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Curvature

o Suppose that M is an imbedded surface.

o We consider only a portion of M covered by a single coordinate
neighborhood U, ¢.

o Moreover, we assume that W = o(U) is a connected open subset of
R?, the uv-plane.

o Thus, p € U C M has coordinates (u(p), v(p)) = »(p)-

o Take the Euclidean three-dimensional space with a fixed Cartesian
coordinate system, i.e., identify E3 with R3.

o The imbedding or parameter mapping ¢! : W — U C R3 is given by

x'=fi(u,v), i=1,2,3

o Let the coordinate frames be

0 0
fi=e (a—) and B =gt (a—>
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Curvature

o Suppose that M is orientable and oriented with U, ¢ giving the
orientation.

o Orientation is an important condition on M, since we are then able to
define, without ambiguity, the unit normal vector field N to M.
o It is the unique unit vector at each p € M which is:
o Orthogonal to T,(M) C T,(R3);
o So chosen that Ej, E;, N form a frame at p with the same orientation

as %, %, %, the standard orthonormal frame of R3.
o Length and orthogonality are defined in terms of the inner product
(X, Y) of Euclidean space.

o The inner product induces a Riemannian metric on M by restriction.
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Curvature

o Let p(t) be any differentiable curve on M with:

o p(0) = p;
o p(0) = X, € To(M).

o Restricting N to p(t) gives a vector field N(t) = N, along p(t).
o This may be differentiated in R3 as a vector field along a space curve,
giving a derivative < dt , which is itself a vector field along p(t).

o Applying the inner product rule and
using (N, N) = 1, we have

d dN

o This means that ¢ dt is orthogonal to
N(t) at each point p(t).

o Hence, E is tangent to M, i.e., d’:’ € Tpe)(M).
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Curvature

The vector <¥|,_ depends only on X, and not on the curve p(t) chosen.

Let
dN

S(Xp) = —E|t=0-
Then X, — S(Xp) is a linear map of T,(M) — T,(M).
o Consider an arbitrary element of /,(M)
Xp = aE1p + bEsp.

It is written as a linear combination of the coordinate frame E;,, Bz,
of the coordinate neighborhood U, ¢ containing p.
Let
p(t) = (FH(u(t), v(1)), F2(u(t), v(1)), F(u(t), v(1)))
be any differentiable curve with p(0) = p and p(0) = X,,.
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o Suppose p(0) has coordinates vy = u(0) and vy = v(0).
Since p(0) = X, we have p(0) = aEyp + bEyp, that is:
o u(0) = g
o ¥(0) = b.
We denote by n’(u, v) the components of N on U relative to the
standard frames in R3,

0 0 o)
N = n'(u, V)W + n?(u, V)W + n3(u, V)ﬁ

Then, along the curve

3

N(t) = n'(u(t), v(t))aii.

i=1
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o Moreover,
(‘Z/_’;I)O = Z?:l [(%_'Z:)so(p)u(o) "'(%_’\I/f)@o(f))‘.’(o)} %
3 n 3 n
= 3(2: 1 %u)#’(l’)ax) +b(z’ 1(%‘/)90(,))6)(’).

This shows that S(X;) depends linearly on the components of Xj,.
Now %h:o lies in T,(M).

So §: Tp(M) = T,(M) is a linear map.

Moreover the only values that appear in the formula are:

o (u(0), v(0)), the coordinates of p;
o 1(0), v(0), the components of p(0) = Xp.

Thus, (%)o depends on p and X, and not on the curve used in the
calculation.
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o The linear map S : To(M) — T,(M), given at each p € M, is
independent of:
o The choice of coordinate system U, ¢ on M,
o The Cartesian coordinate system used in Euclidean space.
o This is because N is defined using only the orientations of M and
Euclidean space and the inner product of the Euclidean space.

o The differentiation depends only on the existence of parallel

orthonormal frames in Euclidean space.

o Thus N, ‘;—’X and S are independent of coordinates and involve only
the geometry of M as an imbedded surface in Euclidean space.

o The operator S has been called the shape operator.
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o Suppose M is the xy-plane.
Then N = E3, a constant vector.
So 5(Xp) = 0.
o Suppose M is a sphere of radius R.
The unit normal N at (x!,x2,x3) € M is given by

N—X_li_FX_zi_i_X_:Si
T ROx! ROx2 R OxX3

Suppose we move in any direction tangent to the sphere along a great
circle curve, parametrized by arclength so that || X,| = 1.

Then
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o Suppose M is a C° submanifold.

o Recall the linear map S : Tp(M) — T,(M), more accurately S,
which we have determined at each p € M.

o We may use S to define a C* covariant tensor field on M.
o Let S: V — V be a linear operator on a vector space V with inner
product (X, Y).
o Then the formula
V(X,Y)=(5(X),Y)
defines a bilinear form, or covariant tensor of order 2, on V.
o The form W is symmetric if and only if

(5(X), Y) = (X, 5(Y))

holds for all X,Y € V.
o If W is symmetric, S is called symmetric or self-adjoint.
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Theorem

S(X) is a symmetric operator on the tangent space T,(M) for each
p € M and V(X,Y) is a symmetric covariant tensor of order 2.
The components of S and W are C* if M is a C*° submanifold.

o To prove the statements we compute the components of W(X, Y).
Let U, ¢ be a coordinate neighborhood.
Let o1 : W — U C M be the corresponding parametrization.
Below we compute the components of W(X, Y) relative to the
coordinate frames

0 9
e B
oN

We use 5 and to denote the derivatives of N along the
coordinate curves on M obtained by holding one coordinate fixed and
allowing the other to vary (as parameter along the curve).
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o We have
V(E, B) = (S(E), B) = — (9, B),
V(E, B) = (S(B),B)= - (9, B),
V(Ey, 1) = (S(E), B1) = — (9%, B),
V(E, B) = (S(B2), B2) = — (9%, B»).

Denote by X = X(u, v) the position vector from 0 to ¢~ 1(u, v),
0 0 0
1 2 3
= +f +f .
X f (U, V) % (U, V) % (U, V) X

Then X, = E; and X, = E, are just the vectors whose components
are the corresponding derivatives of the components of X with
respect to u and v.

That is,

X
8—)<=E1 and XV=8—=E2.
Ju

Xu= ov
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o Recall that (N, X,) =0 = (N, X,).

Differentiate to obtain

_(%_ILY?XU)
- (68_I\\/IvXu)
- (86_,\\/15XV)

(N, Xuw) = 3 i 285,
_ O f!
(NaXvu) - nim

(N, Xw) = 3 2L

= (N, Xu)

— oON

- = \ouw

So the components of W, and hence of S, are C* if M is.

The second relation shows that W(X, Y) = V(Y X).

So the tensor W is symmetric.

George Voutsadakis (LSSU)

Differential Geometry

XV)v



Curvature

o Consider the 2 x 2 matrix of the components of the symmetric tensor
wv

(£) = (V(Ei, Ej)).
o It will often be written
where:

{ m
m n )’
o l= (N7qu) =l11;

o m=(N,Xu) =l = lo;
o n= (N,XW) = fzz.

o The bilinear form W(X, Y) is called the second fundamental form
of the surface M.
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o The inner product (X, Y) is called the first fundamental form.

o Recall that, in the general Riemannian case, the components of the
Riemannian metric (X, Y) are denoted by gj;.

o However, in the classical case of a surface M in Euclidean space, one
often uses E, F, G.

o Thus,
811
812
822

E = (Xu, Xu),
F= (XU7XV) = (XV7XU) =F= 821,
G = (X, X,).

Remark: It is a classical theorem of differential geometry (which we
shall not prove) that two surfaces My and M, in R3 are congruent if
and only if they correspond in such fashion that, at corresponding
points, both fundamental forms agree.
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Theorem

At each p € M, the characteristic values of the linear transformation S are
real numbers ki and ky, k1 > ko.

o If ky # ko, then the characteristic vectors belonging to them are
orthogonal.

o If ky = ko = k at p, then S(X,,) = kX, for every X, in T,(M).

The numbers ki and ko> are the maximum and minimum values of
W(Xpaxp) = (S(Xp)vXp)a
over all unit vectors X, € Tp(M).

o These statements are taken directly from theorems of linear algebra.
o Here we only sketch a proof for the case k; # ko.
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o All vectors are elements of T,(M), p fixed.
Suppose k1 > ko are the characteristic values.
They are real, since S is self-adjoint.
Let F1, F> be unit characteristic vectors corresponding to ki, ko.
We have

ki(F1, F2) = (S(F1), F2) = (F1,S(F2)) = ko(F1, F2).

This implies that, when k; # ko,
(F1,F2) =0.

Replacing F, by —F; if necessary, we may suppose Fi, F; is an
orthonormal basis with the same orientation as T,(M).
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o Next we show that k; and k> are the maximum and minimum values
of (5(Xp), Xp), for unit vectors Xp.
Any unit vector X, € T,(M) may be written

Xp = cos «9?1 + sin 9?2.

Let k(0) denote (5(Xp), Xp) = V(Xp, Xp).
F1, F> is an oriented, orthonormal frame.
So we have
k(6) = ky cos® 6 + ko sin 6.
Differentiating gives
dk
= _9
do (
Hence, the extrema of k() occur when 6 = 0, %77, T or %77.
In other words, when X, = +F; or £F».
So ki and ky are maximum and minimum values of (5(X5,), Xp).

George Voutsadakis (LSSU)
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o The values k; and k> are the maximum and minimum of the
expression
V(Xp, Xp)
(Xp, Xp)

over all X, # 0 in Ty(M).
o The points p at which k; = ky are called:
o Umibilical points of M, if k; # 0;
o Planar points of M, otherwise.
o Note that a sphere of radius R consists entirely of umbilical points
with 0

ki = = = ko.
1= 5 2

o Similarly, if M is a plane, every point is planar with k; = 0 = k».
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o We shall now interpret k(6) = W(Xp, X,) geometrically.
o Let p be a point of M and X, a unit tangent vector at p.

o X, and N, determine a plane on which
we may take:

o p as origin;
o X,, N, as unit vectors along the axes
(in that order).
o This gives a coordinate system and
orientation on the plane.

o The plane intersects M along a curve which, of course, lies on M and
on the plane, and passes through p.

o It is called the normal section at p determined by Xp.

o There is clearly such a curve for each X,,.

George Voutsadakis (LSSU)



Curvature

o The vector N, is the normal to the curve at p.

o Moreover, X, is the unit tangent vector to the curve at p.

o Write the curve as p(t), with p(0) = p and arclength as parameter.
o We have p(t) = %, a unit vector for every t.

o So we get p(0) = Xp.

o Differentiate (N, %) = 0 along the curve.

o We find that

dN dp d?p ~
(Fa)=-(vG@)=-F

the curvature of the plane curve p(t), as defined previously.
o In particular, at p = p(0),

(%x) = (S(Xp), %)
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o Let again, as above,
Xp = cosOF; +sin0F;.

o We find that k(6) = k is the curvature of the normal section
determined by Xj,.

o For this reason k(0) is called the normal curvature (of the section
determined by Xp,).

o ki and ky, the maximum and minimum of k(), are called principal
curvatures at p.

o The corresponding unit vectors Fyp, F2p, (chosen to conform to the
orientation) are called principal directions at p.
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o To study the surface at p we choose an xyz-coordinate system in
Euclidean space so that:
o The origin is at p;
o Tp(M) is the xy-plane;

o The principal directions Fi,, F2, and unit normal N, at p are 2, 2

ox' Oy’
%, unit vectors on the x-, Y-, Z-axes, respectively.
o Let x=u, y=vand

z="f(u,v)

be the (parametric) equation of the surface.

o Then we may identify the xy- and uv-planes.

o Moreover, we may assume that the parameter mapping ¢! takes
some open set W on the xy-plane onto an open set U on M.
o The conditions then imply:
o £(0,0) = 0;
o £(0,0) =0=1,(0,0).
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o If we compute the components of the first fundamental form at p, we
obtain E=1= G and F = 0.
o For the second fundamental form, recall that

et (xy) = (% y, F(xy))

is the parametric representation of M.

o Thus, at p,
¢ = (£ 52) = f,
= (%afxy%) = fay»
n = (%’ fyy%) = fyy.

o Now the fact that we have chosen coordinate axes so that a% and a%
are principal directions tells us that m =0 and £ = ky, n = ko.
o Thus, at x =10, y =0, we have

k(0) = frx cos® 0 + £, sin? 6.
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o Let f(x,y) be expanded in Taylor series at (0,0).
o Then
z = f(x,y) = fx(0,0)x* + £,,(0,0)y? + Ry,
where R contains terms of higher order.
o Let £,(0,0) = a and f,,(0,0) = b.
o Then we see that the normal sections of z = ax? + by? have the same
sectional curvatures at p as does the given surface.

o Therefore the quadric surfaces must give typical examples.
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o z=ax’+ by?, ab > 0.

ab<0(a>0, b>0)

o This is an elliptic paraboloid.

o The principal curvatures are a and b.
o If both are positive, it lies above the xy-plane;
o If both are negative, it lies below.

o In either case when k; and k> have the same sign, the surface is
(locally) on one side of T,(M).
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) z:ax2+by2, ab=0.

______ ]
Vi \J

ab=0(a>0, b6=0)

J,

o If both are zero, we have the xy-plane as our surface;

o If one, say b =0, then we have a parabolic cylinder which is above
the xy-plane, if a > 0.
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o z=ax’+ by? ab < 0.

X

ab<0(a >0, 6<0)

o In this case we have a hyperbolic paraboloid or saddle surface with
the xy-plane tangent at the saddle.
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o E.g., consider a=1and b= —1.

b <0(a >0, <0

o Then
k(8) = cos® 6 — sin” 6.

o Hence k(0) varies from +1 to —1 and is zero at =7, £37.

o When ki > 0 and ky < 0, then the surface must have points (locally)
on both sides of T,(M).
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Subsection 2

George Voutsadakis (LSSU) Differential Geometry



Curvature

o The negative of the trace and determinant of any matrix of the linear
transformation S are the coefficients of the characteristic polynomial
of S and are important invariants.

o The determinant is the product of the characteristic values,
K = kiko.

o It is called the Gaussian curvature of the surface.
o The trace is the sum of the characteristic values ki + k».

o The quantity
1
H= E(kl + k2)

is called the mean curvature of the surface.

o We will compute these quantities directly from the-components of the
fundamental forms, using any parametrization of the surface.
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We have

_ In — m? and H_lGZ—QFm-i—En

K= —— =
EG — F? 2 EG- F?

o Consider the parametrization of M near p, i.e., on the coordinate
neighborhood U, ¢.

Let £; = X, and E, = X, be the corresponding coordinate frames.
Suppose the components of the operator S, in terms of Eq, Ep, are

S(X,) = aX,+ bX, and S(X,) = cX, + dX,.

We may write

K =

aﬂamwﬁﬁd
c d

George Voutsadakis (LSSU) Differential Geometry



Curvature

o Let x be the cross product of vectors in 3-dimensional Euclidean
space.

In terms of X, X, we have

KN = K(X,x X,)=5(X,) xS(X,);
2HN = 2H(X, x X,) = S5(Xy) x X, + Xy x §(X,).
Note that

(Xu X Xy, Xy x X)) = || Xy x X, || = EG — F2.

For any vectors X, Y, U, V of R3, we have the Lagrange identities

(X,U) (X,V)

(X xY),(Ux V)= (Y.U) (Y.V) |
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o We obtain the formula for K by taking inner products on both sides
of the first equation with X, x X,.

K(Xy x Xy, Xy X Xy) = (S(Xu) x S(X,), Xy X X,)
(S(Xu), Xu)  (S(Xu), X0)

— 2 =S
K(EG — F?) (S(X,), X)) (5(X,),%,)
K(EG — F?) = {n— m?
n — m?
=
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o We obtain the formula for H by taking inner products on both sides
of the second equation with X, x X,,.

2H(X, x Xy, Xy x X,) = (5(Xy) x Xy, Xy x X))
+ (X X S(X), X X X)
(5(Xu), Xu)  (S(Xu), Xv)
(XV7XIJ) (XV)XV)
(Xu, Xu) (Xu, Xv) ‘
(S(Xv), Xu) (S(Xv), Xv)
2H(EG — F?) = (G — Fm + nE — mF
H— LG —2Fm + En
2(EG — F?)

2H(EG — F2) =

#
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o The Gaussian curvature K is the product of the principal curvatures
kl and k2.
o Thus, K > 0 at p, if both k1 and k» are different from zero and have
the same sign.
o If k > 0 and ky > 0, the curve of each normal section curves toward
the normal.
So the surface lies entirely on the same side of the tangent plane as the
normal N, sufficiently near the point p.
o If k1 <0 and ky < 0, each curve goes away from the normal.
So the surface (near p) lies entirely on the opposite side to N,.

o Equivalently, introducing local coordinates in R3, K > 0 if and only if
the function z = f(x, y) has a strict relative extremum at the point.
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Suppose K < 0.
Then ki and ky are different from zero and have opposite signs.

This means that the surface is like a saddle surface.

© © o o

Some normal sections are concave toward the normal N and some
concave away from it.
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o If k =0, one of the principal curvatures must be zero and then little
can be said.
o In addition to the plane, we have:

o z=(x?+ y?)?, obtained by revolving z = x* around the z-axis.
o z = x(x? — 3y?), the so-called monkey saddle.

4

This is similar to the usual saddle surface except that there are three
valleys running down from the pass.
Two for the monkey’s legs and one for its tail.
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o Surfaces for which the mean curvature vanishes are of special interest.

o They are minimal surfaces, like the surfaces
formed by a soap film stretched over a wire
frame.

o They have the defining property of being

surfaces of minimal area among all surfaces
with a given boundary (the wire frame).

o Thus, in a sense, they generalize the geodesics-curves of minimal
length joining two fixed points.

o Like the equation of geodesics, the vanishing of the mean curvature
guarantees the property of minimality only in a local sense.
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o Consider a torus.

o Look at the two circles running around the torus which are the points
of contact with the two parallel tangent planes orthogonal to its axis.

o We intuitively we can see that they divide the torus into:

o An inner portion on which K < 0;
o An outer portion at which K > 0.

o Along the two circles K = 0, since along these circles the normal
vector remains parallel to the z-axis.
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©

Consider a parametrization of the saddle surface z = xy,

(u,v) = (u, v, uv).

o Then 9 9 9 9
Xy, = — — Xy = =— —.
Ox! + Y ox3 and Ox? + Yox3
o So we get
E F\ _ [1+ v2 uv
F G ) w  14u?® )
o A normal to the curve is given by

AN = (—v,—u,1),

where the normalizing factor is A = (1 + v + v2)1/2.
o Moreover, we have
0

Xuw =0=X,, and Xvuzﬁ-
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o So we obtain

0= (N.Xw) = (N,0) =0
m = (N, Xu)=(N, 3X3)=%;
n = (N,X,)=(N,0)=0.

o It follows that

(n 7))

o Therefore, using the formulas, we compute

>= O

0—-L _1
bn—m? __ 22 T2
EG—F2 = (1+v2)(1+u?)—(uv)?2 — >\

1 GO—2Fm+En _ 1 0—2uv3+40

=—V;

—2uv

27 EG-F2  — 2(1+v))(1+u?)—(uv)?
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o The entire subject of differential geometry was influenced by a very
profound discovery of Gauss which may be stated as follows.

Theorem (Gauss)

Let M; and M, be two surfaces in Euclidean space.

Suppose that
F: M1 = M2

is a diffeomorphism between them which is also an isometry.
Then the Gaussian curvature K is the same at corresponding points.

o To see the meaning of this theorem we consider some examples.
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o Let M; be a plane.
o Let M, a right circular cylinder of radius R in Euclidean space R3.
o Suppose we roll the cylinder over the plane.

o Then we obtain a correspondence which does not change the length
of curves or the angle between intersecting curves.

o Hence, it is an isometry.

o We know that K = 0 for the plane.

o According to the theorem the same must be true of the cylinder.

o Note that they do not have the same second fundamental form.

o Thatis, £, m and n do not vanish identically for the cylinder.

o In fact curvatures of the normal sections vary from zero to %.

o This depends on the imbedded shape of the surface.

o By contrast, K depends only on the Riemannian metric induced on M.
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Let M; be any open subset of the sphere of radius R.
Let M, be a plane.
We know that K1 = % #0and K, =0.

The theorem implies that there exists no diffeomorphism of M; into
M, that is an isometry.

© © o o

o For example, any plane map of a portion of the globe must distort
some metric properties (distance or length of curves, angles, areas,
and so on).
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o There do exist surfaces isometric to, but not congruent to, say, the
upper hemisphere.

o Suppose this hemisphere to be
made of a thin sheet of brass.

o It is intuitively clear that we may
bend it by squeezing at the edge
without introducing any creases.

o This will give a surface isometric to
the original since length of curves is
unchanged.

o It follows that K is the same at corresponding points.

o However, the surfaces are not congruent.
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o Among the more interest-
ing examples of (locally)
isometric surfaces are the
helicoid and the catenoid.

o The first surface is given parametrically by
(u,v) = (ucosv,usinv,v), u>0, —oo<v <.

It is similar in shape to a spiral staircase.
o The catenoid is obtained by revolving the catenary x = cosh z around
the z-axis. We may parametrize it as

(z,0) — (cosf cosh z,sinf coshz,z), —oco <z < o0, 0<8 <27.

o The isometry between these surfaces is given by v = 0, u = sinh z.
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o Recall that, at a point p € M, the value of the Gaussian curvature K
is given by

_ An— m?

- EG - F%

where E, F, G and ¢, m, n are the components of the first and second

fundamental forms, respectively, relative to a system of local

coordinates u, v in a neighborhood U of p.

The value of the ratio K is independent of the coordinates chosen

although E, F, G and ¢, m, n are not.

Suppose the surface in R3 is given by

K

X = X(u,v).

Then
E1 = Xu and E2 = XV.
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o We have seen that

e () (32)- (Se) ()
We also have

E=(E,E), F=(E,E), G=(E,E).
Thus, we obtain

EG — F?2 = (Ey, B1)(B, B) — (E1, E2)%

But E, F, G are the coefficients of the Riemannian metric.
So it is enough to show that

tn—m* = K(EG — F?)

depends only on the Riemannian metric.
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o We shall show that
In — m = R(El, E2, E2, El)

where R(X,Y,Z, W) is the covariant tensor of order 4 defined
previously.
Then K is given by

R(Ey, B2, B, B1) _ R(E1, B2, Ep, E1)
EG — F? (El,El)(Eg,Eg)f(El,Eg)T

K =

The left side is independent of local coordinates.

Thus, the right side is also.

In fact, it can be shown that replacing E;, E; at a point by any pair
of vectors F1, F», spanning the same plane, leaves unchanged the
expression on the right.

We shall prove that expression gives K.
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o This implies that the expression, defined at each point of an
imbedded surface M, is independent of local coordinates on M, and,
moreover, it depends only on the Riemannian metric.

Clearly this is true of the denominator.
We recall that, by definition,

(R(E1,BE2) - B2, E1) = (VEVEE — VEVE E — Vi 1B, B1).

This depends only on the Riemannian metric by the Fundamental
Theorem of Riemannian Geometry.

In the present case, E; and E, denote coordinate frames of local
coordinates u, v and we know that [E7, Ex] = 0.

So we must show only that

fn — m2 = (VE1V52E2 — VE2VE1E2, El).

We may compute the right-hand side using the definition of Vg Z,
i =1,2 (for any tangent vector field Z).
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o Take g_z and g_z_
u v
Project them to the tangent plane at each point of the surface to
- DZ __ DZ __
obtain U — VEIZ and B VEzz.
If N denotes the unit normal, and E£; = X, and E; = X, then we get

vE1E2 — Xuv - (N,Xuv)N, vE2E2 = va - (Nava)N-

Differentiate again and project onto the tangent plane (by subtracting
the normal component of the derivative).
This gives
VEQ(VE1E2) = Xvuv - (NaXuv)Nv - ClN;
VEI(VEZEQ) = Xuvv - (Naxvv)Nu - C2N-

We next take an inner product of each term above with E;.
As (N, E;) = 0, the terms involving ¢; and ¢, multiplying N vanish.
So there is not need to compute ¢; or ¢.
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o For R(El, E>, E;, El) we obtain

(VElvEg E2 - VEszl E27 El) = (Xuvw Xu) - (N7va)(Nua N,_,)
_(Xvuw Xu) + (N7 Xuv)(Nw Xu)-

This must be seen to be equal to the earlier evaluation of £n — m?

above, namely,
tn— m? = (Ny, X,)(Ny, X,) = (Nu, X)) (N, X,)).

The proof is finished by noting that:

© Avuv = Auw,

o Since (N, X,) =0= (N, X,), we have

(N, X)) =—(N,,X,) and (N, X,)=—(NyX,).
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Subsection 3
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o We have defined previously the curvature tensor R(X, Y, Z, W) of a
Riemannian manifold M.

o Recall that it is a covariant tensor field of order 4 whose value at any
point p € M is determined as follows.

o Let X,Y,Z, W be vector fields whose values at p are given, say
Xpy Yo, Zp, W
o Then

R(Xps Yo, Zpy Wp) = (Vx,VvZ — Vv, VxZ — Vix.y],Z> Wp)-

o We have shown that this is independent of the vector fields chosen.

o Moreover, it defines a C° covariant tensor field.
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o Similarly, the vector fields X, Y define at each p € M a linear
operator, the curvature operator, R(X,, Y,) on T,(M) by the
prescription

R(Xp, Yp) - Zp = Vx,VyZ — Vy,VxZ — Vix.v], Zp-

o It is, like the curvature tensor, linear in X, Y, Z in the sense of a
C*°(M) module.

o That is, if f € C°(M), then
fRIX,Y)-Z=R(fX,Y)-Z = R(X,fY)-Z=R(X,Y)- fZ.

o Obviously the curvature tensor and the curvature operator are related
by the equality

R(X,Y,Z,W) = (R(X,Y)-Z,W).
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The following symmetry relations hold for the curvature tensor and
curvature operator at each point, and hence for all vector fields.

R(X,Y)-Z+R(Y,X)-Z=0;
R(X,Y)-Z+R(Y,Z)-X+R(Z,X)-Y =0;
(R(X,Y)-Z, W)+ (R(X,Y)-W,Z) =0;
(R(X,Y)-Z,W) = (R(Z,W)-X,Y).

We have

R(X,Y)-Z+R(Y,X)-Z

= VXpVyZ — VYPVXZ — V[X7y]pr
ar VYPVXZ - VXPVYZ - V[y’xlpzp

= = V[X7Y]pr + V[nylpZP prg 0_
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R(X,Y,Z,W)is a tensor.
So it is linear with respect to C*° functions.

This implies that it suffices to prove the statements for the vectors of

a field of coordinate frames, say Eq,..., E,.
For these vector fields the Lie products [E;, E;] = 0.
So if X, Y, Z are chosen from among E, ..., E,, then proving

Property (ii) reduces to showing that

Vx(VyZ) = Vy(VXZ) + Vy(VZX) = Vz(VyX)
+ Vz(Vx Y) = Vx(VZY) =0.

By definition of Riemannian connection,
VxY —=VyX=[X,Y]=0.

Using this, we find that the terms on the left cancel two by two.
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Note that, for all X, Y, X, W,

(RIX,Y)-(Z+ W), Z+ W)
= (R(X,Y)-Z,Z)+ (R(X,Y) - Z, W)
+(R(X,Y)- W, Z)+ (R(X,Y) - W, W).

So, Property (iii) is equivalent to the statement that, for all X, Y, Z,
(R(X,Y)-Z,Z)=0.

As before, it is enough to prove this for X, Y, Z chosen from among
the vectors of the coordinate frames so that [X, Y] = 0.

Applying the definitions, we see that
(R(X,Y) 2,Z2)=(Vx(VvyZ)—-Vy(VxZ),Z)=0

if and only if (Vx(VyZ),Z) is symmetric in X, Y.
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o Differentiating the inner product (Z, Z) with respect to X and Y, we
get

Y(X(Z,2)) =2Y(VxZ,Z) = 2Vy(VxZ),Z) +2(VxZ,VyZ).

It now follows that
1
(Vy(VxZ2),2) = 5YX(Z,Z) = (VxZ,VvZ).
But [X, Y] =0.
So (XY — YX)f =0, for any function f.
Taking f = (Z, Z), we see that the right side is symmetric in X, Y.

Therefore, so is the left side.
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Property (iv) derived from the first three properties.
By Property (ii), we have

(R(X,Y)-Z, W)+ (R(Y,Z)- X, W)+ (R(Z,X) - Y,W) =0.
Then, using Properties (i)-(iii) we obtain the relation

(R(X,Y)-Z, W)+ (R(Y,W)-Z,X)+ (R(X,W)Y,Z) =0,
E.g., applying Property (ii), we get

(RX, Y)W, Z)+ (R(Y,W)-X,Z)+ (R(W,X) - Y,Z) = 0.
Then, multiplying by -1 and using Property (i), we get

—(R(X,Y)-W,Z)— (R(Y,W)-X,Z)+ (R(W,X)-Y,Z) =0,
Finally, using Property (iii), we get

(RX,Y) - Z, W)+ (R(Y,W)-Z,X)+ (R(X,W)Y,Z) =0,
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o We got the equations

(RIX,Y)-Z,W)+ (R(Y,Z)- X, W)+ (R(Z,X)- Y,W) =0,
(RX,Y)-Z,W)+ (R(Y,W)-Z,X)+ (R(X,W)-Y,Z)=0

In a similar way, we obtain two more equations

(R(Y,Z)- X, W)+ (R(Y,W)-Z,X)+ (R(Z,W)-X,Y) =0,
(R(Z,W)-X,Y)+ (R(Z,X)- Y, W)+ (R(X,W)-Y,Z)=0

Now add the first two and subtract the last two to get
2(R(X,Y)-Z,W)—-2(R(Z,W)-X,Y)=0.
This finally gives
(R(X,Y)-Z,W)=(R(Z,W)-X,Y).
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o In any coordinate neighborhood U, ¢ we have coordinate frames
Ei,... E,. .

o We may introduce n* functions of the coordinates s
1 <i,j,k,¢ < n by the equations

R(E, Er)- B = RL,E;.
J

o Similarly we may define the components R;j, of the Riemannian
curvature tensor by the equations

Rike = (R(Ek, E¢) - Ei, Ej) = Z R o8hj,
h

where gj; = (Ej, Ej) are the components of the Riemannian metric.
o By linearity both R(X,Y)-Z and (R(X,Y)-Z, W) are determined
on U by these locally defined functions.

George Voutsadakis (LSSU)



Curvature

o The preceding theorem may be written in terms of components.
Corollary
For all 1 <, j, k,£ < n we have:
Rike + Riy = 0;

1.

Rho+ Rl + lejk =0
Rijke + Rjike = 0;
Riike = Rieij
Rijke + Rikej + Rigji = 0.
o We remark that Property (v) is an immediate consequence of
Rike = >, R ,gnj, the symmetry of g;; and Properties (i) and (iii).
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o The Riemann curvature tensor (R(X,Y) - Z, W) is used to define the
sectional curvature, which plays an important role in the geometry of
Riemannian manifolds.

o At any p € M we denote by 7 a plane section, that is, a
two-dimensional subspace of T,(M).

o Such a section is determined by any pair of mutually orthogonal unit
vectors X, Y at p.

The sectional curvature K(7) of the section 7 with orthonormal basis
X, Y is defined as

K(m) = —R(X,Y,X,Y)=—(R(X,Y)- X,Y).
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o Symmetry and linearity yield the following property.
o Suppose X, Y are replaced by any pair of vectors X’, Y’, with

X=aX +BY" and Y =X +45Y".

o Then, we get
1
S (RXLY) - XL Y) = (RIX, Y) - X, Y),

where A = ad — 37 is the determinant of coefficients.

o If X', Y’ is also an orthonormal pair, then A = =£1.

o So the definition of K(7) is independent of the pair used.

o If it is just any arbitrary linearly independent pair, then using
A% = (X, X (Y',Y') — (X', Y')?, we have

(R(X, Y- X", Y

K(r) = 7(X’,X’)(Y’, Y') — (X, y/)2'
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o Consider local coordinates.
o We saw that
(R(X",Y')- X", Y")

Km) = = xn v, vy = (X, Ve

o Assume that X' = 3", a'E;, Y' =3, JE;.
o Use (E,', EJ) = 8ij-
o Then, with the notation above, concerning R;js, we obtain

> Rijkec Blak gt
> (gikgje — giegjk ) Blak Bt

K(m) =
where summation is over i, j, k, £.
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If dimM > 3 and the sectional curvature is known on all sections of
To(M), then the Riemann curvature tensor is uniquely determined at p.

o Let R(X,Y,Z, W) and E(X, Y,Z, W) be two tensors with the
symmetry properties of the preceding theorem.

Let A(X, Y, Z, W) be their difference.
It is also be a tensor with these symmetry properties.
Our assumption is that for all X, Y, R(X,Y,X,Y) = §(X, Y, X,Y).
Equivalently, for all X, Y, A(X,Y,X,Y)=0.
We must show that this implies that A = 0, i.e., that, for all
X, Y,Z W,
AX,Y,Z,W)=0.
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o Let pe M and Fq,...,F, be a frame or basis of T,(M).

We denote by Ajjy, the components of A.
Let o', 3/ be the components of vectors X, Y relative to this basis.

Then by hypothesis, for any o!,...,a" and 3%,..., 5",

Z A,-jkgoz’ﬂjozkﬁe =0.

ikt

We make specific choices for the o and /3.
Let 6;; denote the Kronecker 4, that is,

s L ifi=]
P= 0, ifis]

George Voutsadakis (LSSU) Differential Geometry



Curvature

o First, set o = dj,i and G = G-
The equation above gives

Aiojoiojo =0, foralll<ip,jo<n.

Next, set o/ = 0ji and Bjo = gk =1 and @ =0, for all other J.
Then by Property (iv) of the corollary we have

Aigjoioko = 0

Finally, let both o/ and 3/ vanish except at two values of i and two of
j at which it has the value 1.
Then, using Property (ii) and the results just established, we obtain

0 = Ajjke + Axjei + Aigij + Axeij = 2Ajjke + 2Ai0 = — 2Aikg).

Thus, Ajie =0 forall 1 <i,j, k, £ < m.
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o Let M be a Riemannian manifold.
o Let p be a point in M.

o We say M is isotropic at p if the curvature is the same constant K,
on every section at p.

o M is called isotropic if it is isotropic at every point.

o A two-dimensional Riemannian manifold is (trivially) isotropic.
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Corollary

Let M be a Riemannian manifold. Suppose p is an isotropic point of M.
Let U, p be a coordinate neighborhood with:

o Coordinate frames Eq, ..., E,;
o Riemannian metric g; = (E;, Ej).
Then, at the point p,

Rijke = —Kp(gik&je — &it8ik)-

o One may check that the right side defines a tensor of order 4 on

To(M) with the same symmetry properties as R(X, Y, Z, W) and
with constant value on all sections.

The corollary then follows from the uniqueness theorem.
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An isotropic Riemannian manifold is called a manifold of constant
curvature if K, is the same at every point.

o An example is Euclidean space where K, = 0.
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o Let M be a Riemannian manifold.

o Let R(X,Y,Z, W) denote the curvature tensor on M.
o We use this curvature tensor to define:

o A (covariant) tensor field S(X, Y) of order 2;
o A (scalar) function on M.

o Let p&€ M and let Fip, ..., Fyp be an orthonormal basis at p.

o Consider the operator

n

n
Sp(Xm Yp) = Z R(Fianpv Yp, Fip) = Z(R(Fimxp) Yo, Fip)-
i=1 i=1

o We may verify that Sp:

o Is independent of the choice of orthonormal basis;
o Defines a symmetric, C*° covariant tensor field S on M.
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Definition
The tensor field S(X, Y) is called the Ricci curvature of M.
M is called an Einstein manifold if there is a constant ¢, such that

S(X,Y)=c(X,Y),

that is, S(X, Y) is a constant multiple of the Riemannian metric on M.
The function r on M, defined by

n n
r(p) = Z R(Fip, Fip: Fip, Fip) = ZS(Fjpa Fip)
ij=1 j=1
is called the scalar curvature of M.
o Spaces of constant curvature are examples of Einstein manifolds.
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Let G be a compact Lie group with a bi-invariant Riemannian metric.
On G, the sectional curvatures at e (hence everywhere) are given by

K(re) = ~R(Xe, Yer Xe, Ye) = +3(1X, YLIX, Y])

where X, Y are an orthonormal pair of left-invariant vector fields spanning
the section e at e. The curvature operator is similarly given at e, hence
at all points by

1
with X, Y, Z left-invariant vector fields.

o We have seen that for left-invariant vector fields X, Y, the connection
of a bi-invariant metric on G given by VxY = 3[X, Y].

George Voutsadakis (LSSU) Differential Geometry



Curvature

o Applying first the definition and then the Jacobi identity, we obtain

RX,Y)-Z = Vx(VyZ)-Vy(VxZ)~-VixvZ
= X[, 2] = 3l [X, 2] - 5[0, Y1, Z]
= iz, X, V]l
= —1[Xx,Y],2Z].

We also know that, for left-invariant vector fields U, V., W on G,
(v, v],w) = (U,[V, W]).

Thus, if X, Y are left-invariant and are an orthonormal basis at e of
7, a plane section, the sectional curvature is

K(r) = — R(X,Y,X,Y) = %([[x, YLX], Y) = %([x, Y1, IX, Y]).
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Corollary

Let G be a compact Lie group with a bi-invariant Riemannian metric.
Let X, Y, Z be left-invariant vector fields.
Then the Ricci tensor S(X, Y) is given by the formula

S(X,Y) = —%tr(adX 0adY).

Moreover, it is positive semi-definite and bi-invariant on G.
Each compact semisimple G is an Einstein manifold relative to any
bi-invariant Riemannian metric.

o By the formula, the linear operator Z — R(Z,Y) - X on G is defined
at e for the left-invariant vector field by

R(Z,Y)-X = —%(adX)(ad Y).Z.
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o It can be shown that an alternative definition of S(X, Y) is that it is
the trace of the linear operator

Tp(M) = Rp(M)
Zy = R(ZpXp): Y

on the tangent space at each point.

We also have
S(X,Y)=5(Y,X).

Now, for all Z, ]
So we get
S(X,Y) = —%(adX)(ad Y). Z.

George Voutsadakis (LSSU) Differential Geometry



Curvature

o On the other hand, suppose Fi,..., F, is an orthonormal basis of
left-invariant vector fields.

Then we have

(adX - F1, F5) = (IX. Fil. Fj) = (o [X, F})) = (Fi,2dX - F).

So the matrix (aj) of adX, relative to this basis, is skew symmetric.

Hence,
tradXadX = Z ajajj = — Z aﬁ-.
i i
It follows that

S(X,X) = —tradXadX = ) a5 > 0.
Equality holds only when adX = 0.

Hence, S(X,Y) is positive semidefinite.
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o Moreover, if G is semisimple, it is positive definite.
Now, if X, Y, Z are left-invariant, so is R(Z,Y) - X.
The same holds for its trace S(X, Y).

This means that S(X, Y) is a bi-invariant Riemannian metric on a
semisimple G.

However two bi-invariant metrics can differ only by a scalar multiple.
It follows that, with a bi-invariant metric, G is Einstein.
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Subsection 4
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o Let U be a neighborhood on the Riemannian manifold M.

o Suppose on U is defined a C* family of coframes
0, ....0"

o Thus, automatically, we also have a dual C* family of frames
Ey,... E,.

o They may or may not be coordinate frames of a coordinate
neighborhood U, .

o The components of the Riemann metric on U are still denoted by

8ij = (Eiv EJ)
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o According to a previous theorem, there exist uniquely determined
one-forms ¢ on U satisfying:
do' =30/ NOi, 1 <i<n
dgij = 3 08k + X gidf, 1< i,j < n.

o Define
(9,:,' = Ze,kgkj.
k

o Then Equations (ii) assume the simpler form
ng = 9,’j aF «91-,'.

o In the special case where the frames are orthonormal, that is,
gij = 35, we will use w',w’ instead of 6', 6.
o Then Equations (ii) become

0:@,{.4%'1, 1<ij<n.
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o The forms 9{ determine, and are determined by the Riemannian
connection.
o Thusif VEEj =), FZ then

9{ = Z rjl;iek'
k

o Equivalently,
VxE =) 0 (X)Ek.
k

o The one-forms 0}‘, 1 < j, k < n, are called the connection forms.

o We have that r,.kj = FJ’-‘,- only if Ei, ..., E, satisfy [E;, Ej] = 0, as is the
case for coordinate frames.

© This symmetry was derived from Vg E; — Vg E; = [E;, Ej], which we
have made part of the definition of Riemannian connection.

o Vg Ej — Vg E; = [E;, ] is equivalent to Equations (i).
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o Now suppose that RIJ.'H, 1<i,j,k, ¢ < n, are the components of the
curvature (as an endomorphism) relative to the given frames, i.e.,

R(Ec E) E=> R’ E;.
j

o Then we define n? two-forms Qfl 1<i,j<n, by

; ; 1 & .
§ : k 14 § : k 14
1<k<l<n k,f=1

o |t follows that

> QUEGE)E = Y R E = R(Ek, Er) - E;.
j=1 j=1
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o By linearity this extends to any vector fields X, Y so that

R(X,Y) E =) QUX,Y)E.
j

o Thus, (Q{:(X, Y)) is the matrix of the curvature operator relative to
the basis E1, ..., E,.

o Note that the properties of R(X, Y) - Z imply that QJ,.'(X, Y)atp
depend only on the values of X and Y at p, not on the vector fields.

o Obviously, (X, Y) = —Qi(Y, X).

o These n? forms Q{ on U; are called the curvature forms.

o They depend on the Riemannian metric and on the particular
frame-field we use on U.
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Using the notation above, the forms Q’, on U are defined by the equations

QA =do) > 0FN0, 1<ij<n

i
k=1

o It is sufficient to verify that, on any vector fields X, Y on U, the value
of the two-forms on each side of the equation is the same.

This is equivalent to showing that

R(X,Y)-E,-:Z((de{f—ZG,kAe{;) (X,Y)) E, i=1,...,n
j k
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o By definition,
R(X,Y)-Ei=Vx(VyE) - Vy(VxE) — Vix v|E.
This may be rewritten

R(X,Y) - E = Vx (5,04V)E ) - Vv (T, 60E)
— >, 8UIX. Y)E.

Since 6‘{(Y) and 6‘{(X) are functions, the right-hand side is equal to

(X(EUY)) = Y (#(X) — (X, Y])E;
+ 5k EONOKX)Ex = 3 4 #A(X)0K(Y)Ex
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We got
RIX,Y)-E = T,(X(6/(Y)) - Y(6/(X)) - 61X, YD)E;
5 BUOBE) B — 55 B4V )Ee
Applying a previous lemma, we get that the right side equals

> {dé“,f(x, Y) =3 [6EO08L(Y) — 0K(V)8(X)] } E;.

J k

This proves that

J

RIX,Y) - E =Y (d@{f = 0F A 9ﬁ> (X, Y)E;.
k
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o Let U be any open subset of a Riemannian manifold M on which is
defined a field of coframes #1,...,6".

o Let Eq,..., E, denote the uniquely determined dual frame-field.
o Letg,--:( e J)on U.

o Then there exist n® uniquely determined one-forms 0{ on U satisfying
Equations (i) and (ii):
':ZJ-GJ/\G’:, 1<i<n;
dgij = >, Ofgr + X, g, 1< i j < n.

o They determine the two-forms Q{ and hence the curvature on U, by

n
. . . o
Q{-:dH{fZQ,- /\Hf(, 1<, j<n.
k=1
o Equations (i), (ii) and the displayed one are known as Cartan's
equations of structure.
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o As noted, it is often convenient to write §; = > _67gs; so that (ii)
takes a simpler form.

o We may define, similarly,
Q,’j = Z Q?gsj.
S

o Then

1 k ol
QU=§%RW0 N

since we have previously seen that Rjjx, = s gjs Ry, where
Rijke = R(Fk, Fe, Fi, F}).
o The symmetry properties imply that Q; = —;.
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o Suppose the frame-field is orthonormal.

o That is, it consists of vectors Eq,..., E,, with
(5 15 = G
o As noted above, Equations (i) and (ii) simplify:
dw"zzjw"/\wj’:, 1<i<n
O=w/+w, 1<ij<n

o Moreover,

Qj =, Rijke = Rigpy  wi = wjj.

o These enable us to formulate a restatement.
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Corollary
The forms w?!,...,w", dual to a field of orthonormal frames, determine
uniquely a set of one-forms w!, 1 < /,j < n, satisfying:

dw' = Zw;( A wk:

o.r,’.' 4 wJ’: =0;
And we also have:

dw) — Y, wk AWl = YWt AWl = Q= Q.
Relative to these frames the matrix

(€2;(X, Y))

of the curvature operator R(X, Y) is a skew-symmetric matrix.
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Corollary

Let Ff-l‘- denote the coefficients of the connection forms relative to
coordinate frames Eq, ..., E, of a coordinate neighborhood U, ¢.
That is, with 6%, ...,6" being dual to Ei,...,E,,

k k pt
oF = Z 0.
l
Then I'f-J‘- = I'J’-‘,- and

. oor,  or : :
R = 3X;f - axf + Z(rlbkrjhf — ).
h
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o According to the theorem Q{ = d@{: — 5,00 6‘2
Hence

Q= (M, A0  +T,do") = > T, 0% A6

l k.l h

Now I'k = I'J’j, since [E;, Ej] = 0 for coordinate frames.

Since 61 NG = —0" AN @, it follows that
=> ¥ Ar6 = er(ﬂw' =0.
J
Therefore, the second equation above may be written as
n ' arl,  arl,
3 ket R0 N0 = 343 (axk a—xke> AN
—3 Yk n(Th T, — ThF)0% A 6%,
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o Now the coefficients on both left and right are skew-symmetric in the
indices k, /.
So these equations imply equality of coefficients.
To obtain the (standard) formula of the corollary, one uses:
o The symmetry of Ik in 7, j;
o The fact that 8% A 6% = —0% A 6%;
o Change of index of summation where necessary.

George Voutsadakis (LSSU) Differential Geometry



Curvature

Corollary

If dimM = 2, then

dw? = QF = +Kw' AW?,
where K is the Gaussian curvature of M.

o In proving Gauss's Theorema Egregium we saw that if Eq, E; are
orthonormal unit vectors, then

K =—R(E1, B2, E1, B2) = —(R(E1, B2) - E1, B2) = —Rio1a.
On the other hand since gjj = (E;j, Ej) = 0;; we have

2 1 2
Ql = Q1 = —Rpppw™ Aw”.
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() Nowuz{:—i-wj’-':O.

So we get
Thus, by the preceding corollary,

2
wa Aw2=0 and dw?=Q3
k=1

o Note that these equations are independent of the particular
orthonormal frame field on U C M.
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o Let M be a Riemannian manifold.
o Let m be a plane section at a point p of M.
o Let N, be an open, two-dimensional submanifold of M:

o Consisting of geodesic arcs through p;
o Tangent at p to the section 7.

If we use on N, the Riemannian metric induced by that of M, then the
sectional curvature K() is equal to the Gaussian curvature of N, at p.

o Consider a normal neighborhood of p
U = exp, B..
That is, we choose € > 0 such that
B = {X, € Tp(M) : | Xl <€}

is mapped diffeomorphically onto an open set U C M.
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o The plane section 7 corresponds to a two-dimensional subspace
Vi C Tp(M).
We may suppose that N, is the image of VN B..

Since U is a normal neighborhood, it is covered simply by the
geodesics of length ¢ issuing from p.

They are given by
exp, tXp, 0<t<e,

for each X, with || X,| = 1.
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o Now choose an orthonormal basis Ejp, ..., Epp of Tp(M), with
Eip, Exp a basis of V.

Then '

(x%, . x") = exp,, (Z x'Ejp)
establishes a system of normal coordinates on U.
Moreover, the coordinate map ¢ is the inverse of the above.
Thus, N, is described by

Additionally, U N Np, ¢ is a coordinate system on N, with x1,x? as

coordinates.
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o Let Ey,..., E, denote the coordinate frames.
They agree at p with the given frame.
Moreover, Ep, E> are tangent to N, everywhere on N,,.
We denote the dual coframes by 6%,...,6", with connection forms

k ki
1

Note that I'f-J‘-(O) =0.
That is, 6}‘ =0atpeU.

From those frames, by the Gram-Schmidt process we obtain a family
of orthonormal frames Fi, ..., F, in U with the property that Fi, F>
are a linear combination of Ej, Es.

So Fi, F> are tangent to N, at each of its points.
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o We denote by w!,...,w" the dual coframes to Fi, ..., Fy.
We let w{ be the corresponding connection forms.
They satisfy the equations

u}{:-l-wj’-':O and dwi:ZwLAwk.
k

We shall see that for j > 2, ‘*’J1 = w’z =0 at p.
First recall that at p,

Vi, B =Y 0l(Xp)Ej =0 and Vx,Fi=> wi(X,)F
j
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o Now, for i =1,2,
F,' = a}El + a,gEz.

So
VXPF,' = (Xpa})El + (Xpa,?)Eg + a}VXPEl + Q%VXPE2.

Since I'f-J‘-(O) =0, the last two terms vanish.

So, for i = 1,2, Vx,Fi is a linear combination of E; and E.
Hence, Vx, F; is a linear combination of F; and Fs.

Thus, for i =1,2,

Vx,Fi = w} (Xp)F1 + w?(Xp) Fa.

Moreover, for i = 1,2 and j > 2, w/(X,) = 0.
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o Denote by / : N, — M the imbedding.
Let &' = I*w', & = I*w].
I* is a homomorphism of A(M) — A(N,) and commutes with d.

So
d&’ = @ A" and @ +@]=0.
k

F1, F> span the tangent space to N,,.
Moreover, if j=1or j =2 and i > j,

@ (F) = (w)(F) = w'(1.F) = w'(F) = 0.

Therefore, for i > 2, &' = 0.

Thus, @', &2 are dual to Fi, F; restricted to Np.

Moreover, together with @' = &2, they satisfy Equations (i) and (ii),
which determine the connection forms uniquely.
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o It follows from the preceding corollary that
di? = Ko NG
On the other hand, we have on M

dw% = wa A wﬁ + Z Riziew® A wt.
k k<l

Apply I* to both sides and evaluate at p.
We get the equality (at p)

d(:)% = R1212(:)1 A G2,
It follows that the sectional curvature
K(m) = —Ri212 = Kp,

the Gaussian curvature at p of the surface Np.
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Corollary

Let M be an n-sphere of radius a in R"*! with the Riemannian metric
induced from R"*1. Then M has constant sectional curvature %

o Let p be a point of M.
Then the geodesics through p tangent to a plane 7 in T,(M) are
great circles.

They form a 2-sphere of radius a.
We have seen that the Gaussian curvature of such a 2-sphere is 3—12

So the corollary follows from the theorem.
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If M is a connected, isotropic Riemannian manifold and dimM > 3, then
M has constant curvature.

o Let K, be the value of the sectional curvature at p.
This i constant on all sections by hypothesis.
We must show that this function on M is constant.
That is, w must show dK = 0.
Let U be a neighborhood of p € M with an orthonormal frame field.

Let w!,...,w" be the dual coframe field.
We use the expression for Rjj in a previous corollary, which now
becomes

Rijke = K(0ikdje — Siedj)-

We obtain @/ = Q;; = Kw' Aw/, in which K depends only on p, not
on the (orthonormal) frames used.
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o Take the exterior derivative of the structure equation
dwl =3 wk Aw] + Q.
We obtain
0 = Y(dwkAwj —wf Adw)
+dK Aw' A’ + Kdw' A — Kw' A du!.
We substitute for dwf‘, dw', and so on, from a previous corollary.
After simplifying, we get, for all i,j =1,...,n,
dK Aw' AW =0,
Now dK = Kiw! + - -- + K,w", a linear combination of w?,... w".
Moreover, w’ A w’ Aw/ # 0, if £,i,] are distinct.
So the displayed equation can only hold if dK =0 on U.

But U is a neighborhood of p and p is arbitrary.
Therefore, dK = 0 and K is constant.
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o According to the preceding corollary, the sphere of radius a with the
Riemannian metric induced by the Euclidean space with contains it
has constant positive curvature.

o Euclidean space itself with its standard Riemannian metric has
curvature identically zero, since with the usual coordinates rf-j- =0
and Rykg =0.

o An example of a manifold of constant negative curvature of arbitrary
dimension will be given later.
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Subsection 5
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o Let M be a Riemannian manifold.
o Consider a covariant tensor field ® of order r on M, ® € T"(M).
o Suppose given a curve

p(t), a<t<bh,

on M of differentiability class C at least.
o Let @) denote the restriction of ® to p(t).
o Then &,y € T (Tp)(M)), thatis, @, is a tensor field along p(t).
o Using previous results, we denote by 7; parallel translation along p(t)
from a fixed point p(tp) of the curve,

Tt . Tp(to)(M) — Tp(t)(M)

o This is an isomorphism of these tangent spaces.
o It is uniquely determined by p(t) and the Riemannian structure.
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With the preceding notation, the derivative % of the tensor ¢ along
the curve is defined at the point p(ty) by

Do 1,
(g) = Jim 5 (7 %) — ®o0)-

o As thus defined (Z2),, is a covariant tensor of order r on the vector
space Tp(z)(M).

George Voutsadakis (LSSU) Differential Geometry



Curvature

o Consider any set of r vectors X1 (o) Xp(to) € Tplto) ) (M).

o Then 22 at p(ty) is the limit as t — to of the expression

1

t—to (T:CD p(t )(X (to)> " - ’X,;(to)) - q)p(to)(X;}(to)? °oo ,X;;(to)))

o For each value of t near ty, this is a multiple by tqu, of the difference
of two tensors 7;® ;) and @,y on Ty (M).

o Both are covariant r tensors on the same vector space.
o It follows that the limit is also such a tensor.
o We repeat this procedure at each ty on the interval (a, b).

o The process gives a covariant tensor field 2% along p(t), provided

that suitable differentiability conditions are satlsfled.
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o Satisfying “suitable” differentiability conditions means that, for any
C¥ family of vector fields

Xi{: FI;(t)’ i:].,...,r,

fD(D

defined along the C* curve p(t), the value o on them,

Do
dt

should be a function of class CX=1 (C> when k = o) of t.
o This should be true in the most frequent situation where:
o X1,...,X" are C*®-vector fields on M;
o X}, ..., X[ are their restrictions to the curve p(t).

——(X},...,X]), a<t<nb,

o In the next result, we show that this is indeed a consequence of our
definition and derive computational formulas.

o For convenience, we suppose @ is C*°.
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Lemma

Let ® be a C°°-covariant tensor field of order r on M.

Let p(t), a < t < b, be a curve of class C¥, k > 1, on M.

Let X2, ..., X! € Tyr)(M) be vector fields of class C* along the curve.
Then, for each ty on the interval (a, b), we have

( )fo( to? - aXtro):(%[q)p(t)(Xl}aaXtr)])t:to
= B (x%,...,(%)to,...,xtg).

o The lemma will establish the fact that 2% evaluated on Ck-vector
fields along the curve is differentiable of cIass Ck1 at least.

o If k =00, then Dd‘tb will be a C*°-tensor field along the curve.

o That is, its value on C®°-vector fields will be a Coo function of t.

o For lower differentiability classes, the class of W|II also be lower.
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o By definition we have
(%)to = Jim  ; (T Py (X - XE) = P i) (Kis -+, X))
= m = (P (Te(Xg), - -, Te(XE))
—®p(e0) (X -+ XE))-
Then for each i =1,...,r, in turn, we subtract and add
ey (XEXE, o XL (X0, (X)) -

Rearranging and collecting terms, and using both linearity at p(t) and
the continuity of the tensor ®, we may rewrite the defining equation

(52), zcb (X, fim A (re(XE) = X))
me(Xp™M), ... ,Te(X))
+lim 2=(®, t)(th, } ,X{)—q>,,(t0)(xt}),...,xg)).

t—tp b tO
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o We now use the fact that for any Ck-vector field X; along p(t),

i 22X —IimTt<—Tt(Xt)Xt°)

t—1to t— to t—to t— to

B DX;

- (%),

B DX;

- (%),
Therefore passing to the limit in the expression for (%)to completes
the proof of the lemma.

o We can verify from the formula itself that (22)¢, depends R-linearly
on the values of the vector fields X}, ..., X/ at p(to).

o So the formula does define an R-linear function, that is, a covariant
tensor of order r on the vector space Tp;,)(M).

George Voutsadakis (LSSU)



Curvature

Corollary

Let X3,..., X5 € Tp(t)(M) be given and suppose that XL, ..., X[ are the
uniquely determined parallel vector fields along p(t), a < t < b, which take
these values at p(tp). Then the formula of the preceding lemma becomes

ch) d 1
=) (Xi,....X[)= ( ® (X,...,X’)) .
(dt to to dt p(t)\ Nt t "

DX! _ g
= =0, /=1...,r

So the conclusion follows from the formula of the preceding lemma.

o By definition of X/ we have

o This corollary makes it clear that )to depends only on the tensor
field ® and on the curve p(t), a < t < b.
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Lemma
Let ® be a C*°-covariant tensor field of order r on M and p € M.
Let X1,..., X" are C™-vector fields on some neighborhood U of p.
Let XJ,..., X} denote their value at p.
Consider two C! curves on M, F(t), —e <t <e¢, and G(s), =6 < s <,
such that:

o F(0)=p= G(0),

o F(0) = Y, = G(0) is their common tangent vector at p.

Then Do Do
— ) (Xt xD)=(=—) (XL ....X.
(B2 et ={ ) e

That is, the two tensors on T,(M) defined by differentiating ® along each
of the curves are the same.
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o Suppose that f is a C° function on U.
Then f(F(t)) is its restriction to the curve F(t).

Moreover,
d d
—f(F(t =F. | — ) f=Y,f.
(dt ( ()))t_O (dt> P

Similarly, restricting f to G(s), differentiating with respect to s and
evaluating at s = 0 gives

(Zreen) e ()=

George Voutsadakis (LSSU) Differential Geometry



Curvature

o We apply the preceding to the function
f(q) = ®q(Xs,.... X7).

We see that in the formula of the lemma, the first term in case of
either curve (and derivative of ®) is the same, namely

Yo(o(X, ..., X").

On the other hand, by our original definition of Vy, X for a vector
field X, we have

DX’ DX’
_ ([ Zm ) _ (PR
VYPX - ( dt ) 0 < ds ) 0

Hence, the remaining terms in the formula agree also.
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o We denote the covariant tensor of order r on T,(M), which we have
defined by differentiation of ® along curves through p with Y}, as
tangent at p by

Do
Vy,® = (d—) (X3....,X)).
t /o

The covariant r-tensor on T,(M) just defined from differentiation of ®
along curves through p, with Y}, as tangent at p, is denoted

Vy,® € T'(Ty(M)).
It is called the covariant derivative of ® at p in the direction Y.
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o According to the facts in the proof above, the covariant derivative is
given by the formula

Vy,®(Xt... X") = Yp(q>r(xl,...,xr) .
— Y Pp(XE, L VY XL XD),

where X1, ... X" are vector fields on a neighborhood of p.
o Only the values of X*,..., X" at p affect the value of Vy, ® on
Tp(M).
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Theorem
Let ® be a C*-covariant tensor field of order r on M, ® € .7"(M). Then
we may define on M a C®°-covariant tensor field W of order r + 1 by the

formula
Vo(X2, ... X0 Vo) = (Vy, @) (X5, X)).

o By preceding work, it is only necessary to prove two more facts.

o For each p € M, W, is linear in the last variable, with the others fixed,;
o For any C>-vector fields X!,..., X", Y the formula above defines a
C*° function of p.
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o Note that each term of the formula is linear in Y}, as a real-valued
function on T,(M).

Consequently, if we fix the vector fields X1,..., X", then the mapping
Tp(M) — R defined by that formula

Y, — (vyp¢)(x,},...,x,;)

is linear.

On the other hand, it is clear that for C*-vector fields X*,..., X" Y
the function

WX X5 Y) = (Vyd)(X, ..., X,)

is C°°.
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o Let U, be a local coordinate system with:

o Local coordinates x!,..., x";
o Coordinate frames Eq, ..., E,, such that

VeE =Y THEk.
K
o Let ® be a C*®-covariant tensor field of order r on M.

o Let its components be

T

-Ir

= O(Ey,....E,).
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Corollary

Let ® be a C*-covariant tensor field of order r on M.
Consider the C*-covariant tensor field WV of order r 4+ 1 given by

Vo(Xa, .. X5 Yp) = (Vy,®).

The components
Vj

1y-oeadrtl

= W(E_h? SRR Ejr+1)
of W on U are given by the formulas

0

8Xjr+ 1

; .= L k i oo
w.jlv'”;.jr-l—l - ¢Jl"'Jr Zk,i r_i,+]j,-¢11~~k~~~_/,7

k=1,....,ni=1,...,r.
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A tensor field ® € J7(M) is said to be parallel along a curve p(t) if
Do

dt
along the curve. It is said to be parallel if

Do
T _0
dt

along every curve on M.
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o If, for every X, € Tp(M) and all p € M,
Vx,® =0,

then & is parallel.
o So if it is parallel along geodesics, for example, then it will be parallel.
o This follows from the preceding lemma and the fact that there is a
geodesic tangent to any given vector Xp.
o Suppose, also, that
p(t), a<t<hb,
is a curve of class C!, say.
o Then & is parallel along p(t) if and only if it satisfies

d r
d_t(cb(XtEl’ o0 0 7Xt)) = 07
for every set X}, ..., X[ of parallel vector fields along the curve p(t).
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o Let M be a Riemannian manifold of constant curvature K.

o Then, by definition, for any orthonormal pair of vectors X, Y, the
sectional curvature R(Xp, Yp, Xp, Yp) = —K.

o Suppose p(t) is any curve through p with, say, p(0) = p.

o Let X,(1), Yp(r) be the uniquely determined parallel fields such that
XP = Xp(O) and Yp = Tp(0)-

o Then X, (1), Yp() is orthonormal at each p(t).
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o Moreover,
R(Xo(t): Yo(t): Xo(t): Yo(r)) = =K,
a constant independent of t.

o It follows that, for any parallel vector fields along p(t), say
X{, i=1,23,4,

we have 4
ER(X},X,_?,XE,X;‘) =1
o Indeed the values of all of the sectional curvatures uniquely determine
the curvature.
o Thus the curvature is parallel if it is constant on parallel sections 7;

along any curve p(t).

George Voutsadakis (LSSU) Differential Geometry



Curvature

Theorem (Cartan)

If M is a Riemannian symmetric space, then the curvature tensor is
parallel.

o Any isometry of a Riemannian manifold preserves parallelism.

It carries parallel vector fields, sections, and so on, along a curve to
parallel vector fields, sections, and so on, along the image.

Moreover, isometries preserve the curvature,

Rp(Xps Yp, Zp, Wp) = RF(P)(XF(P)’ YF(p)» ZF(p)> WF(P))'

Finally isometries carry geodesics to geodesics.

This is because parallelism, curvature and geodesics are all defined in
terms of the Riemannian metric.
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o Now to show that the curvature is parallel, it is enough to show that
it is constant on parallel vector fields along geodesics.

Suppose p(t) is a geodesic.
Then, according to a previous theorem, the vectors

Xo(t)s Yo(e): Zp(t)s W)

of the parallel vector field determined by X, g), Yp(0), - - - are given by
isometries 7. of M .

Therefore, the curvature is constant on parallel fields along the
geodesic p(t).
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o This is more general than constant curvature.

o We have seen an example of a symmetric space - a compact
semisimple Lie group G with bi-invariant metric - in which the
curvatures on various sections 7, at the identity vary between 0 (if
there is an Abelian subgroup of dimension two) and a positive
maximum value.

o Thus G is not isotropic.

o Hence, it is not of constant curvature in this metric.

o However, it does have parallel curvature.

o This raises the interesting question of how those Riemannian
manifolds with parallel curvature may be otherwise characterized or
described.

o The answer to this is given by the following two theorems which are
stated without proof.
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Theorem (Cartan)

Let M be a Riemannian manifold with parallel curvature. Then M is locally
symmetric. That is, each point p € M has a neighborhood U, such that,
there is an involutive isometry o, : U — U, with p as its only fixed point.

o Of course, a manifold may be locally symmetric without being
globally symmetric, that is, symmetric in the sense of our original
definition of symmetric space.

o For example, Euclidean space or a sphere, with its usual Riemannian
metric, is no longer a symmetric space if a single point is removed,
since we have seen that a symmetric space is necessarily complete.

o But it is still locally symmetric.

o Even if completeness is assumed, together with parallel curvature, we
still cannot be quite sure that the space is symmetric.
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o However, if the Riemannian manifold is complete and has parallel
curvature, then we may be sure that its universal covering (with the
naturally induced Riemannian metric) is a symmetric space.

Theorem (Cartan-Ambrose)

Let M and N be complete, connected Riemannian manifolds of the same
dimension, each with parallel curvature, and suppose further that M is
simply connected.

Let p€ M and g € N and

@ Tp(M) — T4(N)

a linear mapping which preserves the inner product and the curvature.
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Theorem (Cartan-Ambrose Cont'd)

That is, for arbitrary X, Y,, Zp, W, € T,(M), we have

(‘P(Xp)a‘P(Yp))q = (va Yp)pa
Rq(SO(Xp)aSO(Yp)aSO(Zp)aSO(WP)) = Rp(Xm Yo, Zp, Wp)~

Then there is a unique C* mapping F : M — N with the properties:
F(p) = a;
Fi: Tp(M) — T4(N) is the same as ¢;

F is a Riemannian covering (that is, it is a covering such that F, is an
isometry on each tangent space and, thus, a local isometry).
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Subsection 6
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Let M be a Riemannian manifold.
Let Eq,..., E, be an orthonormal frame field on an open set U C M.
Let w/, 1 < i < n, denote the field of coframes dual to Ei, ..., E,.

Let w{ 1 < i,j < n, denote the corresponding connection forms.

© 06 6 o o

Based on preceding results, we have

Lemma

Let M have constant curvature K. Then the curvature forms
Q= dul + 3, wk AWl are given by

QJ,::Kw"/\wj.

Assume, conversely, that on a neighborhood U of each point of M there
is an orthonormal frame field Eq, ..., E, for which the uniquely determined
w',w’ satisfy this equation. Then M has constant curvature K.
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o Recall that Euclidean space with its standard Riemannian metric is a
space of zero curvature.

o Also, the n-sphere of radius a in R™*! with the induced Riemannian
metric has constant curvature K = %

o Thus for every nonnegative real number K, we have already found an
example of Riemannian manifold of arbitrary dimension n with
constant curvature K.

o We now give an example of an n-dimensional Riemannian manifold of
constant curvature K = —1.

o A slight variation can produce an example for any K < 0.
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o Let M be the open upper half-space of R" defined by
M= {xeR":x">0}.
o The Riemannian metric given by the line element
(dx)2 + -+ + (dx")?
(x")? '

o More precisely, we note that, as a manifold, M is covered by a single
coordinate system with:

o Local coordinates x1, ..., x";

g 1o} 1o}
o Coordinate frames 57, ..., 55.

ds® =

o This is because, as a manifold, M corresponds to an open subset of
R".
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o In these local coordinates, the components of the Riemannian metric

® are given by
g 0 djj
gij = <8xi’ 8xf) C(xm)?

o We use the preceding lemma to see that this manifold has constant
curvature K = —1.

o Let

£ = x 2

n
- ox'’

o These define an orthonormal frame field on all of M.

i=1...,n.

o We denote by wl,...,w" the dual coframes.
o They are given by

1
w'=—dx', i=1,...,n
X
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o Consider the forms . . .
w! = dpjw’ — niwt.
o It is easy to verify that they satisfy the equations

n
dw' = Zw’/\wj’ and Wl -l—wj’: =0.
Jj=1
o Hence, they must be the connection forms, since these are uniquely
determined by these conditions.
o Finally, taking the exterior derivative of w{ we obtain

S){zda:{—wa‘/\wj = —w' AW

o Then, by the preceding lemma, M has constant curvature K = —1.
o We call this hyperbolic space.
o It is denoted by H" (for its underlying space, the “half-plane™).
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o Now we have examples of spaces of positive, zero, and negative
constant curvature.

o Note that all three examples are simply connected.

o When K > 0, our example was the compact manifold S”;
o When K =0 or K = —1, the corresponding manifolds E” and H" are
diffeomorphic to R".

o Since §” is compact, it is complete.
o We also know E" to be a complete Riemannian manifold.

o We shall prove later that H" is complete.
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Every complete, simply connected Riemannian manifold M of constant
curvature K = 41,0 or —1 is isometric to one of the three examples
above:

o To S", if K = +1;
o To E", if K=0;
o To H", if K = —1.
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Theorem (Cont'd)

More precisely, let p € M, and q in either S”, E" or H" according to
whether K = +1,0 or —1. Assume, also, given a prescribed linear map of
To(M) onto the tangent space at g which preserves the inner product.
Then there is exactly one isometry F of M to the corresponding space of
constant curvature:

o Taking p to g;
o Such that F, corresponds to the given linear mapping on T,(M).

o This is an immediate consequence of the Cartan-Ambrose Theorem
once we know that H" is complete (proved later).
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Corollary
Let M be S”, E" or H" and let Eyp, ..., Epp, Eiq, ..., Eng be orthonormal
frames at two arbitrary points p, g of M. Then there is a unique isometry
of M, that takes:

° ptog;

o E,'p to E,'q, i=1,...,n.

o This shows that the group of isometries is transitive on M.

o So it is plausible that in each of these cases this is a Lie group.
o We already know this, however, for:

o S", whose group of isometries is O(n + 1);
o E", whose group of isometries consists of rotations and translations
and their products.

o We will study the group of all isometries of H” only for n = 2.
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o Let M be a Riemannian manifold.

o Let M a covering manifold, with covering map F : M — M

o Then there is a unique Riemannian metric on I\7] such that F is a
local isometry.

o When M has this metric, the covering will be called a Riemannian
covering.
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o The following facts are quite easily verified from the definitions.
F carries geodesics to geodesics and each geodesic on M is covered by
a unique geodesic on I\7I;~
If M is complete, then M is also complete (convergence of Cauchy
sequences is a local phenomenon);
The covering transformations are isometries of M.

o With the aid of these facts one may take a step towards reducing the

determination of manifolds of constant curvature to a group theoretic

problem.
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Theorem

Let M be a complete manifold of constant curvature K = +1,0 or —1.
Then the universal covering manifold M is isometric to S”, E" or H",
respectively. Moreover, M is the orbit space of a subgroup I' of the group
of isometries of M which acts freely and properly discontinuously on M.

o The theorem follows from the fact that M is complete, simply
connected, and (since the covering mapping is a local isometry) has
the same constant curvature as M.

o By the theory of covering spaces, we know that:

o M= l\7l/|_;
o The covering transformations I" act freely and properly discontinuously
(as a group of isometries).

o We give some indication of how this may be used by considering some

examples.
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o We look for Riemannian manifolds of constant curvature K = +1.

o We must find subgroups I' of the group of isometries of S”, the unit
sphere, which act freely and properly discontinuously on S".

o The isometries of S” are contained in O(n + 1), which acts in the
usual way on the unit sphere in R"1.

o It follows that ' € O(n+ 1).

o The assumption that I" acts freely means that no element of I', except
the identity, leaves a point of S” fixed.

olet AcT and A# /.

o Then A cannot have +1 as a characteristic value.
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o Moreover, [ must be a group of finite order.
o Otherwise, there must be an x € S”, such that

'x={Ax: A€ r}

has a limit point.
o This would contradict proper discontinuity.

o Thus, we must find finite subgroups of O(n+ 1) no element of which
(except the identity) leaves a vector x fixed.

o This is a necessary condition for I'.

o However, it can be shown that it is also sufficient.

George Voutsadakis (LSSU) Differential Geometry



Curvature

o The simplest example of a subgroup ' of O(n + 1) of the type
described is the group consisting of two elements, ' = {£/}.

o The orbit space S"/T is the collection of all antipodal pairs of points
on S".

o As we have seen earlier, this is just the projective space P"(RR).

o Thus, for every n, we have at least two inequivalent spaces of
constant curvature:

o The real projective space;
o Its universal (Riemannian) covering space S”.
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If nis even, then S” and P"(RR) are the only complete manifolds of
constant curvature K = +1.

o Let ' be a properly discontinuous group of isometries acting freely on
S,
Then T C O(n+1).
So each A€ isan (n+ 1) x (n+ 1) orthogonal matrix.
The degree of its characteristic polynomial is an odd number n+ 1.
Therefore, A must have a real characteristic value.

But the characteristic values of an orthogonal matrix are of absolute
value one.

Thus, A has &1 as a characteristic value.
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o We have seen that only the identity on I can have +1 as a
characteristic value.

Hence —1 is a characteristic value of A.

This implies that A% has +1 as characteristic value.

So A% = |.

Hence, each of the characteristic values of A is either +1 or —1.

So, one of the following holds:

o All are +1 and A= I;
o All are —1 and A= —/.

This completes the proof when combined with the preceding example.
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©

When n is odd, other possibilities can occur.

o As an indication, we will show that, in the case of S3, there exist
many examples of finite subgroups I C O(4), which act freely on S3
and, thus, give manifolds S3/I of constant positive curvature.

o The examples are based on the algebra K of quaternions.

o That is, on the real linear combinations
q=x+yi+zj+wk

of the four symbols 1,1, j, k with:

o The usual rules of multiplication;
o Componentwise addition.
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o We denote by @, the conjugate of q,
q=x—yi—zj — wk.

o We denote by ||g|| the usual norm

1/2.

lqll = (qq)

o Then K is in obvious one-to-one linear correspondence with R%.
o This norm corresponds to the standard norm in R*.

o Consider the set of quaternions of norm one
Ki={q: |al = 1.
o They correspond to S3 C R*.
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o As usual, we identify:

o K and R* as vector spaces and as manifolds;
o K1 and S3? as manifolds.

o Forall g;,q9, € K,
lg1921l = llq1]lllq2|l-

o So K1 is a group with respect to quaternion multiplication.
o For g € K1, consider then left translation Lq : K — K, defined by

Lq(x) = gqx.

o It is an R-linear mapping of K onto K.

o Moreover, it preserves the norm of x,

ILq () = ]
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o So Lq is an orthogonal linear transformation on K = R*.

o In brief, S3 = K is a group space and left translations are orthogonal
transformations, in fact isometries, of S3, with its usual Riemannian
structure.

o But no left translation, except the identity, can have a fixed point.
o So we need only find examples of finite subgroups I of Kj.

o Each such example determines a three-dimensional manifold of
constant positive curvature.

o Further, they are all determined in this way.
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o To find finite subgroups of K7 one uses the following fact.

o There is a natural homomorphism 7 : K; — SO(3) which is onto and
has kernel +1 (+1 is the unit quaternion).

o We now describe this homomorphism.

o Let R3 be identified with the subspace of K of all quaternions of the
form q = yi + zj + wk, with real part x = 0.
o Then to each ¢’ € K we let correspond the rotation 7(q’) of R3
given by
m(q"): g~ q'q(q")"".
o Now, if [; € SO(3) is a finite subgroup, then I = 771(I'1) is a finite
subgroup of Kj.

o Such subgroups of SO(3) are easy to find - the group of symmetries of
any regular solid (omitting those of determinant —1) give examples.
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o Now consider the Riemannian manifolds which have Euclidean space
of the same dimension as their universal Riemannian covering space.

o They are the (complete) spaces of zero curvature.

o Thus they are of the form M = E" /I, the orbit space of a subgroup I'
of the group of isometries (rigid motions) of E".

o Suppose we identify E" with R" and use vector space notation.

o Then each isometry is of the form
x — Ax + b,

where:

o A € O(n) and determines a rotation of the space;
o b= (b',...,b") and determines a translation of the space.

o Locally, the geometry of any such M is just that of Euclidean space.
o So these spaces might seem to lack interest, but this is not the case.

George Voutsadakis (LSSU)



Curvature

o The global behavior between E” and M = E" /T may be different.

o A particular example is given by the global behavior of geodesics in
such spaces.
o We have already noted this in the case of two examples.
o The cylinder, which is just E?/T with

N={x—x+ne :e =(1,0),neZ};

o The torus T2, which is obtained as the orbit space of the group of
translations

{x > x+ne1 + me; :n,meZ,e =(1,0),e=(0,1)}.
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o Historically, the study of these spaces is linked to that of the study of
crystal structures on the plane E? and in Euclidean space ES.

o That is, to uniform coverings of the plane by congruent polygons and
of E3 by congruent polyhedra.

o It is fairly easy to convince ourselves
that the symmetries of such crystalline
structures - rigid motions carrying the
structures onto themselves - form a
subgroup I of the group of rigid mo-
tions which acts properly discontinu-
ously.

o However, elements of such groups may well have fixed points.

o So these groups are somewhat more general than those which
generate examples of manifolds of zero curvature.
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o It was proved in the 19th century that there were only a finite number
of crystal structures on E3.

o In his address of 1900, Hilbert asked whether the number of possible
isomorphism classes of properly discontinuous groups of motions I of
E" for which the orbit space E" /I is compact is finite, for every n.

o These are called crystallographic groups.
o Hilbert's question was answered affirmatively by Bieberbach in 1911.

o This implies, in particular, that, for every dimension n, there exist
finitely many compact Riemannian manifolds of curvature zero.

o Among these, of course, is the torus T".

o It is a consequence of Bieberbach’s work that every such manifold has
the torus as covering space.
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o Consider H? as given in a preceding example.
o We write (x, y) for (x!, x?);
o We identify H? with the upper half-plane of the complex numbers C by
the correspondence
(x,y) < z=x+1Iy.

o Then H? is the open subset of C, consisting of all complex numbers z
with positive imaginary part Imz > 0.
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o We may then write the Riemannian metric, or line element

2
ds® = Z g,-jdx"dxj,
ij=1

in the complex or real form

dzdz  dx®+ dy?

ds? = —
* T (Imz) y2

o We have considered this Riemannian manifold and its isometries.

o The reason for passing to complex coordinates is that it makes it
much simpler to define and work with the group of isometries.

o Of course, other representations of H? and its group of isometries are
often used, some of which extend to H" for all n.
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o Recall that mappings on C of the form

wih a, b, c,d € C such that ad — bc # 0, are isometries of H2.

o In analytic function theory they are called linear fractional
transformations.

The group G of linear fractional transformations, such that a, b, ¢, d are
real numbers and ad — bc = +1, is exactly the group of isometries of H?,
identified with the upper halfplane of C.
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Theorem (Cont'd)

The mapping F : SI(2,R) — G defined by

g i — z%w—az-l_b
c d Ccz+d

is a homomorphism of S/(2,R) onto G, with kernel £/.

o Almost all statements were proved in a previous example.

o It remains to show that this group contains all of the isometries.
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o Note that the last statement is verified by a straightforward
computation.
We show, next, that the first statement is correct.
Let w be the image of z € H? by a transformation of G.

Then

So the upper half-plane maps onto itself.
If we compute dw, we find that

dz

W= ap
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o From dw = (cziizdy it follows that
dwdw dzdz

(Imw)2 — (Imz)?’

So ds? is preserved.

This is a shorthand way of seeing that the components of gj;
transform as they should for an isometry.

o This mapping could be given in terms of real and imaginary parts.
That is, one could compute the functions u(x, y) and v(x,y), such
that

w = u(x,y) + iv(x,y).
Then the mapping could be written without use of complex variables.
However, the computations become more difficult.
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o We next see that this group G contains all isometries.
Recall, first, that it acts transitively on the upper half-plane.
Recall, also, that it is transitive on directions.
Indeed, it has been shown that the orbit of i = v/—1 is all of H2.
This implies transitivity.
It also implies that the isotropy subgroup of i consists of elements of
G corresponding to matrices in S/(2,R) of the form

cosf sinf
—sinf cosf |-
This subgroup of G is transitive on directions at i.

In fact, it acts as SO(2) on the tangent space to H? at i.

These facts, together with a previous corollary, prove the assertion.
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o We note that angles on H? in terms of the given Riemannian metric
are the same as angles on R?.
o From complex function theory we have the following facts.
o Linear fractional transformations are analytic mappings on the complex
plane.
o As such, they are conformal, that is, they preserve angles between
curves.
o Linear fractional transformations carry circles and straight lines of C
into circles and straight lines.
o It follows that any circle which is orthogonal to the real axis will be
carried by any element of G into a circle orthogonal to the real axis or
a vertical straight line.

o We can show that vertical straight lines are geodesics of H?.

o It follows that any circle orthogonal to the real axis is also a geodesic.
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o A little Euclidean geometry shows that, through a given zy € H?,
there is exactly one circle (or vertical line) tangent to each direction
at zp and orthogonal to the real axis.

o Now isometries take geodesics to geodesics.

o So this gives every geodesic through z.

o One important consequence is that every geodesic can be extended to
infinite length so that H? is seen to be a complete metric space.

o It is sufficient to check this for just one geodesic, namely,

x=0, y=t, 0<t<oo.
o The length of this geodesic fromt =atot=bs

=
a t

o So it is unbounded in both directions, i.e., as a — 0 or b — co.
o This shows it is indefinitely extendable.
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o We also saw that H? is an example of a symmetric space, which
means that it must be complete.
o We have previously noted that:

o H? is the space of non-Euclidean geometry;

o It is easy to see from this description of geodesics that Euclid’s
postulate of parallels is not satisfied (although all the other postulates
of Euclid are!).

o This behavior of geodesics should be contrasted with that on S? and
P2(IR), spaces of constant positive curvature.

o On those, every pair of geodesics intersect, twice on S? and once
P2(R).
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o Note that any translation of H" in a direction parallel to the plane
x" =0 is an isometry.
o The same holds for a rotation of the underlying R” leaving x" fixed.

o That is, a linear transformation of the variables x*, ..., x"1 with
orthogonal matrix, is an isometry.

o Thus any 2-plane determined by a point x € H" and unit vector X, at
x can be carried to the submanifold

H>={xeH" :x! =...=x""1 =0}

by an isometry of H".
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o We can verify that geodesics of H? are geodesics of H".

o So, from the facts concerning H? and known properties of geodesics,
every geodesic of H” can be extended to infinite length.

o This means that H" is complete.

o It also means that the geodesics of H" are exactly the semicircles
whose center lies on the (n — 1)-plane x” = 0 and whose plane is
perpendicular to it.
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