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Public Key Cryptography Introduction

Problem and Solution Idea

Alice wants to tell Bob a secret. But Eve is eavesdropping. Can Alice
tell Bob the secret? Can they hold a private conversation?

Perhaps they can create a secret code and converse only in this code.
Eve can overhear everything, including the details of their secret code!
Alice and Bob could make up their code in private (where Eve can’t
hear). But, this option could be impractical, slow, and expensive.

It seems impossible for Alice and Bob to hold a private conversation
while Eve is listening to everything they say. It is therefore an amazing
fact that private communication in a public forum is possible!

The key is to develop a secret code with the following property:

Revealing the encryption procedure does not undermine the secrecy
of the decryption procedure.

The idea is to find a procedure that is relatively easy to do, but
extraordinarily difficult to undo. For example, it is not hard to
multiply two enormous prime numbers, but factoring the resulting
product is extremely hard.
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Public Key Cryptography Introduction

Conjecture on the Inefficiency of Factoring

Suppose p and q are large prime numbers, e.g., 500 digits each.

It is not difficult to multiply these numbers. The result, n = pq, is a
1000-digit composite number. On a computer, this computation
takes less than a second.

Suppose we are given their product n = pq and want to factor n to
recover the prime factors p and q. If we use trial division, we need to
do about 10500 divisions. This would take a very long period of time
even on an ultra fast computer.

If instead of using 500-digit primes p and q, we use 1000-digit primes,
n = pq increases from 1000 to 2000 digits, the time to multiply
quadruples, but the time to factor gets 101000 times bigger!

Conjecture (Inefficiency of Factoring)

There is no efficient procedure for factoring positive integers.

The security of public-key cryptosystems relies on not having an
efficient factoring algorithm!
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Public Key Cryptography Introduction

Encoding the Message in ASCII

Alice’s message to Bob will be a large integer.

A system is needed for converting a message into a number.

Suppose her message is
Dear Bob, Do you want to go to the movies tonight? Alice

First, Alice converts this message into a positive integer. A standard
way to convert the Roman alphabet into numbers is the ASCII code.
In ASCII, Alice’s message, rendered as numbers, is

D e a r spc B o b , . . .

068 101 097 114 032 066 111 098 044 . . .

Next, Alice combines these three-digit numbers into one large integer

M = 68, 101, 097, 114, 032, 066, 111, 098, . . . , 099, 101.

Since Alice’s original message is about 50 characters long, this
message is about 150 digits long.

Now Alice is ready to send her message to Bob.
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Public Key Cryptography Introduction

The Communication Protocol

Bob creates a pair of functions, D and E , which are inverses of one
another, i.e., D(E (M)) = M.

Bob tells Alice the function E . At this point, Eve gets to see the
function E .

The function E is fairly easy to compute, but it is very hard to figure
out D knowing only E .

Alice uses Bob’s public encryption function E . She computes
N = E (M) and sends the integer N to Bob. Eve gets to see this
integer as well.

Bob now uses his private decryption function D to compute D(N).
The result is D(N) = D(E (M)) = M, so Bob gets the message M.

Since Eve does not know D, she cannot figure out what M is.

The challenge is to create functions E and D that work for this
protocol.
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Public Key Cryptography Introduction

Summary of the Exchange

Bob creates a public
encryption function

E and a secret
decryption function D .

Bob sends his public
encryption function

E to Alice.

Alice writes her message
M in ASCII. Uses Bob’s
function E to calculate

N = E(M).

Alice sends N to Bob.

Bob uses his
function D to

calculate M = D(N).

George Voutsadakis (LSSU) Discrete Mathematics March 2014 8 / 27



Public Key Cryptography Rabin’s Method

Subsection 2

Rabin’s Method

George Voutsadakis (LSSU) Discrete Mathematics March 2014 9 / 27



Public Key Cryptography Rabin’s Method

Square Roots in Zn

The challenge is to create good encryption and decryption functions.

They should be relatively easy to compute.
Revealing E should not provide enough information to figure out D.

In Rabin’s Cryptosystem,

the encryption function is especially simple: For n be a large integer,
the encryption function is

E (M) = M2 mod n.

Decryption involves taking a square root (in Zn).

The integer n needs to be chosen in a special manner (to be
described below).

To understand how to decrypt messages and why Rabin’s method is
secure, we need to understand how to take square roots in Zn.
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Public Key Cryptography Rabin’s Method

Square Roots in Zn: Examples

Example: In Z59, when we ask for the square roots of 17, we seek
those elements x ∈ Z59 for which x2 = x ⊗ x = 17.
The calculator’s value of

√
17 = 4.1231056 . . . is not of any help.

There are only 59 different elements in Z59. We can simply square all
of them and see which (if any) gives 17 as a result. This is painful to
do by hand but fast on a computer. We find that 17 has two square
roots in Z59: 28 and 31.

What is
√
18 in Z59?

We find that 18 does not have a square root in Z59.

When we search for square roots of 17 in Z1121, we find four answers:
146, 500, 621 and 975.
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Public Key Cryptography Rabin’s Method

Quadratic Residues in Zp

Definition (Quadratic Residue)

Let n be a positive integer and let a ∈ Zn. If there is an element b ∈ Zn

such that a = b ⊗ b = b2, we call a a quadratic residue modulo n.
Otherwise, i.e., if there is no such b, we call a a quadratic nonresidue.

Proposition (At Most Two Square Roots in Zp)

Let p be a prime and a ∈ Zp. Then a has at most two square roots in Zp.

Suppose that a has three (or more) square roots in Zp . Notice that if
x is a square root of a, then so is −x ≡ p − x because (p − x)2 =
p2 − 2px + x2 ≡ x2 ≡ a (mod p). Since a has three (or more) square
roots, we can choose two square roots, x , y ∈ Zp , such that x 6= ±y .
Now (x − y)(x + y) = x2 − y2 ≡ a− a = 0 (mod p). The condition
x 6= ±y implies that x + y 6≡ 0 (mod p) and x − y 6≡ 0 (mod p).
This means that p is not a factor of either x + y or x − y . Yet p is
factor of (x + y)(x − y), a contradiction!
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Public Key Cryptography Rabin’s Method

Square Roots in Zp (p prime, p ≡ 3 (mod 4))

Proposition

Let p be a prime with p ≡ 3 (mod 4). Let a ∈ Zp be a quadratic residue.
Then the square roots of a in Zp are

[±a(p+1)/4] mod p.

Let b = a(p+1)/4 mod p. We need to prove that b2 = a. By
hypothesis, a is a quadratic residue in Zp, so there is an x ∈ Zp such
that a = x ⊗ x = x2. Calculate

b2 ≡ [a(p+1)/4]2 ≡ [(x2)(p+1)/4]2

≡ [x(p+1)/2]2 ≡ xp+1

≡ xpx1 ≡ x2 ≡ a (mod p).

Of course, if b2 ≡ a (mod p), then also (−b)2 ≡ a (mod p). By the
preceding proposition, there can be no other square roots in Zp .

George Voutsadakis (LSSU) Discrete Mathematics March 2014 13 / 27



Public Key Cryptography Rabin’s Method

Examples

Example: p = 59 is prime and 59 = 3 (mod 4). In Z59 we have
17(p+1)/4 = 1715 = 28 and 282 = 31⊗ 31 = 17.

Example: 17 has four square roots in Z1121. This is not a
contradiction to the proposition, because 1121 = 19 · 59 is not prime.
We now describe how to find the four square roots of 17.
Suppose x is a square root of 17 in Z1121. Then x ⊗ x = 17, whence
x2 = 17 (mod 1121), i.e., x2 = 17 + 1121k , for some integer k . This
can be rewritten as x2 = 17 + 19 · (59k) and x2 = 17 + 59 · (19k).
Therefore, x2 = 17 (mod 19) and x2 = 17 (mod 59). Thus, to solve
x2 = 17 (mod 1121), we should first solve the two equations

x2 = 17 (mod 19) and x2 = 17 (mod 59).

We have already found in Z59 the square roots of 17 are 28 and 31.
Since 19 ≡ 3 (mod 4), we can use the formula of the proposition
17(19+1)/4 = 175 ≡ 6 (mod 19). The other square root is −6 ≡ 13.
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Public Key Cryptography Rabin’s Method

The Subproblems for Finding
√
17 mod 1121

Summarizing

We want to find
√
17 in Z1121;

We have 1121 = 19 · 59.
In Z19 the square roots of 17 are 6 and 13.
In Z59 the square roots of 17 are 28 and 31.

Furthermore, if x is square root of 17 in Z1121, then (after we reduce
x modulo 59) it is also a square root of 17 in Z59, and (after we
reduce x modulo 19) it is also a square root of 17 in Z19.

Thus x satisfies: x = 6 or 13 (mod 19) and x = 28 or 31 (mod 59).

Now, we need to solve each of the four congruence systems:

x ≡ 6 (mod 19) x ≡ 6 (mod 19) x ≡ 13 (mod 19) x ≡ 13 (mod 19)
x ≡ 28 (mod 59) x ≡ 31 (mod 59) x ≡ 28 (mod 59) x ≡ 31 (mod 59)

We use the Chinese Remainder Theorem.
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Public Key Cryptography Rabin’s Method

Solving a Subproblem Using Chinese Remainder Theorem

We do only the calculations for

{

x ≡ 13 (mod 19)
x ≡ 28 (mod 59)

.

Since x ≡ 13 (mod 19), we write x = 13 + 19k , for some integer k .
Substituting into the other equation 13 + 19k = 28 (mod 59) or
19k ≡ 15 (mod 59).
Multiply both sides by 19−1 = 28 in Z59: 28 · 19k ≡ 28 · 15
(mod 59), whence k ≡ 7 (mod 59). Therefore, we get k = 7 + 59j ,
for some integer j .
Substituting back in x = 13 + 19k , we get

x = 13 + 19(7 + 59j) = 146 + 1121j .

So x = 146 is one of the four square roots of 17 in Z1121.
The other three are 500, 621 and 975.
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Public Key Cryptography Rabin’s Method

Efficiency of Factoring Subject to Availability of Roots

Theorem

Let n = pq where p and q are primes. Suppose x ∈ Zn has four distinct
square roots a, b, c , d . If these four square roots are known, then there is
an efficient computational procedure to factor n.

Suppose x ∈ Zn, where n = pq with p, q prime. Assume x = a2 = b2

= c2 = d2 in Zn, with a, b, c , d distinct. Since a is a square root of
x , so is −a. We may assume that b = −a, but c 6= ±a. Note
(a − c)(a + c) = a2 − c2 ≡ x − x = 0 (mod n), whence
(a − c)(a + c) = kpq = kn, where k is some integer. Furthermore,
since c 6= ±a (in Zn), a − c 6≡ 0 and a + c 6≡ 0 (mod n). Therefore
gcd (a − c , n) 6= n. If gcd (a − c , n) = 1, then neither p nor q is a
divisor of a − c , and since (a − c)(a + c) = kpq, p and q must be
factors of a+ c , which contradicts that a+ c 6≡ 0 (mod n). Since the
only other divisors of n are p and q, we must have gcd (a − c , n) = p

or gcd (a − c , n) = q. Thus, we can factor n by finding gcd’s.
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Public Key Cryptography Rabin’s Method

Illustration of the Theorem

Let n = 38989. The four square roots of 25 in Zn are a = 5,
b = −5 = 38984, c = 2154, and d = −2154 = 36835.
Now we calculate

gcd (a − c , n) = gcd (−2149, 38989) = 307,

gcd (a + c , n) = gcd (2159, 38989) = 127

and, indeed, 127 × 307 = 38989.
Although there may be other procedures to find square roots in Zpq ,
an efficient procedure would be a contradiction to the non-existence
conjecture. So, it is believed there is no computationally efficient
procedure to find square roots in Zpq .
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Public Key Cryptography Rabin’s Method

Rabin’s Communication Protocol

Alice wants to send a message to Bob.

To prepare for this, Bob finds two large prime numbers p and q with
p ≡ q ≡ 3 (mod 4). He calculates n = pq.

Bob then sends the integer n to Alice. Of course, Eve now knows n as
well, but because factoring is difficult, neither Alice nor Eve knows
the factors p and q.

Next, Alice forms M by converting into ASCII and using the ASCII
codes as the digits of M. Then, she calculates N = M2 mod n.

Now Alice sends N to Bob. Eve receives the number N as well.

To decrypt, Bob computes the four square roots of N (in Zn).
Because Bob knows the factors of n (namely, p and q), he can
compute the square roots. This gives four possible square roots, only
one of which is the message M that Alice sent. The other three
square roots give nonsense.

Eve cannot decrypt (she does not know how to find square roots).
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Public Key Cryptography RSA (Rivest, Shamir and Adleman)

Reminder of Euler’s Theorem and Euler’s Totient

The RSA cryptosystem is named after its inventors, Rivest, Shamir
and Adleman.

It is based on Euler’s extension to Fermat’s Little Theorem:

Euler’s Theorem

Let n be a positive integer and let a be an integer relatively prime to n.
Then aϕ(n) ≡ 1 (mod n), where ϕ is Euler’s totient, i.e., ϕ(n) is the
number of integers from 1 to n that are relatively prime to n.

For use with the RSA system, we are especially interested in ϕ(n)
with n = pq where p and q are distinct prime numbers.

In this case, recall that

ϕ(n) = ϕ(pq) = pq − p − q + 1 = (p − 1)(q − 1).
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Public Key Cryptography RSA (Rivest, Shamir and Adleman)

The Communication Protocol

Bob finds two large prime numbers p and q and calculates their
product n = pq. He also finds two integers e and d , satisfying some
special properties explained below.

The encryption and decryption functions are

E (M) = Me mod n and D(N) = Nd mod n.

These calculations can be done efficiently on a computer.

Bob tells Alice his encryption function E . In so doing, he reveals the
numbers n and e not only to Alice but also to Eve. He keeps the
function D secret; that is, he does not reveal the number d .

Alice forms her message M and calculates N = E (M).

Alice, then, sends the result to Bob. Eve gets to see N, but not M.

Bob calculates D(N) = D(E (M))
?
= M. For Bob to be able to

decrypt the message, it is important that we have D(E (M)) = M.

Working in Zn, we want D(E (M)) = D(Me) = (Me)d = Med ?
= M.
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Public Key Cryptography RSA (Rivest, Shamir and Adleman)

Ensuring Decryption Inverts Encryption

To ensure D(E (M)) = M, we use Euler’s theorem, i.e., that if
M ∈ Z

∗

n, then Mϕ(n) = 1 in Z
∗

n.

Raising both sides to a positive integer k gives Mkϕ(n) = 1. If we
multiply both sides by M, we get Mkϕ(n)+1 = M, so if
ed = kϕ(n) + 1, then we have D(E (M)) = Med = M. In other
words, we want ed ≡ 1 (mod ϕ(n)).

Now we explain how to choose e and d :

Bob selects e to be a random value in Z
∗

ϕ(n), i.e., e is an integer

between 1 and ϕ(n) that is relatively prime to ϕ(n).
Bob knows the prime factors of n, so he can calculate ϕ(n).
Next he computes d = e−1 in Z

∗

ϕ(n) (by finding x , y , with

ϕ(n)x + ey = 1).
This ensures that in Z

∗

n ,
D(E (M)) = Med = Mkϕ(n)+1 = (Mϕ(n))k ⊗M = 1k ⊗M = M .

With this choice of e and d , Bob can decrypt Alice’s message.
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Public Key Cryptography RSA (Rivest, Shamir and Adleman)

Review of the Method

Bob picks primes p = 1231, q = 337; computes n = pq = 414847.

He can also compute ϕ(n) = (p − 1)(q − 1) = 1230 · 336 = 413280.

He chooses e at random in Z
∗

413280 - say, e = 211243.

Finally, he calculates (in Z
∗

413280) d = e−1 = 166147.

The RSA Communication Procedure
Bob finds two very large prime numbers p and q. He calculates n = pq and
ϕ(n) = (p − 1)(q − 1).

Bob chooses a random number e ∈ Z
∗

ϕ(n) and calculates, using Euclid’s

Algorithm, d = e−1, where the inverse is in the group Z
∗

ϕ(n).

Bob tells Alice the numbers n and e (but keeps the number d secret). Eve
gets to see n and e.

Alice forms her message M and calculates N = E (M) = Me mod n.

Alice sends the number N to Bob. Eve gets to see this number as well.

Bob calculates D(N) = Nd = (Me)d = M and reads Alice’s message.
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Public Key Cryptography RSA (Rivest, Shamir and Adleman)

Eve’s Troubles

Eve knows Bob’s public encryption function E (M) = Me mod n, but
she does not know the two prime factors of n.

She also knows E (M) (the encrypted form of Alice’s message), but
she does not know M.

If Eve can guess the message M, then she can check her guess
because she too can compute E (M).
Otherwise, Eve can try to break Bob’s code.

One way she can do this is to factor n. Once she has n, she can
compute ϕ(n) and then get d = e−1 (in Z

∗

ϕ(n)). Our supposition is
that factoring is too hard for this to be feasible.
But Eve does not really need to know the prime factors of n. She
would be happy just knowing ϕ(n), so she can calculate d .

Proposition

Let p and q be primes and let n = pq. Suppose we are given n, but we do
not know p or q. If we are also given ϕ(n), then we can efficiently
calculate the prime factors of n.
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Public Key Cryptography RSA (Rivest, Shamir and Adleman)

Proof and Example

We know that n = pq, and ϕ(n) = (p − 1)(q − 1). This is a system
of two equations in two unknowns (p and q) that we can simply
solve. We write q = n

p
and substitute this into the second equation,

which we solve via the quadratic formula.

Example: If n = 414847, then ϕ(n) = 413280. We want to solve
{

pq = 414847
(p − 1)(q − 1) = 413280

}

. Substitute q = 414847
p

into

(p − 1)(q − 1) = 413280 to get

(p − 1)(414847
p

− 1) = 413280

=⇒ 414848 − 414847
p

− p = 413280

=⇒ p2 − 1568p + 414847 = 0.

Using the quadratic formula, we find roots p = 337 and 1231. The
prime factors of 414847 are, indeed, 337 and 1231.
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Public Key Cryptography RSA (Rivest, Shamir and Adleman)

Reasons for Eve’s Troubles

Eve does not need ϕ(n); she just needs to know d . This is unlikely:

Proposition

Let p, q be large primes and n = pq. Suppose there is an efficient
procedure that, given e with gcd (e, ϕ(n)) = 1, produces d with ed ≡ 1
(mod ϕ(n)). Then there is an efficient procedure to factor n.

Thus, if factoring is intractable, then there is no efficient way for Eve
to recover the exponent d just from knowing e and n.

To break Bob’s code, Eve needs to solve the equation Me ≡ N

(mod n), where she knows e,N and n.

We considered the possibility that Eve would recover the decryption
function (especially the integer d) and compute M from N the same
way Bob might. However, there may be other ways to solve this
equation that we have not considered.

Open Problem: Prove that breaking RSA is as hard as factoring.
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