Topics in Discrete Mathematics

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science

Lake Superior State University

LSSU Math 216

- Groups
- Group Isomorphism
- Subgroups
- Fermat's Little Theorem

Subsection 1

Groups

Definition of Operation and Notation

Definition (Operation)

An operation on a set A is a function whose domain contains $A \times A$.

- Since $A \times A$ is the set of all ordered pairs whose entries are in A, an operation is a function whose input is a pair of elements from A.
- Example: Consider $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(a, b)=|a-b|$. In words, $f(a, b)$ gives the distance between a and b on a number line.
- We rarely write the operation symbol in front of the two elements on which we are operating. Rather, we write the operation symbol between the two elements, i.e., instead of $f(a, b)$, we write a $f b$.
- Furthermore, we usually do not use a letter to denote an operation. Instead, we use a special symbol such as + or \otimes or \circ.
- The symbols + and \times have preset meanings.
- A common symbol for a generic operation is $*$. Thus, instead of writing $f(a, b)=|a-b|$, we could write $a * b=|a-b|$.

Example

- Which of the following are operations on $\mathbb{N}:+,-, \times$ and \div ?
- Certainly addition + is an operation defined on \mathbb{N}. Although it is more broadly defined on any two rational (or even real or complex numbers), it is a function whose domain includes any pair of natural numbers.
- Likewise multiplication \times is an operation on \mathbb{N}.
- Furthermore, - is an operation defined on \mathbb{N}. Note, however, that the result of - might not be an element of \mathbb{N}. For example, $3,7 \in \mathbb{N}$, but $3-7 \notin \mathbb{N}$.
- Finally, division \div does not define an operation on \mathbb{N} because division by zero is undefined. However, \div is an operation defined on the positive integers.

Properties of Operations

Definition (Commutative Property)

Let $*$ be an operation on a set A. We say that $*$ is commutative on A provided $\forall a, b \in A, a * b=b * a$.

Definition (Closure Property)

Let $*$ be an operation on a set A. We say that $*$ is closed on A provided $\forall a, b \in A, a * b \in A$.

- Note that the definition of an operation does not require that the result of $*$ be an element of the set A. So, for example, - is an operation defined on \mathbb{N}, but it is not closed on \mathbb{N}.

Definition (Associative property)

Let $*$ be an operation on a set A. We say that $*$ is associative on A provided $\forall a, b, c \in A,(a * b) * c=a *(b * c)$.

Properties of Operations II

- For example, the operations + and \times on \mathbb{Z} are associative, but - is not: $(3-4)-7=-8$, but $3-(4-7)=6$.

Definition (Identity Element)

Let $*$ be an operation on a set A. An element $e \in A$ is called an identity element (or identity for short) for $*$ provided $\forall a \in A, a * e=e * a=a$.

- For example, 0 is an identity element for + , and 1 is an identity element for \times. An identity element for \circ on S_{n} is the identity permutation ι.
- Not all operations have identity elements, e.g., subtraction of integers does not have an identity element.

Uniqueness of Identities

Proposition (Uniqueness of Identities)

Let $*$ be an operation defined on a set A. Then $*$ can have at most one identity element.

- Suppose there are two identity elements, e and e^{\prime}, in A with $e \neq e^{\prime}$. Consider $e * e^{\prime}$.
- On the one hand, since e is an identity element, $e * e^{\prime}=e^{\prime}$.
- On the other hand, since e^{\prime} is an identity element, $e * e^{\prime}=e$.

Thus we have shown $e^{\prime}=e * e^{\prime}=e$, a contradiction to $e \neq e^{\prime}$.

Inverses

Definition (Inverses)

Let $*$ be an operation on a set A and suppose that A has an identity element e. Let $a \in A$. We call element b an inverse of a provided $a * b=b * a=e$.

- Example: Consider the operation + on the integers. The identity element for + is 0 . Every integer a has an inverse: The inverse of a is simply $-a$ because $a+(-a)=(-a)+a=0$.
- Example: Now consider the operation \times on the rational numbers. The identity element for multiplication is 1 . Most, but not all, rational numbers have inverses. If $x \in \mathbb{Q}$, then $\frac{1}{x}$ is x 's inverse, unless, of course, $x=0$.

An Operation Via a Table

- Consider the operation $*$ defined on the set $\{e, a, b, c\}$ given in the following table:

$*$	e	a	b	c
e	e	a	b	c
a	a	a	e	e
b	b	e	b	e
c	c	e	e	c

- Element e is an identity element.
- Elements b and c are inverses of a because

$$
a * b=b * a=e \quad \text { and } \quad a * c=c * a=e .
$$

Groups

- If an operation has an identity element, it must be unique.
- But we saw that an element might have more than one inverse.
- For most "common" operations elements have at most one inverse:
- If $a \in \mathbb{Z}$, there is exactly one integer b such that $a+b=0$.
- If $a \in \mathbb{Q}$, there is at most one rational number b such that $a b=1$.
- If $\pi \in S_{n}$, there is one $\sigma \in S_{n}$ such that $\pi \circ \sigma=\sigma \circ \pi=\iota$.
- The reason is that associativity implies uniqueness of inverses.

Definition (Group)

Let $*$ be an operation defined on a set G. The pair $(G, *)$ is a group if:

- The set G is closed under *, i.e., $\forall g, h \in G, g * h \in G$.
(2) The operation $*$ is associative, i.e., $\forall g, h, k \in G,(g * h) * k=g *(h * k)$.
(There is an identity $e \in G$ for $*$, i.e., $\exists e \in G, \forall g \in G, g * e=e * g=g$.
- For every $g \in G$, there is an inverse $h \in G$, i.e., $\forall g \in G, \exists h \in G, g * h=h * g=e$.
- The following are groups: $(\mathbb{Z},+),\left(\mathbb{Q}^{+}, \times\right),\left(\mathbb{Z}_{n}, \oplus\right),\left(S_{n}, \circ\right)$.

Abelian Groups and Uniqueness of Inverses

- The group operation $*$ need not be commutative. E.g., o is not a commutative operation on S_{n}.

Definition (Abelian Groups)

Let $(G, *)$ be a group. We call this group Abelian provided $*$ is a commutative operation on G, i.e., $\forall g, h \in G, g * h=h * g$.

- Example: $(\mathbb{Z},+)$ and $\left(\mathbb{Z}_{10}, \oplus\right)$ are Abelian, but $\left(S_{n}, \circ\right)$ is not.

Proposition (Uniqueness of Inverses)

Let $(G, *)$ be a group. Every element of G has a unique inverse in G.

- By definition, every element in G has an inverse. Suppose that $g \in G$ has two distinct inverses, say $h, k \in G$, with $h \neq k$. This means $g * h=h * g=g * k=k * g=e$, where $e \in G$ is the identity for $*$ By the associative property, $h *(g * k)=(h * g) * k$. Furthermore, $h *(g * k)=h * e=h$ and $(h * g) * k=e * k=k$. Hence $h=k$, contradicting the fact that $h \neq k$.
- We speak of the inverse of g and write g^{-1}.

Examples

- $(\mathbb{Z},+)$: Integers with addition is a group.
- $(\mathbb{Q},+)$: Rational numbers with addition is a group.
- (\mathbb{Q}, \times) : Rational numbers with multiplication is not a group. The problem is that $0 \in \mathbb{Q}$ does not have an inverse. We can "repair" this example in two ways:
- We can consider only the positive rational numbers: $\left(\mathbb{Q}^{+}, \times\right)$is a group.
- Another way to repair this example is simply to eliminate the number 0 . $(\mathbb{Q}-\{0\}, \times)$ is a group.
- $\left(S_{n}, \circ\right)$ is a group called the symmetric group.
- If A_{n} be the set of all even permutations in S_{n}, then $\left(A_{n}, \circ\right)$ is a group called the alternating group.
- The set of symmetries of a square with \circ is a group. This group is called a dihedral group.
- In general, if n is an integer with $n \geq 3$, the dihedral group $D_{2 n}$ is the set of symmetries of a regular n-gon with the operation \circ.

More Examples

- $\left(\mathbb{Z}_{n}, \oplus\right)$ is a group for all positive integers n.
- Let $G=\{(0,0),(0,1),(1,0),(1,1)\}$. Define an operation $*$ on G by

$$
(a, b) *(c, d)=(a \oplus c, b \oplus d)
$$

where \oplus is addition mod 2 . The $*$ table for this group is

$*$	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$(0,0)$	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$(0,1)$	$(0,1)$	$(0,0)$	$(1,1)$	$(1,0)$
$(1,0)$	$(1,0)$	$(1,1)$	$(0,0)$	$(0,1)$
$(1,1)$	$(1,1)$	$(1,0)$	$(0,1)$	$(0,0)$

This group is known as the Klein 4-group. Notice that $(0,0)$ is the identity element and every element is its own inverse.

- If A is a set, then $\left(2^{A}, \Delta\right)$ is a group.

The Group $\left(\mathbb{Z}_{10}^{*}, \otimes\right)$

- $\left(\mathbb{Z}_{10}, \otimes\right)$ is not a group.

The problem is similar to (\mathbb{Q}, \times), i.e., zero does not have an inverse. The remedy in this case is a bit more complicated, because we cannot just throw away the element 0 . Notice that in $\left(\mathbb{Z}_{10}-\{0\}, \otimes\right)$ the operation \otimes is no longer closed. For example, $2,5 \in \mathbb{Z}_{10}-\{0\}$, but $2 \otimes 5=0 \notin \mathbb{Z}_{10}-\{0\}$.
In addition to eliminating the element 0 , we can discard those elements that do not have inverses. Then, we are left with the elements in \mathbb{Z}_{10} that are relatively prime to 10 , i.e., with $\{1,3,7,9\}$. The \otimes table for them is

\otimes	1	3	7	9
1	1	3	7	9
3	3	9	1	7
7	7	1	9	3
9	9	7	3	1

This group is denoted $\left(\mathbb{Z}_{10}^{*}, \otimes\right)$.

The Group $\left(\mathbb{Z}_{14}^{*}, \otimes\right)$

Definition $\left(\mathbb{Z}_{n}^{*}\right)$

Let n be a positive integer. We define $\mathbb{Z}_{n}^{*}=\left\{a \in \mathbb{Z}_{n}: \operatorname{gcd}(a, n)=1\right\}$.

- Example: Consider \mathbb{Z}_{14}^{*}. The invertible elements in \mathbb{Z}_{14}^{*} (i.e., the elements relatively prime to 14) are $1,3,5,9,11$ and 13 . Thus, $\mathbb{Z}_{14}^{*}=\{1,3,5,9,11,13\}$. The \otimes table for \mathbb{Z}_{14}^{*} is

\otimes	1	3	5	9	11	13
1	1	3	5	9	11	13
3	3	9	1	13	5	11
5	5	1	11	3	13	9
9	9	13	3	11	1	5
11	11	5	13	1	9	3
13	13	11	9	5	3	1

The inverses of the elements in \mathbb{Z}_{14}^{*} are

$$
1^{-1}=1,3^{-1}=5,5^{-1}=3,9^{-1}=11,11^{-1}=9,13^{-1}=13
$$

Modular Multiplication Groups

Proposition

Let n be a positive integer. Then $\left(\mathbb{Z}_{n}^{*}, \otimes\right)$ is a group.

- To prove that $(G, *)$ is a group, we need to prove that
- G is closed under $*$;
- * is associative;
- G contains an identity element for *;
- every element of G has a $*$-inverse in G.
- We apply these to $\left(\mathbb{Z}_{n}^{*}, \otimes\right)$:
- Let $a, b \in \mathbb{Z}_{n}^{*}$. Thus, a and b are relatively prime to n. So, we can find integers x, y, z, w such that $a x+n y=1$ and $b w+n z=1$.
Multiplying, we get $1=(a x+n y)(b w+n z)=$ $(a x)(b w)+(a x)(n z)+(n y)(b w)+(n y)(n z)=$ $(a b)(w x)+(n)[a x z+y b w+y n z]=(a b)(X)+(n)(Y)$, for some integers X and Y. Therefore $a b$ is relatively prime to n. Since increasing or decreasing $a b$ by a multiple of n results in a number still relatively prime to $n, \operatorname{gcd}(a \otimes b, n)=1$, and $a \otimes b \in \mathbb{Z}_{n}^{*}$.

Modular Multiplication Groups II

- We continue with the second point:
- That \otimes is associative has already been proved.
- Clearly $\operatorname{gcd}(1, n)=1$, so $1 \in \mathbb{Z}_{n}^{*}$. Since, also, for any $a \in \mathbb{Z}_{n}^{*}$, $a \otimes 1=1 \otimes a=(a \cdot 1) \bmod n=a, 1$ is an identity for \otimes.
- Let $a \in \mathbb{Z}_{n}^{*}$. We saw that a has an inverse $a^{-1} \in \mathbb{Z}_{n}$. Is $a^{-1} \in \mathbb{Z}_{n}^{*}$? Since a^{-1} is itself invertible, a^{-1} is relatively prime to n, and so $a^{-1} \in \mathbb{Z}_{n}^{*}$.
Therefore $\left(\mathbb{Z}_{n}^{*}, \otimes\right)$ is a group.

Proposition

Let n be an integer with $n \geq 2$. Then

$$
\left|\mathbb{Z}_{n}^{*}\right|=\varphi(n)
$$

where $\varphi(n)$ is Euler's totient.

- This holds by the definition of $\varphi(n)$ as the number of integers from 1 to n (inclusive) that are relatively prime to n.

Subsection 2

Group Isomorphism

Idea of Isomorphism

- Two groups may have identical structures.
- Consider the groups: $\left(\mathbb{Z}_{4}, \oplus\right),\left(\mathbb{Z}_{5}^{*}, \otimes\right)$ and the Klein 4-group:

\oplus	0	1	2	3	\otimes	1	2	3	4	*	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
0	0	1	2	3	1	1	2	3	4	$(0,0)$	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
1	1	2	3	0	2	2	4	1	3	$(0,1)$	$(0,1)$	$(0,0)$	$(1,1)$	$(1,0)$
2	2	3	0	1	3	3	1	4	2	$(1,0)$	$(1,0)$	$(1,1)$	$(0,0)$	$(0,1)$
3	3	0	1	2	4	4	3	2	1	$(1,1)$	$(1,1)$	$(1,0)$	$(0,1)$	$(0,0)$

- In the Klein 4-group every element is its own inverse.
- We can superimpose the operation tables for the two groups $\left(\mathbb{Z}_{4}, \oplus\right)$ and $\left(\mathbb{Z}_{5}^{*}, \otimes\right)$ on top of one another so they look the same.
- We pair:

Formalizing Isomorphism

- Let $f: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{5}^{*}$ be defined by

$$
f(0)=1, f(1)=2, f(2)=4, f(3)=3
$$

f is a bijection and $f(x \oplus y)=f(x) \otimes f(y)$, where \oplus is $\bmod 4$ addition and \otimes is mod 5 multiplication.

Definition (Isomorphism of Groups)

Let $(G, *)$ and (H, \star) be groups. A function $f: G \rightarrow H$ is called a (group) isomorphism provided f is one-to-one and onto and satisfies

$$
\forall g, h \in G, f(g * h)=f(g) \star f(h) .
$$

When there is an isomorphism from G to H, we say G is isomorphic to H and we write $G \cong H$.

- The "is-isomorphic-to" relation is an equivalence relation, i.e.,
- for any group $G, G \cong G$,
- for any two groups G and H, if $G \cong H$, then $H \cong G$,
- for any three groups G, H, and K, if $G \cong H$ and $H \cong K$, then $G \cong K$.

Generators and Cyclic Groups: Examples

- Element 1 of $\left(\mathbb{Z}_{4}, \oplus\right)$ generates all the elements of the group $\left(\mathbb{Z}_{4}, \oplus\right)$:

$$
1=1,1 \oplus 1=2,1 \oplus 1 \oplus 1=3,1 \oplus 1 \oplus 1 \oplus 1=0
$$

- The element 3 also generates all the elements of $\left(\mathbb{Z}_{4}, \oplus\right)$:

$$
3=3,3 \oplus 3=2,3 \oplus 3 \oplus 3=1,3 \oplus 3 \oplus 3 \oplus 3=0
$$

- Because $\left(\mathbb{Z}_{5}^{*}, \otimes\right)$ is isomorphic to $\left(\mathbb{Z}_{4}, \oplus\right)$, it, too, must have a generator: Since $1 \in \mathbb{Z}_{4}$ corresponds to $2 \in \mathbb{Z}_{5}^{*}$, we calculate

$$
2=2,2 \otimes 2=4,2 \otimes 2 \otimes 2=3,2 \otimes 2 \otimes 2 \otimes 2=1
$$

Thus element $2 \in \mathbb{Z}_{5}^{*}$ generates the group.

- The Klein 4-group does not have an element that generates the entire group. In this group, every element g has the property that $g * g=e=(0,0)$. So there is no way that $g, g * g, g * g * g, \ldots$ can generate all the elements of the group.

Generators and Cyclic Groups

- There is no element of \mathbb{Z} that generates $(\mathbb{Z},+)$. The element 1 generates all the positive elements of \mathbb{Z}. If we allow 1 's inverse, -1 , to participate in the generation process, then we can get 0 (as $1+(-1))$ and all the negative numbers.

Definition (Generator, Cyclic Group)

Let $(G, *)$ be a group. An element $g \in G$ is called a generator for G if every element of G can be expressed just in terms of g and g^{-1} using the operation $*$. If a group contains a generator, it is called cyclic.

- The special provision for g^{-1} is necessary only for groups with infinitely many elements. If $(G, *)$ is a finite group and $g \in G$, then we can always find a way to write $g^{-1}=\underbrace{g * g * \cdots * g}$.
n factors, for some $n>0$

Expressing g^{-1} in terms of g

Proposition

Let $(G, *)$ be a finite group and let $g \in G$. Then, for some positive integer n, we have $g^{-1}=\underbrace{g * g * \cdots * g}_{n \text { times }}$.

- We write $g^{n}=\underbrace{g * g * \cdots * g}_{n \text { times }}$.
- Let $(G, *)$ be a finite group and let $g \in G$. Consider the sequence $g^{1}, g^{2}, g^{3}, g^{4}, \ldots$. Since the group is finite, this sequence must, at some point, repeat itself. Suppose the first repeat is at $g^{a}=g^{b}$, where $a<b$.
- Claim: $a=1$.
- Suppose $a>1$. Then, since $g^{a}=g^{b}$, by operating on the left by g^{-1}, we get $g^{-1} * g^{a}=g^{-1} * g^{b}$, which gives $g^{a-1}=g^{b-1}$. Thus, the first repeat is before $g^{a}=g^{b}$, a contradiction. Therefore, $a=1$.

Expressing g^{-1} in terms of g : Proof (Cont'd)

- We considered $g^{1}, g^{2}, g^{3}, \ldots$, which repeats when $g^{a}=g^{b}$, for $a=1$.
- So, if we stop at the first repeat, the sequence is $g^{1}, g^{2}, g^{3}, \ldots, g^{b}=g$. Notice that since $g=g^{b}$, if we operate on the left by g^{-1}, we get $e=g^{b-1}$.
- If $b=2$, we get $g^{2}=g$. In this case, $g=e$ and so $g^{1}=g^{-1}$, proving the result.
- If $b>2$, we can write $e=g^{b-1}=g^{b-2} * g$. Therefore, $g^{b-2}=g^{-1}$, proving again the result.

Structure of Finite Cyclic Groups

Theorem (Finite Cyclic Groups)

Let $(G, *)$ be a finite cyclic group. Then $(G, *)$ is isomorphic to $\left(\mathbb{Z}_{n}, \oplus\right)$, where $n=|G|$.

- Let $(G, *)$ be a finite cyclic group. Suppose $|G|=n$ and let $g \in G$ be a generator. We claim that $(G, *) \cong\left(\mathbb{Z}_{n}, \oplus\right)$. Define $f: \mathbb{Z}_{n} \rightarrow G$ by $f(k)=g^{k}$. To prove that f is an isomorphism, we must show that
- f is one-to-one and onto;
- $f(j \oplus k)=f(j) * f(k)$.

We undertake one at a time:

- f is one-to-one: Suppose $f(j)=f(k)$. This means that $g^{j}=g^{k}$. We want to prove that $j=k$. Suppose that $j \neq k$. Without loss of generality, $0 \leq j<k<n$. We can $*$ the equation $g^{j}=g^{k}$ on the left by $\left(g^{-1}\right)^{j}$ to get $\left(g^{-1}\right)^{j} * g^{j}=\left(g^{-1}\right)^{j} * g^{k}$, i.e., $e=g^{k-j}$. Since $k-j<n$, this means that the sequence g, g^{2}, g^{3}, \ldots repeats after $k-j$ steps, and therefore g does not generate the entire group (but only $k-j$ of its elements). However, g is a generator, which is a contradiction. Therefore f is one-to-one.

Structure of Finite Cyclic Groups (Cont'd)

- We have shown $f(k)=g^{k}$ is one-to-one. We continue with the remaining two steps.
- f is onto: Let $h \in G$. We must find $k \in \mathbb{Z}_{n}$, such that $f(k)=h$. We know that the sequence $e=g^{0}, g=g^{1}, g^{2}, g^{3}, \ldots$ must contain all elements of G. Thus, h is somewhere on this list, say, at position k (i.e., $h=g^{k}$). Therefore, $f(k)=h$ and f is onto.
- For all $j, k \in \mathbb{Z}_{n}$, we have $f(j \oplus k)=f(j) * f(k)$: Recall that $j \oplus k=(j+k) \bmod n=j+k+t n$, for some integer t. Therefore,

$$
\begin{aligned}
f(j \oplus k) & =g^{j+k+t n}=g^{j} * g^{k} * g^{t n}=g^{j} * g^{k} *\left(g^{n}\right)^{t} \\
& =g^{j} * g^{k} * e^{t}=g^{j} * g^{k}=f(j) * f(k) .
\end{aligned}
$$

Therefore, $f: \mathbb{Z}_{n} \rightarrow G$ is an isomorphism, and, hence, $\left(\mathbb{Z}_{n}, \oplus\right) \cong(G, *)$.

Subsection 3

Subgroups

Subgroups

- Consider the integers as a group: $(\mathbb{Z},+)$. Within the set of integers, we find the set of even integers, $E=\{x \in \mathbb{Z}: 2 \mid x\} .(E,+)$ is also a group: it satisfies the four required properties.
- + is closed on E (the sum of two even integers is again even);
- addition is associative;
- E contains the identity element 0 ;
- if x is an even integer, then $-x$ is also, so inverses are in E. In this case, we call $(E,+)$ a subgroup of $(\mathbb{Z},+)$.

Definition (Subgroup)

Let $(G, *)$ be a group and let $H \subseteq G$. If $(H, *)$ is also a group, we call it a subgroup of $(G, *)$.

- The operation for the group and the operation for its subgroup must be the same: It is incorrect to say that $\left(\mathbb{Z}_{10}, \oplus\right)$ is a subgroup of $(\mathbb{Z},+)$; it is true that $\mathbb{Z}_{10} \subseteq \mathbb{Z}$, but the operations \oplus and + are different.

Subgroups of $\left(\mathbb{Z}_{10}, \oplus\right)$

- The subgroups of $\left(\mathbb{Z}_{10}, \oplus\right)$ are

$$
\begin{array}{ll}
\{0\}, & \{0,1,2,3,4,5,6,7,8,9\}, \\
\{0,5\}, & \{0,2,4,6,8\} .
\end{array}
$$

- How can we verify that our answer is correct?
- For each subset H we listed, is (H, \oplus) a group?
- Are there other subsets $H \subseteq \mathbb{Z}_{10}$ that we missed?
- If $(G, *)$ is a group, to determine whether $(H, *)$ is a subgroup of ($G, *$):
- First, we check $H \subseteq G$.
- Second, we show that $(H, *)$ is a group:
- To check closure, we need to prove that if $g, h \in H$, then $g * h \in H$.
- We do not have to check associativity: $(G, *)$ is a group and therefore * is associative on G. Since $H \subseteq G$, we must have that $*$ is already associative on H.
- Next, we check that the identity element is in H.
- Finally, we know that every element of H has an inverse (because every element of $G \supseteq H$ has an inverse). If $g \in H$, we must show $g^{-1} \in H$.

Back to the Subgroups of $\left(\mathbb{Z}_{10}, \oplus\right)$

- Are $\{0\}$, $\{0,1,2,3,4,5,6,7,8,9\},\{0,5\}$ and $\{0,2,4,6,8\}$ truly subgroups of $\left(\mathbb{Z}_{10}, \oplus\right)$?
- We check these claims:
- $H=\{0\}$ is a subgroup of $\left(\mathbb{Z}_{10}, \oplus\right)$.
- Since $0 \oplus 0=0$, we see that H is closed under \oplus.
- It contains the identity.
- Since 0 's inverse is 0 , the inverse of every element in H is also in H.
- $H=\mathbb{Z}_{10}=\{0,1,2,3,4,5,6,7,8,9\}$ is a subgroup of $\left(\mathbb{Z}_{10}, \oplus\right)$. Since
(\mathbb{Z}_{10}, \oplus) is a group, it is a subgroup of itself.
- $H=\{0,5\}$ is a subgroup of $\left(\mathbb{Z}_{10}, \oplus\right)$.
- H is closed under \oplus since $0 \oplus 0=5 \oplus 5=0$ and $0 \oplus 5=5 \oplus 0=5$.
- Clearly $0 \in H$.
- 0 and 5 are their own inverses.
- $H=\{0,2,4,6,8\}$ is a subgroup of $\left(\mathbb{Z}_{10}, \oplus\right)$.
- Reduction mod 10 of an even number is even.
- $0 \in H$.
- The inverses of $0,2,4,6,8$ are $0,8,6,4,2$, respectively.

Any More Subgroups of $\left(\mathbb{Z}_{10}, \oplus\right)$?

- Are there other subgroups of $\left(\mathbb{Z}_{10}, \oplus\right)$?
- Suppose $H \subseteq \mathbb{Z}_{10}$ and that (H, \oplus) is a subgroup of $\left(\mathbb{Z}_{10}, \oplus\right)$. Since (H, \oplus) is a group, we must have $0 \in H$. If the only element of H is 0 , we have $H=\{0\}$. Otherwise the following analysis applies:
- Suppose $1 \in H$. Then $1 \oplus 1=2 \in H$. Also $1 \oplus 2=3 \in H$. Continuing, we get $H=\mathbb{Z}_{10}$. Thus, if $1 \in H, H=\mathbb{Z}_{10}$.
- Suppose $3 \in H$. Then $3 \oplus 3=6 \in H$ and $3 \oplus 6=9 \in H$. Since $9 \in H$, so is its inverse, $1 \in H$. But, if $1 \in H$, then $H=\mathbb{Z}_{10}$.
- If $7 \in H$ or if $9 \in H$, then we can show that $1 \in H$, and then $H=\mathbb{Z}_{10}$.
- Suppose $5 \in H$. We have $H \supseteq\{0,5\}$. If $2 \in H$, then $2 \oplus 5=7 \in H$, whence $H=\mathbb{Z}_{10}$. Similarly, if any even is in H, then $H=\mathbb{Z}_{10}$. So if $5 \in H$, then either $H=\{0,5\}$ or $H=\mathbb{Z}_{10}$.
- If all elements in H are even:
- If $2 \in H$, then $4,6,8 \in H$, so $H=\{0,2,4,6,8\}$.
- If $4 \in H$, then $4 \oplus 4 \oplus 4=2 \in H$, and $H=\{0,2,4,6,8\}$.
- Similarly, if 6 or 8 is in H, again $H=\{0,2,4,6,8\}$.

Examples of Cardinalities of Subgroups

- The four subgroups of $\left(\mathbb{Z}_{10}, \oplus\right)$ have cardinalities $1,2,5$, and 10 . These four numbers are divisors of 10.
- We list all the subgroups of $\left(S_{3}, \circ\right)$, i.e., of the set of all permutations of $\{1,2,3\}$ with the composition operation. Recall $S_{3}=\{(1)(2)(3),(12)(3),(13)(2),(1)(23),(123),(132)\}$. Its subgroups are

$$
\begin{gathered}
\{(1)(2)(3)\} \\
\{(1)(2)(3),(12)(3)\} \quad\{(1)(2)(3),(13)(2)\} \quad\{(1)(2)(3),(1)(23)\} \\
\{(1)(2)(3),(123),(132)\} \\
\{(1)(2)(3),(12)(3),(13)(2),(1)(23),(123),(132)\}
\end{gathered}
$$

The cardinalities of these subgroups are 1, 2, 3 and 6 . Note, again, that they are all divisors of 6 .

Congruence Modulo a Subgroup

Definition (Congruence Modulo a Subgroup)

Let $(G, *)$ be a group and let $(H, *)$ be a subgroup. Let $a, b \in G$. We say that a is congruent to b modulo H if $a * b^{-1} \in H$. We write this as $a \equiv b(\bmod H)$.

- Example: Consider the group $\left(\mathbb{Z}_{25}^{*}, \otimes\right)$. We have

$$
\mathbb{Z}_{25}^{*}=\{1,2,3,4,6,7,8,9,11,12,13,14,16,17,18,19,21,22,23,24\}
$$

Let $H=\{1,7,18,24\}$. The operation table for \otimes restricted to H is

\otimes	1	7	18	24
1	1	7	18	24
7	7	24	1	18
18	18	1	24	7
24	24	18	7	1

H is a subgroup of \mathbb{Z}_{25} :

- H is closed under \otimes.
- The identity element $1 \in H$.

Do we have $2 \equiv 3(\bmod H)$? Calculate $2 \otimes 3^{-1}=2 \otimes 17=9 \notin \mathrm{H}$.
Therefore $2 \not \equiv 3(\bmod H)$.
Since $2 \otimes 11^{-1}=2 \otimes 16=7 \in H$, we have $2 \equiv 11(\bmod H)$.

Congruence Modulo a Subgroup is an Equivalence Relaion

Lemma

Let $(G, *)$ be a group and let $(H, *)$ be a subgroup. Then congruence modulo H is an equivalence relation on G.

- Congruence modulo H is reflexive, symmetric, and transitive:
- Congruence modulo H is reflexive: Let $g \in G$. We need to show that $g \equiv g(\bmod H)$. To do that, we need to show $g * g^{-1} \in H$. Since $g * g^{-1}=e$ and, since $e \in H$, we have $g \equiv g(\bmod H)$.
- Congruence modulo H is symmetric: Suppose $a \equiv b(\bmod H)$. Then $a * b^{-1} \in H$. Therefore, $\left(a * b^{-1}\right)^{-1} \in H$. But $\left(a * b^{-1}\right)^{-1}=$ $\left(b^{-1}\right)^{-1} * a^{-1}=b * a^{-1} \in H$. Thus, we have $b \equiv a(\bmod H)$.
- Congruence modulo H is transitive: Suppose $a \equiv b(\bmod H)$ and $b \equiv c(\bmod H)$. Thus, $a * b^{-1}, b * c^{-1} \in H$. Since H is a subgroup and, therefore, closed under $*,\left(a * b^{-1}\right) *\left(b * c^{-1}\right)=$ $a *\left(b^{-1} * b\right) * c^{-1}=a * c^{-1} \in H$. Therefore $a \equiv c(\bmod H)$.
Therefore congruence modulo H is an equivalence relation on G.

Example of Equivalence Classes

- Since congruence mod H is an equivalence relation, we may consider the equivalence classes of this relation.
- Recall the group $\left(\mathbb{Z}_{25}, \otimes\right)$ and its subgroup $H=\{1,7,18,24\}$ we considered in the previous slide. For the congruence $\bmod H$ relation, what is the equivalence class [2]?
This is the set of all elements of \mathbb{Z}_{25} that are related to 2 , i.e., $[2]=\left\{a \in \mathbb{Z}_{25}: a \equiv 2(\bmod H)\right\}$. By testing all 20 elements of \mathbb{Z}_{25}, we find that $[2]=\{2,11,14,23\}$. The other equivalence classes are

$$
\begin{array}{lll}
{[1]=\{1,7,18,24\}} & {[2]=\{2,11,14,23\}} & {[3]=\{3,4,21,22\}} \\
{[6]=\{6,8,17,19\}} & {[9]=\{9,12,13,16\}} &
\end{array}
$$

- These are all the equivalence classes of congruence $\bmod H$, since every element of \mathbb{Z}_{25} is in exactly one of these classes.
- We know the equivalence classes form a partition of the group.
- The class [1] equals the subgroup $H=\{1,7,18,24\}$.
- The equivalence classes all have the same size.

Size of Equivalence Classes

Lemma

Let $(G, *)$ be a group and let $(H, *)$ be a finite subgroup. Then any two equivalence classes of the congruence mod H relation have the same size.

- Let $g \in G$ be arbitrary. It is enough to show that $[g]=[e]$. Note $[e]=\{a \in G: a \equiv e(\bmod H)\}=\left\{a \in G: a * e^{-1} \in H\right\}=$ $\{a \in G: a \in H\}=H$. To show that $[g]=H$, we define a function $f: H \rightarrow[g]$ and we prove that f is one-to-one and onto. For $h \in H$, define $f(h)=h * g$.
- Clearly f is a function defined on H.
- Is $f: H \rightarrow[g]$? Since $f(h) * g^{-1}=(h * g) * g^{-1}=h *\left(g * g^{-1}\right)=$ $h \in H, f(h) \equiv g(\bmod H)$, whence $f(h) \in[g]$.
- Now, we show that f is one-to-one. Suppose $f(h)=f\left(h^{\prime}\right)$. Then, $h * g=h^{\prime} * g$. So $(h * g) * g^{-1}=\left(h^{\prime} * g\right) * g^{-1}$, whence $h=h^{\prime}$.
- Finally, we show that f is onto. Let $b \in[g]$. This means that $b \equiv g$ $(\bmod H)$, whence $b * g^{-1} \in H$. Let $h=b * g^{-1}$. Then $f(h)=$ $f\left(b * g^{-1}\right)=\left(b * g^{-1}\right) * g=b *\left(g * g^{-1}\right)=b$. So f is onto $[g]$.

Lagrange's Theorem

Theorem (Lagrange)

Let $(H, *)$ be a subgroup of a finite group $(G, *)$ and let $a=|H|$ and $b=|G|$. Then $a \mid b$.

- Let $(G, *)$ be a finite group and let $(H, *)$ be a subgroup.
- By the preceding lemma, the equivalence classes of the "is-congruent-to-mod- H " relation all have the same cardinality as H.
- Since the equivalence classes form a partition of $G,|H|$ must be a divisor of $|G|$.

Subsection 4

Fermat's Little Theorem

Fermat's Little Theorem: An Example

Theorem (Fermat's Little Theorem)

Let p be a prime and let a be an integer. Then $a^{p} \equiv a(\bmod p)$.

- Example: If $p=23$, then the powers of 5 taken modulo 23 are

$$
\begin{array}{lllll}
5^{1} \equiv 5 & 5^{2} \equiv 2 & 5^{3} \equiv 10 & 5^{4} \equiv 4 & 5^{5} \equiv 20 \\
5^{6} \equiv 8 & 5^{7} \equiv 17 & 5^{8} \equiv 16 & 5^{9} \equiv 11 & 5^{10} \equiv 9 \\
5^{11} \equiv 22 & 5^{12} \equiv 18 & 5^{13} \equiv 21 & 5^{14} \equiv 13 & 5^{15} \equiv 19 \\
5^{16} \equiv 3 & 5^{17} \equiv 15 & 5^{18} \equiv 6 & 5^{19} \equiv 7 & 5^{20} \equiv 12 \\
5^{21} \equiv 14 & 5^{22} \equiv 1 & 5^{23} \equiv 5 & 5^{24} \equiv 2 & 5^{25} \equiv 10
\end{array}
$$

where all congruences are mod 23.

Fermat's Little Theorem: First Proof

- We first prove by induction the result for $a \geq 0$, i.e., that if p is prime and $a \in \mathbb{N}$, then $a^{p} \equiv a(\bmod p)$.
- Basis case: If $a=0, a^{p}=0^{p}=0=a$, so $a^{p} \equiv a(\bmod p)$.
- Induction Hypothesis: Suppose $k^{p} \equiv k(\bmod p)$.
- Induction Step: We show $(k+1)^{p} \equiv k+1(\bmod p)$. By the Binomial Theorem, $(k+1)^{p}=k^{p}+\binom{p}{1} k^{p-1}+\binom{p}{2} k^{p-2}+\cdots+\binom{p}{p-1} k+1$. All but the first and last terms on the right are of the form $\binom{p}{j} k^{p-j}$, where $0<j<p$. The binomial coefficient $\binom{p}{j}$ is an integer: $\binom{p}{j}=\frac{p!}{j!(p-j)!}=$ $\frac{p(p-1)!}{j!(p-j)!}$. Factor the numerator and the denominator into primes and cancel matching primes. Since p is a prime factor of the numerator but not of the denominator, this integer must be a multiple of p. So $k^{p}+\binom{p}{1} k^{p-1}+\binom{p}{2} k^{p-2}+\cdots+\binom{p}{p-1} k+1 \equiv k^{p}+1(\bmod p)$. Since, $k^{p} \equiv k(\bmod p),(k+1)^{p} \equiv k^{p}+1 \equiv k+1(\bmod p)$.
- We finally show that $(-a)^{p} \equiv(-a)(\bmod p)$ where $a>0$.
- If $p=2,(-a)^{2} \equiv a^{2} \equiv a \equiv-a(\bmod 2)$.
- If $p>2$, we have $(-a)^{p}=(-1)^{p} a^{p}=-\left(a^{p}\right) \equiv-a(\bmod p)$.

Fermat's Little Theorem: Second Proof I

- We again assume a is a positive integer. The case $a=0$ is trivial, and the case $a<0$ is handled as in the previous proof.
- With p a prime and a a positive integer, we ask: How many length p lists can be formed in which the elements of the list are chosen from $\{1,2, \ldots, a\}$? The answer to this question is a^{p}.
- We define an equivalence relation R on these lists: Two lists are equivalent if we can get one from the other by cyclically shifting its entries. For example $12334 R 41233 R 34123 R 33412 R 23341$.
- How many nonequivalent length p lists can be formed in which the elements of the list are chosen from $\{1,2, \ldots, a\}$? I.e., can we count the number of R-equivalence classes?
- Example: Consider the case $a=2$ and $p=3$. There are eight lists we can form:

$$
111,112,121,122,211,212,221,222 .
$$

These fall into four equivalence classes: $\{111\},\{222\},\{112,121$, $211\}$ and $\{122,212,221\}$.

Fermat's Little Theorem: Example Showcasing Proof

- Example: Consider the case $a=3$ and $p=5$. There are $3^{5}=243$ possible lists (from 11111 to 33333). There are three equivalence classes that contain just one list, namely $\{11111\},\{22222\}$ and $\{33333\}$. The remaining lists fall into equivalence classes containing more than one element. For example, the list 12113 is in the following equivalence class: $[12113]=\{12113,31211,13121,11312,21131\}$. By experimenting, notice that all the equivalence classes with more than one list contain exactly five lists. Thus there are three equivalence classes that contain only one list and the remaining $3^{5}-3$ lists fall into classes containing exactly five lists each. There are $\frac{3^{5}-3}{5}$ such classes. Thus, all told, there are $3+\frac{3^{5}-3}{5}=51$ different equivalence classes. The number $\frac{3^{5}-3}{5}$ is an integer. Therefore $3^{5}-3$ is divisible by 5 , i.e., $3^{5} \equiv 3(\bmod 5)$.

Fermat's Little Theorem: Second Proof II

- How many elements does an equivalence class contain?
- For lists all of whose elements are the same, the equivalence classes contain exactly one list.
- For a list with (at least) two different elements $x_{1} x_{2} \cdots x_{p-1} x_{p}$, where the elements are drawn from $\{1,2, \ldots, a\}$, the equivalence class of this list contains $x_{1} x_{2} x_{3} \cdots x_{p-1} x_{p}, x_{2} x_{3} \cdots x_{p-1} x_{p} x_{1}, x_{3} \cdots x_{p-1} x_{p} x_{1} x_{2}, \ldots$, $x_{p} x_{1} x_{2} \cdots x_{p-1}$. Are there p lists in this equivalence class, or is there a repetition?
- Claim: If the elements of the list $x_{1} x_{2} x_{3} \cdots x_{p-1} x_{p}$ are not all the same, then the p lists above are all different.
- Thus there are a equivalence classes of size 1 and the remaining $a^{p}-a$ lists form equivalence classes of size p. All together, there are $a+\frac{a^{p}-a}{p}$ different equivalence classes. Since this number must be an integer, $a^{p}-a$ is divisible by p, i.e., $a^{p} \equiv a(\bmod p)$.

Fermat's Little Theorem: Proof of the Claim

- Claim: If the elements of the list $x_{1} x_{2} x_{3} \cdots x_{p-1} x_{p}$ are not all the same, then the p lists above are all different.
- Suppose that $x_{i} x_{i+1} \cdots x_{i-1}=x_{j} x_{j+1} \cdots x_{j-1}$, with $1 \leq i<j \leq p$. Then $x_{i}=x_{j}, x_{i+1}=x_{j+1}, \ldots, x_{i-1}=x_{j-1}$. Therefore, if we cyclically shift the list $x_{1} x_{2} x_{3} \cdots x_{p-1} x_{p}$ by $j-i$ steps, the resulting sequence is identical to the original. Thus, $x_{1}=x_{1+(j-i)}$. If we shift the list another j - i steps, we again return to the original: $x_{1}=x_{1+2(j-i)}$. We always add or subtract a multiple of p so that the subscript on x lies in the set $\{1,2, \ldots, p\}$. So we get

$$
x_{1}=x_{1+(j-i)}=x_{1+2(j-i)}=x_{1+3(j-i)}=\cdots=x_{1+(p-1)(j-i)}
$$

But this equation says that $x_{1}=x_{2}=\cdots=x_{p}$, a contradiction!

A Handy Lemma

Lemma

Let $(G, *)$ be a finite group, with identity e, and let $g \in G$. Then $g^{|G|}=e$.

- Consider the sequence $g^{1}, g^{2}, g^{3}, \ldots$ Since $(G, *)$ is finite, this sequence must repeat, i.e., $g^{i}=g^{j}$, for some $1 \leq i<j$. * both sides by $\left(g^{-1}\right)^{i}$ to get $e=g^{j-i}$. Thus, there is $k>0$, such that $g^{k}=e$.
- By the Well-Ordering Principle, there is a least positive integer k such that $g^{k}=e$. Define the order of the element g, denoted $|g|$, to be the smallest such positive integer.
- Claim: $\langle g\rangle=\left\{e, g, g^{2}, g^{3}, \ldots\right\}$ is a subgroup of G, with $|\langle g\rangle|=|g|$.
- Clearly, it is closed under *;
- It contains e;
- Every element g^{i} has an inverse: Let $i=k q+r$, with $0 \leq r<k$. Then $g^{i} * g^{k-r}=g^{(k q+r)+(k-r)}=g^{k(q+1)}=e$, whence $\left(g^{i}\right)^{-1}=g^{k-r}$.
- By Lagrange's Theorem, $|\langle g\rangle|=|g|$ divides $|G|$. Therefore $g^{|G|}=g^{k|g|}=\left(g^{|g|}\right)^{k}=e^{k}=e$.

Fermat's Little Theorem: Third Proof

- We work in the group $\left(\mathbb{Z}_{p}^{*}, \otimes\right)$ and prove the result only for $a>0$.
- If a is a multiple of p, then $a^{p} \equiv a \equiv 0(\bmod p)$.
- If we increase (or decrease) a by a multiple of p, there is no change modulo p in the value of $a^{p}:(a+k p)^{p}=$ $a^{p}+\binom{p}{1} a^{p-1}(k p)^{1}+\binom{p}{2} a^{p-2}(k p)^{2}+\cdots+\binom{p}{p} a^{0}(k p)^{p} \equiv a^{p}(\bmod p)$.
- Therefore we may assume that a is an integer in the set $\{1,2, \ldots$, $p-1\}=\mathbb{Z}_{p}^{*}$.
- The equation $a^{p} \equiv a(\bmod p)$ is equivalent to $\underbrace{a \otimes a \otimes \cdots \otimes a}=a$.

This can be rewritten $a^{p}=a$. If we \otimes both sides by a^{-1}, we have $a^{p-1}=1$. Conversely, if we can prove $a^{p-1}=1$ in \mathbb{Z}_{p}^{*}, then our proof will be complete. This, however, was the content of the preceding lemma!

Euler's Theorem: Example

- Fermat's Little Theorem does not hold for any non-prime moduli, i.e., it is not the case that $a^{n} \equiv a(\bmod n)$ for any positive integer n.
- Example: Consider $n=9$. We have

$$
\begin{array}{lll}
1^{9} \equiv 1 & 2^{9} \equiv 8 \not \equiv 2 & 3^{9} \equiv 0 \not \equiv 3 \\
4^{9} \equiv 1 \not \equiv 4 & 5^{9} \equiv 8 \not \equiv 5 & 6^{9} \equiv 0 \not \equiv 6 \\
7^{9} \equiv 1 \not \equiv 7 & 8^{9} \equiv 8 & 9^{9} \equiv 0 \equiv 9
\end{array}
$$

where all congruences are modulo 9 . So, the formula $a^{p} \equiv a$ $(\bmod p)$ does not extend to non prime values of p.

- A clue is gotten by looking more closely to the third proof: The key was that $a^{p-1}=1$ in \mathbb{Z}_{p}^{*}. This holds because:
- $a \in \mathbb{Z}_{p}^{*}$;
- the exponent $p-1$ is the number of elements in \mathbb{Z}_{p}^{*}. In general, however, $\left|\mathbb{Z}_{n}^{*}\right|=\varphi(n)$, Euler's totient.
- Example: We replace the exponent 9 with the exponent $\varphi(9)=6$ in the previous example. We have $\mathbb{Z}_{9}^{*}=\{1,2,4,5,7,8\}$ and $\varphi(9)=6$. Raising the integers 1 through 9 to the power $6(\bmod 9)$ gives

$$
\begin{aligned}
& 1^{6} \equiv 1 \quad 2^{6} \equiv 1 \quad 3^{6} \equiv 0 \quad 4^{6} \equiv 1 \quad 5^{6} \equiv 1 \\
& 6^{6} \equiv 0 \quad 7^{6} \equiv 1 \quad 8^{6} \equiv 1 \quad 9^{6} \equiv 0 .
\end{aligned}
$$

Euler's Theorem

- We have seen that if $a \in \mathbb{Z}_{n}^{*}$, then $a^{\left|\mathbb{Z}_{n}^{*}\right|}=1$. Since $\left|\mathbb{Z}_{n}^{*}\right|=\varphi(n)$, this can be rewritten $a^{\varphi(n)}=1$, with multiplication in \mathbb{Z}_{n}^{*}.

Theorem (Euler's Theorem)

Let n be a positive integer and let a be an integer relatively prime to n. Then

$$
a^{\varphi(n)}=1 \quad(\bmod n) .
$$

- Let a be relatively prime to n. Dividing a by n, we have $a=q n+r$, where $0 \leq r<n$. Since a is relatively prime to n, so is r. Thus we may assume that $a \in \mathbb{Z}_{n}^{*}$. Now, by a preceding lemma, $\varphi(n)=\left|\mathbb{Z}_{n}^{*}\right|$ implies $a^{\varphi(n)}=1$ in \mathbb{Z}_{n}^{*}, which is equivalent to $a^{\varphi(n)} \equiv 1(\bmod n)$.

Primality Testing

- Fermat's Little Theorem states that if p is a prime, then $a^{p} \equiv a$ $(\bmod p)$ for any integer a. We can write this symbolically as

$$
p \text { is a prime } \Rightarrow \forall a \in \mathbb{Z}, a^{p} \equiv a(\bmod p)
$$

- The contrapositive of this statement is

$$
\neg\left[\forall a \in \mathbb{Z}, a^{p} \equiv a \quad(\bmod p)\right] \Rightarrow p \text { is not a prime },
$$

which can be rewritten

$$
\exists a \in \mathbb{Z}, a^{p} \not \equiv a(\bmod p) \Rightarrow p \text { is not a prime. }
$$

- This says that, if there is some integer a such that $a^{p} \not \equiv a(\bmod p)$, then p is not a prime. Therefore, we have shown:

Theorem

Let a and n be positive integers. If $a^{n} \not \equiv a(\bmod n)$, then n is not prime.

- This theorem can be used for showing that an integer is not prime.
- But, if we have positive integers a and n with $a^{n} \equiv a(\bmod n)$, then we cannot conclude that n is prime!

