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Number Theory

Division Theorem

Let a, b € Z with b > 0. There exist integers g and r such that
a=gqgb+r and 0 < r < b. Moreover, there is only one such pair of
integers (g, r) that satisfies these conditions.

o The integer g is called the quotient and the integer r is called the
remainder.

o Example: If a =23 and b = 10, then the quotient is g = 2 and the
remainder r = 3 because 23 =2-10+ 3 and 0 < 3 < 10.

o Example: If a= —37 and b =5, then g = — 8 and r = 3 because
—37=-8-54+3and 0 <3 <5.
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Number Theory

o Let a and b be integers with b > 0.
o We first show that the quotient and remainder exist, i.e., there exist
integers g and r that satisfy the three conditions
o a=gqb+r
o r>0,and
o r<b.
Let A= {a— bk : k € Z}. The remainder is to be nonnegative, so let
B=ANN={a—bk:keZ,a— bk >0} To usethe Well-Ordering
Principle to select the least element of B, we must ensure that B # ().
o If >0, then, clearly, a=a—b-0€ B and B # 0.
o If a <0, since b > 0, if we take k to be a very negative number, we
can certainly make a — bk positive, so again B # ().
Since B # (), by the Well-Ordering Principle we can choose r to be the
least element of B. Then, since r € BC A= {a— bk : k € Z}, there
exists an integer g, such that r = a — bq, i.e., a = gb+ r. Moreover,
sincere BCNN, r>0.
Now it only remains to show that r < b.
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o Continuing the Proof:

o To finish the existence part, i.e., show that r < b, suppose, for the sake
of contradiction, that r > b.
We have r=a—qgb>b. Let ' =(a—gb)—b=r—b>0, so
r"=a—(g+1)b>0. Therefore, ¥ € Band r =r—b < r. This
contradicts the fact that r is the smallest element of B.
We have proved that the integers g and r exist.

o We now show that g and r are unique.
Suppose, for the sake of contradiction, there are two different pairs of
numbers (g, r) and (¢, r"), such that a= gb+ r, with 0 < r < b, and
a=qgb+r, with 0 < r’ < b. Combining the two equations gives
gb+r=q b+ r' and, therefore, r — r' = (¢’ — q)b. Thus, r —r' is a
multiple of b. Since 0 < r,r’ < b, |r —r'| < b— 1. The only way that
r—r', with |[r —r'| < b—1, can be a multiple of bisif r —r' =0, i.e.,
r=r.
Sincer=r',and gp+r=a=qg'b+r' =qgb+r, we get also g=¢'.
So (q,r) # (q',r') leads to g = ¢’ and r = 1/, a contradiction.
Therefore, the quotient and remainder are unique.
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Corollary

Every integer is either even or odd, but not both.

o We have already shown that no integer can be both even and odd.
Thus it remains to show that every integer is one or the other.

Let n be any integer. By the Theorem, there exist integers g and r,
such that n = 2qg + r where 0 < r < 2.

o If r=0, then n is even;
o If r=1, then n is odd.
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Corollary

Two integers are congruent modulo 2 if and only if they are both even or

both odd.
o (=): Let a and b be integers with a = b (mod 2). So a — b = 2n for
some integer n. Now a is either even or odd.
o If ais even, a = 2k for some integer k. Then b =a —2n = 2k —2n =
2(k — n) and so b is even.
o If ais odd, then a = 2k + 1 for some integer k. Then b=a—2n=
2k +1—2n=2(k — n)+ 1, whence b is odd.
In either case, a and b are either both even or both odd.
o («): Suppose a and b are integers that are both even or both odd.
o If a and b are both even, then a = 2n and b = 2m for some integers n
and m. Thena— b=2n—2m=2(n— m) and so a = b (mod 2).
o If a and b are both odd, then a=2n-+1 and b =2m + 1 for some
integers n and m. Thena— b= (2n+1)— (2m+1) =2(n— m) and
so a= b (mod 2).
Thus if a and b are both even or both odd, then a = b (mod 2).
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Definition (div and mod)

Let a, b € Z with b > 0. Consider the unique pair of numbers g and r with
a=gqgb+rand 0 < r < b. We define the operations div and mod by

adivb=qg and amodb=r.

o Example: These calculations illustrate the div and mod operations:

o 11div3=3 o 1lmod3=2
o 23div10 =2 o 23 mod 10 = 3
o —37divhb= —38 o —37mod5=3

o Note that we have used the word “mod"” in two different ways:
o First, the word mod was used as the name of an equivalence relation.
For example, 53 = 23 (mod 10). The meaning of a = b (mod n) is
that a — b is a multiple of n.
o Second, mod is the binary operation “divide and take the remainder”:
For example, 53 mod 10 = 3.
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Let a, b, n € Z, with n > 0. Then

a=b (modn) <= a modn=b modn.

o Let a,b,n € Z with n > 0.

o (=): Suppose a = b (mod n). Then a — b = kn, for some k € Z. Let
r=amodn, i.e., a=qn+r, forsome g € Z. Then b=a— kn =
(gn+r) — kn= (g — k)n+ r, whence r = b mod n also. Therefore
amod n= b mod n.

o («<=): Suppose a mod n = b mod n = r. Then, there exist g1, g2 € Z,
such that a=gin+r and b= gon+r. Thus, a— b= (g1 — q2)n,
which shows that n | (a — b). Therefore, a = b (mod n).
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Definition (Common Divisor)

Let a,b € Z. An integer d is a common divisor of a and b if d | a and
d| b.

o Example: The common divisors of 30 and 24 are
—6,—3,—2,—1,1,2,3 and 6.

Definition (Greatest Common Divisor)

Let a,b € Z. An integer d is the greatest common divisor of a and b if
Q d is a common divisor of a and b;
Q if e is a common divisor of a and b, then e < d.

The greatest common divisor of a and b is denoted gcd(a, b).

o Example: The greatest common divisor of 30 and 24 is 6, and we
write ged(30,24) = 6.
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o An algorithm for computing the gcd of two positive integers a and b
works as follows:

o For every positive integer k from 1 to the smaller of a and b, see
whether k | a and k | b. If so, save that number k in a list.
o Choose the largest number on the list. That number is ged(a, b).
o Even though it works, this algorithm needs to perform a large number
of divisions, so it is very slow.
o There is a clever procedure to calculate the greatest common divisor
of two positive integers:

o It was invented by Euclid.
o It is very fast.
o It is easily implemented as a computer program.
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Theorem (Euclid's Algorithm)

Let a and b be positive integers and let ¢ = a mod b. Then
gcd(a, b) = ged(b, ¢).

o The theorem says that, for positive integers a and b, we have
gcd(a, b) = ged(b, a mod b).

o We are given that c = amod b, i.e., a=gb+ ¢, with 0 < c < b. Let
d = gcd(a, b) and let e = ged(b, ¢). To show d = e, we prove that
d<eandd>e.

o First, we show d < e. Since d = gcd(a, b), we know that d | a and
d | b. We can write ¢ = a — gb. Since a and b are multiples of d, so is
c. Thus d is a common divisor of b and c. However, e is the greatest
common divisor of b and ¢, so d < e.

o Next, we show d > e. Since e = ged(b, ¢), we know that e | b and
e|c. Now a=gb+ c, and hence e | a as well. Since e| aand e | b,
we see that e is a common divisor of a and b. However, d is the
greatest common divisor of a and b, so d > e.
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o We compute gcd(689,234). Let a = 689 and b = 234. We find
¢ = 689 mod 234 = 221.

o To find gcd(689,234), it is enough to find gcd(234,221) because
these two values are the same.

689 mod 234 = 221 =  gcd(689,234) = gcd(234,221).

o To calculate gecd(234,221), we calculate 234 mod 221 = 13. Thus
gcd(234,221) = ged(221,13).

234 mod 221 =13 =  gcd(234,221) = ged(221,13).

o Next calculate 221 mod 13 = 0. Thus, 13 | 221. So clearly
ged(221,13) = 13.

221 mod13=0 = gcd(221,13) = 13.
o We are finished! We have done three divisions and we found
gcd(689,234) = gcd(234,221) = ged(221,13) = 13.
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Euclid’s GCD Algorithm

Input: Positive integers a and b.
Output: gcd(a, b).
o Let ¢ = amod b.

If ¢ =0, return the answer b and stop.

o
o If ¢ #0, calculate ged(b, ¢) and return this as the answer.
o Example: We test the algorithm for a = 63 and b = 75.

9
9
9

o

Calculate ¢ = amod b to get ¢ = 63 mod 75 = 63.

Since ¢ # 0, compute ged(b, ¢) = ged(75, 63).

Restart with a’ = 75 and b’ = 63. Calculate ¢’ = 75 mod 63 = 12.
Since 12 £ 0, calculate gcd(b’, ¢’) = ged(63, 12).

Restart with a”” = 63 and b” = 12. Calculate ¢’ = 63 mod 12 = 3.
Since this is not zero, calculate ged(b”, ¢’) = ged(12, 3).

Restart with a”” = 12 and b = 3. Calculate ¢’ = 12 mod 3 = 0.
Now c¢””" = 0, so we return b’ = 3 and we are finished.

The final answer is that ged(63,75) = 3.
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o Here is an overview of the calculation in chart form:

alb|c
63 | 75 | 63
75|63 |12
63|12 | 3
1213 |0

o Another way to visualize this computation is via a list:
o The first two entries are a and b.

o The list is extended by computing mod of the last two entries.
o When we reach 0, we stop.

o The next-to-last entry is the gcd of a and b.
In this example, the list would be

(63,75,63,12,3,0)
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Theorem (Correctness of Euclid's Algorithm)

Euclid's Algorithm correctly computes ged(a, b), for a, b positive integers.

o Suppose Euclid’'s Algorithm did not correctly compute gcd. Then
there exist positive integers a and b for which it fails. For smallest
counterexample, choose a, b such that a + b is as small as possible.

o If a< b, then c = amod b = a. So, the first pass through Euclid's
Algorithm will simply interchange the values a and b.
o So let a > b. The first step calculates ¢ = ged(a, b).

o If c =0, amod b =0, which implies b | a. Since b is the largest divisor
of b (b > 0 by hypothesis) and since b | a, b = gcd(a, b). The
algorithm then gives the correct result, contradicting our hypothesis.

o If ¢ #0, we have a = gb + ¢, where 0 < ¢ < b. We also have b < a,
whence b+ ¢ < a+ b. Thus b, ¢ are positive integers with
b+ ¢ < a+ b. By the minimality of a+ b, b and c are not a
counterexample. Thus the algorithm correctly computes ged(b, ¢) and
returns its value. But, we proved gcd(a, b) = ged(b, ¢)! So we get the
correct answer, contradicting the hypothesis!
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o After two rounds of Euclid's Algorithm, the integers involved have
decreased by at least 50%.

Let a,b € Z with a> b > 0. If c=amod b, Then c < 3.

o We consider two cases:

9 a<2b: Then2b>a>0,s0a>0anda—b>0, buta—2b<0.
Hence the quotient when a is divided by b is 1. So the remainder is
c=a—b. Sincea<2b,wegetb>3Jandsoc=a—-b<a—-35=3.

o a>2b: Thus, b < g The remainder, upon division of a by b, is less

than b. So ¢ < b, and we have b < §,s0 ¢ < 3.
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o If the numbers produced by Euclid’'s Algorithm are (a, b, ¢, d, e,
f,...,0), then, if a> b, wehavea>b>c>d>--->0.

o By the Proposition, ¢ < § and d < g.

o Likewise, two steps later, e < § < 7 and f < g < %

o Thus, every two steps of Euclid's Algorithm decrease the integers with
which we are working to less than half their current values.

o How large are the numbers after 2t passes of Euclid’'s Algorithm?
After 2t steps the numbers drop by more than a factor of 2¢, i.e., the
two numbers are less than (27%a,271b).

o Euclid’'s Algorithm stops when the second number reaches zero, which
is the same as when the second number is less than 1, i.e., as soon as
we have 27th < 1.

o Sology[27th] <log,1 = —t+log,b<0 = log,b<t.

o Once t > log, b, the algorithm must be finished, i.e., after 2log, b
passes, the algorithm has completed its work.
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Let a and b be integers, not both zero. The smallest positive integer of
the form ax + by, where x and y are integers, is gcd(a, b).

o Let a and b be integers (not both zero) and let
D ={ax+ by : x,y € Z,ax + by > 0}.
o Since a> + b*> >0, D # ().
o Thus, by Well-Ordering, D contains a least element d.
The goal is to show that d = ged(a, b).
o d | a: Suppose that a is not divisible by d. Then a = gd + r, with
0<r<d Nowd=ax+by,sor=a—qd=a—q(ax+ by) =
a(l —gx)+ b(—qy) = aX + bY, where X =1 —gx and Y = —qy.
Since0<r<dandr=aX+bY,wegetreDandr<d,
contradicting the fact that d is the least element of D.
o d | b: This proof is analogous to d | a.
o If e|aand e| b, then e < d. Suppose e | aand e | b. Then
e | (ax + by), whence e | d, so e < d (because d is positive).
o Therefore d is the greatest common divisor of a and b.
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o We saw that gcd(689,234) = 13: 689 - (—1) + 234 -3 = 13.
o Note that gcd(431,29) = 1: 431-7+29-(—104) = 1.
o Given a, b, how do we find x, y, such that ax + by = gcd(a, b)?
o We extend Euclid's Algorithm by also keeping track of the quotients.
o We find x, y such that 431x + 29y = gcd(431,29) = 1.
The steps involved in calculating gcd(431,29) are:
431 =14-29+425,29 =1-254+4,256=6-4+1,4=4-1+0.
We solve all except last for the remainders:
25=431—-14.29, 4=29—-1-25 1=25—6-4.
Now we work from the bottom up:
1=25-6-4=25-6-(29—-1-25)= —6-29+7-25.
Now we use 25 = 431 — 14 - 29:
1=-6-294+7-25= —6-29+7-(431—-14-29) =
7-4314+[-6+7-(—14)]29 =7 - 431 + (—104) - 29.
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Definition (Relatively Prime)

Let a and b be integers. We call a and b relatively prime provided
ged(a, b) = 1.

Corollary

Let a and b be integers. There exist integers x and y such that
ax + by =1 if and only if a and b are relatively prime.

Let a, b be integers, not both zero. Let d = gcd(a, b). If e is a common
divisor of a and b, then e | d.

o Let a, b be integers, not both zero, and let d = gcd(a, b). Suppose
e | aand e | b. By the Theorem, there exist integers x and y such
that d = ax + by. Since e |aand e | b, e | (ax + by), and so e | d.
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Number Theory

o Arithmetic is the study of the basic operations: addition, subtraction,
multiplication, and division.

o We usually study these operations in number systems such as the
integers, Z, or the rationals, Q.

o Division is, perhaps, the most interesting example.

o In the context of the rational numbers, we can calculate x +— y for any
x,y € Q except when y = 0.
o In the context of the integers, x + y is defined only if y # 0 and y | x.

o So in Q and Z, the operation - takes on slightly different meanings.

o We now introduce a new context for +, —, X, and +, different from
the traditional. To avoid confusion, we use &,6, ®, ©.

o The new set in which we perform arithmetic is Z, = {0,1,2,...,
n— 1}, i.e., it contains all natural numbers from 0 to n — 1 inclusive.
We call this number system the integers mod n. The operations
P, O, ®, are called addition mod n, subtraction mod n,
multiplication mod n, and division mod n.
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Definition (Modular Addition, Multiplication)

Let n be a positive integer and a, b € Z,. We define
a®b=(a+b)modn and a® b= (ab)mod n.

o The operations on the left are operations defined for Z,. The
operations on the right are ordinary integer operations.
o Example: Let n = 10. We have the following:

9o 545=0 s 9p8=7

o bb=>5 0o 9®R8=2
o Notice that if a, b € Z,,, the results of the operations a® b and a® b
are always defined and are elements of Z,,.

Proposition (Closure of Z, Under &, ®)

Let a,b€ Z,. Then a® b € Z, and a® b € Z,.
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Proposition (Properties of @, ®)

Let n be an integer with n > 2.

Q

Q

Foralla,b€ Z, a®b=b®aand a® b =b® a. (Commutativity)
For all a,b,c € Zp, a® (b® c) =(a® b) ® ¢ and
a®(b®c)=(a® b)® c. (Associativity)

Foralla€ Z, a®0=a,a®1=aand a®0=0. (Identities)

For all a,b,c € Z,, a® (b® ¢) = (a® b) & (a ® ¢). (Distributivity)

We show, as an example, that @ is associative, i.e., that if
a,bce€Z, a®d(bdc)=(adb)dc:

a®(b®c) = ad(b+c+kn) =[a+(b+c+kn)]+jn=(a+b+c)+sn
where k,j,s € Z. Since a+ b+ c+sn= (a+ b+ c) mod n, we have
(a+b+c)modn=(a+b+c+sn)modn=(a+b+c—+sn)
because a+ b+ c+sn€Z,. Soad (b&c)=(a+ b+ c)mod n.
By a similar argument, (a® b) @ c = (a+ b+ c) mod n.
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o Let a,b € Z. We define a — b to be the solution to a = b+ x.
o We use this approach to define modular subtraction.

Proposition (Existence and Uniqueness of Solution for a = b @ x)

Let n be a positive integer, and let a, b € Z,. Then there is one and only
one x € Z, such that a= b ® x.

o Let x =(a— b) mod n. Clearly, 0 < x < n, i.e., x € Z,. Moreover,
x = (a— b) + kn for some integer k. We have b & x =
(b+x)mod n=[b+ (a— b+ kn)] mod n= (a+ kn) mod n = a,
because 0 < a < n.

o To show uniqueness, suppose a=b@® x and a= b y, for x,y € Z,.
Then b& x = (b+ x) mod n= b+ x + kn = a, and
b&dy=(b+y)modn=b+y+ jn= afor some integers k,j.
Combining these, we have b+ x+ kn=b+ y + jn
=x=y+(k—j)n=x=y (mod n) = xmod n=y mod n
= x =y because 0 < x,y < n.
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Definition (Modular Subtraction)

Let n be a positive integer and let a, b € Z,. We define a & b to be the
unique x € Z, such that a = b @ x.

o Alternatively, we could have defined a© b to be (a — b) mod n.

Let n be a positive integer and let a, b € Z,. Then a©& b = (a— b) mod n.

o To prove that a© b = (a — b) mod n, we consult the definition. We
must show

o [(a— b) mod n] € Zj;

o if x =(a— b) mod n, then a = b x.
The first is obvious because (a — b) mod n is an integer in Z,,.
For the second, note that x = a — b + kn for some integer k. Then
b®dx=(b+(a— b+ kn)) mod n=(a+ kn) mod n = a.
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o Given a, b € Z1p (with b # 0), is there a solution to a = b ® x? If so,
is it unique?
o Consider the following three cases.
o Let a=6 and b =2. There are two solutions to 6 = 2 ® x, namely
x =3 and x = 8.
o Let a=7 and b =2. There are no solutions to 7 = 2 ® x.
o Let a=7 and b = 3. There is one and only one solution to 7 = 3 ® x,
namely x = 9. In this case it makes sense to write 7©® 3 = 9.
o In Q, we can define a+~ b to be a- b! so that division by b is defined
to be multiplication by b's reciprocal.
o The reciprocal of x € Q is a y € Q such that xy = 1.
o We use reciprocals in Z, to define division in Z,:

Definition (Modular Reciprocal)

Let n be a positive integer and let a € Z,. A reciprocal of a is an element
b € Z,, such that a® b = 1. An element of Z, that has a reciprocal is
called invertible.
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o We investigate reciprocals in Zjo by looking at the multiplication

table: ®|0 1 2 3 45 6 7 8 9
0/0 0 000000 0 O
110 1 23 456 7 89
200 2 46 80 2 4 6 8
30 36 9 25 81 4 7
410 4 82 60 48 2 6
5/0 5 05 0505 0 5
60 6 2 8 406 2 8 4
70 7 4185 2 9 6 3
8|0 8 6 4 2 0 8 6 4 2
9/0 9 87 6 5 4 3 2 1

Element 0 does not have a reciprocal.

Elements 2,4,5,6 and 8 do not have reciprocals.

Elements 1,3,7 and 9 are have unique reciprocals.

Notice the elements of Zyo that have reciprocals are precisely those
integers in Zjg that are relatively prime to 10.

o The reciprocal of 3 is 7, and the reciprocal of 7 is 3; both 1 and 9 are
their own reciprocals.

€ ¢© ¢ ¢
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Proposition (Uniqueness of Reciprocals)

Let n be a positive integer and let a € Z,,. If a has a reciprocal in Z,,
then it has only one reciprocal.

o Suppose a had two reciprocals, b, c € Z,, with b ## c. Consider
b® a® c. Using associativity, we get b=bR1=b® (a®c) =
(b®a)®c=1® c = c, contradicting b # c.

o The reciprocal of a is also called the inverse of a and denoted a~!.

o The superscript —1 needs care because it has multiple meanings:

o In the integers or rationals, a=! = i

o In the context of relations or functions, R~ stands for the relation
formed by reversing all the ordered pairs in R.

o In Z,, a—'is the reciprocal of a.

Proposition (Mutuality of Reciprocals)

Let n be a positive integer and let a € Z,. Suppose a is invertible and
b= a"!l Then bis invertible and a = b L.
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Defintion (Modular Division)

Let n be a positive integer, a any element in Z, and b an invertible
element of Z,. Then a® b is defined to be a® b~ 1.

o Example: In Zg, calculate 20 7.
Since771 =3, weget207=2®3=6.
o For arbitrary n, we would like to know

o which elements of Z,, are invertible;
o how we calculate a=? for invertible a.

o In Zjp, the only invertible elements are 1,3,7 and 9, i.e., those
elements relatively prime to 10.

o In the next slide, we also look at Zg.
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o The multiplication table for Zyg.

®[0 1 2 3 4 5 6 7 8
0(0 0 0O OO OO OO
110 1 2 3 4 5 6 7 8
210 2 4 6 8 1 3 5 7
3({0 3 6 0 3 6 0 3 6
410 4 8 3 7 2 6 1 5
50 5 1 6 2 7 3 8 4
6({0 6 3 0 6 3 0 6 3
710 7 5 3 1 8 6 4 2
8|0 8 7 6 5 4 3 2 1

o The invertible elements of Zg are 1, 2, 4, 5, 7 and 8 (these are all
relatively prime to 9).

o The noninvertible elements are 0, 3 and 6 (none of these are relatively
prime to 9).
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Theorem (Invertibility)

Let n be a positive integer and let a € Z,. Then a is invertible if and only
if a and n are relatively prime.

o Recall that a and b are relatively prime if and only if there is an
integer solution to ax + by = 1.

o Let n be a positive integer and let a € Z,.

o (=): Suppose a is invertible. Then, there is an element b € Z,, such
that a@ b=1, i.e., (ab) mod n=1. Thus ab+ kn = 1, for some
integer k. Therefore, a and n are relatively prime.

o («<=): Suppose a and n are relatively prime. Then, there are integers x
and y such that ax + ny = 1. Let b= x mod n. So b = x + kn, for
some integer k. Substituting into ax + ny = 1, we have 1 = ax + ny =
a(b— kn) + ny = ab+ (y — ka)n. Therefore, a® b= ab (mod n) = 1.
Thus, b is the reciprocal of a and, therefore, a is invertible in Z,,.
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o Example: In Zg31, find 2971

We have already found integers x and y such that 431x + 29y = 1,
namely x =7 and y = —104. Therefore, (—104 - 29) mod 431 = 1.
Since —104 & Z431, we can take b = —104 mod 431 = 327. Now
29 ® 327 = (29 - 327) mod 431 = 9483 mod 431 = 1. Therefore
2071 = 327.

o Example: In Zy431, calculate 30 © 29.
Since 297! = 327, we get

30 @29 = 30 ® 327 = (30 - 327) mod 431 = 9810 mod 431 = 328.
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o Solve the equation x =4 (mod 11).

We would like to find x such that x — 4 is a multiple of 11, i.e., such
that x — 4 = 11k, for some integer k. We can rewrite this as
x = 4 + 11k where k can be any integer. So the solutions are

...,—18,-7,4,15,26, .. ..
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o Solve the equation 3x =4 (mod 11).

o If xp was a solution to 3x =4 (mod 11), then, if x; = xp + 11,
3x1 = 3(x0+ 11) =3x0 + 33 =3x9 =4 (mod 11), so xp is also a
solution. If there is a solution, then there is a solution in
{0,1,2,...,10} = Z;.

o We seek a number x € Zj; for which 3x =4 (mod 11). We have
3x =4 (mod 11) & (3x)mod 11 =4 < 3®x =4 where ® is
modular multiplication in Z;.

How do we solve the equation 3 ® x = 4?7 We multiply both sides by
371=439x=4 = 403®x=4®4 = 1®x=5 = x=5.

o There are no other solutions in Z11: If X' € Z1; were another
solution, we would have 3 ® x’ = 4, and when we ® both sides by 4,
we would find x’ = 5.
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Proposition

Let a, b, n € Z with n > 0. Suppose a and n are relatively prime and
consider the equation ax = b (mod n).

The set of solutions to this equation is {xp + kn : k € Z}, where

Xo = agl ® bg, ag = a mod n, bg = b mod n, and ® is modular
multiplication in Z,,.

The integer xp is the only solution to this equation in Z,,.

o Next we solve a pair of congruence equations in different moduli. The

general form is
x = a (mod m)
x = b (mod n)
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1 (mod 7)

= 4 (mod 11)

Since x =1 (mod 7), we can write x = 1 -+ 7k, for some integer k.
We can substitute 1 + 7k for x in the second equation: x =4

(mod 11). We get 1 + 7k =4 (mod 11) = 7k =3 (mod 11).

To solve this equation, we need to ® both sides by 77! = 8 working
inZij1. Wefind 7@ k=3 = 8@7®k=8®3 = k=2

We know that we want all values of x with x =1+ 7k, k any integer
of the form k = 2 + 11/, j is any integer. Combining these two, we
have x =1+7k=1+7(2+11j) =15+4+77j, j € Z.

Equivalently, the solution set to the equations is

o Solve the pair of equations

{x€eZ:x=15 (mod 77)}.
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The Chinese Remainder Theorem

Let a, b, m, n be integers with m and n positive and relatively prime. There
is a unique integer xo with 0 < xg < mn that solves the pair of equations
x = a (mod m)
{ x = b (mod n)
differs from xg by a multiple of mn.

. Furthermore, every solution to these equations

o From x = a (mod m), we get x = a+ km, k € Z. Substituting into

x=b (mod n), we get a+ km=b (mod n) = km=b—a
(mod n). Let m" = m mod n, and ¢ = (b — a) mod n. Now solving
km = b — a (mod n) is equivalent to solving km’ = ¢ (mod n).
Thus, in Z,, k@m' =c = k=(m)1®c Letd=(m)'®c, so
the values for k that we want are k = d + jn, j € Z. Finally, we
substitute k = d + jn into x = a + km to get

x=a+km=a+ (d+jn)m=a+dm+ jnm, j € Z.
So the original system reduces to x = a+ dm (mod mn).
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o Suppose we want to solve a system of three equations. For example,

solve for all x: x = 3 (mod9)
x = 5 (mod 10)
x = 2 (mod 11)

We can solve the first two equations by the usual method

x = 3 (mod9) _
{x _ 5(mod10)} = x =75 (mod 90).
x =3+ 9k
349k =5 (mod10) = 9k =2 (mod 10)
= k=0®2=8 = k=8+10j
X =349k = 3+ 9(8 + 10j) = 75 + 90;

Next, we combine with the last equation and solve by the usual

[ x = 75 (mod 90) _
method: { x = 2 (mod 11) } = x =255 (mod 990).
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o Every positive integer can be factored into primes in (essentially) a
unique fashion.

o Example: The integer 60 can be factored into primes as
60 =2-2-3.5. It can also be factored as 60 =5-2-3- 2, but the
primes in the two factorizations are exactly the same.

o This is true of all positive integers:

o We can treat 1 as the empty product of primes.

o We can consider prime numbers to be already factored into primes: a
prime, say 17, is the product of just one prime: 17.

o Composite numbers are the product of two or more primes.
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Lemma

Suppose a, b, p € Z and p is a prime. If p | ab, then p | aor p| b.

o Let a, b, p be integers with p prime and suppose p | ab. Suppose, for
the sake of contradiction, that p divides neither a nor b. Since p is a
prime, the only divisors of p are £1 and +p.

o Since p is not a divisor of a, the largest divisor they have in common is
1, whence gcd(a, p) = 1. Thus, there are integers x and y such that

ax + py = 1.
o Similarly, b and p are relatively prime, whence, there are integers w
and z such that bz + pw = 1.
Multiplying ax + py = 1 and bz 4+ pw = 1, we get
1 = (ax + py)(bz + pw) = abxz + pybz + paxw + p?yw.
All four of these terms are divisible by p. This implies that p | 1,
which is a contradiction.
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Lemma

Suppose p, g1, g2, - - -, g¢ are prime numbers. If p | (g1g2- - q¢), then
p=q;, forsome 1l <<t

o We use induction on t.
o If t =1, then p| g1. Since g is prime, the only positive number # 1
that divides g; is g1. Therefore, we must have p = q;.
o Assume that the statement is true for t = k, i.e., that if
p|(g192---qk), then p = g;, for some 1 </ < k.

o Suppose, now that p | (q1g2- - gk+1)- Then p [ [(g1G2- - qk) - qr1].
By the preceding lemma, we get that p | (g1g2 - gk) or p | gk+1-

o If p|(gq1gz2- - qk), by the induction hypothesis, p = g, for some
1<i<k.
o If p| gkt1, then, using the argument of the base case, p = gx+1.

Thus, in every case p = g;, for some 1 </ < k + 1.
This concludes the proof of the Lemma.
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The Fundamental Theorem of Arithmetic

Let n be a positive integer. Then n factors into a product of primes. The
factorization of n into primes is unique up to the order of the primes.

o We first show existence:

o Suppose that not all positive integers factor into primes. Let X be the
set of all positive integers that do not factor into primes. Note that
1¢& X. Also 2 € X because 2 is a prime.

By the Well-Ordering Principle, there is a least element x of X. Since
x # 1 and x is not prime, it is composite. Thus, there is an integer a
with 1 < a < x and a | x. So, there is an integer b with ab = x. Since
a<x 1< § = b. Because 1 < a, we get b < ab= x. Thus

1 < b < x. Therefore a and b are both positive integers less than x.
Since x is the least element of X, neither a nor b is in X, so both a
and b can be factored into primes. Suppose the prime factorizations of
aand barea=pipr---psand b= qi1q>---q;. Then x =ab =
(p1p2- - Ps)(g1gz - - - qt) is a prime factorization of x, contradicting

x € X. So all positive integers can be factored into primes.
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o We continue with the proof of uniqueness:

o Suppose, for the sake of contradiction, that some positive integers can
be factored into primes in two distinct ways.
Let Y be the set of all such integers with two (or more) distinct
factorizations. Note that 1 € Y because 1 can be factored only as the
empty product of primes. The supposition is that Y # (), and therefore
Y contains a least element y. Thus y can be factored into primes in
two distinct ways: y = pip>---ps and y = q19> - - - G, where the two
lists of primes are not rearrangements of one another.

o Claim: The list (p1, p2, .-, ps) and the list (g1, g2, ..., g:) have no
elements in common (i.e., p; # g;j, for all i and j).

o If the two lists had a prime r in common, then y/r would be a smaller
integer (than y) that factors into primes in two distinct ways,
contradicting the fact that y is smallest in Y.

o Now consider p;. Notice that p; | v, so p1 | (q1G2- - g:). Then p;
must equal one of the g5, contradicting the claim.
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Theorem (Infinitude of Primes)

There are infinitely many prime numbers.

o Suppose, for the sake of contradiction, that there are only finitely
many prime numbers. In such a case, we could list them all:
2,3,5,7,...,p where p is the (alleged) last prime number. Let
n=(2-3-5----- p) + 1. That is, n is the positive integer formed by
multiplying together all the prime numbers and then adding 1.

Is n a prime? The answer is no. Clearly n is greater than the last
prime p, so n is not prime. Since n is not prime, n must be composite.
Let g be any prime. Because n=(2-3---q---p)+ 1, when we divide
n by g, we are left with a remainder of 1. We see that there is no
prime number g with g | n, contradicting the Fundamental Theorem.
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o Suppose a and b are positive integers. Then, they can be factored
into primes as

a=2%23%5%7% ... and b=2"3R5Rk77. .
o Example: If a =24 we would have
24 = 23315070,

o Suppose a | b. Let p be a prime and suppose it appears e, times in
the prime factorization of a. Since p® | a and a | b, we have p® | b,
and therefore p® | pe. Thus e, < f,. In other words, if a | b, then
the number of factors of p in the prime factorization of a is less than
or equal to the number of factors of p in the prime factorization of b.
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o If 3 =2%23%5%7% ... and b = 22355577 ... and if d = gcd(a, b),

then
d = 23877 ...

where x, = min {ey, i}, x3 = min{e3, 3}, x5 = min {es, f5}, etc.
o Example: For 24 = 23315070... and 30 = 21315170 .. we get
gcd(24,30) = 2min{31)3min {11} gmin (0.1} 7min {0.0} ...
= 21315070... =6,

Theorem (GCD Formula)
Let a, b be positive integers with

2= 2FEEEIT won and  H= ZPGIFIT e
Then gcd(a, b) — omin {ez,f2}3min {e3,f3}5min {e5,f5}7min {en.fid ...
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There is no rational number x such that x2 = 2.

o We want to show that the set {x € Q : x?> = 2} is empty. Suppose,
for the sake of contradiction, that there is a rational number x such
that x> = 2. Then, there are integers a and b, such that x = 7. We

therefore have (2)? = 2, which can be rewritten a?> = 2b. Consider
the prime factorization of the integer n = a®> = 2b?.

o On the one hand, since n = a2, the prime 2 appears an even number
(perhaps zero) of times in the prime factorization of n.

o On the other hand, since n = 2b?, the prime 2 appears an odd number
of times in the prime factorization of n.

This contradicts the Fundamental Theorem and, therefore, there is no
rational number x such that x2 = 2.
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©

How many integers, from 1 to n inclusive, are relatively prime to n?

©

Example: Suppose n = 10. There are ten numbers in {1,2,...,10}.
Of them, the following are relatively prime to 10: {1,3,7,9}. So
there are four numbers from 1 to 10 that are relatively prime to 10.

©

The notation (n) stands for the number of integers from 1 to n
(inclusive) that are relatively prime to n.

©

The function ¢ is known as Euler’s totient or Euler’s phi function.
More Examples: Let us evaluate the following:
> ¢(14) = [{1,3,5,9,11,13}| = 6;
o(15) = |{1,2,4,7,8,11,13,14}| = 8;
©(16) = |{1,3,5,7,9,11,13,15} = 8;
o(17) = [{1,2,3,...,16}| = 16;
©(25) = |{1,2,...,25} — {5,10,15,20,15}| = 52 — 5 = 20;
o(5041) = (712) =
1{1,2,...,5041} — {1-71,2-71,3-71,...,71- 71} = 712 — 71.
o p(219) = |{1,2,...,210} — {1.2,2-2,3.2,...,2°.2}| =210 _ 29,

©

¢ € ¢ ¢ ¢
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Suppose p and g are unequal primes. Then we have:
Q wlp)=p—-1
Q o(p?) =p*—p;
Q ¢(p") = p" — p"L, where n is a positive integer;
Q vw(pg)=pg—qg—p+1=(p—1)(g—1).

Q We have p(p) = [{1,2,...,p =1} =p -1,
Q w(p)=HL,2,....,p°} ={1-p,2:p,...,p-p}| = P> — p;
Q v(p) =KL2,....,p"} —{1-p,2-p,...,p" - p} = p"— p";
@ Here, we apply inclusion-exclusion:
©(pq) {1,2,...,pq} —({1-p,2-p,...,q-p}U{1-9,2-q,...,p-q})]

-H{1-9,2-q,...,p- g} + [{pa}|
pg—q—p+1=(p—1)(q—1).
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Suppose n = p1ps - - - pr Where the p;'s are distinct primes. Then

n n n n n
n = n———--. — — = “ e
¢(n) o Lop g g
__n _ _n _ ..._ ST — + .. n
P1P2pP3 P1P2pP4 Pt—2Pt—1Pt pL1p2---pt”

This formula simplifies to

0mafo-3) -2 (-2)

O For1<i<t let Dj={x:1<x<nand p;j|x} We apply Inclusion-Exclusion:
on) = |1,2,...,n} = (D1UD,U---UD,)|
= H1,2,...,n} =Dy = |Da| = - -+ — Dt
+ D1 N Da| + [D1 N D3| + -+ - + |Dr—1 N Dy
—|D10D20D3|—|D10D20D4|—"'—|Dt720folth|
+--E£|DinNDoN---N Dy
= n_%_”'_%_*—Pl’;’Z+P1’;3+...+Pt—nlpt "

n n n
P1P2P3 P1P2P4 Pt—2Pt—1Pt + + pip2---pt’
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o Consider n=2-3-11 = 66. We compute, with the long formula:

66 66 66 66 66 66 66
#(66) = 66— - -mtrztrnatIan 23

= 66-33-22-6+11+3+2-1
= 20

and with the simplified formula:

o0 = oo(1-3) (=3) (-5
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Theorem (Euler Totient Formula)

Let n be any positive integer. Factor n into primes n = pi*p3? - - - pit,

where the p;'s are distinct primes and the exponents a; are all positive
integers. Then,

rmefi-3)(-2)(-3)

O For1<i<t let Di={x:1<x<nandp;|x} We apply again
Inclusion-Exclusion:

on) = |{1,2,...,n} = (D1UD,U---UD,)|
= |{L,2,...,n} = |D1| = |D2| = --- — | Dy
+ D1 N Da| + [D1 N D3| 4 - - - + |De—1 N Dy
—|D1ﬂDzﬂD3|—|D1ﬂDzﬂD4|—---—|Dt_2ﬂDt_1ﬂDt|
+...:|:|DlmD2m...th|
= n_ﬁ_”'_ﬁ 01’;’2 P1,133 Pt—nlpt
" pipps  pimeps T T ama
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Theorem (Multiplicativity of ¢)

Let m, n be positive integers, such that gcd (m,n) = 1. Then
p(mn) = o(m)g(n).

ai a2 b

o Let m= pi*p5*---pZ and n = qllqg2 e qft be the prime
decompositions of m and n. Then, since all primes are distinct
(ged (m, n) = 1), we get

ai ,az

p(mn) = @(pfpF - pZariay - a¢t)
- (i) (- ) (- 3) (- 3)
= [m(-3) (-2 [(-2)(-3)]

= @(m)p(n).
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