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3

Local Coordinates

Suppose that M is an imbedded surface.

We consider only a portion of M covered by a single coordinate
neighborhood U, ϕ.

Moreover, we assume that W = ϕ(U) is a connected open subset of
R2, the uv -plane.

Thus, p ∈ U ⊆ M has coordinates (u(p), v(p)) = ϕ(p).

Take the Euclidean three-dimensional space with a fixed Cartesian
coordinate system, i.e., identify E 3 with R3.

The imbedding or parameter mapping ϕ−1 : W → U ⊆ R3 is given by

x i = f i(u, v), i = 1, 2, 3.

Let the coordinate frames be

E1 = ϕ−1
∗

(
∂

∂u

)
and E2 = ϕ−1

∗

(
∂

∂v

)
.
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3

Unit Normal Vector

Suppose that M is orientable and oriented with U, ϕ giving the
orientation.

Orientation is an important condition on M, since we are then able to
define, without ambiguity, the unit normal vector field N to M.

It is the unique unit vector at each p ∈ M which is:

Orthogonal to Tp(M) ⊆ Tp(R
3);

So chosen that E1,E2,N form a frame at p with the same orientation
as ∂

∂x1
, ∂

∂x2
, ∂

∂x3
, the standard orthonormal frame of R3.

Length and orthogonality are defined in terms of the inner product
(X ,Y ) of Euclidean space.

The inner product induces a Riemannian metric on M by restriction.
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The Derivative of the Normal Vector

Let p(t) be any differentiable curve on M with:
p(0) = p;
ṗ(0) = Xp ∈ Tp(M).

Restricting N to p(t) gives a vector field N(t) = Np(t) along p(t).

This may be differentiated in R3 as a vector field along a space curve,
giving a derivative dN

dt
, which is itself a vector field along p(t).

Applying the inner product rule and
using (N,N) = 1, we have

0 =
d

dt
(N,N) = 2

(
dN

dt
,N

)
.

This means that dN
dt

is orthogonal to
N(t) at each point p(t).

Hence, dN
dt

is tangent to M, i.e., dN
dt

∈ Tp(t)(M).
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3

Independence on Curve

Theorem

The vector dN
dt
|t=0 depends only on Xp and not on the curve p(t) chosen.

Let

S(Xp) = −dN

dt
|t=0.

Then Xp → S(Xp) is a linear map of Tp(M) → Tp(M).

Consider an arbitrary element of Ip(M)

Xp = aE1p + bE2p.

It is written as a linear combination of the coordinate frame E1p ,E2p

of the coordinate neighborhood U, ϕ containing p.

Let
p(t) = (f 1(u(t), v(t)), f 2(u(t), v(t)), f 3(u(t), v(t)))

be any differentiable curve with p(0) = p and ṗ(0) = Xp.
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3

Independence on Curve (Cont’d)

Suppose p(0) has coordinates u0 = u(0) and v0 = v(0).

Since ṗ(0) = Xp, we have ṗ(0) = aE1p + bE2p , that is:

u̇(0) = a;
v̇(0) = b.

We denote by ni(u, v) the components of N on U relative to the
standard frames in R3,

N = n1(u, v)
∂

∂x1
+ n2(u, v)

∂

∂x2
+ n3(u, v)

∂

∂x3
.

Then, along the curve

N(t) =

3∑

i=1

ni(u(t), v(t))
∂

∂x i
.
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Independence on Curve (Cont’d)

Moreover,

(dN
dt
)0 =

∑3
i=1

[
(∂n

i

∂u )ϕ(p)u̇(0) + (∂n
i

∂v )ϕ(p)v̇(0)
]

∂
∂x i

= a
(∑3

i=1(
∂ni

∂u )ϕ(p)
∂
∂x i

)
+ b

(∑3
i=1(

∂ni

∂v )ϕ(p)
∂
∂x i

)
.

This shows that S(Xp) depends linearly on the components of Xp.

Now dN
dt
|t=0 lies in Tp(M).

So S : Tp(M) → Tp(M) is a linear map.

Moreover the only values that appear in the formula are:

(u(0), v(0)), the coordinates of p;
u̇(0), v̇(0), the components of ṗ(0) = Xp .

Thus, (dN
dt
)0 depends on p and Xp and not on the curve used in the

calculation.
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Remark

The linear map S : Tp(M) → Tp(M), given at each p ∈ M, is
independent of:

The choice of coordinate system U , ϕ on M ;
The Cartesian coordinate system used in Euclidean space.

This is because N is defined using only the orientations of M and
Euclidean space and the inner product of the Euclidean space.

The differentiation depends only on the existence of parallel
orthonormal frames in Euclidean space.

Thus N, dN
dt

and S are independent of coordinates and involve only
the geometry of M as an imbedded surface in Euclidean space.

The operator S has been called the shape operator.

George Voutsadakis (LSSU) Differential Geometry December 2024 10 / 180



Curvature The Geometry of Surfaces in E
3

Example

Suppose M is the xy -plane.

Then N = E3, a constant vector.

So S(Xp) = 0.

Suppose M is a sphere of radius R .

The unit normal N at (x1, x2, x3) ∈ M is given by

N =
x1

R

∂

∂x1
+

x2

R

∂

∂x2
+

x3

R

∂

∂x3
.

Suppose we move in any direction tangent to the sphere along a great
circle curve, parametrized by arclength so that ‖Xp‖ = 1.

Then

S(Xp) = −dN

ds
=

1

R
Xp.
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Bilinear Forms

Suppose M is a C∞ submanifold.

Recall the linear map S : Tp(M) → Tp(M), more accurately Sp,
which we have determined at each p ∈ M.

We may use S to define a C∞ covariant tensor field on M.

Let S : V → V be a linear operator on a vector space V with inner
product (X ,Y ).

Then the formula
Ψ(X ,Y ) = (S(X ),Y )

defines a bilinear form, or covariant tensor of order 2, on V .

The form Ψ is symmetric if and only if

(S(X ),Y ) = (X ,S(Y ))

holds for all X ,Y ∈ V .

If Ψ is symmetric, S is called symmetric or self-adjoint.
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Properties of S

Theorem

S(X ) is a symmetric operator on the tangent space Tp(M) for each
p ∈ M and Ψ(X ,Y ) is a symmetric covariant tensor of order 2.
The components of S and Ψ are C∞ if M is a C∞ submanifold.

To prove the statements we compute the components of Ψ(X ,Y ).

Let U, ϕ be a coordinate neighborhood.

Let ϕ−1 : W → U ⊆ M be the corresponding parametrization.

Below we compute the components of Ψ(X ,Y ) relative to the
coordinate frames

E1 = ϕ−1
∗

(
∂

∂u

)
and E2 = ϕ−1

∗

(
∂

∂v

)
.

We use ∂N
∂u and ∂N

∂v to denote the derivatives of N along the
coordinate curves on M obtained by holding one coordinate fixed and
allowing the other to vary (as parameter along the curve).
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3

Properties of S (Cont’d)

We have
Ψ(E1,E2) = (S(E1),E1) = − (∂N∂u ,E1),

Ψ(E1,E2) = (S(E1),E2) = − (∂N∂u ,E2),

Ψ(E2,E1) = (S(E2),E1) = − (∂N∂v ,E1),

Ψ(E2,E2) = (S(E2),E2) = − (∂N∂v ,E2).

Denote by X = X (u, v) the position vector from 0 to ϕ−1(u, v),

X = f 1(u, v)
∂

∂x1
+ f 2(u, v)

∂

∂x2
+ f 3(u, v)

∂

∂x3
.

Then Xu = E1 and Xv = E2 are just the vectors whose components
are the corresponding derivatives of the components of X with
respect to u and v .

That is,

Xu =
∂X

∂u
= E1 and Xv =

∂X

∂v
= E2.
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Properties of S (Cont’d)

Recall that (N,Xu) = 0 = (N,Xv ).

Differentiate to obtain

−(∂N∂u ,Xu) = (N,Xuu) =
∑

ni
∂2f i

∂u2
,

− (∂N∂v ,Xu) = (N,Xvu) =
∑

ni
∂2f i

∂v∂u = (N,Xuv ) = − (∂N∂u ,Xv ),

− (∂N∂v ,Xv ) = (N,Xvv ) =
∑

ni
∂2f i

∂v2 .

So the components of Ψ, and hence of S , are C∞ if M is.

The second relation shows that Ψ(X ,Y ) = Ψ(Y ,X ).

So the tensor Ψ is symmetric.
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Second Fundamental Form

Consider the 2× 2 matrix of the components of the symmetric tensor
Ψ,

(ℓij ) = (Ψ(Ei ,Ej )).

It will often be written (
ℓ m

m n

)
,

where:

ℓ = (N ,Xuu) = ℓ11;
m = (N ,Xuv ) = ℓ12 = ℓ21;
n = (N ,Xvv ) = ℓ22.

The bilinear form Ψ(X ,Y ) is called the second fundamental form

of the surface M.
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First Fundamental Form

The inner product (X ,Y ) is called the first fundamental form.

Recall that, in the general Riemannian case, the components of the
Riemannian metric (X ,Y ) are denoted by gij .

However, in the classical case of a surface M in Euclidean space, one
often uses E ,F ,G .

Thus,
g11 = E = (Xu,Xu),
g12 = F = (Xu,Xv ) = (Xv ,Xu) = F = g21,
g22 = G = (Xv ,Xv ).

Remark: It is a classical theorem of differential geometry (which we
shall not prove) that two surfaces M1 and M2 in R3 are congruent if
and only if they correspond in such fashion that, at corresponding
points, both fundamental forms agree.
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3

Characteristic Values of S

Theorem

At each p ∈ M, the characteristic values of the linear transformation S are
real numbers k1 and k2, k1 ≥ k2.

If k1 6= k2, then the characteristic vectors belonging to them are
orthogonal.

If k1 = k2 = k at p, then S(Xp) = kXp, for every Xp in Tp(M).

The numbers k1 and k2 are the maximum and minimum values of

Ψ(Xp,Xp) = (S(Xp),Xp),

over all unit vectors Xp ∈ Tp(M).

These statements are taken directly from theorems of linear algebra.

Here we only sketch a proof for the case k1 6= k2.
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Characteristic Values of S (Cont’d)

All vectors are elements of Tp(M), p fixed.

Suppose k1 > k2 are the characteristic values.

They are real, since S is self-adjoint.

Let F1,F2 be unit characteristic vectors corresponding to k1, k2.

We have

k1(F1,F2) = (S(F1),F2) = (F1,S(F2)) = k2(F1,F2).

This implies that, when k1 6= k2,

(F1,F2) = 0.

Replacing F2 by −F2 if necessary, we may suppose F1,F2 is an
orthonormal basis with the same orientation as Tp(M).
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Characteristic Values of S (Cont’d)

Next we show that k1 and k2 are the maximum and minimum values
of (S(Xp),Xp), for unit vectors Xp.

Any unit vector Xp ∈ Tp(M) may be written

Xp = cos θF̃1 + sin θF̃2.

Let k(θ) denote (S(Xp),Xp) = Ψ(Xp,Xp).

F1,F2 is an oriented, orthonormal frame.

So we have
k(θ) = k1 cos

2 θ + k2 sin
2 θ.

Differentiating gives

dk

dθ
= 2(k2 − k1) sin θ cos θ.

Hence, the extrema of k(θ) occur when θ = 0, 1
2π, π or 3

2π.

In other words, when Xp = ±F1 or ±F2.

So k1 and k2 are maximum and minimum values of (S(Xp),Xp).
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Umbilical and Planar Points

The values k1 and k2 are the maximum and minimum of the
expression

Ψ(Xp,Xp)

(Xp,Xp)
,

over all Xp 6= 0 in Tp(M).

The points p at which k1 = k2 are called:

Umbilical points of M , if k1 6= 0;
Planar points of M , otherwise.

Note that a sphere of radius R consists entirely of umbilical points
with

k1 =
1

R
= k2.

Similarly, if M is a plane, every point is planar with k1 = 0 = k2.
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Geometrical Interpretation

We shall now interpret k(θ) = Ψ(Xp,Xp) geometrically.

Let p be a point of M and Xp a unit tangent vector at p.

Xp and Np determine a plane on which
we may take:

p as origin;
Xp,Np as unit vectors along the axes
(in that order).

This gives a coordinate system and
orientation on the plane.

The plane intersects M along a curve which, of course, lies on M and
on the plane, and passes through p.

It is called the normal section at p determined by Xp.

There is clearly such a curve for each Xp.
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Geometrical Interpretation (Cont’d)

The vector Np is the normal to the curve at p.

Moreover, Xp is the unit tangent vector to the curve at p.

Write the curve as p(t), with p(0) = p and arclength as parameter.

We have ṗ(t) = dp
dt
, a unit vector for every t.

So we get ṗ(0) = Xp.

Differentiate (N, dp
dt
) = 0 along the curve.

We find that
(
dN

dt
,
dp

dt

)
= −

(
N,

d2p

dt2

)
= − k̃ ,

the curvature of the plane curve p(t), as defined previously.

In particular, at p = p(0),
(
dN

dt
,Xp

)
= − (S(Xp),Xp) .
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Normal Curvature, Principal Curvatures and Directions

Let again, as above,

Xp = cos θF1 + sin θF2.

We find that k(θ) = k̃ is the curvature of the normal section
determined by Xp.

For this reason k(θ) is called the normal curvature (of the section
determined by Xp).

k1 and k2, the maximum and minimum of k(θ), are called principal

curvatures at p.

The corresponding unit vectors F1p, F2p (chosen to conform to the
orientation) are called principal directions at p.
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Using Coordinates

To study the surface at p we choose an xyz-coordinate system in
Euclidean space so that:

The origin is at p;
Tp(M) is the xy -plane;
The principal directions F1p, F2p and unit normal Np at p are ∂

∂x
, ∂

∂y
,

∂

∂z
, unit vectors on the x-, y -, z-axes, respectively.

Let x = u, y = v and
z = f (u, v)

be the (parametric) equation of the surface.

Then we may identify the xy - and uv -planes.

Moreover, we may assume that the parameter mapping ϕ−1 takes
some open set W on the xy -plane onto an open set U on M.

The conditions then imply:
f (0, 0) = 0;
fx(0, 0) = 0 = fy (0, 0).
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Using Coordinates (Cont’d)

If we compute the components of the first fundamental form at p, we
obtain E = 1 = G and F = 0.

For the second fundamental form, recall that

ϕ−1 : (x , y) → (x , y , f (x , y))

is the parametric representation of M.

Thus, at p,
ℓ = ( ∂

∂z , fxx
∂
∂z ) = fxx ,

m = ( ∂
∂z , fxy

∂
∂z ) = fxy ,

n = ( ∂
∂z , fyy

∂
∂z ) = fyy .

Now the fact that we have chosen coordinate axes so that ∂
∂x and ∂

∂y
are principal directions tells us that m = 0 and ℓ = k1, n = k2.

Thus, at x = 0, y = 0, we have

k(θ) = fxx cos
2 θ + fyy sin

2 θ.
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Using Coordinates (Cont’d)

Let f (x , y) be expanded in Taylor series at (0, 0).

Then
z = f (x , y) = fxx(0, 0)x

2 + fyy(0, 0)y
2 + R2,

where R2 contains terms of higher order.

Let fxx(0, 0) = a and fyy(0, 0) = b.

Then we see that the normal sections of z = ax2 + by2 have the same
sectional curvatures at p as does the given surface.

Therefore the quadric surfaces must give typical examples.

George Voutsadakis (LSSU) Differential Geometry December 2024 27 / 180



Curvature The Geometry of Surfaces in E
3

Example

z = ax2 + by2, ab > 0.

This is an elliptic paraboloid.

The principal curvatures are a and b.
If both are positive, it lies above the xy -plane;
If both are negative, it lies below.

In either case when k1 and k2 have the same sign, the surface is
(locally) on one side of Tp(M).
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Example

z = ax2 + by2, ab = 0.

If both are zero, we have the xy -plane as our surface;

If one, say b = 0, then we have a parabolic cylinder which is above
the xy -plane, if a > 0.
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Example

z = ax2 + by2, ab < 0.

In this case we have a hyperbolic paraboloid or saddle surface with
the xy -plane tangent at the saddle.
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Example

E.g., consider a = 1 and b = −1.

Then
k(θ) = cos2 θ − sin2 θ.

Hence k(θ) varies from +1 to −1 and is zero at ±π
4 , ±3π

4 .

When k1 > 0 and k2 < 0, then the surface must have points (locally)
on both sides of Tp(M).
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Subsection 2

The Gaussian and Mean Curvatures of a Surface
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Gaussian and Mean Curvature

The negative of the trace and determinant of any matrix of the linear
transformation S are the coefficients of the characteristic polynomial
of S and are important invariants.

The determinant is the product of the characteristic values,

K = k1k2.

It is called the Gaussian curvature of the surface.

The trace is the sum of the characteristic values k1 + k2.

The quantity

H =
1

2
(k1 + k2)

is called the mean curvature of the surface.

We will compute these quantities directly from the-components of the
fundamental forms, using any parametrization of the surface.
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Computing the Gaussian and Mean Curvatures

Theorem

We have

K =
ℓn−m2

EG − F 2
and H =

1

2

G ℓ− 2Fm + En

EG − F 2
.

Consider the parametrization of M near p, i.e., on the coordinate
neighborhood U, ϕ.

Let E1 = Xu and E2 = Xv be the corresponding coordinate frames.

Suppose the components of the operator S , in terms of E1,E2, are

S(Xu) = aXu + bXv and S(Xv ) = cXu + dXv .

We may write

K =

∣∣∣∣
a b

c d

∣∣∣∣ and 2H = a+ d .
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Computing the Gaussian and Mean Curvatures (Cont’d)

Let × be the cross product of vectors in 3-dimensional Euclidean
space.

In terms of Xu,Xv we have

KN = K (Xu × Xv) = S(Xu)× S(Xv);

2HN = 2H(Xu × Xv ) = S(Xu)× Xv + Xu × S(Xv ).

Note that

(Xu × Xv ,Xu × Xv ) = ‖Xu × Xv‖2 = EG − F 2.

For any vectors X ,Y ,U,V of R3, we have the Lagrange identities

((X × Y ), (U × V )) =

∣∣∣∣
(X ,U) (X ,V )
(Y ,U) (Y ,V )

∣∣∣∣ .
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Computing the Gaussian and Mean Curvatures (Cont’d)

We obtain the formula for K by taking inner products on both sides
of the first equation with Xu × Xv .

K (Xu × Xv ,Xu × Xu) = (S(Xu)× S(Xv ),Xu × Xv)

K (EG − F 2) =

∣∣∣∣
(S(Xu),Xu) (S(Xu),Xv )
(S(Xv ),Xu) (S(Xv ),Xv )

∣∣∣∣

K (EG − F 2) = ℓn −m2

K =
ℓn −m2

EG − F 2
.
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Computing the Gaussian and Mean Curvatures (Cont’d)

We obtain the formula for H by taking inner products on both sides
of the second equation with Xu × Xv .

2H(Xu × Xv ,Xu × Xv ) = (S(Xu)× Xv ,Xu × Xv )
+ (Xu × S(Xv ),Xu × Xv)

2H(EG − F 2) =

∣∣∣∣
(S(Xu),Xu) (S(Xu),Xv )
(Xv ,Xu) (Xv ,Xv )

∣∣∣∣

+

∣∣∣∣
(Xu,Xu) (Xu,Xv )

(S(Xv ),Xu) (S(Xv ),Xv )

∣∣∣∣

2H(EG − F 2) = ℓG − Fm+ nE −mF

H =
ℓG − 2Fm + En

2(EG − F 2)
.
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The Case K > 0

The Gaussian curvature K is the product of the principal curvatures
k1 and k2.

Thus, K > 0 at p, if both k1 and k2 are different from zero and have
the same sign.

If k1 > 0 and k2 > 0, the curve of each normal section curves toward
the normal.
So the surface lies entirely on the same side of the tangent plane as the
normal Np sufficiently near the point p.
If k1 < 0 and k2 < 0, each curve goes away from the normal.
So the surface (near p) lies entirely on the opposite side to Np.

Equivalently, introducing local coordinates in R3, K > 0 if and only if
the function z = f (x , y) has a strict relative extremum at the point.
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The Case K < 0

Suppose K < 0.

Then k1 and k2 are different from zero and have opposite signs.

This means that the surface is like a saddle surface.

Some normal sections are concave toward the normal N and some
concave away from it.
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Curvature The Gaussian and Mean Curvatures of a Surface

The Case K = 0

If k = 0, one of the principal curvatures must be zero and then little
can be said.

In addition to the plane, we have:

z = (x2 + y2)2, obtained by revolving z = x4 around the z-axis.
z = x(x2 − 3y2), the so-called monkey saddle.

This is similar to the usual saddle surface except that there are three
valleys running down from the pass.
Two for the monkey’s legs and one for its tail.
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Curvature The Gaussian and Mean Curvatures of a Surface

The Case of Mean Curvature

Surfaces for which the mean curvature vanishes are of special interest.

They are minimal surfaces, like the surfaces
formed by a soap film stretched over a wire
frame.

They have the defining property of being
surfaces of minimal area among all surfaces
with a given boundary (the wire frame).

Thus, in a sense, they generalize the geodesics-curves of minimal
length joining two fixed points.

Like the equation of geodesics, the vanishing of the mean curvature
guarantees the property of minimality only in a local sense.
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Curvature The Gaussian and Mean Curvatures of a Surface

Example

Consider a torus.

Look at the two circles running around the torus which are the points
of contact with the two parallel tangent planes orthogonal to its axis.

We intuitively we can see that they divide the torus into:

An inner portion on which K < 0;
An outer portion at which K > 0.

Along the two circles K = 0, since along these circles the normal
vector remains parallel to the z-axis.
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Curvature The Gaussian and Mean Curvatures of a Surface

Example

Consider a parametrization of the saddle surface z = xy ,

(u, v) → (u, v , uv).

Then

Xu =
∂

∂x1
+ v

∂

∂x3
and Xv =

∂

∂x2
+ u

∂

∂x3
.

So we get (
E F

F G

)
=

(
1 + v2 uv

uv 1 + u2

)
.

A normal to the curve is given by

λN = (−v ,−u, 1),

where the normalizing factor is λ = (1 + u2 + v2)1/2.

Moreover, we have

Xuu = 0 = Xvv and Xvu =
∂

∂x3
.
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Curvature The Gaussian and Mean Curvatures of a Surface

Example (Cont’d)

So we obtain

ℓ = (N,Xuu) = (N, 0) = 0;

m = (N,Xvu) = (N, ∂
∂x3

) = 1
λ ;

n = (N,Xvv ) = (N, 0) = 0.

It follows that (
ℓ m

m n

)
=

(
0 1

λ
1
λ 0

)
.

Therefore, using the formulas, we compute

K = ℓn−m2

EG−F 2 =
0− 1

λ2

(1+v2)(1+u2)−(uv)2
=

− 1
λ2

λ2 = − 1
λ4 ;

H = 1
2
Gℓ−2Fm+En

EG−F 2 = 1
2

0−2uv 1
λ
+0

(1+v2)(1+u2)−(uv)2
= 1

2
−2uv

(1+u2+v2)λ
= − uv

λ3 .
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Curvature The Gaussian and Mean Curvatures of a Surface

The Theorema Egregium of Gauss

The entire subject of differential geometry was influenced by a very
profound discovery of Gauss which may be stated as follows.

Theorem (Gauss)

Let M1 and M2 be two surfaces in Euclidean space.
Suppose that

F : M1 → M2

is a diffeomorphism between them which is also an isometry.
Then the Gaussian curvature K is the same at corresponding points.

To see the meaning of this theorem we consider some examples.
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Curvature The Gaussian and Mean Curvatures of a Surface

Example

Let M1 be a plane.

Let M2 a right circular cylinder of radius R in Euclidean space R3.

Suppose we roll the cylinder over the plane.

Then we obtain a correspondence which does not change the length
of curves or the angle between intersecting curves.

Hence, it is an isometry.

We know that K = 0 for the plane.

According to the theorem the same must be true of the cylinder.

Note that they do not have the same second fundamental form.

That is, ℓ,m and n do not vanish identically for the cylinder.

In fact curvatures of the normal sections vary from zero to 1
R
.

This depends on the imbedded shape of the surface.

By contrast, K depends only on the Riemannian metric induced on M.
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Curvature The Gaussian and Mean Curvatures of a Surface

Example

Let M1 be any open subset of the sphere of radius R .

Let M2 be a plane.

We know that K1 ≡ 1
R2 6= 0 and K2 ≡ 0.

The theorem implies that there exists no diffeomorphism of M1 into
M2 that is an isometry.

For example, any plane map of a portion of the globe must distort
some metric properties (distance or length of curves, angles, areas,
and so on).
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Curvature The Gaussian and Mean Curvatures of a Surface

Example

There do exist surfaces isometric to, but not congruent to, say, the
upper hemisphere.

Suppose this hemisphere to be
made of a thin sheet of brass.

It is intuitively clear that we may
bend it by squeezing at the edge
without introducing any creases.

This will give a surface isometric to
the original since length of curves is
unchanged.

It follows that K is the same at corresponding points.

However, the surfaces are not congruent.
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Curvature The Gaussian and Mean Curvatures of a Surface

Example

Among the more interest-
ing examples of (locally)
isometric surfaces are the
helicoid and the catenoid.

The first surface is given parametrically by

(u, v) → (u cos v , u sin v , v), u > 0, −∞ < v < ∞.

It is similar in shape to a spiral staircase.

The catenoid is obtained by revolving the catenary x = cosh z around
the z-axis. We may parametrize it as

(z , θ) → (cos θ cosh z , sin θ cosh z , z), −∞ < z < ∞, 0 < θ < 2π.

The isometry between these surfaces is given by v = θ, u = sinh z .
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Curvature The Gaussian and Mean Curvatures of a Surface

Proof of Gauss’ Theorem

Recall that, at a point p ∈ M, the value of the Gaussian curvature K

is given by

K =
ℓn −m2

EG − F 2
,

where E ,F ,G and ℓ,m, n are the components of the first and second
fundamental forms, respectively, relative to a system of local
coordinates u, v in a neighborhood U of p.

The value of the ratio K is independent of the coordinates chosen
although E ,F ,G and ℓ,m, n are not.

Suppose the surface in R3 is given by

X = X (u, v).

Then
E1 = Xu and E2 = Xv .
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Curvature The Gaussian and Mean Curvatures of a Surface

Proof of Gauss’ Theorem (Cont’d)

We have seen that

ℓn −m2 =

(
∂N

∂u
,E1

)(
∂N

∂v
,E2

)
−
(
∂N

∂u
,E2

)(
∂N

∂v
,E1

)
.

We also have

E = (E1,E1), F = (E1,E2), G = (E2,E2).

Thus, we obtain

EG − F 2 = (E1,E1)(E2,E2)− (E1,E2)
2.

But E ,F ,G are the coefficients of the Riemannian metric.

So it is enough to show that

ℓn −m2 = K (EG − F 2)

depends only on the Riemannian metric.
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Curvature The Gaussian and Mean Curvatures of a Surface

Proof of Gauss’ Theorem (Cont’d)

We shall show that

ℓn−m2 = R(E1,E2,E2,E1),

where R(X ,Y ,Z ,W ) is the covariant tensor of order 4 defined
previously.

Then K is given by

K =
R(E1,E2,E2,E1)

EG − F 2
=

R(E1,E2,E2,E1)

(E1,E1)(E2,E2)− (E1,E2)2
.

The left side is independent of local coordinates.

Thus, the right side is also.

In fact, it can be shown that replacing E1, E2 at a point by any pair
of vectors F1,F2, spanning the same plane, leaves unchanged the
expression on the right.

We shall prove that expression gives K .
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Curvature The Gaussian and Mean Curvatures of a Surface

Proof of Gauss’ Theorem (Cont’d)

This implies that the expression, defined at each point of an
imbedded surface M, is independent of local coordinates on M, and,
moreover, it depends only on the Riemannian metric.

Clearly this is true of the denominator.

We recall that, by definition,

(R(E1,E2) · E2,E1) = (∇E1
∇E2

E2 −∇E2
∇E1

E2 −∇[E1,E2]E2,E1).

This depends only on the Riemannian metric by the Fundamental
Theorem of Riemannian Geometry.

In the present case, E1 and E2 denote coordinate frames of local
coordinates u, v and we know that [E1,E2] = 0.

So we must show only that

ℓn−m2 = (∇E1
∇E2

E2 −∇E2
∇E1

E2,E1).

We may compute the right-hand side using the definition of ∇E1
Z ,

i = 1, 2 (for any tangent vector field Z ).
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Curvature The Gaussian and Mean Curvatures of a Surface

Proof of Gauss’ Theorem (Cont’d)

Take ∂Z
∂u and ∂Z

∂v .

Project them to the tangent plane at each point of the surface to
obtain DZ

∂u = ∇E1
Z and DZ

∂v = ∇E2
Z .

If N denotes the unit normal, and E1 = Xu and E2 = Xv , then we get

∇E1
E2 = Xuv − (N,Xuv )N, ∇E2

E2 = Xvv − (N,Xvv )N.

Differentiate again and project onto the tangent plane (by subtracting
the normal component of the derivative).

This gives

∇E2
(∇E1

E2) = Xvuv − (N,Xuv )Nv − c1N;
∇E1

(∇E2
E2) = Xuvv − (N,Xvv )Nu − c2N.

We next take an inner product of each term above with E1.

As (N,E1) = 0, the terms involving c1 and c2 multiplying N vanish.

So there is not need to compute c1 or c2.
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Curvature The Gaussian and Mean Curvatures of a Surface

Proof of Gauss’ Theorem (Cont’d)

For R(E1,E2,E2,E1) we obtain

(∇E1
∇E2

E2 −∇E2
∇E1

E2,E1) = (Xuvv ,Xu)− (N,Xvv )(Nu ,Nu)
−(Xvuv ,Xu) + (N,Xuv )(Nv ,Xu).

This must be seen to be equal to the earlier evaluation of ℓn−m2

above, namely,

ℓn −m2 = (Nu ,Xu)(Nv ,Xv )− (Nu ,Xv )(Nv ,Xu).

The proof is finished by noting that:

Xvuv = Xuvv ;
Since (N ,Xu) = 0 = (N ,Xv ), we have

(N ,Xvv ) = −(Nv ,Xv ) and (N ,Xuv) = −(Nu,Xv ).
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Curvature Basic Properties of the Riemann Curvature Tensor

Subsection 3

Basic Properties of the Riemann Curvature Tensor
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Curvature Basic Properties of the Riemann Curvature Tensor

Review of Curvature of Riemannian Manifold

We have defined previously the curvature tensor R(X ,Y ,Z ,W ) of a
Riemannian manifold M.

Recall that it is a covariant tensor field of order 4 whose value at any
point p ∈ M is determined as follows.

Let X ,Y ,Z ,W be vector fields whose values at p are given, say
Xp,Yp,Zp,Wp .

Then

R(Xp,Yp ,Zp,Wp) = (∇Xp
∇YZ −∇Yp

∇XZ −∇[X ,Y ]pZ ,Wp).

We have shown that this is independent of the vector fields chosen.

Moreover, it defines a C∞ covariant tensor field.
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Curvature Basic Properties of the Riemann Curvature Tensor

The Curvature Operator

Similarly, the vector fields X ,Y define at each p ∈ M a linear
operator, the curvature operator, R(Xp,Yp) on Tp(M) by the
prescription

R(Xp,Yp) · Zp = ∇Xp
∇YZ −∇Yp

∇XZ −∇[X ,Y ]pZp.

It is, like the curvature tensor, linear in X ,Y ,Z in the sense of a
C∞(M) module.

That is, if f ∈ C∞(M), then

fR(X ,Y ) · Z = R(fX ,Y ) · Z = R(X , fY ) · Z = R(X ,Y ) · fZ .

Obviously the curvature tensor and the curvature operator are related
by the equality

R(X ,Y ,Z ,W ) = (R(X ,Y ) · Z ,W ).
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Curvature Basic Properties of the Riemann Curvature Tensor

Symmetry Relations

Theorem

The following symmetry relations hold for the curvature tensor and
curvature operator at each point, and hence for all vector fields.

(i) R(X ,Y ) · Z + R(Y ,X ) · Z = 0;

(ii) R(X ,Y ) · Z + R(Y ,Z ) · X + R(Z ,X ) · Y = 0;

(iii) (R(X ,Y ) · Z ,W ) + (R(X ,Y ) ·W ,Z ) = 0;

(iv) (R(X ,Y ) · Z ,W ) = (R(Z ,W ) · X ,Y ).

(i) We have

R(X ,Y ) · Z + R(Y ,X ) · Z
= ∇Xp

∇YZ −∇Yp
∇XZ −∇[X ,Y ]pZp

+∇Yp
∇XZ −∇Xp

∇YZ −∇[Y ,X ]pZp

= −∇[X ,Y ]pZp +∇[X ,Y ]pZp = 0.
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Curvature Basic Properties of the Riemann Curvature Tensor

Symmetry Relations (Cont’d)

(ii) R(X ,Y ,Z ,W ) is a tensor.

So it is linear with respect to C∞ functions.

This implies that it suffices to prove the statements for the vectors of
a field of coordinate frames, say E1, . . . ,En.

For these vector fields the Lie products [Ei ,Ej ] = 0.

So if X ,Y ,Z are chosen from among E1, . . . ,En, then proving
Property (ii) reduces to showing that

∇X (∇YZ )−∇Y (∇XZ ) +∇Y (∇ZX )−∇Z (∇YX )
+∇Z (∇XY )−∇X (∇ZY ) = 0.

By definition of Riemannian connection,

∇XY −∇YX = [X ,Y ] = 0.

Using this, we find that the terms on the left cancel two by two.
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Curvature Basic Properties of the Riemann Curvature Tensor

Symmetry Relations (Cont’d)

(iii) Note that, for all X ,Y ,X ,W ,

(R(X ,Y ) · (Z +W ),Z +W )

= (R(X ,Y ) · Z ,Z ) + (R(X ,Y ) · Z ,W )
+ (R(X ,Y ) ·W ,Z ) + (R(X ,Y ) ·W ,W ).

So, Property (iii) is equivalent to the statement that, for all X ,Y ,Z ,

(R(X ,Y ) · Z ,Z ) = 0.

As before, it is enough to prove this for X ,Y ,Z chosen from among
the vectors of the coordinate frames so that [X ,Y ] = 0.

Applying the definitions, we see that

(R(X ,Y ) · Z ,Z ) = (∇X (∇YZ )−∇Y (∇XZ ),Z ) = 0

if and only if (∇X (∇YZ ),Z ) is symmetric in X ,Y .
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Curvature Basic Properties of the Riemann Curvature Tensor

Symmetry Relations (Cont’d)

Differentiating the inner product (Z ,Z ) with respect to X and Y , we
get

Y (X (Z ,Z )) = 2Y (∇XZ ,Z ) = 2(∇Y (∇XZ ),Z ) + 2(∇XZ ,∇YZ ).

It now follows that

(∇Y (∇XZ ),Z ) =
1

2
YX (Z ,Z )− (∇XZ ,∇YZ ).

But [X ,Y ] = 0.

So (XY − YX )f ≡ 0, for any function f .

Taking f = (Z ,Z ), we see that the right side is symmetric in X ,Y .

Therefore, so is the left side.
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Curvature Basic Properties of the Riemann Curvature Tensor

Symmetry Relations (Cont’d)

(iv) Property (iv) derived from the first three properties.

By Property (ii), we have

(R(X ,Y ) · Z ,W ) + (R(Y ,Z ) · X ,W ) + (R(Z ,X ) · Y ,W ) = 0.

Then, using Properties (i)-(iii) we obtain the relation

(R(X ,Y ) · Z ,W ) + (R(Y ,W ) · Z ,X ) + (R(X ,W ) · Y ,Z ) = 0.

E.g., applying Property (ii), we get

(R(X ,Y ) ·W ,Z ) + (R(Y ,W ) · X ,Z ) + (R(W ,X ) · Y ,Z ) = 0.

Then, multiplying by -1 and using Property (i), we get

−(R(X ,Y ) ·W ,Z )− (R(Y ,W ) · X ,Z ) + (R(W ,X ) · Y ,Z ) = 0.

Finally, using Property (iii), we get

(R(X ,Y ) · Z ,W ) + (R(Y ,W ) · Z ,X ) + (R(X ,W ) · Y ,Z ) = 0.
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Curvature Basic Properties of the Riemann Curvature Tensor

Symmetry Relations (Cont’d)

We got the equations

(R(X ,Y ) · Z ,W ) + (R(Y ,Z ) · X ,W ) + (R(Z ,X ) · Y ,W ) = 0,
(R(X ,Y ) · Z ,W ) + (R(Y ,W ) · Z ,X ) + (R(X ,W ) · Y ,Z ) = 0.

In a similar way, we obtain two more equations

(R(Y ,Z ) · X ,W ) + (R(Y ,W ) · Z ,X ) + (R(Z ,W ) · X ,Y ) = 0,
(R(Z ,W ) · X ,Y ) + (R(Z ,X ) · Y ,W ) + (R(X ,W ) · Y ,Z ) = 0.

Now add the first two and subtract the last two to get

2(R(X ,Y ) · Z ,W )− 2(R(Z ,W ) · X ,Y ) = 0.

This finally gives

(R(X ,Y ) · Z ,W ) = (R(Z ,W ) · X ,Y ).
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Curvature Basic Properties of the Riemann Curvature Tensor

Component Functions

In any coordinate neighborhood U, ϕ we have coordinate frames
E1, . . . ,En.

We may introduce n4 functions of the coordinates R j
ikℓ,

1 ≤ i , j , k , ℓ ≤ n by the equations

R(Ek ,Eℓ) · Ei =
∑

j

R
j
ikℓEj .

Similarly we may define the components Rijkℓ of the Riemannian
curvature tensor by the equations

Rijkℓ = (R(Ek ,Eℓ) · Ei ,Ej ) =
∑

h

Rh
ikℓghj ,

where gij = (Ei ,Ej) are the components of the Riemannian metric.

By linearity both R(X ,Y ) · Z and (R(X ,Y ) · Z ,W ) are determined
on U by these locally defined functions.
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Curvature Basic Properties of the Riemann Curvature Tensor

Using Components

The preceding theorem may be written in terms of components.

Corollary

For all 1 ≤ i , j , k , ℓ ≤ n we have:

(i) R
j
ikℓ + R

j
iℓk = 0;

(ii) R
j
ikℓ + R

j
kℓi + R i

ℓjk = 0;

(iii) Rijkℓ + Rjikℓ = 0;

(iv) Rijkℓ = Rkℓij ;

(v) Rijkℓ + Rikℓj + Riℓjk = 0.

We remark that Property (v) is an immediate consequence of
Rijkℓ =

∑
h R

h
ikℓghj , the symmetry of gij and Properties (ii) and (iii).
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Curvature Basic Properties of the Riemann Curvature Tensor

Sectional Curvature

The Riemann curvature tensor (R(X ,Y ) · Z ,W ) is used to define the
sectional curvature, which plays an important role in the geometry of
Riemannian manifolds.

At any p ∈ M we denote by π a plane section, that is, a
two-dimensional subspace of Tp(M).

Such a section is determined by any pair of mutually orthogonal unit
vectors X ,Y at p.

Definition

The sectional curvature K (π) of the section π with orthonormal basis
X ,Y is defined as

K (π) = −R(X ,Y ,X ,Y ) = −(R(X ,Y ) · X ,Y ).
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Curvature Basic Properties of the Riemann Curvature Tensor

Changing Coordinate Vectors

Symmetry and linearity yield the following property.

Suppose X ,Y are replaced by any pair of vectors X ′,Y ′, with

X = αX ′ + βY ′ and Y = γX ′ + δY ′.

Then, we get

1

∆2
(R(X ′,Y ′) · X ′,Y ′) = (R(X ,Y ) · X ,Y ),

where ∆ = αδ − βγ is the determinant of coefficients.

If X ′,Y ′ is also an orthonormal pair, then ∆ = ±1.

So the definition of K (π) is independent of the pair used.

If it is just any arbitrary linearly independent pair, then using
∆2 = (X ′,X ′)(Y ′,Y ′)− (X ′,Y ′)2, we have

K (π) = − (R(X ′,Y ′) · X ′,Y ′)

(X ′,X ′)(Y ′,Y ′)− (X ′,Y ′)2
.
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Curvature Basic Properties of the Riemann Curvature Tensor

Changing Coordinate Vectors (Cont’d)

Consider local coordinates.

We saw that

K (π) = − (R(X ′,Y ′) · X ′,Y ′)

(X ′,X ′)(Y ′,Y ′)− (X ′,Y ′)2
.

Assume that X ′ =
∑

i α
iEi , Y

′ =
∑

j β
jEj .

Use (Ei ,Ej ) = gij .

Then, with the notation above, concerning Rijkℓ, we obtain

K (π) = −
∑

Rijkℓα
iβjαkβℓ

∑
(gikgjℓ − giℓgjk)αiβjαkβℓ

,

where summation is over i , j , k , ℓ.
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Curvature Basic Properties of the Riemann Curvature Tensor

Curvature from Sectional Curvatures

Theorem

If dimM ≥ 3 and the sectional curvature is known on all sections of
Tp(M), then the Riemann curvature tensor is uniquely determined at p.

Let R(X ,Y ,Z ,W ) and R̃(X ,Y ,Z ,W ) be two tensors with the
symmetry properties of the preceding theorem.

Let A(X ,Y ,Z ,W ) be their difference.

It is also be a tensor with these symmetry properties.

Our assumption is that for all X ,Y , R(X ,Y ,X ,Y ) = R̃(X ,Y ,X ,Y ).

Equivalently, for all X ,Y , A(X ,Y ,X ,Y ) = 0.

We must show that this implies that A = 0, i.e., that, for all
X ,Y ,Z ,W ,

A(X ,Y ,Z ,W ) = 0.
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Curvature from Sectional Curvatures (Cont’d)

Let p ∈ M and F1, . . . ,Fn be a frame or basis of Tp(M).

We denote by Aijkℓ the components of A.

Let αi , βj be the components of vectors X ,Y relative to this basis.

Then by hypothesis, for any α1, . . . , αn and β1, . . . , βn,

∑

i ,j ,k,ℓ

Aijkℓα
iβjαkβℓ = 0.

We make specific choices for the αi and βj .

Let δij denote the Kronecker δ, that is,

δij =

{
1, if i = j ,
0, if i 6= j .
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Curvature Basic Properties of the Riemann Curvature Tensor

Curvature from Sectional Curvatures (Cont’d)

First, set αi = δi0i and βj = δj0j .

The equation above gives

Ai0j0i0j0 = 0, for all 1 ≤ i0, j0 ≤ n.

Next, set αi = δi0i and βj0 = βk0 = 1 and βj = 0, for all other j .

Then by Property (iv) of the corollary we have

Ai0j0i0k0 = 0.

Finally, let both αi and βj vanish except at two values of i and two of
j at which it has the value 1.

Then, using Property (ii) and the results just established, we obtain

0 = Aijkℓ + Akjℓi + Aiℓkj + Akℓij = 2Aijkℓ + 2Aiℓkj = − 2Aikℓj .

Thus, Aijkℓ = 0 for all 1 ≤ i , j , k , ℓ ≤ m.
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Curvature Basic Properties of the Riemann Curvature Tensor

Isotropic Manifolds

Let M be a Riemannian manifold.

Let p be a point in M.

We say M is isotropic at p if the curvature is the same constant Kp

on every section at p.

M is called isotropic if it is isotropic at every point.

A two-dimensional Riemannian manifold is (trivially) isotropic.
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Components of Curvature Tensor for Isotropic Manifolds

Corollary

Let M be a Riemannian manifold. Suppose p is an isotropic point of M.
Let U, ϕ be a coordinate neighborhood with:

Coordinate frames E1, . . . ,En;

Riemannian metric gij = (Ei ,Ej ).

Then, at the point p,

Rijkℓ = −Kp(gikgjℓ − giℓgjk).

One may check that the right side defines a tensor of order 4 on
Tp(M) with the same symmetry properties as R(X ,Y ,Z ,W ) and
with constant value on all sections.

The corollary then follows from the uniqueness theorem.
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Manifolds of Constant Curvature

Definition

An isotropic Riemannian manifold is called a manifold of constant
curvature if Kp is the same at every point.

An example is Euclidean space where Kp ≡ 0.
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The Ricci Curvature

Let M be a Riemannian manifold.

Let R(X ,Y ,Z ,W ) denote the curvature tensor on M.

We use this curvature tensor to define:

A (covariant) tensor field S(X ,Y ) of order 2;
A (scalar) function on M .

Let p ∈ M and let F1p, . . . ,Fnp be an orthonormal basis at p.

Consider the operator

Sp(Xp,Yp) =

n∑

i=1

R(Fip,Xp,Yp,Fip) =

n∑

i=1

(R(Fip,Xp) · Yp,Fip).

We may verify that Sp:

Is independent of the choice of orthonormal basis;
Defines a symmetric, C∞ covariant tensor field S on M .
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The Ricci Curvature (Cont’d)

Definition

The tensor field S(X ,Y ) is called the Ricci curvature of M.
M is called an Einstein manifold if there is a constant c , such that

S(X ,Y ) = c(X ,Y ),

that is, S(X ,Y ) is a constant multiple of the Riemannian metric on M.
The function r on M, defined by

r(p) =

n∑

i ,j=1

R(Fip,Fjp,Fjp ,Fip) =

n∑

j=1

S(Fjp,Fjp)

is called the scalar curvature of M.

Spaces of constant curvature are examples of Einstein manifolds.
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Sectional Curvature in Lie Groups

Theorem

Let G be a compact Lie group with a bi-invariant Riemannian metric.
On G , the sectional curvatures at e (hence everywhere) are given by

K (πe) = −R(Xe ,Ye ,Xe ,Ye) = +
1

4
([X ,Y ], [X ,Y ]),

where X ,Y are an orthonormal pair of left-invariant vector fields spanning
the section πe at e. The curvature operator is similarly given at e, hence
at all points by

R(X ,Y ) · Z = −1

4
[[X ,Y ],Z ]

with X ,Y ,Z left-invariant vector fields.

We have seen that for left-invariant vector fields X ,Y , the connection
of a bi-invariant metric on G given by ∇XY = 1

2 [X ,Y ].
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Sectional Curvature in Lie Groups (Cont’d)

Applying first the definition and then the Jacobi identity, we obtain

R(X ,Y ) · Z = ∇X (∇YZ )−∇Y (∇XZ )−∇[X ,Y ]Z

= 1
4 [X , [Y ,Z ]]− 1

4 [Y , [X ,Z ]]− 1
2 [[X ,Y ],Z ]

= 1
4 [Z , [X ,Y ]]

= − 1
4 [[X ,Y ],Z ].

We also know that, for left-invariant vector fields U,V ,W on G ,

([U,V ],W ) = (U, [V ,W ]).

Thus, if X ,Y are left-invariant and are an orthonormal basis at e of
π, a plane section, the sectional curvature is

K (π) = − R(X ,Y ,X ,Y ) =
1

4
([[X ,Y ],X ],Y ) =

1

4
([X ,Y ], [X ,Y ]).
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Ricci Tensor Formula

Corollary

Let G be a compact Lie group with a bi-invariant Riemannian metric.
Let X ,Y ,Z be left-invariant vector fields.
Then the Ricci tensor S(X ,Y ) is given by the formula

S(X ,Y ) = −1

4
tr(adX ◦ adY ).

Moreover, it is positive semi-definite and bi-invariant on G .
Each compact semisimple G is an Einstein manifold relative to any
bi-invariant Riemannian metric.

By the formula, the linear operator Z → R(Z ,Y ) · X on G is defined
at e for the left-invariant vector field by

R(Z ,Y ) · X = −1

4
(adX )(adY ) · Z .
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Ricci Tensor Formula (Cont’d)

It can be shown that an alternative definition of S(X ,Y ) is that it is
the trace of the linear operator

Tp(M) → Rp(M)
Zp 7→ R(Zp,Xp) · Yp

on the tangent space at each point.

We also have
S(X ,Y ) = S(Y ,X ).

Now, for all Z ,

R(Z ,Y ) · X = −1

4
[X , [Y ,Z ]].

So we get

S(X ,Y ) = −1

4
(adX )(adY ) · Z .
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Ricci Tensor Formula (Cont’d)

On the other hand, suppose F1, . . . ,Fn is an orthonormal basis of
left-invariant vector fields.

Then we have

(adX · Fi ,Fj) = ([X ,Fi ],Fj) = (Fi , [X ,Fj ]) = (Fi , adX · Fj).

So the matrix (aij) of adX , relative to this basis, is skew symmetric.

Hence,
tradXadX =

∑

i ,j

aijaji = −
∑

i ,j

a2ij .

It follows that

S(X ,X ) = − tradXadX =
∑

a2ij ≥ 0.

Equality holds only when adX = 0.

Hence, S(X ,Y ) is positive semidefinite.
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Ricci Tensor Formula (Cont’d)

Moreover, if G is semisimple, it is positive definite.

Now, if X ,Y ,Z are left-invariant, so is R(Z ,Y ) · X .

The same holds for its trace S(X ,Y ).

This means that S(X ,Y ) is a bi-invariant Riemannian metric on a
semisimple G .

However two bi-invariant metrics can differ only by a scalar multiple.

It follows that, with a bi-invariant metric, G is Einstein.
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Subsection 4

The Curvature Forms and the Equations of Structure
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Coframes

Let U be a neighborhood on the Riemannian manifold M.

Suppose on U is defined a C∞ family of coframes

θ1, . . . , θn.

Thus, automatically, we also have a dual C∞ family of frames

E1, . . . ,En.

They may or may not be coordinate frames of a coordinate
neighborhood U, ϕ.

The components of the Riemann metric on U are still denoted by

gij = (Ei ,Ej ).
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Properties of Coframes

According to a previous theorem, there exist uniquely determined

one-forms θji on U satisfying:
(i) dθi =

∑
j θ

j ∧ θij , 1 ≤ i ≤ n;

(ii) dgij =
∑

k θ
k
i gkj +

∑
k gikθ

k
j , 1 ≤ i , j ≤ n.

Define
θij =

∑

k

θki gkj .

Then Equations (ii) assume the simpler form

dgij = θij + θji .

In the special case where the frames are orthonormal, that is,
gij = δij , we will use ωi , ωj

i instead of θi , θji .

Then Equations (ii) become

0 = ωj
i + ωi

j , 1 ≤ i , j ≤ n.
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Connection Forms

The forms θji determine, and are determined by the Riemannian
connection.

Thus if ∇Ei
Ej =

∑
k Γ

k
ij , then

θji =
∑

k

Γjkiθ
k .

Equivalently,

∇XE
j =

∑

k

θkj (X )Ek .

The one-forms θkj , 1 ≤ j , k ≤ n, are called the connection forms.

We have that Γkij = Γkji only if E1, . . . ,En satisfy [Ei ,Ej ] = 0, as is the
case for coordinate frames.

This symmetry was derived from ∇Ei
Ej −∇Ej

Ei = [Ei ,Ej ], which we
have made part of the definition of Riemannian connection.

∇Ei
Ej −∇Ej

Ei = [Ei ,Ej ] is equivalent to Equations (i).
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Curvature Forms

Now suppose that R j
ikℓ, 1 ≤ i , j , k , ℓ ≤ n, are the components of the

curvature (as an endomorphism) relative to the given frames, i.e.,

R(Ek ,Eℓ) · Ei =
∑

j

R
j
ikℓEj .

Then we define n2 two-forms Ωj
i , 1 ≤ i , j ≤ n, by

Ωj
i =

∑

1≤k<ℓ≤n

R
j
ikℓθ

k ∧ θℓ =
1

2

n∑

k,ℓ=1

R
j
ikℓθ

k ∧ θℓ.

It follows that

n∑

j=1

Ωj
i (Ek ,Eℓ)Ej =

n∑

j=1

R
j
ikℓEj = R(Ek ,Eℓ) · Ei .
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Curvature Forms (Cont’d)

By linearity this extends to any vector fields X ,Y so that

R(X ,Y ) · Ei =
∑

j

Ωj
i (X ,Y )Ej .

Thus, (Ωj
i (X ,Y )) is the matrix of the curvature operator relative to

the basis E1, . . . ,En.

Note that the properties of R(X ,Y ) · Z imply that Ωj
i (X ,Y ) at p

depend only on the values of X and Y at p, not on the vector fields.

Obviously, Ωj
i (X ,Y ) = −Ωj

i (Y ,X ).

These n2 forms Ωj
i on Uj are called the curvature forms.

They depend on the Riemannian metric and on the particular
frame-field we use on U.
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Curvature Forms and Connection Forms

Theorem

Using the notation above, the forms Ωj
i on U are defined by the equations

Ωj
i = dθji −

n∑

k=1

θki ∧ θjk , 1 ≤ i , j ≤ n.

It is sufficient to verify that, on any vector fields X ,Y on U, the value
of the two-forms on each side of the equation is the same.

This is equivalent to showing that

R(X ,Y ) ·Ei =
∑

j

((
dθji −

∑

k

θki ∧ θjk

)
(X ,Y )

)
Ej , i = 1, . . . , n.
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Curvature Forms and Connection Forms (Cont’d)

By definition,

R(X ,Y ) · Ei = ∇X (∇YEi )−∇Y (∇XEi )−∇[X ,Y ]Ei .

This may be rewritten

R(X ,Y ) · Ei = ∇X

(∑
j θ

j
i (Y )Ej

)
−∇Y

(∑
j θ

j
i (X )Ej

)

−∑j θ
j
i ([X ,Y ])Ej .

Since θji (Y ) and θji (X ) are functions, the right-hand side is equal to

∑
j(X (θji (Y ))− Y (θji (X ))− θji ([X ,Y ]))Ej

+
∑

j ,k θ
j
i (Y )θkj (X )Ek −

∑
j ,k θ

j
i (X )θkj (Y )Ek .
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Curvature Forms and Connection Forms (Cont’d)

We got

R(X ,Y ) · Ei =
∑

j(X (θji (Y ))− Y (θji (X ))− θji ([X ,Y ]))Ej

+
∑

j ,k θ
j
i (Y )θkj (X )Ek −

∑
j ,k θ

j
i (X )θkj (Y )Ek .

Applying a previous lemma, we get that the right side equals

∑

j

{
dθji (X ,Y )−

∑

k

[
θki (X )θjk(Y )− θki (Y )θjk(X )

]}
Ej .

This proves that

R(X ,Y ) · Ej =
∑

j

(
dθji −

∑

k

θki ∧ θjk

)
(X ,Y )Ej .
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Summary: Equations of Structure

Let U be any open subset of a Riemannian manifold M on which is
defined a field of coframes θ1, . . . , θn.

Let E1, . . . ,En denote the uniquely determined dual frame-field.

Let gij = (Ei ,Ej ) on U.

Then there exist n2 uniquely determined one-forms θji on U satisfying
Equations (i) and (ii):
(i) dθi =

∑
j θ

j ∧ θij , 1 ≤ i ≤ n;

(ii) dgij =
∑

k θ
k
i gkj +

∑
k gikθ

k
j , 1 ≤ i , j ≤ n.

They determine the two-forms Ωj
i , and hence the curvature on U, by

Ωj
i = dθji −

n∑

k=1

θki ∧ θjk , 1 ≤ i , j ≤ n.

Equations (i), (ii) and the displayed one are known as Cartan’s
equations of structure.
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Summary: Equations of Structure (Cont’d)

As noted, it is often convenient to write θij =
∑

s θ
s
i gsj so that (ii)

takes a simpler form.

We may define, similarly,

Ωij =
∑

s

Ωs
i gsj .

Then

Ωij =
1

2

∑

k,ℓ

Rijkℓθ
k ∧ θℓ,

since we have previously seen that Rijkℓ =
∑

s gjsR
s
ikℓ, where

Rijkℓ = R(Fk ,Fℓ,Fi ,Fj).

The symmetry properties imply that Ωij = −Ωji .
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Summary: The Orthonormal Case

Suppose the frame-field is orthonormal.

That is, it consists of vectors E1, . . . ,En, with

(Ei ,Ej ) = δij .

As noted above, Equations (i) and (ii) simplify:

(i) dωi =
∑

j ω
j ∧ ωi

j , 1 ≤ i ≤ n;

(ii) 0 = ωj
i + ωi

j , 1 ≤ i , j ≤ n.

Moreover,
Ωij = Ωj

i , Rijkℓ = R
j
ikℓ, ωj

i = ωij .

These enable us to formulate a restatement.
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The Orthonormal Case (Cont’d)

Corollary

The forms ω1, . . . , ωn, dual to a field of orthonormal frames, determine
uniquely a set of one-forms ωj

i , 1 ≤ i , j ≤ n, satisfying:

(i) dωi =
∑

ωi
k ∧ ωk ;

(ii) ωj
i + ωi

j = 0;

And we also have:

(iii) dωj
i −
∑

k ω
k
i ∧ ωj

k =
∑

k<ℓ ω
k ∧ ωℓ = Ωj

i = Ωij .

Relative to these frames the matrix

(Ωij(X ,Y ))

of the curvature operator R(X ,Y ) is a skew-symmetric matrix.
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Components of Curvature and Connection Forms

Corollary

Let Γkij denote the coefficients of the connection forms relative to
coordinate frames E1, . . . ,En of a coordinate neighborhood U, ϕ.
That is, with θ1, . . . , θn being dual to E1, . . . ,En,

θkj =
∑

ℓ

Γkℓjθ
ℓ.

Then Γkij = Γkji and

R
j
ikℓ =

∂Γjiℓ
∂xk

− ∂Γjik
∂xℓ

+
∑

h

(ΓhikΓ
j
hℓ − ΓhiℓΓ

j
hi ).
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Components of Curvature and Connection Forms (Cont’d)

According to the theorem Ωj
i = dθji −

∑
h θ

h
i ∧ θjh.

Hence

Ωj
i =

∑

ℓ

(dΓjℓi ∧ θℓ + Γjℓidθ
ℓ)−

∑

k,ℓ

∑

h

ΓhkiΓ
j
ℓhθ

k ∧ θℓ.

Now Γkij = Γkji , since [Ei ,Ej ] = 0 for coordinate frames.

Since θj ∧ θi = −θi ∧ θj , it follows that

dθi =
∑

j

θj ∧ θℓj =
∑

i ,j

Γℓijθ
j ∧ θi = 0.

Therefore, the second equation above may be written as

1
2

∑n
k,ℓ=1 R

j
ikℓθ

k ∧ θℓ =
∑

k,ℓ
1
2

(
∂Γj

ℓi

∂xk
− ∂Γj

ki

∂xℓ

)
θk ∧ θℓ

−1
2

∑
k,ℓ

∑
h(Γ

h
kiΓ

j
ℓh − ΓhℓiΓ

j
kh)θ

k ∧ θℓ.
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Components of Curvature and Connection Forms (Cont’d)

Now the coefficients on both left and right are skew-symmetric in the
indices k , ℓ.

So these equations imply equality of coefficients.

To obtain the (standard) formula of the corollary, one uses:

The symmetry of Γkij in i , j ;

The fact that θk ∧ θℓ = −θℓ ∧ θk ;
Change of index of summation where necessary.
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Manifolds of Dimension 2

Corollary

If dimM = 2, then
dω2

1 = Ω2
1 = +Kω1 ∧ ω2,

where K is the Gaussian curvature of M.

In proving Gauss’s Theorema Egregium we saw that if E1,E2 are
orthonormal unit vectors, then

K = −R(E1,E2,E1,E2) = −(R(E1,E2) · E1,E2) = −R1212.

On the other hand since gij = (Ei ,Ej) = δij we have

Ω2
1 = Ω12 = −R1212ω

1 ∧ ω2.
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Manifolds of Dimension 2 (Cont’d)

Now ωj
i + ωi

j = 0.

So we get
ω1
1 = 0 = ω2

2.

Thus, by the preceding corollary,

2∑

k=1

ωk
1 ∧ ω2

k = 0 and dω2
1 = Ω2

1.

Note that these equations are independent of the particular
orthonormal frame field on U ⊆ M.
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Geometric Interpretation of Sectional Curvature

Let M be a Riemannian manifold.

Let π be a plane section at a point p of M.
Let Np be an open, two-dimensional submanifold of M:

Consisting of geodesic arcs through p;
Tangent at p to the section π.

Theorem

If we use on Np the Riemannian metric induced by that of M, then the
sectional curvature K (π) is equal to the Gaussian curvature of Np at p.

Consider a normal neighborhood of p

U = expp Bε.

That is, we choose ε > 0 such that

Bε = {Xp ∈ Tp(M) : ‖Xp‖ < ε}
is mapped diffeomorphically onto an open set U ⊆ M.
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Geometric Interpretation of Sectional Curvature (Cont’d)

The plane section π corresponds to a two-dimensional subspace
Vπ ⊆ Tp(M).

We may suppose that Np is the image of Vπ ∩ Bε.

Since U is a normal neighborhood, it is covered simply by the
geodesics of length ε issuing from p.

They are given by
expp tXp, 0 ≤ t ≤ ε,

for each Xp with ‖Xp‖ = 1.
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Geometric Interpretation of Sectional Curvature (Cont’d)

Now choose an orthonormal basis E1p , . . . ,Enp of Tp(M), with
E1p ,E2p a basis of Vπ.

Then
(x1, . . . , xn) → expp (

∑
x iEip)

establishes a system of normal coordinates on U.

Moreover, the coordinate map ϕ is the inverse of the above.

Thus, Np is described by

x3 = · · · = xn = 0.

Additionally, U ∩ Np , ϕ is a coordinate system on Np , with x1, x2 as
coordinates.
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Geometric Interpretation of Sectional Curvature (Cont’d)

Let E1, . . . ,En denote the coordinate frames.

They agree at p with the given frame.

Moreover, E1,E2 are tangent to Np everywhere on Np .

We denote the dual coframes by θ1, . . . , θn, with connection forms

θkj =
∑

i

Γkijθ
i .

Note that Γkij(0) = 0.

That is, θkj = 0 at p ∈ U.

From those frames, by the Gram-Schmidt process we obtain a family
of orthonormal frames F1, . . . ,Fn in U with the property that F1,F2
are a linear combination of E1,E2.

So F1,F2 are tangent to Np at each of its points.
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Geometric Interpretation of Sectional Curvature (Cont’d)

We denote by ω1, . . . , ωn the dual coframes to F1, . . . ,Fn.

We let ωj
i be the corresponding connection forms.

They satisfy the equations

ωj
i + ωi

j = 0 and dωi =
∑

k

ωi
k ∧ ωk .

We shall see that for j > 2, ωj
1 = ωj

2 = 0 at p.

First recall that at p,

∇Xp
Ei =

∑

j

θji (Xp)Ej = 0 and ∇Xp
Fi =

∑
ωj
i (Xp)Fj .
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Geometric Interpretation of Sectional Curvature (Cont’d)

Now, for i = 1, 2,
Fi = a1i E1 + a2i E2.

So
∇Xp

Fi = (Xpa
1
i )E1 + (Xpa

2
i )E2 + a1i ∇Xp

E1 + a2i ∇Xp
E2.

Since Γkij(0) = 0, the last two terms vanish.

So, for i = 1, 2, ∇Xp
Fi is a linear combination of E1 and E2.

Hence, ∇Xp
Fi is a linear combination of F1 and F2.

Thus, for i = 1, 2,

∇Xp
Fi = ω1

i (Xp)F1 + ω2
i (Xp)F2.

Moreover, for i = 1, 2 and j > 2, ωj
i (Xp) = 0.
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Geometric Interpretation of Sectional Curvature (Cont’d)

Denote by I : Np → M the imbedding.

Let ω̃i = I ∗ωi , ω̃j
i = I ∗ωj

i .

I ∗ is a homomorphism of
∧
(M) → ∧

(Np) and commutes with d .

So
d ω̃i =

∑

k

ω̃i
k ∧ ω̃k and ω̃j

i + ω̃i
j = 0.

F1,F2 span the tangent space to Np.

Moreover, if j = 1 or j = 2 and i > j ,

ω̃i(Fj ) = (I ∗ωi )(Fj) = ωi(I∗Fj) = ωi(Fj) = 0.

Therefore, for i > 2, ω̃i = 0.

Thus, ω̃1, ω̃2 are dual to F1,F2 restricted to Np .

Moreover, together with ω̃1 = ω̃2, they satisfy Equations (i) and (ii),
which determine the connection forms uniquely.
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Curvature The Curvature Forms and the Equations of Structure

Geometric Interpretation of Sectional Curvature (Cont’d)

It follows from the preceding corollary that

d ω̃2
1 = K ω̃1 ∧ ω̃2.

On the other hand, we have on M

dω2
1 =

∑

k

ωk
1 ∧ ω2

k +
∑

k<ℓ

R12kℓω
k ∧ ωℓ.

Apply I ∗ to both sides and evaluate at p.

We get the equality (at p)

d ω̃2
1 = R1212ω̃

1 ∧ ω̃2.

It follows that the sectional curvature

K (π) = −R1212 = Kp ,

the Gaussian curvature at p of the surface Np.

George Voutsadakis (LSSU) Differential Geometry December 2024 109 / 180



Curvature The Curvature Forms and the Equations of Structure

The Curvature of an n-Sphere

Corollary

Let M be an n-sphere of radius a in Rn+1 with the Riemannian metric
induced from Rn+1. Then M has constant sectional curvature 1

a2
.

Let p be a point of M.

Then the geodesics through p tangent to a plane π in Tp(M) are
great circles.

They form a 2-sphere of radius a.

We have seen that the Gaussian curvature of such a 2-sphere is 1
a2
.

So the corollary follows from the theorem.
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Curvature The Curvature Forms and the Equations of Structure

Isotropic Manifolds and Constant Curvature

Theorem

If M is a connected, isotropic Riemannian manifold and dimM > 3, then
M has constant curvature.

Let Kp be the value of the sectional curvature at p.

This i constant on all sections by hypothesis.

We must show that this function on M is constant.

That is, w must show dK = 0.

Let U be a neighborhood of p ∈ M with an orthonormal frame field.

Let ω1, . . . , ωn be the dual coframe field.

We use the expression for Rijkℓ in a previous corollary, which now
becomes

Rijkℓ = K (δikδjℓ − δiℓδjk).

We obtain Ωj
i = Ωij = Kωi ∧ ωj , in which K depends only on p, not

on the (orthonormal) frames used.
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Curvature The Curvature Forms and the Equations of Structure

Isotropic Manifolds and Constant Curvature (Cont’d)

Take the exterior derivative of the structure equation

dωj
i =

∑
ωk
i ∧ ωj

k +Ωj
i .

We obtain

0 =
∑

(dωk
i ∧ ωj

k − ωk
i ∧ dωj

k)
+dK ∧ ωi ∧ ωj + Kdωi ∧ ωj − Kωi ∧ dωj .

We substitute for dωk
i , dω

i , and so on, from a previous corollary.

After simplifying, we get, for all i , j = 1, . . . , n,

dK ∧ ωi ∧ ωj = 0.

Now dK = K1ω
1 + · · ·+ Knω

n, a linear combination of ω1, . . . , ωn.

Moreover, ωℓ ∧ ωi ∧ ωj 6= 0, if ℓ, i , j are distinct.

So the displayed equation can only hold if dK = 0 on U.

But U is a neighborhood of p and p is arbitrary.

Therefore, dK = 0 and K is constant.
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Curvature The Curvature Forms and the Equations of Structure

Examples

According to the preceding corollary, the sphere of radius a with the
Riemannian metric induced by the Euclidean space with contains it
has constant positive curvature.

Euclidean space itself with its standard Riemannian metric has
curvature identically zero, since with the usual coordinates Γkij = 0
and Rijkℓ = 0.

An example of a manifold of constant negative curvature of arbitrary
dimension will be given later.
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Curvature Differentiation of Covariant Tensor Fields

Subsection 5

Differentiation of Covariant Tensor Fields
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Curvature Differentiation of Covariant Tensor Fields

Translation Along a Curve

Let M be a Riemannian manifold.

Consider a covariant tensor field Φ of order r on M, Φ ∈ T r (M).

Suppose given a curve

p(t), a ≤ t ≤ b,

on M of differentiability class C 1 at least.

Let Φp(t) denote the restriction of Φ to p(t).

Then Φp(t) ∈ T r (Tp(t)(M)), that is, Φp(t) is a tensor field along p(t).

Using previous results, we denote by τt parallel translation along p(t)
from a fixed point p(t0) of the curve,

τt : Tp(t0)(M) → Tp(t)(M).

This is an isomorphism of these tangent spaces.

It is uniquely determined by p(t) and the Riemannian structure.
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Curvature Differentiation of Covariant Tensor Fields

Derivative of Tensor Along a Curve

Definition

With the preceding notation, the derivative DΦ
dt

of the tensor Φ along

the curve is defined at the point p(t0) by

(
DΦ

dt

)

t0

= lim
t→t0

1

t − t0

(
τ∗t Φp(t) − Φp(0)

)
.

As thus defined (DΦ
dt

)t0 is a covariant tensor of order r on the vector
space Tp(t0)(M).
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Curvature Differentiation of Covariant Tensor Fields

Derivative of Tensor Along a Curve (Cont’d)

Consider any set of r vectors X 1
p(t0)

, . . . ,X r
p(t0)

∈ Tp(t0)(M).

Then DΦ
dt

at p(t0) is the limit as t → t0 of the expression

1

t − t0
(τ∗t Φp(t)(X

1
p(t0)

, . . . ,X r
p(t0)

)− Φp(t0)(X
1
p(t0)

, . . . ,X r
p(t0)

)).

For each value of t near t0, this is a multiple by 1
t−t0

of the difference
of two tensors τ∗t Φp(t) and Φp(t) on Tp(t0)(M).

Both are covariant r tensors on the same vector space.

It follows that the limit is also such a tensor.

We repeat this procedure at each t0 on the interval (a, b).

The process gives a covariant tensor field DΦ
dt

along p(t), provided
that suitable differentiability conditions are satisfied.
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Curvature Differentiation of Covariant Tensor Fields

Differentiability Conditions

Satisfying “suitable” differentiability conditions means that, for any
C k family of vector fields

X i
t = X i

p(t), i = 1, . . . , r ,

defined along the C k curve p(t), the value of DΦ
dt

on them,

DΦ

dt
(X 1

t , . . . ,X
r
t ), a < t < b,

should be a function of class C k−1 (C∞ when k = ∞) of t.

This should be true in the most frequent situation where:
X 1, . . . ,X r are C∞-vector fields on M ;
X 1
t , . . . ,X

r
t are their restrictions to the curve p(t).

In the next result, we show that this is indeed a consequence of our
definition and derive computational formulas.

For convenience, we suppose Φ is C∞.
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Curvature Differentiation of Covariant Tensor Fields

A Formula for the Derivative

Lemma

Let Φ be a C∞-covariant tensor field of order r on M.
Let p(t), a < t < b, be a curve of class C k , k ≥ 1, on M.
Let X 1

t , . . . ,X
r
t ∈ Tp(t)(M) be vector fields of class C k along the curve.

Then, for each t0 on the interval (a, b), we have

(
DΦ
dt

)
t0
(X 1

t0
, . . . ,X r

t0
) =

(
d
dt
[Φp(t)(X

1
t , . . . ,X

r
t )]
)
t=t0

−∑r
i=1Φp(t0)

(
X 1
t0
, . . . ,

(
DX i

dt

)
t0
, . . . ,X r

t0

)
.

The lemma will establish the fact that DΦ
dt

evaluated on C k -vector
fields along the curve is differentiable of class C k−1 at least.

If k = ∞, then DΦ
dt

will be a C∞-tensor field along the curve.

That is, its value on C∞-vector fields will be a C∞ function of t.

For lower differentiability classes, the class of DΦ
dt

will also be lower.
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Curvature Differentiation of Covariant Tensor Fields

Proof of the Formula

By definition we have
(
DΦ
dt

)
t0

= lim
t→t0

1
t−t0

(τ∗t Φp(t)(X
1
t0
, . . . ,X r

t0
)− Φp(t0)(X

1
t0
, . . . ,X r

t0
))

= lim
t→t0

1
t−t0

(Φp(t)(τt(X
1
t0
), . . . , τt(X

r
t0
))

−Φp(t0)(X
1
t0
, . . . ,X r

t0
)).

Then for each i = 1, . . . , r , in turn, we subtract and add

Φp(t)

(
X 1
t ,X

2
t , . . . ,X

i
t , τt(X

i+1
t0

), . . . , τt(X
r
t0
)
)
.

Rearranging and collecting terms, and using both linearity at p(t) and
the continuity of the tensor Φ, we may rewrite the defining equation

(
DΦ
dt

)
t0

=
r∑

i=1

Φp(t)(X
1
t , . . . , lim

t→t0

1
t−t0

(τt(X
i
t0
)− X i

t ),

τt(X
i+1
t0

), . . . , τt(X
r
t0
))

+ lim
t→t0

1
t−t0

(Φp(t)(X
1
t , . . . ,X

r
t )− Φp(t0)(X

1
t0
, . . . ,X r

t0
)).
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Curvature Differentiation of Covariant Tensor Fields

Proof of the Formula (Cont’d)

We now use the fact that for any C k -vector field Xt along p(t),

lim
t→t0

τt(Xt0)− Xt

t − t0
= − lim

t→t0
τt

(
τ−t(Xt)− Xt0

t − t0

)

= − τ0

(
DXt

dt

)

t0

= −
(
DXt

dt

)

t0

.

Therefore passing to the limit in the expression for (DΦ
dt

)t0 completes
the proof of the lemma.

We can verify from the formula itself that (DΦ
dt

)t0 depends R-linearly
on the values of the vector fields X 1

t , . . . ,X
r
t at p(t0).

So the formula does define an R-linear function, that is, a covariant
tensor of order r on the vector space Tp(t0)(M).
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Curvature Differentiation of Covariant Tensor Fields

The Case of Parallel Vector Fields

Corollary

Let X 1
0 , . . . ,X

r
0 ∈ Tp(t0)(M) be given and suppose that X 1

t , . . . ,X
r
t are the

uniquely determined parallel vector fields along p(t), a < t < b, which take
these values at p(t0). Then the formula of the preceding lemma becomes

(
DΦ

dt

)

t0

(X 1
t0
, . . . ,X r

t0
) =

(
d

dt
Φp(t)(X

1
t , . . . ,X

r
t )

)

t0

.

By definition of X i
t we have DX i

t

dt
≡ 0, i = 1, . . . , r .

So the conclusion follows from the formula of the preceding lemma.

This corollary makes it clear that (DΦ
dt

)t0 depends only on the tensor
field Φ and on the curve p(t), a < t < b.
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Curvature Differentiation of Covariant Tensor Fields

Independence of Choice of Curve

Lemma

Let Φ be a C∞-covariant tensor field of order r on M and p ∈ M.
Let X 1, . . . ,X r are C∞-vector fields on some neighborhood U of p.
Let X 1

p , . . . ,X
r
p denote their value at p.

Consider two C 1 curves on M, F (t), −ε < t < ε, and G (s), −δ < s < δ,
such that:

F (0) = p = G (0);

Ḟ (0) = Yp = Ġ (0) is their common tangent vector at p.

Then (
DΦ

dt

)

0

(X 1
p , . . . ,X

r
p ) =

(
DΦ

ds

)

0

(X 1
p , . . . ,X

r
p ).

That is, the two tensors on Tp(M) defined by differentiating Φ along each
of the curves are the same.
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Curvature Differentiation of Covariant Tensor Fields

Independence of Choice of Curve (Cont’d)

Suppose that f is a C∞ function on U.

Then f (F (t)) is its restriction to the curve F (t).

Moreover, (
d

dt
f (F (t))

)

t=0

= F∗

(
d

dt

)
f = Ypf .

Similarly, restricting f to G (s), differentiating with respect to s and
evaluating at s = 0 gives

(
d

ds
f (G (s))

)

t=0

= G∗

(
d

dt

)
f = Ypf .
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Curvature Differentiation of Covariant Tensor Fields

Independence of Choice of Curve (Cont’d)

We apply the preceding to the function

f (q) = Φq(X
1
q , . . . ,X

r
q ).

We see that in the formula of the lemma, the first term in case of
either curve (and derivative of Φ) is the same, namely

Yp(Φ(X
1, . . . ,X r )).

On the other hand, by our original definition of ∇Yp
X for a vector

field X , we have

∇Yp
X =

(
DX i

p(t)

dt

)

0

=

(
DX i

p(s)

ds

)

0

.

Hence, the remaining terms in the formula agree also.
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Curvature Differentiation of Covariant Tensor Fields

The Covariant Derivative

We denote the covariant tensor of order r on Tp(M), which we have
defined by differentiation of Φ along curves through p with Yp as
tangent at p by

∇Yp
Φ =

(
DΦ

dt

)

0

(X 1
p , . . . ,X

r
p ).

Definition

The covariant r -tensor on Tp(M) just defined from differentiation of Φ
along curves through p, with Yp as tangent at p, is denoted

∇Yp
Φ ∈ T

r (Tp(M)).

It is called the covariant derivative of Φ at p in the direction Yp.
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Curvature Differentiation of Covariant Tensor Fields

Comments

According to the facts in the proof above, the covariant derivative is
given by the formula

∇Yp
Φ(X 1, . . . ,X r ) = Yp(Φ(X

1, . . . ,X r )
−∑r

i=1Φp(X
1, . . . ,∇Yp

X i , . . . ,X r
p )),

where X 1, . . . ,X r are vector fields on a neighborhood of p.

Only the values of X 1, . . . ,X r at p affect the value of ∇Yp
Φ on

Tp(M).
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Curvature Differentiation of Covariant Tensor Fields

The Covariant r + 1 Tensor Field Ψ

Theorem

Let Φ be a C∞-covariant tensor field of order r on M, Φ ∈ T r (M). Then
we may define on M a C∞-covariant tensor field Ψ of order r + 1 by the
formula

Ψp(X
1
p , . . . ,X

r
p ;Yp) = (∇Yp

Φ)(X 1
p , . . . ,X

r
p ).

By preceding work, it is only necessary to prove two more facts.

For each p ∈ M , Ψp is linear in the last variable, with the others fixed;
For any C∞-vector fields X 1, . . . ,X r ,Y the formula above defines a
C∞ function of p.
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Curvature Differentiation of Covariant Tensor Fields

The Covariant r + 1 Tensor Field Ψ (Cont’d)

Note that each term of the formula is linear in Yp as a real-valued
function on Tp(M).

Consequently, if we fix the vector fields X 1, . . . ,X r , then the mapping
Tp(M) → R defined by that formula

Yp → (∇Yp
Φ)(X 1

p , . . . ,X
r
p )

is linear.

On the other hand, it is clear that for C∞-vector fields X 1, . . . ,X r ;Y
the function

Ψ(X 1, . . . ,X r ;Y ) = (∇YΦ)(X1, . . . ,Xr )

is C∞.
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Curvature Differentiation of Covariant Tensor Fields

Components in Local Coordinates

Let U, ϕ be a local coordinate system with:

Local coordinates x1, . . . , xn;
Coordinate frames E1, . . . ,En, such that

∇Ei
Ej =

∑

k

ΓkijEk .

Let Φ be a C∞-covariant tensor field of order r on M.

Let its components be

Φi1...ir = Φ(Ei1 , . . . ,Eir ).
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Curvature Differentiation of Covariant Tensor Fields

Formulas in Local Coordinates

Corollary

Let Φ be a C∞-covariant tensor field of order r on M.
Consider the C∞-covariant tensor field Ψ of order r + 1 given by

Ψp(X
1
p , . . . ,X

r
p ;Yp) = (∇Yp

Φ).

The components
Ψj1,...,jr+1 = Ψ(Ej1 , . . . ,Ejr+1)

of Ψ on U are given by the formulas

Ψj1,...,jr+1 =
∂

∂xjr+1

Φj1···jr −
∑

k,i Γ
k
jr+1ji

Φj1···k···jr ,˙

k = 1, . . . , n, i = 1, . . . , r .
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Curvature Differentiation of Covariant Tensor Fields

Parallel Tensor Fields

Definition

A tensor field Φ ∈ T r (M) is said to be parallel along a curve p(t) if

DΦ

dt
≡ 0

along the curve. It is said to be parallel if

DΦ

dt
= 0

along every curve on M.
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Curvature Differentiation of Covariant Tensor Fields

Remarks

If, for every Xp ∈ Tp(M) and all p ∈ M,

∇Xp
Φ = 0,

then Φ is parallel.

So if it is parallel along geodesics, for example, then it will be parallel.

This follows from the preceding lemma and the fact that there is a
geodesic tangent to any given vector Xp.

Suppose, also, that
p(t), a ≤ t ≤ b,

is a curve of class C 1, say.

Then Φ is parallel along p(t) if and only if it satisfies

d

dt
(Φ(X 1

t , . . . ,X
r
t )) ≡ 0,

for every set X 1
t , . . . ,X

r
t of parallel vector fields along the curve p(t).
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Curvature Differentiation of Covariant Tensor Fields

Parallel Sections and Constant Curvature

Let M be a Riemannian manifold of constant curvature K .

Then, by definition, for any orthonormal pair of vectors Xp,Yp the
sectional curvature R(Xp,Yp,Xp ,Yp) = −K .

Suppose p(t) is any curve through p with, say, p(0) = p.

Let Xp(t),Yp(t) be the uniquely determined parallel fields such that
Xp = Xp(0) and Yp = Yp(0).

Then Xp(t),Yp(t) is orthonormal at each p(t).
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Curvature Differentiation of Covariant Tensor Fields

Parallel Sections and Constant Curvature (Cont’d)

Moreover,
R(Xp(t),Yp(t),Xp(t),Yp(t)) = −K ,

a constant independent of t.

It follows that, for any parallel vector fields along p(t), say

X i
t , i = 1, 2, 3, 4,

we have
d

dt
R(X 1

t ,X
2
t ,X

3
t ,X

4
t ) ≡ 0.

Indeed the values of all of the sectional curvatures uniquely determine
the curvature.

Thus the curvature is parallel if it is constant on parallel sections πt
along any curve p(t).
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Curvature Differentiation of Covariant Tensor Fields

Symmetric Spaces and Parallel Curvature Tensors

Theorem (Cartan)

If M is a Riemannian symmetric space, then the curvature tensor is
parallel.

Any isometry of a Riemannian manifold preserves parallelism.

It carries parallel vector fields, sections, and so on, along a curve to
parallel vector fields, sections, and so on, along the image.

Moreover, isometries preserve the curvature,

Rp(Xp,Yp,Zp,Wp) = RF (p)(XF (p),YF (p),ZF (p),WF (p)).

Finally isometries carry geodesics to geodesics.

This is because parallelism, curvature and geodesics are all defined in
terms of the Riemannian metric.
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Curvature Differentiation of Covariant Tensor Fields

Symmetric Spaces and Parallel Curvature Tensors (Cont’d)

Now to show that the curvature is parallel, it is enough to show that
it is constant on parallel vector fields along geodesics.

Suppose p(t) is a geodesic.

Then, according to a previous theorem, the vectors

Xp(t),Yp(t),Zp(t),Wp(t)

of the parallel vector field determined by Xp(0),Yp(0), . . . are given by
isometries τc of M .

Therefore, the curvature is constant on parallel fields along the
geodesic p(t).
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Curvature Differentiation of Covariant Tensor Fields

Remarks

This is more general than constant curvature.

We have seen an example of a symmetric space - a compact
semisimple Lie group G with bi-invariant metric - in which the
curvatures on various sections πe at the identity vary between 0 (if
there is an Abelian subgroup of dimension two) and a positive
maximum value.

Thus G is not isotropic.

Hence, it is not of constant curvature in this metric.

However, it does have parallel curvature.

This raises the interesting question of how those Riemannian
manifolds with parallel curvature may be otherwise characterized or
described.

The answer to this is given by the following two theorems which are
stated without proof.
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Curvature Differentiation of Covariant Tensor Fields

Manifolds With Parallel Curvature

Theorem (Cartan)

Let M be a Riemannian manifold with parallel curvature. Then M is locally
symmetric. That is, each point p ∈ M has a neighborhood U, such that,
there is an involutive isometry σp : U → U, with p as its only fixed point.

Of course, a manifold may be locally symmetric without being
globally symmetric, that is, symmetric in the sense of our original
definition of symmetric space.

For example, Euclidean space or a sphere, with its usual Riemannian
metric, is no longer a symmetric space if a single point is removed,
since we have seen that a symmetric space is necessarily complete.

But it is still locally symmetric.

Even if completeness is assumed, together with parallel curvature, we
still cannot be quite sure that the space is symmetric.
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Curvature Differentiation of Covariant Tensor Fields

Manifolds With Parallel Curvature

However, if the Riemannian manifold is complete and has parallel
curvature, then we may be sure that its universal covering (with the
naturally induced Riemannian metric) is a symmetric space.

Theorem (Cartan-Ambrose)

Let M and N be complete, connected Riemannian manifolds of the same
dimension, each with parallel curvature, and suppose further that M is
simply connected.
Let p ∈ M and q ∈ N and

ϕ : Tp(M) → Tq(N)

a linear mapping which preserves the inner product and the curvature.
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Curvature Differentiation of Covariant Tensor Fields

Manifolds With Parallel Curvature (Cont’d)

Theorem (Cartan-Ambrose Cont’d)

That is, for arbitrary Xp,Yp,Zp,Wp ∈ Tp(M), we have

(ϕ(Xp), ϕ(Yp))q = (Xp,Yp)p ,

Rq(ϕ(Xp), ϕ(Yp), ϕ(Zp), ϕ(Wp)) = Rp(Xp,Yp,Zp ,Wp).

Then there is a unique C∞ mapping F : M → N with the properties:

(i) F (p) = q;

(ii) F∗ : Tp(M) → Tq(N) is the same as ϕ;

(iii) F is a Riemannian covering (that is, it is a covering such that F∗ is an
isometry on each tangent space and, thus, a local isometry).
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Curvature Manifolds of Constant Curvature

Subsection 6

Manifolds of Constant Curvature
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Curvature Manifolds of Constant Curvature

Curvature Forms

Let M be a Riemannian manifold.

Let E1, . . . ,En be an orthonormal frame field on an open set U ⊆ M.

Let ωi , 1 ≤ i ≤ n, denote the field of coframes dual to E1, . . . ,En.

Let ωj
i , 1 ≤ i , j ≤ n, denote the corresponding connection forms.

Based on preceding results, we have

Lemma

Let M have constant curvature K . Then the curvature forms
Ωj
i = dωj

i +
∑

k ω
k
i ∧ ωj

k are given by

Ωj
i = Kωi ∧ ωj .

Assume, conversely, that on a neighborhood U of each point of M there
is an orthonormal frame field E1, . . . ,En for which the uniquely determined
ωi , ωj satisfy this equation. Then M has constant curvature K .
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Curvature Range

Recall that Euclidean space with its standard Riemannian metric is a
space of zero curvature.

Also, the n-sphere of radius a in Rn+1 with the induced Riemannian
metric has constant curvature K = 1

a2
.

Thus for every nonnegative real number K , we have already found an
example of Riemannian manifold of arbitrary dimension n with
constant curvature K .

We now give an example of an n-dimensional Riemannian manifold of
constant curvature K = −1.

A slight variation can produce an example for any K < 0.
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Example: Hyperbolic Space

Let M be the open upper half-space of Rn defined by

M = {x ∈ R
n : xn ≥ 0}.

The Riemannian metric given by the line element

ds2 =
(dx1)2 + · · ·+ (dxn)2

(xn)2
.

More precisely, we note that, as a manifold, M is covered by a single
coordinate system with:

Local coordinates x1, . . . , xn;
Coordinate frames ∂

∂x1
, . . . , ∂

∂xn
.

This is because, as a manifold, M corresponds to an open subset of
Rn.
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Example: Hyperbolic Space (Cont’d)

In these local coordinates, the components of the Riemannian metric
Φ are given by

gij = Φ

(
∂

∂x i
,
∂

∂x j

)
=

δij
(xn)2

.

We use the preceding lemma to see that this manifold has constant
curvature K = −1.

Let

Ei = xn
∂

∂x i
, i = 1, . . . , n.

These define an orthonormal frame field on all of M.

We denote by ω1, . . . , ωn the dual coframes.

They are given by

ωi =
1

xn
dx i , i = 1, . . . , n.
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Example: Hyperbolic Space (Cont’d)

Consider the forms
ωj
i = δnjω

i − δniω
j .

It is easy to verify that they satisfy the equations

dωi =
n∑

j=1

ωj ∧ ωi
j and ωj

i + ωi
j = 0.

Hence, they must be the connection forms, since these are uniquely
determined by these conditions.

Finally, taking the exterior derivative of ωj
i , we obtain

Ωj
i = dωj

i −
∑

ωk
i ∧ ωj

k = −ωi ∧ ωj .

Then, by the preceding lemma, M has constant curvature K = −1.

We call this hyperbolic space.

It is denoted by Hn (for its underlying space, the “half-plane”).
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Simple Connectedness and Completeness

Now we have examples of spaces of positive, zero, and negative
constant curvature.

Note that all three examples are simply connected.

When K > 0, our example was the compact manifold Sn;
When K = 0 or K = −1, the corresponding manifolds E n and Hn are
diffeomorphic to Rn.

Since Sn is compact, it is complete.

We also know En to be a complete Riemannian manifold.

We shall prove later that Hn is complete.
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Complete Simply Connected of Constant Curvature

Theorem

Every complete, simply connected Riemannian manifold M of constant
curvature K = +1, 0 or −1 is isometric to one of the three examples
above:

To Sn, if K = +1;

To En, if K = 0;

To Hn, if K = −1.
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Manifolds of Constant Curvature (Cont’d)

Theorem (Cont’d)

More precisely, let p ∈ M, and q in either Sn,En or Hn according to
whether K = +1, 0 or −1. Assume, also, given a prescribed linear map of
Tp(M) onto the tangent space at q which preserves the inner product.
Then there is exactly one isometry F of M to the corresponding space of
constant curvature:

Taking p to q;

Such that F∗ corresponds to the given linear mapping on Tp(M).

This is an immediate consequence of the Cartan-Ambrose Theorem
once we know that Hn is complete (proved later).
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Isometries

Corollary

Let M be Sn, En or Hn and let E1p , . . . ,Enp , E1q , . . . ,Enq be orthonormal
frames at two arbitrary points p, q of M. Then there is a unique isometry
of M, that takes:

p to q;

Eip to Eiq, i = 1, . . . , n.

This shows that the group of isometries is transitive on M.

So it is plausible that in each of these cases this is a Lie group.

We already know this, however, for:

Sn, whose group of isometries is O(n + 1);
E n, whose group of isometries consists of rotations and translations
and their products.

We will study the group of all isometries of Hn only for n = 2.
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Riemannian Coverings

Let M be a Riemannian manifold.

Let M̃ a covering manifold, with covering map F : M̃ → M

Then there is a unique Riemannian metric on M̃, such that F is a
local isometry.

When M has this metric, the covering will be called a Riemannian

covering.
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Properties of Riemannian Coverings

The following facts are quite easily verified from the definitions.

(i) F carries geodesics to geodesics and each geodesic on M is covered by

a unique geodesic on M̃ ;
(ii) If M is complete, then M̃ is also complete (convergence of Cauchy

sequences is a local phenomenon);

(iii) The covering transformations are isometries of M̃.

With the aid of these facts one may take a step towards reducing the
determination of manifolds of constant curvature to a group theoretic
problem.
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Universal Covering Manifolds

Theorem

Let M be a complete manifold of constant curvature K = +1, 0 or −1.
Then the universal covering manifold M̃ is isometric to Sn, En or Hn,
respectively. Moreover, M is the orbit space of a subgroup Γ of the group
of isometries of M̃ which acts freely and properly discontinuously on M̃.

The theorem follows from the fact that M̃ is complete, simply
connected, and (since the covering mapping is a local isometry) has
the same constant curvature as M.

By the theory of covering spaces, we know that:

M = M̃/Γ;
The covering transformations Γ act freely and properly discontinuously
(as a group of isometries).

We give some indication of how this may be used by considering some
examples.
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In Search of Spaces of Positive Curvature

We look for Riemannian manifolds of constant curvature K = +1.

We must find subgroups Γ of the group of isometries of Sn, the unit
sphere, which act freely and properly discontinuously on Sn.

The isometries of Sn are contained in O(n + 1), which acts in the
usual way on the unit sphere in Rn+1.

It follows that Γ ⊆ O(n + 1).

The assumption that Γ acts freely means that no element of Γ, except
the identity, leaves a point of Sn fixed.

Let A ∈ Γ and A 6= I .

Then A cannot have +1 as a characteristic value.
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In Search of Spaces of Positive Curvature (Cont’d)

Moreover, Γ must be a group of finite order.

Otherwise, there must be an x ∈ Sn, such that

Γx = {Ax : A ∈ r}

has a limit point.

This would contradict proper discontinuity.

Thus, we must find finite subgroups of O(n + 1) no element of which
(except the identity) leaves a vector x fixed.

This is a necessary condition for Γ.

However, it can be shown that it is also sufficient.
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Example

The simplest example of a subgroup Γ of O(n + 1) of the type
described is the group consisting of two elements, Γ = {±I}.
The orbit space Sn/Γ is the collection of all antipodal pairs of points
on Sn.

As we have seen earlier, this is just the projective space Pn(R).

Thus, for every n, we have at least two inequivalent spaces of
constant curvature:

The real projective space;
Its universal (Riemannian) covering space Sn.
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The Case of Even Dimension

Fact

If n is even, then Sn and Pn(R) are the only complete manifolds of
constant curvature K = +1.

Let Γ be a properly discontinuous group of isometries acting freely on
Sn.

Then Γ ⊆ O(n + 1).

So each A ∈ Γ is an (n + 1)× (n + 1) orthogonal matrix.

The degree of its characteristic polynomial is an odd number n + 1.

Therefore, A must have a real characteristic value.

But the characteristic values of an orthogonal matrix are of absolute
value one.

Thus, A has ±1 as a characteristic value.
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The Case of Even Dimension (Cont’d)

We have seen that only the identity on Γ can have +1 as a
characteristic value.

Hence −1 is a characteristic value of A.

This implies that A2 has +1 as characteristic value.

So A2 = I .

Hence, each of the characteristic values of A is either +1 or −1.

So, one of the following holds:

All are +1 and A = I ;
All are −1 and A = −I .

This completes the proof when combined with the preceding example.
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Example

When n is odd, other possibilities can occur.

As an indication, we will show that, in the case of S3, there exist
many examples of finite subgroups Γ ⊆ O(4), which act freely on S3

and, thus, give manifolds S3/Γ of constant positive curvature.

The examples are based on the algebra K of quaternions.

That is, on the real linear combinations

q = x + y i + z j + wk

of the four symbols 1, i , j , k with:

The usual rules of multiplication;
Componentwise addition.
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Example (Cont’d)

We denote by q, the conjugate of q,

q = x − y i − z j − wk .

We denote by ‖q‖ the usual norm

‖q‖ = (qq)1/2.

Then K is in obvious one-to-one linear correspondence with R4.

This norm corresponds to the standard norm in R4.

Consider the set of quaternions of norm one

K 1 = {q : ‖q‖ = 1}.

They correspond to S3 ⊆ R4.
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Example (Cont’d)

As usual, we identify:
K and R4 as vector spaces and as manifolds;
K 1 and S3 as manifolds.

For all q1,q2 ∈ K ,
‖q1q2‖ = ‖q1‖‖q2‖.

So K1 is a group with respect to quaternion multiplication.

For q ∈ K1, consider then left translation Lq : K → K , defined by

Lq (x) = qx .

It is an R-linear mapping of K onto K .

Moreover, it preserves the norm of x ,

‖Lq (x)‖ = ‖x‖.
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Example (Cont’d)

So Lq is an orthogonal linear transformation on K = R4.

In brief, S3 = K1 is a group space and left translations are orthogonal
transformations, in fact isometries, of S3, with its usual Riemannian
structure.

But no left translation, except the identity, can have a fixed point.

So we need only find examples of finite subgroups Γ of K1.

Each such example determines a three-dimensional manifold of
constant positive curvature.

Further, they are all determined in this way.
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Example (Cont’d)

To find finite subgroups of K1 one uses the following fact.

There is a natural homomorphism π : K1 → SO(3) which is onto and
has kernel +1 (+1 is the unit quaternion).

We now describe this homomorphism.

Let R3 be identified with the subspace of K of all quaternions of the
form q = y i + z j + wk , with real part x = 0.

Then to each q ′ ∈ K1 we let correspond the rotation π(q ′) of R3

given by
π(q ′) : q 7→ q ′q(q ′)−1.

Now, if Γ1 ⊆ SO(3) is a finite subgroup, then Γ = π−1(Γ1) is a finite
subgroup of K1.

Such subgroups of SO(3) are easy to find - the group of symmetries of
any regular solid (omitting those of determinant −1) give examples.
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Spaces of Zero Curvature

Now consider the Riemannian manifolds which have Euclidean space
of the same dimension as their universal Riemannian covering space.

They are the (complete) spaces of zero curvature.

Thus they are of the form M = En/Γ, the orbit space of a subgroup Γ
of the group of isometries (rigid motions) of En.

Suppose we identify En with Rn and use vector space notation.

Then each isometry is of the form

x → Ax + b,

where:

A ∈ O(n) and determines a rotation of the space;
b = (b1, . . . , bn) and determines a translation of the space.

Locally, the geometry of any such M is just that of Euclidean space.

So these spaces might seem to lack interest, but this is not the case.
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Spaces of Zero Curvature (Examples)

The global behavior between En and M = En/Γ may be different.

A particular example is given by the global behavior of geodesics in
such spaces.

We have already noted this in the case of two examples.

The cylinder, which is just E 2/Γ with

Γ = {x → x + ne1 : e1 = (1, 0), n ∈ Z};

The torus T 2, which is obtained as the orbit space of the group of
translations

{x → x + ne1 +me2 : n,m ∈ Z, e1 = (1, 0), e2 = (0, 1)}.
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Crystal Structures

Historically, the study of these spaces is linked to that of the study of
crystal structures on the plane E 2 and in Euclidean space E 3.

That is, to uniform coverings of the plane by congruent polygons and
of E 3 by congruent polyhedra.

It is fairly easy to convince ourselves
that the symmetries of such crystalline
structures - rigid motions carrying the
structures onto themselves - form a
subgroup Γ of the group of rigid mo-
tions which acts properly discontinu-
ously.

However, elements of such groups may well have fixed points.

So these groups are somewhat more general than those which
generate examples of manifolds of zero curvature.
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Crystallographic Groups

It was proved in the 19th century that there were only a finite number
of crystal structures on E 3.

In his address of 1900, Hilbert asked whether the number of possible
isomorphism classes of properly discontinuous groups of motions Γ of
En for which the orbit space En/Γ is compact is finite, for every n.

These are called crystallographic groups.

Hilbert’s question was answered affirmatively by Bieberbach in 1911.

This implies, in particular, that, for every dimension n, there exist
finitely many compact Riemannian manifolds of curvature zero.

Among these, of course, is the torus T n.

It is a consequence of Bieberbach’s work that every such manifold has
the torus as covering space.
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The Hyperbolic Space of Dimension 2

Consider H2 as given in a preceding example.

We write (x , y) for (x1, x2);
We identify H2 with the upper half-plane of the complex numbers C by
the correspondence

(x , y) ↔ z = x + iy .

Then H2 is the open subset of C, consisting of all complex numbers z
with positive imaginary part Imz > 0.

George Voutsadakis (LSSU) Differential Geometry December 2024 169 / 180



Curvature Manifolds of Constant Curvature

The Hyperbolic Space of Dimension 2 (Cont’d)

We may then write the Riemannian metric, or line element

ds2 =

2∑

i ,j=1

gijdx
idx j ,

in the complex or real form

ds2 =
dzdz

(Imz)2
=

dx2 + dy2

y2
.

We have considered this Riemannian manifold and its isometries.

The reason for passing to complex coordinates is that it makes it
much simpler to define and work with the group of isometries.

Of course, other representations of H2 and its group of isometries are
often used, some of which extend to Hn for all n.
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Linear Fractional Transformations

Recall that mappings on C of the form

z 7→ w =
az + b

cz + d
,

wih a, b, c , d ∈ C such that ad − bc 6= 0, are isometries of H2.

In analytic function theory they are called linear fractional

transformations.

Theorem

The group G of linear fractional transformations, such that a, b, c , d are
real numbers and ad − bc = +1, is exactly the group of isometries of H2,
identified with the upper halfplane of C.
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Linear Fractional Transformations (Cont’d)

Theorem (Cont’d)

The mapping F : Sl(2,R) → G defined by

(
a b

c d

)
7→
(
z 7→ w =

az + b

cz + d

)

is a homomorphism of Sl(2,R) onto G , with kernel ±I .

Almost all statements were proved in a previous example.

It remains to show that this group contains all of the isometries.
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Linear Fractional Transformations (Cont’d)

Note that the last statement is verified by a straightforward
computation.

We show, next, that the first statement is correct.

Let w be the image of z ∈ H2 by a transformation of G .

Then

Imw =
Imz

|cz + d |2 > 0.

So the upper half-plane maps onto itself.

If we compute dw , we find that

dw =
dz

(cz + d)2
.
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Linear Fractional Transformations (Cont’d)

From dw = dz
(cz+d)2

it follows that

dwdw

(Imw)2
=

dzdz

(Imz)2
.

So ds2 is preserved.

This is a shorthand way of seeing that the components of gij
transform as they should for an isometry.

This mapping could be given in terms of real and imaginary parts.

That is, one could compute the functions u(x , y) and v(x , y), such
that

w = u(x , y) + iv(x , y).

Then the mapping could be written without use of complex variables.

However, the computations become more difficult.
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Linear Fractional Transformations (Cont’d)

We next see that this group G contains all isometries.

Recall, first, that it acts transitively on the upper half-plane.

Recall, also, that it is transitive on directions.

Indeed, it has been shown that the orbit of i =
√
−1 is all of H2.

This implies transitivity.

It also implies that the isotropy subgroup of i consists of elements of
G corresponding to matrices in Sl(2,R) of the form

(
cos θ sin θ

− sin θ cos θ

)
.

This subgroup of G is transitive on directions at i .

In fact, it acts as SO(2) on the tangent space to H2 at i .

These facts, together with a previous corollary, prove the assertion.
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Fractional Transformations and Geodesics

We note that angles on H2 in terms of the given Riemannian metric
are the same as angles on R2.

From complex function theory we have the following facts.

Linear fractional transformations are analytic mappings on the complex
plane.
As such, they are conformal, that is, they preserve angles between
curves.
Linear fractional transformations carry circles and straight lines of C
into circles and straight lines.

It follows that any circle which is orthogonal to the real axis will be
carried by any element of G into a circle orthogonal to the real axis or
a vertical straight line.

We can show that vertical straight lines are geodesics of H2.

It follows that any circle orthogonal to the real axis is also a geodesic.
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Fractional Transformations and Geodesics (Cont’d)

A little Euclidean geometry shows that, through a given z0 ∈ H2,
there is exactly one circle (or vertical line) tangent to each direction
at z0 and orthogonal to the real axis.

Now isometries take geodesics to geodesics.

So this gives every geodesic through z0.

One important consequence is that every geodesic can be extended to
infinite length so that H2 is seen to be a complete metric space.

It is sufficient to check this for just one geodesic, namely,

x = 0, y = t, 0 < t < ∞.

The length of this geodesic from t = a to t = b is
∫ b

a

dt

t
.

So it is unbounded in both directions, i.e., as a → 0 or b → ∞.

This shows it is indefinitely extendable.
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Fractional Transformations and Geodesics (Cont’d)

We also saw that H2 is an example of a symmetric space, which
means that it must be complete.

We have previously noted that:

H2 is the space of non-Euclidean geometry;
It is easy to see from this description of geodesics that Euclid’s
postulate of parallels is not satisfied (although all the other postulates
of Euclid are!).

This behavior of geodesics should be contrasted with that on S2 and
P2(R), spaces of constant positive curvature.

On those, every pair of geodesics intersect, twice on S2 and once
P2(R).
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Completeness of Hn

Note that any translation of Hn in a direction parallel to the plane
xn = 0 is an isometry.

The same holds for a rotation of the underlying Rn leaving xn fixed.

That is, a linear transformation of the variables x1, . . . , xn−1, with
orthogonal matrix, is an isometry.

Thus any 2-plane determined by a point x ∈ Hn and unit vector Xx at
x can be carried to the submanifold

H2 = {x ∈ Hn : x1 = · · · = xn−1 = 0}

by an isometry of Hn.
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Completeness of Hn (Cont’d)

We can verify that geodesics of H2 are geodesics of Hn.

So, from the facts concerning H2 and known properties of geodesics,
every geodesic of Hn can be extended to infinite length.

This means that Hn is complete.

It also means that the geodesics of Hn are exactly the semicircles
whose center lies on the (n − 1)-plane xn = 0 and whose plane is
perpendicular to it.
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