Topics in Discrete Mathematics

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 216

George Voutsadakis (LSSU)

Discrete Mathematics

March 2014 1 / 60

- Dividing
- Greatest Common Divisor
- Modular Arithmetic
- The Chinese Remainder Theorem
- Factoring
- Euler's φ Function

Subsection 1

Dividing

The Division Theorem

Division Theorem

Let $a, b \in \mathbb{Z}$ with b > 0. There exist integers q and r such that a = qb + r and $0 \le r < b$. Moreover, there is only one such pair of integers (q, r) that satisfies these conditions.

- The integer q is called the **quotient** and the integer r is called the **remainder**.
- Example: If a = 23 and b = 10, then the quotient is q = 2 and the remainder r = 3 because $23 = 2 \cdot 10 + 3$ and $0 \le 3 < 10$.
- Example: If a = -37 and b = 5, then q = -8 and r = 3 because $-37 = -8 \cdot 5 + 3$ and $0 \le 3 < 5$.

Proof of the Division Theorem I

• Let a and b be integers with b > 0.

- We first show that the quotient and remainder exist, i.e., there exist integers q and r that satisfy the three conditions
 - a = qb + r

Let $A = \{a - bk : k \in \mathbb{Z}\}$. The remainder is to be nonnegative, so let $B = A \cap \mathbb{N} = \{a - bk : k \in \mathbb{Z}, a - bk \ge 0\}$. To use the Well-Ordering Principle to select the least element of *B*, we must ensure that $B \neq \emptyset$.

- If $a \ge 0$, then, clearly, $a = a b \cdot 0 \in B$ and $B \neq \emptyset$.
- If a < 0, since b > 0, if we take k to be a very negative number, we can certainly make a - bk positive, so again $B \neq \emptyset$.

Since $B \neq \emptyset$, by the Well-Ordering Principle we can choose r to be the least element of *B*. Then, since $r \in B \subseteq A = \{a - bk : k \in \mathbb{Z}\}$, there exists an integer q, such that r = a - bq, i.e., a = qb + r. Moreover, since $r \in B \subset \mathbb{N}$, r > 0.

Now it only remains to show that r < b.

Proof of the Division Theorem II

- Continuing the Proof:
 - To finish the existence part, i.e., show that r < b, suppose, for the sake of contradiction, that r ≥ b.
 We have r = a qb ≥ b. Let r' = (a qb) b = r b ≥ 0, so r' = a (q + 1)b ≥ 0. Therefore, r' ∈ B and r' = r b < r. This contradicts the fact that r is the smallest element of B. We have proved that the integers q and r exist.
 - We now show that q and r are unique. Suppose, for the sake of contradiction, there are two different pairs of numbers (q, r) and (q', r'), such that a = qb + r, with $0 \le r < b$, and a = q'b + r', with $0 \le r' < b$. Combining the two equations gives qb + r = q'b + r' and, therefore, r - r' = (q' - q)b. Thus, r - r' is a multiple of b. Since $0 \le r, r' < b$, $|r - r'| \le b - 1$. The only way that r - r', with $|r - r'| \le b - 1$, can be a multiple of b is if r - r' = 0, i.e., r = r'.
 - Since r = r', and qb + r = a = q'b + r' = q'b + r, we get also q = q'. So $(q, r) \neq (q', r')$ leads to q = q' and r = r', a contradiction. Therefore, the quotient and remainder are unique.

Corollary |

Corollary

Every integer is either even or odd, but not both.

- We have already shown that no integer can be both even and odd. Thus it remains to show that every integer is one or the other.
 Let n be any integer. By the Theorem, there exist integers q and r, such that n = 2q + r where 0 ≤ r < 2.
 - If r = 0, then *n* is even;
 - If r = 1, then n is odd.

Corollary II

Corollary

Two integers are congruent modulo 2 if and only if they are both even or both odd.

- (⇒): Let a and b be integers with a ≡ b (mod 2). So a b = 2n for some integer n. Now a is either even or odd.
 - If a is even, a = 2k for some integer k. Then b = a 2n = 2k 2n = 2(k n) and so b is even.
 - If a is odd, then a = 2k + 1 for some integer k. Then b = a 2n = 2k + 1 2n = 2(k n) + 1, whence b is odd.

In either case, a and b are either both even or both odd.

- (\Leftarrow): Suppose *a* and *b* are integers that are both even or both odd.
 - If a and b are both even, then a = 2n and b = 2m for some integers n and m. Then a b = 2n 2m = 2(n m) and so $a \equiv b \pmod{2}$.
 - If a and b are both odd, then a = 2n + 1 and b = 2m + 1 for some integers n and m. Then a b = (2n + 1) (2m + 1) = 2(n m) and so $a \equiv b \pmod{2}$.

Thus if a and b are both even or both odd, then $a \equiv b \pmod{2}$.

Div and Mod Operators

Definition (div and mod)

Let $a, b \in \mathbb{Z}$ with b > 0. Consider the unique pair of numbers q and r with a = qb + r and $0 \le r < b$. We define the operations div and mod by

a div b = q and $a \mod b = r$.

• Example: These calculations illustrate the div and mod operations:

- 11 div 3 = 3• 11 mod 3 = 2
- 23 div 10 = 2 \circ 23 mod 10 = 3
- $-37 \, \text{div} \, 5 = -8$ $-37 \mod 5 = 3$
- Note that we have used the word "mod" in two different ways:
 - First, the word mod was used as the name of an equivalence relation. For example, $53 \equiv 23 \pmod{10}$. The meaning of $a \equiv b \pmod{n}$ is that a - b is a multiple of n.
 - Second, mod is the binary operation "divide and take the remainder": For example, 53 mod 10 = 3.

Equivalence (mod n) and the mod Operator

Proposition

Let $a, b, n \in \mathbb{Z}$, with n > 0. Then

 $a \equiv b \pmod{n} \iff a \mod{n} = b \mod{n}$.

• Let
$$a, b, n \in \mathbb{Z}$$
 with $n > 0$.

- (\Rightarrow): Suppose $a \equiv b \pmod{n}$. Then a b = kn, for some $k \in \mathbb{Z}$. Let $r = a \mod n$, i.e., a = qn + r, for some $q \in \mathbb{Z}$. Then b = a - kn = q + r. (qn + r) - kn = (q - k)n + r, whence $r = b \mod n$ also. Therefore $a \mod n = b \mod n$.
- (\Leftarrow): Suppose a mod $n = b \mod n = r$. Then, there exist $q_1, q_2 \in \mathbb{Z}$, such that $a = q_1n + r$ and $b = q_2n + r$. Thus, $a - b = (q_1 - q_2)n$, which shows that $n \mid (a - b)$. Therefore, $a \equiv b \pmod{n}$.

Subsection 2

Greatest Common Divisor

The Greatest Common Divisor

Definition (Common Divisor)

Let $a, b \in \mathbb{Z}$. An integer d is a **common divisor** of a and b if $d \mid a$ and $d \mid b$.

• Example: The common divisors of 30 and 24 are -6, -3, -2, -1, 1, 2, 3 and 6.

Definition (Greatest Common Divisor)

Let $a, b \in \mathbb{Z}$. An integer d is the greatest common divisor of a and b if

- \bigcirc d is a common divisor of a and b;
- **(2)** if e is a common divisor of a and b, then $e \leq d$.

The greatest common divisor of a and b is denoted gcd(a, b).

• Example: The greatest common divisor of 30 and 24 is 6, and we write gcd(30, 24) = 6.

Naive Algorithm for Finding the gcd

- An algorithm for computing the gcd of two positive integers *a* and *b* works as follows:
 - For every positive integer k from 1 to the smaller of a and b, see whether k | a and k | b. If so, save that number k in a list.
 - Choose the largest number on the list. That number is gcd(a, b).
- Even though it works, this algorithm needs to perform a large number of divisions, so it is very slow.
- There is a clever procedure to calculate the greatest common divisor of two positive integers:
 - It was invented by Euclid.
 - It is very fast.
 - It is easily implemented as a computer program.

Euclid's Algorithm for Finding the gcd

Theorem (Euclid's Algorithm)

Let a and b be positive integers and let $c = a \mod b$. Then gcd(a, b) = gcd(b, c).

• The theorem says that, for positive integers a and b, we have

$$gcd(a, b) = gcd(b, a \mod b).$$

- We are given that $c = a \mod b$, i.e., a = qb + c, with $0 \le c < b$. Let $d = \gcd(a, b)$ and let $e = \gcd(b, c)$. To show d = e, we prove that $d \le e$ and $d \ge e$.
 - First, we show d ≤ e. Since d = gcd(a, b), we know that d | a and d | b. We can write c = a qb. Since a and b are multiples of d, so is c. Thus d is a common divisor of b and c. However, e is the greatest common divisor of b and c, so d ≤ e.
 - Next, we show d ≥ e. Since e = gcd(b, c), we know that e | b and e | c. Now a = qb + c, and hence e | a as well. Since e | a and e | b, we see that e is a common divisor of a and b. However, d is the greatest common divisor of a and b, so d ≥ e.

George Voutsadakis (LSSU)

Example: Calculating gcd(689, 234)

- We compute gcd(689, 234). Let a = 689 and b = 234. We find
 c = 689 mod 234 = 221.
- To find gcd(689, 234), it is enough to find gcd(234, 221) because these two values are the same.

 $689 \mod 234 = 221 \quad \Rightarrow \quad \gcd(689, 234) = \gcd(234, 221).$

To calculate gcd(234, 221), we calculate 234 mod 221 = 13. Thus gcd(234, 221) = gcd(221, 13).

 $234 \mod 221 = 13 \implies \gcd(234, 221) = \gcd(221, 13).$

Next calculate 221 mod 13 = 0. Thus, 13 | 221. So clearly gcd(221, 13) = 13.

 $221 \bmod 13 = 0 \quad \Rightarrow \quad \gcd(221, 13) = 13.$

• We are finished! We have done three divisions and we found

$$gcd(689, 234) = gcd(234, 221) = gcd(221, 13) = 13.$$

Euclid's GCD Algorithm

Euclid's GCD Algorithm

Input: Positive integers a and b. Output: gcd(a, b).

- Let $c = a \mod b$.
- If c = 0, return the answer b and stop.
- If $c \neq 0$, calculate gcd(b, c) and return this as the answer.
- Example: We test the algorithm for a = 63 and b = 75.
 - Calculate $c = a \mod b$ to get $c = 63 \mod 75 = 63$.
 - Since $c \neq 0$, compute gcd(b, c) = gcd(75, 63).
 - Restart with a' = 75 and b' = 63. Calculate $c' = 75 \mod 63 = 12$. Since $12 \neq 0$, calculate gcd(b', c') = gcd(63, 12).
 - Restart with a'' = 63 and b'' = 12. Calculate $c'' = 63 \mod 12 = 3$. Since this is not zero, calculate gcd(b'', c'') = gcd(12, 3).
 - Restart with a''' = 12 and b''' = 3. Calculate c''' = 12 mod 3 = 0. Now c''' = 0, so we return b''' = 3 and we are finished.
 - The final answer is that gcd(63, 75) = 3.

Visualizations of Euclid's Algorithm

• Here is an overview of the calculation in chart form:

а	b	С
63	75	63
75	63	12
63	12	3
12	3	0

- Another way to visualize this computation is via a list:
 - The first two entries are *a* and *b*.
 - The list is extended by computing mod of the last two entries.
 - When we reach 0, we stop.
 - The next-to-last entry is the gcd of *a* and *b*.

In this example, the list would be

Correctness of Euclid's Algorithm

Theorem (Correctness of Euclid's Algorithm)

Euclid's Algorithm correctly computes gcd(a, b), for a, b positive integers.

- Suppose Euclid's Algorithm did not correctly compute gcd. Then there exist positive integers *a* and *b* for which it fails. For smallest counterexample, choose *a*, *b* such that *a* + *b* is as small as possible.
 - If *a* < *b*, then *c* = *a* mod *b* = *a*. So, the first pass through Euclid's Algorithm will simply interchange the values *a* and *b*.
 - So let $a \ge b$. The first step calculates c = gcd(a, b).
 - If c = 0, a mod b = 0, which implies b | a. Since b is the largest divisor of b (b > 0 by hypothesis) and since b | a, b = gcd(a, b). The algorithm then gives the correct result, contradicting our hypothesis.
 - If c ≠ 0, we have a = qb + c, where 0 < c < b. We also have b ≤ a, whence b + c < a + b. Thus b, c are positive integers with b + c < a + b. By the minimality of a + b, b and c are not a counterexample. Thus the algorithm correctly computes gcd(b, c) and returns its value. But, we proved gcd(a, b) = gcd(b, c)! So we get the correct answer, contradicting the hypothesis!

George Voutsadakis (LSSU)

Size of Remainder in Euclid's Algorithm

• After two rounds of Euclid's Algorithm, the integers involved have decreased by at least 50%.

Proposition

Let $a, b \in \mathbb{Z}$ with $a \ge b > 0$. If $c = a \mod b$, Then $c < \frac{a}{2}$.

We consider two cases:

- a < 2b: Then 2b > a > 0, so a > 0 and a b ≥ 0, but a 2b < 0. Hence the quotient when a is divided by b is 1. So the remainder is c = a - b. Since a < 2b, we get b > a/2 and so c = a - b < a - a/2 = a/2.
 a ≥ 2b: Thus, b ≤ a/2. The remainder, upon division of a by b, is less
 - than b. So c < b, and we have $b \leq \frac{a}{2}$, so $c < \frac{a}{2}$.

Number of Steps in Euclid's Algorithm

- If the numbers produced by Euclid's Algorithm are (a, b, c, d, e, f,..., 0), then, if a ≥ b, we have a ≥ b ≥ c ≥ d ≥ ··· ≥ 0.
- By the Proposition, $c < \frac{a}{2}$ and $d < \frac{b}{2}$.
- Likewise, two steps later, $e < \frac{c}{2} < \frac{a}{4}$ and $f < \frac{d}{2} < \frac{b}{4}$.
- Thus, every two steps of Euclid's Algorithm decrease the integers with which we are working to less than half their current values.
- How large are the numbers after 2t passes of Euclid's Algorithm? After 2t steps the numbers drop by more than a factor of 2^t, i.e., the two numbers are less than (2^{-t}a, 2^{-t}b).
- Euclid's Algorithm stops when the second number reaches zero, which is the same as when the second number is less than 1, i.e., as soon as we have $2^{-t}b \leq 1$.
- So $\log_2[2^{-t}b] \le \log_2 1 \Rightarrow -t + \log_2 b \le 0 \Rightarrow \log_2 b \le t$.
- Once t ≥ log₂ b, the algorithm must be finished, i.e., after 2 log₂ b passes, the algorithm has completed its work.

The gcd as the Smallest Positive Linear Combination

Theorem

Let a and b be integers, not both zero. The smallest positive integer of the form ax + by, where x and y are integers, is gcd(a, b).

- Let a and b be integers (not both zero) and let $D = \{ax + by : x, y \in \mathbb{Z}, ax + by > 0\}.$
 - Since $a^2 + b^2 > 0$, $D \neq \emptyset$.
 - Thus, by Well-Ordering, *D* contains a least element *d*.

The goal is to show that d = gcd(a, b).

- $d \mid a$: Suppose that a is not divisible by d. Then a = qd + r, with 0 < r < d. Now d = ax + by, so r = a qd = a q(ax + by) = a(1 qx) + b(-qy) = aX + bY, where X = 1 qx and Y = -qy. Since 0 < r < d and r = aX + bY, we get $r \in D$ and r < d, contradicting the fact that d is the least element of D.
- $d \mid b$: This proof is analogous to $d \mid a$.
- If $e \mid a$ and $e \mid b$, then $e \leq d$. Suppose $e \mid a$ and $e \mid b$. Then $e \mid (ax + by)$, whence $e \mid d$, so $e \leq d$ (because d is positive).
- Therefore *d* is the greatest common divisor of *a* and *b*.

Finding the Coefficients in the Linear Combination

- We saw that gcd(689, 234) = 13: $689 \cdot (-1) + 234 \cdot 3 = 13$.
- Note that gcd(431, 29) = 1: $431 \cdot 7 + 29 \cdot (-104) = 1$.
- Given a, b, how do we find x, y, such that ax + by = gcd(a, b)?
- We extend Euclid's Algorithm by also keeping track of the quotients.
- We find x, y such that 431x + 29y = gcd(431, 29) = 1.
 The steps involved in calculating gcd(431, 29) are:

 $431 = 14 \cdot 29 + 25, 29 = 1 \cdot 25 + 4, 25 = 6 \cdot 4 + 1, 4 = 4 \cdot 1 + 0.$

We solve all except last for the remainders:

 $25 = 431 - 14 \cdot 29, \ 4 = 29 - 1 \cdot 25, \ 1 = 25 - 6 \cdot 4.$

Now we work from the bottom up:

 $1 = 25 - 6 \cdot 4 = 25 - 6 \cdot (29 - 1 \cdot 25) = -6 \cdot 29 + 7 \cdot 25.$

Now we use $25 = 431 - 14 \cdot 29$:

$$\begin{split} 1 &= -6 \cdot 29 + 7 \cdot 25 = -6 \cdot 29 + 7 \cdot (431 - 14 \cdot 29) = \\ 7 \cdot 431 + [-6 + 7 \cdot (-14)] \\ 29 &= 7 \cdot 431 + (-104) \cdot 29. \end{split}$$

Relatively Prime Numbers

Definition (Relatively Prime)

Let a and b be integers. We call a and b relatively prime provided gcd(a, b) = 1.

Corollary

Let a and b be integers. There exist integers x and y such that ax + by = 1 if and only if a and b are relatively prime.

Proposition

Let a, b be integers, not both zero. Let d = gcd(a, b). If e is a common divisor of a and b, then $e \mid d$.

Let a, b be integers, not both zero, and let d = gcd(a, b). Suppose e | a and e | b. By the Theorem, there exist integers x and y such that d = ax + by. Since e | a and e | b, e | (ax + by), and so e | d.

Subsection 3

Modular Arithmetic

Integers mod n

- Arithmetic is the study of the basic operations: addition, subtraction, multiplication, and division.
- We usually study these operations in number systems such as the integers, \mathbb{Z} , or the rationals, \mathbb{Q} .
- Division is, perhaps, the most interesting example.
 - In the context of the rational numbers, we can calculate $x \div y$ for any $x, y \in \mathbb{Q}$ except when y = 0.
 - In the context of the integers, $x \div y$ is defined only if $y \ne 0$ and $y \mid x$.
- \bullet So in ${\mathbb Q}$ and ${\mathbb Z},$ the operation \div takes on slightly different meanings.
- We now introduce a new context for +, -, ×, and ÷, different from the traditional. To avoid confusion, we use ⊕, ⊖, ⊗, ⊘.
- The new set in which we perform arithmetic is Z_n = {0, 1, 2, ..., n − 1}, i.e., it contains all natural numbers from 0 to n − 1 inclusive. We call this number system the integers mod n. The operations
 ⊕, ⊖, ⊗, ⊘ are called addition mod n, subtraction mod n, multiplication mod n, and division mod n.

Modular Addition and Multiplication

Definition (Modular Addition, Multiplication)

Let *n* be a positive integer and $a, b \in \mathbb{Z}_n$. We define $a \oplus b = (a + b) \mod n$ and $a \otimes b = (ab) \mod n$.

- The operations on the left are operations defined for \mathbb{Z}_n . The operations on the right are ordinary integer operations.
- Example: Let n = 10. We have the following:

•
$$5 \oplus 5 = 0$$
 • $9 \oplus 8 = 7$

• $5 \otimes 5 = 5$ • $9 \otimes 8 = 2$

Notice that if a, b ∈ Z_n, the results of the operations a ⊕ b and a ⊗ b are always defined and are elements of Z_n.

Proposition (Closure of \mathbb{Z}_n Under \oplus, \otimes)

Let $a, b \in \mathbb{Z}_n$. Then $a \oplus b \in \mathbb{Z}_n$ and $a \otimes b \in \mathbb{Z}_n$.

Properties of Addition and Multiplication mod n

Proposition (Properties of \oplus, \otimes)

Let *n* be an integer with $n \ge 2$.

- For all $a, b \in \mathbb{Z}_n$, $a \oplus b = b \oplus a$ and $a \otimes b = b \otimes a$. (Commutativity)
- For all $a, b, c \in \mathbb{Z}_n$, $a \oplus (b \oplus c) = (a \oplus b) \oplus c$ and $a \otimes (b \otimes c) = (a \otimes b) \otimes c$. (Associativity)
- For all $a \in \mathbb{Z}_n$, $a \oplus 0 = a$, $a \otimes 1 = a$ and $a \otimes 0 = 0$. (Identities)
- For all $a, b, c \in \mathbb{Z}_n$, $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$. (Distributivity)
- We show, as an example, that \oplus is associative, i.e., that if $a, b, c \in \mathbb{Z}_n$, $a \oplus (b \oplus c) = (a \oplus b) \oplus c$: $a \oplus (b \oplus c) = a \oplus (b+c+kn) = [a+(b+c+kn)]+jn = (a+b+c)+sn$ where $k, j, s \in \mathbb{Z}$. Since $a + b + c + sn = (a + b + c) \mod n$, we have $(a + b + c) \mod n = (a + b + c + sn) \mod n = (a + b + c + sn)$ because $a + b + c + sn \in \mathbb{Z}_n$. So $a \oplus (b \oplus c) = (a + b + c) \mod n$. By a similar argument, $(a \oplus b) \oplus c = (a + b + c) \mod n$.

Existence and Uniqueness of Solution for $a = b \oplus x$

- Let $a, b \in \mathbb{Z}$. We define a b to be the solution to a = b + x.
- We use this approach to define modular subtraction.

Proposition (Existence and Uniqueness of Solution for $a = b \oplus x$)

Let *n* be a positive integer, and let $a, b \in \mathbb{Z}_n$. Then there is one and only one $x \in \mathbb{Z}_n$ such that $a = b \oplus x$.

• Let $x = (a - b) \mod n$. Clearly, $0 \le x < n$, i.e., $x \in \mathbb{Z}_n$. Moreover, x = (a - b) + kn for some integer k. We have $b \oplus x =$ $(b + x) \mod n = [b + (a - b + kn)] \mod n = (a + kn) \mod n = a$, because $0 \le a < n$.

• To show uniqueness, suppose $a = b \oplus x$ and $a = b \oplus y$, for $x, y \in \mathbb{Z}_n$. Then $b \oplus x = (b + x) \mod n = b + x + kn = a$, and $b \oplus y = (b + y) \mod n = b + y + jn = a$ for some integers k, j. Combining these, we have b + x + kn = b + y + jn $\Rightarrow x = y + (k - j)n \Rightarrow x = y \pmod{n} \Rightarrow x \mod n = y \mod n$ $\Rightarrow x = y$ because $0 \le x, y < n$.

Modular Subtraction

Definition (Modular Subtraction)

Let *n* be a positive integer and let $a, b \in \mathbb{Z}_n$. We define $a \ominus b$ to be the unique $x \in \mathbb{Z}_n$ such that $a = b \oplus x$.

• Alternatively, we could have defined $a \ominus b$ to be $(a - b) \mod n$.

Proposition

Let *n* be a positive integer and let $a, b \in \mathbb{Z}_n$. Then $a \ominus b = (a - b) \mod n$.

To prove that a ⊖ b = (a − b) mod n, we consult the definition. We must show

•
$$[(a-b) \mod n] \in \mathbb{Z}_n;$$

• if $x = (a - b) \mod n$, then $a = b \oplus x$.

The first is obvious because $(a - b) \mod n$ is an integer in \mathbb{Z}_n . For the second, note that x = a - b + kn for some integer k. Then $b \oplus x = (b + (a - b + kn)) \mod n = (a + kn) \mod n = a$.

Modular Reciprocals

- Given a, b ∈ Z₁₀ (with b ≠ 0), is there a solution to a = b ⊗ x? If so, is it unique?
- Consider the following three cases.
 - Let a = 6 and b = 2. There are two solutions to $6 = 2 \otimes x$, namely x = 3 and x = 8.
 - Let a = 7 and b = 2. There are no solutions to $7 = 2 \otimes x$.
 - Let a = 7 and b = 3. There is one and only one solution to $7 = 3 \otimes x$, namely x = 9. In this case it makes sense to write $7 \otimes 3 = 9$.
- In Q, we can define a ÷ b to be a · b⁻¹ so that division by b is defined to be multiplication by b's reciprocal.
- The reciprocal of $x \in \mathbb{Q}$ is a $y \in \mathbb{Q}$ such that xy = 1.
- We use reciprocals in \mathbb{Z}_n to define division in \mathbb{Z}_n :

Definition (Modular Reciprocal)

Let *n* be a positive integer and let $a \in \mathbb{Z}_n$. A **reciprocal** of *a* is an element $b \in \mathbb{Z}_n$, such that $a \otimes b = 1$. An element of \mathbb{Z}_n that has a reciprocal is called **invertible**.

George Voutsadakis (LSSU)

Reciprocals in \mathbb{Z}_{10}

• We investigate reciprocals in \mathbb{Z}_{10} by looking at the multiplication table: $\otimes | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$

\otimes	0	т	2	5	4	5	0	'	0	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1
	0 1 2 3 4 5 6 7 8 9	O O 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0	0 0 1 0 0 0 1 0 1 2 0 2 3 0 3 4 0 4 5 0 5 6 0 6 7 0 7 8 0 8 9 0 9	0 1 2 0 0 0 0 1 0 1 2 2 0 2 4 3 0 3 6 4 0 4 8 5 0 5 0 6 0 6 2 7 0 7 4 8 0 8 6 9 0 9 8	Image Image Image Image Image 0 0 0 0 0 0 1 0 1 2 3 2 0 2 4 6 3 0 3 6 9 4 0 4 8 2 5 0 5 0 5 6 0 6 2 8 7 0 7 4 1 8 0 8 6 4 9 0 9 8 7	Image: 0 Image: 2 Image: 3 Image: 4 0 0 0 0 0 0 1 0 1 2 3 4 2 0 2 4 6 8 3 0 3 6 9 2 4 0 4 8 2 6 5 0 5 0 5 0 6 0 6 2 8 4 7 0 7 4 1 8 8 0 8 6 4 2 9 0 9 8 7 6	Image: 0 Image: 2 Image: 3 Image: 4 Image: 3 0 0 0 0 0 0 0 1 0 1 2 3 4 5 2 0 2 4 6 8 0 3 0 3 6 9 2 5 4 0 4 8 2 6 0 5 0 5 0 5 0 5 6 0 6 2 8 4 0 7 0 7 4 1 8 5 8 0 8 6 4 2 0 9 0 9 8 7 6 5	Image: Noise of the structure Image: Noise of the structure	0 1 2 3 4 3 0 7 0 0 0 0 0 0 0 0 0 0 1 1 0 1 2 3 4 5 6 7 2 0 2 4 6 8 0 2 4 3 0 3 6 9 2 5 8 1 4 0 4 8 2 6 0 4 8 5 0 5 0 5 0 5 0 5 6 0 6 2 8 4 0 6 2 7 0 7 4 1 8 5 2 9 8 0 8 6 4 2 0 8 6 9 0 9 8 7 6 5 4 3	0 1 2 3 4 5 0 7 8 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2 3 4 5 6 7 8 2 0 2 4 6 8 0 2 4 6 3 0 3 6 9 2 5 8 1 4 4 0 4 8 2 6 0 4 8 2 5 0 5 0 5 0 5 0 5 0 6 0 6 2 8 4 0 6 2 8 7 0 7 4 1 8 5 2 9 6 8 0 8 6 4 2 0 8 6 4 3 2 9 0 9 8 7 6

- Element 0 does not have a reciprocal.
- Elements 2, 4, 5, 6 and 8 do not have reciprocals.
- Elements 1, 3, 7 and 9 are have unique reciprocals.
- Notice the elements of Z₁₀ that have reciprocals are precisely those integers in Z₁₀ that are relatively prime to 10.
- The reciprocal of 3 is 7, and the reciprocal of 7 is 3; both 1 and 9 are their own reciprocals.

Uniqueness of the Reciprocal

Proposition (Uniqueness of Reciprocals)

Let *n* be a positive integer and let $a \in \mathbb{Z}_n$. If *a* has a reciprocal in \mathbb{Z}_n , then it has only one reciprocal.

Suppose a had two reciprocals, b, c ∈ Z_n with b ≠ c. Consider
 b ⊗ a ⊗ c. Using associativity, we get b = b ⊗ 1 = b ⊗ (a ⊗ c) =
 (b ⊗ a) ⊗ c = 1 ⊗ c = c, contradicting b ≠ c.

• The reciprocal of a is also called the **inverse** of a and denoted a^{-1} .

- The superscript -1 needs care because it has multiple meanings:
 - In the integers or rationals, $a^{-1} = \frac{1}{a}$.
 - In the context of relations or functions, R^{-1} stands for the relation formed by reversing all the ordered pairs in R.
 - In \mathbb{Z}_n , a^{-1} is the reciprocal of a.

Proposition (Mutuality of Reciprocals)

Let *n* be a positive integer and let $a \in \mathbb{Z}_n$. Suppose *a* is invertible and $b = a^{-1}$. Then *b* is invertible and $a = b^{-1}$.

Modular Division

Definition (Modular Division)

Let *n* be a positive integer, *a* any element in \mathbb{Z}_n and *b* an invertible element of \mathbb{Z}_n . Then $a \otimes b$ is defined to be $a \otimes b^{-1}$.

- Example: In \mathbb{Z}_{10} , calculate $2 \oslash 7$. Since $7^{-1} = 3$, we get $2 \oslash 7 = 2 \otimes 3 = 6$.
- For arbitrary n, we would like to know
 - which elements of \mathbb{Z}_n are invertible;
 - how we calculate a^{-1} for invertible *a*.
- In Z₁₀, the only invertible elements are 1, 3, 7 and 9, i.e., those elements relatively prime to 10.
- In the next slide, we also look at \mathbb{Z}_9 .

Invertible Elements in \mathbb{Z}_9

• The multiplication table for Z₉.

\otimes	0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8
2	0	2	4	6	8	1	3	5	7
3	0	3	6	0	3	6	0	3	6
4	0	4	8	3	7	2	6	1	5
5	0	5	1	6	2	7	3	8	4
6	0	6	3	0	6	3	0	6	3
7	0	7	5	3	1	8	6	4	2
8	0	8	7	6	5	4	3	2	1

- The invertible elements of \mathbb{Z}_9 are 1, 2, 4, 5, 7 and 8 (these are all relatively prime to 9).
- The noninvertible elements are 0, 3 and 6 (none of these are relatively prime to 9).

Characterization of Invertibility

Theorem (Invertibility)

Let *n* be a positive integer and let $a \in \mathbb{Z}_n$. Then *a* is invertible if and only if *a* and *n* are relatively prime.

- Recall that a and b are relatively prime if and only if there is an integer solution to ax + by = 1.
- Let *n* be a positive integer and let $a \in \mathbb{Z}_n$.
 - (⇒): Suppose a is invertible. Then, there is an element b ∈ Z_n, such that a ⊗ b = 1, i.e., (ab) mod n = 1. Thus ab + kn = 1, for some integer k. Therefore, a and n are relatively prime.
 - (⇐): Suppose a and n are relatively prime. Then, there are integers x and y such that ax + ny = 1. Let b = x mod n. So b = x + kn, for some integer k. Substituting into ax + ny = 1, we have 1 = ax + ny = a(b kn) + ny = ab + (y ka)n. Therefore, a ⊗ b = ab (mod n) = 1. Thus, b is the reciprocal of a and, therefore, a is invertible in Z_n.

An Example in \mathbb{Z}_{431}

• Example: In \mathbb{Z}_{431} , find 29^{-1} .

We have already found integers x and y such that 431x + 29y = 1, namely x = 7 and y = -104. Therefore, $(-104 \cdot 29) \mod 431 = 1$. Since $-104 \notin \mathbb{Z}_{431}$, we can take $b = -104 \mod 431 = 327$. Now $29 \otimes 327 = (29 \cdot 327) \mod 431 = 9483 \mod 431 = 1$. Therefore $29^{-1} = 327$.

• Example: In \mathbb{Z}_{431} , calculate $30 \oslash 29$. Since $29^{-1} = 327$, we get

 $30 \oslash 29 = 30 \otimes 327 = (30 \cdot 327) \mod 431 = 9810 \mod 431 = 328.$

Subsection 4

The Chinese Remainder Theorem

Solving a Simple Modular Equation

• Solve the equation $x \equiv 4 \pmod{11}$.

We would like to find x such that x - 4 is a multiple of 11, i.e., such that x - 4 = 11k, for some integer k. We can rewrite this as x = 4 + 11k where k can be any integer. So the solutions are

$$\ldots, -18, -7, 4, 15, 26, \ldots$$

Solving Another Modular Equation

- Solve the equation $3x \equiv 4 \pmod{11}$.
- If x_0 was a solution to $3x \equiv 4 \pmod{11}$, then, if $x_1 = x_0 + 11$, $3x_1 = 3(x_0 + 11) = 3x_0 + 33 \equiv 3x_0 \equiv 4 \pmod{11}$, so x_1 is also a solution. If there is a solution, then there is a solution in $\{0, 1, 2, \dots, 10\} = \mathbb{Z}_{11}$.
- We seek a number x ∈ Z₁₁ for which 3x ≡ 4 (mod 11). We have 3x ≡ 4 (mod 11) ⇔ (3x) mod 11 = 4 ⇔ 3 ⊗ x = 4 where ⊗ is modular multiplication in Z₁₁.

How do we solve the equation $3 \otimes x = 4$? We multiply both sides by $3^{-1} = 4$: $3 \otimes x = 4 \Rightarrow 4 \otimes 3 \otimes x = 4 \otimes 4 \Rightarrow 1 \otimes x = 5 \Rightarrow x = 5$.

• There are no other solutions in \mathbb{Z}_{11} : If $x' \in \mathbb{Z}_{11}$ were another solution, we would have $3 \otimes x' = 4$, and when we \otimes both sides by 4, we would find x' = 5.

Solution of a Modular Equation

Proposition

Let $a, b, n \in \mathbb{Z}$ with n > 0. Suppose a and n are relatively prime and consider the equation $ax \equiv b \pmod{n}$. The set of solutions to this equation is $\{x_0 + kn : k \in \mathbb{Z}\}$, where $x_0 = a_0^{-1} \otimes b_0$, $a_0 = a \mod n$, $b_0 = b \mod n$, and \otimes is modular multiplication in \mathbb{Z}_n .

The integer x_0 is the only solution to this equation in \mathbb{Z}_n .

• Next we solve a pair of congruence equations in different moduli. The general form is

$$\left\{ egin{array}{ccc} x &\equiv a & ({
m mod} \ m) \ x &\equiv b & ({
m mod} \ n) \end{array}
ight.$$

Solution of a System of Modular Equations: Example

• Solve the pair of equations $\begin{cases} x \equiv 1 \pmod{7} \\ x \equiv 4 \pmod{11} \end{cases}$ Since $x \equiv 1 \pmod{7}$, we can write x = 1 + 7k, for some integer k. We can substitute 1 + 7k for x in the second equation: $x \equiv 4$ (mod 11). We get $1 + 7k \equiv 4 \pmod{11} \Rightarrow 7k \equiv 3 \pmod{11}$. To solve this equation, we need to \otimes both sides by $7^{-1} = 8$ working in \mathbb{Z}_{11} . We find $7 \otimes k = 3 \Rightarrow 8 \otimes 7 \otimes k = 8 \otimes 3 \Rightarrow k = 2$. We know that we want all values of x with x = 1 + 7k, k any integer of the form k = 2 + 11j, j is any integer. Combining these two, we have x = 1 + 7k = 1 + 7(2 + 11i) = 15 + 77i, $i \in \mathbb{Z}$. Equivalently, the solution set to the equations is

$$\{x \in \mathbb{Z} : x \equiv 15 \pmod{77}\}.$$

The Chinese Remainder Theorem

The Chinese Remainder Theorem

Let a, b, m, n be integers with m and n positive and relatively prime. There is a unique integer x_0 with $0 \le x_0 < mn$ that solves the pair of equations $\begin{cases} x \equiv a \pmod{m} \\ x \equiv b \pmod{n} \end{cases}$. Furthermore, every solution to these equations differs from x_0 by a multiple of mn.

• From $x \equiv a \pmod{m}$, we get x = a + km, $k \in \mathbb{Z}$. Substituting into $x \equiv b \pmod{n}$, we get $a + km \equiv b \pmod{n} \Rightarrow km \equiv b - a \pmod{n}$. Let $m' = m \mod n$, and $c = (b - a) \mod n$. Now solving $km \equiv b - a \pmod{n}$ is equivalent to solving $km' \equiv c \pmod{n}$. Thus, in \mathbb{Z}_n , $k \otimes m' = c \Rightarrow k = (m')^{-1} \otimes c$. Let $d = (m')^{-1} \otimes c$, so the values for k that we want are k = d + jn, $j \in \mathbb{Z}$. Finally, we substitute k = d + jn into x = a + km to get

 $x = a + km = a + (d + jn)m = a + dm + jnm, j \in \mathbb{Z}.$

So the original system reduces to $x = a + dm \pmod{mn}$.

System of Three Modular Equations

• Suppose we want to solve a system of three equations. For example, solve for all x: (x = 3 (mod 9)

$$\begin{cases} x \equiv 3 \pmod{9} \\ x \equiv 5 \pmod{10} \\ x \equiv 2 \pmod{11} \end{cases}$$

We can solve the first two equations by the usual method $\begin{cases} x \equiv 3 \pmod{9} \\ x \equiv 5 \pmod{10} \end{cases} \Rightarrow x \equiv 75 \pmod{90}.$

$$x = 3 + 9k$$

$$3 + 9k \equiv 5 \pmod{10} \Rightarrow 9k \equiv 2 \pmod{10}$$

$$\Rightarrow k = 9 \otimes 2 = 8 \Rightarrow k = 8 + 10j$$

$$x = 3 + 9k = 3 + 9(8 + 10j) = 75 + 90j$$

Next, we combine with the last equation and solve by the usual method: $\begin{cases} x \equiv 75 \pmod{90} \\ x \equiv 2 \pmod{11} \end{cases} \Rightarrow x \equiv 255 \pmod{990}.$

Subsection 5

Factoring

Idea of the Fundamental Theorem

- Every positive integer can be factored into primes in (essentially) a unique fashion.
- Example: The integer 60 can be factored into primes as $60 = 2 \cdot 2 \cdot 3 \cdot 5$. It can also be factored as $60 = 5 \cdot 2 \cdot 3 \cdot 2$, but the primes in the two factorizations are exactly the same.
- This is true of all positive integers:
 - We can treat 1 as the empty product of primes.
 - We can consider prime numbers to be already factored into primes: a prime, say 17, is the product of just one prime: 17.
 - Composite numbers are the product of two or more primes.

An Important Lemma

Lemma

Suppose $a, b, p \in \mathbb{Z}$ and p is a prime. If $p \mid ab$, then $p \mid a$ or $p \mid b$.

- Let *a*, *b*, *p* be integers with *p* prime and suppose *p* | *ab*. Suppose, for the sake of contradiction, that *p* divides neither *a* nor *b*. Since *p* is a prime, the only divisors of p are ±1 and ±*p*.
 - Since p is not a divisor of a, the largest divisor they have in common is 1, whence gcd(a, p) = 1. Thus, there are integers x and y such that ax + py = 1.
 - Similarly, b and p are relatively prime, whence, there are integers w and z such that bz + pw = 1.

Multiplying ax + py = 1 and bz + pw = 1, we get $1 = (ax + py)(bz + pw) = abxz + pybz + paxw + p^2yw$. All four of these terms are divisible by p. This implies that $p \mid 1$, which is a contradiction.

Lemma

Suppose p, q_1, q_2, \ldots, q_t are prime numbers. If $p \mid (q_1 q_2 \cdots q_t)$, then $p = q_i$, for some $1 \le i \le t$.

We use induction on t.

- If t = 1, then $p \mid q_1$. Since q_1 is prime, the only positive number $\neq 1$ that divides q_1 is q_1 . Therefore, we must have $p = q_1$.
- Assume that the statement is true for t = k, i.e., that if

 $p \mid (q_1 q_2 \cdots q_k)$, then $p = q_i$, for some $1 \leq i \leq k$.

- Suppose, now that $p \mid (q_1q_2\cdots q_{k+1})$. Then $p \mid [(q_1q_2\cdots q_k)\cdot q_{k+1}]$. By the preceding lemma, we get that $p \mid (q_1q_2\cdots q_k)$ or $p \mid q_{k+1}$.
 - If $p \mid (q_1q_2\cdots q_k)$, by the induction hypothesis, $p = q_i$, for some $1 \leq i \leq k$

• If $p \mid q_{k+1}$, then, using the argument of the base case, $p = q_{k+1}$.

Thus, in every case $p = q_i$, for some $1 \le i \le k + 1$.

This concludes the proof of the Lemma.

The Fundamental Theorem: Existence

The Fundamental Theorem of Arithmetic

Let *n* be a positive integer. Then *n* factors into a product of primes. The factorization of *n* into primes is unique up to the order of the primes.

- We first show existence:
 - Suppose that not all positive integers factor into primes. Let X be the set of all positive integers that do not factor into primes. Note that $1 \notin X$. Also $2 \notin X$ because 2 is a prime.

By the Well-Ordering Principle, there is a least element x of X. Since $x \neq 1$ and x is not prime, it is composite. Thus, there is an integer a with 1 < a < x and $a \mid x$. So, there is an integer b with ab = x. Since a < x, $1 < \frac{x}{a} = b$. Because 1 < a, we get b < ab = x. Thus 1 < b < x. Therefore *a* and *b* are both positive integers less than *x*. Since x is the least element of X, neither a nor b is in X, so both a and b can be factored into primes. Suppose the prime factorizations of $(p_1p_2\cdots p_s)(q_1q_2\cdots q_t)$ is a prime factorization of x, contradicting $x \in X$. So all positive integers can be factored into primes.

The Fundamental Theorem: Uniqueness

• We continue with the proof of uniqueness:

 Suppose, for the sake of contradiction, that some positive integers can be factored into primes in two distinct ways.

Let Y be the set of all such integers with two (or more) distinct factorizations. Note that $1 \notin Y$ because 1 can be factored only as the empty product of primes. The supposition is that $Y \neq \emptyset$, and therefore Y contains a least element y. Thus y can be factored into primes in two distinct ways: $y = p_1 p_2 \cdots p_s$ and $y = q_1 q_2 \cdots q_t$, where the two lists of primes are not rearrangements of one another.

- Claim: The list (p_1, p_2, \ldots, p_s) and the list (q_1, q_2, \ldots, q_t) have no elements in common (i.e., $p_i \neq q_i$, for all *i* and *j*).
 - If the two lists had a prime r in common, then y/r would be a smaller integer (than y) that factors into primes in two distinct ways, contradicting the fact that y is smallest in Y.
- Now consider p_1 . Notice that $p_1 \mid y$, so $p_1 \mid (q_1q_2\cdots q_t)$. Then p_1 must equal one of the q_s , contradicting the claim.

Infinitude of Primes

Theorem (Infinitude of Primes)

There are infinitely many prime numbers.

Suppose, for the sake of contradiction, that there are only finitely many prime numbers. In such a case, we could list them all: 2,3,5,7,..., p where p is the (alleged) last prime number. Let n = (2 · 3 · 5 · · · · p) + 1. That is, n is the positive integer formed by multiplying together all the prime numbers and then adding 1. Is n a prime? The answer is no. Clearly n is greater than the last prime p, so n is not prime. Since n is not prime, n must be composite. Let q be any prime. Because n = (2 · 3 · · · p) + 1, when we divide n by q, we are left with a remainder of 1. We see that there is no prime number q with q | n, contradicting the Fundamental Theorem.

Primes in Prime Factorizations of Divisors

• Suppose *a* and *b* are positive integers. Then, they can be factored into primes as

$$a = 2^{e_2} 3^{e_3} 5^{e_5} 7^{e_7} \cdots$$
 and $b = 2^{f_2} 3^{f_3} 5^{f_5} 7^{f_7} \cdots$

• Example: If a = 24 we would have

$$24 = 2^3 3^1 5^0 7^0 \cdots$$

• Suppose $a \mid b$. Let p be a prime and suppose it appears e_p times in the prime factorization of a. Since $p^{e_p} \mid a$ and $a \mid b$, we have $p^{e_p} \mid b$, and therefore $p^{e_p} \mid p^{f_p}$. Thus $e_p \leq f_p$. In other words, if $a \mid b$, then the number of factors of p in the prime factorization of a is less than or equal to the number of factors of p in the prime factorization of b.

The Formula for Finding the Greatest Common Divisor

• If $a = 2^{e_2} 3^{e_3} 5^{e_5} 7^{e_7} \cdots$ and $b = 2^{f_2} 3^{f_3} 5^{f_5} 7^{f_7} \cdots$ and if $d = \operatorname{gcd}(a, b)$, then

$$d = 2^{x_2} 3^{x_3} 5^{x_5} 7^{x_7} \cdots,$$

where $x_2 = \min \{e_2, f_2\}, x_3 = \min \{e_3, f_3\}, x_5 = \min \{e_5, f_5\}$, etc.

• Example: For $24 = 2^3 3^1 5^0 7^0 \cdots$ and $30 = 2^1 3^1 5^1 7^0 \cdots$, we get

$$gcd(24, 30) = 2^{\min\{3,1\}} 3^{\min\{1,1\}} 5^{\min\{0,1\}} 7^{\min\{0,0\}} \cdots$$

= $2^1 3^1 5^0 7^0 \cdots = 6.$

Theorem (GCD Formula)

Let a, b be positive integers with

$$a = 2^{e_2} 3^{e_3} 5^{e_5} 7^{e_7} \cdots$$
 and $b = 2^{f_2} 3^{f_3} 5^{f_5} 7^{f_7} \cdots$

Then $gcd(a, b) = 2^{\min\{e_2, f_2\}} 3^{\min\{e_3, f_3\}} 5^{\min\{e_5, f_5\}} 7^{\min\{e_7, f_7\}} \cdots$

Irrationality of $\sqrt{2}$

Proposition

There is no rational number x such that $x^2 = 2$.

- We want to show that the set {x ∈ Q : x² = 2} is empty. Suppose, for the sake of contradiction, that there is a rational number x such that x² = 2. Then, there are integers a and b, such that x = ^a/_b. We therefore have (^a/_b)² = 2, which can be rewritten a² = 2b². Consider the prime factorization of the integer n = a² = 2b².
 - On the one hand, since $n = a^2$, the prime 2 appears an even number (perhaps zero) of times in the prime factorization of n.
 - On the other hand, since $n = 2b^2$, the prime 2 appears an odd number of times in the prime factorization of n.

This contradicts the Fundamental Theorem and, therefore, there is no rational number x such that $x^2 = 2$.

Subsection 6

Euler's φ Function

Euler's arphi Function

- How many integers, from 1 to *n* inclusive, are relatively prime to *n*?
- Example: Suppose n = 10. There are ten numbers in $\{1, 2, ..., 10\}$. Of them, the following are relatively prime to 10: $\{1, 3, 7, 9\}$. So there are four numbers from 1 to 10 that are relatively prime to 10.
- The notation φ(n) stands for the number of integers from 1 to n (inclusive) that are relatively prime to n.
- The function φ is known as **Euler's totient** or **Euler's phi function**.
- More Examples: Let us evaluate the following:

•
$$\varphi(14) = |\{1,3,5,9,11,13\}| = 6;$$

• $\varphi(15) = |\{1,2,4,7,8,11,13,14\}| = 8;$
• $\varphi(16) = |\{1,3,5,7,9,11,13,15\}| = 8;$
• $\varphi(17) = |\{1,2,3,\ldots,16\}| = 16;$
• $\varphi(25) = |\{1,2,\ldots,25\} - \{5,10,15,20,15\}| = 5^2 - 5 = 20;$
• $\varphi(5041) = \varphi(71^2) = |\{1,2,\ldots,5041\} - \{1\cdot71,2\cdot71,3\cdot71,\ldots,71\cdot71\}| = 71^2 - 71.$
• $\varphi(2^{10}) = |\{1,2,\ldots,2^{10}\} - \{1\cdot2,2\cdot2,3\cdot2,\ldots,2^9\cdot2\}| = 2^{10} - 2^9.$

Computing Euler's φ Function

Lemma

Suppose p and q are unequal primes. Then we have:

•
$$\varphi(p) = p - 1;$$
• $\varphi(p^2) = p^2 - p;$
• $\varphi(p^n) = p^n - p^{n-1},$ where *n* is a positive integer;
• $\varphi(pq) = pq - q - p + 1 = (p - 1)(q - 1).$
• We have $\varphi(p) = |\{1, 2, \dots, p - 1\}| = p - 1;$
• $\varphi(p^2) = |\{1, 2, \dots, p^2\} - \{1 \cdot p, 2 \cdot p, \dots, p \cdot p\}| = p^2 - p;$
• $\varphi(p^n) = |\{1, 2, \dots, p^n\} - \{1 \cdot p, 2 \cdot p, \dots, p^{n-1} \cdot p\}| = p^n - p^{n-1};$
• Here, we apply inclusion-exclusion:
• $\varphi(pq) = |\{1, 2, \dots, pq\} - (\{1 \cdot p, 2 \cdot p, \dots, q \cdot p\}| = p^n - p^{n-1};$
• $|\{1, 2, \dots, pq\} - (\{1 \cdot p, 2 \cdot p, \dots, q \cdot p\} \cup \{1 \cdot q, 2 \cdot q, \dots, p \cdot q\})|$
• $|\{1, 2, \dots, pq\}| - |\{1 \cdot p, 2 \cdot p, \dots, q \cdot p\}|$
• $|\{1, 2, \dots, pq\}| - |\{1 \cdot p, 2 \cdot p, \dots, q \cdot p\}|$
• $|\{1, 2, \dots, pq\}| - |\{1 \cdot p, 2 \cdot p, \dots, q \cdot p\}|$
• $|\{1, 2, \dots, pq\}| - |\{1 \cdot p, 2 \cdot p, \dots, q \cdot p\}|$

Totient of a Product of Distinct Primes

Proposition

Suppose $n = p_1 p_2 \cdots p_t$ where the p_i 's are distinct primes. Then

$$\varphi(n) = n - \frac{n}{p_1} - \cdots - \frac{n}{p_t} + \frac{n}{p_1 p_2} + \frac{n}{p_1 p_3} + \cdots + \frac{n}{p_{t-1} p_t} - \frac{n}{p_1 p_2 p_3} - \frac{n}{p_1 p_2 p_4} - \cdots - \frac{n}{p_{t-2} p_{t-1} p_t} + \cdots \pm \frac{n}{p_1 p_2 \cdots p_t}.$$

This formula simplifies to

$$\varphi(n) = n\left(1-\frac{1}{p_1}\right)\left(1-\frac{1}{p_2}\right)\cdots\left(1-\frac{1}{p_t}\right).$$

• For $1 \le i \le t$, let $D_i = \{x : 1 \le x \le n \text{ and } p_i \mid x\}$. We apply Inclusion-Exclusion: $\varphi(n) = |\{1, 2, ..., n\} - (D_1 \cup D_2 \cup \dots \cup D_n)|$ $= |\{1, 2, ..., n\}| - |D_1| - |D_2| - \dots - |D_t|$ $+ |D_1 \cap D_2| + |D_1 \cap D_3| + \dots + |D_{t-1} \cap D_t|$ $- |D_1 \cap D_2 \cap D_3| - |D_1 \cap D_2 \cap D_4| - \dots - |D_{t-2} \cap D_{t-1} \cap D_t|$ $+ \dots \pm |D_1 \cap D_2 \cap \dots \cap D_t|$ $= n - \frac{n}{p_1} - \dots - \frac{n}{p_t} + \frac{n}{p_{1p_2}} + \frac{n}{p_{1p_2}} + \dots + \frac{n}{p_{t-1}p_t}$ $- \frac{n}{p_{1p_2p_3}} - \frac{n}{p_{1p_2p_4}} - \dots - \frac{n}{p_{t-2p_{t-1}p_t}} + \dots \pm \frac{n}{p_{1p_2}} + \frac{n}{p_{1p_2}}$

George Voutsadakis (LSSU)

Applying the Proposition

• Consider $n = 2 \cdot 3 \cdot 11 = 66$. We compute, with the long formula:

$$\varphi(66) = 66 - \frac{66}{2} - \frac{66}{3} - \frac{66}{11} + \frac{66}{2 \cdot 3} + \frac{66}{2 \cdot 11} + \frac{66}{3 \cdot 11} - \frac{66}{2 \cdot 3 \cdot 11}$$

= 66 - 33 - 22 - 6 + 11 + 3 + 2 - 1
= 20

and with the simplified formula:

$$\varphi(66) = 66\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right)\left(1 - \frac{1}{11}\right)$$

= $66 \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{10}{11}$
= 20.

Euler Totient Formula

Theorem (Euler Totient Formula)

Let *n* be any positive integer. Factor *n* into primes $n = p_1^{a_1} p_2^{a_2} \cdots p_t^{a_t}$, where the p_i 's are distinct primes and the exponents a_i are all positive integers. Then,

$$\varphi(n) = n\left(1-\frac{1}{p_1}\right)\left(1-\frac{1}{p_2}\right)\cdots\left(1-\frac{1}{p_t}\right)$$

For 1 ≤ i ≤ t, let D_i = {x : 1 ≤ x ≤ n and p_i | x}. We apply again Inclusion-Exclusion:

$$\begin{split} \varphi(n) &= |\{1, 2, \dots, n\} - (D_1 \cup D_2 \cup \dots \cup D_n)| \\ &= |\{1, 2, \dots, n\}| - |D_1| - |D_2| - \dots - |D_t| \\ &+ |D_1 \cap D_2| + |D_1 \cap D_3| + \dots + |D_{t-1} \cap D_t| \\ &- |D_1 \cap D_2 \cap D_3| - |D_1 \cap D_2 \cap D_4| - \dots - |D_{t-2} \cap D_{t-1} \cap D_t| \\ &+ \dots \pm |D_1 \cap D_2 \cap \dots \cap D_t| \\ &= n - \frac{n}{p_1} - \dots - \frac{n}{p_t} + \frac{n}{p_{1p_2}} + \frac{n}{p_{1p_2}} + \dots + \frac{n}{p_{t-1}p_t} \\ &- \frac{n}{p_{1p_2p_3}} - \frac{n}{p_{1p_2p_4}} - \dots - \frac{n}{p_{t-2p_{t-1}p_t}} + \dots \pm \frac{n}{p_{1p_2 \cdots p_t}}. \end{split}$$

Multiplicativity of φ

Theorem (Multiplicativity of φ)

Let m, n be positive integers, such that gcd(m, n) = 1. Then $\varphi(mn) = \varphi(m)\varphi(n)$.

Let m = p₁^{a₁}p₂^{a₂} ··· p_s^{a_s} and n = q₁^{b₁}q₂<sup>b₂</sub> ··· q_t^{b_t} be the prime decompositions of m and n. Then, since all primes are distinct (gcd (m, n) = 1), we get
</sup>

$$\begin{aligned} \varphi(mn) &= \varphi(p_1^{a_1} p_2^{a_2} \cdots p_s^{a_s} q_1^{b_1} q_2^{b_2} \cdots q_t^{b_t}) \\ &= mn \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_s}\right) \left(1 - \frac{1}{q_1}\right) \cdots \left(1 - \frac{1}{q_t}\right) \\ &= \left[m \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_s}\right)\right] \left[n \left(1 - \frac{1}{q_1}\right) \cdots \left(1 - \frac{1}{q_t}\right)\right] \\ &= \varphi(m)\varphi(n). \end{aligned}$$