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Probability

Introducing Probabilities

Probability theory provides us with tools for analyzing situations in
which events occur at random.

It is used in a wide range of disciplines (e.g., sociology, physics,
genetics, finance).
It is important to distinguish between mathematical probability theory
and its application to problems in the real world.

In mathematics, a probability is a number associated with some object.
In applications, the object is some event or uncertain action, and the
number is a measure of how frequent or how likely that event is.

Probabilities are real numbers between 0 and 1.
An event with probability 1 is certain to occur, and an event with
probability 0 is impossible.
Probabilities between 0 and 1 reflect the relative likelihood between
these two extremes, with unlikely close to 0, and likely close to 1.

Discrete probability problems are often counting problems recast in
the language of probability theory.
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Probability Sample Space

Subsection 1

Sample Space
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Probability Sample Space

Sample Space and Probabilities

Consider the toss of a die.

Since, we cannot say in advance which of the six sides of the die will
land face up, the outcome of this experiment is unpredictable.

If the die is fair, we can say that all six outcomes are equally likely.

Thus, although we cannot predict the outcome, we can describe the
likelihood of seeing, for example, a 4 when we roll the die.

Mathematicians model the roll of a die using the sample space, which
consists of two parts:

It contains a set S of all the outcomes of some experiment.
It quantifies the likelihood P(s) of each of these outcomes s ∈ S .

We call the number P(s), with 0 ≤ P(s) ≤ 1, the probability of the
outcome s ∈ S .

By convention, we require that the sum of the probabilities of the
various possible outcomes be 1, i.e.,

∑

s∈S P(s) = 1.
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Probability Sample Space

Rolling a Fair Die

Let S be the set of outcomes from the roll of a die.

We name the outcomes with the integers 1, 2, 3, 4, 5, and 6, so
S = {1, 2, 3, 4, 5, 6}.

We also have a function P : S → R, defined by

P(1) = 1
6 P(2) = 1

6 P(3) = 1
6

P(4) = 1
6 P(5) = 1

6 P(6) = 1
6

The probabilities are nonnegative real numbers between 0 and 1.

Moreover, the sum of the probabilities of all the elements in S is 1.
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Probability Sample Space

Definition of Sample Space

Definition (Sample Space)

A sample space is a pair (S ,P) where S is a finite, nonempty set and P

is a function P : S → R, such that P(s) ≥ 0, s ∈ S , and
∑

s∈S P(s) = 1.

Example: Consider the spinner shown: The
set of outcomes S is S = {1, 2, 3, 4}. The
probability function P : S → R measures
how likely it is for the spinner to land in each
of the regions.

Thus we have

P(1) =
1

2
, P(2) =

1

4
, P(3) =

1

8
, P(4) =

1

8
.

We check that
∑

s∈S

P(S) = P(1) + P(2) + P(3) + P(4) =
1

2
+

1

4
+

1

8
+

1

8
= 1.
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Probability Sample Space

A Pair of Dice and a Hand of Poker

Example: Two dice are tossed. Die 1 can land in any one of 6 equally
likely ways, and the same is true for die 2. We express the outcome of
this experiment as an ordered pair (a, b) where a and b are integers
between 1 and 6. There are 6× 6 = 36 possible outcomes for this
experiment. We let S = {(1, 1), (1, 2), (1, 3), . . . , (6, 5), (6, 6)}. Since
each of the 36 possible outcomes of this experiment is equally likely,
P(s) = 1

36 , for all s ∈ S .

Example: A hand of poker is a five-element subset of the standard
deck of 52 cards. There are

(

52
5

)

different five-element subsets of a
52-element set. The set S consists of all these different five-element
subsets. Since they are all equally likely, we have

P(s) =
1

(

52
5

) , for all s ∈ S .
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Probability Sample Space

Tossing a Coin

A fair coin is tossed five times in a row, and the sequence of HEADS
and TAILS is recorded. We model this as a sample space. The set S
contains all possible outcomes of this experiment. An outcome is
denoted by a length-five list of Hs and Ts. There are 25 = 32 such
lists, and they are all equally likely. Thus
S = {TTTTT,TTTTH,TTTHT, . . . ,HHHHT,HHHHH} and
P(s) = 1

32 , for all s ∈ S .

We can create sample spaces that have no specific physical
interpretation:

Example: Let S = {1, 2, 3, 4, 5, 6} and define P : S → R by

P(1) = 0.1, P(2) = 0.4, P(3) = 0.1

P(4) = 0, P(5) = 0.2, P(6) = 0.2

Note that
∑

s∈S P(s) = 1.
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Probability Events

Subsection 2

Events
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Probability Events

Events and Their Probabilities

Recall the die-throwing example. In the sample space (S ,P), P gives
the probability of each of the six possible outcomes of rolling the die.

Suppose we want the probability that the die will show an even
number, i.e., the probability that the die produces a result in the set
{2, 4, 6}. We call such a set an event.

The probability of this event is 1
2 . Each of the three outcomes of the

die has probability 1
6 , and we add them. We denote the probability of

the event {2, 4, 6} as P({2, 4, 6}).

The function P is a function P : S → R. We use the same symbol
applied to a subset of S . We define this extended use of the symbol
P so that P({2, 4, 6}) = P(2) + P(4) + P(6).

Definition (Event)

Let (S ,P) be a sample space. An event A is a subset of S (i.e., A ⊆ S).
The probability of an event A, denoted P(A), is P(A) =

∑

a∈A P(a).
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Probability Events

Pair of Dice

Let (S ,P) be the sample space representing the toss of a pair of dice.
What is the probability that the sum of the numbers on the two dice
is 7?
Let A denote the event that the numbers on the dice sum to 7.

A = {(a, b) ∈ S : a + b = 7}
= {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}.

The probability of this event is

P(A) = P [(1, 6)] + P [(2, 5)] + P [(3, 4)] + P [(4, 3)]
+ P [(5, 2)] + P [(6, 1)]

= 1
36 + 1

36 + 1
36 +

1
36 + 1

36 + 1
36

= 1
6 .
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Probability Events

Tossing a Coin

Let (S ,P) be the sample space that models tossing a coin five times.

What is the probability that exactly one HEAD shows?
Let A denote the event that exactly one HEAD emerges. We can
write this out explicitly as A = {HTTTT, THTTT, TTHTT,
TTTHT, TTTTH}. Note that A contains five outcomes, each of
which has probability 1

32 . Therefore P(A) = 5
32 .

What is the probability that exactly two HEADs show?
Let B be the event that exactly two of the coin flips show HEADs.
We can write out the elements of B explicitly, but all we really need
to know is how many elements are in B (because all elements of S
have the same probability). The size of B is |B | =

(5
2

)

= 10 (Choose

2 out of the 5 positions for the Hs). Thus, P(B) =
10

32
=

5

16
.
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Probability Events

Ten Dice

Ten dice are tossed. What is the probability that none of the dice
shows the number 1?
We begin by constructing a sample space (S ,P). Let S denote the set
of all possible outcomes of this experiment. An outcome of this
experiment can be expressed as a length-ten list formed from the
symbols 1, 2, 3, 4, 5, and 6. There are 610 such lists and they are all
equally likely, so P(s) = 6−10, for all s ∈ S . Let A be the event that
none of the dice shows the number 1. Since all elements of S have
the same probability, this problem reduces to finding the number of
elements in A. The number of outcomes that do not have the
number 1 is the number of lists of length ten whose elements are
chosen from the symbols 2, 3, 4, 5, and 6. The number of such lists
is 510. Therefore there are 510 elements in A, all of which have

probability 6−10. Therefore p(A) = 510 × 6−10 =

(

5

6

)10

≈ 0.1615.
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Probability Events

Poker: Four of a Kind

Recall the poker hand sample space. A poker hand is called a four of

a kind if four of the five cards show the same value (e.g., all 7s or all
kings). What is the probability that a poker hand is a four of a kind?

Let A be the event that the poker hand is a four of a kind. Since
every poker hand has probability 1

(525 )
, we simply need to calculate |A|.

There are 13 choices for which value is repeated four times. Given
that value, there are 48 choices for the fifth card. Thus,

P(A) =
13× 48
(52
5

) =
1

4165
≈ 0.00024.
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Probability Events

Four Children

A couple has four children. Which is more likely: They have two boys
and two girls, or they have three of one gender and one of the other?

Let S be the set of all possible lists of genders the couple might have.
We can represent the genders of the children as a list of length four
drawn from the symbols b and g. There are 24 = 16 such lists, and
they are all equally likely.
Let A be the event that the couple has two boys and two girls. Then
A = {ggbb, gbgb, gbbg, bbgg, bgbg, bggb}. So
P(A) = 6

16 = 3
8 = 0.375.

Let B be the event that the couple has three of one gender and one of
the other. Thus, B = {gggb,ggbg,gbgg,bggg,bbbg,bbgb,bgbb,gbbb}.
So P(B) = 8

16 = 1
2 = 0.5.

Since P(B) > P(A), it is more likely for the couple to have three of
one gender and one of the other than to have two boys and two girls.
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Probability Events

Combining Events: Union and Intersection

Since events are subsets of a probability space, we can use the
operations of set theory (union, intersection, etc.) to combine events.

Let (S ,P) be a sample space.

If A and B are events, so is A ∪ B . We can think of A ∪ B as the
event that “A or B occurs”.

Example: If A is the event “a die shows an even number” and B is
the event that “the die shows a prime number”, then A ∪ B is the
event that “the die shows a number that is even or prime”, so
A ∪ B = {2, 4, 6} ∪ {2, 3, 5} = {2, 3, 4, 5, 6}. The probability of the
event A ∪ B is 5

6 .

Likewise, A ∩ B is the event that “both A and B occur”.

If A is the event that “a die shows an even number” and B is the
event that “it shows a prime number”, then
A ∩ B = {2, 4, 6} ∩ {2, 3, 5} = {2} and P(A ∩ B) = 1

6 .
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Probability Events

Combining Events: Set Difference

The set A− B is the event that “A occurs but B does not”.
For the die rolling example, A− B = {2, 4, 6} − {2, 3, 5} = {4, 6}.
The probability of “rolling a number that is even but not prime” is
P(A− B) = 1

3 .
Since the set S of a sample space is the “universe” of all outcomes, it
is sensible to write A to stand for the set S − A. The set A represents
the event “A does not occur”.

For the die rolling example, A is the event that “we do not roll an
even number”, so P(A) = P({1, 3, 5}) = 1

2 .
Can we find P(A ∪ B) if we know only P(A) and P(B)? No!
Consider these two examples (from rolling a die):

Let A = {2, 4, 6} and B = {2, 3, 5}. We have P(A) = P(B) = 1
2 and

P(A ∪ B) = P({2, 3, 4, 5, 6}) = 5
6 .

Let A = {2, 4, 6} and let B = {1, 3, 5}. Then P(A) = P(B) = 1
2 and

P(A ∪ B) = P(S) = 1.

So P(A) = P(B) = 1
2 is not enough to determine P(A ∪ B).
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Probability Events

An Important Proposition

Proposition

Let A and B be events in a sample space (S ,P). Then
P(A) + P(B) = P(A ∪ B) + P(A ∩ B).

Consider the sums P(A) + P(B) and P(A ∪ B) + P(A ∩ B).
The first is P(A) + P(B) =

∑

s∈A P(s) +
∑

s∈B P(s).
The second is P(A ∪ B) + P(A ∩ B) =

∑

s∈A∪B P(s) +
∑

s∈A∩B P(s).

Consider an arbitrary element s ∈ S . There are four possibilities:
s is in neither A nor B. In this case, the term P(s) does not enter
either side of the equation.
s is in A but not in B. In this case, P(s) enters exactly once into both
sides of the equation (once in P(A) and once in P(A ∪ B)).
s is in B but not in A. As before, P(s) enters exactly once into both
sides of the equation.
s is in both A and B. In this case, P(s) appears twice on each side of
the equation (once each in P(A),P(B), P(A ∪ B) and P(A ∩ B)).

Therefore, P(A) + P(B) = P(A ∪ B) + P(A ∩ B) are equal.
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Probability Events

A Corollary and Mutually Exclusive Events

Proposition

Let (S ,P) be a sample space and let A and B be events. We have the
following:

If A ∩ B = ∅, then P(A ∪ B) = P(A) + P(B).

P(A ∪ B) ≤ P(A) + P(B).

P(S) = 1.

P(∅) = 0.

P(A) = 1− P(A).

Two events whose intersection is the empty set are called mutually

exclusive.
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Probability Events

The Birthday Problem for Four People

Four people are chosen at random. What is the probability that two
(or more) of them have the same birthday?

We make two simplifying assumptions:
We ignore the possibility of a February 29 birthday.
We assume that all birthdays are equally likely, i.e., the probability a
random person is born on a given day of the year is 1

365 .

The sample space (S ,P) consists of all length 4 lists of days of the
year, represented as (d1, d2, d3, d4), where the di are integers from 1
to 365. All such lists are equally likely with probability 365−4. Let A
be the event that two (or more) of the people have the same birthday.
It is easier to calculate P(A), the probability they all have different
birthdays. We can choose the first date in 365, the second in 364, the
third in 363, and the last in 362 ways. Therefore,
P(A) = 365·364·363·362

3654
.

Thus, P(A) = 1− P(A) = 1− 365·364·363·362
3654

≈ 0.0164. It is rather
unlikely that two of them have the same birthday.
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Probability Events

The Birthday Problem for Twenty-Three People

Suppose that 23 people are chosen at random. What is the
probability that some of them have the same birthday?

It would seem, since 23 is much smaller than 365, that this is also an
unlikely event.
Consider the sample space (S ,P) where S contains all length 23 lists
(d1, d2, . . . , d23) where each of the di is an integer from 1 to 365. We
assign probability 365−23 to each of these lists.
Let A be the event that two (or more) of the dis are equal. It is again
easier to calculate the probability of A. The number of length 23
repetition-free lists we can form from 365 different symbols is (365)23.

Therefore, P(A) = (365)23
36523

and so P(A) = 1− (365)23
36523

.

Calculating, P(A) = 0.5073, so it is more likely that two (or more)
people have the same birthday than it is that no two of them do!
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Probability Conditional Probability and Independence

Subsection 3

Conditional Probability and Independence
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Probability Conditional Probability and Independence

Introduction

Let A represent the event “a student misses the school bus”.

Let B represent the event “the student’s alarm clock malfunctions”.

They have low probability, i.e., P(A) and P(B) are small numbers.

Consider the probability that the “student misses the school bus given
that the alarm clock malfunctioned”.

It is now very likely the student will miss the bus!

We denote this probability as P(A|B): the probability that event A
occurs given that event B occurs.
We illustrate events as regions in a diagram:

The box S represents the entire sample space.
Regions A and B represent the two events.

The proportion of B’s area that is overlapped by A represents those
days on which the student misses the bus and the alarm clock fails.
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Probability Conditional Probability and Independence

An Example on Conditional Probability

The proportion of box B covered by the overlap region is P(A∩B)
P(B) .

This represents the frequency with which the student misses the bus
on days the alarm clock fails.

The conditional probability of event A given B is P(A|B) = P(A∩B)
P(B) .

Example: Let (S ,P) be the pair-of-die sample space. Consider the
events A and B defined by:

Event A: the numbers on the dice sum to 8.
Event B: the numbers on the dice are both even.

A = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}
B = {(2, 2), (2, 4), (2, 6), (4, 2), (4, 4), (4, 6), (6, 2), (6, 4), (6, 6)}.

So P(A) = 5
36 and P(B) = 9

36 = 1
4 .

What is the probability the dice sum to 8 given that both dice show
even numbers? Of the nine, equally likely dice rolls in set B , three of
them sum to 8. Therefore P(A|B) = 3

9 = 1
3 . Notice

P(A ∩ B) = 3
36 = 1

12 and P(B) = 9
36 = 1

4 , so P(A∩B)
P(B) = 1/12

1/4 = 1
3 .
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Probability Conditional Probability and Independence

Conditional Probability

Definition (Conditional Probability)

Let A and B be events in a sample space (S ,P) and suppose P(B) 6= 0.
The conditional probability P(A|B), the probability of A given B , is

P(A|B) =
P(A ∩ B)

P(B)
.

Consider the spinner: Let A be the event
that we spin to a 1 and let B be the event
that the pointer ends in a shaded region.

What is the probability that we spin to a 1 given that the pointer
ends in a shaded region?
Notice that region 1 consumes 4

5 of the colored portion of the

diagram. Also: P(A|B) = P(A∩B)
P(B) = P({1})

P({1,3}) =
1/2
5/8 = 4

5 .
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Probability Conditional Probability and Independence

Flipping a Coin Five Times

A coin is flipped five times. What is the probability that the first flip
is a TAIL given that exactly three HEADS are flipped?

Let

A be the event that the first flip is TAILS;
B be the event that we flip exactly three HEADS.

We calculate P(A) = 24

25
= 1

2 and P(B) =
(53)
25

= 10
32 = 5

16 .
To calculate P(A|B), we also need to know P(A ∩ B). The set A ∩ B

contains exactly
(

4
3

)

= 4 sequences. So P(A ∩ B) = 4
32 = 1

8 .

Therefore, P(A|B) = P(A∩B)
P(B) = 1/8

5/16 = 2
5 .

George Voutsadakis (LSSU) Discrete Mathematics March 2014 27 / 72



Probability Conditional Probability and Independence

Example on Independence

A coin is flipped five times. What is the probability that the first flip
comes up HEADS given that the last flip comes up HEADS?

Let

A be the event that the first flip comes up HEADS;
B be the event that the last flip comes up HEADS.

We have P(A) = 24

25
= 1

2 , P(B) = 24

25
= 1

2 and P(A ∩ B) = 23

25
= 1

4 .

Therefore, P(A|B) = P(A∩B)
P(B) = 1/4

1/2 = 1
2 .

Notice that P(A|B) = P(A). The probability the first flip comes up
HEADS has nothing to do with the last flip. We call such events
independent.
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Probability Conditional Probability and Independence

Independent Events

We work out some consequences of the equation P(A|B) = P(A).

We have P(A|B) = P(A∩B)
P(B) = P(A) and, if we multiply by P(B), we

get P(A ∩ B) = P(A)P(B).

If P(A) 6= 0, we can divide by P(A): P(B |A) = P(A∩B)
P(A) = P(B).

Proposition

Let A, B be events in a sample space (S ,P) and suppose P(A),P(B) 6= 0.
Then the following statements are equivalent:

1 P(A|B) = P(A).

2 P(B|A) = P(B).

3 P(A ∩ B) = P(A)P(B).

Definition (Independent events)

Let A and B be events in a sample space. We say that these events are
independent provided P(A ∩ B) = P(A)P(B). Events that are not
independent are called dependent.
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Probability Conditional Probability and Independence

Drawing Balls

A bag contains ten red and ten blue balls. Two balls are drawn. Let
A be the event that the first ball drawn is red;
B be the event that the second ball drawn is red.

Are these events independent?
The answer depends on whether or not we replace the first ball before
drawing the second.

Suppose we replace the first ball before drawing the second. Then
there are 20× 20 ways to pick the two balls, of which 10× 20 have the
property that the first ball is red. Thus P(A) = 200

400 = 1
2 . Likewise,

P(B) = 1
2 . Finally, there are 10× 10 ways to draw the balls such that

both the first and second balls are red. Therefore P(A ∩ B) = 100
400 = 1

4 .
Since P(A ∩ B) = 1

4 = 1
2 · 1

2 = P(A)P(B), A and B are independent.
Suppose we do not replace the first ball once it is drawn. There are
20× 19 = 380 different ways to draw two balls. There are 10× 19
ways in which the first ball is red; hence P(A) = 190

380 = 1
2 . Similarly,

P(B) = 1
2 . However, there are only 10× 9 ways to pick the balls such

that both are red. Therefore P(A ∩ B) = 90
380 = 9

38 6= 1
4 = P(A)P(B)

and so the events are dependent.
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Probability Conditional Probability and Independence

Example on Repeated Independent Trials

Consider again the spinner: Suppose we
spin the needle twice. Instead of 4 possible
outcomes, there are 16: (1, 1), . . . , (4, 4).
What is the probability that we spin a 3
and then we spin a 2?

The first spin of the spinner and the second spin are independent of
one another: the number that comes up on the second spin is not in
any way dependent on the first number that appears. We think of
“first spin a 3” and “next spin a 2” as independent events with
probabilities 1

8 and 1
4 , respectively. Then the probability that we spin

a 3 and then a 2 ought to be 1
8 · 1

4 = 1
32 .

This is an example of repeated independent trials. We have a sample
space (S ,P) and, instead of drawing a single s ∈ S , we consider a
sequence of events s1, s2, . . . , sn each drawn at random from S .
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Probability Conditional Probability and Independence

Repeated Trials

Definition (Repeated Trials)

Let (S ,P) be a sample space and let n be a positive integer. Let Sn

denote the set of all length n lists of elements in S . Then (Sn,P) is the
n-fold repeated trial sample space in which

P [(s1, . . . , sn)] = P(s1)P(s2) · · · · · P(sn).

Example: The pair-of-dice sample space can be considered a repeated
trial on a single die. Let (S ,P) be the sample space with
S = {1, 2, 3, 4, 5, 6} and P(s) = 1

6 , for all s ∈ S . Then (S2,P)
represents the “roll of two dice” sample space. The elements of S2

are all possible results for rolling a pair of dice, from (1, 1) through
(6, 6), all with probability 1

6 ·
1
6 = 1

36 .
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Probability Conditional Probability and Independence

More Examples on Repeated Trials

Example: Consider the sample space representing five flips of a fair
coin.
We can reformulate this situation as follows: Let (S ,P) be the
sample space in which S = {HEADS,TAILS} and P(s) = 1

2 , for both
s ∈ S . The “toss-five-times” sample space is simply (S5,P). The set
S5 contains all length-five lists of the symbols HEADS and TAILS. All
such lists are equally likely with probability 1

32 .
Example: (Tossing an unfair coin) Imagine a coin that is not fairly
balanced; that is, it does not turn up HEADS and TAILS with the
same frequencies. We model this with a sample space (S ,P) where
S = {HEADS,TAILS}, but P(HEADS) = p and P(TAILS) = 1− p,
where p is a number with 0 ≤ p ≤ 1. If we toss this coin five times,
what is the probability that we see (in this order): HEADS, HEADS,
TAILS, TAILS, HEADS? The answer is

P(HHTTH) = P(H)P(H)P(T)P(T)P(H) = p · p · (1− p) · (1− p) · p.
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Probability Conditional Probability and Independence

The TV Show “Let’s Make a Deal”

A contestant is presented with a choice of three doors. Behind exactly
one of these doors is a terrific prize and the other doors conceal items
of considerably less value. The contestant is asked to choose a door.
At this point, the host Monty Hall shows the contestant one of the
worthless prizes behind one of the other doors and offers the
contestant the opportunity to switch to the other closed door. Is it
helpful to switch to the other door, or does it actually matter?

An incorrect analysis: The probability that the prize is behind the
door originally picked by the contestant is 1

3 . But now that one door
has been revealed, the probability that the valuable prize is behind
either of the two remaining doors is 1

2 , so it does not matter whether
the contestant switches to the other door.
The error in this argument is that the contestant knows more than
the fact that the prize is not behind a certain door. The door the host
opens depends on which door the contestant originally chose!
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Probability Conditional Probability and Independence

A Correct Mathematical Model for “Let’s Make a Deal”

Let us model this situation with a sample space.
Suppose the contestant chooses door 1.

The prize might be behind door 1, in which case the host will show
door 2 or 3. Let us suppose the host is equally likely to pick either.
If the prize is behind door 2, then the host will certainly show door 3.
If the prize is behind door 3, then the host will certainly show door 2.

Let us write “P1:S2” to stand for “the prize is behind door 1 and the
host shows door 2.” With this notation, the four possible occurrences
are P1:S2, P1:S3, P2:S3, P3:S2. We model this as a sample space by
assigning the following probabilities:

P(P1:S2) =
1

6
, P(P1:S3) =

1

6
, P(P2:S3) =

1

3
, P(P3:S2) =

1

3
.
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Probability Conditional Probability and Independence

A Correct Decision for “Let’s Make a Deal”

Suppose after the contestant picks door 1, the host reveals the
worthless item behind door 2. Should the contestant switch to door
3?

Consider the following three events:

A: “the prize is behind door 1”, i.e., A = {P1:S2,P1:S3}.
B: “the prize is behind door 3”, i.e., B = {P3:S2}.
C : “the host reveals door 2”, i.e., C = {P1:S2,P3:S2}.

Note that P(A) = P(B) = 1
3 . If the host did not reveal a door, there

is no reason to switch. On the other hand,
P(A|C ) = P(A∩C)

P(C) = P({P1:S2})
P({P1:S2,P3:S2}) =

1/6
1/6+1/3 = 1

3 and

P(B |C ) = P(B∩C)
P(C) = P({P3:S2})

P({P1:S2,P3:S2}) =
1/3

1/6+1/3 = 2
3 .

Therefore it is twice as likely that the contestant will win the big prize
by switching doors than by staying with the original choice.
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Subsection 4

Random Variables
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Probability Random Variables

Random Variables

Let (S ,P) be a sample space.

A random variable X associates a number with each outcome in a
sample space (S ,P), i.e., X (s) is a number that depends on s ∈ S .

For example, X might represent the number of HEADS observed in
ten flips of a coin. So, if s = HHTHTTTTHT, then X (s) = 4.

The proper way to express this idea is to say that X is a function.

The domain of X is the set S of a sample space (S ,P).
Each s ∈ S has a value X (s) that is usually a real number.
In this case, we have X : S → R.

Definition (Random Variable)

A random variable is a function defined on a probability space; that is, if
(S ,P) is a sample space, then a random variable is a function
X : S → V (for some set V ).
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Probability Random Variables

Examples

Let (S ,P) be the pair-of-dice sample space. Let X : S → N be the
random variable that gives the sum of the numbers on the two dice.
For example, X [(1, 2)] = 3, X [(5, 5)] = 10, and X [(6, 2)] = 8.

Let (S ,P) be the sample space representing ten tosses of a fair coin.
Let X : S → Z be the random variable that gives the number of
HEADS minus the number of TAILS. For example,
X (HHTHTTTTHT) = 4− 6 = −2.
We can also define random variables XH and XT as the number of
HEADS and the number of TAILS in an outcome. For example,
XH(HHTHTTTTHT) = 4 and XT(HHTHTTTTHT) = 6.
Notice that X = XH −XT, i.e., for any s ∈ S , X (s) = XH(s)−XT(s).
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Probability Random Variables

A Non-Numerical Random Variable

An example of a random variable whose values are not numbers:

Let (S ,P) be the sample space representing ten tosses of a fair coin.
For s ∈ S , let Z (s) denote the set of positions where HEADS is
observed. For example, Z (HHTHTTTTHT) = {1, 2, 4, 9} because
the HEADS are in positions 1, 2, 4, and 9. We call Z a set-valued

random variable because Z (s) is a set.

The random variable XH from the previous example is closely related
to Z . We have XH = |Z |. This means that XH(s) = |Z (s)|, for all
s ∈ S .
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Probability Random Variables

Events Through Random Variables

Let X be a random variable defined on a sample space (S ,P). We
might like to know the probability that X assumes a value v .

Example: If we roll a pair of dice, what is the probability that the sum
of the numbers is 8?
We can express this question in two ways:

Let A be the event that the two dice sum to 8; that is, A = {(2, 6),
(3, 5), (4, 4), (5, 3), (6, 2)}. We then ask: What is P(A)?
Define a random variable X to be the sum of the numbers on the dice.
We can then ask: What is the probability that X = 8? We write this as
P(X = 8).

In writing P(X = 8) we extend the P(•) notation beyond its previous
scope. So far, we allowed two sorts of objects to follow the P .

We may write P(s) where s ∈ S ;
We may write P(A) where A is an event.

The way to read the expression P(X = 8) is to interpret the “X = 8”
as an event. So X = 8 is shorthand for {s ∈ S : X (s) = 8}.

George Voutsadakis (LSSU) Discrete Mathematics March 2014 41 / 72



Probability Random Variables

An Additional Example

In the rolling of a pair of dice P(X = 8) = P({s ∈ S : X (s) = 8}) =
P({(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}) = 5

36 .

What does P(X ≥ 8) mean?
P(X ≥ 8) = P({s ∈ S : X (s) ≥ 8}) = 5+4+3+2+1

36 = 15
36 = 5

12 .

Recall the random variables XH and XT that count the number of
HEADS and of TAILS, respectively, in ten flips of a fair coin. What is
the probability that there are at least four HEADS and at least four
TAILS in ten flips of the coin?
This question can be expressed in these various ways:

P(XH ≥ 4 and XT ≥ 4)
P(XH ≥ 4 ∧ XT ≥ 4)
P(XH ≥ 4 ∩ XT ≥ 4)
P(4 ≤ XH ≤ 6).

We seek the probability of {s ∈ S : XH(s) ≥ 4 and XT(s) ≥ 4}. We

have P(XH ≥ 4 ∧ XT ≥ 4) =
(104 )+(

10
5 )+(

10
6 )

210
= 672

1024 = 21
32 .
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Binomial Random Variables

Consider the unfair coin which produces HEADS with probability p

and TAILS with probability 1− p.

The coin is flipped n times.

Let X denote the number of times that we see HEADS and h be an
integer. What is P(X = h)?

If h < 0 or h > n, it is impossible for X (s) = h, so P(X = h) = 0.
Suppose 0 ≤ h ≤ n. There are exactly

(

n
h

)

sequences of n flips with
exactly h HEADS. All of these sequences have the same probability:
ph(1− p)n−h. Therefore

P(X = h) =

(

n

h

)

ph(1− p)n−h.

We call X a binomial random variable for the following reason:
If we expand the expression (p + q)n using the binomial theorem, one
of the terms in the expansion is

(

n
h

)

phqn−h.
If we set q = 1− p, this is exactly P(X = h).
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Probability Random Variables

Conditional Probabilities Using Random Variables

Recall the pair-of-dice sample space.

For this sample space, we define two random variables, X1 and X2

X1(s) is the number on the first die, e.g., X1[(5, 3)] = 5.
X2(s) is the number on the second die, e.g., X2[(5, 3)] = 3.

Let X = X1 + X2, i.e., X is the sum of the numbers on the dice, e.g.,
X [(5, 3)] = 8.

Knowledge of X2 tells us some information about X .

For example, if we know that X2(s) = 4, then X (s) = 4 is impossible.
If we know that X2(s) = 4, then the probability that X (s) = 5 is 1

6 .
We can express this as P(X = 5|X2 = 4) = 1

6 . The meaning of
P(X = 5|X2 = 4) is the usual meaning of conditional probability:

P(X = 5|X2 = 4) =
P(X = 5 and X2 = 4)

P(X2 = 4)
=

1/36

1/6
=

1

6
.
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Independent Random Variables

We continue with the pair-of-dice and X1,X2 and X = X1 + X2.

Knowledge of X2 tells us nothing about X1. If a and b are integers

from 1 to 6, we have P(X1 = a|X2 = b) = P(X1=a and X2=b)
P(X2=b) = 1

6 .

Since P(X1 = a and X2 = b) = 1
36 = 1

6 · 1
6 = P(X1 = a)P(X2 = b)

the events “X1 = a” and “X2 = b” are independent.

Definition (Independent Random Variables)

Let (S ,P) be a sample space and let X and Y be random variables
defined on (S ,P). We say that X and Y are independent if, for all a, b,

P(X = a and Y = b) = P(X = a)P(Y = b).

The random variables X and Y are functions defined on (S ,P).
Therefore we may write X : S → A and Y : S → B for some sets A
and B . Since X cannot take on values outside of A nor can Y outside
of B , the condition can be rewritten
∀a ∈ A,∀b ∈ B ,P(X = a and Y = b) = P(X = a)P(Y = b).
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Subsection 5

Expectation
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Probability Expectation

Average Value

When a random variable yields numerical results, we can ask
questions such as:

What is the average value this random variable might take?
How widely spread are its values?

The expected value of real-valued random variable can be interpreted
as the average value of the random variable.

Example: Recall the spinner:

Define X to be the number of the region in
which the pointer lands. Thus P(X = 1) = 1

2 ,
P(X = 2) = 1

4 , P(X = 3) = P(X = 4) = 1
8 .

What is the average value of X? An incorrect reply would take the
average 1+2+3+4

4 = 5
2 .
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Probability Expectation

Average Value: The Spinner

The needle lands in region 1 far more often than in region 4.

In spinning the pointer many times, many more 1’s and 2’s than 3’s
and 4’s would show.

So we would get an average value less than 2.5.

If we were to spin the pointer a huge number N times, we would
expect to see (roughly) N

2 1’s, N
4 2’s. N

8 3’s and N
8 4’s.

So we would expect an average value of

N
2 · 1 + N

4 · 2 + N
8 · 3 + N

8 · 4

N
=

1

2
+

1

2
+

3

8
+

1

2
=

15

8
<

5

2
.

What we have calculated is a weighted average of the values of X .
The value a is counted a number of times that is proportional to how
often a appears.

We call this weighted average of the values of X the expected value
or expectation of X .
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Expectation

Definition (Expectation)

Let X be a real-valued random variable defined on a sample space (S ,P).
The expectation (or the expected value) of X is

E (X ) =
∑

s∈S

X (s)P(s).

The expected value of X is also called the mean value of X .

The letter µ is often used for the expectation of a random variable.

Example: Let X be the number that appears on the spinner.
Its expected value is

E (X ) =
∑4

a=1 X (a)P(a)
= X (1)P(1) + X (2)P(2) + X (3)P(3) + X (4)P(4)

= 1 · 1
2 + 2 · 1

4 + 3 · 1
8 + 4 · 1

8 = 15
8 .
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Probability Expectation

Examples

A die is tossed. Let X denote the number that shows. What is the
expected value of X?
The expected value is E (X ) =

∑6
a=1 X (a)P(a) = X (1)P(1) +

X (2)P(2) + X (3)P(3) + X (4)P(4) + X (5)P(5) + X (6)P(6) =
1 · 1

6 + 2 · 1
6 + 3 · 1

6 + 4 · 1
6 + 5 · 1

6 + 6 · 1
6 = 1+2+3+4+5+6

6 = 3.5.

Suppose we roll a pair of dice. Let X be the sum of the numbers on
the two dice. What is the expected value of X?
There are 36 different outcomes in the set S . Instead of writing out
all 36 terms in the sum

∑

s∈S X (s)P(s), we collect like terms:
E (X ) = 2P(X = 2)+3P(X = 3)+· · ·+11P(X = 11)+12P(X = 12).
Therefore, E (X ) =
2P(X = 2) + 3P(X = 3) + · · · + 11P(X = 11) + 12P(X = 12) =
2 1
36 +3 2

36 +4 3
36 +5 4

36 +6 5
36 +7 6

36 +8 5
36 +9 4

36 +10 3
36 +11 2

36 +12 1
36 =

2+6+12+20+30+42+40+36+30+22+12
36 = 252

36 = 7.
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Probability Expectation

Collecting Like Terms

Proposition

Let (S ,P) be a sample space and let X be a real-valued random variable

defined on S . Then E (X ) =
∑

a∈R

aP(X = a).

Even though it seems we are computing an infinite sum, since S is
finite, there are only finitely many different values that X (s) can
actually take.

Let X be a real-valued random variable defined on a sample space
(S ,P). The expected value of X is E (X ) =

∑

s∈S X (s)P(s). We can
rearrange the order of the terms by collecting those terms with a
common value for X (s): E (X ) =

∑

a∈R[
∑

s∈S:X (s)=a X (s)P(s)].
Because X (s) = a for all s in the inner sum, E (X ) =
∑

a∈R[
∑

s∈S:X (s)=a aP(s)] =
∑

a∈R[a
∑

s∈S:X (s)=a P(s)] =
∑

a∈R[aP(X = a)].
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Probability Expectation

A Spinning Game

Consider a game in which we spin the spinner
receiving $10 for spinning an odd number and
$20 for spinning an even number. Let X be
the payout from this game. What is the
expected value of X?

We calculate the answer in two ways.

By Definition: E (X ) =
∑

s∈S X (s)P(s) = X (1)P(1) + X (2)P(2) +

X (3)P(3) + X (4)P(4) = 10 1
2 + 20 1

4 + 10 1
8 + 20 1

8 = 110
8 = 13.75.

Alternatively, by the Proposition E (X ) =
∑

a∈R aP(X = a) =

10 · P(X = 10) + 20 · P(X = 20) = 10 5
8 + 20 3

8 = 110
8 = 13.75.

If we play this game repeatedly, we expect to receive an average of
$13.75 per spin.
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Probability Expectation

Rolling a Pair of Dice

Consider again the pair-of-dice sample space. The random variable X

is the absolute value of the difference of the numbers on the two dice.
What is the expected value of X?

E (X ) =
∑

a∈R aP(X = a)
= 0 · P(X = 0) + 1 · P(X = 1) + 2 · P(X = 2)

+ 3 · P(X = 3) + 4 · P(X = 4) + 5 · P(X = 5)

= 0 6
36 + 110

36 + 2 8
36 + 3 3

36 + 4 4
36 + 5 2

36

= 10+16+18+16+10
36 = 70

36 ≈ 1.944.
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Probability Expectation

Algebraic Combinations of Random Variables

Suppose X and Y are real-valued random variables defined on a
sample space (S ,P).

We can form a new random variable Z = X + Y , i.e., the value of Z
evaluated at s is simply the sum of the values X (s) and Y (s).

Similarly, if X and Y are real-valued random variables on a sample
space (S ,P), then XY is the random variable whose value at s is
X (s)Y (s).

Likewise we can define X − Y and so on.

If c is a number and X is a real-valued random variable, then cX is
the random variable whose value at s is cX (s).

If we know the expected value of X and Y , can we determine the
expected value of X + Y ,XY , or some other algebraic combination of
X and Y ?
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Probability Expectation

Expectation of a Sum of Random Variables

Theorem (Expectation of a Sum)

Suppose X and Y are real-valued random variables defined on a sample
space (S ,P). Then E (X + Y ) = E (X ) + E (Y ).

Let Z = X + Y . We have E (Z ) =
∑

s∈S Z (s)P(s) =
∑

s∈S [X (s) + Y (s)]P(s) =
∑

s∈S [X (s)P(s) + Y (s)P(s)] =
∑

s∈S X (s)P(s) +
∑

s∈S Y (s)P(s) = E (X ) + E (Y ).

Example: Let (S ,P) be the pair-of-dice sample space and let Z be
the random variable giving the sum of the values on the two dice.
What is E (X )?
Let X1 be the value on the first die and X2 the value on the second.
Note that Z = X1 + X2. We have computed E (X1) = E (X2) =

7
2 , so

E (Z ) = E (X1) + E (X2) = 7.

George Voutsadakis (LSSU) Discrete Mathematics March 2014 55 / 72



Probability Expectation

Another Example

A basket holds 100 chips that are labeled 1 through 100. Two chips
are drawn at random from the basket (without replacement). What is
the expected value of their sum, X?
There are three ways we can approach this problem:

First, we can apply the definition of expectation to find
E (X ) =

∑

s∈S X (s)P(s). This summation involves 9900 terms (there
are 100 choices for the first chip times 99 choices for the second chip).
Second, we can compute E (X ) =

∑

a∈R aP(X = a). The possible
sums range from 3 to 199, so this sum has nearly 200 terms.
Third, let X1 be the number on the first chip and X2 the number on
the second chip. Both X1 and X2 can be any value from 1 to 100 and
they are all equally likely. So E (X1) = E (X2) =

1+2+···+100
100 = 5050

100 =
50.5. Since X = X1 + X2, we have
E (X ) = E (X1 + X2) = E (X1) + E (X2) = 50.5 + 50.5 = 101.

It is important to note that X1 and X2 are dependent random
variables but the last proposition is still applicable.
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Probability Expectation

Expectation of a Real Multiple of a Random Variable

What happens in the case of multiplication of random variables?

Consider, first, a real-valued random variable X on a sample space
(S ,P), and a real number c . The expected value of cX is
E (cX ) =

∑

s∈S (cX )(s)P(s) =
∑

s∈S [cX (s)]P(s) =
c
∑

s∈S X (s)P(s) = cE (X ).

Proposition

Let X be a real-valued random variable on a sample space (S ,P) and let c
be a real number. Then E (cX ) = cE (X ).

Restated the Proposition says that, if the average value of X is some
number a, then the average value of cX is ca.
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Probability Expectation

Linearity of Expectation

Theorem (Linearity of Expectation)

Suppose X and Y are real-valued random variables on a sample space
(S ,P) and suppose a and b are real numbers. Then

E (aX + bY ) = aE (X ) + bE (Y ).

E (aX + bY ) = E (aX ) + E (bY ) = aE (X ) + bE (Y ).

In fact, if X1,X2, . . . ,Xn are random variables defined on (S ,P), and
c1, c2, . . . , cn are real numbers, then

E [c1X1 + · · ·+ cnXn] = c1E [X1] + · · ·+ cnE [Xn].
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Probability Expectation

Example: Tossing a Coin 10 Times

A coin is tossed 10 times. Let X be the number of times we observe
TAILS immediately after seeing HEADS. What is the expected value
of X?

To compute E (X ), we express X as the sum of other random
variables whose expectations are easier to calculate.

Let X1 be the random variable whose value is one if the first two tosses
are HEADS-TAILS and is zero otherwise.
Let X2 be the random variable that is one if the second and third
tosses come up HEADS-TAILS and is zero otherwise.
More generally, let Xk be the random variable defined as follows:

Xk =

{

1, if toss k is HEADS and toss k + 1 is TAILS
0, otherwise

The random variable Xk can take on only two values, one and zero,
so E (Xk) = 0P(X = 0) + 1P(X = 1) = P(X = 1) and the probability
we see HEADS-TAILS in positions k , k + 1 is exactly 1

4 . Therefore
E (Xk) =

1
4 for each k with 1 ≤ k ≤ 9.

Now we get E (X ) = E (X1) + · · ·+ E (X9) =
9
4 .

George Voutsadakis (LSSU) Discrete Mathematics March 2014 59 / 72



Probability Expectation

Indicator Random Variables

Indicator random variables take on only two values: zero and one.
Such random variables are also called zero-one random variables.

Proposition

Let X be a zero-one random variable. Then E (X ) = P(X = 1).

Example: Let π be a random permutation of the numbers
{1, 2, . . . , n}. In other words, the sample space is (Sn,P) where all
permutations π ∈ Sn have probability P(π) = 1

n! . Let X (π) be the
number of values k such that π(k) = k . Such a value k is called a
fixed point of the permutation. What is the expected value of X?

For k with 1 ≤ k ≤ n, let Xk(π) =

{

1, if π(k) = k

0, otherwise
Note that

X = X1 + X2 + · · ·+ Xn. Since Xk is a zero-one random variable,
E (Xk) = P(Xk = 1) = 1

n
. Therefore E (X ) = E (X1) + · · ·+ E (Xn) =

1
n
+ · · · + 1

n
= 1.

On average, a random permutation has exactly one fixed point.
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Product of Independent Random Variables: Example

A pair of dice are tossed. Let X be the product of the numbers on
the two dice. What is the expected value of X?
We can express X as the product of X1 (the number on the first die)
and X2 (the number on the second die), with E (X1) = E (X2) =

7
2 .

We evaluate E (X ) by computing
∑

∈R aP(X = a):

a P(X = a) aP(X = a) a P(X = a) aP(X = a)

1 1/36 1/36 12 4/36 48/36
2 2/36 4/36 15 2/36 30/36
3 2/36 6/36 16 1/36 16/36
4 3/36 12/36 18 2/36 36/36
5 2/36 10/36 20 2/36 40/36
6 4/36 24/36 24 2/36 48/36
8 2/36 16/36 25 1/36 25/36
9 1/36 9/36 30 2/36 60/36
10 2/36 20/36 36 1/36 36/36

102/36 339/36 441/36

Therefore E (X ) = 441
36 = (72 )

2. So in this case E (X ) = E (X1)E (X2).
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Product of Dependent Random Variables: Example

A fair coin is tossed twice. Let XH be the number of HEADS and let
XT be the number of TAILS observed. Let Z = XHXT. What is
E (Z )?

Note that E (XH) = E (XT) = 21
4 + 11

2 + 01
4 = 1.

However, we get

E (Z ) =
∑

a∈R aP(Z = a)
= 0 · P(Z = 0) + 1 · P(Z = 1)
= P(Z = 1)
= P({HT,TH}) = 1

2 .

This example shows that E (XY ) = E (X )E (Y ) is incorrect in general.
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Probability Expectation

Expectation: Product of Independent Random Variables

Theorem (Product of Independent Random Variables)

Let X and Y be independent, real-valued random variables defined on a
sample space (S ,P). Then E (XY ) = E (X )E (Y ).

Let Z = XY . Then

E (Z ) =
∑

a∈R aP(Z = a)
=

∑

a∈R a[
∑

b,c∈R:bc=a P(X = b ∧ Y = c)] (Z = XY )

=
∑

a∈R a[
∑

b,c∈R:bc=a P(X = b)P(Y = c)] (Indep.)

=
∑

a∈R[
∑

b,c∈R:bc=a bcP(X = b)P(Y = c)] (a = bc)

=
∑

b∈R[
∑

c∈R bP(X = b)cP(Y = c)]
=

∑

b∈R bP(X = b)[
∑

c∈R cP(Y = c)]
= [

∑

b∈R bP(X = b)][
∑

c∈R cP(Y = c)]
= E (X )E (Y ).
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Probability Expectation

Counterexample for the Converse

If X and Y satisfy E (XY ) = E (X )E (Y ), we may not conclude that
X and Y are independent! The following example showcases this:

Example: Let (S ,P) be the sample space with S = {a, b, c} in which
all three elements have probability 1

3 . Define random variables X and
Y according to:

s X (s) Y (s)

a 1 0
b 0 1
c −1 0

Note that X and Y are not independent because P(X = 0) = 1
3 ,

P(Y = 0) = 2
3 and P(X = 0 ∧ Y = 0) = 0 6= P(X = 0)P(Y = 0).

On the other hand, for all s ∈ S , we have X (s)Y (s) = 0. Therefore
E (X ) = 0, E (Y ) = 1

3 and E (XY ) = 0 = E (X )E (Y ).
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Probability Expectation

Expected Value as a Measure of Centrality

The expected value of a real-valued random variable is in the
“middle” of all the values X (s).

Example: Consider the sample space (S ,P) where S = {1, 2, . . . , 10}
and P(s) = 1

10 for all s ∈ S . Define X by:

s X (s) s X (s)

1 1 6 2
2 1 7 8
3 1 8 8
4 1 9 8
5 2 10 8

Then

E (X ) =
∑

a∈R

aP(X = a) = 1 · 0.4 + 2 · 0.2 + 8 · 0.4 = 4.
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Probability Expectation

Measuring of Centrality: Another Example

Imagine a long horizontal plank along which we place weights. We
place a weight at position a provided P(X = a) > 0. The weight we
place at a is P(X = a) kilograms. For the random variable X of the
table in the previous slide we get

At what point does this device balance?

If it balances at a point ℓ, the amounts of twist-torque applied in
either side should balance. Therefore:

∑

a∈R P(X = a)(a − ℓ) = 0
⇒

∑

a∈R aP(X = a) = ℓ
∑

a∈R P(X = a) = ℓ
⇒ ℓ = E (X ).

In the figure, the balancing point is at ℓ = 4.
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Probability Expectation

Variance: The Main Idea

Consider three random variables X ,Y , and Z . They take on real
values as follows:

X P(X )

−2 1
2

2 1
2

Y P(Y )

−10 0.001
0 0.998
10 0.001

Z P(Z )

−5 1
3

0 1
3

5 1
3

All three random variables have an expected value equal to zero.
Which of these is more “spread out”?
We calculate how far away each value of X is from µ = E (X ), but
count it only proportional to its probability. That is, we add up
[X (s)− µ]P(s). Unfortunately,
∑

s∈S [X (s)−µ]P(s) =
∑

s∈S X (s)P(s)−
∑

s∈S µP(s) = µ−µ·1 = 0.
The problem is that values to the right of µ are exactly canceled by
values to the left. To prevent this cancelation, we square the distances
between X and µ, counting them proportional to their probability.
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Probability Expectation

Variance: Finishing the Example

Definition (Variance)

Let X be a real-valued random variable on a sample space (S ,P) and
µ = E (X ). The variance of X is Var(X ) = E [(X − µ)2].

Consider again X ,Y , and Z :

X P(X )

−2 1
2

2 1
2

Y P(Y )

−10 0.001
0 0.998
10 0.001

Z P(Z )

−5 1
3

0 1
3

5 1
3

We calculate their variances as follows:

Var(X ) = E [(X − µ)2] = E (X 2) = (−2)2 · 0.5 + 22 · 0.5 = 4
Var(Y ) = E [(Y − µ)2] = E (Y 2) = 0.2
Var(Z ) = E [(Z − µ)2] = E (Z 2) = 50

3 ≈ 16.67.
By this measure, Z is the most spread out and Y is the most
concentrated.
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Probability Expectation

Another Example

A die is tossed. Let X denote the number that appears on the die.
What is the variance of X?

Let µ = E (X ) = 7
2 . Then

Var(X ) = E [(X − µ)2]

= E [(X − 7
2)

2]

= (1− 7
2)

2 · 1
6 + (2− 7

2)
2 · 1

6 + (3− 7
2)

2 · 1
6

+ (4− 7
2)

2 · 1
6 + (5− 7

2)
2 · 1

6 + (1− 7
2)

2 · 1
6

= 25
24 + 3

8 +
1
24 + 1

24 +
3
8 + 25

24

= 35
12 ≈ 2.9167.
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Probability Expectation

A Proposition

Proposition

Let X be a real-valued random variable. Then

Var(X ) = E [X 2]− E [X ]2.

Let µ = E (X ). By definition, Var(X ) = E [(X − µ)2]. We can write
(X − µ)2 = X 2 − 2µX + µ2. We can think of this as the sum of three
random variables: X 2, −2µX and µ2. If we evaluate these at an
element s of the sample space, we get [X (s)]2, −2µX (s), and µ2,
respectively. Since, as a random variable, the value of µ2 at every s is
the constant µ2, E (µ2) = µ2. Now, we calculate

Var(X ) = E [(X − µ)2] = E [X 2 − 2µX + µ2]
= E [X 2]− 2µE [X ] + E [µ2] = E [X 2]− 2µ2 + µ2

= E [X 2]− µ2 = E [X 2]− E [X ]2.
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Probability Expectation

Another Example

Let X be the number showing on a random toss of a die. What is
Var(X )?

We get Var(X ) = E [X 2]− E [X ]2. Note that

E [X ]2 =

(

7

2

)2

=
49

4
.

Also,

E [X 2] = 12 · 1
6 + 22 · 1

6 + 32 · 1
6 + 42 · 1

6 + 52 · 1
6 + 62 · 1

6

= 12+22+32+42+52+62

6

= 91
6 .

Therefore Var(X ) = E [X 2]− E [X ]2 = 91
6 − 49

4 = 35
12 .
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Binomial Random Variables

Consider an unfair coin that produces HEADS with probability p and
TAILS with probability 1− p flipped n times. Let X denote the
number of times we see HEADS. We have E (X ) = np. What is the
variance of X?

We can express X as the sum of the zero-one indicator random

variables Xj =

{

1, if the jth flip comes up HEADS
0, if the jth flip comes up TAILS

Then

X = X1 + X2 + · · ·+ Xn. Since E [X ] = np, we have E [X ]2 = n2p2.
To calculate E [X 2] notice that X 2 = [X1 + X2 + · · ·+ Xn]

2 =
X1X1+X1X2+· · ·+X1Xn+X2X1+· · ·+XnXn =

∑n
i=1 X

2
i +

∑

i 6=j XiXj .
By linearity of expectation

E [X 2] = E [
∑n

i=1X
2
i +

∑

i 6=j XiXj ]

=
∑n

i=1 E [X
2
i ] +

∑

i 6=j E [XiXj ] = np + n(n − 1)p2.

Therefore, Var[X ] = E [X 2]− E [X ]2 = np + n(n − 1)p2 − n2p2 =
np + n2p2 − np2 − n2p2 = np − np2 = np(1− p).
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