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Algebra Groups

Definition of Operation and Notation

Definition (Operation)

An operation on a set A is a function whose domain contains A× A.

Since A× A is the set of all ordered pairs whose entries are in A, an
operation is a function whose input is a pair of elements from A.

Example: Consider f : Z×Z → Z defined by f (a, b) = |a − b|. In
words, f (a, b) gives the distance between a and b on a number line.

We rarely write the operation symbol in front of the two elements on
which we are operating. Rather, we write the operation symbol
between the two elements, i.e., instead of f (a, b), we write a f b.

Furthermore, we usually do not use a letter to denote an operation.
Instead, we use a special symbol such as + or ⊗ or ◦.

The symbols + and × have preset meanings.

A common symbol for a generic operation is ∗. Thus, instead of
writing f (a, b) = |a − b|, we could write a ∗ b = |a − b|.

George Voutsadakis (LSSU) Discrete Mathematics March 2014 4 / 50



Algebra Groups

Example

Which of the following are operations on N : +,−,× and ÷?

Certainly addition + is an operation defined on N. Although it is more
broadly defined on any two rational (or even real or complex numbers),
it is a function whose domain includes any pair of natural numbers.
Likewise multiplication × is an operation on N.
Furthermore, − is an operation defined on N. Note, however, that the
result of − might not be an element of N. For example, 3, 7 ∈ N, but
3− 7 6∈ N.
Finally, division ÷ does not define an operation on N because division
by zero is undefined. However, ÷ is an operation defined on the
positive integers.
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Algebra Groups

Properties of Operations I

Definition (Commutative Property)

Let ∗ be an operation on a set A. We say that ∗ is commutative on A

provided ∀a, b ∈ A, a ∗ b = b ∗ a.

Definition (Closure Property)

Let ∗ be an operation on a set A. We say that ∗ is closed on A provided
∀a, b ∈ A, a ∗ b ∈ A.

Note that the definition of an operation does not require that the
result of ∗ be an element of the set A. So, for example, − is an
operation defined on N, but it is not closed on N.

Definition (Associative property)

Let ∗ be an operation on a set A. We say that ∗ is associative on A

provided ∀a, b, c ∈ A, (a ∗ b) ∗ c = a ∗ (b ∗ c).
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Algebra Groups

Properties of Operations II

For example, the operations + and × on Z are associative, but − is
not: (3− 4)− 7 = − 8, but 3− (4− 7) = 6.

Definition (Identity Element)

Let ∗ be an operation on a set A. An element e ∈ A is called an identity
element (or identity for short) for ∗ provided ∀a ∈ A, a ∗ e = e ∗ a = a.

For example, 0 is an identity element for +, and 1 is an identity
element for ×. An identity element for ◦ on Sn is the identity
permutation ι.

Not all operations have identity elements, e.g., subtraction of integers
does not have an identity element.
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Algebra Groups

Uniqueness of Identities

Proposition (Uniqueness of Identities)

Let ∗ be an operation defined on a set A. Then ∗ can have at most one
identity element.

Suppose there are two identity elements, e and e′, in A with e 6= e′.
Consider e ∗ e′.

On the one hand, since e is an identity element, e ∗ e ′ = e ′.
On the other hand, since e ′ is an identity element, e ∗ e ′ = e.

Thus we have shown e′ = e ∗ e′ = e, a contradiction to e 6= e′.
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Algebra Groups

Inverses

Definition (Inverses)

Let ∗ be an operation on a set A and suppose that A has an identity
element e. Let a ∈ A. We call element b an inverse of a provided
a ∗ b = b ∗ a = e.

Example: Consider the operation + on the integers. The identity
element for + is 0. Every integer a has an inverse: The inverse of a is
simply −a because a+ (−a) = (−a) + a = 0.

Example: Now consider the operation × on the rational numbers.
The identity element for multiplication is 1. Most, but not all,
rational numbers have inverses. If x ∈ Q, then 1

x
is x ’s inverse,

unless, of course, x = 0.
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Algebra Groups

An Operation Via a Table

Consider the operation ∗ defined on the set {e, a, b, c} given in the
following table:

∗ e a b c

e e a b c

a a a e e

b b e b e

c c e e c

Element e is an identity element.

Elements b and c are inverses of a because

a ∗ b = b ∗ a = e and a ∗ c = c ∗ a = e.
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Algebra Groups

Groups

If an operation has an identity element, it must be unique.

But we saw that an element might have more than one inverse.
For most “common” operations elements have at most one inverse:

If a ∈ Z, there is exactly one integer b such that a + b = 0.
If a ∈ Q, there is at most one rational number b such that ab = 1.
If π ∈ Sn, there is one σ ∈ Sn such that π ◦ σ = σ ◦ π = ι.

The reason is that associativity implies uniqueness of inverses.
Definition (Group)

Let ∗ be an operation defined on a set G . The pair (G , ∗) is a group if:

1 The set G is closed under ∗, i.e., ∀g , h ∈ G , g ∗ h ∈ G .

2 The operation ∗ is associative, i.e., ∀g , h, k ∈ G , (g ∗ h) ∗ k = g ∗ (h ∗ k).

3 There is an identity e ∈ G for ∗, i.e., ∃e ∈ G , ∀g ∈ G , g ∗ e = e ∗ g = g .

4 For every g ∈ G , there is an inverse h ∈ G , i.e.,
∀g ∈ G , ∃h ∈ G , g ∗ h = h ∗ g = e.

The following are groups: (Z,+), (Q+,×), (Zn,⊕), (Sn, ◦).

George Voutsadakis (LSSU) Discrete Mathematics March 2014 11 / 50



Algebra Groups

Abelian Groups and Uniqueness of Inverses

The group operation ∗ need not be commutative. E.g., ◦ is not a
commutative operation on Sn.

Definition (Abelian Groups)

Let (G , ∗) be a group. We call this group Abelian provided ∗ is a
commutative operation on G , i.e., ∀g , h ∈ G , g ∗ h = h ∗ g .

Example: (Z,+) and (Z10,⊕) are Abelian, but (Sn, ◦) is not.

Proposition (Uniqueness of Inverses)

Let (G , ∗) be a group. Every element of G has a unique inverse in G .

By definition, every element in G has an inverse. Suppose that g ∈ G

has two distinct inverses, say h, k ∈ G , with h 6= k . This means
g ∗ h = h ∗ g = g ∗ k = k ∗ g = e, where e ∈ G is the identity for ∗
By the associative property, h ∗ (g ∗ k) = (h ∗ g) ∗ k . Furthermore,
h ∗ (g ∗ k) = h ∗ e = h and (h ∗ g) ∗ k = e ∗ k = k . Hence h = k ,
contradicting the fact that h 6= k .

We speak of the inverse of g and write g−1.
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Algebra Groups

Examples

(Z,+): Integers with addition is a group.

(Q,+): Rational numbers with addition is a group.
(Q,×): Rational numbers with multiplication is not a group. The
problem is that 0 ∈ Q does not have an inverse. We can “repair” this
example in two ways:

We can consider only the positive rational numbers: (Q+,×) is a
group.
Another way to repair this example is simply to eliminate the number
0. (Q− {0},×) is a group.

(Sn, ◦) is a group called the symmetric group.

If An be the set of all even permutations in Sn, then (An, ◦) is a group
called the alternating group.

The set of symmetries of a square with ◦ is a group. This group is
called a dihedral group.

In general, if n is an integer with n ≥ 3, the dihedral group D2n is
the set of symmetries of a regular n-gon with the operation ◦.
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Algebra Groups

More Examples

(Zn,⊕) is a group for all positive integers n.

Let G = {(0, 0), (0, 1), (1, 0), (1, 1)}. Define an operation ∗ on G by

(a, b) ∗ (c , d) = (a ⊕ c , b ⊕ d),

where ⊕ is addition mod 2. The ∗ table for this group is

∗ (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)
(1, 0) (1, 0) (1, 1) (0, 0) (0, 1)
(1, 1) (1, 1) (1, 0) (0, 1) (0, 0)

This group is known as the Klein 4-group. Notice that (0, 0) is the
identity element and every element is its own inverse.

If A is a set, then (2A,∆) is a group.
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Algebra Groups

The Group (Z∗
10,⊗)

(Z10,⊗) is not a group.
The problem is similar to (Q,×), i.e., zero does not have an inverse.
The remedy in this case is a bit more complicated, because we cannot
just throw away the element 0. Notice that in (Z10 − {0},⊗) the
operation ⊗ is no longer closed. For example, 2, 5 ∈ Z10 − {0}, but
2⊗ 5 = 0 6∈ Z10 − {0}.
In addition to eliminating the element 0, we can discard those
elements that do not have inverses. Then, we are left with the
elements in Z10 that are relatively prime to 10, i.e., with {1, 3, 7, 9}.
The ⊗ table for them is

⊗ 1 3 7 9

1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

This group is denoted (Z∗
10,⊗).
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Algebra Groups

The Group (Z∗
14,⊗)

Definition (Z∗
n)

Let n be a positive integer. We define Z∗
n = {a ∈ Zn : gcd(a, n) = 1}.

Example: Consider Z∗
14. The invertible elements in Z∗

14 (i.e., the
elements relatively prime to 14) are 1, 3, 5, 9, 11 and 13. Thus,
Z∗

14 = {1, 3, 5, 9, 11, 13}. The ⊗ table for Z∗
14 is

⊗ 1 3 5 9 11 13
1 1 3 5 9 11 13
3 3 9 1 13 5 11
5 5 1 11 3 13 9
9 9 13 3 11 1 5

11 11 5 13 1 9 3
13 13 11 9 5 3 1

The inverses of the elements in Z∗
14 are

1−1 = 1, 3−1 = 5, 5−1 = 3, 9−1 = 11, 11−1 = 9, 13−1 = 13.
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Algebra Groups

Modular Multiplication Groups I

Proposition

Let n be a positive integer. Then (Z∗
n,⊗) is a group.

To prove that (G , ∗) is a group, we need to prove that
G is closed under ∗;
∗ is associative;
G contains an identity element for ∗;
every element of G has a ∗-inverse in G.

We apply these to (Z∗
n,⊗):

Let a, b ∈ Z∗

n. Thus, a and b are relatively prime to n. So, we can find
integers x , y , z ,w such that ax + ny = 1 and bw + nz = 1.
Multiplying, we get 1 = (ax + ny)(bw + nz) =
(ax)(bw) + (ax)(nz) + (ny)(bw) + (ny)(nz) =
(ab)(wx) + (n)[axz + ybw + ynz] = (ab)(X ) + (n)(Y ), for some
integers X and Y . Therefore ab is relatively prime to n. Since
increasing or decreasing ab by a multiple of n results in a number still
relatively prime to n, gcd(a ⊗ b, n) = 1, and a⊗ b ∈ Z∗

n.
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Algebra Groups

Modular Multiplication Groups II

We continue with the second point:
That ⊗ is associative has already been proved.
Clearly gcd(1, n) = 1, so 1 ∈ Z∗

n. Since, also, for any a ∈ Z∗

n,
a⊗ 1 = 1⊗ a = (a · 1) mod n = a, 1 is an identity for ⊗.
Let a ∈ Z∗

n . We saw that a has an inverse a−1 ∈ Zn.
Is a−1 ∈ Z∗

n? Since a−1 is itself invertible, a−1 is relatively prime to n,
and so a−1 ∈ Z∗

n.

Therefore (Z∗
n,⊗) is a group.

Proposition

Let n be an integer with n ≥ 2. Then

|Z∗
n| = ϕ(n),

where ϕ(n) is Euler’s totient.

This holds by the definition of ϕ(n) as the number of integers from 1
to n (inclusive) that are relatively prime to n.
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Algebra Group Isomorphism

Subsection 2

Group Isomorphism
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Algebra Group Isomorphism

Idea of Isomorphism

Two groups may have identical structures.
Consider the groups: (Z4,⊕), (Z∗

5,⊗) and the Klein 4-group:

⊕ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

⊗ 1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

∗ (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)
(1, 0) (1, 0) (1, 1) (0, 0) (0, 1)
(1, 1) (1, 1) (1, 0) (0, 1) (0, 0)

In the Klein 4-group every element is its own inverse.

We can superimpose the operation tables for the two groups (Z4,⊕)
and (Z∗

5,⊗) on top of one another so they look the same.

We pair:
(Z4,⊕) (Z∗

5,⊗)

0 ↔ 1
1 ↔ 2
2 ↔ 4
3 ↔ 3

⊕ ⊗ 0 1 1 2 2 4 3 3

0 1 0 1 1 2 2 4 3 3
1 2 1 2 2 4 3 3 0 1
2 4 2 4 3 3 0 1 1 2
3 3 3 3 0 1 1 2 2 4
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Algebra Group Isomorphism

Formalizing Isomorphism

Let f : Z4 → Z∗
5 be defined by

f (0) = 1, f (1) = 2, f (2) = 4, f (3) = 3.

f is a bijection and f (x ⊕ y) = f (x) ⊗ f (y), where ⊕ is mod 4
addition and ⊗ is mod 5 multiplication.

Definition (Isomorphism of Groups)

Let (G , ∗) and (H, ⋆) be groups. A function f : G → H is called a
(group) isomorphism provided f is one-to-one and onto and satisfies

∀g , h ∈ G , f (g ∗ h) = f (g) ⋆ f (h).

When there is an isomorphism from G to H, we say G is isomorphic to
H and we write G ∼= H.

The “is-isomorphic-to” relation is an equivalence relation, i.e.,

for any group G , G ∼= G ,
for any two groups G and H , if G ∼= H , then H ∼= G ,
for any three groups G ,H , and K , if G ∼= H and H ∼= K , then G ∼= K .
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Algebra Group Isomorphism

Generators and Cyclic Groups: Examples

Element 1 of (Z4,⊕) generates all the elements of the group (Z4,⊕):

1 = 1, 1⊕ 1 = 2, 1⊕ 1⊕ 1 = 3, 1⊕ 1⊕ 1⊕ 1 = 0.

The element 3 also generates all the elements of (Z4,⊕):

3 = 3, 3⊕ 3 = 2, 3⊕ 3⊕ 3 = 1, 3⊕ 3⊕ 3⊕ 3 = 0.

Because (Z∗
5,⊗) is isomorphic to (Z4,⊕), it, too, must have a

generator: Since 1 ∈ Z4 corresponds to 2 ∈ Z∗
5, we calculate

2 = 2, 2⊗ 2 = 4, 2⊗ 2⊗ 2 = 3, 2⊗ 2⊗ 2⊗ 2 = 1.

Thus element 2 ∈ Z∗
5 generates the group.

The Klein 4-group does not have an element that generates the entire
group. In this group, every element g has the property that
g ∗ g = e = (0, 0). So there is no way that g , g ∗ g , g ∗ g ∗ g , . . . can
generate all the elements of the group.
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Algebra Group Isomorphism

Generators and Cyclic Groups

There is no element of Z that generates (Z,+). The element 1
generates all the positive elements of Z. If we allow 1’s inverse, −1,
to participate in the generation process, then we can get 0 (as
1 + (−1)) and all the negative numbers.

Definition (Generator, Cyclic Group)

Let (G , ∗) be a group. An element g ∈ G is called a generator for G if
every element of G can be expressed just in terms of g and g−1 using the
operation ∗. If a group contains a generator, it is called cyclic.

The special provision for g−1 is necessary only for groups with
infinitely many elements. If (G , ∗) is a finite group and g ∈ G , then
we can always find a way to write g−1 = g ∗ g ∗ · · · ∗ g

︸ ︷︷ ︸
n factors, for some n > 0

.
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Algebra Group Isomorphism

Expressing g
−1 in terms of g

Proposition

Let (G , ∗) be a finite group and let g ∈ G . Then, for some positive integer
n, we have g−1 = g ∗ g ∗ · · · ∗ g

︸ ︷︷ ︸
n times

.

We write gn = g ∗ g ∗ · · · ∗ g
︸ ︷︷ ︸

n times

.

Let (G , ∗) be a finite group and let g ∈ G . Consider the sequence
g1, g2, g3, g4, . . .. Since the group is finite, this sequence must, at
some point, repeat itself. Suppose the first repeat is at ga = gb,
where a < b.

Claim: a = 1.

Suppose a > 1. Then, since g a = gb, by operating on the left by g−1,
we get g−1 ∗ g a = g−1 ∗ gb, which gives g a−1 = gb−1. Thus, the first
repeat is before g a = gb, a contradiction. Therefore, a = 1.
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Algebra Group Isomorphism

Expressing g
−1 in terms of g : Proof (Cont’d)

We considered g1, g2, g3, . . ., which repeats when ga = gb, for a = 1.

So, if we stop at the first repeat, the sequence is
g1, g2, g3, . . . , gb = g . Notice that since g = gb, if we operate on
the left by g−1, we get e = gb−1.

If b = 2, we get g 2 = g . In this case, g = e and so g 1 = g−1, proving
the result.
If b > 2, we can write e = gb−1 = gb−2 ∗ g . Therefore, gb−2 = g−1,
proving again the result.
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Algebra Group Isomorphism

Structure of Finite Cyclic Groups

Theorem (Finite Cyclic Groups)

Let (G , ∗) be a finite cyclic group. Then (G , ∗) is isomorphic to (Zn,⊕),
where n = |G |.

Let (G , ∗) be a finite cyclic group. Suppose |G | = n and let g ∈ G be
a generator. We claim that (G , ∗) ∼= (Zn,⊕). Define f : Zn → G by
f (k) = gk . To prove that f is an isomorphism, we must show that

f is one-to-one and onto;
f (j ⊕ k) = f (j) ∗ f (k).

We undertake one at a time:
f is one-to-one: Suppose f (j) = f (k). This means that g j = g k . We
want to prove that j = k . Suppose that j 6= k . Without loss of
generality, 0 ≤ j < k < n. We can ∗ the equation g j = g k on the left
by (g−1)j to get (g−1)j ∗ g j = (g−1)j ∗ g k , i.e., e = g k−j . Since
k − j < n, this means that the sequence g , g 2, g 3, . . . repeats after
k − j steps, and therefore g does not generate the entire group (but
only k − j of its elements). However, g is a generator, which is a
contradiction. Therefore f is one-to-one.
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Algebra Group Isomorphism

Structure of Finite Cyclic Groups (Cont’d)

We have shown f (k) = gk is one-to-one. We continue with the
remaining two steps.

f is onto: Let h ∈ G . We must find k ∈ Zn, such that f (k) = h. We
know that the sequence e = g 0, g = g 1, g 2, g 3, . . . must contain all
elements of G . Thus, h is somewhere on this list, say, at position k

(i.e., h = g k). Therefore, f (k) = h and f is onto.
For all j , k ∈ Zn, we have f (j ⊕ k) = f (j) ∗ f (k): Recall that
j ⊕ k = (j + k) mod n = j + k + tn, for some integer t. Therefore,

f (j ⊕ k) = g j+k+tn = g j ∗ g k ∗ g tn = g j ∗ g k ∗ (gn)t

= g j ∗ g k ∗ et = g j ∗ g k = f (j) ∗ f (k).

Therefore, f : Zn → G is an isomorphism, and, hence,
(Zn,⊕) ∼= (G , ∗).
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Algebra Subgroups

Subsection 3

Subgroups
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Algebra Subgroups

Subgroups

Consider the integers as a group: (Z,+). Within the set of integers,
we find the set of even integers, E = {x ∈ Z : 2 | x}. (E ,+) is also a
group: it satisfies the four required properties.

+ is closed on E (the sum of two even integers is again even);
addition is associative;
E contains the identity element 0;
if x is an even integer, then −x is also, so inverses are in E .

In this case, we call (E ,+) a subgroup of (Z,+).

Definition (Subgroup)

Let (G , ∗) be a group and let H ⊆ G . If (H, ∗) is also a group, we call it a
subgroup of (G , ∗).

The operation for the group and the operation for its subgroup must
be the same: It is incorrect to say that (Z10,⊕) is a subgroup of
(Z,+); it is true that Z10 ⊆ Z, but the operations ⊕ and + are
different.
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Algebra Subgroups

Subgroups of (Z10,⊕)

The subgroups of (Z10,⊕) are

{0}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{0, 5}, {0, 2, 4, 6, 8}.

How can we verify that our answer is correct?
For each subset H we listed, is (H ,⊕) a group?
Are there other subsets H ⊆ Z10 that we missed?

If (G , ∗) is a group, to determine whether (H, ∗) is a subgroup of
(G , ∗):

First, we check H ⊆ G .
Second, we show that (H , ∗) is a group:

To check closure, we need to prove that if g , h ∈ H, then g ∗ h ∈ H.
We do not have to check associativity: (G , ∗) is a group and therefore
∗ is associative on G . Since H ⊆ G , we must have that ∗ is already
associative on H.
Next, we check that the identity element is in H.
Finally, we know that every element of H has an inverse (because every
element of G ⊇ H has an inverse). If g ∈ H, we must show g−1 ∈ H.
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Algebra Subgroups

Back to the Subgroups of (Z10,⊕)

Are {0}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {0, 5} and {0, 2, 4, 6, 8} truly
subgroups of (Z10,⊕)?

We check these claims:
H = {0} is a subgroup of (Z10,⊕).

Since 0⊕ 0 = 0, we see that H is closed under ⊕.
It contains the identity.
Since 0’s inverse is 0, the inverse of every element in H is also in H.

H = Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is a subgroup of (Z10,⊕). Since
(Z10,⊕) is a group, it is a subgroup of itself.
H = {0, 5} is a subgroup of (Z10,⊕).

H is closed under ⊕ since 0⊕ 0 = 5⊕ 5 = 0 and 0⊕ 5 = 5⊕ 0 = 5.
Clearly 0 ∈ H.
0 and 5 are their own inverses.

H = {0, 2, 4, 6, 8} is a subgroup of (Z10,⊕).

Reduction mod 10 of an even number is even.
0 ∈ H.
The inverses of 0, 2, 4, 6, 8 are 0, 8, 6, 4, 2, respectively.
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Algebra Subgroups

Any More Subgroups of (Z10,⊕)?

Are there other subgroups of (Z10,⊕)?

Suppose H ⊆ Z10 and that (H,⊕) is a subgroup of (Z10,⊕). Since
(H,⊕) is a group, we must have 0 ∈ H. If the only element of H is 0,
we have H = {0}. Otherwise the following analysis applies:

Suppose 1 ∈ H . Then 1⊕ 1 = 2 ∈ H . Also 1⊕ 2 = 3 ∈ H . Continuing,
we get H = Z10. Thus, if 1 ∈ H , H = Z10.
Suppose 3 ∈ H . Then 3⊕ 3 = 6 ∈ H and 3⊕ 6 = 9 ∈ H . Since 9 ∈ H ,
so is its inverse, 1 ∈ H . But, if 1 ∈ H , then H = Z10.
If 7 ∈ H or if 9 ∈ H , then we can show that 1 ∈ H , and then H = Z10.
Suppose 5 ∈ H . We have H ⊇ {0, 5}. If 2 ∈ H , then 2⊕ 5 = 7 ∈ H ,
whence H = Z10. Similarly, if any even is in H , then H = Z10. So if
5 ∈ H , then either H = {0, 5} or H = Z10.
If all elements in H are even:

If 2 ∈ H, then 4, 6, 8 ∈ H, so H = {0, 2, 4, 6, 8}.
If 4 ∈ H, then 4⊕ 4⊕ 4 = 2 ∈ H, and H = {0, 2, 4, 6, 8}.
Similarly, if 6 or 8 is in H, again H = {0, 2, 4, 6, 8}.
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Algebra Subgroups

Examples of Cardinalities of Subgroups

The four subgroups of (Z10,⊕) have cardinalities 1, 2, 5, and 10.
These four numbers are divisors of 10.

We list all the subgroups of (S3, ◦), i.e., of the set of all permutations
of {1, 2, 3} with the composition operation. Recall
S3 = {(1)(2)(3), (12)(3), (13)(2), (1)(23), (123), (132)}. Its
subgroups are

{(1)(2)(3)}
{(1)(2)(3), (12)(3)} {(1)(2)(3), (13)(2)} {(1)(2)(3), (1)(23)}

{(1)(2)(3), (123), (132)}
{(1)(2)(3), (12)(3), (13)(2), (1)(23), (123), (132)}.

The cardinalities of these subgroups are 1, 2, 3 and 6. Note, again,
that they are all divisors of 6.
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Algebra Subgroups

Congruence Modulo a Subgroup

Definition (Congruence Modulo a Subgroup)

Let (G , ∗) be a group and let (H, ∗) be a subgroup. Let a, b ∈ G . We say
that a is congruent to b modulo H if a ∗ b−1 ∈ H. We write this as
a ≡ b (mod H).

Example: Consider the group (Z∗
25,⊗). We have

Z∗
25 = {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24}.

Let H = {1, 7, 18, 24}. The operation table for ⊗ restricted to H is

⊗ 1 7 18 24
1 1 7 18 24
7 7 24 1 18
18 18 1 24 7
24 24 18 7 1

H is a subgroup of Z25:

H is closed under ⊗.

The identity element 1 ∈ H .

The inverse of every element of H is in H .

Do we have 2 ≡ 3 (mod H)? Calculate 2⊗ 3−1 = 2⊗ 17 = 9 6∈ H.

Therefore 2 6≡ 3 (mod H).
Since 2⊗ 11−1 = 2⊗ 16 = 7 ∈ H, we have 2 ≡ 11 (mod H).
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Algebra Subgroups

Congruence Modulo a Subgroup is an Equivalence Relaion

Lemma

Let (G , ∗) be a group and let (H, ∗) be a subgroup. Then congruence
modulo H is an equivalence relation on G .

Congruence modulo H is reflexive, symmetric, and transitive:

Congruence modulo H is reflexive: Let g ∈ G . We need to show that
g ≡ g (mod H). To do that, we need to show g ∗ g−1 ∈ H . Since
g ∗ g−1 = e and, since e ∈ H , we have g ≡ g (mod H).
Congruence modulo H is symmetric: Suppose a ≡ b (mod H). Then
a ∗ b−1 ∈ H . Therefore, (a ∗ b−1)−1 ∈ H . But (a ∗ b−1)−1 =
(b−1)−1 ∗ a−1 = b ∗ a−1 ∈ H . Thus, we have b ≡ a (mod H).
Congruence modulo H is transitive: Suppose a ≡ b (mod H) and
b ≡ c (mod H). Thus, a ∗ b−1, b ∗ c−1 ∈ H . Since H is a subgroup
and, therefore, closed under ∗, (a ∗ b−1) ∗ (b ∗ c−1) =
a ∗ (b−1 ∗ b) ∗ c−1 = a ∗ c−1 ∈ H . Therefore a ≡ c (mod H).

Therefore congruence modulo H is an equivalence relation on G .
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Algebra Subgroups

Example of Equivalence Classes

Since congruence mod H is an equivalence relation, we may consider
the equivalence classes of this relation.

Recall the group (Z25,⊗) and its subgroup H = {1, 7, 18, 24} we
considered in the previous slide. For the congruence mod H relation,
what is the equivalence class [2]?
This is the set of all elements of Z25 that are related to 2, i.e.,
[2] = {a ∈ Z25 : a ≡ 2 (mod H)}. By testing all 20 elements of Z25,
we find that [2] = {2, 11, 14, 23}. The other equivalence classes are

[1] = {1, 7, 18, 24} [2] = {2, 11, 14, 23} [3] = {3, 4, 21, 22}
[6] = {6, 8, 17, 19} [9] = {9, 12, 13, 16}

These are all the equivalence classes of congruence mod H, since
every element of Z25 is in exactly one of these classes.

We know the equivalence classes form a partition of the group.

The class [1] equals the subgroup H = {1, 7, 18, 24}.

The equivalence classes all have the same size.
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Algebra Subgroups

Size of Equivalence Classes

Lemma

Let (G , ∗) be a group and let (H, ∗) be a finite subgroup. Then any two
equivalence classes of the congruence mod H relation have the same size.

Let g ∈ G be arbitrary. It is enough to show that [g ] = [e]. Note
[e] = {a ∈ G : a ≡ e (mod H)} = {a ∈ G : a ∗ e−1 ∈ H} =
{a ∈ G : a ∈ H} = H. To show that [g ] = H, we define a function
f : H → [g ] and we prove that f is one-to-one and onto. For h ∈ H,
define f (h) = h ∗ g .

Clearly f is a function defined on H .
Is f : H → [g ]? Since f (h) ∗ g−1 = (h ∗ g) ∗ g−1 = h ∗ (g ∗ g−1) =
h ∈ H , f (h) ≡ g (mod H), whence f (h) ∈ [g ].
Now, we show that f is one-to-one. Suppose f (h) = f (h′). Then,
h ∗ g = h′ ∗ g . So (h ∗ g) ∗ g−1 = (h′ ∗ g) ∗ g−1, whence h = h′.
Finally, we show that f is onto. Let b ∈ [g ]. This means that b ≡ g

(mod H), whence b ∗ g−1 ∈ H . Let h = b ∗ g−1. Then f (h) =
f (b ∗ g−1) = (b ∗ g−1) ∗ g = b ∗ (g ∗ g−1) = b. So f is onto [g ].
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Algebra Subgroups

Lagrange’s Theorem

Theorem (Lagrange)

Let (H, ∗) be a subgroup of a finite group (G , ∗) and let a = |H| and
b = |G |. Then a | b.

Let (G , ∗) be a finite group and let (H, ∗) be a subgroup.

By the preceding lemma, the equivalence classes of the
“is-congruent-to-mod-H” relation all have the same cardinality as H.

Since the equivalence classes form a partition of G , |H| must be a
divisor of |G |.
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Algebra Fermat’s Little Theorem

Subsection 4

Fermat’s Little Theorem
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Algebra Fermat’s Little Theorem

Fermat’s Little Theorem: An Example

Theorem (Fermat’s Little Theorem)

Let p be a prime and let a be an integer. Then ap ≡ a (mod p).

Example: If p = 23, then the powers of 5 taken modulo 23 are

51 ≡ 5 52 ≡ 2 53 ≡ 10 54 ≡ 4 55 ≡ 20
56 ≡ 8 57 ≡ 17 58 ≡ 16 59 ≡ 11 510 ≡ 9
511 ≡ 22 512 ≡ 18 513 ≡ 21 514 ≡ 13 515 ≡ 19
516 ≡ 3 517 ≡ 15 518 ≡ 6 519 ≡ 7 520 ≡ 12
521 ≡ 14 522 ≡ 1 523 ≡ 5 524 ≡ 2 525 ≡ 10

where all congruences are mod 23.
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Algebra Fermat’s Little Theorem

Fermat’s Little Theorem: First Proof

We first prove by induction the result for a ≥ 0, i.e., that if p is prime
and a ∈ N, then ap ≡ a (mod p).

Basis case: If a = 0, ap = 0p = 0 = a, so ap ≡ a (mod p).
Induction Hypothesis: Suppose kp ≡ k (mod p).
Induction Step: We show (k + 1)p ≡ k + 1 (mod p). By the Binomial
Theorem, (k + 1)p = kp +

(
p
1

)
kp−1 +

(
p
2

)
kp−2 + · · ·+

(
p

p−1

)
k + 1. All

but the first and last terms on the right are of the form
(
p
j

)
kp−j , where

0 < j < p. The binomial coefficient
(
p
j

)
is an integer:

(
p
j

)
= p!

j!(p−j)! =
p(p−1)!
j!(p−j)! . Factor the numerator and the denominator into primes and

cancel matching primes. Since p is a prime factor of the numerator but
not of the denominator, this integer must be a multiple of p. So
kp +

(
p
1

)
kp−1 +

(
p
2

)
kp−2 + · · · +

(
p

p−1

)
k + 1 ≡ kp + 1 (mod p). Since,

kp ≡ k (mod p), (k + 1)p ≡ kp + 1 ≡ k + 1 (mod p).

We finally show that (−a)p ≡ (−a) (mod p) where a > 0.
If p = 2, (−a)2 ≡ a2 ≡ a ≡ − a (mod 2).
If p > 2, we have (−a)p = (−1)pap = − (ap) ≡ − a (mod p).
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Algebra Fermat’s Little Theorem

Fermat’s Little Theorem: Second Proof I

We again assume a is a positive integer. The case a = 0 is trivial, and
the case a < 0 is handled as in the previous proof.

With p a prime and a a positive integer, we ask: How many length p

lists can be formed in which the elements of the list are chosen from
{1, 2, . . . , a}? The answer to this question is ap.

We define an equivalence relation R on these lists: Two lists are
equivalent if we can get one from the other by cyclically shifting its
entries. For example 12334 R 41233 R 34123 R 33412 R 23341.

How many nonequivalent length p lists can be formed in which the
elements of the list are chosen from {1, 2, . . . , a}? I.e., can we count
the number of R-equivalence classes?

Example: Consider the case a = 2 and p = 3. There are eight lists we
can form:

111, 112, 121, 122, 211, 212, 221, 222.
These fall into four equivalence classes: {111}, {222}, {112, 121,
211} and {122, 212, 221}.
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Algebra Fermat’s Little Theorem

Fermat’s Little Theorem: Example Showcasing Proof

Example: Consider the case a = 3 and p = 5. There are 35 = 243
possible lists (from 11111 to 33333). There are three equivalence
classes that contain just one list, namely {11111}, {22222} and
{33333}. The remaining lists fall into equivalence classes containing
more than one element. For example, the list 12113 is in the following
equivalence class: [12113] = {12113, 31211, 13121, 11312, 21131}. By
experimenting, notice that all the equivalence classes with more than
one list contain exactly five lists. Thus there are three equivalence
classes that contain only one list and the remaining 35 − 3 lists fall
into classes containing exactly five lists each. There are 35−3

5 such

classes. Thus, all told, there are 3 + 35−3
5 = 51 different equivalence

classes. The number 35−3
5 is an integer. Therefore 35 − 3 is divisible

by 5, i.e., 35 ≡ 3 (mod 5).
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Algebra Fermat’s Little Theorem

Fermat’s Little Theorem: Second Proof II

How many elements does an equivalence class contain?

For lists all of whose elements are the same, the equivalence classes
contain exactly one list.
For a list with (at least) two different elements x1x2 · · · xp−1xp , where
the elements are drawn from {1, 2, . . . , a}, the equivalence class of this
list contains x1x2x3 · · · xp−1xp , x2x3 · · · xp−1xpx1, x3 · · · xp−1xpx1x2, . . . ,

xpx1x2 · · · xp−1. Are there p lists in this equivalence class, or is there a
repetition?
Claim: If the elements of the list x1x2x3 · · · xp−1xp are not all the same,
then the p lists above are all different.
Thus there are a equivalence classes of size 1 and the remaining ap − a

lists form equivalence classes of size p. All together, there are a+ ap−a
p

different equivalence classes. Since this number must be an integer,
ap − a is divisible by p, i.e., ap ≡ a (mod p).
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Algebra Fermat’s Little Theorem

Fermat’s Little Theorem: Proof of the Claim

Claim: If the elements of the list x1x2x3 · · · xp−1xp are not all the
same, then the p lists above are all different.

Suppose that xixi+1 · · · xi−1 = xjxj+1 · · · xj−1, with 1 ≤ i < j ≤ p.
Then xi = xj , xi+1 = xj+1, . . . , xi−1 = xj−1. Therefore, if we cyclically
shift the list x1x2x3 · · · xp−1xp by j − i steps, the resulting sequence is
identical to the original. Thus, x1 = x1+(j−i). If we shift the list
another j − i steps, we again return to the original: x1 = x1+2(j−i). We
always add or subtract a multiple of p so that the subscript on x lies in
the set {1, 2, . . . , p}. So we get

x1 = x1+(j−i) = x1+2(j−i) = x1+3(j−i) = · · · = x1+(p−1)(j−i).

But this equation says that x1 = x2 = · · · = xp , a contradiction!
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Algebra Fermat’s Little Theorem

A Handy Lemma

Lemma

Let (G , ∗) be a finite group, with identity e, and let g ∈ G . Then g |G | = e.

Consider the sequence g1, g2, g3, . . .. Since (G , ∗) is finite, this
sequence must repeat, i.e., g i = g j , for some 1 ≤ i < j . ∗ both sides
by (g−1)i to get e = g j−i . Thus, there is k > 0, such that gk = e.
By the Well-Ordering Principle, there is a least positive integer k such
that gk = e. Define the order of the element g , denoted |g |, to be
the smallest such positive integer.
Claim: 〈g〉 = {e, g , g2, g3, . . .} is a subgroup of G , with |〈g〉| = |g |.

Clearly, it is closed under ∗;
It contains e;
Every element g i has an inverse: Let i = kq + r , with 0 ≤ r < k . Then
g i ∗ g k−r = g (kq+r)+(k−r) = g k(q+1) = e, whence (g i)−1 = g k−r .

By Lagrange’s Theorem, |〈g〉| = |g | divides |G |. Therefore
g |G | = gk|g | = (g |g |)k = ek = e.
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Algebra Fermat’s Little Theorem

Fermat’s Little Theorem: Third Proof

We work in the group (Z∗
p ,⊗) and prove the result only for a > 0.

If a is a multiple of p, then ap ≡ a ≡ 0 (mod p).

If we increase (or decrease) a by a multiple of p, there is no change
modulo p in the value of ap: (a + kp)p =
ap +

(
p
1

)
ap−1(kp)1 +

(
p
2

)
ap−2(kp)2 + · · ·+

(
p
p

)
a0(kp)p ≡ ap (mod p).

Therefore we may assume that a is an integer in the set {1, 2, . . . ,
p − 1} = Z∗

p .

The equation ap ≡ a (mod p) is equivalent to a ⊗ a⊗ · · · ⊗ a
︸ ︷︷ ︸

p times

= a.

This can be rewritten ap = a. If we ⊗ both sides by a−1, we have
ap−1 = 1. Conversely, if we can prove ap−1 = 1 in Z∗

p, then our proof
will be complete. This, however, was the content of the preceding
lemma!
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Algebra Fermat’s Little Theorem

Euler’s Theorem: Example

Fermat’s Little Theorem does not hold for any non-prime moduli, i.e.,
it is not the case that an ≡ a (mod n) for any positive integer n.
Example: Consider n = 9. We have

19 ≡ 1 29 ≡ 8 6≡ 2 39 ≡ 0 6≡ 3
49 ≡ 1 6≡ 4 59 ≡ 8 6≡ 5 69 ≡ 0 6≡ 6
79 ≡ 1 6≡ 7 89 ≡ 8 99 ≡ 0 ≡ 9

where all congruences are modulo 9. So, the formula ap ≡ a

(mod p) does not extend to non prime values of p.
A clue is gotten by looking more closely to the third proof: The key
was that ap−1 = 1 in Z∗

p. This holds because:
a ∈ Z∗

p;
the exponent p − 1 is the number of elements in Z∗

p . In general,
however, |Z∗

n | = ϕ(n), Euler’s totient.
Example: We replace the exponent 9 with the exponent ϕ(9) = 6 in
the previous example. We have Z∗

9 = {1, 2, 4, 5, 7, 8} and ϕ(9) = 6.
Raising the integers 1 through 9 to the power 6 (mod 9) gives

16 ≡ 1 26 ≡ 1 36 ≡ 0 46 ≡ 1 56 ≡ 1
66 ≡ 0 76 ≡ 1 86 ≡ 1 96 ≡ 0.
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Algebra Fermat’s Little Theorem

Euler’s Theorem

We have seen that if a ∈ Z∗
n, then a|Z

∗

n | = 1. Since |Z∗
n| = ϕ(n), this

can be rewritten aϕ(n) = 1, with multiplication in Z∗
n.

Theorem (Euler’s Theorem)

Let n be a positive integer and let a be an integer relatively prime to n.
Then

aϕ(n) = 1 (mod n).

Let a be relatively prime to n. Dividing a by n, we have a = qn+ r ,
where 0 ≤ r < n. Since a is relatively prime to n, so is r . Thus we
may assume that a ∈ Z∗

n. Now, by a preceding lemma, ϕ(n) = |Z∗
n|

implies aϕ(n) = 1 in Z∗
n, which is equivalent to aϕ(n) ≡ 1 (mod n).
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Algebra Fermat’s Little Theorem

Primality Testing

Fermat’s Little Theorem states that if p is a prime, then ap ≡ a

(mod p) for any integer a. We can write this symbolically as

p is a prime ⇒ ∀a ∈ Z, ap ≡ a (mod p).

The contrapositive of this statement is

¬[∀a ∈ Z, ap ≡ a (mod p)] ⇒ p is not a prime,

which can be rewritten

∃a ∈ Z, ap 6≡ a (mod p) ⇒ p is not a prime.

This says that, if there is some integer a such that ap 6≡ a (mod p),
then p is not a prime. Therefore, we have shown:

Theorem

Let a and n be positive integers. If an 6≡ a (mod n), then n is not prime.

This theorem can be used for showing that an integer is not prime.

But, if we have positive integers a and n with an ≡ a (mod n), then
we cannot conclude that n is prime!
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