Topics in Discrete Mathematics

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science

Lake Superior State University

LSSU Math 216

- Dividing
- Greatest Common Divisor
- Modular Arithmetic
- The Chinese Remainder Theorem
- Factoring
- Euler's φ Function

Subsection 1

Dividing

The Division Theorem

Division Theorem

Let $a, b \in \mathbb{Z}$ with $b>0$. There exist integers q and r such that $a=q b+r$ and $0 \leq r<b$. Moreover, there is only one such pair of integers (q, r) that satisfies these conditions.

- The integer q is called the quotient and the integer r is called the remainder.
- Example: If $a=23$ and $b=10$, then the quotient is $q=2$ and the remainder $r=3$ because $23=2 \cdot 10+3$ and $0 \leq 3<10$.
- Example: If $a=-37$ and $b=5$, then $q=-8$ and $r=3$ because $-37=-8 \cdot 5+3$ and $0 \leq 3<5$.

Proof of the Division Theorem

- Let a and b be integers with $b>0$.
- We first show that the quotient and remainder exist, i.e., there exist integers q and r that satisfy the three conditions
- $a=q b+r$
- $r \geq 0$, and
- $r<b$.

Let $A=\{a-b k: k \in \mathbb{Z}\}$. The remainder is to be nonnegative, so let $B=A \cap \mathbb{N}=\{a-b k: k \in \mathbb{Z}, a-b k \geq 0\}$. To use the Well-Ordering Principle to select the least element of B, we must ensure that $B \neq \emptyset$.

- If $a \geq 0$, then, clearly, $a=a-b \cdot 0 \in B$ and $B \neq \emptyset$.
- If $a<0$, since $b>0$, if we take k to be a very negative number, we can certainly make $a-b k$ positive, so again $B \neq \emptyset$.
Since $B \neq \emptyset$, by the Well-Ordering Principle we can choose r to be the least element of B. Then, since $r \in B \subseteq A=\{a-b k: k \in \mathbb{Z}\}$, there exists an integer q, such that $r=a-b q$, i.e., $a=q b+r$. Moreover, since $r \in B \subseteq \mathbb{N}, r \geq 0$.
Now it only remains to show that $r<b$.

Proof of the Division Theorem II

- Continuing the Proof:
- To finish the existence part, i.e., show that $r<b$, suppose, for the sake of contradiction, that $r \geq b$.
We have $r=a-q b \geq b$. Let $r^{\prime}=(a-q b)-b=r-b \geq 0$, so $r^{\prime}=a-(q+1) b \geq 0$. Therefore, $r^{\prime} \in B$ and $r^{\prime}=r-b<r$. This contradicts the fact that r is the smallest element of B.
We have proved that the integers q and r exist.
- We now show that q and r are unique.

Suppose, for the sake of contradiction, there are two different pairs of numbers (q, r) and $\left(q^{\prime}, r^{\prime}\right)$, such that $a=q b+r$, with $0 \leq r<b$, and $a=q^{\prime} b+r^{\prime}$, with $0 \leq r^{\prime}<b$. Combining the two equations gives $q b+r=q^{\prime} b+r^{\prime}$ and, therefore, $r-r^{\prime}=\left(q^{\prime}-q\right) b$. Thus, $r-r^{\prime}$ is a multiple of b. Since $0 \leq r, r^{\prime}<b,\left|r-r^{\prime}\right| \leq b-1$. The only way that $r-r^{\prime}$, with $\left|r-r^{\prime}\right| \leq b-1$, can be a multiple of b is if $r-r^{\prime}=0$, i.e., $r=r^{\prime}$.
Since $r=r^{\prime}$, and $q b+r=a=q^{\prime} b+r^{\prime}=q^{\prime} b+r$, we get also $q=q^{\prime}$. So $(q, r) \neq\left(q^{\prime}, r^{\prime}\right)$ leads to $q=q^{\prime}$ and $r=r^{\prime}$, a contradiction.
Therefore, the quotient and remainder are unique.

Corollary

Corollary

Every integer is either even or odd, but not both.

- We have already shown that no integer can be both even and odd. Thus it remains to show that every integer is one or the other. Let n be any integer. By the Theorem, there exist integers q and r, such that $n=2 q+r$ where $0 \leq r<2$.
- If $r=0$, then n is even;
- If $r=1$, then n is odd.

Corollary II

Corollary

Two integers are congruent modulo 2 if and only if they are both even or both odd.

- (\Rightarrow) : Let a and b be integers with $a \equiv b(\bmod 2)$. So $a-b=2 n$ for some integer n. Now a is either even or odd.
- If a is even, $a=2 k$ for some integer k. Then $b=a-2 n=2 k-2 n=$ $2(k-n)$ and so b is even.
- If a is odd, then $a=2 k+1$ for some integer k. Then $b=a-2 n=$ $2 k+1-2 n=2(k-n)+1$, whence b is odd.
In either case, a and b are either both even or both odd.
- (\Leftarrow) : Suppose a and b are integers that are both even or both odd.
- If a and b are both even, then $a=2 n$ and $b=2 m$ for some integers n and m. Then $a-b=2 n-2 m=2(n-m)$ and so $a \equiv b(\bmod 2)$.
- If a and b are both odd, then $a=2 n+1$ and $b=2 m+1$ for some integers n and m. Then $a-b=(2 n+1)-(2 m+1)=2(n-m)$ and so $a \equiv b(\bmod 2)$.
Thus if a and b are both even or both odd, then $a \equiv b(\bmod 2)$.

Div and Mod Operators

Definition (div and mod)

Let $a, b \in \mathbb{Z}$ with $b>0$. Consider the unique pair of numbers q and r with $a=q b+r$ and $0 \leq r<b$. We define the operations div and mod by

$$
a \operatorname{div} b=q \quad \text { and } \quad a \bmod b=r .
$$

- Example: These calculations illustrate the div and mod operations:
- $11 \operatorname{div} 3=3$
- $11 \bmod 3=2$
- 23 div $10=2$
- $23 \bmod 10=3$
- $-37 \operatorname{div} 5=-8$
- $-37 \bmod 5=3$
- Note that we have used the word "mod" in two different ways:
- First, the word mod was used as the name of an equivalence relation. For example, $53 \equiv 23(\bmod 10)$. The meaning of $a \equiv b(\bmod n)$ is that $a-b$ is a multiple of n.
- Second, mod is the binary operation "divide and take the remainder": For example, $53 \bmod 10=3$.

Equivalence $(\bmod n)$ and the mod Operator

Proposition

Let $a, b, n \in \mathbb{Z}$, with $n>0$. Then

$$
a \equiv b \quad(\bmod n) \quad \Longleftrightarrow \quad a \quad \bmod n=b \quad \bmod n
$$

- Let $a, b, n \in \mathbb{Z}$ with $n>0$.
- (\Rightarrow) : Suppose $a \equiv b(\bmod n)$. Then $a-b=k n$, for some $k \in \mathbb{Z}$. Let $r=a \bmod n$, i.e., $a=q n+r$, for some $q \in \mathbb{Z}$. Then $b=a-k n=$ $(q n+r)-k n=(q-k) n+r$, whence $r=b \bmod n$ also. Therefore $a \bmod n=b \bmod n$.
- (\Leftarrow) : Suppose a $\bmod n=b \bmod n=r$. Then, there exist $q_{1}, q_{2} \in \mathbb{Z}$, such that $a=q_{1} n+r$ and $b=q_{2} n+r$. Thus, $a-b=\left(q_{1}-q_{2}\right) n$, which shows that $n \mid(a-b)$. Therefore, $a \equiv b(\bmod n)$.

Subsection 2

Greatest Common Divisor

The Greatest Common Divisor

Definition (Common Divisor)

Let $a, b \in \mathbb{Z}$. An integer d is a common divisor of a and b if $d \mid a$ and $d \mid b$.

- Example: The common divisors of 30 and 24 are $-6,-3,-2,-1,1,2,3$ and 6.

Definition (Greatest Common Divisor)

Let $a, b \in \mathbb{Z}$. An integer d is the greatest common divisor of a and b if
(1) d is a common divisor of a and b;
(2) if e is a common divisor of a and b, then $e \leq d$.

The greatest common divisor of a and b is denoted $\operatorname{gcd}(a, b)$.

- Example: The greatest common divisor of 30 and 24 is 6 , and we write $\operatorname{gcd}(30,24)=6$.

Naive Algorithm for Finding the gcd

- An algorithm for computing the gcd of two positive integers a and b works as follows:
- For every positive integer k from 1 to the smaller of a and b, see whether $k \mid a$ and $k \mid b$. If so, save that number k in a list.
- Choose the largest number on the list. That number is $\operatorname{gcd}(a, b)$.
- Even though it works, this algorithm needs to perform a large number of divisions, so it is very slow.
- There is a clever procedure to calculate the greatest common divisor of two positive integers:
- It was invented by Euclid.
- It is very fast.
- It is easily implemented as a computer program.

Euclid's Algorithm for Finding the gcd

Theorem (Euclid's Algorithm)

Let a and b be positive integers and let $c=a \bmod b$. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, c)$.

- The theorem says that, for positive integers a and b, we have

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)
$$

- We are given that $c=a \bmod b$, i.e., $a=q b+c$, with $0 \leq c<b$. Let $d=\operatorname{gcd}(a, b)$ and let $e=\operatorname{gcd}(b, c)$. To show $d=e$, we prove that $d \leq e$ and $d \geq e$.
- First, we show $d \leq e$. Since $d=\operatorname{gcd}(a, b)$, we know that $d \mid a$ and $d \mid b$. We can write $c=a-q b$. Since a and b are multiples of d, so is c. Thus d is a common divisor of b and c. However, e is the greatest common divisor of b and c, so $d \leq e$.
- Next, we show $d \geq e$. Since $e=\operatorname{gcd}(b, c)$, we know that $e \mid b$ and $e \mid c$. Now $a=q b+c$, and hence $e \mid a$ as well. Since $e \mid a$ and $e \mid b$, we see that e is a common divisor of a and b. However, d is the greatest common divisor of a and b, so $d \geq e$.

Example: Calculating $\operatorname{gcd}(689,234)$

- We compute $\operatorname{gcd}(689,234)$. Let $a=689$ and $b=234$. We find $c=689 \bmod 234=221$.
- To find $\operatorname{gcd}(689,234)$, it is enough to find $\operatorname{gcd}(234,221)$ because these two values are the same.

$$
689 \bmod 234=221 \Rightarrow \operatorname{gcd}(689,234)=\operatorname{gcd}(234,221)
$$

- To calculate $\operatorname{gcd}(234,221)$, we calculate $234 \bmod 221=13$. Thus $\operatorname{gcd}(234,221)=\operatorname{gcd}(221,13)$.

$$
234 \bmod 221=13 \Rightarrow \operatorname{gcd}(234,221)=\operatorname{gcd}(221,13)
$$

- Next calculate $221 \bmod 13=0$. Thus, $13 \mid 221$. So clearly $\operatorname{gcd}(221,13)=13$.

$$
221 \bmod 13=0 \Rightarrow \operatorname{gcd}(221,13)=13
$$

- We are finished! We have done three divisions and we found

$$
\operatorname{gcd}(689,234)=\operatorname{gcd}(234,221)=\operatorname{gcd}(221,13)=13
$$

Euclid's GCD Algorithm

Euclid's GCD Algorithm

Input: Positive integers a and b.
Output: $\operatorname{gcd}(a, b)$.

- Let $c=a \bmod b$.
- If $c=0$, return the answer b and stop.
- If $c \neq 0$, calculate $\operatorname{gcd}(b, c)$ and return this as the answer.
- Example: We test the algorithm for $a=63$ and $b=75$.
- Calculate $c=a \bmod b$ to get $c=63 \bmod 75=63$.
- Since $c \neq 0$, compute $\operatorname{gcd}(b, c)=\operatorname{gcd}(75,63)$.
- Restart with $a^{\prime}=75$ and $b^{\prime}=63$. Calculate $c^{\prime}=75 \bmod 63=12$. Since $12 \neq 0$, calculate $\operatorname{gcd}\left(b^{\prime}, c^{\prime}\right)=\operatorname{gcd}(63,12)$.
- Restart with $a^{\prime \prime}=63$ and $b^{\prime \prime}=12$. Calculate $c^{\prime \prime}=63 \bmod 12=3$. Since this is not zero, calculate $\operatorname{gcd}\left(b^{\prime \prime}, c^{\prime \prime}\right)=\operatorname{gcd}(12,3)$.
- Restart with $a^{\prime \prime \prime}=12$ and $b^{\prime \prime \prime}=3$. Calculate $c^{\prime \prime \prime}=12 \bmod 3=0$. Now $c^{\prime \prime \prime}=0$, so we return $b^{\prime \prime \prime}=3$ and we are finished.
- The final answer is that $\operatorname{gcd}(63,75)=3$.

Visualizations of Euclid's Algorithm

- Here is an overview of the calculation in chart form:

a	b	c
63	75	63
75	63	12
63	12	3
12	3	0

- Another way to visualize this computation is via a list:
- The first two entries are a and b.
- The list is extended by computing mod of the last two entries.
- When we reach 0 , we stop.
- The next-to-last entry is the gcd of a and b.

In this example, the list would be

$$
(63,75,63,12,3,0)
$$

Correctness of Euclid's Algorithm

Theorem (Correctness of Euclid's Algorithm)

Euclid's Algorithm correctly computes $\operatorname{gcd}(a, b)$, for a, b positive integers.

- Suppose Euclid's Algorithm did not correctly compute gcd. Then there exist positive integers a and b for which it fails. For smallest counterexample, choose a, b such that $a+b$ is as small as possible.
- If $a<b$, then $c=a \bmod b=a$. So, the first pass through Euclid's

Algorithm will simply interchange the values a and b.

- So let $a \geq b$. The first step calculates $c=\operatorname{gcd}(a, b)$.
- If $c=0, a \bmod b=0$, which implies $b \mid a$. Since b is the largest divisor of $b(b>0$ by hypothesis) and since $b \mid a, b=\operatorname{gcd}(a, b)$. The algorithm then gives the correct result, contradicting our hypothesis.
- If $c \neq 0$, we have $a=q b+c$, where $0<c<b$. We also have $b \leq a$, whence $b+c<a+b$. Thus b, c are positive integers with $b+c<a+b$. By the minimality of $a+b, b$ and c are not a counterexample. Thus the algorithm correctly computes $\operatorname{gcd}(b, c)$ and returns its value. But, we proved $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, c)$! So we get the correct answer, contradicting the hypothesis!

Size of Remainder in Euclid's Algorithm

- After two rounds of Euclid's Algorithm, the integers involved have decreased by at least 50\%.

Proposition

Let $a, b \in \mathbb{Z}$ with $a \geq b>0$. If $c=a \bmod b$, Then $c<\frac{a}{2}$.

- We consider two cases:
- $a<2 b$: Then $2 b>a>0$, so $a>0$ and $a-b \geq 0$, but $a-2 b<0$. Hence the quotient when a is divided by b is 1 . So the remainder is $c=a-b$. Since $a<2 b$, we get $b>\frac{a}{2}$ and so $c=a-b<a-\frac{a}{2}=\frac{a}{2}$.
- $a \geq 2 b$: Thus, $b \leq \frac{a}{2}$. The remainder, upon division of a by b, is less than b. So $c<b$, and we have $b \leq \frac{a}{2}$, so $c<\frac{a}{2}$.

Number of Steps in Euclid's Algorithm

- If the numbers produced by Euclid's Algorithm are (a, b, c, d, e, $f, \ldots, 0)$, then, if $a \geq b$, we have $a \geq b \geq c \geq d \geq \cdots \geq 0$.
- By the Proposition, $c<\frac{a}{2}$ and $d<\frac{b}{2}$.
- Likewise, two steps later, $e<\frac{c}{2}<\frac{a}{4}$ and $f<\frac{d}{2}<\frac{b}{4}$.
- Thus, every two steps of Euclid's Algorithm decrease the integers with which we are working to less than half their current values.
- How large are the numbers after $2 t$ passes of Euclid's Algorithm? After $2 t$ steps the numbers drop by more than a factor of 2^{t}, i.e., the two numbers are less than $\left(2^{-t} a, 2^{-t} b\right)$.
- Euclid's Algorithm stops when the second number reaches zero, which is the same as when the second number is less than 1, i.e., as soon as we have $2^{-t} b \leq 1$.
- So $\log _{2}\left[2^{-t} b\right] \leq \log _{2} 1 \Rightarrow-t+\log _{2} b \leq 0 \Rightarrow \log _{2} b \leq t$.
- Once $t \geq \log _{2} b$, the algorithm must be finished, i.e., after $2 \log _{2} b$ passes, the algorithm has completed its work.

The gcd as the Smallest Positive Linear Combination

Theorem

Let a and b be integers, not both zero. The smallest positive integer of the form $a x+b y$, where x and y are integers, is $\operatorname{gcd}(a, b)$.

- Let a and b be integers (not both zero) and let
$D=\{a x+b y: x, y \in \mathbb{Z}, a x+b y>0\}$.
- Since $a^{2}+b^{2}>0, D \neq \emptyset$.
- Thus, by Well-Ordering, D contains a least element d.

The goal is to show that $d=\operatorname{gcd}(a, b)$.
$\bigcirc d \mid$ a: Suppose that a is not divisible by d. Then $a=q d+r$, with $0<r<d$. Now $d=a x+b y$, so $r=a-q d=a-q(a x+b y)=$ $a(1-q x)+b(-q y)=a X+b Y$, where $X=1-q x$ and $Y=-q y$. Since $0<r<d$ and $r=a X+b Y$, we get $r \in D$ and $r<d$, contradicting the fact that d is the least element of D.

- $d \mid b$: This proof is analogous to $d \mid a$.
- If $e \mid a$ and $e \mid b$, then $e \leq d$. Suppose $e \mid a$ and $e \mid b$. Then $e \mid$ (ax by), whence $e \mid d$, so $e \leq d$ (because d is positive).
- Therefore d is the greatest common divisor of a and b.

Finding the Coefficients in the Linear Combination

- We saw that $\operatorname{gcd}(689,234)=13: 689 \cdot(-1)+234 \cdot 3=13$.
- Note that $\operatorname{gcd}(431,29)=1: 431 \cdot 7+29 \cdot(-104)=1$.
- Given a, b, how do we find x, y, such that $a x+b y=\operatorname{gcd}(a, b)$?
- We extend Euclid's Algorithm by also keeping track of the quotients.
- We find x, y such that $431 x+29 y=\operatorname{gcd}(431,29)=1$.

The steps involved in calculating $\operatorname{gcd}(431,29)$ are:

$$
431=14 \cdot 29+25,29=1 \cdot 25+4,25=6 \cdot 4+1,4=4 \cdot 1+0 .
$$

We solve all except last for the remainders:

$$
25=431-14 \cdot 29,4=29-1 \cdot 25,1=25-6 \cdot 4
$$

Now we work from the bottom up:

$$
1=25-6 \cdot 4=25-6 \cdot(29-1 \cdot 25)=-6 \cdot 29+7 \cdot 25
$$

Now we use $25=431-14 \cdot 29$:

$$
\begin{aligned}
& 1=-6 \cdot 29+7 \cdot 25=-6 \cdot 29+7 \cdot(431-14 \cdot 29)= \\
& 7 \cdot 431+[-6+7 \cdot(-14)] 29=7 \cdot 431+(-104) \cdot 29
\end{aligned}
$$

Relatively Prime Numbers

Definition (Relatively Prime)

Let a and b be integers. We call a and b relatively prime provided $\operatorname{gcd}(a, b)=1$.

Corollary

Let a and b be integers. There exist integers x and y such that $a x+b y=1$ if and only if a and b are relatively prime.

Proposition

Let a, b be integers, not both zero. Let $d=\operatorname{gcd}(a, b)$. If e is a common divisor of a and b, then $e \mid d$.

- Let a, b be integers, not both zero, and let $d=\operatorname{gcd}(a, b)$. Suppose $e \mid a$ and $e \mid b$. By the Theorem, there exist integers x and y such that $d=a x+b y$. Since $e \mid a$ and $e|b, e|(a x+b y)$, and so $e \mid d$.

Subsection 3

Modular Arithmetic

Integers mod n

- Arithmetic is the study of the basic operations: addition, subtraction, multiplication, and division.
- We usually study these operations in number systems such as the integers, \mathbb{Z}, or the rationals, \mathbb{Q}.
- Division is, perhaps, the most interesting example.
- In the context of the rational numbers, we can calculate $x \div y$ for any $x, y \in \mathbb{Q}$ except when $y=0$.
- In the context of the integers, $x \div y$ is defined only if $y \neq 0$ and $y \mid x$.
- So in \mathbb{Q} and \mathbb{Z}, the operation \div takes on slightly different meanings.
- We now introduce a new context for,,$+- \times$, and \div, different from the traditional. To avoid confusion, we use $\oplus, \ominus, \otimes, \oslash$.
- The new set in which we perform arithmetic is $\mathbb{Z}_{n}=\{0,1,2, \ldots$, $n-1\}$, i.e., it contains all natural numbers from 0 to $n-1$ inclusive. We call this number system the integers mod n. The operations $\oplus, \ominus, \otimes, \oslash$ are called addition $\bmod n$, subtraction $\bmod n$, multiplication $\bmod n$, and division $\bmod n$.

Modular Addition and Multiplication

Definition (Modular Addition, Multiplication)

Let n be a positive integer and $a, b \in \mathbb{Z}_{n}$. We define

$$
a \oplus b=(a+b) \bmod n \quad \text { and } \quad a \otimes b=(a b) \bmod n
$$

- The operations on the left are operations defined for \mathbb{Z}_{n}. The operations on the right are ordinary integer operations.
- Example: Let $n=10$. We have the following:
- $5 \oplus 5=0$
- $9 \oplus 8=7$
- $5 \otimes 5=5$
- $9 \otimes 8=2$
- Notice that if $a, b \in \mathbb{Z}_{n}$, the results of the operations $a \oplus b$ and $a \otimes b$ are always defined and are elements of \mathbb{Z}_{n}.

Proposition (Closure of \mathbb{Z}_{n} Under \oplus, \otimes)

Let $a, b \in \mathbb{Z}_{n}$. Then $a \oplus b \in \mathbb{Z}_{n}$ and $a \otimes b \in \mathbb{Z}_{n}$.

Properties of Addition and Multiplication mod n

Proposition (Properties of \oplus, \otimes)

Let n be an integer with $n \geq 2$.

- For all $a, b \in \mathbb{Z}_{n}, a \oplus b=b \oplus a$ and $a \otimes b=b \otimes a$. (Commutativity)
- For all $a, b, c \in \mathbb{Z}_{n}, a \oplus(b \oplus c)=(a \oplus b) \oplus c$ and $a \otimes(b \otimes c)=(a \otimes b) \otimes c$. (Associativity)
- For all $a \in \mathbb{Z}_{n}, a \oplus 0=a, a \otimes 1=a$ and $a \otimes 0=0$. (Identities)
- For all $a, b, c \in \mathbb{Z}_{n}, a \otimes(b \oplus c)=(a \otimes b) \oplus(a \otimes c)$. (Distributivity)
- We show, as an example, that \oplus is associative, i.e., that if $a, b, c \in \mathbb{Z}_{n}, a \oplus(b \oplus c)=(a \oplus b) \oplus c:$
$a \oplus(b \oplus c)=a \oplus(b+c+k n)=[a+(b+c+k n)]+j n=(a+b+c)+s n$ where $k, j, s \in \mathbb{Z}$. Since $a+b+c+s n=(a+b+c) \bmod n$, we have $(a+b+c) \bmod n=(a+b+c+s n) \bmod n=(a+b+c+s n)$ because $a+b+c+s n \in \mathbb{Z}_{n}$. So $a \oplus(b \oplus c)=(a+b+c) \bmod n$. By a similar argument, $(a \oplus b) \oplus c=(a+b+c) \bmod n$.

Existence and Uniqueness of Solution for $a=b \oplus x$

- Let $a, b \in \mathbb{Z}$. We define $a-b$ to be the solution to $a=b+x$.
- We use this approach to define modular subtraction.

Proposition (Existence and Uniqueness of Solution for $a=b \oplus x$)

Let n be a positive integer, and let $a, b \in \mathbb{Z}_{n}$. Then there is one and only one $x \in \mathbb{Z}_{n}$ such that $a=b \oplus x$.

- Let $x=(a-b) \bmod n$. Clearly, $0 \leq x<n$, i.e., $x \in \mathbb{Z}_{n}$. Moreover, $x=(a-b)+k n$ for some integer k. We have $b \oplus x=$ $(b+x) \bmod n=[b+(a-b+k n)] \bmod n=(a+k n) \bmod n=a$, because $0 \leq a<n$.
- To show uniqueness, suppose $a=b \oplus x$ and $a=b \oplus y$, for $x, y \in \mathbb{Z}_{n}$. Then $b \oplus x=(b+x) \bmod n=b+x+k n=a$, and $b \oplus y=(b+y) \bmod n=b+y+j n=a$ for some integers k, j.
Combining these, we have $b+x+k n=b+y+j n$
$\Rightarrow x=y+(k-j) n \Rightarrow x=y(\bmod n) \Rightarrow x \bmod n=y \bmod n$
$\Rightarrow x=y$ because $0 \leq x, y<n$.

Modular Subtraction

Definition (Modular Subtraction)

Let n be a positive integer and let $a, b \in \mathbb{Z}_{n}$. We define $a \ominus b$ to be the unique $x \in \mathbb{Z}_{n}$ such that $a=b \oplus x$.

- Alternatively, we could have defined $a \ominus b$ to be $(a-b) \bmod n$.

Proposition

Let n be a positive integer and let $a, b \in \mathbb{Z}_{n}$. Then $a \ominus b=(a-b) \bmod n$.

- To prove that $a \ominus b=(a-b) \bmod n$, we consult the definition. We must show
- $[(a-b) \bmod n] \in \mathbb{Z}_{n}$;
- if $x=(a-b) \bmod n$, then $a=b \oplus x$.

The first is obvious because $(a-b) \bmod n$ is an integer in \mathbb{Z}_{n}. For the second, note that $x=a-b+k n$ for some integer k. Then $b \oplus x=(b+(a-b+k n)) \bmod n=(a+k n) \bmod n=a$.

Modular Reciprocals

- Given $a, b \in \mathbb{Z}_{10}$ (with $b \neq 0$), is there a solution to $a=b \otimes x$? If so, is it unique?
- Consider the following three cases.
- Let $a=6$ and $b=2$. There are two solutions to $6=2 \otimes x$, namely $x=3$ and $x=8$.
- Let $a=7$ and $b=2$. There are no solutions to $7=2 \otimes x$.
- Let $a=7$ and $b=3$. There is one and only one solution to $7=3 \otimes x$, namely $x=9$. In this case it makes sense to write $7 \oslash 3=9$.
- In \mathbb{Q}, we can define $a \div b$ to be $a \cdot b^{-1}$ so that division by b is defined to be multiplication by b 's reciprocal.
- The reciprocal of $x \in \mathbb{Q}$ is a $y \in \mathbb{Q}$ such that $x y=1$.
- We use reciprocals in \mathbb{Z}_{n} to define division in \mathbb{Z}_{n} :

Definition (Modular Reciprocal)

Let n be a positive integer and let $a \in \mathbb{Z}_{n}$. A reciprocal of a is an element $b \in \mathbb{Z}_{n}$, such that $a \otimes b=1$. An element of \mathbb{Z}_{n} that has a reciprocal is called invertible.

Reciprocals in \mathbb{Z}_{10}

- We investigate reciprocals in \mathbb{Z}_{10} by looking at the multiplication table:

\otimes	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

- Element 0 does not have a reciprocal.
- Elements 2, 4, 5, 6 and 8 do not have reciprocals.
- Elements 1,3,7 and 9 are have unique reciprocals.
- Notice the elements of \mathbb{Z}_{10} that have reciprocals are precisely those integers in \mathbb{Z}_{10} that are relatively prime to 10 .
- The reciprocal of 3 is 7 , and the reciprocal of 7 is 3 ; both 1 and 9 are their own reciprocals.

Uniqueness of the Reciprocal

Proposition (Uniqueness of Reciprocals)

Let n be a positive integer and let $a \in \mathbb{Z}_{n}$. If a has a reciprocal in \mathbb{Z}_{n}, then it has only one reciprocal.

- Suppose a had two reciprocals, $b, c \in \mathbb{Z}_{n}$ with $b \neq c$. Consider $b \otimes a \otimes c$. Using associativity, we get $b=b \otimes 1=b \otimes(a \otimes c)=$ $(b \otimes a) \otimes c=1 \otimes c=c$, contradicting $b \neq c$.
- The reciprocal of a is also called the inverse of a and denoted a^{-1}.
- The superscript -1 needs care because it has multiple meanings:
- In the integers or rationals, $a^{-1}=\frac{1}{a}$.
- In the context of relations or functions, R^{-1} stands for the relation formed by reversing all the ordered pairs in R.
- $\ln \mathbb{Z}_{n}, a^{-1}$ is the reciprocal of a.

Proposition (Mutuality of Reciprocals)

Let n be a positive integer and let $a \in \mathbb{Z}_{n}$. Suppose a is invertible and $b=a^{-1}$. Then b is invertible and $a=b^{-1}$.

Modular Division

Defintion (Modular Division)

Let n be a positive integer, a any element in \mathbb{Z}_{n} and b an invertible element of \mathbb{Z}_{n}. Then $a \oslash b$ is defined to be $a \otimes b^{-1}$.

- Example: In \mathbb{Z}_{10}, calculate $2 \oslash 7$. Since $7^{-1}=3$, we get $2 \oslash 7=2 \otimes 3=6$.
- For arbitrary n, we would like to know
- which elements of \mathbb{Z}_{n} are invertible;
- how we calculate a^{-1} for invertible a.
- In \mathbb{Z}_{10}, the only invertible elements are 1,3,7 and 9, i.e., those elements relatively prime to 10 .
- In the next slide, we also look at \mathbb{Z}_{9}.

Invertible Elements in \mathbb{Z}_{0}

- The multiplication table for \mathbb{Z}_{9}.

\otimes	0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8
2	0	2	4	6	8	1	3	5	7
3	0	3	6	0	3	6	0	3	6
4	0	4	8	3	7	2	6	1	5
5	0	5	1	6	2	7	3	8	4
6	0	6	3	0	6	3	0	6	3
7	0	7	5	3	1	8	6	4	2
8	0	8	7	6	5	4	3	2	1

- The invertible elements of \mathbb{Z}_{9} are $1,2,4,5,7$ and 8 (these are all relatively prime to 9).
- The noninvertible elements are 0,3 and 6 (none of these are relatively prime to 9).

Characterization of Invertibility

Theorem (Invertibility)

Let n be a positive integer and let $a \in \mathbb{Z}_{n}$. Then a is invertible if and only if a and n are relatively prime.

- Recall that a and b are relatively prime if and only if there is an integer solution to $a x+b y=1$.
- Let n be a positive integer and let $a \in \mathbb{Z}_{n}$.
- (\Rightarrow) : Suppose a is invertible. Then, there is an element $b \in \mathbb{Z}_{n}$, such that $a \otimes b=1$, i.e., $(a b) \bmod n=1$. Thus $a b+k n=1$, for some integer k. Therefore, a and n are relatively prime.
- (\Leftarrow) : Suppose a and n are relatively prime. Then, there are integers x and y such that $a x+n y=1$. Let $b=x \bmod n$. So $b=x+k n$, for some integer k. Substituting into $a x+n y=1$, we have $1=a x+n y=$ $a(b-k n)+n y=a b+(y-k a) n$. Therefore, $a \otimes b=a b(\bmod n)=1$. Thus, b is the reciprocal of a and, therefore, a is invertible in \mathbb{Z}_{n}.

An Example in \mathbb{Z}_{431}

- Example: $\ln \mathbb{Z}_{431}$, find 29^{-1}.

We have already found integers x and y such that $431 x+29 y=1$, namely $x=7$ and $y=-104$. Therefore, $(-104 \cdot 29) \bmod 431=1$. Since $-104 \notin \mathbb{Z}_{431}$, we can take $b=-104 \bmod 431=327$. Now $29 \otimes 327=(29 \cdot 327) \bmod 431=9483 \bmod 431=1$. Therefore $29^{-1}=327$.

- Example: In \mathbb{Z}_{431}, calculate $30 \oslash 29$.

Since $29^{-1}=327$, we get

$$
30 \oslash 29=30 \otimes 327=(30 \cdot 327) \bmod 431=9810 \bmod 431=328
$$

Subsection 4

The Chinese Remainder Theorem

Solving a Simple Modular Equation

- Solve the equation $x \equiv 4(\bmod 11)$.

We would like to find x such that $x-4$ is a multiple of 11 , i.e., such that $x-4=11 k$, for some integer k. We can rewrite this as $x=4+11 k$ where k can be any integer. So the solutions are

$$
\ldots,-18,-7,4,15,26, \ldots
$$

Solving Another Modular Equation

- Solve the equation $3 x \equiv 4(\bmod 11)$.
- If x_{0} was a solution to $3 x \equiv 4(\bmod 11)$, then, if $x_{1}=x_{0}+11$, $3 x_{1}=3\left(x_{0}+11\right)=3 x_{0}+33 \equiv 3 x_{0} \equiv 4(\bmod 11)$, so x_{1} is also a solution. If there is a solution, then there is a solution in $\{0,1,2, \ldots, 10\}=\mathbb{Z}_{11}$.
- We seek a number $x \in \mathbb{Z}_{11}$ for which $3 x \equiv 4(\bmod 11)$. We have $3 x \equiv 4(\bmod 11) \Leftrightarrow(3 x) \bmod 11=4 \Leftrightarrow 3 \otimes x=4$ where \otimes is modular multiplication in \mathbb{Z}_{11}.
How do we solve the equation $3 \otimes x=4$? We multiply both sides by $3^{-1}=4: 3 \otimes x=4 \Rightarrow 4 \otimes 3 \otimes x=4 \otimes 4 \Rightarrow 1 \otimes x=5 \Rightarrow x=5$.
- There are no other solutions in \mathbb{Z}_{11} : If $x^{\prime} \in \mathbb{Z}_{11}$ were another solution, we would have $3 \otimes x^{\prime}=4$, and when we \otimes both sides by 4 , we would find $x^{\prime}=5$.

Solution of a Modular Equation

Proposition

Let $a, b, n \in \mathbb{Z}$ with $n>0$. Suppose a and n are relatively prime and consider the equation $a x \equiv b(\bmod n)$.
The set of solutions to this equation is $\left\{x_{0}+k n: k \in \mathbb{Z}\right\}$, where $x_{0}=a_{0}^{-1} \otimes b_{0}, a_{0}=a \bmod n, b_{0}=b \bmod n$, and \otimes is modular multiplication in \mathbb{Z}_{n}.
The integer x_{0} is the only solution to this equation in \mathbb{Z}_{n}.

- Next we solve a pair of congruence equations in different moduli. The general form is

$$
\left\{\begin{array}{ccc}
x & \equiv a & (\bmod m) \\
x & \equiv b & (\bmod n)
\end{array}\right.
$$

Solution of a System of Modular Equations: Example

- Solve the pair of equations $\begin{cases}x & \equiv 1(\bmod 7) \\ x & \equiv 4(\bmod 11)\end{cases}$

Since $x \equiv 1(\bmod 7)$, we can write $x=1+7 k$, for some integer k. We can substitute $1+7 k$ for x in the second equation: $x \equiv 4$ $(\bmod 11)$. We get $1+7 k \equiv 4(\bmod 11) \Rightarrow 7 k \equiv 3(\bmod 11)$.
To solve this equation, we need to \otimes both sides by $7^{-1}=8$ working in \mathbb{Z}_{11}. We find $7 \otimes k=3 \Rightarrow 8 \otimes 7 \otimes k=8 \otimes 3 \Rightarrow k=2$. We know that we want all values of x with $x=1+7 k, k$ any integer of the form $k=2+11 j, j$ is any integer. Combining these two, we have $x=1+7 k=1+7(2+11 j)=15+77 j, j \in \mathbb{Z}$.
Equivalently, the solution set to the equations is

$$
\{x \in \mathbb{Z}: x \equiv 15 \quad(\bmod 77)\}
$$

The Chinese Remainder Theorem

The Chinese Remainder Theorem

Let a, b, m, n be integers with m and n positive and relatively prime. There is a unique integer x_{0} with $0 \leq x_{0}<m n$ that solves the pair of equations $\left\{\begin{array}{l}x \equiv a(\bmod m) \\ x \equiv b(\bmod n)\end{array}\right.$. Furthermore, every solution to these equations differs from x_{0} by a multiple of $m n$.

- From $x \equiv a(\bmod m)$, we get $x=a+k m, k \in \mathbb{Z}$. Substituting into $x \equiv b(\bmod n)$, we get $a+k m \equiv b(\bmod n) \Rightarrow k m \equiv b-a$ $(\bmod n)$. Let $m^{\prime}=m \bmod n$, and $c=(b-a) \bmod n$. Now solving $k m \equiv b-a(\bmod n)$ is equivalent to solving $k m^{\prime} \equiv c(\bmod n)$. Thus, in $\mathbb{Z}_{n}, k \otimes m^{\prime}=c \Rightarrow k=\left(m^{\prime}\right)^{-1} \otimes c$. Let $d=\left(m^{\prime}\right)^{-1} \otimes c$, so the values for k that we want are $k=d+j n, j \in \mathbb{Z}$. Finally, we substitute $k=d+j n$ into $x=a+k m$ to get

$$
x=a+k m=a+(d+j n) m=a+d m+j n m, j \in \mathbb{Z} .
$$

So the original system reduces to $x=a+d m(\bmod m n)$.

System of Three Modular Equations

- Suppose we want to solve a system of three equations. For example, solve for all x :

$$
\left\{\begin{array}{l}
x \equiv 3 \quad(\bmod 9) \\
x \equiv 5 \quad(\bmod 10) \\
x \equiv 2 \quad(\bmod 11)
\end{array}\right.
$$

We can solve the first two equations by the usual method

$$
\begin{aligned}
&\left\{\begin{aligned}
x \equiv & 3(\bmod 9) \\
x \equiv & 5(\bmod 10)
\end{aligned}\right\} \Rightarrow x \equiv 75(\bmod 90) \\
& x=3+9 k \\
& 3+9 k \equiv 5 \quad(\bmod 10) \Rightarrow 9 k \equiv 2(\bmod 10) \\
& \Rightarrow k=9 \otimes 2=8 \Rightarrow k=8+10 j \\
& x=3+9 k=3+9(8+10 j)=75+90 j
\end{aligned}
$$

Next, we combine with the last equation and solve by the usual method: $\left\{\begin{array}{l}x \equiv 75(\bmod 90) \\ x \equiv 2(\bmod 11)\end{array}\right\} \Rightarrow x \equiv 255(\bmod 990)$.

Subsection 5

Factoring

Idea of the Fundamental Theorem

- Every positive integer can be factored into primes in (essentially) a unique fashion.
- Example: The integer 60 can be factored into primes as $60=2 \cdot 2 \cdot 3 \cdot 5$. It can also be factored as $60=5 \cdot 2 \cdot 3 \cdot 2$, but the primes in the two factorizations are exactly the same.
- This is true of all positive integers:
- We can treat 1 as the empty product of primes.
- We can consider prime numbers to be already factored into primes: a prime, say 17 , is the product of just one prime: 17.
- Composite numbers are the product of two or more primes.

An Important Lemma

Lemma

Suppose $a, b, p \in \mathbb{Z}$ and p is a prime. If $p \mid a b$, then $p \mid a$ or $p \mid b$.

- Let a, b, p be integers with p prime and suppose $p \mid a b$. Suppose, for the sake of contradiction, that p divides neither a nor b. Since p is a prime, the only divisors of p are ± 1 and $\pm p$.
- Since p is not a divisor of a, the largest divisor they have in common is 1 , whence $\operatorname{gcd}(a, p)=1$. Thus, there are integers x and y such that $a x+p y=1$.
- Similarly, b and p are relatively prime, whence, there are integers w and z such that $b z+p w=1$.
Multiplying $a x+p y=1$ and $b z+p w=1$, we get $1=(a x+p y)(b z+p w)=a b x z+p y b z+p a x w+p^{2} y w$.
All four of these terms are divisible by p. This implies that $p \mid 1$, which is a contradiction.

An Extension of the Lemma

Lemma

Suppose $p, q_{1}, q_{2}, \ldots, q_{t}$ are prime numbers. If $p \mid\left(q_{1} q_{2} \cdots q_{t}\right)$, then $p=q_{i}$, for some $1 \leq i \leq t$.

- We use induction on t.
- If $t=1$, then $p \mid q_{1}$. Since q_{1} is prime, the only positive number $\neq 1$ that divides q_{1} is q_{1}. Therefore, we must have $p=q_{1}$.
- Assume that the statement is true for $t=k$, i.e., that if $p \mid\left(q_{1} q_{2} \cdots q_{k}\right)$, then $p=q_{i}$, for some $1 \leq i \leq k$.
- Suppose, now that $p \mid\left(q_{1} q_{2} \cdots q_{k+1}\right)$. Then $p \mid\left[\left(q_{1} q_{2} \cdots q_{k}\right) \cdot q_{k+1}\right]$. By the preceding lemma, we get that $p \mid\left(q_{1} q_{2} \cdots q_{k}\right)$ or $p \mid q_{k+1}$.
- If $p \mid\left(q_{1} q_{2} \cdots q_{k}\right)$, by the induction hypothesis, $p=q_{i}$, for some $1 \leq i \leq k$.
- If $p \mid q_{k+1}$, then, using the argument of the base case, $p=q_{k+1}$.

Thus, in every case $p=q_{i}$, for some $1 \leq i \leq k+1$.
This concludes the proof of the Lemma.

The Fundamental Theorem: Existence

The Fundamental Theorem of Arithmetic

Let n be a positive integer. Then n factors into a product of primes. The factorization of n into primes is unique up to the order of the primes.

- We first show existence:
- Suppose that not all positive integers factor into primes. Let X be the set of all positive integers that do not factor into primes. Note that $1 \notin X$. Also $2 \notin X$ because 2 is a prime.
By the Well-Ordering Principle, there is a least element x of X. Since $x \neq 1$ and x is not prime, it is composite. Thus, there is an integer a with $1<a<x$ and $a \mid x$. So, there is an integer b with $a b=x$. Since $a<x, 1<\frac{x}{a}=b$. Because $1<a$, we get $b<a b=x$. Thus
$1<b<x$. Therefore a and b are both positive integers less than x. Since x is the least element of X, neither a nor b is in X, so both a and b can be factored into primes. Suppose the prime factorizations of a and b are $a=p_{1} p_{2} \cdots p_{s}$ and $b=q_{1} q_{2} \cdots q_{t}$. Then $x=a b=$ $\left(p_{1} p_{2} \cdots p_{s}\right)\left(q_{1} q_{2} \cdots q_{t}\right)$ is a prime factorization of x, contradicting $x \in X$. So all positive integers can be factored into primes.

The Fundamental Theorem: Uniqueness

- We continue with the proof of uniqueness:
- Suppose, for the sake of contradiction, that some positive integers can be factored into primes in two distinct ways.
Let Y be the set of all such integers with two (or more) distinct factorizations. Note that $1 \notin Y$ because 1 can be factored only as the empty product of primes. The supposition is that $Y \neq \emptyset$, and therefore Y contains a least element y. Thus y can be factored into primes in two distinct ways: $y=p_{1} p_{2} \cdots p_{s}$ and $y=q_{1} q_{2} \cdots q_{t}$, where the two lists of primes are not rearrangements of one another.
- Claim: The list $\left(p_{1}, p_{2}, \ldots, p_{s}\right)$ and the list $\left(q_{1}, q_{2}, \ldots, q_{t}\right)$ have no elements in common (i.e., $p_{i} \neq q_{j}$, for all i and j).
- If the two lists had a prime r in common, then y / r would be a smaller integer (than y) that factors into primes in two distinct ways, contradicting the fact that y is smallest in Y.
- Now consider p_{1}. Notice that $p_{1} \mid y$, so $p_{1} \mid\left(q_{1} q_{2} \cdots q_{t}\right)$. Then p_{1} must equal one of the q_{s}, contradicting the claim.

Infinitude of Primes

Theorem (Infinitude of Primes)

There are infinitely many prime numbers.

- Suppose, for the sake of contradiction, that there are only finitely many prime numbers. In such a case, we could list them all: $2,3,5,7, \ldots, p$ where p is the (alleged) last prime number. Let $n=(2 \cdot 3 \cdot 5 \cdots \cdot p)+1$. That is, n is the positive integer formed by multiplying together all the prime numbers and then adding 1. Is n a prime? The answer is no. Clearly n is greater than the last prime p, so n is not prime. Since n is not prime, n must be composite. Let q be any prime. Because $n=(2 \cdot 3 \cdots q \cdots p)+1$, when we divide n by q, we are left with a remainder of 1 . We see that there is no prime number q with $q \mid n$, contradicting the Fundamental Theorem.

Primes in Prime Factorizations of Divisors

- Suppose a and b are positive integers. Then, they can be factored into primes as

$$
a=2^{e_{2}} 3^{e_{3}} 5^{e_{5}} 7^{e_{7}} \cdots \quad \text { and } \quad b=2^{f_{2}} 3^{f_{3}} 5^{f_{5}} 7^{f_{7}} \ldots
$$

- Example: If $a=24$ we would have

$$
24=2^{3} 3^{1} 5^{0} 7^{0} \ldots
$$

- Suppose $a \mid b$. Let p be a prime and suppose it appears e_{p} times in the prime factorization of a. Since $p^{e_{p}} \mid a$ and $a \mid b$, we have $p^{e_{p}} \mid b$, and therefore $p^{e_{p}} \mid p^{f_{p}}$. Thus $e_{p} \leq f_{p}$. In other words, if $a \mid b$, then the number of factors of p in the prime factorization of a is less than or equal to the number of factors of p in the prime factorization of b.

The Formula for Finding the Greatest Common Divisor

- If $a=2^{e_{2}} 3^{e_{3}} 5^{e_{5}} 7^{e_{7}} \cdots$ and $b=2^{f_{2}} 3^{f_{3}} 5^{f_{5}} 7^{f_{7}} \cdots$ and if $d=\operatorname{gcd}(a, b)$, then

$$
d=2^{x_{2}} 3^{x_{3}} 5^{x_{5}} 7^{x_{7}} \cdots
$$

where $x_{2}=\min \left\{e_{2}, f_{2}\right\}, x_{3}=\min \left\{e_{3}, f_{3}\right\}, x_{5}=\min \left\{e_{5}, f_{5}\right\}$, etc.

- Example: For $24=2^{3} 3^{1} 5^{0} 7^{0} \cdots$ and $30=2^{1} 3^{1} 5^{1} 7^{0} \cdots$, we get

$$
\begin{aligned}
\operatorname{gcd}(24,30) & =2^{\min \{3,1\}} 3^{\min \{1,1\}} 5^{\min \{0,1\}} 7^{\min \{0,0\}} \ldots \\
& =2^{1} 3^{1} 5^{0} 7^{0} \ldots=6
\end{aligned}
$$

Theorem (GCD Formula)

Let a, b be positive integers with

$$
a=2^{e_{2}} 3^{e_{3}} 5^{e_{5}} 7^{e_{7}} \cdots \quad \text { and } \quad b=2^{f_{2}} 3^{f_{3}} 5^{f_{5}} 7^{f_{7}} \cdots .
$$

Then $\operatorname{gcd}(a, b)=2^{\min \left\{e_{2}, f_{2}\right\}} 3^{\min \left\{e_{3}, f_{3}\right\}} 5^{\min \left\{e_{5}, f_{5}\right\}} 7^{\min \left\{e_{7}, f_{7}\right\}} \ldots$.

Irrationality of $\sqrt{2}$

Proposition

There is no rational number x such that $x^{2}=2$.

- We want to show that the set $\left\{x \in \mathbb{Q}: x^{2}=2\right\}$ is empty. Suppose, for the sake of contradiction, that there is a rational number x such that $x^{2}=2$. Then, there are integers a and b, such that $x=\frac{a}{b}$. We therefore have $\left(\frac{a}{b}\right)^{2}=2$, which can be rewritten $a^{2}=2 b^{2}$. Consider the prime factorization of the integer $n=a^{2}=2 b^{2}$.
- On the one hand, since $n=a^{2}$, the prime 2 appears an even number (perhaps zero) of times in the prime factorization of n.
- On the other hand, since $n=2 b^{2}$, the prime 2 appears an odd number of times in the prime factorization of n.
This contradicts the Fundamental Theorem and, therefore, there is no rational number x such that $x^{2}=2$.

Subsection 6

Euler's φ Function

Euler's φ Function

- How many integers, from 1 to n inclusive, are relatively prime to n ?
- Example: Suppose $n=10$. There are ten numbers in $\{1,2, \ldots, 10\}$. Of them, the following are relatively prime to 10: $\{1,3,7,9\}$. So there are four numbers from 1 to 10 that are relatively prime to 10 .
- The notation $\varphi(n)$ stands for the number of integers from 1 to n (inclusive) that are relatively prime to n.
- The function φ is known as Euler's totient or Euler's phi function.
- More Examples: Let us evaluate the following:

```
- \(\varphi(14)=|\{1,3,5,9,11,13\}|=6\);
- \(\varphi(15)=|\{1,2,4,7,8,11,13,14\}|=8\);
- \(\varphi(16)=|\{1,3,5,7,9,11,13,15\}|=8\);
- \(\varphi(17)=|\{1,2,3, \ldots, 16\}|=16\);
- \(\varphi(25)=|\{1,2, \ldots, 25\}-\{5,10,15,20,15\}|=5^{2}-5=20\);
- \(\varphi(5041)=\varphi\left(71^{2}\right)=\)
    \(|\{1,2, \ldots, 5041\}-\{1 \cdot 71,2 \cdot 71,3 \cdot 71, \ldots, 71 \cdot 71\}|=71^{2}-71\).
- \(\varphi\left(2^{10}\right)=\left|\left\{1,2, \ldots, 2^{10}\right\}-\left\{1 \cdot 2,2 \cdot 2,3 \cdot 2, \ldots, 2^{9} \cdot 2\right\}\right|=2^{10}-2^{9}\).
```


Computing Euler's φ Function

Lemma

Suppose p and q are unequal primes. Then we have:
(1) $\varphi(p)=p-1$;
(2) $\varphi\left(p^{2}\right)=p^{2}-p$;
(3) $\varphi\left(p^{n}\right)=p^{n}-p^{n-1}$, where n is a positive integer;
(-) $\varphi(p q)=p q-q-p+1=(p-1)(q-1)$.
(-We have $\varphi(p)=|\{1,2, \ldots, p-1\}|=p-1$;
(3) $\varphi\left(p^{2}\right)=\left|\left\{1,2, \ldots, p^{2}\right\}-\{1 \cdot p, 2 \cdot p, \ldots, p \cdot p\}\right|=p^{2}-p$;
() $\varphi\left(p^{n}\right)=\left|\left\{1,2, \ldots, p^{n}\right\}-\left\{1 \cdot p, 2 \cdot p, \ldots, p^{n-1} \cdot p\right\}\right|=p^{n}-p^{n-1}$;

- Here, we apply inclusion-exclusion:

$$
\begin{aligned}
\varphi(p q)= & |\{1,2, \ldots, p q\}-(\{1 \cdot p, 2 \cdot p, \ldots, q \cdot p\} \cup\{1 \cdot q, 2 \cdot q, \ldots, p \cdot q\})| \\
= & |\{1,2, \ldots, p q\}|-|\{1 \cdot p, 2 \cdot p, \ldots, q \cdot p\}| \\
& -|\{1 \cdot q, 2 \cdot q, \ldots, p \cdot q\}|+|\{p q\}| \\
= & p q-q-p+1=(p-1)(q-1) .
\end{aligned}
$$

Totient of a Product of Distinct Primes

Proposition

Suppose $n=p_{1} p_{2} \cdots p_{t}$ where the p_{i} 's are distinct primes. Then

$$
\begin{aligned}
\varphi(n)= & n-\frac{n}{p_{1}}-\cdots-\frac{n}{p_{t}}+\frac{n}{p_{1} p_{2}}+\frac{n}{p_{1} p_{3}}+\cdots+\frac{n}{p_{t-1} p_{t}} \\
& -\frac{n}{p_{1} p_{2} p_{3}}-\frac{n}{p_{1} p_{2} p_{4}}-\cdots-\frac{n}{p_{t-2} p_{t-1} p_{t}}+\cdots \pm \frac{n}{p_{1} p_{2} \cdots p_{t}} .
\end{aligned}
$$

This formula simplifies to

$$
\varphi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{t}}\right) .
$$

- For $1 \leq i \leq t$, let $D_{i}=\left\{x: 1 \leq x \leq n\right.$ and $\left.p_{i} \mid x\right\}$. We apply Inclusion-Exclusion:

$$
\begin{aligned}
\varphi(n)= & \left|\{1,2, \ldots, n\}-\left(D_{1} \cup D_{2} \cup \cdots \cup D_{n}\right)\right| \\
= & |\{1,2, \ldots, n\}|-\left|D_{1}\right|-\left|D_{2}\right|-\cdots-\left|D_{t}\right| \\
& +\left|D_{1} \cap D_{2}\right|+\left|D_{1} \cap D_{3}\right|+\cdots+\left|D_{t-1} \cap D_{t}\right| \\
& -\left|D_{1} \cap D_{2} \cap D_{3}\right|-\left|D_{1} \cap D_{2} \cap D_{4}\right|-\cdots-\left|D_{t-2} \cap D_{t-1} \cap D_{t}\right| \\
& +\cdots \pm \pm\left|D_{1} \cap D_{2} \cap \cdots \cap D_{t}\right| \\
= & n-\frac{n}{p_{1}}-\cdots-\frac{n}{p_{t}}+\frac{n}{p_{1} p_{2}}+\frac{n}{p_{1} p_{3}}+\cdots+\frac{n}{p_{t-1} p_{t}} \\
& -\frac{n}{p_{1} p_{2} p_{3}}-\frac{n}{p_{1} p_{2} p_{4}}-\cdots-\frac{n}{p_{t-2} p_{t-1} p_{t}}+\cdots \pm \frac{p_{1} p_{1} \cdots p_{t}}{p_{1}} .
\end{aligned}
$$

Applying the Proposition

- Consider $n=2 \cdot 3 \cdot 11=66$. We compute, with the long formula:

$$
\begin{aligned}
\varphi(66) & =66-\frac{66}{2}-\frac{66}{3}-\frac{66}{11}+\frac{66}{2 \cdot 3}+\frac{66}{2 \cdot 11}+\frac{66}{3 \cdot 11}-\frac{66}{2 \cdot 3 \cdot 11} \\
& =66-33-22-6+11+3+2-1 \\
& =20
\end{aligned}
$$

and with the simplified formula:

$$
\begin{aligned}
\varphi(66) & =66\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{11}\right) \\
& =66 \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{10}{11} \\
& =20
\end{aligned}
$$

Euler Totient Formula

Theorem (Euler Totient Formula)

Let n be any positive integer. Factor n into primes $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{t}^{a_{t}}$, where the p_{i} 's are distinct primes and the exponents a_{i} are all positive integers. Then,

$$
\varphi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{t}}\right) .
$$

- For $1 \leq i \leq t$, let $D_{i}=\left\{x: 1 \leq x \leq n\right.$ and $\left.p_{i} \mid x\right\}$. We apply again Inclusion-Exclusion:

$$
\begin{aligned}
\varphi(n)= & \left|\{1,2, \ldots, n\}-\left(D_{1} \cup D_{2} \cup \cdots \cup D_{n}\right)\right| \\
= & |\{1,2, \ldots, n\}|-\left|D_{1}\right|-\left|D_{2}\right|-\cdots-\left|D_{t}\right| \\
& +\left|D_{1} \cap D_{2}\right|+\left|D_{1} \cap D_{3}\right|+\cdots+\left|D_{t-1} \cap D_{t}\right| \\
& -\left|D_{1} \cap D_{2} \cap D_{3}\right|-\left|D_{1} \cap D_{2} \cap D_{4}\right|-\cdots-\left|D_{t-2} \cap D_{t-1} \cap D_{t}\right| \\
& +\cdots \pm \pm\left|D_{1} \cap D_{2} \cap \cdots \cap D_{t}\right| \\
= & n-\frac{n}{p_{1}}-\cdots-\frac{n}{p_{t}}+\frac{n}{p_{1} p_{2}}+\frac{n}{p_{1} p_{3}}+\cdots+\frac{n}{p_{t-1} p_{t}} \\
& -\frac{n}{p_{1} p_{2} p_{3}}-\frac{n}{p_{1} p_{2} p_{4}}-\cdots-\frac{n}{p_{t-2} p_{t-1} p_{t}}+\cdots \pm \frac{p_{1} p_{2} \cdots p_{t}}{p_{1}} .
\end{aligned}
$$

Multiplicativity of

Theorem (Multiplicativity of φ)

Let m, n be positive integers, such that $\operatorname{gcd}(m, n)=1$. Then $\varphi(m n)=\varphi(m) \varphi(n)$.

- Let $m=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{s}^{a_{s}}$ and $n=q_{1}^{b_{1}} q_{2}^{b_{2}} \cdots q_{t}^{b_{t}}$ be the prime decompositions of m and n. Then, since all primes are distinct $(\operatorname{gcd}(m, n)=1)$, we get

$$
\begin{aligned}
\varphi(m n) & =\varphi\left(p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{s}^{a_{s}} q_{1}^{b_{1}} q_{2}^{b_{2}} \cdots q_{t}^{b_{t}}\right) \\
& =m n\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{s}}\right)\left(1-\frac{1}{q_{1}}\right) \cdots\left(1-\frac{1}{q_{t}}\right) \\
& =\left[m\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{s}}\right)\right]\left[n\left(1-\frac{1}{q_{1}}\right) \cdots\left(1-\frac{1}{q_{t}}\right)\right] \\
& =\varphi(m) \varphi(n) .
\end{aligned}
$$

