is involutive (073 is the identity);

Has p as an isolated fixed point, that is, there is a neighborhood U of
p in which p is the only fixed point of op.

o An example is Euclidean n-space.

o In that case o, is reflection in p.
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Gr (Xp) ==X,

o Consider S”, the unit sphere in R"*1,
with the metric induced by R"*1.

o In the case of the sphere, o, is again
reflection in p.

o For each q, 0,(q) = ¢, where g and ¢’
are equidistant from p on a geodesic
(great circle) through p.

pr=a(p”)

o In the case of S” we note that o,(p) = p and o,(p*) = p*, where p*
denotes the point antipodal to p.

o Thus, in general, o, may have other fixed points than p.

o Note also that the previous example is a noncompact manifold
whereas this is compact.

o A symmetric space, as we will see, is always complete.
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Lemma

Let M be a Riemannian manifold. Let p € M and o, an involutive
isometry, with p as isolated fixed point. Then, for all X, € T,(M),

opx(Xp) = =X, and  op(ExpX,) = Exp(—X,).

o We know that 0,2) is the identity.
So the same holds for ()% on T,(M).
This means that the eigenvalues of op, on T,(M) are £1.
Suppose +1 is an eigenvalue.
Then, there exists a vector X, # 0 such that o, (X,) = Xp.
Isometries preserve geodesics.
So, for any isometry F : M — M, F o Exp = Exp o F,.
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o For any isometry F: M — M, F o Exp = Exp o F,.
This means that o, (ExptX) = ExptX.
So the geodesic through p with initial direction X}, is pointwise fixed.
This means that p is not an isolated fixed point of a p.
Thus +1 is not an eigenvalue and op = —/, | being the identity.
Now o is an isometry.
So
op(ExpXp) = Expop.(Xp) = Exp(—Xp).

This means that o, takes each geodesic through p onto itself with
direction reversed, exactly as in the two examples.
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o By the preceding lemma and a previous corollary, we get

Corollary

Given any complete Riemannian manifold M and point p € M, there can
be at most one involutive isometry o, with p as isolated fixed point.
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Theorem

A symmetric Riemannian manifold M is necessarily complete. Moreover, if
p,q € M, then there is an isometry o,, corresponding to some r € M,
such that

or(p) =gq.

o First we show that M is complete.
We prove that every geodesic can be extended to infinite length.
Suppose p(s), 0 < s < b, is a geodesic ray, with s as arclength.
We will show that it can be extended to a length ¢ > b.
Let sp = %b, and let o,(5)) be the symmetry in p(so).
It takes the geodesic p(s) to another geodesic through p(sp) whose:

o Tangent vector at p(sp) is —%|50;
o Length is the same as that of p(s).
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o Since it has a common tangent with p(s) at p(sp), it coincides with
p(s) on the interval % <s<b.
Thus it extends it to a length > %b, which proves the statement.

p(sp) 7
a,(p(0)

op(r)

p(0)

Using this it follows easily that given any p,q € M there is an
isometry of M taking p to g.

In fact, let r be the midpoint of a geodesic from p to q.

Then the isometry o, takes this geodesic onto itself and carries p to g.
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o It is easy to verify that the isometries of a Riemannian manifold M
form a group I(M).

o It is a subgroup of the group of all diffeomorphisms of M.

o A classical theorem due to Myers and Steenrod asserts that:

o It is a Lie group
o Acts differentiably on M.

o By the theorem, it is also transitive when M is a symmetric space.
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Every compact connected Lie group G is a symmetric space with respect
to the bi-invariant metric.

o Let 1 : G — G denote the diffeomorphism which takes each element
to its inverse, ¥(x) = x 1.
This map is clearly involutive.
It is an isometry of G with e, the identity, as isolated fixed point.
To see this, recall that, to each X, € T.(G), corresponds a uniquely
determined one-parameter subgroup t — g(t), with g(0) = X,
Since 1(g(t)) = g(—t), by the chain rule, we obtain

9u(X6) = $.(8(0)) = S (g(®)leco = —£(0) = — X

This means that ¥, = —/, which is an orthogonal linear
transformation (or isometry) of any inner product on T.(G).
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o Let a € G be arbitrary.
Given any g € G, denote by:
o L, left translation by g;
o Rg right translation by g.

We may write

Y(x) =x1=(a"x) a7t = Rimiogpo La(x).
Hence 1.5 : T2(G) — T,-1(G) may be written
¢*a — (Ra—l*)o¢*e o (La—l*)a-

This is a composition of three linear mappings each of which is an
isometry of the inner product determined by the bi-invariant metric
(R,-1 and L,-1 induce isometries on every tangent space and 1), is
an isometry as shown above).

It follows that ¥ : G — G is an isometry.
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o Now consider a normal neighborhood of e.

Then, by a previous lemma, %) is given in local coordinates by
reflection in the origin.

Hence, e is an isolated fixed point.

Now let g € G.
We define the isometry o, : G — G which has g as an isolated fixed
point by
0g = Lgo Rg 0.
That is,

—il
og(x) =gx""g.
It is an isometry since Ry, L, and 1 are isometries.

We can check that it is involutive and has g as isolated fixed point.
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o Let G = SO(n) be the group of n x n orthogonal matrices of
determinant +1.

o According to a previous example, the tangent space T¢(G), e =/,
the n x n identity matrix, may be identified with the skew symmetric
matrices A = (a;) = —A’.

o The identification means that

0
Xe = Z aua—xu
1J

is tangent at / to SO(n) considered as a submanifold of
Gl(n,R) C R™.
o The one-parameter subgroups are of the form

Z(t) = e
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o In this case we may compute
AdB : T.(G) — T.(G)
as follows.
o First one verifies, from the definition of ef4, that
BetAB~1 — otBAB™

o But Ad(B) acting on T¢(G) is just the linear map of the tangent
space induced by the mapping Z — BZB~! on SO(n).

o It follows that Ad(B) takes the component matrix A = (aj;) of X. to
BAB~L.
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o Now define on T.(G) an inner product (Xe, Ye).
o For X = Zauax and Y, —Zcua define

n
(Xe, Ye) =trA'C = ) ajcy.
ij=1
o This product is clearly bilinear and symmetric.

o Moreover, we have
(Xes Xe) =trAA= > "aja; =Y ap.
ij

o So the product is also positive definite.
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o Finally for B € SO(n), we have

(Ad(B)Xe,Ad(B)Y.) = tr((BAB~1)YBCB™1)
tr(BACB™1)
= trAC
= (X67 Ye)-
o This means that this inner product determines a bi-invariant
Riemannian metric on G.

o By a previous theorem, G is a symmetric space with this Riemannian
metric.

o A similar procedure may be employed to obtain the bi-invariant
Riemannian metric for other compact matrix groups.
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o Let M be any symmetric Riemannian manifold.
o Let p(t), —oo < t < oo, be any geodesic on M.
o The symmetry ;) associated with any point of this geodesic maps
the geodesic onto itself and reverses its sense.
o Let ¢ be a fixed real number.
o We denote by 7. the following composition of two such isometries
Te = Op(c) © Tp(c/2)-
o 7. maps the geodesic onto itself and preserves its sense.
o So its restriction to the geodesic must be of the form
Te(p(t)) = p(t + constant).
o But we have

TC(P(O)) = Op(c) © Up(c/2)(p(0)) = Up(c)p(c) = p(C).

o So we see that the constant is ¢ and 7(p(t)) = p(t + ¢).
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©

We consider how 7. acts on the tangent space at a point of p(t).
Suppose that Xp(O) S Tp(o)(M).
Define a vector field X, ;) along p(t) by the formula

(*]

©

Xp(t) = Tex Xp(0)-
o Let X;(t) be the unique vector field satisfying
Xo0) = Xp(0)

which is constant along the geodesic p(t).

o We wish to show that these two vector fields coincide.
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o For any real number to, 0,4, Is an isometry.
o Therefore, ap(to)*X[')(t) is a parallel vector field along p(t).
o On the other hand, p(to) is the fixed point of the symmetry.
o So
/ o /

Tp(t0)+ Xp(t) = ~Xp(to)

o But _X;;(t) is also a constant vector field along p(t) and agrees with
the field Jp(to)*X,/)(t) at one point.

o So it must agree with ap(to)*X;(t) everywhere.

o Applying this argument twice we see that, for all t and each constant
C1
Tex Xy = X!
*p(t) p(t+c)

o Letting t = 0 and ¢ = t proves our assertion.
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Let M be a symmetric manifold. Let p(t), —oo < t < 00, be a geodesic of
M. Let 7. be the associated isometry, for each real number c. Then

7e(p(t)) = p(t + ©).
If X5(0) is any element of T,)(M), then
Xp(t) = TexXp(0)

is the associated parallel (constant) vector field along p(t). That is, as t

varies,
Tes - Tp0) (M) = Tp(e)(M)

is the parallel translation along the geodesic.
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o Let py = p(c1) and p, = p(c) be any two points of a geodesic
p(t), —oo<t< 0.
o Then, by the same argument,
Op 0 0p (p(t)) = p(t +2(c2 — 1))

o Moreover,
(0p, ©0py)s

maps any parallel vector field along p(t) to a parallel vector field.
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Theorem

Let M = G, a compact, connected Lie group with the biinvariant metric.
Let X € T(G). Then the unique geodesic p(t) with p(0) = e and

p(0) = X, is precisely the one-parameter subgroup determined by X.. All
other geodesics are left (or right) cosets of these one-parameter subgroups.

o Given a geodesic p(t) with p(0) = e, we consider the isometry of G
Tp(s)9p(0)-
By the remark above, this maps the geodesic onto itself with
p(t) — p(t+ 2s).
Using our formula for o, on G together with p(0) = e, we have
op(s)7p(0)P(t) = p(s)p(t)p(s),
the right-hand side being the group product of p(s), p(t) and p(s).
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o Thus for all t, s,
p(s)p(t)p(s) = p(t + 2s).

Using various t and mathematical induction, this gives, for arbitrary s
and any integer n,

(p(s))" = p(ns).

In particular, if a, b, ¢, d are integers with bd # 0, we have

C+o)=r(m) =o(&) e(m) =+ (D) »(5).

Thus, for any rational numbers, we have

o

p(r + r2) = p(r1)p(r2).
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o Now p(t) depends continuously on t.

So, for all real numbers,

p(r1 + r2) = p(r1)p(r2).

Thus, any geodesic with p(0) = e is a one-parameter subgroup.
However, there is exactly one geodesic and one such subgroup with
given p(0) = X..

So the first sentence of the theorem is true.

The second follows at once if we use the following facts:

o Either left or right translations are isometries, and hence preserve
geodesics;

o A geodesic through any g € G is uniquely determined (with its
parametrization) by its tangent vector at g.
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Corollary

Let G be a compact Lie group. Then any g € G lies on a one-parameter
subgroup.

o With the bi-invariant Riemannian metric G is a symmetric
Riemannian manifold.

Moreover, it is complete.
Hence, any pair of points can be joined by a geodesic.

If g € G, then, by the theorem, the geodesic segment from e to g is
on a one-parameter subgroup.
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o Consider again G = SO(n).
o Then the geodesics, relative to the bi-invariant metric of a previous

example are the curves
tA
p(t) = e,

where A any skew symmetric matrix, and their cosets.
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Theorem

Let G be a group with a bi-invariant metric.
Let X and Y are left-invariant vector fields on G.

Let V be the Riemannian differentiation operator of vector fields.
Then we have

1 1
Y=-|X,Y|==LxY.
Vx 2[7 ] > Lx

o Suppose that Z is any left-invariant vector field.
Then we will compute V7 Z.

Let g(t) is the uniquely determined one-parameter group with

g(0)=e and g£(0)=Z.
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o Then for any vector field Y we have

DY,
Vze Y = dgt:(t) ’t:()
On the other hand, J
g
Zg(t) = dt
and g(t) is a geodesic.
Thus,
DZgwy Ddg
dt  dtdt
So Vzez =0.

Now Z and the metric are left-invariant.
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o So we get
VzZ=0

everywhere on G.

Thus,
Vx4y(X+Y)=0.

We conclude that
VxY +VyX =0.

On the other hand, we know that for any pair of vector fields a
Riemannian connection satisfies the identity

VxY —VyX =[X,Y].
Combining these two identities gives the conclusion.
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Subsection 9
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Theorem

Let G be a Lie group acting transitively on a manifold M.
Then M has a Riemannian metric such that the transformation determined
by each element of G is an isometry if the isotropy group H of a point

p € M is a connected compact (Lie) subgroup of G.

o Let §: G x M — M denote the action.

For each g € G, 0 : M — M denotes the diffeomorphic
transformation of M onto itself determined by g,

0z(q) = 0(g, q)-

If g € H, then 8,(p) = p.
So 0, induces a linear mapping g, : To(M) — T,(M).
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o We have 0, 00,5, = 0g,4,.
So we have
Ogix © Ogyx = Ogy gy
So g — 0z is a homomorphism of H into the group of linear
transformations on T,(M).
By hypothesis, 6 is C*°.
So g — Og. is a C*° homomorphism.
Thus, it is a representation of H on T,(M).
Now H is compact and connected.

So, by previous results, there must be an invariant inner product,
which we shall denote by ®,(X,, Yp) on T,(M).
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o If g€ M, there is a g € G such that 0,(q) = p.
We define ®4(Xq, Yq) by

(Dq(an Yq) = GZ,CDP(Xq, Yq) = ¢p(‘9g*an eg* Yq)-

If O, (q) = p also, then gg; ' € H.

1 ®p =, and
1

Hence 0*
&g

O ®p = 0gy g1 ®p = U5, 00,01 06, = 05,
It follows that ®, is well defined.

It is positive definite, since 6, is a diffeomorphism.

It is easily verified that ® is C*° and G-invariant on M.

Thus ® defines a Riemannian metric on M with respect to which
each 0, is an isometry of M.
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Theorem

Let G be a Lie group acting transitively and effectively on a manifold M.
Let p € M, with its isotropy group H a connected compact subgroup.
Let @ : G — G be an involutive automorphism of G whose fixed set is H.
Then the correspondence

a(0(g,p)) = 0(a(g), p)

defines an involutive isometry of M onto M with p as an isolated fixed
point.

o First we check that & actually defines a mapping of M onto itself.
Let g be an arbitrary point of M.
By transitivity, there is at least one g € G, such that 6(g,p) = g.
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o If g’ is a second such element, then g’ = gh and
a(g') = a(g)a(h) = a(g)h.

Hence
a(0(g’,p)) = 0(alg’),p)

(
0(c(g)h. p)
0((g),0(h, p))

= 0(a(g), p)-
Therefore a is defined independently of any choices.

Since @2 is the identity, & is onto.
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o Let us assume for the moment that we have proved that:
o ais C®:
o « has p as an isolated fixed point;
o y: Tp(M) — Tp(M) is —1, that is, &, (X,) = —Xp.

Then, clearly, a, preserves the inner product ®, on T,(M).
If g € M, q # p, then choose g € G, such that 0,(p) = q.

Then
a(q) = 0(a(g), p) = Oa(g)(05-1(q))-

Hence aq @ Tq(M) — T5(q)(M) is given by
&*q = Ha(g)* o Ggfl*.

Both Ga(g)*
Thus, subject to checking the other properties, & is an isometry.

and 0,1, are isometries on the tangent spaces.
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o We aim to verify the remaining properties.

For this, we need to use the fact that the natural identification of M
with G/H, given by the mapping F : G/H — M,

F(gH) = 6(g, p),

is C* and commutes with left translation on G/H.
Thus, we use a previous application of Frobenius' Theorem.

First we recall that, if gH € G/H, then there is a C* section S
defined on a neighborhood V of gH,S : V — G, with mo S =id
(m: G — G/H is the natural projection and id the identity on V).

Using the diffeomorphism F, obtain a C* section
S=SoF!

on V = F(V) into G.

George Voutsadakis (LSSU)



Differentiation on Riemannian Manifolds

o This means a C° mapping such that
9(§(q),p) =gq, forallge V.

Every point of M is contained in the domain V of such a section.

Moreover, a|y; is given by
a(q) = a(0(5(q), p)) = 0(a(5(q)), p).

This is a composition of C* mappings.
It follows that a is C°.
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o Finally we wish to show that & has p as an isolated fixed point and
that a,p = —1.

We use facts demonstrated previously concerning the exponential
mapping exp : Te(G) — G (not to be confused with the exponential
mapping Exp of Riemannian manifolds).

Given any X, € T¢(G), then
exptX, = g(t)

is the one-parameter subgroup of G with g(0) = Xe.
Further, expX, = g(1).

By a previous theorem, there is an € > 0 such that an e-ball
BI'(0) C T.(M) is mapped diffeomorphically onto a neighborhood U
of e, the identity of G.
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o Now v : G — G is a Lie group automorphism with o the identity.
So ay : Te(G) — Te(G) splits T¢(G) into the direct sum of two
subspaces V* of characteristic vectors belonging to the characteristic
values £1 of .

We have a(exptXe) = exptan(Xe).
So a(Xe) = Xe if and only if Xe € Te(H).
Thus
T(G)=Vta Vv, VI=T/(H).
7: G — G/H defines 7, : Te(G) — Tr(e)(G/H), with:

o kerm, = T¢(H);
o T.|y- an isomorphism onto.

So 7 o exp maps a neighborhood W of V™ N BZ(0) C T.(G)
diffeomorphically onto a neighborhood of H in G/H.
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o Composing with F : G/H — M gives a diffeomorphism onto an open
set around p.

Thus, for X, € W, the mapping
Xe — O(expXe, p)

is a diffeomorphism.

Moreover,
a(f(expXe, p)) = O0(a(expXe), p) = O(exp(—Xe), p).

It follows that:

o pis the only fixed point of & in this neighborhood;
o y: Tp(M) — Tp(M) is —1, that is, each vector is taken to its
negative.

This, taken with preceding work, completes the proof.
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o The following corollary is immediate, since each g : M — M is an
isometry.

Corollary

Let G be a Lie group acting transitively and effectively on a manifold M.
Let p € M, with its isotropy group H a connected compact subgroup.
Let & : G — G be an involutive automorphism of G whose fixed set is H.
Consider the correspondence

a(b(g, p)) = 0((g), p)-
The manifold M is a symmetric space, with involutive isometries

op=a and aq=9g0&09g—1, q=0(g,p).

George Voutsadakis (LSSU) Differential Geometry



Differentiation on Riemannian Manifolds

o Let M be the collection of all n x n, symmetric, positive definite, real
matrices of determinant +1.

o Let G = S/(n,R) be the n x n matrices of determinant +1.
o Then G acts on M by
0(g.s) = gsg’,
where g’ denotes the transpose of g € S/(n,R).
o Let p, the base point of the theorems be /, the n x n identity.
o We then note that

H={geSI(nR):0(g,1) =1}

is given by the equivalent condition gg’ = I.
That is, g € SO(n), the group of orthogonal n x n matrices.
Hence, H = SO(n).

o So M is canonically identified with S/(n,IR)/SO(n).
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o The automorphism a which we consider is defined by

a(g) = (g7,

the transpose of the inverse of g € SI(n,R).
o Note that a(g) = g if and only if g € SO(n).

o Thus all of the conditions of the theorem are met if S/(n,R) is
transitive on M.

o However, any positive definite, symmetric matrix g may be written in
the form

q=gg =glg,
where g € SI(n,R), by standard theorems of linear algebra.

o From the corollary above M is a symmetric space relative to an
SI(n,R) invariant metric.
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o Note that & : M — M can be seen, quite directly, to be C*° and to
have the identity p = / as its only fixed point on M.

o In fact, using g = sls’, we see that

a(q) =ab(s, ) =0(s L, 1) =s"ts = (ss') L =g L.

o Thus a: M — M simply takes each positive definite symmetric
matrix to its inverse.

©

The only such matrix which is equal to its inverse is the identity /.
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o We look at a variant on the above which is a particularly important
case.

o Consider the upper half-plane
M= {(x,y) e R?:y > 0}.

o We define an action of S/(2,R) on M as follows.
o We identify R? with C, the complex numbers in the usual way.
o letz=x+iyandlet w=u+iv, i =+—1.

o Let g € SI(2,R), that is, g = ( i Z ) ad — bc = +1.
o We then define
az+b
er(g,Z): Cz+d‘
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o It is not difficult to verify directly that:
o If y =1Im(z) > 0, then v = Im(w) > 0;
o 0(g1,0(82,2)) = 0(g182, 2).
o Moreover the Riemannian metric defined (in the local coordinates
(x,y) - or z = x + iy - which cover M) by the matrix of components

0 e 0
w-(% 3)-(= 2 )
y (Im(2))

is invariant under the action of S/(2,R).

oS-

o Thus this group acts on M as a group of isometries of this metric.

o Let the complex number i which corresponds to (0,1) in R?, play the
role of p in the general discussion above.
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©

The action of S/(2,R) is transitive.
Consider any zy = u + vi with v > 0.
Then an element of G = S/(2,R) taking i to zg is

(7 %)

©

(*]

S-Sl

o This gives, in general,
Vvz + 4%
0(g,2) = ——" = vz +u.
OZ+ \ﬁ
o When z =1,
0(g,i) =u+iv.
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. . . b
o The isotropy group of i consists of all g = ( i d > such that

ai+ b
c+d

| =

o Weget ai+b=—c+di.
o Equivalently, a=d and b= —c.
o Since in addition ad — bc = +1, we have also

a2+ b =1.

_ cosf sinf
=\ —sind cost |-
o This gives H = SO(2).
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o It follows from our general theory that the upper half-plane with this
geometry and the 2 x 2 positive definite matrices are equivalent, both
as manifolds and as homogeneous spaces, with

SI(2,R)/SO(2).

o This shows that the identification of a homogeneous space with a
coset space of a Lie group as a prototype is a deeper and more
interesting result than it might appear to be.
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o The example of the upper half-plane is a realization (due to Poincaré)
of the space of non-Euclidean geometry of Bolyai, Lobachevskii and
Gauss.

o We can use our results to check that the lines x = constant are
geodesics in this geometry.

o Another problem consists of showing that the upper halves of circles
with centers on the x-axis are - when suitably parametrized - also
geodesics.

o This is done by showing that each such circle is an image by one of
the isometries of G of a vertical line.

o Through a point z there is such a circle tangent to any direction.
o Hence, these must be all of the geodesics.

o Using this fact it is easy to see that Euclid’s postulate of parallels
does not hold in this geometry.
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o There are more than one, in fact an infinite number of lines through a
point z not on the line L which are parallel to L, that is, do not
intersect L at any point of the upper half-plane M.

o The possibilities are shown in the figure.

y oxis L M N

d

.

h h ‘ ¥ _axis

7 7

o L} and L) indicate parallel lines (geodesics) which bound the infinite
collection (faint lines) of lines L’ parallel to L through z.
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o As a last example of a symmetric space, we mention the Grassmann
manifold G(k, n) of k-planes through the origin of E".

o We have noted that this is a homogeneous manifold.
o Moreover, it is acted on in a natural way by G/(n, R).

o It is easy to see that the subgroup SO(n,R) also acts transitively on
the k-planes in R".

o In fact, a k-plane contains an orthonormal basis f1, ..., f;x which can
be completed to an orthonormal, oriented basis f1,...,f, of R".

o Then there exists an orthogonal transformation of determinant +1
taking the standard basis e1, ..., e, to this one.

o Hence the k-plane Py spanned by es, ..., e is carried onto any
k-plane P by at least one element of SO(n,R) acting in the natural
way.

George Voutsadakis (LSSU)



Differentiation on Riemannian Manifolds

o The isotropy group H of Py is S(O(k) x O(n — k)).
o That is, it consists of the matrices in SO(n) of the form

(g‘ g) AcO(k), BeO(n—k),

with
detA detB = +1.

o One can show that, in this case, « is the automorphism

QX gxg_l,
. — Ik 0
determined by the element g = 0 of GI(n,R).
n—k

o Moreover, a(x) = x if and only if x € H.
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