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Partially Ordered Sets (Posets)

Consider the following relations defined on sets:
The “less-than-or-equal-to” relation ≤ defined on the integers Z;
The “divides” relation | defined on the natural numbers N;
The “is-a-subset-of” relation ⊆ defined on 2A for some set A.

In all three cases, the relation R captures the flavor of “is smaller
than” for the elements of the set X on which it is defined.

All three relations are reflexive, antisymmetric, and transitive on the
sets on which they are defined.

Definition (Partially Ordered Set, Poset)

A partially ordered set is a pair P = (X ,R) where X is a set and R is a
relation on X that satisfies the following:

R is reflexive: ∀x ∈ X , x R x ;

R is antisymmetric: ∀x , y ∈ X , if x R y and y R x , then x = y ;

R is transitive: ∀x , y , z ∈ X , if x R y , and y R z , then x R z .
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Hasse Diagrams

Example: Let P = (X ,R), where X = {1, 2, 3, 4} and
R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3), (3, 4), (4, 4)}. It is not
hard to see that R is reflexive and antisymmetric. Checking
transitivity is tedious. Thus P is a poset.

The figure shows a diagram for the poset. Each
element of X is represented by a dot. If x R y in the
poset, then we draw x ’s dot below y ’s and draw a
line segment (or curve) from x to y .

We do not need to draw loops since we know that partial order
relations are reflexive. Also, the relationships (1, 3) and (3, 4) are
explicit, whereas (1, 4) is implicit. Because partial order relations are
transitive, we can infer 1 R 4 from the diagram.

These diagrams of posets are known as Hasse diagrams.
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Two Examples

Example: Draw the Hasse diagram of the poset whose ground set is
{1, 2, 3, 4, 5, 6} and whose relation is | (divides).

Example: Draw the Hasse diagram for the poset whose ground set is
2{1,2,3} and whose relation is ⊆.
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Refinement

Definition (Refinement)

Let P and Q be partitions of a set A. We say that P refines Q or that P
is finer than Q, if every part in P is a subset of some part in Q.

Example: Let A = {1, 2, 3, 4, 5, 6, 7}, and let
P = {{1, 2}, {3}, {4}, {5, 6}, {7}}, and, Q = {{1, 2, 3, 4}, {5, 6, 7}}.
Every part of P is a subset of a part of Q. Thus we say that P is a
refinement of Q or that P is finer than Q.

It is not hard to see that

“refines” is reflexive;
“refines” is antisymmetric;
“refines” is transitive.

Therefore, “refines” is a partial order on the set of all partitions of A.
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An Example of a Partition Poset

Draw the Hasse diagram of the “refines” partial order on all partitions
of {1, 2, 3, 4}.
It is convenient to write 1/2/34 in lieu of {{1}, {2}, {3, 4}} etc.
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Notational and Terminology

Let P = (X ,≤) be a poset (we are using ≤ to stand for a generic
partial order relation). We define the following:

x < y means x ≤ y and x 6= y ;
x ≥ y means y ≤ x ;
x > y means y ≤ x and y 6= x .

We may also add a slash to mean that the given relationship does not
hold. For example, x � y means y ≤ x is false.

If we want to discuss two different posets at once, we may attach
various decorations to the ≤ symbol, e.g., ≤′ or ≤2.

Caution! For an arbitrary poset, < and � mean different things.

For the poset on the left 2 � 4 is true but 2 < 4 is
false. Also, all three 2 < 4, 2 = 4 and 2 > 4 are false.
Pairs of elements, such as 2 and 4, that cannot be
compared by the relation ≤ are called incomparable.
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Comparability, Chains and Antichains

Definition (Comparable, Incomparable)

Let P = (X ,≤) be a poset. Let x , y ∈ X . We call elements x and y

comparable provided x ≤ y or y ≤ x . We call the elements x and y

incomparable if x � y and y � x .

Definition (Chain, Antichain)

Let P = (X ,≤) be a poset and let C ⊆ X . We call C a chain of P if
every pair of elements in C are comparable. Let A ⊆ X . We call A an
antichain of P if every pair of distinct elements of A are incomparable.

Example: Consider the poset P on the right:
The following sets are some of the chains of P :
{1}, {1, 2}, {1, 4}, {1, 3, 4}, ∅.
The following sets are some of the antichains of P :
{3}, {2, 3}, {2, 4}, ∅.
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Height and Width

Definition (Height, Width)

Let P be a poset. The height of P is the maximum size of a chain. The
width of P is the maximum size of an antichain.

Example:

The largest chain in the poset on the left is
{1, 3, 4}. So this poset has height equal to 3.

The largest antichains in this poset are {2, 3} and
{2, 4}. So this poset has width equal to 2.
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Max and Min
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Maximum and Minimum

Definition (Maximum, Minimum)

Let P = (X ,≤) be a partially ordered set. An element x ∈ X is called
maximum if, for all a ∈ X , we have a ≤ x . We call x minimum if, for all
b ∈ X , we have x ≤ b.

Example: Consider the poset consisting of the positive divisors of 36
ordered by divisibility:

In this poset, element 1 is minimum because it
is strictly below all other elements of the poset.
Element 36 is maximum because it is strictly
above all other elements.

However, consider the poset consisting of the in-
tegers 1 through 6 ordered by divisibility. In this
poset, element 1 is minimum, but there is no max-
imum element.
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Maximal and Minimal Elements

Definition (Maximal, Minimal)

Let P = (X ,≤) be a partially ordered set. An element x ∈ X is called
maximal if there is no b ∈ X with x < b. Element x is called minimal if
there is no a ∈ X , with a < x .

x is maximal if there is no element strictly above it and minimal if
there is no element strictly below it.

Example:

In the poset consisting of the integers 1 through
6 ordered by divisibility, the elements 4, 5 and 6
are maximal, and element 1 is minimal.
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Summary of the Four Types of Elements

We summarize the four terms:

Term Meaning

maximum all other elements are below
maximal no other element is above

minimum all other elements are above
minimal no other element is below

For not maximal and not minimal:

Element x is not maximal if there is some other element y with y > x .
Element x is not minimal if there is some other element z with z < x .

Is it possible for a poset to have no maximal elements?

Consider the poset (Z ,≤) - the integers ordered by ordinary “less than
or equal to”. This poset has no maximal and no minimal elements.
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Maximal and Minimal Elements in Finite Posets

A poset P = (X ,≤) is finite and nonempty, if X is finite and X 6= ∅.

Proposition

Let P = (X ,≤) be a finite, nonempty poset. Then P has maximal and
minimal elements.

Let x be any element of P . Let us write u(x) to stand for the number
of elements of P that are strictly above x (the up-degree of x), i.e.,
u(x) = |{a ∈ X : a > x}|. Because P is finite, u(x) is a natural
number (i.e., is finite). Choose an element m such that u(m) is as
small as possible (exists since P 6= ∅).
Claim: m is a maximal element of P .
Suppose that m is not maximal. Then, there exists a with m < a. By
transitivity, every element that is strictly above a is also strictly above
m. Furthermore, a is strictly above m. Thus, u(m) ≥ u(a) + 1, i.e.,
u(m) > u(a), a contradiction. Therefore, m is maximal.

Similarly, every finite, nonempty poset has a minimal element.
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Subsection 3

Linear Orders
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Total or Linear Orders

Definition (Total/Linear Order)

Let P = (X ,≤) be a partially ordered set. We call P a total or linear
order provided P does not contain incomparable elements.

Example: (Z,≤) is a total order.

If x and y are elements of a total order, then either x ≤ y or y ≤ x .

Total orders satisfy the trichotomy rule: For all x and y in the
poset, exactly one of the following is true:

x < y , x = y , or x > y .

Example: Let P be the poset ({1, 2, 3, 4, 5},≤) -
that is, the integers 1 through 5 ordered by ordinary
less than or equal to. This is a total order whose
Hasse diagram looks like this:
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Poset Isomorphism

Let Q be the partially ordered set consisting of the positive divisors of
81 ordered by divisibility. The elements of Q are 1, 3, 9, 27 and 81,
and they are totally ordered 1 | 3 | 9 | 27 | 81. Notice that this poset
has the same Hasse diagram as the one just seen.

Definition (Isomorphism of Posets)

Let P = (X ,≤) and Q = (Y ,≤′) be posets. A function f : X → Y is
called a (poset) isomorphism provided f is a bijection and

∀a, b ∈ X , a ≤ b ⇐⇒ f (a) ≤′ f (b).

In the case when there is an isomorphism from P to Q, we say that P is
isomorphic to Q and write P ∼= Q.

The condition a ≤ b ⇐⇒ f (a) ≤′ f (b) means that the function f is
order-preserving and order-reflecting; i.e., an order relation holds
between a and b in P , iff the corresponding relation holds between
f (a) and f (b) in Q.
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Classification of Finite Total Orders

We show that any two finite total orders with the same number of
elements are isomorphic.

Theorem

Let P = (X ,�) be a finite total order containing n elements and Q = ({1,
2, . . . , n},≤) (integers 1 through n in their standard order). Then P ∼= Q.

The proof is by induction on n.
Basis Case: The basis case n = 0 is trivial.
Induction Hypothesis: We assume that the result is true for n = k .
Induction Step: Suppose P = (X ,�) is a total order on k + 1
elements. Let Q = ({1, 2, . . . , k + 1},≤). We must show that P ∼= Q.
We know that P has a maximal element x . Let P ′ be the poset P − x ,
the poset formed by deleting x from P . Let Q ′ be the poset ({1, 2,
. . . , k},≤). By induction, P ′ ∼= Q ′ so we can find an order-preserving
bijection f ′ between their ground sets. We define

f : X → {1, 2, . . . , k + 1} by f (a) =

{

f ′(a), if a 6= x

k + 1, if a = x
. We must

show that f is a bijection and is order-preserving.

George Voutsadakis (LSSU) Discrete Mathematics March 2014 20 / 57



Partially Ordered Sets (Posets) Linear Orders

Proof of Classification (Cont’d)

To show that f is a bijection:
We first check that f is one-to-one. Suppose f (a) = f (b).

If neither a nor b equals x , then f (a) = f ′(a) and f (b) = f ′(b), so
f ′(a) = f ′(b). Since f ′ is one-to-one, we have a = b.
If both a and b are x , then clearly a = b.
Finally, note that if f (a) = f (b), it is impossible for one of a or b to be
x and the other one not x ; in this case, one of f (a) or f (b) evaluates
to k + 1 and the other does not.

Therefore f is one-to-one.
Next we check that f is onto. Let b ∈ {1, 2, . . . , k + 1}, the ground set
of Q.

If b = k + 1, then note that f (x) = b.
If b 6= k + 1, then, since f ′ is onto {1, . . . , k}, we can find a ∈ X − {x}
with f ′(a) = b. But then f (a) = f ′(a) = b, as required.

Thus f is onto.

Therefore f is a bijection.

Next we need to show that f is order-preserving and reflecting; i.e.,
for all a, b ∈ X , a � b ⇐⇒ f (a) ≤ f (b).
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Conclusion of the Classification Proof

Next we need to show that for all a, b ∈ X , a � b ⇐⇒ f (a) ≤ f (b).
(⇒) Suppose a, b ∈ X and a � b. We must show that f (a) ≤ f (b).

If neither a nor b is equal to x , then f (a) = f ′(a) and f (b) = f ′(b).
Since f ′(a) ≤ f ′(b) (f ′ is order-preserving), we have f (a) ≤ f (b).
If both a = b = x , then f (a) = f (b) = k + 1, so clearly f (a) ≤ f (b).
If a 6= x and b = x , then f (a) = f ′(a) ≤ k < k + 1 = f (b), so
f (a) ≤ f (b).
Finally, we cannot have a = x and b 6= x because that would give
x � b, and x is maximal in P.

Thus, in all possible cases, we have a � b ⇒ f (a) ≤ f (b).
(⇐) Suppose f (a) ≤ f (b). We must show that a � b.

If neither a nor b is x , then f (a) = f ′(a) and f (b) = f ′(b). Thus
f ′(a) ≤ f ′(b) and so a � b (f ′ is order-reflecting).
If both a and b are x , then a � b.
We cannot have a = x and b 6= x because then
k + 1 = f (a) ≤ f (b) ≤ k , which is a contradiction.
The only remaining case is a 6= x and b = x . Since b = x is maximal,
we know that a ⊁ b. Since P is a total order, we must have a � b.

Thus, in all cases, we have a � b.

George Voutsadakis (LSSU) Discrete Mathematics March 2014 22 / 57



Partially Ordered Sets (Posets) Linear Extensions

Subsection 4

Linear Extensions
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Incomparability versus Partial Information

There are two ways to think about a partially ordered set.
On the one hand, there may be incomparabilities among the elements
of the set, e.g., we cannot compare 8 and 11 with respect to divisibility.
On the other hand, we can think of a partially ordered set as
representing partial information about an ordered set.

Example: In the poset on the left below a is a minimum element, e is
a maximum element, and we have a < b < c < e and a < d < e.

However, d is incomparable to b and c . Perhaps, we
simply do not yet know the order relation between
b and d (or c and d).

Given that elements {a, b, c , d , e} are partially ordered, we can ask:
What linear orders are consistent with the partial ordering already
given on these elements?

George Voutsadakis (LSSU) Discrete Mathematics March 2014 24 / 57



Partially Ordered Sets (Posets) Linear Extensions

Linear Extensions of Posets

We want to extend this partial order to a consistent linear order.
For consistency, we must have a be-
low all the other elements and e

above all the other elements. We
also must have b < c .

d might be above both b and c ;
d might be between b and c ;
d might be below both b and c .

The three linear orderings are called linear extensions of the poset.

Definition (Linear Extension)

Let P = (X ,�) be a partially ordered set. A linear extension of P is a
linear order L = (X ,≤) with the property that

∀x , y ∈ X , x � y ⇒ x ≤ y .
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Remarks on Linear Extensions

It is important to notice, if L is a linear extension of P :

The posets P and L have the same ground set X .
The poset L is a linear (total) order.
The poset L is an extension of P : if x � y in P , then x ≤ y in L.

The condition x � y ⇒ x ≤ y can be written as � ⊆ ≤.

Example: Let P = (X ,�) be an antichain containing n elements.
Then all possible linear orders on those n elements are linear
extensions of P . Thus there are n! possible linear extensions of P .

Does every poset have a linear extension?

We prove that, if x and y are incomparable in a finite poset P , we can
find a linear extension L in which x < y and, by symmetry, another
linear extension L′ in which y <′ x .
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Linear Extension of a Partial Order on a Finite Set

Theorem

Let P be a finite partially ordered set. Then P has a linear extension.
Moreover, if x and y are incomparable elements of P , then there is a linear
extension L of P in which x < y .

Let P = (X ,�) where X is a finite set. If P is a total order, then P is
its own linear extension. Assume, now, P is not a total order.
Suppose x and y are incomparable in P . We define a new relation, �′

on X as follows: Let s, t ∈ X . We have s �′ t provided either of the
following conditions holds:

(A) s � t or
(B) s � x and y � t.

The poset on the right shows the rela-
tion �′ formed from � on the left.
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Linear Extension (Reflexivity and Antisymmetry of �′)

We check �′ is a partial order:

�′ is reflexive: Let a ∈ X be any element of the poset P . Since a � a,
we have, by condition (A), a �′ a. Therefore �′ is reflexive.
�′ is antisymmetric: Suppose a �′ b and b �′ a. We examine four
cases:

Suppose a �′ b because a � b (A), and b �′ a because b � a (A).
Since � is antisymmetric, and a � b and b � a, we have a = b.
Suppose a �′ b because a � b (A), and b �′ a because b � x and
y � a (B). This case cannot happen: We have y � a � b � x , implying
that y � x . However, x and y are incomparable in P, a contradiction.
Suppose a �′ b because a � x and y � b (B), and b �′ a because
b � a. This case is just like the previous case and cannot occur.
Finally, suppose a �′ b because a � x and y � b (B), and b �′ a

because b � x and y � a (B). In this case, we have y � b � x ,
contradicting the fact that x and y are incomparable. So this case
cannot occur either.

Therefore, �′ is antisymmetric.
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Linear Extension (Transitivity of �′)

We continue checking that �′ is a partial order:
�′ is transitive: Suppose a �′ b and b �′ c . We must show that
a �′ c . We consider four cases:

Suppose a �′ b because a � b (A), and b �′ c because b � c (A).
Then a � c (� is transitive) and so a �′ c by (A).
Suppose a �′ b because a � b (A), and b �′ c because b � x and
y � c (B). In this case, a � b � x , so a � x . Also y � c, so a �′ c by
(B).
Suppose a �′ b because a � x and y � b (B), and b �′ c because
b � c (A). In this case, y � b � c, so y � c. Since a � x , we have
a �′ c by (B).
Finally, suppose a �′ b because a � x and y � b (B), and b �′ c

because b � x and y � c (B). This case cannot occur: We have
y � b � x , and so y � x . However, x and y are incomparable, a
contradiction.

So �′ is transitive.

Therefore P ′ = (X ,�′) is a poset.
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Linear Extension (Finishing the Proof)

P ′ = (X ,�′) has the following properties:
First, a � b ⇒ a �′ b for all a, b ∈ X .
Second, x �′ y , but x and y are incomparable in P . Thus the number
of pairs of elements related by �′ is strictly greater than the number of
pairs of elements related by �.

It is conceivable that �′ is a linear order. In this case, P ′ is the
desired linear extension of P . However, if P ′ is not a linear order,
then it contains incomparable elements x ′ and y ′. We can extend �′

to form �′′ in precisely the same way as before. The relation �′′ will
include all relations in �′ and will also have the relation x ′ �′′ y ′. In
this way, we create a sequence of partial order relations each
containing more pairs than the previous: �,�′,�′′,�′′′, . . .. Because
X is finite, this process will eventually result in a relation that is a
total order. Let that relation be ≤. Since x �′ y , and all subsequent
relations are extensions of �′, we see that x ≤ y . Thus we have
constructed a linear extension ≤ of P in which x ≤ y .
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Subsection 5

Dimension
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Reconstruction of a Poset from its Linear Extensions

Consider the partially ordered set and its linear extensions:

Claim: The three linear extensions
of the poset P contain enough
information to reconstruct P .

Notice that b < c in all three
linear extensions. This can
happen only if b < c in P itself.

On the other hand, in the first linear extension, we have b < d , but in
the third, we have b > d . If it was the case that b < d in P , then we
would have b < d in all linear extensions. So we can deduce that b and
d are incomparable in P .

Corollary

Let P be a finite partially ordered set, and let x and y be distinct elements
of P . If x < y in all linear extensions of P , then x < y in P . Conversely, if
x < y in one linear extension, but x > y in another, then x and y are
incomparable in P .
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Computer Representation of a Poset

We obtain a way to store a partially ordered set in a computer:

We can save, as lists, the linear extensions of P .
Then, x < y in P , if x is below y in all of the linear extensions.

Some partially ordered sets have a large number of linear extensions.

Example: An antichain on ten elements has 10! (over 3 million) linear
extensions. However, we do not need all 10! linear extensions to
represent this antichain in our computer: We can use just the two
linear orders:

1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < 10
10 < 9 < 8 < 7 < 6 < 5 < 4 < 3 < 2 < 1.

The same idea works for the five-element
poset we considered before. The first and
third linear extensions: a < b < c < d <
e and a < d < b < c < e are enough for
reconstruction.
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Realizers

Definition (Realizer)

Let P = (X ,≤) be a partially ordered set. Let R be a set of linear
extensions of P . We call R a realizer of P , provided that for all x , y ∈ X

we have x ≤ y in P if and only if x ≤ y in all linear extensions in R. We
say that R realizes P .

If R = {L1, L2, . . . , Lt} is a realizer for a poset P , then we know that
x ≤ y ⇐⇒ x ≤i y , for all i = 1, 2, . . . , t.

Half of this statement (the (⇒) implication) always holds by virtue of
the fact that the Li are linear extensions.
The other implication (the (⇐) half) is the important feature: it says
that if x � y , then we do not have x �i y for all i . If y < x , this is
obvious, for then we have y <i x , for all i . Suppose x and y are
incomparable. Since x � y , there is an i with x >i y . And since y � x ,
there is a j with x <j y .
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Characterization of Realizers

Proposition (Characterization of Realizers)

Let P be a poset and let R = {L1, L2, . . . , Lt} be a set of linear extensions
of P . Then R is a realizer of P if and only if, for all pairs x and y of
incomparable elements of P , there exist i and j so that x <i y and x >j y .

Example: Let P be the poset whose Hasse diagram is shown here:

Let L1, L2 and L3 be the following linear
extensions of P :

L1 : b < c < e < f < a < x < d

L2 : a < c < d < f < b < x < e

L3 : a < b < d < e < c < x < f .

Let R = {L1, L2, L3}. We claim that R is a realizer of P .

All three Li are linear extensions of P . Observe that a < x and a < d

in all three Li . Then check that b < x and b < e in all three. Finally,
note that c < x and c < f in all three.

George Voutsadakis (LSSU) Discrete Mathematics March 2014 35 / 57



Partially Ordered Sets (Posets) Dimension

Example (Cont’d)

We saw L1, L2 and L3 are linear extensions
of P :

L1 : b < c < e < f < a < x < d

L2 : a < c < d < f < b < x < e

L3 : a < b < d < e < c < x < f .

We check that if u and v are incomparable in P , then u < v in one
linear extension and u > v in another:

Consider first the incomparabilities among a, b and c . Note that we
have a < b in L3 and a > b in L1. The incomparabilities between a and
c and between b and c are checked in the same way.
We also see that d < e in L2 and d > e in L1. The other
incomparabilities among {d , e, f } are checked in the same way.
Next, x < d in L1 and x > d in L2. The other incomparabilities
involving x are checked in the same manner.
Finally, notice that a < e in L2 and a > e in L1. The incomparabilities
a− f , b − d , b − f , c − d , and c − e are checked in a similar manner.

Therefore R is a realizer.
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Dimension of a Poset

Let P be an antichain on ten elements. We can form a realizer of P
using all 10! linear extensions, but we can just use two.

We may realize a poset using all its linear extensions.

The interesting problem is to use as few linear extensions as possible.

Example: The following poset can be realized using all three of
its linear extensions or with just two.
Clearly, it is not possible to realize this
poset with just one linear extension. This
poset can be realized with two linear ex-
tensions, but no fewer.

Definition (Dimension)

Let P be a finite poset. The smallest size of a realizer of P is called the
dimension of P . The dimension of P is denoted dimP .

Example: An antichain on ten elements and the poset in the figure
both have dimension equal to 2.
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Establishing a Lower Bound on Dimension

Consider again:

It has a realizer containing three linear exten-
sions. Because P is not a linear order, it cannot
be realized by a single linear extension.

Claim: P cannot be realized using just two linear extensions.

Suppose that P can be realized with L′ and L′′. Consider the pairwise
incomparable elements a, b and c . By symmetry, we have a < b < c

in L′ and a > b > c in L′′. Since x is above all of a, b and c , we also
know that x is above them in L′ and L′′. So, a < b < c < x in L′ and
c < b < a < x in L′′. Now e and x are incomparable, so e < x in one
of L′ or L′′ and e > x in the other. By symmetry, assume e > x in L′

(so in L′ we have a < b < c < x < e). In L′′ we know that e < x , but
we also know that e > b (because e > b in P). So in L′′ we have
c < b < e < x . In both L′ and L′′ we have c < e. Therefore {L′, L′′}
is not a realizer for P , and so there can be no realizer of size 2.
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The Posets Pn

Here is another family of posets whose dimension we calculate:

Let n be an integer, with n ≥ 2,
and let Pn be as follows:
The ground set of Pn consists
of 2n elements:

{a1, a2, . . . , an, b1, b2, . . . , bn}.

The only strict order relations in Pn are those of the form ai < bj ,
where i 6= j .

The poset P4 is shown in the figure.

Proposition (Dimension of Pn)

Let n be an integer with n ≥ 2 and consider the poset Pn. The dimension
of Pn is n.
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Proving that Dimension of Pn is n (Upper Bound)

First, we show that Pn has a realizer of size n.
Let 1 ≤ i ≤ n. Let Li be (other a’s) < bi < ai < (other b’s). The
“other a’s” means all aj (except ai) are before bi . Similarly, the “other
b’s” means all bj (except bi) are after ai .
Claim: Regardless of the ordering of “other a’s” and “other b’s”, Li is
a linear extension of Pn.
We just need to check that aj < bk whenever j 6= k . Indeed, we have
aj < bk for all j and k except for j = k = i . Thus Li is a linear
extension of P , for all i = 1, 2, . . . , n.
Claim: R = {L1, L2, . . . , Ln} is a realizer for Pn.
There are three types of incomparable pairs in Pn: two a’s, two b’s,
and ai − bi for some i :

Incomparable pairs of the form ai − aj : Notice that ai < aj in Lj and
ai > aj in Li .
Incomparable pairs of the form bi − bj : Notice that bi < bj in Li and
bi > bj in Lj .
Incomparable pairs of the form ai − bi : Notice that ai > bi in Li , but
ai < bi in any other Lk (k 6= i).
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Proving that Dimension of Pn is n (Lower Bound)

Second, we show that Pn cannot have a realizer with fewer than n
linear extensions.

Suppose, for the sake of contradiction, there is a realizer R of Pn with
|R| < n. For each k (with 1 ≤ k ≤ n), there must be a linear extension
L ∈ R in which ak > bk (because ak and bk are incomparable). There
are n such incomparable pairs, but at most n − 1 linear extensions in
R. Therefore, by the Pigeonhole Principle, there must be a linear
extension L and two distinct indices i and j , such that ai > bi and
aj > bj in L. Since bj > ai and bi > aj in Pn, we must also have these
relations in L. Thus in L we have

bj > ai > bi > aj > bj ⇒ bj > bj ,

which is a conradiction. Therefore R is not a realizer of Pn, and so we
cannot realize Pn with fewer than n linear extensions.

Therefore dimPn = n.
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Domination in n-Dimensional Space

Every point in the plane can be represented by a pair of real numbers:
the (x , y)-coordinates of the point. The plane is denoted R

2.

Likewise, every point in three-dimensional space can be described as
an ordered triple: (x , y , z). Three-dimensional space is denoted R

3.

In general Rn stands for the set of all ordered n-tuples of real
numbers and represents n-dimensional space.

We investigate the connection between the two uses (geometry and
posets) of the word dimension.

Let p and q be two points in n-dimensional space R
n. We say that p

dominates q provided each coordinate of p is greater than or equal
to the corresponding coordinate of q. In other words, if the
coordinates of p and q are p = (p1, p2, . . . , pn), q = (q1, q2, . . . , qn),
then p1 ≥ q1, p2 ≥ q2, . . . , pn ≥ qn. Let us write p � q in the case
where p dominates q. We also write q � p, and we say that q is
dominated by p.
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Embeddings in Rn

Definition (Embedding in R
n)

Let P = (X ,≤) be a poset and let n be a positive integer. An embedding
of P in R

n is a one-to-one function f : X → R
n such that x ≤ y (in P) if

and only if f (x) � f (y) (in R
n).

The following figure shows a poset on the left and an embedding in
R

2 on the right.

The chain a < b < c < e corresponds to the sequence of points a, b,
c, e, where each point is to the northeast of the previous point. Also,
since b and d are incomparable, their points b and d are also
incomparable in the dominance (�) order.
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Embedding Theorem

Theorem (Embedding Theorem)

Let P be a finite poset and let n be a positive integer. Then P has a
realizer of size n if and only if P embeds in R

n. Thus dimP is the least
positive integer n such that P embeds in R

n.

(⇒) Suppose that P = (X ,≤) has a realizer R = {L1, L2, . . . , Ln} of
size n. For x ∈ X , let hi (x) denote the height of x in Li , i.e., hi(x) is
the number of elements less than or equal to x in Li . Let f : P → R

n

be defined by f (x) = (h1(x), h2(x), . . . , hn(x)).
f is one-to-one: If x 6= y , then h1(x) 6= h1(y) (because x and y are at
different heights in L1), and so f (x) 6= f (y).
We must show that x ≤ y (in P) iff f (x) � f (y).

Suppose x ≤ y in P. Then hi (x) ≤ hi(y) (because x ≤ y in all the
linear extensions Li ). Hence, f (x) is, coordinate by coordinate, less
than or equal to f (y), and so f (x) � f (y).
Suppose f (x) � f (y). Thus, hi(x) ≤ hi (y) for all i . So x ≤ y in all
linear extensions Li , and, hence, (by definition of realizer) x ≤ y in P.
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Embedding Theorem (Cont’d)

(⇐) Suppose P = (X ,≤) can be embedded in R
n. Thus, there is a

one-to-one mapping f : X → R
n so that for all x , y ∈ X we have

x ≤ y ⇐⇒ f (x) � f (y). Let i be an integer with 1 ≤ i ≤ n.
We define a linear extension Li of P as follows: Let fi(x) be the i -th
coordinate of f (x). We form Li by arranging the elements of X in
increasing order of fi . That is, we have x ≤i y provided fi (x) � fi(y).
This would give a total order on the elements X were it not for the
possibility of elements with equal i -th coordinate.
We break such ties as follows: Suppose fi(x) = fi (y), for some x 6= y .
Since f is a one-to-one function, there must be some other coordinate
j , where fj(x) 6= fj(y). In this case, we declare the order of x and y in
Li to be determined by the lowest index j where fj(x) 6= fj(y).
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Embedding Theorem (Finishing the Proof)

We finally show that Li is a linear extension of P and that
R = {L1, . . . , Ln} is a realizer.

Claim: Li is a linear extension of P .
Clearly Li is a linear order. Suppose x < y in P . Then f (x) � f (y) and
so fi (x) ≤ fi (y). In case fi (x) = fi (y) and x < y , we note that for all j ,
fj(x) ≤ fj(y) and for some indices j , the inequality is strict. Thus
x < y in P implies x <i y , and so Li is a linear extension of P .
Claim: R = {L1, . . . , Ln} is a realizer.
We must show that if x and y are incomparable, then there are indices
i and j with x <i y and x >j y . Since f (x) is incomparable to f (y) (f
an embedding in R

n), we know there exist i and j with fi (x) < fi (y)
and fj(x) > fj (y), and this gives x <i y and x >j y .
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Example: Using an Embedding to Create a Realizer

Let P be the poset in the figure on the left:

Let a 7→ a, b 7→ b, . . . , f 7→ f shown on the right be an embedding of
P in R

2. From this embedding we extract the two linear extensions:

L1 : a < d < b < e < c < f

L2 : a < b < c < d < e < f .

We found L1 by sorting the six points by their first coordinate and
breaking ties using the second coordinate.
Likewise we found L2 by sorting the points by their second coordinate
and breaking ties using the first coordinate.

Observe that R = {L1, L2} is a realizer for P .
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Subsection 6

Lattices
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Order Theoretic Characterization of Intersection

We show that the operations ∩ (intersection), ∧ (Boolean and) and
gcd (greatest common divisor) form “similar” structures.

Proposition

Let A and B be sets. Let Z be a set, such that:

Z ⊆ A and Z ⊆ B;

if X ⊆ A and X ⊆ B, then X ⊆ Z .

Then Z = A ∩ B .

Suppose x ∈ Z . Since Z ⊆ A, we have x ∈ A. Likewise Z ⊆ B

implies X ∈ B . Therefore X ∈ A ∩ B .
Conversely, suppose x ∈ A ∩ B . This means that x ∈ A and x ∈ B ,
and so X = {x} is a subset of both A and B . Therefore X = {x} is a
subset of Z (by the second property). Thus x ∈ Z .
We have shown that x ∈ Z ⇔ x ∈ A ∩ B and so Z = A ∩ B .
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Commonalities of ∩ and gcd

Similarly for the greatest common divisor of two positive integers:

Proposition

Let a, b be positive integers. Let d be a positive integer, such that:

d | a and d | b;

if e ∈ N with e | a and e | b, then e | d .

Then d = gcd (a, b).

Since d | a and d | b, we have d ≤ gcd (a, b). On the other hand,
gcd (a, b) | a and gcd (a, b) | b, whence, by the second property,
gcd (a, b) | d . Therefore, gcd (a, b) ≤ d . These show d = gcd (a, b).

These propositions suggest defining
A ∩ B to be the largest set that is below both A and B; “largest” and
“below” with respect to ⊆;
gcd (a, b) to be the largest positive integer that is below both a and b;
“largest” and “below” with respect to |.
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Greatest Lower Bound and Least Upper Bound

Definition (Lower and Upper Bounds)

Let P = (X ,≤) be a poset and let a, b ∈ X . We say that x ∈ X is a lower

bound for a and b provided x ≤ a and x ≤ b. Similarly, we say that
x ∈ X is an upper bound for a and b provided a ≤ x and b ≤ x .

Definition (Greatest Lower Bound/Least Upper Bound)

Let P = (X ,≤) be a poset and let a, b ∈ X . We say that x ∈ X is a
greatest lower bound for a and b provided

1 x is a lower bound for a and b;

2 if y is lower bound for a and b, then y ≤ x .

Similarly, we say that x ∈ X is a least upper bound for a and b provided

1 x is an upper bound for a and b;

2 if y is an upper bound for a and b, then y ≥ x .
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An Example

Let P be the following poset:

Consider 8 and 9. Notice that 1, 2, and 5 are upper
bounds for 8 and 9. Since 5 < 1 and 5 < 2, we have
that 5 is the least upper bound of 8 and 9. But 8 and
9 have no lower bounds, so no greatest lower bound.

Elements 4 and 7 have 11 as their only lower bound;
thus 11 is their greatest lower bound. Elements 4
and 7 have no upper bound, so no least upper bound.

Elements 5 and 6 have 2 as the least (and only) upper bound. They
have incomparable lower bounds 9 and 11, so they do not have a
greatest lower bound.

9 and 10 have no greatest lower bound and no least upper bound.

Elements 4 and 5 have 2 as their least upper bound and 8 as their
greatest lower bound.
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Meet and Join

If a greatest lower bound exists, it must be unique.
Suppose x and y are both greatest lower bounds of a and b. We have
x ≤ y because y is greatest and we have y ≤ x because x is greatest.
Therefore x = y .

If a and b have a least upper bound, it must also be unique.

Definition (Meet and Join)

Let P = (X ,≤) be a poset and let a, b ∈ X . If a and b have a greatest
lower bound, it is called the meet of a and b, and it is denoted a ∧ b. If a
and b have a least upper bound, it is called the join of a and b, and it is
denoted a ∨ b.

Example: Consider the poset P whose ground set is {TRUE,FALSE}.
We define FALSE < TRUE in this poset. Then T ∧ F = F because
FALSE is the greatest (and only) lower bound for TRUE and FALSE.
Also: T ∧ T = T, T ∧ F = F, F ∧ T = F, F ∧ F = F

T ∨ T = T, T ∨ F = T, F ∨ T = T, F ∨ F = F.
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Lattices

Consider again the poset P :

We have:

8 ∧ 9 = undefined and 8 ∨ 9 = 5.
4 ∧ 7 = 11 and 4 ∨ 7 = undefined.
5 ∧ 6 = undefined and 5 ∨ 6 = 2.
Both 9 ∧ 10 and 9 ∨ 10 are undefined.
4 ∧ 5 = 8 and 4 ∨ 5 = 2.

Definition (Lattice)

Let P be a poset. We call P a lattice provided that, for all elements x
and y of P , x ∧ y and x ∨ y are defined.

Example (Subsets of a Set): Let A be a set and let P = (2A,⊆), i.e.,
P is the poset of all subsets of A ordered by containment. In this
poset we have, for all x , y ∈ 2A, x ∧ y = x ∩ y and x ∨ y = x ∪ y .
Therefore P is a lattice.

George Voutsadakis (LSSU) Discrete Mathematics March 2014 54 / 57



Partially Ordered Sets (Posets) Lattices

An Additional Example of a Lattice

Consider:

The ∧ and ∨ operation tables are given below:

∧ a b c d e

a a a a a a

b a b b a b

c a b c a c

d a a a d d

e a b c d e

∨ a b c d e

a a b c d e

b b b c e e

c c c c e e

d d e e d e

e e e e e e

Since ∧ and ∨ are defined for every pair of elements, this poset is a
lattice.
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Natural Numbers with Divisibility and Linear Orders

Example (Natural Numbers/Positive Integers Ordered by Divisibility):
Consider the poset (N, |), i.e., the set of natural numbers ordered by
divisibility. Let x , y ∈ N. Then, x ∧ y is the greatest common divisor
of x and y , and x ∨ y is their least common multiple. However, (N, |)
is not a lattice because 0 ∧ 0 = gcd (0, 0) is not defined. On the other
hand, the poset (Z+, |) is a lattice. Here Z

+ stands for the set of
positive integers which we order by divisibility. In this case, ∧ and ∨
(gcd and lcm) are defined for all pairs of positive integers.

Example (Linear Orders): Let P = (X ,≤) be a linear (total) order.

For any x , y ∈ X , x ∧ y =

{

x , if x ≤ y

y , if x ≥ y
. So x ∧ y = min {x , y}

where min {x , y} stands for the smaller of x and y . Likewise
x ∨ y = max {x , y}, i.e., the larger of the pair. Thus all linear orders
are lattices.
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Properties of Meet and Join

Theorem (Properties of Meet and Join)

Let P = (X ,≤) be a lattice. For all x , y , z ∈ X , the following hold:

x ∧ x = x ∨ x = x . (Idempotency)

x ∧ y = y ∧ x and x ∨ y = y ∨ x . (Commutativity)

(x ∧ y) ∧ z = x ∧ (y ∧ z), (x ∨ y) ∨ z = x ∨ (y ∨ z). (Associativity)

x ∧ y = x ⇐⇒ x ∨ y = y ⇐⇒ x ≤ y .

We only show ∧ is associative: Let a = (x ∧ y) ∧ z , b = x ∧ (y ∧ z).

Since a = (x ∧ y) ∧ z , a is a lower bound for x ∧ y and for z . Thus
a ≤ x ∧ y and a ≤ z . Since a ≤ x ∧ y and since x ∧ y ≤ x and
x ∧ y ≤ y , we have that a ≤ x and a ≤ y . Thus a is below x , y and z .
Since a ≤ y and a ≤ z , we get a ≤ y ∧ z , since y ∧ z is the greatest
lower bound of y and z . Since a ≤ x and a ≤ y ∧ z , we get a ≤ b,
since b is the greatest lower bound for x and y ∧ z .
By an identical argument, we have b ≤ a.
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